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I. INTRODUCTION

The biconical corner reflector has received mention in several texts did
papers(refs.1,2,3) as a useful device for the passive enhancement of the radar
cross section when invariance of the cross section with azimuth angle is a
system requirement. It consists of two cones, one inverted on the top of the
other, with apex angles such that the included angle between the surfaces of
the cones is 90 . Most commonly the cone apex angles are both equal to 450,
and the cone apices do not coincide for structural reasons. The reflector
functions by directing the electromagnetic radiation incident on each cone
surface onto the other from whence it is rescattered. Using the concept of
rays described by Deschamps(ref.4), it can be seen that for those rays in the
plane containing the axis of the reflector this rescattering is such as to
direct the rays back towards the illuminating radar (figure 1). However any
other rays are dispersed away from the radar,and hence the enhancement of the
radar cross section is not as great as, say, that of the trihedral corner
reflector. In practical terms the biconical corner reflector can be regarded
as occupying a useful position between those scatterers which, in the optical
limit, have no dispersion, such as flat plates, Luneburg lenses and trihedral
reflectors, and those which cause dispersion in both planes, such as spheres
and, more generally, ellipsoids.

It is the purpose of this work to determine the radar cross section of the
generalised corner reflector of arbitrary size and apex angle. This does not
appear to have previously been the subject of research. Of the references
cited above on the biconical corner reflector, only the second provides
details of the computations necessary to calculate the radar cross section.
It is of limited value, though, for it only treats incidence normal to the
axis of a reflector constructed from cones each with an apex angle of 45° .

The technique of calculation is not particularly illuminating of the physical
process involved, and the derivation given contains arithmetic errors. These
errors have been perpetuated in reference 1 and an additional typographical
error included.

In this report the geometrical optics techniques developed by Deschamps
(ref.4) are used to determine the magnetic field and hence the induced surface
current on the lower cone resulting from the reflection of the incident
electromagnetic field by the upper cone. From this, the field radiated by the
surface current back towards the radar may be determined by using the
techniques of physical optics. It is shown that the reflection of the
incident field from the lower cone to the upper cone, and thence back to the
radar produces exactly the same field strength. The total radar cross section
of the biconical corner reflector then follows from simple calculations. It
will be appreciated that the field directly incident on each face of the
reflector will induce currents which will reradiate back towards the radar as
well as towards the other face of the reflector. Provided, however, that
incidence is not near the normal of either cone, and each face of the
reflector is at least several wavelengths long, this reradiation is not
significant and can safely be neglected in comparison with the doubly
reflected field. Since the normal design objective is to use the biconical
reflector at angles of incidence midway between the faces of the reflector,
this contribution to the radar cross section has been neglected in this
report. Furthermore diffraction by the edges of the reflector has been
ignored. The results therefore should only be considered valid when all the
critical dimensions of the reflector exceed several wavelengths.

The final result that is obtained is in the form of an integral of a fairly
well behaved real function, valid for arbitrary cone apex angles and angles of
incidence within the region subtended by the cones. As the general result, in
the form of an integral, is amenable only to numerical evaluation, it does not
highlight the effect of the various dimensions of the reflector on the total
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radar cross section. In three special cases though,

(i) when the cones touch at their apices,
(ii) when the apex angles are 450 and the angle of incidence is 00, and
(iii) when the lower cone has an apex angle of 900,

the integral can be evaluated analytically, yielding simple expressions for
the radar cross section. In these cases the effect of a change in the
dimensions of the cones is immediately apparent.

In this work it is assumed that the cone is illuminated by a plane
electromagnetic wave, of angular frequency w, polarised with the magnetic
field parallel to the y axis of the xyz coordinate system used to describe the
problem, with the direction of propagation of the incident wave subtending an
angle 0 to the x axis. A positive time harmonic dependency, exp(iwt) of all
the fields will be assumed throughout the analysis.

2. THEORETICAL ANALYSIS

2.1 The physical optics approximation

The simplest method of determining the radar cross section of an
object is to apply the techniques of geometrical optics, but in
situations where either or both principal radii of curvature of the

reflecting surface are infinite (gaussian curvature is zero) this method
predicts an infinite cross section in the specular direction, and zero
elsewhere. The essential feature that geometrical optics omits is that
for a body of characteristic dimension h, diffraction will spread the
scattered field over an angular interval (A/h) radians, where X is the
wavelength of the radiation. It is then necessary to have recourse to
the techniques of physical optics(ref.l,p51) to determine the radar cross
section. In this method an approximation to the field, and hence the
current, on the surface of the scatterer obtained by geometrical optics
techniques is used in the Stratton-Chu integral for the radiated
field(ref.l,p54). Since the field point in this integral lies on the
surface of the scatterer, the above objection to geometrical optics no
longer applies provided the relevant dimensions of the scatterer are
large in terms of the wavelength, and physical optics yields an accurate
estimate of the main beam and adjacent sidelobes of the scattered field.
Thus, if H is the total magnetic field on the surface of the scatterer,
the scattered magnetic fi ld H is(ref.2,p238) (note the difference in
sign of the exponential term relulting from the different time convention
in this reference)

H 4H)xVexp(-ikR)d I (1)

If R

where the various parameters are as defined in figure 2 and i is the
unit normal to '. For the field point at a large distance from the body

ik exp(-iks)( )x= - kX H) x exp(iki*s ) dt' (2)

where i is a unit vector in the direction of s, and s is the magnitude of
s. a' is a vector describing the position of the element of area dt' of
the scatterer. If the incident magnetic field is equal to Ho, the radar
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cross section then becomes 2I
O = H fa x H) x i exp(ik4.!') dt' (3)

The essential problem in this work is to evaluate equation (2) on a
conical surface illuminated by a system of rays reflected by the adjacent
conical surface. Consider the situation shown in figures I and 3 in
which the incident rays propagate parallel to the xz plane, making an
angle P to the x axis. It will be assumed that the incident magnetic
field is polarised in the ^ direction and has a magnitude Ho. The lower
cone has an apex angle a and the upper one an apex angle n/2 - a.
From figure 3 it is imediately apparent that the total ray path length

from the radar back to the radar for rays in the xz plane is independent
of the position at which the ray is incident on the upper cone, but for
rays in adjacent planes there is an increase in the total path length.
Mathematically, the path length from the radar to point B and thence to A
is contained within the phase term of 4 in equation (2) and the
propagation back to the radar is contained within the term s-s' - s.

If r is the distance from an arbitrary point on the lower cone to the
junction between the cones, illustrated for point A in figure 3, then an
element of area on the lower cone is

d' = (a + r sin a) dr d (4)

where * measures the angular displacement around the cone from the point
A in the xz plane. Equation (2) can thus be reduced to the form

H (r,$) exp(ikh(r,*)) dr dt (5)

in which

Br) 40=0 (6)

The integration with respect to # can therefore be carried out using the
method of stationary phase (ref.5,p274), yielding the result

H - H g(r,O) exp(ikh(r,O) - ij) dr (7)

where " denotes the second derivative of h(r,#) with respect to *. The
sign of the term in/4 is negative since h"(r,o) is negative in this
problem. It is interesting to note that, in the stationary phase
approximation of equation (2), the amplitude of the magnetic field is
only required in the plane # = 0, thus to some extent simplifying the
calculations that would otherwise be required in evaluating equation (2).
However it is still necessary to know the behaviour of the phase as #
varies about 0 in order that its second derivative may be calculated.
The evaluation of these parameters now follows.
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2.2 The tracing of the rays

Consider an arbitrary point A on the lower cone at which an incident
ray reflected at point B on the upper cone is specularly reflected back
towards the source radar (figure 3). Since the rays from the source
radar are incident at an angle P to the x axis and are parallel to the xz
plane, the points A and B must of necessity lie in the xz plane, ie the
plane * = 0. To determine the radar cross section of the biconical
reflector, the analysis of the previous section indicates that it is only
necessary to know the amplitude of the magnetic field at A and the
behaviour of the phase of the field on the surface of the cone in the
vicinity of A. On letting

AC = r (8)

it follows that

BC r(9

tan(a-P)

and

1 sina-) (10)

The point of incidence on the upper cone, and the ray path length are
thus specified.

The next step in the procedure is to determine the effect of the
curvature of the upper cone at B on the wave reflected from B. From
inspection the intersection of the cone with the plane * = 0 is a
straight line, which has zero curvature. It follows immediately that
this plane is one of the principle planes of the surface at B, and the
other principal plane is orthogonal to it and contains the normal to the
cone at B. The curvature of the intersection of this plane and the cone
is the other principal curvature at B, and follows quite simply from a
general theorem on the normal curvature vector. Since the intersection
of the plane z = zB is a circle of radius a + zB cot a, the normal

curvature at B, and hence the other principle curvature, is

sina

B = (a + zB cot a)

_ sin a tan(a-P)
tan a-V) + r con a(I)L

Following the techniques developed in Appendix II for determining the
effect of the curvature of the surface on the reflected wavefront it is
now necessary to construct coordinate systems u., v., w., i = 1, 2, 3 at
B to describe the incident wavefront, the surface, And the reflected
wavefront. The vectors 2, , and w2 are chosen to be coincident, with
u, directed to make ui a left hand coordinate system. Since the incident

.7J
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wave is a plane wave its curvature matrix is

QB= 0 (12)

Furthermore, following the notation of Appendix II

pi = pr L (13)

P = " sin(a-P) (14)

and

rP3 sin(a-) (15)

It then follows from equation (11.16) that the curvature matrix of the
reflected wave at B is

QB = 2 sin a sin 2(a-B) (16)

a sin(a-B) + r cos a cos(a-0)]

Equation (1.6) of Appendix I can then be used to determine the curvature
matrix of the ray incident on A. Thus[: 0

QA= 2 sin -a s2(0-p) (17)

roa sin(ct-p) + r cos P + r sin a sin(a-p)]

The amplitude of the incident magnetic field at A due to the ray
reflected from B is therefore (from equation (1.8))

( a sin(a-o) + r cos a cos(a-8) 1

[Hi = Ho a sin(G-P) + r cos A + r sin a sin(a-) (18)

where Ho is the amplitude of the plane wave incident upon the biconical
reflector at B. (Note that the boundary conditions on the surface at B
require that the amplitude of the reflected wave at B also be equal to
Ho).

The final step is to determine the behaviour of the phase of the
magnetic field in the vicinity of A, in particular on the intersection of
the lower conical surface and the plane x = zA. In this work it is

convenient to refer all the phases to the origin of the xyz coordinate
system. The path length S(B) of the incident wave at B, from which
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the phase follows by multiplication by k, is

S(B) = -a cos 0 - r cot(O-0) cos(O-0) (19)

and the path length at A is

S(A) = S(B) + I

-- a cos 0 + r sin(a-0) (20)

For an arbitrary point in the vicinity of A, described by the vector

U 2ji ,the path length is

U) = S(A) + Us + Ful (21)

where u. is a coordinate system constructed at A such that as is a unit
vector in the direction of propagation of the ray incident on A and U,
u2 coincide with the principal directions of the wavefront incident at A;
these are parallel to 41, w2 erected at B, and are indicated in figure 4.

Since the intersection of the plane z = zA and the lower conical

surface is a circle, any arbitrary point on the circle can be referred to
by the angular coordinate * of the spherical polar coordinate system,
with * = 0 on the circle corresponding to the point A. Then erecting the
coordinate system tj, t2 , at A, as indicated in figure 4, in the vicinity
of * = 0, the coordinates of a point on the circle are, to second order,

t (a + r sin a) 02 (22)

t2 - (a + r sin a) * (23)

Thus in equation (21) the parameters are

u= -ti cos(2a - p) (24)

ul tj sin(2a - ) (25)

u2 = t2  (26)

The final factor to be accounted for in the exponential term in
equation (2) is the path length from the point on the lower cone back to
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the illuminating radar. Referred to the origin, this is

s r(u) a cos - r sin(at-0) +1 (a + r sin a) COS p 02 (7
Sr(U=~2 (27)

The parameter h(r,o) appearing in equation (5) is the negative of the sum
of equations (27) and (21), ie

h(r,o) = 2 a cos

(a + r sin a)(a sin(a-P) + r cos )cos o2(
a sin(a-P) + r cos P + r sin a sin(a-P) (28)

As noted in the introduction, the phase of ray returning to the radar is
independent of r in the plane 0 = 0.

2.3 Evaluation of the radiation integral

It now only remains to substitute the various terms into equation (2)
and carry out the integration to complete the problem. An element of
area dt' on the cone may be expressed as

dt' = (a + r sin a) do dr (29)

The limits of integration of the 0 variable are strictly -n to +n, but
since the method of stationary phase is to be used, only the region near
0 = 0 is important. The integration with respect to r is carried out
over that region of the lower cone that is illuminated by the field
reflected by the upper cone, or the total length of the lower cone,
whichever is the smaller. Mathematically, the limits of r are 0 and R,
the minimum of R1 and R2 tan (a-P) (figure 1).

So far in the development of the theory, little has been said about
the polarisation of the field. In the opening discussion it was
arbitrarily assumed for convenience that the incident magnetic field is
polarised parallel to the Y axis, although precisely the same result for
the radar cross section would ultimately be obtained if the electric
field were polarised in this direction. The factor (2 x H) x r in
equation (2) at the arbitrary point A on the surface of the cone
therefore has the magnitude

2 cos(a-P) IHI1 (30)

where IH I is given by equation (18). The additional factor 2, above,
accounts for the fact that in equation (2), H is the total magnetic field
on the surface of the cone, which, since it is the sum of the rays
incident and reflected from the surface, is twice the incident field on
the surface.

Thus on substituting the expressions for the amplitude and phase of
the magnetic field into equation (2) and performing the integration with
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respect to *, as detailed in equatiou (1), the followiing result is
obtainedt

T H y ex S)S exp(i2ka cos n -

R

cos(a-P)f[a sin(at-p) + r cos a cos(U-P)a + r sin a]4

(Cos Pif[a sin(U-0) + r cos r 31

The alternative path whereby a ray can return to the radar, viz,
reflection of the incident ray by the lower cone onto the upper cone,
thence back to the radar yields precisely the same result and hence the
total magnetic field reflected back towards the radar by the biconical
corner reflector is twice that of equation (31). That the contribution
of the two ray paths are equal may easily be proven by replacing a by
n/2 - a, 0 by -0 and the upper limit of integration R by R cot(a-0) in
equation (31).

From the formal definition of radar cross section

IH 
12

lim 4nr2 (32)

it therefore follows that the radar cross section of the biconical corner
reflector is

0 = 4k cos
2(a-p)

Cos

R ]
.V asin (a-0) + r cos a cos(a-3)] [a + r sin 0]4  12 33

[a sin(a-P) + r cos d(

In general this integral does not yield to algebraic manipulation, but it
is extremely well behaved, and hence simple to integrate numerically on a
digital computer. However such a technique, while of use for specific
examples, does not throw any light on the physical significance of the
various parameters affecting the radar cross section. Fortunately there
are a few specific examples, illustrated in figure 7, in which the
integral can be evaluated algebraically to assist in this regard.

Case (a) ; a = 0.

In this case the cones touch at their apices. Whilst it is
acknowledged that the physical optics technique is not valid for radii of
curvature of the order of, or less than one wavelength ie near the apices
of the cones, the effect of this on the total radar cross section of a
large reflector is not expected to be significant. Thus

3 cOs3(a'o) sin(2()cos8k (34)
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Case (b) ; a =-' p = 0

This case corresponds to normal incidence on a symmetrical biconical
corner reflector. Equation (33) reduces to

( = kLf r) dr 2

= [ (a + J2 R)f(4a + J2 R) - 4a-] (35)

If instead, this expression for the radar cross section is written in
terms of the maximum radius of the cone, b, that is illuminated, rather
than the face length, R, ie

b = a + 2 (36)

this result becomes

G [Ln (2b - a)+(b + a) - 2a (37)

This result should be compared with that of reference 2, p262 which is
incorrect due to mathematical errors in the evaluation of an integral,
and reference 1, p5 96 which further introduces a typographical error to
the result in reference 2.

Case (c) ; a

The third special case of interest that can be treated by the general
result is the degenerate case a = n/2, in which the lower cone opens out
to become a disc of radius R + a and the upper cone is a circular
cylinder of radius a. In this case

a = 4kaR 2 tan2p cos p (38)

Then if this expression is written in terms of the length L of the
cylinder that is illuminated by the ray reflected by the disc, ie

L = R tan p (39)

this result becomes the familiar expression(ref.1, p312)

0 4kaL 2 cos (40)

1A
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for the bistatic radar cross section of a circular cylinder of overall
length 2L.

2.4 Comparison with the truncated cone

It is interesting to compare the above formulae for the radar cross V
section of the biconical corner reflector with that for the truncated
cone illuminated at normal incidence to the cone surface(ref.2,p99)

8f[b, sin (41)9A~ - cos a

The parameters are defined in figure 8. It is precisely this result
which would be obtained if the biconical corner reflector were
illuminated normal to one of its faces. The transition from equation
(41) to equation (37), say, as incidence is varied from the normal
depends upon the relative phasing of the two signals, a factor which is
not included in either of the expressions. As the biconical corner
reflector is not intended to be used with incidence near the normal to
either of its faces, the added complication in including the direct
backscattered signal from each cone in the analysis was not considered
worthwhile.

3. DISCUSSION

A general formula suitable for digital computer calculation of the radar
cross section of an arbitrary biconical corner reflector illuminated at an
arbitrary angle of incidence has been developed from the principles of
geometrical and physical optics. In certain special cases of cone apex angles
and angles of incidence which are significant in the practical application of
the reflector the integral has been evaluated analytically, yielding insight
on the effect on the radar cross section of changes in the dimensions of the
reflector and the angle of incidence. It is considered that the results are
valid provided that all dimensions of the reflector are at least several times
the wavelength of the incident radiation. The results are not valid if the
angle of incidence approaches the normal to either of the conical surfaces
which comprise the biconical corner reflector.
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NOTATION

The following table lists the main symbols used throughout this report.
Other symbols appearing in the text have meanings requiring elaborate
explanation; they are fully detailed where they first appear in the text.

a radius of circle at the junction of the upper and lower

conical surfaces.

b radius of lower conical surface at edge of illumination

el, e2 , e3  coordinate system describing an arbitrary ray

k wavenumber of incident radiation ( = 2n/X )

1 distance from point A to point B on conical surface

r distance of point on lower conical surface to junction of
cross

s distance from origin of x, y, z coordinate system to radar.

t1 , t2  coordinate system describing circle on lower conical surface

Ul, u2, u3  coordinate system at point of reflection describing an
incident ray

v1 , v2 , v3  coordinate system at point of reflection describing reflecting
surface

W1 , w2, w3  coordinate system at point of reflection describing a
reflected ray

x, y, z rectangular cartesian coordinate system

A point of reflection on lower conical surface

B point of reflection on upper conical surface

C curvature matrix of surface

H magnetic field strength

Ho magnetic field strength of rays illuminating the biconical
reflector

Q curvature matrix of ray

N minimum of, length of lower conical surface illuminated by

reflection, and R1

B1  length of lower conical surface

R2  length of upper conical surface

S ray path length

a apex angle of lower conical surface
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pangle of incidence of incident radiation to x axis

Awavelength of incident radiation

o radar cross section

* angular coordinate describing point on lower conical surface

W angular frequency of incident radiation

In the text the following notation is used, for example,

s distance from origin of x, y, z coordinate system to radar

svector from origin to radar

s unit vector in direction of s
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APPENDIX I

PROPERTIES OF A GEOHETRICAL OPTICS FIELD

The basic concept of geometrical optics is that the field from an arbitrary
source can be expressed as an amplitude and a phase term, thus

U = A(S) exp(-ikS) (1.1)

in which the path length S can be determined independently of the amplitude
term, and leads to the specification of a system of rays along which the
energy propagates. The surfaces on which S is constant are called wavefronts
and the associated rays are everywhere normal to the wavefronts. The
amplitude of the field along a ray follows from simple energy considerations,
independently of the behaviour of the amplitude along any other rays
describing the total field.

In free space the path length S can be determined from

(VS)2 = 1 (1.2)

and hence the ray paths are straight lines. In the neighbourhood of an axial
ray Oe3  (figure 5) the wavefront through 0 can be represented by a second
degree equation

e3= (,. Q (I.3)
e2 e2

where e is the transverse position vector in the orthonormal frame of
e

reference el, e2 , e3 and Q is a 2 x 2 synmetric matrix called the curvature
matrix of the surface.. Becluse the matrix Q is symmetric it has two
orthogonal eigenvectors E, and E2 such that

Q Ei = 1. Ei i=1,2 (1.4)

The Ri are called the principal radii of curvature and the planes esf. are the
principal planes. In these planes the radii of curvature of the 6avefront
assume the maximum and minimum values possible. In one plane the rays appear
to converge at a point f, and in the other at a point f2 (figure 5). If r is
an arbitrary point with coordinates el, e2 , e3 , adjacent to the axial ray then

S(r) = S(O) + e3 + Q(e3) [l (.5)

Note that the variation of Q with el and e2 is ignored. It will always be at
least one order higher than the curvature and therefore is not significant in
these calculations. Under appropriate circumstances the variation with e3 can
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also be ignored. For e3 large, however, the variation of Q can be determined
from

Q- (e3) Q- (0) +e3 (1.6)

01J

In the geometrical optics field the energy propagates in the direction of
the rays. The variation in amplitude along a ray can therefore be determined
by tracing the variation in cross section of a tube of paraxial rays adjacent
to the ray of interest. If the cross section of the tube as a function of e3
is 1(e3 ) it can be shown that

1) (RI + ea) (R2 + e3)
(1.7)

and hence

U(e3 ) = U(O) R I R exp(-ikS(e3 )) (1.8)L(RI + e3) (--2 + e3)]

It is possible to show that the amplitude law can be expressed in the more
general form

U(e3 ) = U(O) det Q()J exp(-ikS(e 3 )) (1.9)

This completes the discussion of the properties of the geometrical optics
field that are required in this work. They are discussed at greater length in
reference 4.
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APPENDIX II

REFLECTION OF A PENCIL OF RAYS BY A CURVED SURFACE

Consider now an arbitrary axial ray undergoing reflection at a point 0 on a
curved surface (figure 6). The behaviour of the reflected ray follows
directly from the condition that the phase of the incident and reflected waves
must be equal everywhere on the surface in every neighbourhood of the point of
reflection 0. Now construct orthonormal coordinate systems ., w., i=1,2,3 ,

to describe the incident and reflected rays with ui3 and w3 diiectid along the
direction of propagation of the incident and reflected rays, and the origins
coincident at 0. Also at 0 construct the system 0, i=1,2,3 with 03 normal to
the surface to provide a frame of reference fAr the surface. Then an
arbitrary point on the surface in the neighbourhood of 0 may be described by a
vector V given by

= V Q- Cva (II.1)

where C is the curvature matrix describing the surface at 0 and v is an
arbitrary vector in the 0102 plane. In the incident pencil of rays the path

length at an arbitrary point described by the vector U = I is

Si() = S(O) + U3 + i U.Q (11.2)

where u is the projection of U on the a 1 2  plane. It is now necessary to
describe U in terms of v. To this end, introduce

pi = um * vn  m,n=1,2,3 (11.3)

which are the projections of the incident ray base vectors on the base vectors
of the surface, and

ri
i P12 P12
P P I P I (II.4)

1 then follows that the path length of the incident wave at an arbitrary
point V on the surface is

S (v) = (0) 3 -

+ I (pi).Qi(pi ) + higher order terms
2 (P v)

= S(O) + -03. + . (II.5)

where

i= (pi)T Qi pi - C pa (II.6)

L . . [[1 . .. ., i m i,, - ,- ,. . . .. . . . .... .. (Pii !i IIQI . .. . .. . .. .. . m .... ..3 3..
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The superscript T denotes the transpose of the matrix.
Now introduce the projections of the reflected wave base vectors onto those

of the surface, thus

P = m,n=1,2,3 (11.7)
~mn ~m ~n

and

[P12 1 (11.8)

P21 P

If Qr is the curvature matrix of the reflected wave, then following the
previous analysis, the path length of the reflected ray at an arbitrary point
V of the surface is

s ), = s(o) + ' - P33Cv P

+2 (Pr-)-Qr(prV) + higher order terms (11.9)

The condition of phase matching on the surface in some neighbourhood of 0 is
satisfied if the first and second order terms are equated. Thus

3 •a3• (11.10)

or alternatively

v. " = v. • W3  i=1,2 (11.11)1 1

which asserts the equality of the angles of incidence and reflection. The
matching of the second order terms requires that

(prv) Qr(pr ) (p (P v) '( 'v
() v).Q(p) - 2 v'Cv p3 (11.12)

since

i r
P3a = - P33 (11.13)

It follows, since this holds for all X, that

()T Qr pr = (pi)T Qi Pi - 2 C p33 (11.14)

It is then straightforward to deduce the value of Qr which describes the A
curvature of the reflected ray.
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In the special case in which the axes u2 , v2 and 02 coincide and G is
directed such as to make ui, i=1,2,3 a left handed coordinate system,

pi = pr = [c(I. 05)

and equation (11.14) reduces to the simple result.

Qr =Q 2 (pr)-l C (pr)-l cos 0 (11.16)

where 0 is defined in figure 6.
This appendix parallels the work in reference 4 for refraction by an

arbitrary curved surface.

i.4
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Figures 1 & 2
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Figure 1. The biconical corner reflector
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Figure 2. Coordinates of the radiation integral
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Figure 3. Coordinates of the ray path
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Figure 4. Coordinate systems for the lower conical surface
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Figure 5. Wavefront associated with an axial ray
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Figure 6. Reflection by a cprved surface
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Figure 7. Specific forms of the biconical corner reflector
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