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E}ﬂ ABSTRACT

A hypothesis by Elsberry and Garwood (1978) for gener-
ation of upper ocean temperature anomalies during the
spring transition period was tested. If the transition
between the winter and summer regimes occurred earlier
(later) than normal, the seasonal heating was expected to
have been accumulated in a shallow (deep) layer, and would
have tended to produce a positive (negative) sea-surface
temperature anomaly.

The Garwood (1977) one-dimensional, oceanic mixed-layer
model was used to predict the thermal structure
changes, from March 15 to July 15 during 1976 and 1977.

The forcing fields from the atmospheric prediction model of
Fleet Numerical Oceanography Center (FNOC) were interpolated
to hourly intervals. The suitability of the FNOC heat flux
calculations was examined through comparison with the ob-
served upper ocean heat content changes derived from the
TRANSPAC data. The recomputed mixed-layer depth and temper-
ature responses from the adjusted heat flux fields were used,
in lieu of the original calculations, because of the improve-
ment in the behavior of the time series predictions. Weather
maps and atmospheric forcing fields were used in describing
the meteorological conditions associated with the transition
period. _ The model-predicted spatial and temporal distribution

of the spring transition over the NORPAX Anomaly Dynamics
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Study (ADS) region varied between 1976 and 1977.'5%he rtela-
tionship between the transition dates and the generation
and persistence of thermal structure anomalies during the

following months was generally supported by the model pre-

dictions.
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I. INTRODUCTION

A. HYPOTHESIS

One aspect of the large-scale variability in the ocean
thermal structure is the seasonal transition of the depth
of the upper ocean layer. During the spring, the ocean mixed
layer transforms from a deep winter regime to a shallow sum-
mer regime. Following this change in the depth of the mixed
layer is a subsequent increase in the temperature of the
mixed layer.

If the transition between the winter and summer regimes
occurs earlier (later) than normal, the seasonal heating is
expected to be accumulated in a shallow (deep) layer and will
tend to produce a positive (negative) sea-surface temperature
(SST) anomaly. This hypothesis has been tested [Elsberry
and Garwood, 1978)] at Ocean Weather Ship (OWS) "P" (50°N,
145°W). For this study, it was tested over a wide areal
extent, with emphasis on determining relations to large-scale
SST anomalies being investigated in the North Pacific Experi-
ment (NORPAX). The study was based on the principle that the
changes in the structure of the seasonal pynocline, are pri-
marily a result of vertical mixing processes in response to

atmospheric forcing [Elsberry and Garwood, 1978].

B. BACKGROUND
There are at least two dominant time scales governing

the time-varying generation of oceanic turbulence. The
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passage of atmospheric storms is the time scale with the
longer (synoptic) period, while the daily heating cycle is
the shorter (diurnal) period time scale.

1. Synoptic Time-Scale

During the passage of atmospheric storms, upward
surface heat flux to the atmosphere may result in significant
cooling of the upper ocean. During the fall, a significant
fraction of the seasonal sea-surface temperature reduction
takes place when wind-generated turbulence and convective
overturning, in the upper ocean during atmospheric storms,
mix into the stable thermocline layer [Elsberry and Camp,
1978]. The strongest oceanic response to atmospheric storms
is produced early in the fall, when a shallow and warm mixed
layer exists. Late in the fall when the mixed layer is deep,
strong forcing events have a much diminished effect. An
above (below) normal number of storms is correlated with
anomalously low (high) sea-surface temperature during the
cooling season [Elsberry and Camp, 1978]}.

Much of the oceanic response to the passage of an
extra-tropical cyclone can be described in terms of one-
dimensional processes, or non-advective, mixed layer dynamics.
The significant changes in the mixed layer depth and tempera-
ture are well correlated with the amplitude and timing of
the atmospheric forcing [Camp and Elsberry, 1978].

2. Diurnal Time-Scale

Daytime heating from solar radiation is mainly absorbed

14

o i IR g e

e s

"

e v = —— v W W = s =




-

i
;
{
|

in the upper ten to twenty meters, producing a layer of less
dense water near the surface. When turbulence is insufficient
to transport the accumulated heat to an established mixing
depth, a shallowing of the mixed layer occurs. The stable
layer, formed during the period of maximum daytime heating,

is eroded during the night by convective turbulence associated
with the upward heat flux, and by mechanical mixing due to

the wind.

The depth over which the daytime heating is distrib-
uted is primarily determined by the amount of wind stirring,
which is a function of the frequency and intensity of atmo-
spheric storms. The diurnal variation in the mixed layer
depth, after the seasonal thermocline has been established,
is only a fraction of the variation that occurs prior to the
formation of the thermocline. The diurnal heating cycle
during late winter can cause the mixed layer depth to vary
between nighttime depths of 100-150 meters and daytime depths
of 10-40 meters [Elsberry and Garwood, 1978].

3. Atmospheric Friction Velocity (u,)

The importance of specifying correctly the high wind
speed events for predicting sea-surface temperature changes
is documented by Elsberry and Raney (1978). The values of
the atmospheric friction velocity (u,), were calculated from
observations at ocean weather ships in the Pacific. Since
the wind generation of mechanical energy is proportional to

3 3

u,”, the distribution of u,~ was calculated for OWS "V"
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(34°N, 164°E) from January to August 1959. The daily values

3

of u,” were shown to have a marked decrease after the middle

of March, with small values continuing throughout the summer.
The most consistent result, as reported by Elsberry
and Raney (1978), was in the duration of the high wind speed
events. These events occurred 35-37 percent of the time,
regardless of the season, and contained about 70 percent
of the total u*s. The fact that a major fraction of the
mechanical generation of turbulent kinetic energy in the
upper ocean occurs during such a limited period of stronger
winds, is important for understanding the resulting changes
in thermal structure. Low values of u,,3 were associated with
sea-surface temperature increases during the warming season.
The association between those events emphasized the role of
vertical mixing in the redistribution of the heat absorption.

4. Spring Transition

The transition from a winter mixed layer regime to
a summer regime occurs during the spring, when the net daily
insolation values are increasing, and the occurrence of high
wind speed events is diminishing. The increasing solar radi-
ation, which is predominately absorbed in the near-surface
layer, tends to promote stability. The more stable the layer,
the better it resists the eroding effects of the mixing gen-
erated during high wind periods.

Tully and Giovando (1963) noted that the spring

transition appeared to be rapid. Elsberry and Garwood (1978)

L}
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have reported that their modeling studies showed that the

transition can take place in a single diurnal cycle. The

key synoptic feature initiating the transition, as reported E
by Elsberry and Raney (1978), was an extended interval of B
i} weak winds coinciding with a period of net downward heat f

flux. A laver of warmer and less dense water near the sur-

face was established with the retreat of the mixed layer
during the daytime heating period. If the mechanical gener-

ation of turbulent kinetic energy was sufficiently small,

the stable layer remained intact through the subsequent night.

A repetition of this cycle for several days, would likely
lead to the establishment of the seasonal thermocline.

5. Development of SST Anomalies

After the spring transition, the mixed layer is con- ;
fined to a much shallower zone. Consequently, the rate of
heat accumulation within the layer is much greater, and the
temperature will rise appreciably, if the layer is undisturbed ;
for a few days. Elsberry and Garwood (1978) have suggested
that the predominance of anomalously high or low sea-surface |
temperature patterns, at some locations, can be explained in l
terms of the limiting depth over which the incoming heat flux L
is distributed. In their study, the anomalous sea-surface r
temperature at OWS "P'" (S50°N, 145°W), averaged over March ‘
through December, was plotted as a function of the transition
date. The hypothesis of an earlier than normal transition

date leading to an early beginning of the seasonal warming,

17
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and thus, to a consistently higher than normal sea-surface
temperature, appeared to be verified for that sample.

During and after the formation of the seasonal g
i thermocline, an increase in sea-surface temperature would .
P: tend to be negated by the heat and momentum fluxes associated :
with a strong atmospheric storm. That is, a decrease in !
)
sea-surface temperature is found during periods of higher t
wind speeds, as the surface layer heat is redistributed by t
vertical mixing. The observed sea-surface temperature in- {

crease during the heating season is, therefore, a balance

between the greater increases during low wind periods, and

the small decreases that occur during high wind periods r
[Elsberry and Raney, 1978].

Anomalous solar radiation (an extended cloudy period
or many cloud-free days) or anomalous redistribution of the
upper layer heat, can cause anomalous sea-surface temperatures.
The anomalous solar radiation does not appear to be a primary
factor. Elsberry and Raney (1978) found that the increases
in sea-surface temperature at the ocean weather ship locations
were better associated with sustained periods of low wind

speeds, than with periods of above normal insolation.

The anomalous vertical redistribution of heat in the
upper ocean is probably caused by anomalous heat flux at the !
surface, or anomalous entrainment heat flux at the mixed layer
base generated by wind stirring and convective over-turning

[(Elsberry and Garwood, 1978]). Other processes, which are

18




non-local and not evaluated in this study, are the horizontal

divergence of the surface layers produced by wind stress
curl, and the horizontal advection produced by surface Ekman

flow.

C. STUDY DESCRIPTION

The Anomaly Dynamics Study [ADS, 1978] area of NORPAX
was the oceanic region studied (Fig. 1). The largest thermal
variability in the mid-latitude Pacific occurs between 30°N-
SO0°N and 140°W-180°W within the ADS area, which is also a
region of strong atmospheric variability. Points at 10°
longitude intervals along 38°N and 32°N from 175°E to 135°W
were sampled. Points at 2° latitude intervals along 175°W
and 155°W from 30°N to 50°N were also chosen. This provided
a representative set of locations from which inferences about
the large-scale oceanic variability were made. Locations

along 32°N were chosen for additional analysis of a suspected

discrepancy in the heat flux fields near the southern boundary.

The one-dimensional or vertical mixing process was repre-
sented through the Garwood (1977) oceanic mixed layer model.
The model required atmospheric forcing fields of wind, solar
radiation, and surface heat flux on time scales of hours,
because of the necessity of resolving the diurnal response
in the ocean. This diurnal component can modulate the sea-
sonal trend [Garwood, 1977]. The model was supplied with an

initial temperature profile for a given month and location.
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It then predicted the evolution of the oceanic thermal struc-
ture, caused by surface processes alone, at a geographical
location for a specified period of time.

Values of wind speed, solar radiative flux, and total
surface heat flux were extracted from the Fleet Numerical
Oceanography Center (FNOC) historical data files of the at-
mospheric predictions and analyses. The east and west wind
components were available at 6-hour intervals, and the solar
and total surface heat (latent plus sensible plus back radia-
tion minus solar) flux values were at 12-hour intervals.

To resolve properly the oceanic response to the diurnal heat-
ing cycle, surface forcing values had to be provided at
hourly intervals. A complete description of the procedures
and programs for performing the data manipulation, from edit-
ing to interpolating the forcing fields, is available in
Gallacher (1979). An abbreviated description of the system

programs is provided in the appendix.
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II. COMPARISON OF HEAT CONTENT WITH CUMULATIVE
SURFACE HEAT FLUX

A. HEAT CONTENT

The one-dimensional, mixed layer model considered only
the vertical fluxes of heat. Therefore, a necessary (but not
sufficient) condition for acceptable predictions was that
cumulative surface heat flux, as used by the model, be simi-
lar to the observed ocean heat content change. This condition
had to be met before the model-generated results could be
effectively evaluated.

The observed heat content of a column of water at grid
points within the ADS area was calculated using trapezoidal
integration. To minimize the effects of any horizontal
processes that were present, the heat content was computed
relative to the temperature at 200 meters. Optimally analy:zed
TRANSPAC BTs at 0, 30, 60, 90, 120, 150, and 200 meters at
monthly intervals from March to June of 1976 and 1977, were
used as data [White and Bernstein, 1979].

The observed heat content pattern for March 1976 is depict-
ed in Fig. 2a. The greater heat content was located in the
southeastern portion, while the smaller amounts were found in
the northwest. There was significant increase in the heat
content from west to east. A negative heat content frequently

occurred in the northern latitudes during late winter and
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early spring. This negative value meant the temperature pro-
file was warmer with increasing depth, rather than colder.
The highest heat contents in the southeastern portion were
related to higher near-surface temperatures, and to lower
200-meter temperatures, than those of other regions. This
situation allowed a steeper than normal thermocline down to
200 meters, which supported a stable water mass. This stable
temperature structure was shown to be closely related to a
persistent atmospheric high pressure area over that region.
The heat content of June 1976 (Fig. 2b) demonstrated the
response of the ocean to three months of the heating season.
There was much less longitudinal variability in June than in
March, which was partially attributable to a slackening of
surface wind strength over this period. As shown in Fig. 3a,
larger heat content gain was realized in the western part
(20,000-30,000 cal cm'z) than in the eastern part (7,500-

10,000 cal cm™ 2

). A negative difference in the March minus
June heat content corresponds to the net ocean heat gain
during this period.

In 1977 (not shown), the heat content of the North Pacific
in March and June had a remarkable similarity in pattern to
Fig. 2, in spite of the vastly different atmospheric wind
regimes that existed. In March, the southeastern region of
the ADS area had the highest heat content as in the previous

year, but the values were not as great. By June, though, the

heat content of the western portion had risen substantially
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(20,000-30,000 cal cm'z) over that of the far eastern portion
(7,500-15,000 cal cm'z). In both years, the northern portion
of the ADS area exhibited a greater iﬁcrease in heat content,
from March to June, than the southern portion. Considering
the entire ADS area, the 1977 heat contents were less than

those of 1976.

B. CUMULATIVE HEAT FLUX

The daily surface heat flux values estimated from the FNOC
fields were interpolated to hourly intervals, and then accumu-
lated for a 92-day period from March 15 to June 15. This
period roughly corresponded to the March to June heat content
change. Negative values in Fig. 3b indicate downward surface
heat flux, which tends to warm the upper ocean layer, whereas,

positive values indicate a loss of heat. An unrealistic pat-

tern developed over the southern latitudes. Due to the increased

solar flux that is expected over this region during this period,
a net downward heat flux of similar or greater values than

those of the northern latitudes should have been realized.

This discrepancy is shown in Fig. 4a, which is the difference
between the cumulative heat flux and the net change in heat
content over the three-month period. This field has been
filtered to remove short-wavelength features. A negative value
(dashed lines) indicates that more downward, or less upward,
cumulative heat was required for parity. There was reasonable

agreement in the vicinity of 38°N and 40°N and north of 46°N
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latitude. Between these two regions was an area of excessive
downward heat flux. This area is near the ocean polar front,

where the strong north-south temperature gradient might have

supported widely varying heat content values. South of 38°N,
there was a steady increase in the difference to as much as
30,000 cal cm'2 for the period. This excessive upward heat
flux is probably linked with a systematic bias in the surface .
heat flux calculations provided by FNOC. However, a portion
of this discrepancy may be due to errors in the estimates of L
the heat content change deduced from the TRANSPAC analyses.

If the anomalous values near the southern boundary in Fig. 4a
are attributable to the FNOC surface heat fluxes, it may affect
ocean prediction models that use these forcing fields. While »
the surface fluxes are of primary importance for long-term

ocean modeling, they are of secondary importance in atmospher-

ic models [Gallacher, 1979].

C. ADJUSTMENTS TO HEAT FLUX
The heat flux bias was suspected at an early stage in the
study, but was not confirmed until interpretations were made !
over the entire ADS area. Corrections that were uniform in
time and smoothly varying in space were then applied to the
heat flux fields, and the ocean model results were re-evaluated
to determine the effects of the adjustments. The corrections
were made by using the filtered bias field as in Fig. 4a for

1976, and a similar field for 1977. These fields were averaged
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to form the correction field which was applied uniformly in
time during both years.

The correction field that was used to adjust the interpo-
lated surface heat fluxes on an hourly basis over the 3-month
period is shown in Fig. 4b. The pattern of positive and
negative values was similar to Fig. 4a. The corrected version
of the integrated surface heat flux for 1976 is shown in Fig.
S5a. A closer correlation between surface heat flux (Fig. 5a)
and the observed heat content change (Fig. 3a) was achieved
using the correction field in Fig. 4b.

Successful reduction of the systematic bias is evident in
the difference between the surface heat flux and the heat
content change, as in Fig. S5b. There are small areas that aré
not in close agreement, especially around 170°E. All values
to the west of 170°E during 1976 were fictitious, and were
not used in this work. The remainder of the differences were
attributable to a number of factors besides the bias in cumu-
lative heat fluxes. There were physical processes, notably
horizontal advection, not taken into account by the one-
dimensional requirement for local heat balance. For instance,
the discrepancy along 170°E in Fig. 5b may have been associate

with proximity to the Kuroshio extension. The interpolated BT

d

analyses may have been somewhat less accurate near the southern

boundary, due to a lack of ship-of-opportunity reports in
that region. There were also residual errors in the computa-
tion of the heat content of each grid point, which used

trapezoidal integration with respect to 200 meters.
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IITI. TIME SERIES OF FORCING FUNCTIONS

For all the locations indicated in Fig. 1, 4-month time
series of hourly-interpolated wind speed, total heat flux,

and solar radiation, were generated from the FNOC files. From

these figures, the general development of the atmospheric
parameters controlling the behavior of the upper ocean thermal
structure was determined.

Time series plots for atmospheric forcing functions during
spring, 1976, at 38°N, 135°W and 38°N, 155°W are shown in
Figs. 6 and 7, respectively. The forcing at these locations
exhibited dissimilar behavior, and had significantly differ-
ent spring transition dates, even though they were located
on the same latitude. These two locations further serve as
examples of the differences and similarities in ocean structure

development.

A. WIND SPEED

North of 40°N, the wind speed values demonstrated rapid
and greater changes during the early spring, and less rapid
and smaller changes later in the spring. Some peak wind speeds
were in excess of 30 m/s late in March and early April. The
wind speed changes displayed synoptic periodicity throughout
the spring. In the southern latitudes where pressuie gradients

were weaker, the wind speeds were slower, steadier, and lacked
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the large variations that characterized the far northern time

series. Later in the spring, the diurnal influence of strong-
er daytime winds and weaker nighttime winds became dominant,
while synoptic scale variations in wind speed decreased in

amplitude.

B. SOLAR RADIATION FLUX

The daily insolation for all latitudes and longitudes -

exhibited the expected increase in magnitude with the approach

of the summer solstice. The synoptic variation in cloud cover

3
was evident from the variability in the peak (local noon) }1
values of the solar radiation time series. In the early spring, .?
there were many instances where a period of small solar fluxes
corresponded to a high wind speed event. Later in the spring, i

there was not much correlation between wind speed and cloud
cover. In southern latitudes, there were many daily values

2

of high solar flux in excess of 75 cal cm % hr !.

C. TOTAL HEAT FLUX
The total heat flux behaved very much like its primary
constituent--the solar radiation. There was increased downward
heat flux with the approach of the summer solstice. During -
early spring periods with less solar flux and greater wind
speeds, there were many intervals of strong upward flux. Some
peak values were in excess of 40 cal cm.2 hreol. Later in the
spring, periods of zero or downward flux became common. The

upward heat flux and wind speed showed a positive correlation
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a majority of the time. The greatest daily upward fluxes
were produced when a day with weak winds and a large amount
of solar radiation was followed by rapidly increasing winds.
A period of minimum solar radiation, followed by a sharp
increase in the solar flux and perhaps an increase in the
winds, also produced a large daily upward heat flux. These
large flux values were realized because the heat content had
been accumulated near the surface and was easily altered by
increased wind speeds, or strong solar radiation.

The daily upward heat flux in southern latitudes displayed
average values between 15 and 20 cal cm'z hr'l, and were gen-
erally higher than in northern latitudes. This characteristic
was partly due to higher solar fluxes, and partly attributed

to the accumulated bias discussed previously.

D. EXAMPLES DURING SPRING TRANSITION

With respect to the spring transition dates, the wind speed
was generally high a few days prior to the transition, then
the wind slackened considerably during the transition, and
remained weak for the following three or four days. There
seemed to have been no distinct pattern for the total heat flux,
or solar flux, around transition time. The method of deter-
mining spring transition dates and compositing these forcing
functions with respect to the transition date of each location
is discussed in a later section.

On the transition date (day 111) in Fig. 6 a decrease in

39




wind speed occurred during a period of weak solar flux, and

correspondingly small upward heat flux. During the following

days, there was a return to steady winds and noticeably larger
solar flux values. It must be noted that for days 117 through
121, the 12-hour historical values of solar flux were missing,
and these were replaced by interpolated values.

The transition on day 134 for 38°N, 155°W in Fig. 7, also
showed a wind speed 1lull, and increased solar flux for the
following days. From day 114 to 134, the winds were considera-
bly stronger than for the same period in Fig. 6, and thus
played a major role in postponing the spring transition.

Comparing the two wind speed time series, the high wind
speed events were of similar intensity and had a phase lag of
about a day, early in the record. After day 134, the high
wind speed events were less frequent, less intense, and fur-
ther out of phase. The lower solar flux periods correspond
well to the increased cloudiness that would be expected during
the high wind speed events. This was evident at 38°N, 155°W,
especially between days 114 and 134, when more days of weaker
solar flux were shown than at 38°N, 135°W. Despite winds of

less intensity, there was greater variability in total heat

flux at 38°N, 135°W.
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IV. OCEAN THERMAL STRUCTURE - PREDICTION/VERIFICATION

{ A. PREDICTION OF MIXED LAYER DEPTH AND TEMPERATURE
Time series of the model-generated, mixed layer depth and
temperature in 3-hour increments were displayed at locations

along 175°W and 155°W, and along 38°N and 32°N. Each time

series was calculated separately for 122 days, and plotted
relative to the initial value on March 1S5.

1. Zonal Section

The mixed layer depth predictions along 38°N during
1976 are displayed in Fig. 8b. Time series at different lon-
gitudes are displayed along the vertical axis, with 10°
longitude on the vertical axis corresponding to 100 m depth
change. The six longitudes are: 175°E; 175°W (185°E); 165°W
(195°E); 155°W (205°E); 145°W (215°E); and 135°W (225°E).
There is a distance of 50° longitude, or about 4500 km, between
the westernmost trace and the easternmost trace.

There are noticeable differences in the predicted
structure of the mixed layer from west to east. At 175°E,
rapid variations between deep and shallow layers are displayed
in the early part, and a much smaller depth variation is shown
after day 135. At 135°W, the layer transition occurred earli-
er, and the diurnal variability was more dominant than at
175°E. This diurnal variation is mainly the response of the
mixed layer to the solar flux, as the layer deepens at night

and shallows during the day.
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At 155°W therc was sharp transition in the predicted
mixed layer depth, from 82 m on day 133 at 18 GMT to 1 m on
day 134 at 00 GMT. Meanwhile, at 135°W a gradual transition
was predicted from day 104 at 18 GMT to day 111 at 00 GMT.

At locations where there were large solar fluxes and steady
winds, the mixed layer was generally more stabilized, and the
transitions occurred over several daily cycles. If there was
a large variation in wind speed, the transitions were only a
one or two-day process. The mixed layer at 155°W stabilized
after shallowing on day 109, until high wind speeds returned
and deepened the mixed layer. There was another period of
strong winds around day 165, which steadily deepencd the mixed
layer. The shallow mixed layer was sufficiently stabilized
that the continued high winds could not increase it to depths
typical of the winter regime.

The mixed layer temperature predictions for the same
longitudes along 38°N are shown in Fig. 8a. The time series
were plotted with respect to the initial surface or mixed
layer temperature. Each 10° of longitude corresponded to a
2 C change in temperature. Spikes, or rapid temperature in-
creases, in the record occurred when the mixed layer retreated
to within five meters of the surface. The minimum predicted
depth of one meter produced the greatest rate of increase
in mixed layer temperature, especially when the shallow layer

was maintained for at least six daytime hours.
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A few early spikes on the traces were evident in

response to prolonged shallow layer depths. Appreciable
warming generally did not begin until the transition dates,
which marked the establishment of a stable summer regime.

The traces at 135°W and 175°E responded quite differently,
even though both began with initial temperatures of 13.3 C.
The warming at 175°E was significantly greater than at 135°W,
in spite of only three days separating the transition dates.

In response to the spring transition at 135°W, there
was a temperature jump from 13.2 C at day 111 (15 GMT), to
14.1 C on day 112 (00 GMT). For the remainder of the record,
a very gradual temperature rise was predicted. At 155°W,
there was a spike on day 110, but the temperature jump from
13.2 C to 14.0 C on transition day 134 marked the beginning
of the stable summer regime.

Similar mixed layer behavior at 38°N and 32°N was
evident at both 135°W and 175°E for both years. Along 175°E,
a very shallow mixed layer after the transition date brought
about large temperature increases, whereas along 135°W, a
nocturnal mixed layer deepening allowed only modest tempera-
ture increases.

2. Meridional Section

The time series of mixed layer depths compiled at 2°
latitude intervals, from 30°N to 50°N along 155°W during
1976, are exhibited in Fig. 9. All of the traces displayed

a significant change in the behavior of the mixed layer depth
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from the early part of the record to the later part. Large
and rapid variations in layer depth were evident early in
the spring, especially north of 40°N. This contrasted with
the smaller and less frequent changes in depth during the
late spring and early summer. Along 155°W, the transition
period between the winter and summer mixed layer regimes
occurred over a long period in the far north, whereas it
seemed very rapid over the mid-latitudes, and was less dis-
tinct further south. The transition segment occurred earliest
at southernmost latitudes, and was gradually later with
increasing northerly latitudes.

A similarity between the traces was the time at which
the deepening and shallowing occurred. There was greater
variation of depth in the far north than in the south, but the
time of the occurrences was nearly the same. Therefore, each
of the latitudinal traces was similar to adjacent ones. This
relationship became less valid late in the spring, when wind
systems were less intense and affected smaller latitudinal
bands.

The north-south range of concurrent shallowing and
deepening events was greater during early spring, compared to
similar events later in the season. This was a result of
particular wind systems having more areal coverage early in
the spring. For instance, on day 82, a rapid shallowing of
the mixed layer depth was evident on all but the two southern-

most traces. At 34°N and 36°N, the layer rapidly, but
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temporarily, retreated to near the surface; whereas in the
far north, the layer slowly retreated and remained relatively
deep. Later in the record when the summer regime was fully
established, a gradual deepening event from day 163 to 169
was only evident south of 42°N. An example of the mixed
layer stability of the summer regime in mid-latitudes was
evident during the same period. The layer steadily deepened
for five days under the influence of moderately strong (15 m/s)
winds, then rapidly retreated to near the surface. These
same wind speeds occurred from day 129 to 134. The predicted
trace for this period showed strong deepening the first two
days and then significant diurnal fluctuations followed by a
rapid retreat on day 134.

The corresponding mixed layver temperature traces for
the 11 latitudes along 155°W are portrayed in Fig. 10. Due
to the strong surface mixing, no significant temperature change
was predicted over the northern part until late spring.
Greater temperature response was revealed earlier in the
record over the southern part. The diurnal temperature vari-
ation was more noticeable over the far south, but it became
increasingly more apparent elsewhere towards late spring.
The peak daily mixed layer temperature for any location was
achieved three to six hours following the peak solar radiation
flux.

Time series of mixed layer depths and temperatures

along 155°W in 1977 showed a pattern similar to the previous
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year. The highly variable and relatively deep mixed layer

did extend later into the spring, in response to more active
winds over the north. The time series along 175°W, for both
years, demonstrated more frequent shallow mixing depths over

the south, with subsequently larger increases in temperature.

B. TEMPERATURE PROFILES

The predicted temperature profiles of monthly mean values
were drawn for March, April, May, and June of both years.

Each profile was a 30-day mean computed at 10 m intervals from
0 to 190 m. An observed profile from the TRANSPAC analysis
for June was plotted at depths 0, 30, 60, 90, 120, 150, and
200 meters. These profiles provided an illustration of the
evolution of the mixed layer and the thermocline during the
spring, as well as, verification of the accuracy of the pre-
dictions after 90 days.

In the vicinity of the permanent thermocline below 90 m,
the agreement between the predcited and observed temperatures,
was usually very good. From the June profiles of all locations,
it was determined that the model temperature predictions, at
the lowest depth of 190 m, were consistently colder than the
200 m observed temperature. This error is due to the lower
boundary condition in the model. Above 90 m, there was con-
siderable variation between the model prediction and the
observations, especially prior to the corrections in the

surface heat fluxes used by the model. From the original
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model runs, all the June profiles at northern latitudes were
up to 2.5 C too high at the surface and 30 m, whereas in
southern latitudes, the predicted temperatures were sometimes
greater than 5 C too low. At far southern latitudes, the
predicted June profile was unrealistically cooler than the
initial profile in March. In 1977 there were more locations,
mostly in the northern latitudes, with better agreement of
the profiles. This better agreement was probably related to
the fact that the 1977 initial temperature profiles were
cooler than in 1976.

The mean-monthly profiles for 38°N, 135°W in 1976 are
shown in Fig. 11b. The March and April profiles were nearly
isothermal above 100 m, while the May profile displayed warm-
ing in the upper 30 m. The June profile demonstrated close
agreement with observed values. Fig. 1la contains the corres-
ponding profiles for 38°N, 155°W in 1976. The first two

profiles were nearly isothermal above 90 m, while the May

profile indicated slight warming. In June, the predicted
profile showed a significant change in the upper ocean, but
the mean mixed layer temperature was 2.2 C cooler than the
observed value of 17.5 C.

At both locations, nearly identical profiles were predicted
in regard to the temperature and structure development. The
weaker winds and earlier transition date at 38°N, 135°W, would

seemingly have led to a warmer June temperature profile. How-

ever, the predicted profile was very close to the actual
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values, whereas at 38°N, 155°W, the model-produced, near-surface
temperatures failed to match the verifying temperatures. The
sea-surface temperature analyses of the North Pacific from

the Fishing Information publications, by the National Marine

Fisheries Service (NMFS), were used in conjunction with the
TRANSPAC surface temperatures. The analyses were usually
within 1 C. The NMFS analysis had better temperature resolu-
tion of the ocean polar and subtropical frontal zones. For
June 1976, the 17.5 C surface temperature at 38°N, 155°W was
about 1 C higher than normal, while the surface temperature
at 38°N, 135°W was 15.7 C, and 0.5 C less than normal. It
was therefore apparent that the anomalous warming at 38°N,

155°W, was not entirely produced by one-dimensional processes.
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V. CHARACTERISTICS OF TWO NORTHERN LOCATIONS

Two locations (46°N, 175°W; 46°N, 155°W) were celected
for comparison in 1976 and 1977 because they demonstrated
behavior representative of the northern ocean. This set of
points had the best agreement between the cumulative heat
flux and observed heat content for the original calculations.

The wind at 46°N, 155°W in 1976 (Fig. 12) was quite strong
until the laver transition on day 150--after which the speed
remained below 5 m/s for three days. A ten-day period of
continuous downward heat flux and minimum solar flux ensued.
The transition was a gradual, multi-step process from 18 GMT
on day 147 to 00 GMT on day 150. During the transition, a
rapid rise in mixed layer temperature from 7.8 C at 15 GMT
on day 149 to 9.8 C at 03 GMT on day 151 took place. A sharp
wind increase on day 169 brought a significant temperature
reduction.

At 46°N, 175°W in 1976 (not shown), the wind speed was
slightly higher and more variable than at 46°N, 155°W. The
mixed layer at both locations, remained quite deep through
the spring. A sharp transition, from 18 GMT on day 144 to
00 GMT on day 145, occurred during a 1lull in the wind. A
high wind event around day 179 produced steady deepening of
the mixed layer. Even though the summer thermocline had
formed, considerable variability in mixed layer depth was

evident following the episode.
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In 1977, the latest transition period of all locations

was at 46°N, 155°W, with a two-step process from 18 GMT on
day 161 to 00 GMT on day 163. Prolonged high wind speeds
and extensive cloudiness (implied by small solar flux values)
are depicted in Fig. 13. These conditions allowed the rela-
tively deep and variable mixed layer to persist through most

of the spring. At 46°N, 175°W a sharp transition from 18 GMT

on day 140 to 00 GMT on day 141 produced a temperature increase

of 1 C to 6.4 C at 06 GMT on day 141. Strong winds prior to
the transition were much diminished afterwards, and this is
reflected in the change in character of the mixed layer depth
trace. One of the largest temperature increases, 2.5 C in

12 hours, occurred at this location during a period of nearly
calm winds.

The predicted mean-monthly temperature profiles for 46°N,
175°W during 1977 are shown in Fig. l4a. The March profile
was coldest at 30 m and became warmer with increasing depth.
April and May profiles were isothermal, while the upper por-
tion of the June profile warmed sufficiently to nearly match
the observed values. The 1977 profiles for 46°N, 155°W in
Fig. 14b were nearly identical in structure, except the pre-
dicted near-surface temperatures during June were about 1 C
less than the TRANSPAC temperatures. At both locations, the
March profiles became cooler from the surface to 30 m, and

then warmer with depth. This excessive cooling of the upper

ocean is characteristic of the far northern latitudes in winter
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and early spring, because of the frequent periods of cold,
continental air passing over these waters.

Verification of the mean-monthly sea-surface, or mixed
layer temperatures, between the model predictions, the TRANSPAC
observations, and the NMFS analysis were compiled in Table 1.
The last row contained the estimated departure of the NMFS
temperature from the 20-year mean. These values confirmed ;
that the upper ocean during the spring was considerably cool-
er than normal at the two points in both years, although in

June the departures were insignificant. I

TABLE 1.

Mean-monthly sea-surface temperatures (C) from model predic-
tions, TRANSPAC observations, NMFS analysis, and the estimated
departure from normal, at two locations in 1976 and 1977.

46°N 175°W 46°N 155°W
1976 MAR APR MAY JUN MAR APR MAY JUN
Model 5.0 5.0 5.7 7.5 6.3 6.5 7.0 8.9
TRANSPAC 5.0 4.5 4.9 6.5 6.3 5.8 6.6 9.4
NMES 5.5 5.3 5.7 7.5 6.4 6.2 6.9 9.0
Est. Dept. 0.0 -1.1 -0.8 0.1 -0.6 -1.3 -1.2 -0.4
46°N 175°W 46°N 155°W
1977 MAR ™ APR  MAY JUN MAR  APR MAY JUN
Model 4.7 4.7 5.2 6.4 5.9 6.1 6.7 7.5
TRANSPAC 1.7 4.0 5.2 6.7 6.0 6.6 6.9 8.7
NMFS 4.8 4.5 5.2 7.5 6.0 6.8 7.8 9.6
Est. Dep. -0.7 -1.9 -1.3 -0.1 -T.0  -0.7 0.3 +0.2

Taking into account the sparse ocean data available for
analyses, 0.5 C is about the best accuracy that can be achieved
in comparing the predictions and two sets of observations.
Unfortunately, this error is of the same order as a majority

of the analyzed anomalies. In 1976, very good agreement was
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noted between the mean-monthly temperatures predicted by the
model and the NMFS analyses, especially in June. In 1977,
the more favorable comparison with the model prediction was

the TRANSPAC observation. At 46°N, 155°W, however, the June

model prediction was substantially less than the observations.

Aside from that discrepancy, it was evident that at these
locations, the mixed layer temperature evolution was mainly

a one-dimensional process.
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VI. ADJUSTED HEAT FLUX AT 30°N, 175°W IN 1977

Adjustments in the FNOC total heat flux calculations were
made in an initial attempt to rectify the problem of excessive
upward heat flux in the southernmost latitudes. The inter-
polated total heat flux values for 30°N, 175°W in 1977 was

2 hel,

reduced by 10 cal cm’ This reduction value was nearly
the same as the correction field value for that location as
shown in Fig. 4b. Model predictions were compared for the
adjusted and the original upward heat fluxes using the same
wind speed and solar radiation flux.

The unadjusted mean-monthly temperature profiles at 30°N,
175°W (Fig. 15a) show coincident April, May, and June profiles
with lower temperatures than the initial March profile. The
observed June temperatures above 90 m were much higher than

2 hr_l

all of the predicted profiles. The 10 cal cm’ adjust-
ment, as shown in Fig. 15b, produced profiles with a more
realistic configuration. The predicted mean surface tempera-
ture in June was nearly the same as the observed temperature,
while the remainder of the profile approached the observations.
The base of the mixed layer appeared to have been between 10
and 20 meters.

The change in the response of the mixed layer to the

corrections of surface heat flux is displayed in Fig. 16.

Each 2° of latitude corresponds to a 100 m change in depth.
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The greater differences were in late spring and early summer.
During this period, the predicted layer depths using the un-
adjusted heat fluxes displayed large diurnal variability,
while the record with the 10 cal cm % hr ) reduction exhibited
a shallow and stable mixed layer. Early in the spring, the
character of the predicted mixed layer depth traces was simi-
lar, but the model run with the larger adjustment did not
have the unrealistic diurnal signal during summer.

The displayed results demonstrated that it was feasible
to reduce the disagreement between observed and predicted
values by correcting the total heat flux field. Similar
changes in the heat flux field weré used in adjusting the

cumulative heat flux to conform with the observed heat content,

as described in section II.
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VII. SPRING TRANSITION

A. DEFINITION

To determine quantitatively when the ocean boundary layer
changed from a winter to a summer regime, a set of criteria
was formulated based on the predicted mixed layer depths.
This evaluation technique was applied to the locations within
the ADS area shown in Fig. 1, and produced a representative
spatial distribution of transition dates.

The time series plots of mixed layer depths, as well as
3-hourly print-outs, were used to determine manually the
spring transition dates. The transition date was defined as
the first period of sustained shallow mixed layer depths

(£20 m) that followed a period of greater than 60 m depths.

Near the northern boundary, the predicted depths may have later

exceeded 60 m for a short period a week or more after the
establishment of the stable layer. Consequently, the transi-
tion date was specified, as that period that coincided with a
significant increase in mixed layer temperature. The transi-
tions at all locations generally coincided with a mixed layer
temperature increase that signalled the formation of the
seasonal thermocline.

Another quantitative method that could have been used in

selecting a transition date was the determination of the

starting time of a prolonged increase in mixed layer temperature,
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This type of temperature increase would have only been real-
ized if the mixed layer remained shallow for several days.
The drawback of this method was that the selection of the
transition date would have been based on a change in tempera-
ture, which was the effect being evaluated, and not on the

change in depth, which was the cause being investigated.

B. DESCRIPTION

Prior to the heat flux adjustments, the mixed layer depth
predictions near the southern boundary were unrealistic, and
transition dates were difficult to determine. This problem
was solved after the corrections to the cumulative heat fluxes
were made.

The spring transition dates for all sampled locations in
the ADS region were plotted for each year in Fig. 17. In
1976, the earliest dates were in the northern part along
155°W. The first transition date was day 79 (March 19) at
32°N, 165°W and 30°N, 175°W. The last date was day 153 (June
1) at 50°N, 155°W. The transition dates were sometimes
recorded in latitudinal bands, or small groups extending
northward two to five degrees latitude. In some cases the
latitudinal extent of an apparent transition was much greater,
but a subsequent storm would again deepen the layer in the
poleward regions. Surprisingly, the longitudinal variation
in dates was as large as the latitudinal variation over the

middle and southern portion.
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Fig. 17 Spring transition dates (Julian) for the sampled
locations within the ADS area for 1976 and 1977.




In 1977, there was a similar temporal pattern to that of
1976, although the transition occurred considerably later.
The mean date of the 1976 sample was day 121 (April 30),

while the mean date in 1977 was day 127 or May 7. The earli-

est transition date was day 86 (March 27) at 32°N, 175°E,
while the latest date was shared by 42°N, 44°N, and 46°N
along 155°W on day 163 (June 12). A 33-day change in transi-

tion date over the year occurred at 38°N, 135°W.

C. COMPOSITING

To present the common features of a spring transition, '
the forcing fields and predictions of mixed layer depth and
temperature, were composited with respect to the transition
date. Since all of the parameters had a strong diurnal
component, the transition was expected to be near 00 GMT for
each location. Note that 00 GMT corresponded to local noon
at 175°W and 1500 local at 135°W. Hourly adjustments had to
be made at locations east of 175°W, so that the transitions
occurred at the same time of day.

Compositing was done for the six points along 38°N and
32°N, and for eleven points along 155°W and 175°W, for both
years. A representative sample of 10 days prior and 20 days
after the transition was chosen as sufficient time in which
to investigate the parameters. This period of time spanned
about eight to ten synoptic periods. The set of transition
dates derived from the unadjusted heat flux model runs was
used for the compositing technique.
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The composite along 38°N in 1976 revealed the most dis-
tinctive features relative to the transition time, because
it contained the least number of locations with heat budget
disagreements. Although the composites along 175°W and 155°W
contained more points, they included the troublesome southern-
most latitudes, where transition dates were in doubt. That
uncertainty detracted from the composited traits of an actual
transition. In Fig. 18, day 0 on the abscissa was the transition
time, with an interval 10 days prior to transition plotted to
the left, and a 20-day interval after transition to the right.

The mixed layer depth composite in Fig. 18a exhibited
considerable variation, with a large mean depth preceding the
transition, and little variation about a shallow depth follow-
ing the transition. This composite was not independent of the
transition date, because the date was chosen from criteria
based on these characteristics. The mixed layer temperature
composite showed the deviation of temperature with respect to
the mean temperature of the 30-day record. Preceding the
transition day, the temperature was less than the mean, and
showed almost no variation. The first notable increase coin-
cided with the mixed layer transition. Thereafter, the
temperature steadily increased and became more responsive to

diurnal variations.

The behavior of the composited forcing functions (Fig. 18b)

was independent of the transition date selection process.

The wind speed composite revealed that there was a sharp drop
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in wind speed during transition. This was the most distinctive
atmospheric forcing feature associated with the transition.
The wind speeds prior to the transition were higher, and
showed a greater variation, than the weaker and steadier winds
afterwards. The wind speed of 5.7 m/s, at day and time zero,
was a drop of over 6 m/s from a peak speed of 12.2 m/s, which
occurred 23 hours earlier. The lowest speed of 3.6 m/s was
reached ten hours later, during the night. The subsequent
rise to the next peak wind speed of 7.8 m/s took place 42
hours after the transition. For all locations in both years,
the mean wind speed at transition time was 4.5 m/s.

The total heat flux composite showed that there was a
large upward flux during the night preceding the transition,
and an average heat loss during the following two nights.

More daily variation was evident before the transition than
afterwards. This heat flux pattern was consistent with the
behavior of the wind speed variations. The solar flux composite
did not exhibit any significant changes throughout the 30-day
record, although there was a relatively high value on the

day before, and a low value on the day after the transition.

The time changes in fluxes of solar radiation and total heat
were apparently of much lesser importance than were the wind
speed variations in bringing about the change of the mixed

layer from a winter to a summer regime.
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D. STATISTICAL VALIDATION

How reliable was the method of using the changes in mixed
layer depth for selecting the transition date? If the method
is valid, there should have been a statistically different
regime before the transition than the regime following transi-
tion. According to the information provided by the composites,
the wind speeds should also have been statistically different
before and after the transition.

The method selected for evaluating the different groups
was the "t-test'" for two independent samples. This procedure
determines if the means of two collections are different at
a given level of significance. Dividing the difference be-
tween the two means by the standard error of the difference
yielded a statistic

t=(M1'I“12)/(S )

mj-m2

which was distributed as the t-distribution, if the two
population means were equal. To the extent that the two means
were not equal, the expected value of the calculated "t"

would have been inflated, and the probability of rejecting the
null hypothesis (of equal means) would have become greater
than the level of significance. The assumptions underlying
this estimate were that the data in both samples were normally
distributed, and the variances of the two populations were
equal. Moderate departures from these assumptions have proved

to be of no practical consequence. When the two samples were
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of nearly equal size, the statistical test was quite insen-
sitive to violations of these assumptions. The standard
error of the difference was just the standard deviation, and

was computed according to

—ral 2 1/2
Sml_mz-(el/nl *+ 85/n3)

where 9% and 9% were the variances of the two groups, and

n; and ny; were the respective number of observations (e.g.
Roscoe, 1969).

The composites of wind speed and heat flux contained
hourly interpolated values, of which only a fraction were
independent observations. The 12-hour observations were
considered as independent of each other, so that the 60 values
for the 30-day record, allowed 58 degrees of freedom. The

mixed layer depth predictions composite was treated similarly.

TABLE 2.

Determination of statistically different means of mixed layer
depth, wind speed, and heat flux, prior to and after the
transition day, from the composite along 38°N in 1976. The
first two columns contain the means before and after the
transition. The standard deviation in the third column is
followed by the resultant 't-value” in the next column. The
threshold "t-value" for 58 degrees of freedom, at a .05 level
of significance for a two-tailed test is 2.0.

M M S t

1 2 mj-m
Mixed layer depth 54.44 18.46 3.43 10.49
Wind speed 10.45 6.19 0.47 9.06
Heat flux -3.34 -8.32  6.07 0.82
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The two means of the mixed layer depth and wind speed
were shown to have been significantly different, while the
two means of the heat flux were not significantly different.
The outcome of this test was repeated using the other composited
latitudes and longitudes. The general inference of the results
was more important than the computed values, because the
variances of the two samples were not equal. Fortunately,
the "t-test" was much more sensitive to the assumption of
equal means (null hypothesis), than to the assumptions of
normality or homogeneous variances. Nonetheless, the transi-
tion date was the appropriate division between the two samplings
of the mixed layer depth and wind speed, but it had no sig-
nificance in the heat flux record. Thus, the method for
selecting the spring transition date employed in this study

proved adequate.
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VIII. SYNOPTIC DESCRIPTION SURROUNDING SPRING TRANSITIONS

The mixed layer spring transition often occurred during
a period of weak winds. An atmospheric high pressure area
usually provided two or three days of favorable conditions
for light winds. It was not surprising then that the loca-
tion was found close to the center of a high pressure area
on the date of a transition. In a few instances the transition
location was near the center of a well-developed low pressure
system. The sea-level pressure at the time of transition
was mostly above 1020 millibars (mb), and occasionally in

excess of 1030 mb.

A. 1976 (MARCH-JULY)

The group of transition dates over the southwestern ADS
area occurred earlier than over the remainder of the domain,
because of the presence of a high pressure area. During
March, a large high pressure cell, with sea-level pressures
up to 5 mb above normal, was centered near 35°N, 135°W, and
covered most of the eastern North Pacific south of 45°N.

The earliest transition dates were not found near the center
of this high pressure area, because steady winds continuously
mixed the upper ocean layer. Meanwhile, sea-level pressures
were up to 5 mb below normal over the Aleutians and the Gulf

of Alaska. This increased pressure gradient maintained strong
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west to northwest winds between 40°N and 55°N, which contrib-

uted to the production of below normal sea-surface temperature

anomalies. The mean pressure pattern of March lasted well
into May, even though the southern high pressure area built
westward, and the Gulf of Alaska low pressure area deepened.
During mid-April transitions took place at the remainder
of the locations south of 40°N except in the central portion, i

where strong mixing postponed the change. It was not until ?

mid-May though, that the transitions materialized in the

mid-latitude, ocean polar front region. Thereafter, a series

of high pressure systems over the north portion allowed tran-

sitions to occur through the end of May. At the northernmost i
locations the spring transitions tended to occur under weak

pressure patterns, rather than under a well-defined high

pressure area, as was the case with the majority of the

transitions.

In June, the subtropical anticyclone was positioned near

37°N, 145°W, with up to 5 mb above normal pressures over the
entire eastern North Pacific. Large sea-surface temperature
increases over the east-central ADS area between 150°W and
170°W may have been aided by warm water advection. The model-
produced, mixed layer temperatures did not predict this
anomalous development. During July, the strong high pressure
cell collapsed as above normal westerly winds developed
between 35°N and 45°N, and the warm anomaly region of the
previous month dissipated [National Marine Fisheries Service,

1976]. <




B. 1977 (MARCH-JULY)

The atmospheric circulation patterns returned toward
normal positions in March, after five months of unusually
low pressures and persistent high winds in the central and
western North Pacific. As the Aleutian Low shifted eastward
toward the Gulf of Alaska, the eastern Pacific High, which
had remained nearly stationary during the winter along the
North American west coast, moved southwestward toward its
normal position near 35°N, 145°W. Although surface pressures
north of 45°N returned to near normal in March, the strong
high maintained the pressure gradient, which allowed the
continuation of higher winds and strong ocean mixing west of
150°W. In April, the high moved westward to near 33°N, 175°W
and became less dominant. The general circulation in the
North Pacific was considerably weaker, except for the area
west of 155°W from 37°N to 47°N [National Marine Fisheries
Service, 1977].

The first transitions of the season took place in the
southwestern portion of the ADS region, under a high pressure
event at the end of March and the first part of April. Fol-
lowing a prolonged period of high pressure from late April to
early May over the southern ADS area, the remainder of the
transitions occurred south of the ocean polar front. The
mean atmospheric circulation in May was close to the average,

as the subtropical high returned to a position near 33°N,
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150°W. Towards the end of the month, the weakened pressure
pattern over the northeastern ADS area permitted transitions

in this section. Persistent high winds delayed the transitions

along 155°W until mid-June.

In June and July, the observed mean pressure pattern was

similar to the normal. The weak subtropical high was situated
between 145°W and 155°W along 35°N. As a result of two suc- L
cessive months of near normal atmospheric circulation, most
of the sea-surface temperature departures from normal were
less than 1 C in the eastern North Pacific. However, tempera- i
tures remained significantly below normal over large areas
in the central Pacific, as they had been since the winter.

Atmospheric surface pressure patterns within the ADS area
were chosen for selected transition dates in 1977. These map
sections (Fig. 19) were reproduced from the FNOC North Pacific
sea-level pressure analyses. They presented typical synoptic
situations with respect to transition locations (marked by X's)

for early spring, mid-season, and late spring.




Fig. 19 Sea-level pressure patterns within the ADS area
] reproduced from the FNOC North Pacific analyses.
Transition locations (marked by X's) Julian days
99, 124, and 163 in 1977.




IX. SEA-SURFACE TEMPERATURE ANOMALY GENERATION

An earlier than normal mixed layer transition was expected
to have been related to the development of higher than normal
sea-surface temperatures. This relationship held rather well

for the 19-year sample at OWS "P'" (50°N, 145°W) [Elsberry and

Garwood, 1978]. At this location, the median transition date
was day 117 (April 27), with a range of about 70 days, and
most of the values occurred between days 100 (April 10) and
140 (May 20). The 1976 and 1977 transition dates from the
present model and forcing appeared to have been equal or
greater than day 140 for the region near OWS "P'". These val-
ues compare unfavorably with the median transition date for
OWS "P" £from the Elsberry and Garwood (1978) study. This may
be indicative of the anomalous oceanic conditions during 1976
and 1977, or that the atmospheric forcing used in this study
may have been inadequate.

Determining the deviation of the spring transition data
from the long-term mean, as was emploved at OWS "P", was not
applicable to this study, since there were only two years
involved. The sprine transition occurred much later in the
northern part of the ADS area than in the south, so just com-

paring the transition dates to the SST anomalies would have

given an unrealistic relationship. However, if a transition
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date occurred earlier in one year than in another for a given
location, then there should have been a greater SST anomaly

development during the earlier year.

A. OBSERVED ANOMALIES

The observed surface temperature anomalies drawn by the
NMFS were the deviation of the mean-monthly SST from a 20-year
(1948-1967) normal. Within the ADS area in March 1976,
the southeastern portion was much warmer (1-1.5 C) than the
rest of the area. In April, the center of the warm anomaly
shifted ten degrees of longitude to the west and weakened.
During May, this area translated five degrees farther south-
westward, while cold anomalies proliferated in the northern
part. Strong warming of the central portion was registered
in June, but the anomaly disappeared in July. In March and
April 1977, the SST of the central portion was well-below
normal (1.5-2.5 C), while in the far eastern side, it was
slightly above. For the next three months, cold anomalies
remained over the central portion, in spite of some warming

during May.

B. EVALUATION METHODS

For both years, the March anomalies were subtracted from
the July anomalies at each location. With the initial con-
ditions removed, only the anomalies generated over the 4-month
period were evaluated. The difference in the transition dates

between 1976 and 1977 at each location was plotted as a function
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of the difference in the adjusted SST anomalies. It was

expected that a large positive transition date difference
would directly correspond to a large, positive anomaly. That
is, the earlier the transition date, the higher the tempera-
ture anomaly would have been. Only about one half of plotted
points conformed with this reasoning. The 3-month net change
in SST from March to June was also computed for both years,
and the difference was compared to the difference in transi-
tion dates. Once again, the results were inconclusive.

There were a couple of reasons why little, if any, corre-
lation of the results was shown. The accur2:z, limit of the
analyses and predictions was around 1 C, while the actual
SST anomalies were often only plus or minus 1 C. Therefore,
the errors and investigated values were of the same magnitude.
In the central North Pacific, the anomalies varied considerably
from month to month. Just using the individual March and
July values probably did not provide an appropriate sample.

The comparison of transition dates to predicted mixed
layer temperature behavior proved to be a more successful
relationship. The latitude and longitude displays of model-
predicted temperature traces from March to July were used.

The differences between each trace were graphically displayed
as in Fig. 20, with positive areas defined when the 1976
temperature trace was greater than the 1977 trace. The actual
mixed layer temperatures would not have had the same repre-

sentation between the years, because the initial values for
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Fig.

LONGITUDE

20

JULIAN DATE

Difference in mixed layer temperature (1976 minus
1977) at points along 38°N with positive values
enclosed in envelope and negative values in dotted
regions. Transition dates: 1976 (circle), 1977
(cross). Each 10° longitude corresponds to 3.1C.




both years were not equal. All of the 1977 initial tempera-

tures were 1 to 2 C lower than those in 1976, except that
values of less than 1 C higher were found along 135°W. This
comparison did not portray the differences in actual tempera-
tures, but rather, the behavior of the relative temperatures
with respect to the transition date.

The relative seasonal heating was defined as the net
difference in mixed layer temperature from the earlier of the
two transition dates at each location to July 15. A difference
in net heating in degree days was graphically estimated from
the positive and negative areas of each of the coupled traces.
If the transition date came earlier in 1976 than in 1977,
then there should have been greater heat gain at that location
in 1976. The two or three month estimate of mixed layer
heat changes was sufficient time over which to determine the
existence of the transition-temperature relationship.

The behavior of the difference of relative mixed laver
temperature (1976 minus 1977) at points along 38°N is exhibited
in Fig. 20. Each 10° of longitude on the figure corresponds
to 3.1 C. The uppermost record (135°W) showed a steadily
increasing positive difference, beginning with the 1976 tran-
sition date. At 175°E, a large net positive difference
developed at a much later time. The temperature changes at

175°W and 155°W did not correspond well with the transition

date placements. At 165°W, however, the 1977 transition date
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was much earlier than in 1976, and a correspondingly large
negative accumulation developed.

In general, the behavior of the coupled traces for both
years over the ADS area revealed that considerably more
relative seasonal heating was realized in the southwestern
portion than in other parts. At 32°N, 175°E a temperature
rise of nearly 9 C was predicted for the 4-month period,
whereas at 32°N, 135°W only a 1.5 to 3 C rise was predicted.
Along 175°W, predicted temperature increases through the
time series were from 4 to 6 C in the south, and from 2 to
3 C in the north. Along 155°W, the temperature increases
(2 to 4 C) were similar at all latitudes. These smaller
increases were attributable to the later transition dates
along this longitude.

The difference between the transition dates versus the
net accumulated heat (degree days) from the earlier transi-
tion date to Julian day 195 for all locations was plotted
in Fig. 21. It was expected that a linear relationship of
an increasingly negative difference in transition dates
corresponded to an increasingly large value of accumualted
heating. A majority of points followed this pattern closely.
More points appeared in the upper left quadrant because a
greater number of transition dates were earlier in 1976.
The points that do not follow the linear relationship may

have been the result of a false transition date, or errors
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Fig. 21 Difference between the transition date versus the
net accumulated temperature increase (°C days) from
the earlier transition date (1976 or 1977) to day
195 for all locations shown in Fig. 1.
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in the estimate of accumualted heat. The concept of an earli-

er transition date leading to a higher sea-surface temperature,

appears to have been verified for this sample.
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X. CONCLUSIONS

The ocean thermal structure changes for the spring of
1976 and 1977 were predicted with reasonable accuracy.

Better observational resolution of the forcing parameters,
provided by FNOC, and more detailed ocean thermal analyses,
would likely improve the prediction/verification capability.
The mixed layer temperature change has been shown to be
related to one-dimensional processes to first order. Non-
local effects were significant in some regions, so a param-
eterization of these effects, would be desirable in any
attempt to improve prediction capability.

The atmospheric forcing package from FNOC was acceptable,
except the total heat flux calculations had to be altered
by a correction field before being used by the mixed layer
model. Even though synoptic and diurnal wind oscillations
were the primary influence on ocean thermal structure changes,
accurate specification of the solar and total heat flux were
also required.

The ocean thermal behavior within the ADS area for each
spring period was similar. In 1976 and 1977, the southeastern
portion had the largest heat content in March. By June the
heat content distribution was zonally uniform throughout
the southern part. Diurnal influences on wind and mixed

layer depth were greater in the southern part. Data at
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additional locations within the ADS area should be evaluated
for better spatial resolution of the transition dates. Data
from other years should be compiled, so that normal transi-
tion dates can be estimated. Use of the method of executing
the model at ADS grid points simultaneously, instead of
individually, would facilitate the additional computations.
The objective method for selecting a spring transition
date was effective, even though it had limitations at far
northern latitudes of the ADS area. Correct dates were crucial
in the determination of a transition-temperature anomaly
relationship. The spring transition usually occurred within
a 36-hour period; however, the time period for transition
was longer for steady wind conditions. Atmospheric high
pressure areas were usually found over locations undergoing
transition. The mixed layer depths and wind speed were
statistically different before and after the transition dates.
The evaluation and verification procedures used in the study
led to an indeterminant judgement as to whether the one-
dimensional mixed layer model accurately predicted the observed
sea-surface temperature anomalies. However, the model results
did lead to the confirmation that earlier transition dates

were associated with higher predicted sea-surface temperatures.
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APPENDIX

SYSTEM PROGRAMS

A sequence of programs was used to achieve the desired

output of the predicted oceanic time series. These programs
were developed and tested by Patrick Gallacher, in research
supported by the Naval Ocean Research and Development Activi-
ty. The forcing fields were retrieved from an edited data
tape for the period March 15 through July 15 in 1976 and
1977. The RTRV1D program read a control card and translated
the given latitude and longitude point into array indicies.
The beginning date-time was changed into a Julian date, and
an ending date-time, was computed using the requested number
of days for retrieval. The input file was searched, and all
records with requested catalog numbers which fell between
the starting and stopping time were extracted and placed in
the output files by catalog number. Then, program CRCTLD
replaced any missing fields by values derived by linear
interpolation of the adjacent values in time.

An instantaneous solar flux estimate which was available
from the FNOC atmospheric prediction model each 12 hours,
normally provided only one daytime value. Program AlLlIlD
interpolated the values of solar radiation to l-hour intervals
during the remainder of the daylight hours. Milankovich's

formula [Gallacher, 1979] was used to estimate the hourly
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solar flux, utilizing the value of the solar flux closest to .

local noon and time of local sunrise and sunset. This pro- {
§ cedure assumed that the moisture and cloudiness effects.that
were implied in the known solar flux va;ue persisted through-
out the daylight hours. The interpolated values were then
written on a file, and the values for nighttime hours were
set to zero.

The 12-hour total heat fluxes were determined by subtract-
ing the original solar flux from the total heat values. The o
residual heat flux was interpolated to 1l-hour intervals,

using the International Mathematics and Statistics Library 3

(IMSL, 1979) cubic spline routines. The values of solar
radiation at 1l-hour intervals were then added (program Al18I11D)
to the interpolated residual heat flux to obtain the total
heat flux at 1l-hour intervals.

The E-W and N-S wind components at 6-hour intervals were
interpolated using cubic splines to l-hour intervals by
program FRCF1D. The results were written on a new file,
which was then used by program WNDS1ID to form a wind speed
from the component values, by using the Pythagorian relationship.

Garwood's bulk mixed layer model was initialized with
TRANSPAC temperature profile for a given location and month
(March). Program OBLM1D performed this task by: 1locating

the simulated bathythermograph (BT) profile corresponding

to the requested starting time and grid point, then linearly

90




interpolating the profile to l-meter depths. As each day

of forcing was read, the model ran forward for that day,
deepening or shallowing the mixed layer in response to the
atmospheric forcing. The output files of the mixed layer
depth/temperature and temperature profiles were generated

in 3-hour increments, as specified in the program. The
processing continued in this manner, until the entire 122-day

time series of forcing had been used.
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