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opposing ends. The two waves overlap beneath a semiconductor spaced above the sur-
face and their fields interact with its charge carriers. A non-linear potential is
produced and averaged over the semiconductor. From its back contact is obtained
the time-compressed convolution of the two signals.

The memory correlator is similar to the convolver except that the semiconductor
possesses a charge-storage mechai ism. Also additional transducers are required for
recovery of stored information.I,,

One implementation of a SAW chirp filter consists of a piezoelectric crystal
with grooves etched onto its surface. A surface wave, launched by an interdigital
transducer, is selectively reflected to a second interdigital transducer situated
alongside the first. The groove spacing for this Reflective Array Compressor (RAC)
varies quadratically and a surface wave is reflected at a time linearly proportiona
to its carrier frequency producing a device impulse response having a quadratic
phase variation.

The generation of three-dimensional ambiguity functions using a convolver is
described with the criteria, for its implementation. The equations for specific
functions are given and these arid others are generated expe'rimentally by this tech-
nique. The basic process is the generation of a 'slow chirp' by applying a 'slow
ramp' to a VCO. The 'slow chirp' modifies the signal center frequency and the
'slow ramp' is summed to the convolver output before display. The design for a
specific range/Doppler res.ponse by modification of the waveform while monitorin

* the ambiguity function is demonstrated.

Chirp transformation using a convolver is also described. The relationships
for its realization are derived and experimental Fourier transforms are shown.
Inverse transformation results are given where signals are corrupted by monochro-
matic noise and time gating of their transforms prier to inversion eliminates the
noise from the signals.

A g .neral formulism is developed for the memory correlator where the device out-
puts and stored charge are related to the interaction between surface waves, stored
charge and applied fields. The convolution/correlation type relationships are de-
veloped from which the duality of output convolution versus stored correlation
arises. Some experimental results with surface states and PN diodes are given
where a modified device package required for uniformity and ease of sample substi-
tution is described. An application whereby'an ambiruity function is generated
using a stored reference is demonstrated.

Chirp transformation with chirp filters is analyzed in detail. Chirp-generated
v'ourier transform modification is also discussed. The transformation capability of
these systems is demonstrated by showing actual waveforms. More complex systems,
correlating receivers, where autocorrelations are obtained by inverse transforming
transform products, are demonstrated. Probability-of-error data is used to assess
the performance of a particular correlating receiver. Outputs from a correlating
receiver capable of operating on contiguous data are shown.

An appendix covering chirp-transformation-related topics has been included.
There is an extensive analysis of the Fresnel transform and a discussion on the gen-
eration of other transforms using these devices.
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This report summarizes the work related to the reai time
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electric interaction and chirp impule response using SAW. Part of this
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(Arsenault, 1978), (Das, 1976), (Das, 1977), (Das, 77 Ultrason. Symp.),

(Das, 1977 NTC), (Das, 1978), (Milstein, 1978), (Milstein, 1977),
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in one place coherently.

Mr. R. T. Webster, Mr. Colin Lanzl and many students in the
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ABSTRACT

Three Surface Acoustic Wave (SAW) devices, the separated-

medium convolver, the memory correlator and the chirp filter are analyzed

for signal processing applications. Emphasis is placed on convolution/

correlation and Fourier transformation processes. The chirp filter theory

is more general and applies equally well to chirp filters fabricated by

alternate techniques.

In the SAW convolver there is a piezoelectric delay line. Two

surface waves are introduced onto the delay line surface by interdigital

transducers at its opposing ends. The two waves overlap beneath a semi-

conductor spaced above the surface and their fields interact with its

charge carriers. A non-linear potential is produced and averaged over

the semiconductor. From its back contact is obtained the time-

compressed convolution of the two signals.

The memory correlator is similar to the convolver except that

the semiconductor possesues a charge-storage mechanism. Also additional

transducers are required for recovery of stored information.

One implementation of a SAW chirp filter consists of a piezo-

electric crystal with grooves etched onto its surface. A surface wave,

launched by an interdigital transducer, is selectively reflected to a

second interdigital transducer situated alongside the first. The groove

spacing for this Reflective Array Compressor (RAC) varies quadratically

and a surface wave is reflected at a time linearly proportional to its

carrier frequency producing a device impulse response having a quadratic

phase variation.
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The generation of three-dimensional ambiguity functions using a

convolver is described with the criteria for its implementation. The

equations for specific functions are given and these and others are 6en-

erated experimentally by this technique. The basic process is the gener-

.ation of a 'slow chirp' by applying a 'slow ramp' to a VCO. The 'slow

chirp' modifies the signal center frequency and the 'slow ramp' is summed

to the convolver output before display. The design for a specific

range/Doppler response by modification of the waveform while monitoring

the ambiguity function is demonstrated.

Chirp transformation using a convolver is also described. The

relationships for its realization are derived and experimental Fourier

transforms are shown. Inverse transformation results are given where

signals are corrupted by monochromatic noise and time gating of their

transforms prior to inversion eliminates the noise from the signals.

A general formulism is developed for the memory correlator

where th& device outputs and stored charge are related to the interaction

between surface waves, stored charge and applied fields. The convolution/

correlation type relationships are developed from which the duality of

output convolution versus stored correlation arises. Some experimental

results with surface states and PN diodes are given where a modified

device package required for uniformity and ease of sample substitution

is described. An application whereby an ambiguity function is generated

using a stored reference is demonstrated.

Chirp transformation with chirp filters is analyzed in detail.

Chirp-generated Fourier transform modification is also discussed. The

transformation capability of these systems is demonstrated by showing
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actual waveforms. More complex systems, correlating receivers, where

autocorrelations are obtained by inverse transforming transform products,

are demonstrated. Probability-of-error data is used to assess the per-

formance of a particular correlating receiver. Outputs from a correlating

receiver capable of operating on contiguous data are shown.

An appendix covering chirp-transformation-related topics has

been included. There is an extensive analysis of the Fresnel transform

and a discussion on the generation of other transforms using these

devices.
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PART I

INTRODUCTION AND HISTORICAL REVIEW

Convolution and Fourier transformation are utilized extensively

for the analysis ofsignals and the design of systems employed specifically

for communications and radar applications. For instance, the Fourier

transform of the impulse response of a linear time-invariant system is its

transfer function. The Fourier transform of the output of the linear

system is the Fourier transform of the input multiplied by this transfer

function. In the time domain this output is the convolution of the input

signal with the system impulse response. In general, when two signals are

convolved in the time domain their Fourier transforms are multiplied in the

Fourier (or frequency)domain and, due to symmetry, when two signals are

multiplied in the time domain their Fourier transforms are convolved in

the Fourier domain. Since a system input is convolved with the system

impulse response, it may be more desirable to multiply, in the frequency

domain, the Fourier transform of the input signal with the system transfer

function. The Fourier transform of a signal contains the magnitudes and

phases of infinite duration sines and cosines which, when summed together,

produce this signal exactly. When the signal is written as this infinite

sum of sines and cosines, each component can be treated independently in

a linear system since the output of this system is due to the superposition 3

of every input component. The transfer function of a system is essentially

its frequency response, from which both the magnitude and phase response

of the system for every frequency component can be found. The Fourier

transformation of a linear differential equation describing some linear
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system produces an algebraic equation that is much easier to solve. Con-

volution is the basic principle behind the technique of matched filtering,

whereby a signal is convolved with its time complement to produce a maximum

output when the two signals are fully correlated. This technique is

heavily relied upon in spread spectrum systems and radar receivers where

large correlation gains make it possible to transmit signals that are

imperceptable and high range and Doppler resolution can be obtained with

moderate signal power levels. Furthermore, the shape of the output cor-

relation (i.e. convolution for which one of the signals is time reversed)

from a correlating receiver as a function of Doppler shift produces a

three-dimensional figure whose form indicates the range and Doppler resolu-

tion capability of the signal utilized for the particular radar application.

For these reasons and many others, convolution and Fourier transformation

form the backbones for the analysis of most systems utilized for the pro-

cessing of information (Papoulis, 1968) (Papoulis, 1977) (Skolnik, 1970)

(Cook, 1967) (Rihaczek, 1969).

Due to the importance of convolution and Fourier transformation

as signal processing tools and in particular due to the versatile proper-

ties of the Fourier transform (namely its symmetry, conjugation, scaling,

modulation, shifting, moment, derivative, energy and convolution theorems),

it would be highly desirable to possess the capability to perform these

functions in real time with relatively small devices at high frequencies

using a minimum of power and back-up equipment. Up until now the computer

has been the main mechanism for their realization. Although computers are

continually increasing in speed while decreasing in size, they are just

beginning to perform fast enough for real-time applications. It will

4A



furthermore be quite a while before such units are developed to the point

where they are small in size as well as in power consumption. Also, they

are inherently complex units and it will take a while before they can

perform satisfactorily in the microwave drxain. Charge-coupled devices

(CCD's) are demonstrating the potential for meeting all the desirable

requirements although they are still essentially baseband devices, are

complicated at the initial design stage and are inherently active devices.

There are, however, devices that can meet all the criteria and are the

result of the growing surface acoustic wave (SAW) technology. In parti-

cular, the process of convolution is directly performed by the so-called

SAW separated-medium convolver which is one of the devices that is

examined in detail in this thesis. The second device, generally called

a chirp filter, is the basic element in the realization of the signal

processing techniques utilized in most of the remaining portion of this

work. This device, an example of which is the SAW reflective array

compressor (or RAC), is heavily relied upon for the realization of

the Fourier transform. The bulk of this work is essentially dedicated

to the analysis of these two surface wave devices and attempts to demon-

strate their potential as invaluable signal processing elements.

SAW devices consist of crystals having at least one surface

upon which a surface wave can propagate. A surface wave is a special

type of wave where the mechanical energy of the wave is confined to

within a few wavelengths of the crystal surface. This type of wave

can be compared to earthquake-propagating waves and most of the analytical

foundation has evolved from work done in this area. The crystals used

for surface wave devices are typically anisotropic and in such crystals
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there are only so many directions in which the surface wave and its

energy will propagate along the same path (i.e. normal mode directions).

Although surface waves may be excited on virtually any crystalline sur-

face, it is the piezoelectric substrates that are easiest to uSe and

possess the most desirable characteristics. This is due to the ease in

which surface waves can be made to propagate on these substrates using

interdigital transducers. These transducers initiate SAW propagation by

impressing time varying electric fields having alternating polarities

between the individual transducer fingers onto the substrate. The sur-

face waves on these crystals possess electric fields that propagate with

the waves and evanesce above the piezoelectric substrate surface. The

electrical energy is small in comparison to the mechanical energy and is

dependent and proportional to the coupling constant of the material

(i.e. .0241 for YZ LiNbQ3 used for many applications due to its large

coupling constant) which is given by the ratio of the change in velocity

of the surface wave when a metal (shorting) plane is deposited on the

surface (with negligible damping due to mass loading) to the unshorted

intrinsic velocity of the surface wave on the bare crystal surface. The

shorted velocity is always slower since piezoelectricity always tends to

stiffen the elastic surface. The velocity of a surface wave is typically

105 times slower than the equivalent electromagnetic wave (3488 m/sec for

YZ LiNbO3 ). The attenuation of these waves is small in comparison to

electromagnetic wave attenuation for the equivalent number of wavelengths

of propagation (i.e. = .01 dB per 3 P sec of propagation or about 1 am

for YZ LiObO at 100 Mhz which is eq ivalent to a 34.9 Pm wavelength or

about 300 wavelengths per cm). The attenuation of the waves increases
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dramatically, however, up into the Ghz range (i.e. 1 dB per cm for

YZ LilbO3 at I GHz) and the wavelength becomes too small for efficient

0
transducer deposition (done photolithographically using = 2000 A of

aluminum) whose fingers are a quarter wavelength wide (i.e. = .87 Um for

YZ LiNbO at 1 GHz). Although devices have been fabricated in this range,
3

the typical limit is somewhere in the lower Ghz range due to the above

limitations.

The basic usage for these devices is that of piezoelectric

delay lines. By designing special transducers utilizing variable finger

lengths or withdrawn fingers, virtually any desirable finite impulse

response filter can be designed having extremely linear phase character-

istics. By varying the spacings between the transducer fingers, variable

phase responses can be built into these filters so that Linear-FM or

chirp filters can be realized. Due to bulk wave distortions, however, a

better mechanism for realizing chirp filters utilizes surface wave

reflections from gratings etched into the surface of the delay line

(i.e. the reflective array compressor or RAC). This technique has also

been used to fabricate high Q (in the tens of thousands) resonant cavity

devices (or resonators). Then there are the devices, of which the

separated-medium convolver is an example, that produce an output

by the interaction of the SAW electric fields with the carriers in a

slice of semiconductor adjacent to the piezoelectric delay line surface

or the carriers within a piezoelectric/semiconductor substrate. These

are the so-called acousto-electric devices of which the SAW amplifier

is also representative. A variety of other types of devices have been

conceived and fabricated utilizing these surface wave techniques
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(Matthews, 1977) (Kino, 1976) (Oliner, 1978). The signal processing area

has benefitted greatly due to the advent of SAW technology (Kino, 1971)

(Maines, 1976) (Ash, 1978) (Hays, 1976). Many devices have been devised

and implemented for use in radar applications (Maines, 1977) and for

spread spectrum communications (Collins, 1976) (Unkauf, 1977). The

excellent performance of chirp transformation anti-jam receivers

(Arsenault, 1978) (Milstein, 1978) and the potential for the integration

of SAW with CCD's (Whitehouse, 1973) open-up new avenues for the pro-

cessing of information.

The SAW convolver has undergone several stages of development

over the past years up to its presently accepted form, although its

predecessors are again being investigated as devices having the potential

for low cost production. The first of such devices utilized the non-

linearities in the crystal itself to obtain a second order mixing between

two counter-propagating surface waves. This second order output was

typically integrated over by a metallic plate or an interdigital type of

contact at twice the periodicity of the difference in frequency between

the two waves. The device is essentially an 'elastic convolver' (Quate,

1970) (Luukkala, 1971) (Kino, 1973). The output of such a device was

quite small and led to the investigation of an enhanced non-linearity

mechanism. (The 'elastic convolver', however, is being reinvestigated

(Becker, 1979), since surface waves can be concentrated into higher

power-density modes, thereby increasing the second order non-linearity.

By proper guiding structures such devices have been shown to perform

almost as efficiently as the separated-medium convolver.) It was found

that the second order non-linearity was greatly enhanced (in the absence
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of beam concentration) by the interaction of the SAW fields with charge

carriers in a semiconductor and led to the piezoelectric-semiconductor

convolvers (Wang, 1972) (Turner, 1971) and the separated-medium convolvers

(Wang, 1972) (Yamanishi, 1972) which are the subject of an appreciable

portion of this thesis. The theory for the SAW separated-medium convolver

has undergone significant development over the past years (Otto, 1976)

(Gautier, 1977). Section 2.1 of this report is an attempt to organize

the theory in a way that allows one to visualize the interaction between

two information bearing surface waves and thereby witness the evolution

of a device-characteristically-weighted output convolution amidst a

series of distortion terms. This theory does not attempt to materialize

the individual spatial and frequency dependent functions describing wave

propagation and the physics of the device (which can be found in one form

or another in the literature) but attempts to show where and how these

functions relate to the total device output and the spectral symmetry

relationships that these functions must obey for a physically realizable

device. The output of the device obtained in this follow-through fashion

is then compared with the output obtained by a converse technique whereby

a function is assumed to exist that describes the weighting between any

two frequency components of the two convolver input signals. Fourier

transformation theory and moment expansions are utilized extensively

throughout this section along with the approximation that spatially

varying device characteristics vary much.more slowly than the spatial

frequencies of the surface waves and are therefore separable functions.

Most of the functions describing various aspects of device physics can be

derived from numerous sources investigating specific phenomena such as
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the accumulation of charge at the silicon surface facing the surface of

the piezoelectric delay line (Smith, 1973). Note that another convolver

structure has also been developed and should be mentioned based upon the

tapped delay line structure (Reeder, 1973). The discrete device utilizes

individual diodes at each tap (i.e. interdigital transducers) along the

piezoelectric delay line surface to perform the non-linearity. The diode

outputs are summed to produce the convolution between two surface waves.

The realization of convolvers by utilizing the principles of

surface wave propagation has presented the possibility for a wide variety

of applications. Ambiguity function generation was demonstrated by Das

(Das, 1974) utilizing the separated-medium convolver. The process is

improved upon in this thesis, whereby the ambiguity functions are shown

to be easily displayed in three dimensions (amplitude vs. frequency or

Doppler shift vs. time or range) utilizing a 'slow ramp' and chirp. The

analysis of this process is presented along with analytical and experi-

mentally generated ambiguity functions. Some experimental results are

given that specifically demonstrate the dynamic design capability of such

a convolver implementation (Das, 1978). Another powerful convolver

application is the generation of Fourier transforms based upon the chirp

transformation algorithm (Otto, 1972). In Section 2.5 of this report

an analysis for the implementation of the convolver chirp transform is

presented. In Section 3.1 experimental results are given showing some

chirp-modulated output Fourier transforms from such a system. Also

shown are results demonstrating the time-gating of the Fourier transform

resulting in a filtered output obtained by inverse-Fourier transforming

the gated Fourier transform. Literature related to these results have



9

been published concerning the topics of non-destructive testing (NDT)

for distortion elimination (Tiemann, 1976) and the implementation of

adaptable receivers (Da, 1975) (Milstein, 1977) both of which are based

upon the utilization of the SAW convolver and the chirp transform.

A modification to the convolver structure is utilized to produce the

memory correlator. This convolver has the capability for signal storage

by some form of charge storage mechanism along the surface of the semi-

conductor in a separated-medium convolver structure. The preliminary

work in this area consisted of utilizing semiconductor surface states

(Bers, 1974). Some experimental results obtained using the surface

states found in untreated slices of 40 P-cm silicon are shown in

Section 3.1 of this report.' The storage times were found to be quite

small (= 25 vs) for these states which led to the use of diode arrays

whereby charge is stored through the imposition of a forward biasing

field and then held for tens of milliseconds (and seconds at cryogenic

temperatures) by the high back resistance of the diodes. This report

presents some results obtained using PN diode vidicon arrays in a

convolver package intended to facilitate vidicon array removal and possess

thecapabilityto maintain uniform interactions. These results demon-

4 strated the ability to generate ambiguity functions with a stored

reference. Section 2.3, furthermore, presents a general formalism for

the operation of the convolver in the presence of a charge storage

mechanism and with fields imposed within the interaction region by

potentials applied directly to the semiconductor. The form of the

direct output signals, the spatially stored signals and zhose recalled

at a later time are all presented within this framework. This analysis
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is based upon the results obteined over the years in conjunction with

the memory correlator. Not only has work been done utilizing PN diodes

(Defranould, 1976) (Das, 1977), but Schottky diodes are now being exten-

sively used (Ingebrigtsen, 1975) due to their faster response times and

structural simplicity. Theories detailing the influence of the device

physics on its output are evolving in this area (Kino, 1976) and devices

such as the coherent integrator, whereby the signal to noise ratio of a

repetitive signal is improved by the integration in storage and the

integrating correlator in which signals thousands of times the length

of the convolver interaction time can be integrated producing a piece of

the correlation of duration equal in length to the interaction time

(Ralston, 1977) are now beginning to leave the laboratory and enter the

applications stage. Most of these new devices are utilizing third and

higher order convolver interactions in order to reduce the background

spurious components stored along with the desired information.

The surface wave chirp filter and its implementation in the

generation of real-time Fourier transforms is studied extensively in

the remainder of this report. Chirp filters evolved from phase weighted

interdigital transducer devices (Gerard, 1973) (Gerard, 1977) to devices

utilizing selective reflections from quadratically spaced arrays of

grooves (Williamson, 1973) (Williamson, 1977). These latter devices

called reflective array compressors or RAC's were greatly influenced by

research related to the development of the IMCON's (2_pedance CONtrol

devices) at Andersen Laboratory (Martin, 1973) (Martin, 1976). The

IMCON is a chirp filter that utilizes groove array reflections, but the

wave is a bulk wave in a thin metal sheet. Due to the close similarity
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in the operation of these devices to that of RAC devices, the analysis

of their implementation for signal processing applications is identical

in either case. IMCON's were used for the demonstration of chirp filter

principles in this report due to their ready availability. (They were

supplied on loan by Andersen Laboratory.)

The chirp filter is finding wide applications in the area of

signal processing JNudd, 1975). Systems utilizing these devices have

been demonstrated, such as a variable bandwidth filter (Maines, 1975),

a variable delay line (Dolat, 1976) and a programmable pulse compression

filter (Gerard, 1977). One application that utilizes the Fresnel trans-

formation input/output relationship of the chirp filter has been demon-

strated in Section 3.2 of this report whereby any desirable portion of a

continuous signal is selectively time-inverted (Arsenault, 1977). The

Fresnel aspect of chirp filters has essentially evolved from the work

related to this thesis. A detailed documentation of the Fresnel trans-

form, its properties and relationships, was derived specifically for

this work and is found in its complete form in Appendix A. Although no

such analysis technique has been developed to date, this Fresnel analysis

was performed with the intention of developing a chirp system analysis

technique similar in form to the applicability of Fourier analysis to

the general design and analysis of linear systems.

A very important application of the chirp filter is its

utilization in a chirp transformation system (Atzeni, 1975) (Hays, 1975).

A useful application of the Fourier transforms obtained using these
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devices has been demonstrated in this thesis by the selective time gating

of monochromatic noise from an NDT (non-destructive testing) reflection

(Das, 1978) and by implementating the process into a variety of correlating

receiver structures (Das, 1977) (Arsenault, 1978) (Milstein, 1977)

(Milstein, 1978). The basic transformation process was demonstrated

elsewhere in the literature (Otto, 1976) where it has also been utilized

for network analypis (Jack, 1976). Continuous transformation has been

demonstrated in this work and although the continuous transform streams in

the receiver demonstrated in Section 3.3 of this report were not separated

into real and imaginary components, the system demonstrated the ability

to perform three Fourier transformations, two to obtain the product-

of-transforms and one to take the inverge transform of this product and

thereby obtain the correlation of the input signal with a reference.

This system represented the incorporation of techniques developed in a

variety of receiver structures that are also documented in Section 3.3.

The chirp filter chirp transformation process is discussed at length in

Section 2.4 anJ the effect upon a signal by the modification of its

chirp-generated Fourier transform is discussed in Section 2.6. Finally,

the ability to generate a wide variety of other transforms utilizing the

convolver and chirp filter is discussed in the Appendix. In this appendix

the techniques for generating a number of the more popular transforms

(Sneddon, 1972) are dwelled upon. Much of the discussion is based upon

time scaling which has already been utilized for the generation of the

Mellin transform in the area of optical signal processing (Casasent, 1977).
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PART 2

THEORY

2.1 The SAW Separated Medium Convolver Input/Output Relationship

A signal f(t) is applied to one input of the convolver and a

signal g(t) is applied to the other. Before producing an output from this

device both signals must pass through input transducer matching networks

(which may be only single inductors) after which they are transformed by

their respective %ransducers into surface waves that propagate toward one

another. The electric fields that propagate with these traveling surface

waves interact non-linearly (when the waves overlap) with the charge

carriers in the semiconductor (that is supported above the piezoelectricI

delay line) so as to produce a time and space varying current density

within this semiconductor that is proportional, at any point in time and

space,to the product of the fields of the two contrapropagating signals

at that point in time and space. This non-linear current density produces

a potential that is related linearly to the current through the average

semiconductor conductivity and is also a function of time and space. The

back ohmic contact of the semiconductor averages out this spatially

varying potential at every point in time and the resultant time varying

signal is transmitted through the output matching network of the con-

volver whereby it is sensed as the output of the device.

The two convolver inputs can be written as infinite sums of

cosines as follows (where the 1/2w will be ignored in all the equations)

f(t) o Af(w)cos(wt + f(w))dw (1.1)

g(t) = A (w)cos(wt + ()dw (1.2)

o13
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Since both these signals are undoubtedly real, then from Fourier analysis

A(w) =A(-w), O(w) -0(-w)

so that Eqs. (l.l)'and (1.2) can be rewritten as

f(t) = f'A (W)e j f ( W) e j Wt dw = F(()ejwt d a-F(w) (1.)

and

g(t) A ( Jeg() j t dw = L G(W)e 3m dW -- G(w) (1.5)

where

F(W) = _f f(t)e dt = Af(w)eif( m) = F*(-.) (1.6)

and

G(w) = f g(t)e - a  dt = Ag(Me G (-w)

(9 ~ g W = G ( w (1 7)

are the Fourier transforms of f(t) and g(t),respectively.

The transducers and their matching networks have impulse

responses mf(t) and m (t) for the f(t) and g(t) inputs, respectively.

These responses are surface waves injected onto the surface of the delay

line. (Impulses applied to the transducers produce surface wave displace-

ments mf(t) and mg(t) at points on the surface immediately following t' ,

transducers.) Therefore, the signals injected onto the delay line at each

transducer can be written as*

fW(t) f(t) * m (t) = fc f(t)m (t-t)d-

f ;AD f-

I F(w)Mf(fle 3 ~ dw (1.)

and

g1 (t) g(t) *ram(t) = g(T)m (t-T)dT

Capital letters denote Fourier Transform. For example the Fourier
Transform of m(t) is M( M).
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= G(w)M (W)e j t dw (1.9)
.

If the direction of propagation is the z direction and fl(t) and gl(t)

are injected at z -6 and z = L + 6 respectively, where 6 and 6

ff g

are the distances between each transducer and its nearest semiconductoc

edge and L is the length of the semiconductor, then

1( t )  , -of 

and

gl(t) -gl(t,z =L + 6g)(.1

If the intrinsic loss of the piezoelectric delay line (loss in

the absence of any close-proximity perturbing medium such as the semi-

conductor) is given by a 0 , then f 1 (t) and g1 (t) will decay by af and ag,

respectively, after propagating to their nearest semiconductor edges

where

eo 6 f (1.12)

and

a e-%6 (1.13)

and diffraction effects are ignored (perfectly parallel wave fronts

assumed). The signals at the semiconductor edges can be written as

f2(t,z = 0) = af F(w)Mf(w)e - k 6 f e j t dw (1.14)

and

9(t,z L) = a LC G(W)M ( W) e - j k °  e j Ut dw (1.15)

where

ko  W/V (1.16)
0
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and

v = free surface (intrinsic) SAW velocity

If x is th, direction parallel to the wave fronts, diffraction effects

could have been included by utilizing weighting functions at z = 0 and

z = L that are functions of both x and W0. Since surface waves beneath

the semiconductor tend to remain collimated by the waveguiding properties

of the semiconductor/ground plane combination and even the semiconductor

support rails (if they are used), all spatial variations will typically

be slowly varying functions of space in comparison to the spatial wave-

length of the signal. These spatial variations due to waveguide moding

and diffraction will therefore be included in the spatial functions

S f(x,z,w) and S (x,z,w) for f(t) and g(t), respectively. In other words,

if it is assumed that the spatial dependences of any CW component of the

signals f(t) or g(t) at frequency w in the x and z directions is forced

to be constant for that component by the waveguiding action of the semi-

conductor piezoelectric convolver structure (which forces the component

to propagate in a well defined mode that may or may not be a function of

frequency), then each component of the signal can be multiplied by a

constant spatial function in x and z for that particular frequency where

any spatial variation will be assumed slow compared to the spatial fre-

quency of that component beneath the semiconductor.

Beneath the semiconductor, besides being weighted by the

spatial functions S (x,z,w) and S (x,z,uw), the surface wave components
f 9

at any point have undergone attenuation,from the time they have entered

beneath the semiconductor, that is frequency dependent due to the presence

of the semiconductor. This attenuation factor is given by the s 4 of the
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intrinsic piezoelectric attenuation and a frequency dependent term, namely

--(w) - 0 + cl(W) (1.17)

Furthermore, any component at any point z beneath the semiconductor is

delayed by an amount 6 f/v0 + z/v(w) for f(t) and 6g /v + (L-z)/v(w) for

g(t) where v(w) is the velocity of that component which is also frequency

dependent due to the presence of the semiconductor.

Incorporating this information, the signals seen at any point z

beneath the semiconductor can be written as

f3(xzt)= af f F()M f)s f(x,zw)e - k ° (6 f+Z) e - ()z e dw

and

g 3 (x,z,t) = ag fCO G(w)M C)s (X,Z,)e -J ko(6g+L
-z )

e- j s ('W )(L- z ) e j  dw (1.19)

where

B(w) = k (W) - ja(W) (1.20)

k(w) = k + k (W)
0 1

= W/v(W) (1.21)

and

v(o) = v° - v1(W) (1.22)

since the piezoelectrically 'stiffened' surface wave velocity is decreased

due to the presence of the semiconductor representing an increase in the

spatial frequency k(w). Note that

1 (w) vl(w) v () (1.23)

ko  V -V () v i

so that the ratio of the change in spatial frequency to the intrinsic value
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is approximately given by the ratio of the chanic in velocity to the

intrinsic velocity at any frequency W since the change in velocity is

typically quite small. The signal equations given by Eqs. (1.18)and (1.19)

represent the signal seen at any point (x,z) beneath the semiconductor at

the surface of the piezoelectric delay line as a function of time and

written in component form. Although to this point these signals could

have been representative of any mechanical or electrical component of the

surface waves, it. will now be assumed that they represent the electric

potential $ of the waves. The electric field and the charge density

deviation inside the semiconductor can both be found from the potential

functions for both signals.

The decay of the potential of a surface wave away from the

surface of the piezoelectric delay line, which will be considered as the

positive y direction, in the absence of the semiconductor, is purely

exponential having a decay constant proportional to the spatial wavelength

of the wave. The introduction of the semiconductor at a small distance h

above the delay line surface (at y = 0) greatly perturbs this behavior so

that the actual behavior inside the semiconductor (of width d) is much

more complicated. Typically the solution for the variation of the potential

in the y direction away from the delay line surface and inside the semi-

conductor consists of a summatio of complex terms. In other words, a

component of the potential at the surface of the delay line having fre-

quency W and magnitudes and phases given in Eqs. (1.18) and k'.19) will

appear,at any point (x,y,z) inside the semiconductor, to consist of a

summation of components whose amplitudes decay independently into the

semiconductor (or the y direction) and, furthermore, some of these compon-



19

ents take on the characteristics of potential waves propagating into the

semiconductor. When solved in detail, there are typically four components

that are the solutions of a fourth order differential equation. Therefore,

this type of variation can be included in the equations for the potential

by utilizing the complex function D(y,w) that is typically a summation of

four complex components. Not all of the four components are necessarily

complex. Those components that are complex represent potential waves

independently decaying and propagating into the semiconductor at the point

(x,z). Ieal components represent time varying; replicas of each signal

component at the point (x,z) that simply decay independently into the

semiconductor and do not appear to propagate at this point. In the absence

of the semiconductor there is only one real component so that, along any

line in the y direction,the potential simply decays exponentially and varies

temporally with the signal. When written in component form,the potential at

any point inside the semiconductor,for the two signals,would be of the form

f(xy,z,t)= af f F(w)M (w)Sf(xzW)D(yw)e - ° ( f )

4 0 f f~ t

e - j a ( W) z e j e t da(1wh

and

g4(1'yz't a= f 0 G(w)M (w)Sg(X,Z,W)D( y,W)e-Jk°(6g9
+ L - z )

g4 (x,y,z,t) =ag _ g~wM(~

• - j ( W) ( L - z ) ejWt dw (1.25)

where the summation is over the N components of the y variation and

N
D(y,w) = D (y, )

n n

N eJarg(Dn(Y, ) )
E I n(y,W)e (1.26)
n
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In actuilitj the functicn D(y,w) is an extremely weak finction of the

spatial directions x and z. The differential equation describing the

potential interaction of which D(y,w) is the solution includes the spatial

variations along these directions. However, due to the fact that the x

and z direction variations are much slower than the spatial variations of

the surface wave, where k(w) is the spatial frequency of the component of

frequency w, these variations can be neglected, as is typically done in

practice, with very little error.

This discussion assumes idealized uniformity along the length

of the device. If the device were not only perfectly uniform but sym-

metric with respect to the center of the slice of semiconductor, both

surface waves, from their points of injection, would undergo the same

amount of diffraction before reaching their closest semiconductor edges.

Furthermore, since both waves would essentially 'see' the same structure,

then the same restrictions would be imposed upon them by the waveguiding

action of the device. Under these conditions, therefore, it can be

expected that S f(x,z,w) and S (x,z,w) would be space inverted images of

one another, i.e.

Sf(x,z,w) = S (-xL-zw) (1.27)

where the width of the semiconductor extends from x = -a to x = a. Smoothly

varying device non-uniformities can be included in these terms without

forcing D(y,w) into becoming a function of the x and z spatial variables,

if these non-uniformities are not due to appreciable changes in semiconduc-

tor to piezoelectric air gap, materic], dimensions or other material charac-

teristics. What is constituted as an appreciable change is dependent on
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how great a change influences the parameters of the differential equation

for the y -ariation of pot-ntia?. If sore 3uch non-uriformities are in-

cluded in these terms, then Eq. (1.27) would not in general hold. In

particular for this discussion, it is being assumed that 6f # 6 so that

the x variation of a component at one semiconductor edge, injected from that

end,would be different from the x variation of the same component along the

other edge,if injected from this other end, since the wave will undergo a

differing amount of diffraction in the two cases. Therefore, Sf(x,z,w) and

Sg(X,Zw) will be assumed independent of one another for the remainder of

this discussion.

Equations (1.24) and (1.25) for the potential of any point inside

the semiconductor can be rewritten as

f4 (x,y,z,t) = f(t 6 ) fxyzt) (1.28)
v v 0  D

and

L94(x,ylzlt) -g(t + (1.29)t - -v - -) * gD(x ' y ' z ' t) (1.29)

where

f(t - - (w)eJko(6f+z (1.30)

v0 v0

0 0 0

f D (x,Y, z ,t) --- - af Mf W0S f (x, z, )D(y,w)e-j a(W )z

= FD(x,Y,z,W) (1.32)

I
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and

D(Xyszt) a M a(W)SMg (w)S ,, )D(yw)e-ja (L-z)

- G(Dx,y,zw) (1.33)

Equations (1.29) and (1.30) state that the potentials at any

point (x,y,z) inside the semiconductor are given by the time convolution

of surface waves derived from the original undistorted input signals with

time signals that are functions of position inside the semiconductor.

Essentially fD(x,y,z,t) and g%(x,y,zt) can be considered as distortion

terms. The functions f(t), g(t), fD(xy,q,t) and FD(x,y,z,t) are band

limited functions with a finite bandwidth around the center frequencies

l and 2" Within these bandwidths the distortion functions and their

Fourier transforms can be expanded into a series of progressively de-

creasing terms which facilitate numerical cumputat i0n (Arieiu It, 19'T')).

The potentials produce time and space varying fields and charge

densities. The electric field at every point in conjunction with the charge

density produces a current density at that point. This current density in

turn produces a potential through the average resistivity of the semiconductor.

Since only the potential in the y direction is utilized for the convolver out-

put, then only the currents propagating in this direction are of any interest.

The current at any point (x,z) produces a potential across the semiconductor

at this point by propagating in the y direction through the distributed

resistance resulting from the unperturbed resistivity of the semiconductor
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at this point. In general this resistivity is a function of the y spatial

variable due to surface depletion, accumulation and inversion. The time

varying resistivity due to the time varying charge density produced by the

two surface waves merely represents a perturbation to the semiconductor

resistivity so that the convolver output across this semiconductor can be

assumed entirely due to charge propagation through the unperturbed resistivity.

The y component of the current density is produced by the product of the y

component of electric field and the charge density at every point (x,y,z).

Since there are two y components of electric field present; namely, one due

to the input signal, f(t), and the other due to the other input signal, g(t),

and since, in addition to the average (unperturbed) charge density at every

point in the semiconductor, these signals, as surface waves, also produce

time varying components of charge density, then there is in actuality a sum

of current density components at every point. Although every one of these

y components of current density will produce a potential across the semi-

conductor, it is only the nnn-linear comp-onents due to the cross produots

of the electric fields and charge densities of the two propagating surface

waves that will produce an output proportional to the convolution of these

two signals. The interactions of the electric field of a propagating surface

wave with its own induced time varying charge density and with the unperturbed

semiconductor charge density (represented as a very large constant value) do

not result in potential distributions with zero spatial frequencies as do the

Iinteractions between the fields and charge densities of the two surface waves

due to the contrapropagation of these two waves. In this manner the convolu-

tion output is due entirely to the cross interactions that don't integrate to

zero. Finally, it must also be noted that, due to surface effects on heavily
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accumulated semiconductors, the mobility, Ii, required in the calculations

of current density, will also be a function of y. The mobility can change

by a factor of two from the surface to the bulk of heavily accumulated

silicon. This has been verified by acousto-electric current interactions

with the silicon surface under heavy accumulation (Cafarella, et al, 1972).

Since the surface waves propagate typically five orders of magni-

tude slower than electromagnetic waves in air, the electrostatic approxima-

tion, by which the field components are the negative qradients of the potential

in their respective directions, can be utilized in order to obtain the

y-components of electric field for the two signals inside the semiconductor.

These components are given by
(J .34)

Efy(X,y,z,t) = - y f4 (x,y,z,t)

and

Egy(X,y,z,t) = - ay g4(xyz 't) ('.35)

The charge density variations at every point inside the semiconductor can

be found using Poisson's equation which states that the charge deviation

is proportional to the negative Laplacian of the potential. From this the

charge density variations due to the two surface waves are given by

pf(x,y,z,t) = - Cs V
2 f 4 (x,y,z,t) (1.36)

and

P (xyzt) = - £ V2 g4 (xyzt) (1.37)

wnere £ is the semiconductor permittivity.
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The non-linear current density component in the y direction is F,
therefore given at any point in the semiconductor by

~Jny(Xy,z ,t) =qlj(y)pf(xIySz ,t )Ey(X~y9z~t )
fly fgy

+ qja(y)p (xy,z ,t)Ey(x,y,z,t) V

= Jfg (X,y,z,t) + Jf(x,y,z,t) (U.38)

The potential across the semiconductor at every point (x,z) is obtained by

dividing Eq. (1.160) by the conductivity of the semiconductor (assumed to

vary only with y) and integrating along its width in the y direction. This

potential, Vo(x,z,t), is given by

d J (x'yszqt)

Vh(xzt) f (y) dy (1.39)
h ay

The total potential at the back ohmic contact of the semiconductor

(at y=d) is the average of the potentials at every point (x,z). This poten-

tial, Vl(t), is given by

L La(tL (x,z,t)dxdz.- (1.4o)
vl~t  = 2-- o -a o

This equation represents the final output of the convolver if a purely

resistive load is connected to the back contact of the semiconductor. If

an output matching network is utilized, the output must be convolved with

the impulse response of this network. Since very little distortion is

expected from this output matching network, its transfer function can also

be assumed to be slowly varying over the signal bandwidth and therefore

this convolution can also be written as a finite number of terms of a

moment expansion. It is the output at the back contact of the semiconductor

..
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however, that most clearly characterizes the convolver and the matching

network can simply be regarded as another device of a string of device

following the convolver.

For a well made convolver only a few terms in sines expansion h
are required to accurately describe the output. In particular, the

fundamental component is given by

V t-tf1
V(t) tf f(T)g(2(t - 4T + t + tf)) - T)Bl(v (t-T) - )dT2aL t-T-tf 2 g f 0

(1.41)

where the substitution T - t - (z+6f)/v has been made and

T = L/v0  (1.42)

tf= 6/V (1.43)f0

tg = 6 /v (1-4)
g go

and Bl(z) is a function representing the distortion due to different

mechanisms discussed earlier.* In general this term will be a constant

for a well made convolver.

Other terms arise due to the non-linear interaction of the sur-

face waves with themselves, the average charge density of the semiconductor

at every point and applied or internal fields arising due to trapped charges.

The resulting current densities are proportional to

Jsf(X,yz,t) = Qp(y)pf(x,y,z,t)Efy(x,y,z,t) (1.45)

J (x,y,z,t) = qu(y)p (X,y,z,t)E (X,y,z,t) (1.46)
ag g gy

Jf (x,y,z.t) = q(y)no(y)E X (1i .47 )

* For an actual expression for Bl(z) and its derivation see (Arsenault, 1979).
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JgDc (x,y,z,t) = qU(y)no(Y)Egy(XSy,zt) (1.48)

J (x,y z,t) = qj(y)pf(x,y,z~t)E(x,y~z) (i. 9)
eff

J eg(x,y,zt) qij(y)p (X,y,z,t)E(x,y,z) (1.50)

where n0 (y) is the average charge density of the semiconductor and E(x,y,z)

is an internal electric field due to outside application or some trapped

charge configuration. Note that p(y) and no(Y) may also be functions of x

and z, especially when semiconductor edge effects are under consideration.

The output potential due to the above-mentioned terms will in general be

negligible for a useful convolver.

The foregoing analysis essentially produces a relationship for the

non-linear output potential of the convolver in terms of functions that in-

dividually describe specific aspects of device behavior. This analysis was

based upon treating the input signals to the convolver in terms of their

Fourier transforms and treating each component as an independent signal

having an infinite duration and a spectific value of zagnitude 'and phase.

The output was then obtained by utilizing an expansion that will converge

rapidly for small device distortions, which is equivalent to the require-

ment that the response of the device for two different Fourier components

be approximately the same. For a well made device this is essentially the

case.
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2.2 The Convolver and the Ambiguity Function

Ignoring initial delays and assuming that the entire overlap

of f(t) and g(t) occurs beneath the interaction region of the convolver,

then its output can be written as

convolver output - K / f(t - Z)g(t + Z)dz
v V

nK f(T)g(2t - T)dT (2.1)

where K is simply some constant arising by assuming that the response is

independent of frequency. This is valid if the convolver efficiency

deviates very little over the passband of the device. Note that no

carriers were used for the input signals. In reality, however, the two

signals must be carrier modulated and the two carrier frequencies do not

have to be the same (degenerate operation) although their bandwidths

about these carrier frequencies must pass through the bandpass region of

the convolver. In particular, the two input signals will be given by

f(t) = f (t)coswl t  (2.2)0 1t

g(t) = go(t)cosW2 t (2.3)

These signals can be directly substituted into Eq. (2.1) whereby the

output is given by

output 2 f 0 (2t-r)cosw1 Tcosw2 (2t-T)d

= e1 2w2t _ f (T)g (2t--)ej(l-w2)T dT + c.c.

1 . j 2 w 2 t D T + .C( 2 )+ e w _ f (T)g (2t-T)e 3 (wl+2)" dT + c.c. (2.)
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where all multiplicative constants have been ignored. If WI and w are

large and almost equal, the integrals will be dominated by the variations

imposed by their sup and difference, since f0 (t) and g0(t) are typically

slowly varying functions. Since the variations in the second set of

integrals, under these conditions, are of much higher frequency than the

variations in the first set of integrals, they will essentially integrate

to a much smaller value over the entire interaction of f (t) and go(t).

Therefore, only the first set of integrals need be retained. For

go(t)'= f *(-t) Eq. (2.4) becomes

output = 1 ej '2 ( 2 t X(2t, ) + c.c.

= R0 (2tt)cos2w2t - X0(2t,)sin2w 2t (2.5)

where

X(2,f) = f (T)fo * (-2t)e-j2n$4 dT

- autoambiE.ity function

= Ro(2t,O) + JXo(2t,O) (2.6)

R (2t,4) = _ fo(T)f (T-2t)cos2iTO dT (2.7)

X o(t,¢) - f 0 (T)fo (T-2t)sin2noT dT (2.8)

= (W2-W1 )/27r (2.9)

and fo(t) = fo (t) for a real input signal. Eq. (2 .6) represents the

complex ambiguity function obtained when the signal f (t)exp(jw 1t) is

passed through a matched filter having impulse response f0 (-t)exp(jw 2t)
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where i is different from w2 if the signal has been Doppler shifted.

This assumes that a Doppler shift only effects the carrier, which is a

good approximation in practice. In actuality a signal reflected from a

moving target is expanded or compressed dependent on the velocity and

acceleration of the target. This expansion or compression is the cause

of the carrier frequency change. For arbitrary target motion the V

reflected signal for a transmitted signal f0 (t) is of the form f0 (t-D(t)),

where D(t) is a time dependent delay. Although the time envelope of a

radar signal is usually affected by the Doppler shift, it is small in

comparison to the change in the output of a matched filter due to a small

carrier frequency change. The ambiguity function is determined solely by

the transmitted signal and the receiving filter characteristics (f(t) and

g(t)) and answers questions about resolution, ambiguities, measurement

precision, and clutter rejection obtainable using this signal and filter.

Eq. (2.5) can also be written as

oupt H2 2~~ ~ 1
output = (Ro2 (2t,O) + Xo2 (2t,O))7 cos(2 2 t-

tan- (Xo0 (2t, )/R o(L't ,W)) (2.10)

This equation shows that the envelope at the output of the convolver is

the magnitude of the ambiguity function. The phase of this function is

locked up into the phase of the carrier. Envelope detection of this

signal for a specific 0 will give the magnitude of a single slice of this

inherently two-dimensional function along its time axis. The convolver

forces a time compression factor of two onto this function although the

frequency axis is unaffected (i.e. 0 is directly proportional to the

difference w2- i).
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For a real time function (i.e. an rf pulse)

f0 (t) (t) (2.11)

so that

eJ2w2t x(2t, ) = ej2° 2t f fo(T)fo(T-2t)e-J2 nT' dT

= e j 2wIt  f f(T)fo(T-2t)e-12TTO(T-2t) dT

= eJ it f f (T)f (T+2t)e -j 2 "OT dT
-~0 0

= e j a I t x(-2t,O) (2.12)

In general, however,

f(t) = f0(t)cos(w1t + l(t))

P1(t)cos,.It - ql(t)sinwlt (2.13)

Likewise,

g(t) = go(t)ccs(w2t + T 2 (t))

= P 2(t )cosW2t - q2 (t)sinW 2t (2.1 4)

The output of the convolver for these inputs is given by

output - e j2 2t _ f (T)g (2t-T)e-J2OT dT + c.c. (2.15)

where

f c ( ) = p1 (T) + jql(T) (2. .6)

gc(T) = P2 (-r) + Jq2(T) (2.17)

For the matched filter

g(t) a f(-t) (2.1)
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or
gc(t) = fc(-t) 

(2.1)

In this case the output becomes

o e22 t- T
output -e 2 w fc(T)fc (T-2)e dT + c.c.

= e J2 w2t X(2tA) + c.c. (2.$2-)

The shape of the ambiguity function for a typical radar signal

gives an indication of how well the signal can resolve the distance and

velocity of a moving target. Typically the time (or distance) resolution

is inversely proportional to the signal bandwidth whereas the Doppler

(or velocity) resolution is inversely proportional to the signal duration.

The origin of an ambiguity function is always the largest point of the

function and the width of this peak along the time axis defines the time

resolution and along the frequency axis the frequency or Doppler resolu-

tion.

The output of the convolver can also be written in terms of

the so-called symmetrical ambiguity function given by

e(2t,O) = e - j 2w$ t x(2t, ) (2.21)

so that the output becomes

output u e(w l - w2 )t 0(2t,O) + c.c.

= Rl1(2t,O)cos(( 1+ 2)t M xl1(2t,O)sin((l+ 2)t)

2 2
= (R1 (2t,$) + X1 (2t,4))7 cos((w1 +W2 )t

- tan-(X1 (2t,4)/R 1 (2t, ))) (2.2)
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'here

e(2t,¢) = RI(2t,) + jX, (2t,O)

f . () f*( - 2 t)e - j 2 Tr(T+t) dT (2.23)

Rl(2t,0) - f(t)fo (T-2t)cos(2-ff(T+t))dT

• ae(2t, ) + eo(2t, ) (2. ).)
eo

X(2t, )-- - f fo(T)f0*(T-2t)sin(27Tt(T+t))dT

S- J{Eeo (2to) + oe(2t,O)) (2.25)

(cross-ambiguity functions)

f(t) = e(t) + o(t) (2.26)

e(t) = (f(t) + f(-t))/2 (2.27)

o(t) = (f(t) - f(-t))/2 (2.28)

e(2tO) = ' e(T)e*(T-2t)e - j 2 (T+t) dT (2.29)

eo(2t,O) = o(T)o*(T-2t)e - j2T ( T +t) dT (2.:)

eo(2tO) = e(T)o*(T- 2 t)e - j 2 (T+t) dT (2. i)

eo(2t,O) = (T~m-2t)ea - j 2 70 ( T + t ) dT 2

Note that for 2t=O (along the frequency axis)

X(O,0) = f !f (-t)1 2  e - j 2 7 '4T dT (2. <)

or the ambiguity function along the frequency axis is the Fourier trans-

form of the squred magnitude of f0(t). For O

X(2t,O ) - f c fo(T)fo*(T_2t)dT (2. )

so that the ambiguity function along the time axis is simply the auto-

correlation of f (t).
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From the above relationships it can be seen that the ambiguity

functions obtained using a convolver will have symmetric magnitudes on

any line drawn through the origin. Before describing the technique by

which three-dimensional displays (time and frequency versus magnitude) of

the ambiguity function for a particular radar signal can be obtained

using SAW convolvers as the main element, it would be worthwhile to

present a few of the major properties of this function and to document

the signals and their ambiguity functions that have been utilized in

the experimental work.

The time and frequency scaling relationships are given by

f~t. A 1 4'-Te 2t 2.5

f(at)a A 1-0e (2at,!L) (2.35)lal f

A 1
f(at). ---T- Xf(2att) (2.36)

for

f~t -- m- ( )(2.39)

and
Sef(2t,4) or Xf(2t,4) (2.L0)

f(t) or F(2).---)

The ambiguity function of a sum of two functions is given by the sum of

the two ambiguity functions and their cross ambiguity functions, namely

f (t) F (L) (f(,9)
f W f((.t~o)
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A

f(t) + g(t 0 f (2t,o) + 0g (2t,o) + of0(t,4) + gf(t,) (2.g(-c)

Also

A
ff(t)g(t f (2t ,f)0 (2t,4-f)df (2.2)

for the product of the signals and

A GF(W)G(W).[---A- 2 0 f(2T,O)) g(2-2T, ldt (2.,' 3)
2 f 9

for the convolution of two signals which is equivalent to the product of

their transforms. Finally, if a function is given a quadratic phase,

then

A f +f (t2 (2. X)

or the ambiguity function of f(t) (autoambiguity function) is tilted

(the 0 axis slice remains stationary) or angled with respect to the 0

axis with slope 2B/iT. This last property can be demonstrated by comparing

the a.biguity function of eL squa!:-e pulse and a finite chirp (see the

experimental section). Other properties,of which there are quite a few,

can be found in the references (Skolhik, 1970) where the compression

factor of two is not used since ideal convolution is assumed.

The autoambiguity function for the rectangular pulse given

by (f(t) = fo(t)coswlt)

= 0 W -- rect (1) = l/fa Itj/-t) va a 2

M 0 elsewhere (2.Y1 )

is
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x(2t,.) rect (I) 2rt sinnOa~ l (2 12t6)
0ia(,a - 12t

where
-1 -

X(2t.O) -n~J1ot)2 cF {lF(w) 12}

rect (t) (a" 12t1 (2.47)

sin a- W

aifo( t ) ) a a F(W) (2.49)

From Eqs. (2.20) and (2.57), if 'l(t) =Bt2 or

f(t)= f0 (t)cos(w1t + at 2 ) (250)

then

fc(t) = f(t)cosat 2 + jf0(t)sin~t
2

=f (t)ej  2  (2.51)

and the autoambiguity function for this chirp is given by

x(2t,O) rect (-) eJ2rt (a )- 2tj)eJ40t2

a a

sinw(-B-+ 0)(a - 12t)
(28t (2. '5?)

.T(LF + )(a - 12tI1)

where

4 '4
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t (a 12tI) sin2St(a - 12tj) ej4St2
X(2tO) rect a 2Bt(a - 12ti) (2.5;)

X(O sinTTa (2.5k)

For this ambiguity function there is a so-called 'knife edge' along the

line defined by

2Bt/v + 0 = 0 (2.55)

Along this line the ambiguity functiorn is given by

Ix(2ti)l rect (I-) (a- 12tl) (2.56)

The rectangular pulse (linear FM) V-chirp given by

1 it_ (t + i e_2

fc (t) - J rect ( + i) e 2

t a)2

+ rect ( Iei B(t -) (2.57)

has an autoambiguity function given by

X(2t,) = ej27rt e J a e(-2t,O) + -j ¢ra e(2t, )

+ e(2t¢,) + e(2t'-*) J (2.58)

where

9(2tM,) = e - j 2  t ) (2.50)

X0 (2t,O) - Eq. (2.65)
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1 i t"i e-8 (a-2t)2
-0 e (2t ,m - L/- rect(1, 1) e-o 2

a (7ro)2*
e 2 8 z(-) - z(x 2) (2.60)

z(x) = rj're' 2 /2 dy (2.61)

X% - 2t /7+4iW I o_2t a (2.62)
X2 a - 2t , 8/i +

X,-(2a - 2t) +8w Oyfi7~
.. .a 2t 2a, (2.63)

X2 = (2 - 2a) + 0 77

The study of the ambiguity function is a subject in itself and

nothing further %Jill be said about it except for the analysis of the

technique utilized to generate these functions in the laboratory three

dimensionally (appearance wise) on an oscilloscope using SAW convolvers.

Generation of an ambiguity function for a particular signal

(so that the frequency-time function can be displayed versus magnitude)

simply requires tracing the output of a filter matched to the signal at

successively higher points on an oscilloscope for every frequency shift

of the signal carrier. For the general function given by Eq. (2.13),

the signal applied to one of the convolver inputs would be

input 1 - f (-t)cos(wit - Yl(-t))

a P r(-t)coswlt + qre(-t)sin pst (2.oedm

This input signal represents the Impulse response of the required match
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filter and after application of this signal to the SAW convolver the

device output is essentially a compressed version of what would have

been obtained from the matched filter where for this situation the input

signal is applied to the input not utilized by the reference signal of

Eq. (2.64). Although once Eq. (2.64) is applied to one of the convolver

inputs, the impulse response of the convolver with respect to the other id

input is a compressed version of Eq. (2.64), this is only true over a

finite length of time and during this time the effective impulse response

has a finite initial delay that is not constant but a linear function of

the time of application of the impulse (see Section 2.5) used to generate

the impulse response. Essentially this is related to the factor of two

compression which evolves due to the fact that the device impulse response,

which can be represented by either one of the convolver's two input

signals, propagates within the device in the same manner that the device

input, represented by the remaining input, also propagates.

To generate the ambiguity funiction of the sigaial giveu by

Eq. (2.13), this signal's carrier frequency must be varied linearly from

one scope trace to the next. Furthermore, each trace must be displayed

a predetermined distance above the last. Both these requirements can be

met by utilizing a slowly varying ramp. This ramp is summed to the output

of the convolver thereby displaying every trace above the last. It is

also applied to a voltage controlled oscillator whose output is mixed with

the signal. By choosing the initial carrier frequency of the signal

(before mixing) properly so that after mixing with the 'slow chirp' the

sum and difference spectrums and any strong harmonics do not interfere

with one another, the sum term of the mixing process can be filtered from
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the rest and made to vary about the non-Doppler shifted frequency 01.

Usually the natural bandpass characteristics of the convolver input

transducers is sufficient for this filtering process. 'Slow' is defined

in such a manner such that the variation of the frequency of the 'slow

chirp' is small over the time period of a single correlation. The

frequency varying signal is given by (input 2)

input 2 - fo(t)cos((w 3+w(t))t + IY1(t)) (2.65)

and the continuous series of slow ramps can be written as

2w Di
v(t) - - (t-nTsR - (2.66)

SR S E L SR) y

where W(t) is the output of the VCO given by

W(t) - yv(t) + W (2.67)0

1 W 3 (2.68)

.30 that

W(t) = W_- 3 for v(t) = 0

wD = y((v(t))max = yv((n+l)TSR) (2.69)

In these equations WD represents the maximum plus or minus frequency

deviation about w = y -it y is the change in output frequency for a

change in input voltage or the slope of the VCO and TSR is the periodic-

ity or time duration of every 'slow ramp'. If the oscilloscope is set

up so that the trace for v(t) . -(v(t))max = v(nTSR) = -D/y is displayed

at the bottom of the screen and the trace for v(t) (v(t))a

v((n~l)TSR) -D/y is displayed at the top of the screen by displaying

-- - .... , e ... , h • ,



the convolver output plus v(t), then with wo given by Eq. (2.68) and the

output correlations triggered so that they are centered on the screen,

the very center of the display will be the origin of the ambiguity function

and the top and bottom of the display will represent the 0 - WD/2r and

= -(D/2ff slices, respectively, of the ambiguity function.

With the maximum finite duration of the correlation given by

T and the period between successive correlations given by Ts, it is

important that

T <<< TSR (2.Y0)

so that the variation of the carrier over a single correlation given by

2%
W T rad/sec (2.71)

£ SR

is small enough to be ignored. Also

T << T (2.7?)s SR

so that there are enough traces on the oscilloEcope so as to give the

output an appearance of continuity. The number of scans per frame will

be given by TsR/Ts. TSR should, however, be small enough so that

flickering of the output display is not observed. This usually requires

th
TSR to be less than about 1160 of a second. The change in carrier

frequency between scans will be

W 0 TSR T rad/sec (2.Ys)
s TSR

This is equal to w if T = Ts which is much too high a repetition rate

since there will be cross correlation between preceeding and succeeding

inputs and therefore is never used. Usually T can be made much smaller



than Ts (or Ts made much larger than T since T is usually set by the

convolver interaction time) with still enough traces to give the appear-

ance of a continuous display. In some cases, however, where there may

be ambiguity functions having extremely fast Doppler variations (i.e. the

autoambiguity of high TB chirps and V-chirps), it may be desirable to

make Ts as close as possible to T in order to obtain a continuous looking

display. In such cases it may be necessary to 'home into' the rapidly

varying portion of' the ambiguity function by decreasing the slope of the

slow ramp. This has the effect of expanding the ambiguity function

(along the frequency axis) since the oscilloscope display must be ex-

panded after this procedure to again fill up the entire screen with the

same number of traces which doesn't change by a change in ramp slope.

If the ramp is summed to the convolver output by applying these two

signals to the two channels of the oscilloscope and utilizing the scopes

sum channel A to channel B feature, then the ambiguity function is ex-

panded along the frequency axis by changing the magnitude display of the

ramp channel, it is expanded along the time scale by changing the time

per division setting and its magnitude is adjusted by changing the mag-

nitude display of the convolver output channel. The number of scans per

Doppler frequency shift can only be changed by changing the slope of the

ramp or the correlation repetition frequency (assuming the ramp duration

is kept constant to about 1 160th of a second). Of course the display can

be expanded so that part of the function is off screen; however, this is

only a waste and in this case the spacing between scans will increase.

By utilizing this technique the scope need only be triggered for every

correlation since every frame is automatically reset by the slow ramp.
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Because of this, even though the ambiguity function itself Vill always

remain stationary, the individual scans will tend to roll across the

screen. When the scan density is high enough this roll presents no

problem; however, for low scan line densities it may be desirable to

trigger the slow ramp generator by every Nt h correlation trigger where

N = T SR/T s is the total number of scan lines per frame. A technique

such as this would lock the individual scans in place on the screen.

An actual system with experimental outputs is described in the experi-

mental section of this report..

4-

A



2.3 Signal Processing with the Memory Correlator

The essential mechanism in a SAW convolver is a second order

output voltage that can essentially be visualized and modeled as a mechan-

ism that squares the total sum of all the electric fields present beneath

the interaction region of the device (defined by the slice of semiconducting

material) and integrates the result over the length of this region. This is

valid since the resulting non-linearity is due to the interaction of the

time and spatially varying fields with the time and spatially varying

carrier densities of any signal that may be present. This interaction

between fields and carriers produces time and spatial variating current

densities that are linearly proportional to voltages which become averaged

out over the surface of the semiconductor. This seccnd order interaction

is small, being derived from the interaction of- electric fields propagating

with surface waves, where the electrical energy is negligible with respect

to the mechanical energy of the wave, and charge carriers in the semicon-

ductor where the charge carrier variation is so small for practical power

densities that it is usually treated as a perturbation of the semiconductor

carrier density. Even though the result of this interaction is fairly

small, the output is usually obtained for timelimited signals whose time

duration can be designed small enough so that the input signal is removed

before the start of the interaction within the convolver and no interfer-

ence is obtained between the output and radiation from the input. Further-

more, the convolution obtained through the interaction of two contra-

propagating surface waves produces a convolution output on a carrier having



a frequency that is the sum of the two input carrier frequencies. In

this case the output can easily be isolated from input radiation by filter-

ing.

In the most general situation, however, there are three mechanisms

for introducing electric fields within the convolver interaction region.

The electric fields can be introduced by propagating surface waves that

carry these fields into this region. This is the usual technique whereby

two contrapropagating signals produce an output signal that is a time com-

pressed version of the convolution of the two signals. Another vay of

introducing fields is by storing a spatially varying charge pattern along

the semiconductor. This is the basic mechanism utilized in the storage

correlator whereby charges are stored in surface states or within diodes

diffused into the semiconductor surface adjacent to the piezoelectric delay

line surface. More will be said about the mechanisms utilized to perform

this charge storage later. The last means of introducing a field is by

applying a time varying potential to the back contact of the semiconductor

which behaves as the integrating ohmic contact on the surface facing away

from the delay line. When a potential is applied to this contact an

essentially uniform field is introduced into the interaction region that

is independent of space so long as the semiconductor, the delay line and

the spacing between the two is uniform. This spatially uniform field can

be varied temporally, whereas the spatially varying field set up by the

stored charge is necessarily time independent and the propagating waves

have fields that are both spatially and temporally changing. These three

forms of electric field cover the possible combinations of time and space

variation and induce charge densities that also follow these variation:-.

A -L



If the distances between the convolver inputs and the interaction

region are ignored, the signal f(t - z/v) is inputted at the z = C end of

the convolver, the signal g(t + z/v - D/v) is inputted at the z = D end,

t(t) is applied to the semiconductor back contact and s(z/v) is stored as a

charge patterm in the semiconductor, the second harmonic output vctage from

the back contact of the semiconductor for these signals, during the time

when both of the propagating signals are beneath the semiconductor, is

proportional to

output = fO (f(t - z/v) + g(t + z/v - D/v) + s(z/v) + t(t)) 2 dz (3.1)

The fact that the two propagating signals are timelimited and completely

beneath the semiconductor allows the limits of this integration to extend

to plus and minus infinity without error during this time period only.

During any other time the limits must be set to 0 and D in place of -

and - respectively. Eq. (3.1) can be divided by 2v (twice the acoustic

velocity) Lnd rewritten as

output = K1t 2(t) + K 2t(t) + K3 + C (t - D/2v) + C2(W + C3 (t D/v)

where

D
K1  D/2v i f dz

2o (3.3)

K- f (f(T) + g(T - D/v) + s(T))dT (34)

00 2 -/)+2 (~3 = f (f2(T) + g (T - D/V) + S (t))dT (3.5)

are consta-nts during this time period,

Ce(t) = f f(T)g(2t - T)dT (3.6)



is the time compressed convolution of f(t) and g(t),

C2 (t) =0 f(t)s(t - )dT (3.7)

is the convolution of f(t) and s(t) and

C3 (t) = _/ g(T)s(r - t)dT (3.8)

is the correlation of g(t) and s(t). To oe more specific, if f(t) exist

from t = 0 to t = tf and g(t) exist from t = 0 to t = t where tf > t ,

then the period of time over which these equations are accurate is given

by

t f < t <_ D/v (3.9)

Over all time

K2 = 1 oD (f (t - v) + g(t + --v -) + s( v ))dz
2 V 0  v v v v

= t

= K (t) t- (f(T) + g(T))dT + fD/v s(T)dT (3.10)
2 t-D/v o

Eq. (3.10) can be rewritten as

K 2 (t) = & {f(T) + g(T)}{U(T - (t - D/v)) - U(T - t))dT

+ fD/v s(T)dT
0

= (f(t) + g(t)) * (U(t) - U(t - T)) + Tt(t) (3.11)

so that this function is simply the convolution of f(t) and g(t) with the

assumed uniform interaction region of the convolver representative of a

square pulse plus T times the average value of s(t) where

T D/v = the interaction time (3.12
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anld

F(t) f s(T)dT = a const.
T o

Since s(z/v) is space limited between z = 0 and z = D, it has been written

as a tL-ie function existing from t = 0 to t = T in these integrals (since

z/v has units of time).

Similarly, Eq. (3.5) can be rewritten as

K3(t) (f2t) + g2 t)) * (Ut) - U(t -T)) + (s(t))2  (3. )
'3 2 g2

where 1 T  21
(t)(t a (T)dT}7 = a const. (3.15)

T o

so that this function is half the convolution of the squares of f(t) and

g(t) with the interaction region plus T/2 times the square of the RMS

value of s(t).

These equations assume uniformity of the air gap between the

scmiconduztor and the delay line along the direction cf propagation z.

If there is some variation in this gap, the signals f(t - z/v) and

g(t + z/v - D/v) will be affected in the sane way since they are both

surface waves. If the gap variation d(z/v) is small, the fields due to

these two waves can be modified by including a linear 1 - ald(z/V) factor

before these terms in the output equation, where aI is some positive con-

stant and a positive d(z/v) represents a wider gap. The time varying

function t(t) sets up a time varying potential across the back contact of

the semiconductor. The field due to this potential is smaller inside the

semiconductor at points with wider gaps so that for small variations this

function can be mcdified by a linear 1 - a2d(z/v) factor where a2 is -m'

.. .. ... ..._ ...
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positive constant different from al. Once a charge pattern has been

stored along the semiconductor, the fields produced inside the semicon-

ductor are also weakly dependent on the gap. The function s(z/v) will be

considered as the charge distribution along the semiconductor and therefore

is independent of gap. As will be seen, when this charge pattern is stored

through the interaction of some functions whose interaction is dependent on

gap, then the stored signal s(z/v) will represent a distorted version of a

signal that has been distorted due to gap variations. Also, once stored

this distorted signal will interact with other signals whose fields will

also vary with gap. For small variations a linear 1 - a3d(z/v) factor for

s(z/v) can be used. The output becomes

output = o-{nl(z/v)(f(t - z/v) + g(t + z/v - D/v))

n2 (z/v)t(t) + n3(z/v)s(z/v)}2 dz (3.16)

where

n1(z/v) = 1 - a1d(z/v) (3.17)

n2(z/v) = 1 - a 2 d(z/v) (3.:8)

and n 3(z/v) - 1 - a 3d(z/v) (3.1o)

for small gap variations. This can be seen if the variation of the fields

of the surface wave with gap is written approximately as a pure exponential

exp(-Bd(z/v)) where B is a constant given by 27 divided by the wavelength

of the surface wave carrier and the bandwidth of the modulation is assumed

to be small (so that this approximation is valid). In this case, for

small variations



e-Bd(z/v) - Bd(z/v) (3.

so that a, = B. If cs and e are the dielectric constants of the semi-

conductor and piezoelectric, respectively, and d , d + d(z/v) and d ares g p

the thicknesses of the semiconductor, gap and piezoelectric, respectively,

then the field inside the semiconductor due to a potential t(t) is given

by

E(z,t) = t(t)/(d + d(z/v) + d /s + d /E )
g s s p p

= a 2t(t)/(i + a2d(z/v))

a2t(t)(l - a2d(z/v)) (3. )

for small d(z/v) and a2 = (d + ds / s + d /E ) In these equations

anything beyond first order in d(z/v) has been ignored. Constant factors

are always assumed to be absorbed into the functions. Finally, the

electric field within the semiconductor due to the charge pattern s(z/v)

is proportional to (for s(z/v) being negative charge)

c d(z/v) + £ d + d

E ( z / v ) = -s ( z / v ) 
P ( d '+ z/ v ) + dg

0 {c d. S+ £ E p(d(z/v) + d 9+ E d }

= s(z/v)(l - a3d(z/v)) (3.

from continuous normal displacement, zero potential and small d(z/v) and

a3  = p /( d + E d + S E d ) - p/(dp + E d ) where c is the per-a sp/ ps s p s pg p p pgo

mittivity of free space. Since in general a1 a 2 # a 3 a single function

cannot be used in equation (3.16) to handle the gap variation with z.

For small gap variations the three different forms of signal behave

approximately linearly with gap, however, with different linear slopeE
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Transverse non-uniformities along the width of the slice of semiconductor

are essentially averaged out at every point z along the propagation path

or equivalently these uniformities contribute to the uniformity defined

at every point z so that for parallel propagating wavefronts the transverse

variations can be absorbed by the longitudinal variation function. The gap

variation will be ignored for the remaining portion of this discussion so

that

n1 (Z/v) = n2 (-z/v) = n3 (z/v) = 1 (3.23)

will be assumed and would actually be one of the goals in the proper design

of a convolver. Minor gap variations can be handled by including the

above linear factors, but large variations require the more precise factors

for which the linear ones are only approximations.

By including carriers on all these signals the traveling waves

become

f(t - z/v) = f (t - z/v)cos(wIt -k~ ,z) (3.2)

g(t + z/v - D/v) = g0 (t + z/v - D/v)cos(w 2t + k2Z - k2 D) (3.25)

where

k., W /v (3. 26()k1 1

and

k2 =W 2/v (3.27)

The time dependent and space dependent terms also become

t(t) = to(t)cos(w3t) (3.26)

and

s(z/v) = So(z/v)cos(k z) (3.,,()



52

where

= W4/v (3.30)

Note that since s(z/v) is always stationary and finite, the integrals

given by Eqs. (3.7 ) and (3.8 ) can always be written with limits of plus

and minus infinity without loss of generality. Infinite limits cannot,

however, be used in Eq. (3.6 ) unless the overlap of the two signals is

totally beneath the semiconductor or equivalently within the interaction

region. By choosing the time durations of f(t) and g(t) (the functions

of time applied to the convolver transducers) properly, this can always

be the case. Even if part of the overlap of the two surface waves extends

outside the interaction region at a certain time and the output is

therefore due to truncated versions of these signals at this point in

time, any output obtained when the overlap is totally beneath the semi-

conductor is valid and can be gated from the invalid output where it must

then be kept in mind that only part of the valid output convolution is

being displayed. During this valid time period the integrals can be

written using infinite limits. Note, however, that even though the output

may represent over a period of time an invalid portion of the convolution,

the output is nonetheless real and can be represented by a convolution

integral having the time varying limits given by Eq. (3.6).

Although Eqs. (3.6 ), (3.7 ) and (3.8 ) can have infinite

limits over all time (if f(t) and g(t) are properly time limited), the

integrals in Eq . (3.10) cannot have infinite limits except

over finite periods of time. Over the time periods when f(t - z/v) and

g(t + z/v - D/v) have individually passed completely into the interaction
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region beneath the semiconductor, their respective integrals can be

written using infinite limits and are therefore constants. While these

signals are entering and leaving this area, however, the integrals are

functions of time. This is obvious from the forms given in Eqs. (3.11)

and (3.14).

Substituting Eqs. (3.24) and 3.25) into Eq. (3.6) gives

(assuming infinite limits can be used)

c (t) f (T) o(2t - T)cos( ,T)cos(W 2 (2 - T)dT K

-&2,)c 2t 021 2

2 A,(2tO)Cos (2wt) -2 A (2tO)sin(2w 2t) (3.3)

whereo

A(2tO f (T)go(2t - T)e-j dT

Sy(2t, ) + JAI(2t,,) (3.32) A

is the cross ambiguity function of f(t) and g(t) (see section 2.2 concern-

ing the ambiguity function) which becomes the X(2t,4) function in

section 2.2if g(t) = f*(-t) and also

A ( ,$) -- _~f fO(T)g(2t-T)cos(2nrT)dT (3.33)

and A
Al(2tO) = - / tO(T)go(2t-T)sn(2n4OT)d" (3.31)

are the real and imaginary parts of A(2t,o) where = (W2 - i)/2. The

second set of integrals in Eq. (3.31) will be very much smaller than the

first for Wi and W2 large and approximately equal, which represents the

usual case. For =2 (the degenerate case) this output becomes

C(t) = . cos(2wt) f fo(T)go(2-T)dT (So rq)

2_ o4 3
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which is simply the time compressed convolution of the signal modulations

fo(t) and go(t) with a cos(2w2t) carrier.

Substituting Eqs. (3.2A) and (3.29) in Eq. (3.7) results in

C2 (t) = 0f)S(t-T)COS(WI)cos(W4(t-T))dT

T ARl(tl)cos4t - An(t, 1)sin 4t (3.

where

= ARI(t,0I) + JAll(t'ol) (3. Vil i

is the cross-ambiguity function of f(t) and s(t)

A (t.0 fo fo(T)So(t-T)COS(2TlT)dT (3.38)

Al(t,¢ = f fo(T)So0(t-T)sin(2#$iT)dT (3.39)

and

= i (3.140)

In these equations the limits have been automatically set to plus and minus

infinity since s(t) is necessarily finite and equal in length to, at most,

T seconds. For the degenerate case, wl 
= w4, so that

C2(t) = 1 cos(w4t) &f (t)s(tt)dt (31)

is the convolution of f (t) and s (t) with a carrier of frequency W4.

Finally, substitution of Eqs. (3.25) and (3.20) into Eq. (3.8

results in an output given by 
J

C (t, = ( g(T)LOfT..t)co (w2 T)coJ(w4 Crt))dr
3 0~ 0'2)3(4-t

1 1

2 2 (
-t,$2 )coswht - A (-t ,42)sinwt (3.1)

. .. . . . .... . . .2, 2 ; , : 12" "",... .. . /
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where

.A2 (-tA 2 )  g 0 Wo0(o(-t)e-J2'02T dT

R 22 (-t,O2 ) + JA 2(-t,o 2) (3.L )

is the cross-ambiuity function of g(t) and s(-t)

AR2(-t, 2 ) g 0 (T)s 0 (r-t)cos(2TrO2 T)dr (3.)2)

A12(t' go0(T)S 0o(T-t )sin(27r¢2 T)aT ( 3." 5 )

and

¢2 = (4-w2 )/27 (3.

Infinite limits are again being used due to the time limitation of s(t).

For the degenerate case, w2 = w4, so that

c3 (t) = cosw t _ go(T)So(T-t)dT (3. +")

is the convolution of go(t) and s (-+) o- the correlat'.on of go(t) 9nd

so(t) with a carrier of frequency w4.

Note that for all the outputs at the semiconductor back contact,

it is the zero (or almost zero) spatial frequency components of the non-

linear mixing between signals that is of importance. In general, however,

the potential across the semiconductor at every point z is given by

potential f 2(t-z/v) + g 2(t+z/v-D/v) + s 2(z/v) + t 2t)

+ 2f(t-z/v)g(t+z/v-D/v) + 2f(t-z/v)s(z/v)

+ 2f(t-z/v)t(t) + 2g(t+z/v-D/v)s(z/v) + 2g(t+z/v-D/v)t(t)

+ 2s(z/v)t(t) + first order terms (3 .4 9)
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Using Eqs. (3.214) thru (3.30), the individual components of this potential

are given by

t2(t-z/v) = f 2(t z/v) + 1 f 2 (tz/v(aot2kz 319

1-2 2 )(-9

g2(t+z/vD/v) ~go (t+z/v-D/v)

2 90 (tz/vD/v~(2 t+2kz-2k D) (3.50) i

s 2 (z/v) 1  (z/V) +-!2 (z/v )cos(2khz) (3.51)

2 2 0 20

f(t-z/v)g(t+z/v-D/v)

1

+, f f(t-z/v)g (t+z/v-D/v)cos( 1 o 2) - (kl+k2) 2k2D) (3.53)

f(t-zlv)s(z/v) =. fr (t-z/v)s (z/v)cos(w t - (k -k Wz

+ 1 f(t-z/v)s (z/v)cos(w t -(k 1+k1 ) (3.5]4)

f(t-z/v)t(t) -1 f (t-z/t (tcs( 4 -t kZ
20 o

+ i f (t-z/v)t (t )cos((w -W )t k kZ) (~~
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g(t+z/v-D/v)s(z/v) =

i (t+z/v-D/v)s (z/v)cos(w2t + (k2+kh)z- 2k2D)

+ go (t+z/v-D/V)s (z/v)cos(w 2t + (k 2-k 1 )z - 2k2D) (3.,6)

g(t+z/v-D/v)t(t) =

1go(t+z/v-D/v)t 0 (t)cos((w2 +w3 )t + k2 z - k2 D)

4 1go(t+z/v-D/v)to(t)cos((w2- 03 )t + k2 z - k2D) (3.1)

and

s(z/v)t(t) S S(z/v)to(t)cos(w3 t+kz)

+ 1 s (z/v)to(t)cos(W3 t-khz) (3.r8)

The first order terms are those given by Eqs. (3. X), (3.25), (3.9) and

(3.29). These terms produce outputs by interacting with the DC or average

carrier density of the oemi conductor and airc thev.eforu much larger "han the

non-linear terms. The function t(t) produces an output directly since it

is applied directly to the output contact. In the equations derived pre-

viously for the output, it is only those terms in Eqs. (3.)11) to (3. )

with small or zero spatial variations that contribute appreciably. Fast

spatial variations are integrated by the back contact of the semiconductor

to produce negligible outputs since this contact takes the average of the

total distributed potential.

During the time when f(t-z/v) and g(t+z/v-D/v) are beneath the

semiconductor, the first terms in Eqs. (3. ,) and (3.'k ) produce constant

outputs. These terms contribute to the K 3(t) output and as seen in

L3
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Eq. (3.1) they are effectively convolved with a square pulse representative

of the assumed perfectly uniform interaction region. The second terms in

Eqs. (3.49) and (3.50), however, are traveling potential waves having twice

the spatial frequencies of their acoustic counterparts so that no appreciable

output is produced at the output contact due to these terms. The first order

terms due to and proportional to f(t-z/v) and g(t+z/v-D/v) are traveling

potential waves of spatial frequencies kI and k2, respectively. The output

average of these signals will also be small.

The signal s(z/v) is stationary within the semiconductor. There-

fore, both terms in Eq. (3.51) will produce a constant output although the

first term will dominate since it has a zero spatial frequency. This term

is part of the K3(t) output. Note that the first order component of this

signal, proportional to s(z/v), will produce a negligible output if k is

large.

The signal t(t) produces a direct output since it is applied

directly -o the suniconductor back contact from which the convolver output

is derived. Being only dependent on time, the non-linear terms in Eq. (3.52)

are outputted as they are with a proportionality constant given by K1 as

given by Eq. (3.3). These terms arise due to the interaction of the fields

set up by t(t) and the carrier density modulation produced by these fields.

The semiconductor, behaving as a non-linear medium, produces, in this case,

the second harmonic of the first order signal t(t).

Eq. (3.53) represents the product of the two contrapropagating

surface waves. Note that for the degenerate case, when wl = W2 and kI = k2,

one of the terms has a zero spatial frequency component whereas the other

term has no temporal frequency component. When averaged out or integrated
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dominate the two and produce an output proportional to the convolution of

f0(t) and g 0 (t) (C1(t) Eq. (3.6)) compressed by a factor of two and with

a carrier of frequency 2wI 
= 2w 2 . The other term, having a carrier with

only a spatial frequency component, averages out to a small value by the

output contact. Note, however, that if this term was to be integrated,

by some mechanism, at every point z along the semiconductor, in time, then

the resultant spatial distribution of potential, charge or field would be

proportional to

SD c cos(2kl(Z-D)) / fo(t-z/v)go(t+z/v-D/v)dt

= cos(2kl(z-D)) f- o fo(z/v)go(2z/v+z '/v-D/v)dz (3. .)

or the correlation of f0 (t) and g0 (t) compressed by a factor of two (due

to the contrapropagation of f(t) and g(t)) and with a carrier of spatial

frequency 2k, = 2k2 . This is an important realization. It says that by

employing some type of non-linear medium, such as a slice of semiconductor,

to produce the non-linear current density and potential and also possessing

some mechanism for storage of charge at each point proportional to the time

average of the non-linear potential seen at these points, then the resultant

charge distribution will be proportional to a spatial representation of the

correlation of the envelopes of the two surface waves with a carrier at

twice their spatial frequencies, assumed to be the same. This represents

one of the possible storage techniques. In this case storage is affected

by the interaction of two surface waves. The signal is stored spatially

as a charge distribution. This charge distribution represents an imbalance
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in the otherwise uniform and neutral charge distribution of the semicon-

ductor and therefore an internal field proportional to this distribution

is set up with which successive surface waves (and plate fields t(t)) can

interact. Semiconductor surface states and high density pre-biased diodes

are examples of semiconductor storage mechanisms. In the case of the

diodes, if their response times are fast enough, a current will flow in

response to the potential set up by the product of the two signals. Over

the time period of the interaction the current flow in each diode will

deposit, on one side of their junctions, an amount of charge proportional

to the average potential seen at that point. The diodes are arranged as a

high density matrix over the surface of the semiconductor facing the piezo-

electric delay line. When the interaction between the two surface waves is

over, the high reverse resistance to flow of the diodes prevents the

charges from neutralizing the charge imbalance in the diode by recrossing

the junction. In low leakage diodes this neutralization can take milli-

seconds for diodes of the Schottky barrier type and secunds for p-n Uiffused

diodes. Schottky barriers, however, can respond in nanoseconds, a thousand

times faster than p-n diodes. The imbalance in charge at each diode sets

up a field that can interact with other signals. In this discussion such

fields are represented by the function s(z/v). Any signal varying too

quickly in time, such as those given by Eqs. (3.0), (3.Y)) and (3.5')

for large w3 and the first term of Eq. (3.' ), used to obtain the temporal

convolution of f 0t) and g 0 (t) (in contrast to the spatial correlation of

these signals), cannot produce a noticeable amount of charge storage in

the diodes since their averages at every point in the semiconductor over

their durations are extremely small. Semiconductor surface states
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represent another storage mechanism where, in this case, the charge is

stored, in response to the non-linear potential, in atomic states at the

surface of the semiconductor. The storage and response times for these

states are functions of their statistical properties.

If the interaction region is non-uniform, the stored charge

distribution will be a distorted representation of the correlation of

fo(t) and go(t). Due to the device non-uniformity, any future interactions

w-ith the charge distribution will produce outputs that are doubly distorted.

For small distortions, approximate factors, such as given by Eqs. (3.1) to

(3.19), can be utilized. In any case, the interaction between two contra-

propagating surface waves produces a component capable of producing the

spatial distribution s(z/v) which, in this case, is a representation of

the correlation of the envelopes of the two waves having some distortion

if the interaction region is non-uniform. Fihrthermore, if one of the

surface waves Is an impulse, the stored charge distribution is a spatial

representation of the compressed envelope of the other surface wave with

a 2k, or 2k2 carrier spatial frequency. Likewise, the output from the

semiconductor contact is a time compressed version of this envelope with

a 2 1 or 2w2 carrier frequency. If one input is a continuous tone and

the other an impulse, the output convolution is proportional to the non-

uniformity of the interaction region (time compressed) and the stored

charge would also be proportional to this non-uniformity. In one case,

the output occurs concurrently with the Interaction, is a time function

and has a carrier frequency of twice the tone frequency. In the other

case, a charge distribution is stored (until it is intentionally erased,

modified or it decays to zero) with a spatial carrier frequency of twi -

-I imlili



the spatial frequency of the continuous-tone-surface wave. Since the

stored signal is given by the function s(z/v), the mechanisms for reading

this information are linked to the interactions of s(z/v) with f(t-z/v),

g(t+z/v-D/v) and t(t) as seen in Eqs. (3.'m), (3.56) and (3.%) to be

discussed shortly.

Eqs. (3. 55) and (3.57) show another technique for storing signals

as stationary charge distributions along the semiconductor. First, however,

it should be mentioned that these signals, being traveling potential waves,

would typically produce little output at the output contact since their

spatial averages would be small irresDective of the values of wl' W2 and

W03' Note, however, that if wl = W3 or w 2 = W3 there are terms in the

expansion of these products without temporal carrier frequencies. In these

cases, if the semiconductor possesses a storage mechanism, an appreciable

signal could be stored. More precisely, the stored spatial charge dis-

tributions would be of the form

SF cos(klz) f f(t-z/v)to(t)dt

1 v cos(klZ) f C f (Z'/V)t (z /v +z '/v )dz' (3.)

SG cos(k2 (z-D)) _0g0 (t+z/v-D/v)to(t)dt

Sv 2(z-D)) r go(Z'v)t(z'/v-z/v+D/v)dz (3.)

where both distributions are correlations with the time function envelope

t0 (t); however, the correlation process in Eq. (3.60) (and likewise Eq. (3.-q))

is a spatially reversed correlation relative to the positive z direction. In

both cases the stored signals are not spatially compressed, whereas the
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spatial carrier frequencies of the stored signals are given by the spatial

frequencies of the respective surface waves. Note that if to (t) is an

ideal impulse, both terms in Eqs. (3.,5) and (3.') contribute to the

stored signal. Since ideal impulses cannot be realized and such signals

would tend to waste too much energy on unneeded portions of the frequency

spectrum, a good approximation would be a pulsed rf having whatever number

of cycles at the frequency w1 or W2 is suitable to affect storage. In

this case the 'impulse' energy is localized about the signal bandwidth and i

it can be made long enough in duration so as to give the storage mechanism

time to respond yet small enough so that the correlation of the desired

signal to be stored with this finite width 'impulse' does not appreciably

smooth out the signal. Too many rf cycles would tend to restrict the

bandwidth of the impulse and distort the bandwidth of a wide band signal

being stored. This is the equivalent operation in the frequency domain

of smoothing in the tiLe d-m-in. Too fev cycles may be insufficient in

terms of time to affect storage. It must be remembered also that although

the signal is stored as a function of space, any function that modifies

its frequency spectrum will modify its time representation since the idea

will be to recall such a function or interact it with some other time

function in which case it is treated and actually becomes a time function.

If the distorted signal is recalled as it is, its time representation will

be distorted in the same manner as the spatial representation so that time

and space for the stored signal go hand in hand.

If k I = k and k 2 = kh, it can be seen in Eqs. (3..) and (3.')

that there will be terms without spatial carriers. These terms can proilce
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spatial frequency to produce other than a negligible output. Also note

that these additional terms are traveling potential waves so that they

vary too fast in time to affect storage. The outputs from the convolver

due to the terms without spatial frequency carriers are given by Eqs. (3.1)

and (3.47) as the convolution of s (t) with f (t) and the correlation of

00 0So(t) with go(t) wzith carriers given by the respective carriers of the

surface waves f(t-z/v) and g(t+z/v-D/v). This represents one technique

for interacting with the stored signal. Moreover, if f(t) is an 'impulse'

with a finite number of w rf cycles, the output of the convolver is pro-

portional to s(t) where t = z/v (where v is the average acoustic velocity

beneath the semiconductor). When g(t) is an 'impulse' composed of a

finite number of w2 rf cycles, the output is proportional to s(-t). In

either case, this assumes that the spatial frequency of the stored carrier

is the same as the spatial frequency of the surface wave performing the

reading operation. When the surface wave is an 'impulse', it is effectively

scanning the information stored along the semiconductor and the convolver

output is a smoothed time version of this information, since this reading

'impulse' is also of finite width. It must be stressed that any correla-

tion or convolution between two signals, whether they are both surface waves

or only one of the two signals is a surface wave, is only valid for the

period in time when the surface waves are totally beneath the semiconductor.

At any other time the output convolution or correlation is due to only part

of the signal represented by the surface wave or waves. The situation is

different, however, for spatially stored convolutions and correlations. In

this case, every point along the semiconductor 'sees' the entire interaction
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only problem is only D/v seconds of this interaction between the two signals

can be stored and the portion stored is dependent on the timing between the

two signals. In other words, although the correlation and convolution of

two T second long square pulses is a triangle with a 2T second long base

only D/v of this triangle will be seen. If T = D/v then for the correlation

between t(t) and one of the surface waves only half the triangle will be

stored. Note, however, that the entire triangle is stored if the two pulses

are the two contrapropagating surface waves since the correlation stored by

this interaction is compressed by a factor of two. From this discussion it

can be seen that extremely long signals can be correlated in a convolver

haying a small interaction length D or time D/v by utilizing the correlation-

storage mechanism, however, the correlation recovered by reading this stored

signal can only be a D/v second wide portion of the extremely long correla-

tion of the two signals. This is the basis for the so-called 'integrating

correlator'.(Ralston, et.al., 1977)

There is very little output obtained at the semiconductor

(spatially-integrating) back contact for both terms in Eq. (3 '). For

large W3 there is also very little effect, if any, on storage. However,

this term is far from useless. As a matter of fact it represents an alter-

nate technique by which the stored signal can be read. If t(t) is an

impulse, the potential function s0 (z/v)cosk4 z is impressed onto the surface

of the piezoelectric delay line. The resulting fields then produce, in a

manner identical to the behavior of an interdirital transducer, propagating

surface waves of the form s(t ± z/v)cos(wht ± k4z) where w4 = 4hv. This

process can be visualized as the impulsing of an interdigital transducer

that has been weighted by the stored function. Surface waves identical

'.-
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to the impulse response of the transducer would propagate in both the

positive and negative z direction for this case. Therefore, the signal

stored along the semiconductor can be recovered by 'impulsing' the semi-

conductor (t(t) = 6(t)) and sensing the signal or its time reversed version

at one or the other of the convolver input transducers since such trans-

ducers are efficient receivers as well as transmitters. This reading

process is non-destructive so long as the impressed fields are not strong

enough and of the proper polarity to discharge the storage mechanism in

the semiconductor. In the case of diodes, this requires not forcing them

into forward bias. In a sense the internal fields set up by the stored

charge modify the otherwise uniform field impressed onto the delay line

by-t(t) in a manner identical to the spatial distribution of this charge.

This spatially varying field impressed momentarily onto the delay line is

enough to initiate surface wave propagation at this spatial periodicity.

The large DC field impressed onto the line by t(t) cannot, however, produce

a wave with this periodicity.

Since the output of a convolver having a stored internal charge

distribution is the convolution or correlation of its input signal with

the stored signal then, in a sense, this device is a progrnmmable-impulse-

response filter. Moreover, by properly storing a signal, the convolver

becomes a matched filter for the signal, if it is applied to the input

that results in correlation with the stored version of the signal. The

signal to noise ratio of a signal can furthermore be improved if it is

repetitive and is successively stored, without pre-erasure, in the device.

In this case the random noise variations are integrated out. A device

utilizing this mechanism is called a coherent Integrator.
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Before concluding this discussion it is worthwhile to note that

higher order interactions are also possible. All the interactions alluded

to here are of second order in that the fields are effectively summed and

then squared. Third order interactions involving a summation followed by

a cubic operation are also possible, but they can be expected to be quite

small since the second order interactions themselves are small. However,

third order interactions have been investigated since they possess the

potential for allowing the signals to be stored with spatial variations

different from the input signals to the device, thereby suppressing spurious

signals related directly to these inputs. The inherent small size of the

resultant outputs, however, may ultimately limit the usefulness of such

operations. A feel for the process by which such an interaction occurs

can be obtained by looking at the interaction of t(t) = cos((w 1-W 2 )t) with

the second term in Eq. (3.5). In this case a first order term is directly

interacting with a second order term resulting in a stored spatial charge

distribution with spatial frecquency kI + k . Not only can the two input
2

signals have different spatial periodicities, but the stored pattern is

stored with a higher spatial periodicity than either input signal. Spurious

signals stored at the periodicity of either input signal will not be recovered

at the same frequency as the stored desired signal and therefore will not

interfere with it. The time signal t(t) of frequency w1-w2 and uniform

amplitude is usually called the pumping signal in this three-signal inter-

action.

2.j
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2.4 The Chirp TransformationUsing Chirp Filters

The chirp transformation is a process by which quadratic phase

signals and devices are utilized to produce the Fourier transform of a

signal. In simplified terms, the Fourier transform of the signal, f(t),

given by

F(w) = f f(T)e -  dT (4.1)

can be written as

2 2 2
F(2at) = e - t f(T)e eJ(t - ) dT

= e - iat
2 (f(t)e

-j 't2 * ejat2 )

= IC f(T)e -j 2 0tT dT (4.2)

where w = 2$t is the real-time to frequency correspondence of the trans-

form. This equation shows that the Fourier transform of f(t) can be

obtained by multiplying this signal by a unit-amplitude-quadratic-phase-

complex exponential, exp(-JBt2 ), convolving this with another such

2
exponential, exp(Jet ), having opposite phase variation to the first and

then multiplying the result of the convolution by an exponential,

2
exp(-Jat ), that is identical to the first. This is known as the MCM

or Multiply-Convolve-MulJtipy chirp transformation scheme.

Utilizing the relationship

eJBT e - J 2tT d T  e/ j 7 e; J B ( t + T ) (

the Fourier transform can also be written as



7T -~ 2~ 2~~i(tT 2
F(2Bt) / e e - j t °  f (re t o  )  eJ(t-to ) 2

IT 
d2 dtto 

1 t2
e-j 7 Se t (f(t) ,eJt) e j ~ 2

22t

L / f(t)e- 2 ~"t  dT (4.)

This equation shows that the Fourier transform of f(t) can be obtained by

convolving this signal with exp(jBt 2), multiplying by exp(-Jt 2 ) and then

2convolving again with exp(J6t ). This is known as the CMC or Convolve-

Multiply-Convolve chirp transformation scheme and is also considered as

the dual of the MCM scheme.

The backbone of a practical realization of either of these

.chemes is the chirp filter. Ideally this device possesses a finite

duration impulse response that is perfectly flat over its duration with

a zero, first and second order phase variation. Actual devices, of

course, are only approximations to this type of device. (Variations from

ideally flat %riplitude ard quadtratic ". , re: e. i , e t (.

Large time-bandwidth product urc-crt -w -')A i

are typically very good appreximatioi; t,) iht, ci, i it Ii p til' ,

ideal chirp f[ilter ean hav(, one )I' t.wO 'in: 01 i 'La a tf.t:!. 'bhccI impul Ise re.;porseci zoe of' the

IR 1_ = KI~U(t-tl) - U(t-t 1 -T1 )cos(n1(t-t 1) - S(t-t1 )2 + 41 (4.5)

and

K ~IR KIUtt - Utt 2 T)cswtt)+ (t-t ) 2 (14.6)
2 212U(t-t 2 ) 2-T2)jeos(w2(t-t 2 ) + 2(t-t2 + 02 )

In these equations KI and K2 are constant amplitudes and €i and 02 are

constant phases. The impulse response given by Eq. (4.5) begins after a

t second time delay at an instantaneous frequency of uil radians/sec and



with a phase of radians. The instantaneous frequency of this response

2
decreases at a rate of 28 radians/sec so that -28 is considered as the

slope of the chirp device, which is negative in this case. TI is the

duration of IR . The impulse response, IR 2 , given by Eq. (4.6) behaves

similarly except that its instantaneous frequency increases at a rate of

228 radians/sec and therefore possesses a positive slope. This T second
2

wide impulse response has an instantaneous frequency of W 2 radians/sec and

phase of 2 radians after a time delay of t 2 seconds. Equation (4.5) will

be considered as the impulse response of a 'down-chirp filter' and Eq. (4.6)

will be considered as an 'up-chirp filter' impulse response.

Parseval's theorem

f C If (t) 2 dt .~ lf F(W) 2 dw (4-7)21T

is useful for finding the constants K and K2 ' In particular, if a chirp

filter transfer function can be approximated as flat over a finite 2nB

radian/sec wide passband (which is an accurate approximation for large

time-bandwidth product devices) and, if the loss over this passband is

given by L, then for an ideal impulse, 6(t), applied to the input of this

device where

6 (t) 1 (4.8)

the total spectral energy at the device output is given by

= 1 IF(w) 2 dw

= 2~R L(U(w-w +7B) -U(w-w -nB)

+ U(w~w c +rrB) - U(w~j c-iTB)) 1 d2 R c
-2

,, 2BL /R Joules (4.9)



where R is the resistance of the output network. If the resulting impulse

response is V volts peak (vpp/2) and T seconds wide, then the energy

imparted to an R ohm load by this response is given by

i 1 V 2T/R JoulesEOUT2 2

Equating equations (4.9) and (4.10) gives

1 1

V = 2L(B/T)* = 2L(O/.r) (4.11)

where = rB/T is half the slope of the chirp filter. Since V is the peak

to peak voltage of the output impulse response, then

K1 = 21 (4.12)

and

K2 = 2L2 (0/7r)2 (14.3)

where and L2 are the respective losses for the down and up chirp

filters given by the ratio of the output to input peak voltage for

a continuous single frequency input. For SAW chirp filters that have

impulse responses varying by many megahertz over tens of microseconds,

6 is on the order of 1012 so that these constants are very large. By

not including K, and K2 , therefore, the device outputs would seem

negligibly small for these devices. L and L2 , for SAW devices, are on

the order of .1 to .03 or equivalently 20 to 30 dB of signal attenuation

is evidenced (i.e. for SAW RAC's).

In order to obtain the Fourier transform of a signal, f(t),

using the MCM technique, this signal must be multiplied by a chirp.

('Chirp' is the general term used to signify a signal having quadratic

phase.) A straightforward technique for generating the so-called

4T



pre-multiplyin- chirp is to impulse a ci, ' ie,\:, Le :

its impulse response. After the chirp is obt ned iI i):,.,

can be mixed with cornstant 'requency rf's :Iir ,i,! ,r:'c J :s

the sign of its slope or even the rangte ol inst nt :s Te: en',:

over which it varies. Fcr instiance, by mixinc [. . wit!l

cw (W (t-t ) ) the modified chirp

IR3  K1fU(t-t I ) - U(t-t 1-T1 )Icos((w 3-Wl l(t-t1 ) + (t-tl)2 - i) (4.14)

is obtained as the difference term of the mixing process. For w3 >  i 1

the sign of the slope has been changed and the instantaneous frequency

at t-t1 is now w3 instead of wit as it previously was. Whenever the

sign of the chirp slope is changed the chirp is said to have been

'spectrally-inverted'. Modified device impulse responses of this type

can also be used for the post-multiplication in an MCM chirp transform

system and the single multiplication in a CMC system. Whenever devices

having only one partic'ular slope are eavailable, spec+ral inversion is a

powerful technique for obtaining slopes of opposite polarity, as is

required for the pre and post-multipliers of an MCM system.

The input to a chirp transformation system can either be at

baseband or on a carrier. The two cases, however, must be treated

differently. The baseband signal can be pre-multiplied by a chirp that

is derived by merely impulsirg a device (that is identical to the device

through which the signal is to be passed) and then simply 'spectrally

inverting' this response by utilizing a mixing rf at twice the chirp

center frequency. (This effectively time-inverts the device impulse

response.) Essentially, the pre-multiplied baseband signal is, in this



way, mixed up to the bandpass region of the device through which it must

pass. Mixing carrier modulated signals in this same way, however, would

result in signals that fall outside the bandpass of the device, for large

carrier frequencies. These signals must be mixed with chirps that have

been properly tailored and, therefore, shifted in frequency so that, upon

pre-multiplication, the combined signal passes through the passband of

the chirp filter. As a matter of fact, if the carrier frequency of the

input signal is chosen properly, then the required 'spectral inversion'

of the chirp impulse response can be made to occur automatically when

mixed with this signal. If, however, the carrier is too small, the sum

and difference terms, resulting from the pre-multiplication, will be both

of proper slope and fall within the bandpass of the convolving chirp filter.

In this case, it may be necessary to display both the positive and negative

spectrums of the signal. Whenever a carrier modulated signal is pre-

multiplied by a chirp, two terms result from this process. If the carrier

is large enough (i.e. greater than the sum of the device and signal band-

widths), then the output transform can be centered about the transform of

one of these terms and little interference will occur from the other. When

centered about one of the terms, then the transform represents the Fourier

transform of the baseband information (i.e. the modulation envelope). If

the carrier is small enough, so that both transforms can be displayed, then

this represents the Fourier transform of the carrier modulated signal.

Clearly, since Fourier theory shows that either positive or negative spec-

trums contain all the information in the baseband signal, then, if no

overlap or negligible overlap occurs between the two, retaining only one

is essentially all that is required for later recovery (by Fourier



inversion) of the baseband signal. Although, at viewing time, it may not

seem too important what portion of the transform is being looked at, when

inverse transforms are to be taken it is important that the transform be

properly displayed for proper reconstruction of the signal (see 'Spectrum

Modifications', section 2.6).

In general, let the input signal, over the time interval

0 _ t S Ts , be given by

f(t) - a(t)cosw t - b(t)sinw t

= f(t)cos(wot + 4t)) (.25)

where

a(t) = f(t)cosO(t) (4.16)

and

b(t) = f(t)sin (t) (4.17)

After pre-multiplication (and LPF) this signal is given by

f(t)cos( 1 t - at2 + I)

= a(t)cos(w st + at2 - 0l ) + b(t)sin(t 2 - ) (4.18)

where w. = W-. 1 * Here it was assumed that a chirp filter with impulse

response given by Eq. (4.5) was impulsed at t = -t1 and this response used

as the modulation. Since none of the input signal is to be lost, then

T s < T1 . This signal will now be convolved with Eq. (4.5), the result of

which is equivalent to the output obtained by passing Eq. (4.18) through

a device having impulse response given by Eq. (4.5). (The amplitude

factors (K1 and K2 ) are being ignored in this derivation.) The output of



the chirp filter, over the time interval t1+ T < t + Tip' is

proportional to

outpUt =ff(T) cos( (T - 2 + )COS(W (t...-t -~-- + 2 4 d

= e i(ajt-t 1) - V(t-t1 ) 
2 ) on a(T)e -j(2ttl 1 Wl+ STd

+ C.C.

+ e-(W 1(tt 1) - M(t-t1 ) 
2 

- 12 a(- )f J2 T2

eJ(2 (tt) - Wl - WS)T t+cc

dz + c.c

+ j . j W( (tt 1) - (tt 12 - 1

b(r)e j21. e _i(2a(t-t 1 T + c.c. (4.19)

The first and third set of integrals can be written as

FT I (R (W) - K. W))cos(W (t-t) -~-

+. 12(Rb~w) + Xa(W)) sin(w1 (t-tl) - (t-t 1 ) 2 ) (4.20)

where

w=2F(--t W 1 + W (4.21)

R M) a(T)COSWTdT (4.22)

Xa (W) =-fa(T)sinjWTd- (4~.23)

Rb(w) =I'b(T)coswtdT (14.214)

Xb(w) P b(T)sinWTdT (4.25)
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This portion of the output is the real and imaginary components of the

Fourier transform of the input on in-phase and quadrature chirp carriers,

The transform is of a signal existing frcm t=0 to t=T . If it be desired5

that the transform be of an advanced version, f(t+t 0 ), of the signal, then

the output can be rewritten as

FT = 1^.(W) - Xb(W) cos(W1(t-tI) - 8(t-tl) 2 + Wt

+ (W) + ^a(W) sin(wl (t-t) -(t-t )2 + W) (4.26)

where

R (W) = f a(T+t )coswTdT (4.27)
a -~ 0

X (W) = -
- a(T+to)sinwidr (4.28)

Rb(w) = b(T+to)coswdT (4.29)

X ) = fo b(T+to)sinwTdT (4.30)
0 0

Eqs. (h.20) and (4.26) show that the ti,e location of the signal to be

transformed can be decided after the chirp convolution by utilizing the

prescribed chirp needed to demodulate these real ane imaginary Fourier

components. ln other words, if co. (t-tl) - 2(t-ti ) + wt 0 is mixed

with Eq. (4.26), the outp't diIfference term is

FT= g a) - b(w))cos(Wt)

2 Ib~w X W sint (14.31)

'ind the Fourier components of the delayed signal are obtained on quadrature

-.rriers. Quadrature carriers can be used, with low pass filters (LPF s),

, t the components.



The Fourier components given by Ecs. (4.20) and (4.26) are

valid only over the time interval t1 + T s t t + T1 . It is only

during this time that the finite duration signal is totally overlapped

by the finite duration impulse response of the chirp device in the con-

volution integral defining the output of the device. Only during this

overlapping time period can the limits of integration in Eq. (h.19) be

set to plus and minus infinity. All other times represent invalid

portions of the Fourier transform and typically would be time gated from

the valid portions. From this it can be seen that the valid portion of

the Fourier transform is T1-T seconds wide. If an inverse transforma-

tion is to be performed then, unless the entire Fourier transform is

centered within this region, the signal obtained is a filtered or dis-

torted version of the input. To center the Fourier transform it is

necessary that at the center of the valid region tc = tl + l (Ts+T l)

W1 = 2$(tc-t I ) - W+ = (L.32)

or

Ws = - (Ts+TI) (4.33)

If this be the case, then the Fourier components from -(T -T s) to

6(TI-T s) radians/second are displayed from t +Ts to t +T1 seconds of

real time. The time-to-frequency correspondence of a centered transform

is therefore given by

1
w2$(t - tI - -1 (Ts + TI)(.)

1 2 s 1

The time-to-frequency correspondence of the 2nd and hth integrals in

Eq. (4.19) is given by



11

W = 28(t - t + (Ts+TI)) - 2w 1  (435)

when the ist and 3rd integrals representing the Fourier transform of f(t)

are centered. These other integrals are similar to the 1st and 3rd

except that they represent the transform of f(t)exp(J2t 2). The center

of this transform is at

t+2  t - !-(T+T) (4.36)
c2 1 2 s 1

which is w Ts-T 1 seconds away from the center of the valid time

interval. Only for small w or when w1 = B(Ts+T) will this other trans-

form greatly interfere. Since f(t)exp(J2t 2 ) is a finite duration signal

there will always be some portion of its transform in the output valid

time interval, however, this will be negligible if wi is much greater

than (T s+TI). Note that, as discussed in Appendix B on long transforma-

tions, it is not necessa:7y to display the transform centered about w=O,

especially if viewing the transform is cf prime conccrn Lnd no Fourier

inversion is to be performed. In this case, utilizing judicious filter-

ing, an extremely wide bandwidth signal can have any 2a(t -Ts ) rad/sec

portion of its spectrum viewed by setting the time-to-frequency corre-

spondence given by Eq. (4.21) equal to the center frequency of the desired

portionof the spectrum and solving for the required W with tt . The Ts c s

second wide signal may have such a wide bandwidth that filtering may be

required to eliminate undesirable cross products. Although Appendix C

describes a technique whereby the transform of very long signals can be

taken, in many cases it may be just as satisfactory to transform a con-

tinuous signal into a contiguous stream of T1 -T s second vioe transforr:1.
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In this case, each transform is the Fourier transform of a T second wide

segment of the continuous signal each of which is assumed to exist around

the time origin. (In fact by utilizing the proper post-multiplying chirps,

the individual transforms will be those for time-centered segments of the

continuous signal.) To properly transform a continuous signal, however, it

must be broken up into at least two alternating streams (see Part III).

If TI-T = T or T = TI/2, then the output transforms will be valid fors s s

a time period equal to the width of the input signals. If the two alter-

nating streams are fed into two individual identical chirp transform

systems whose chirp filter inherent delays (t1 ) are also T1 /2 seconds,

then the same chirp streams used to modulate the input streams can be

used to demodulate the output transform streams. Set up in this way

the invalid portions of the output will not interfere with the valid

portions and can be gated out. The two transform streams can then be

summed together.

The output Fourier transform given by Eq. (4.20) can be

rewritten as

FT (( + (R M + XaW
2 ()- Xb(w)) 2 + b +a()2

cos(W1 (t-t l ) - (t-t 1 ) 2 + tan-l((Rb(w) + Xa(w))/(R((w) - (1w)))

(4.37)

This equation shows that the output is essentially a chirp with an addi-

tional phase variation given by the phase component of the Fourier trans-

form and a magnitude given by the magnitude of the Fourier transform.

Before post-multiply, the output of the chirp transform system, as seen

on an oscilloscope, appears to be the carrier modulated magnitude of the



Fourier transform. The signal given by Eq. (4.15) represents the complex

signal a(t) + Jb(t) and the output transform given by Eqs. (4.20) and (4.37)

represents (Ra(w) - Xb(w)) + J(Rb(w) + Xa(w)) or k -Xb(w))2 +

(R b(W) + Xa(w)) 2) 1 /2 exp(jtan-l ((Rb(00) + X a ())/(R a ( ) - Xb(w)))) . If

f(t) is complex then the Fourier transform can be asymmetric about w=0.

If f(t) is real (i.e b(t) = 0) then its Fourier transform must have a

symmetric real and antisymmetric imaginary component about w=D. Further-

more, its magnitude must be symmetric about w=0 and its phase must be

antisymmetric. If 0 is a constant, then f(t) represents the complex signal

f(t)cos + Jf(t)sinO. The magnitude of the Fourier transform of this

signal is always symmetric, although its real and imaginary components will

not, in general, possess 3ymmetry about W=0. With 4=0 the input is pure

real with an even real Fourier component and an odd imaginary component.

With * = r/2 the signal is pure imaginary with an odd real Fourier compo-

nent and an even imaginary component. The magnitude of the Fourier trans-

fo-.n loosEs its even symetry when is a furction± of time. If improperly

phased pre and post-multiplying chirps are 2.sed in a chirp transform sys-

tem, a real signal is treated as complex and a complex signal is treated

as an altogether different complex signal. When separating the real

Fourier component from the imaginary component,part of one of these compo-

nents is summed into part of the other. As the phase of the output post-

multiplying chirp is changed, the real and imaginary Fourier components

of the signal can be seen to swap back and forth. The transform compo-

nents are always valid but they may not be the transform components for

the form of the complex signal that may be desired. For the remainder of

this discussion the device inherent delays and constant phases will be



ignored to simplify the equations. Furthermore, all chirps and impulse

responses will be of the form

c(t) = cos(+) or cos(-) (4.38)

where

(+) = Wt + at

(-) =Wt - at2

and the finite durations will only be implied. The output transforms will

be assumed to be accurate over a specified time interval, however, nothing

more will be said about this.

The output of a down-chirp filter with impulse response (IR)

Cos(-) for an input of a(t)cos(+) -± b(t)sin(+) is given by

Output = (2$t) Xb(2at) Cos(-)

± IRb(20t) - X(2St)Isin(-) (2439)

The down-chirp filter MCM system therefore takes the forward transform of

the signal. This will be signified by the following

f(t)+ ( )---- F )_ (4.4o)

f (t) () F(

where the (+) and (-) subscripts refer to up and down-chirp carriers. If

Eq. (4.39) is mixed with cos2wt (spectrally-inverted) the difference term

is given by

Output u IRa(28t) V Xb(2Bt)Icos(+)

Rb(2t) ± Xa(2at)Isin(+) (4.42)



so that this process complex conjugates the Fourier transform as well as

changing the chirp slope. This will be signified by the following

F(w) --- x(2w) -- F (w)+ (4.43)

+
F ( -) ( ) -- - ( + ( 4 .4 4 )

When a(t)cos(-) + b(t)sin(-) is inputted into an up-chirp

filter with impulse response cos(+) the output is given by

Output - jR 2Bt) ± Xb(2t)lcos(+)

± Rb(28t) T Xa(2at)sin(+) (4.45)

The up-chirp filter MCM system therefore performs a frequency inverted

transform, which is equivalent to taking the Fourier transform of a time

inverted version of the signal. This will be signified by the following

f(t) -- (+) F(-w) + (4.46)

*(t -- -- ( ) '- F () +(4.47)

Multiplying Eq. (4.45) by cos2Wt produces a difference term given by

Output IRa(28t) ± Xb(2at)Icos(-)

so that, as before, the transform is complex conjugated and the chirp

slope changes sign. This will be signified by the following

F (-4j)+---- x(2 ) -- w F (-w)_ (4.49)

F ()- x(2w) --- F(w) (4.50)

Inverse Fourier transformations will now be taken. An examznle



will be worked out and then the different possibilities will be listed.

Assume the Fourier transform is given by

FT = A(t)cos(-) + B(t)sin(-) = F(w) (4.51)

where

A(t) = R (2at) - Xb(2at) (4.52)

and

B(t) = Rb(2Bt) + Xa (2at) (4.53)

Since this is a complex signal similar to the input signal f(t), then the

output of an up-chirp filter for this input can be immediately written

down by inspection to give

Output = Ir (26t) + xB(2t) cos(+)II
+ jrB(26t) - XA(2Bt))sin(+) (4.54)

where

a (t)

rA(28t) = f A(T)cos20tTdT = f R (26T)cos2$TtdT = e_-_.__ (4.55)
- 26

-b (t)
xA(2$t) = - f A(T)sin26trd = f Xb(2$t)sin26itdT = 0 (4.56)

A 2B

b (t)
rB(2t) - &OD B(T)cos2ftTdT Rb(2aT)cos2$TtdT = e (4.57)

a (t)

xB(28t) = - B(T)sin26tTdt = - f X (2BT)sin28TtdT =(a 2a h.8

a(t) a e Wt + ao0(t) (4.59)

ae(t )  (a(t) + a(-t)) = ae (t (.0

e 2 e

a(t) (a(t) - a(-t)) = -a (-t) (4.61)
0, 2

... ... ..... . -Ai m



b(t) = b e(t) + b (t) (4.62)

b (t) 1 (b(t) + b(-t)) b (-t) (4.63)e 2 e
1

b ( t) = - (b(t) - b(-t)) = -b (-t) (4.64)
o 2 0

or

Output -la(t)cos(+) + b(t)sin(+)1 (4.65)

1/2Since the actual device impulse responses contain a (8) factor, then

there will be a factor of 8 after the inverse transformation process that

will. cancel the 8 in Eq. (4.65). The 8 in this equation arose since the

(8)I1 2 factor has been ignored up until now, The 1/28 factor (and all

multiplying factors, for that matter) will hereon be left out. Therefore,

the output of an up-chirp device for an input of (Ra(26t) Xb(28t))cos(-)

R (b (28t) ± Xa(2$t))sin(-) is given by

Output = a(t)cos(+) ± b(t)cos(+) (4.66)

The up-chirp filter MCM system takes the Fourier transform of the Fourier

transform, which is treated as though it is time inverted, so that the

original signal is obtained. This will be signified by the following

F(c) - (+) - f(t)+ (4.67)

(-F _ + ---- f (t)+ (4.68)

When (Ra(28t) ± Xb(28t))cos(+) ± (Rb(2Bt) : Xa(28t))sIn(+) is

inputted into a down-chirp device the output is given by

Output = a(t)cos(-) + b(t)sin(-) (4.69)

so that the down-chirp filter MCM system takes the Fourier transform or a

dA



Fourier transform that is time inverted and the original signal is

obtained. This will be signified by the following

F(-W) + ---I. -- f(t)- (L.70)

*

F () + -- (-) -- p f (t)_ (4.71)

The two complete transform systems, not utilizing spectral inversion, are

given by

f(t) -- (-) -- F(w) - (+) -- f(t)+ (4.72)

f(t)_ - + - F(--w) + -- (- ' (t)_ (4.73)

Both of these systems recover the original signal complete with the original

chirp modulation, however, opposite slope devices are required. If spectral

inversion is used, the two possible complete transform systems are given by

f(t) -) -- 0 F(w)_ - x(2) -- F(w)+ -

f (t) (!.74)

f(t) -' (+) -- F(-A) + -o- x(2w) - F (-)_ -

(+) f*(t) (4.75)

Using these, the signal is recovered as a complex conjugated version of the

input signal. In this case, however, identical devices can be used.

The above four schemes will always recover the signal or its

complex conjugate. Spectral inversion by itself cannot be utilized as a

mechanism for causing a system to produce a time inverted version of the

input signal at the output. The reason for this is that only the sign of

the transform chirp carrier slope must be changed to allow a repeated frans-

form to be taken and therefore the time inverted signal to be obtained.

..... .



However, spectral inversion not only changes the sign of this slope, but

it also complex conjugates the Fourier transform.

Time inverted versions of the input signal can only be obtained

if somehow the transform slope polarity is changed without complex con-

jugation or vice versa. By mixing the transform with cos(2wt ± 2Bt 2 ) and

low pass filtering,the Fourier transforms can be complex conjugated with-

out a change in the chirp carrier slope polarity. This will be signified

by the relations

F(w) - --- x(2w,-26) P- LFF --- F (w) (4.76)

F (-w)+---- x(2w,2a)----- LPF-- -- F (-W)+ (4.77)

Adding a spectral inversion step, the transforms are not conjugated but

their slopes change polarity. This will be signified by

F()_------ x(2w,-28) - - LPF a x(2w) -----P- F()+ (4.78)

F(-jj)---- x(2w,2a) --- w LPF- - x (2w) ... -F(-.k) (4.79)

From this, the four possible time inversion schemes are given by

f(t)+--- ( ) x 2 ,2 )- P - -- + -- (-t)+

(4.8o)
f(t) *(+)--sx(2w,2$)---'LPF F f-()+

(4.81)

f(t)- x(2,-2)- LPF- x(2w) - 2F()) f(-t)

(4.82)



f(t) - -x(2w,2B) 10 LPF x(2w) F (-W)

+(4.83)

The first two schemes use different devices and complex conjugate the time

inverted signal. The second two schemes use identical devices and obtain

the time inverted signal with oppositely sloped carriers to the input. The

double slope chirp can be obtained by passing the impulse response of a

device through a doubler. The above schemes represent exact techniques for

obtaining time inverted signals assuming the bandwidth is not restricted by

time gating out some of the Fourier transform. This inversion is exact

because it is based upon the properties of the Fourier transform. Time

inversion, however, can also be performed, exactly, using the Fresnel

transform. (The Fresnel transform is detailed in Appendix A.) This can

be seen in Eq. (A- 30), which will be repeated here giving

j2at2 F(t) T w -J2T 2

F ) B e f(-T) (4.84)

where
)2

F (t) = _f(T)e - j S ( T - t  dt (4.85)

is the Fresnel transform of f(t). This equation states that by multiplying

the Fresnel transform by a double-slope chirp, a Fresnel transform of this

signal produces a chirp-modulated-time-inverted signal. For an input signal

f(t)cosW1 t, the output of a chirp filter having impulse response

(U(t) - U(t-T))cos(w0 t-t 
2 ) is given over all time by

Output ej a) t ft  f(T)e ( l - W° ) T e j ( t -  T+C.C.
t-T

- e ot f Ie dT + c.c. (4.86)
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since t - T < T = t - L (W - i) _ t is a point of stationary phase.
-2a o 1

Eq. (4.86) shows that the output of the chirp filter is the Fresnel trans-

form of f(t)exp(j(wl-wo)t) with a carrier of frequency wo. Because of the

complex conjugate, the output real and imaginary components of the Fresnel

transform are in phase quadrature. By utilizing the Fresnel transform

instead of the Fourier, it is not necessary to synchronize a pre-multiplying

chirp with a post-multiplying chirp since the input modulation for the

Fresnel transform is an rf carrier. This is also an exact time inversion

process. Note that if the input signal is extremely narrowband with

respect to the chirp filter bandwidth, simply multiplying the signal with

a double slope chirp and passing this signal through a single device of

opposite slope will produce an approximation to that of a time inverted

signal. This technique, however, is not exact since it disperses the

frequency components of the signal. The extra chirp filters in both the

Fourier and the Fresnel transform time inversion techniques are required

to pre-disperse the signal frequency conponen&t, which aze then brcught

back together by the second chirp filters, thereby preventing signal

distortion.

The CMC chirp transform system must obey a different set of

criteria for its practical realization. Therefore, a detailed description

of a typical system will be given after which the detail will be dispensed

with. The input signal to a down-chirp filter with impulse response given

by Eq. (4.5) is given by

Input = a(t)cosw 0 t + b(t)sinw t f(t) (4.87)
0

where

w1- 28T 1 W w1 (L8



to make passage through the device possible. The cutput from the chirp

filter over the time interval t1 + T < t < t1 + TI, where the signal

exists from t=O to t=T , as before, is given by

Output = f (a(T)cosW T + b(T)sinW T)
-O 0 0

cos(w 1 (t-T-t1 ) - (t-T-t 1 ) 2 + ) dT (4.89)

This signal is then multiplied by an up-chirp (that may be obtained by

spectrally inverting the impulse response of the dcwr.-chirp filter) that

must exist from t = t1 +Ts to t = t1 +Ts+T 1 so as not to loose any of the

output represented by Eq. (4,89). The up-chirp, if gated to the valid

output interval t1 + Ts 
< t < ' t + T1 over which the limits of Eq. (4.89)

can be set to plus and minus infinity, will automatically gate out the

invalid portions of the first chirp filter output, upon multiplication

with this signal. The up-chirp will be given by

UC = cos(W 2t + t2 ) (4.90)

Before inputting to the second chirp filter, half of the output to this

point can be discarded. The output consists of two identical integrals

one having a complex rf carrier of the form exp(-J((w 1 + 2 +2Bt 1 )t - I t1

BtI + and the other having a complex chirp carrier of the form
exp (-J (0-2+2 tl)t - 26t _ Wlt1 - Btl2 + 1)). Using the rf modulated

integrals with w 3 - 2BT 3 < 1 + W 2 + 2Bt < W 3 5 where all the second

chirp filter parameters have the number three as a subscript, the input

to this second chirp filter is given by



SI1GAL PROCESSING USING SURFACE ACOUSTIC WAVE DEVICES AN ITS A-ETCU)
DEC 79 0 R ARSENAUL . L B NILSTEIN, P OAS DAA9-77-G-0205

UNCLASSIFIED RPI-A-ARO-0 ARO-1500 .1-EI.*fl111111***11*IIIIIIIIIIIIE
IIIEIIIIEEIIEE
mmIhImhmIIh,-
-I-u,..'-EI



i~ ttt 8  2,5

11111"2 5 I

MICROCOPY R[SOLUIION iESI CHART

NAIIONAL BURLAU OF SIANDARDS-1963-A



90

npt*1 -3( (wl. 2 +2Bt l )t-w I t l -8t l
2 . 1 )

/ (a(r)cOSwor + b(T)sinwoT)eJBT e-J(2Ot- I2Btl)T dT

+ c.c. (4.91)

over the interval t1 + t < t 1 + TI . The chirp modulated integralsover~ th nevlt s  1

will not pass through the second chirp filter if Wi - W2 + 2$tI < W3 + 20T3 "

The output of this second device is valid over the time interval

t I + t 3 +T < t < t I + t + Ts  T Note that since the input to this
1 1 3 s 3'

device is TI-Ts seconds wide, then TI-T must be smaller than T3. As can

be expected the output of the second device is valid for a period of time

that is the device impulse response duration minus the input signal dura-

tion or T - (TI-Ts ) seconds. The output of this device is given by

(W--W eW ') 2 °+2t

e-J((w2-w3)tI - (Wl4i2 )t3 -28tlt3 43 )

f f( )e "3(20(t - t3) + W2 -W3 )T dt + c.c.

~ 2
(W 4e W 4+f i 3--2 -J (l+2+28tl)t

8 e/r-jVeB-

eJ((2wl+w24a 3 )tl + (wl+w2)t3+28tlt 3 +2St 1 243)

2
f f(r)e 2 e- 1- (2 (tt l t3) - ai-W2 -W3)T dT c.c. (4.92)
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Again, as with the MCM technique, there are two transforms. The trans-

form of f(r)exp(j2BT2 ) is not wanted and hopefully does not interfere

with the transform of f(T). Since f(T) is a carrier modulated signal,

the Fourier transform of this signal will consist of positive and nega-

tive frequency versions of the transform of a(t) + Jb(t) (the envelope

of the input). For large input carrier frequencies, the positive and

jnegative spectrums do not interfere. In order for one of the spectrums

to be eentered within the valid window at t = t1 + t 3 + T (T1+T3+T),

then the time to frequency correspondence of this transform given by

w - 20(t-t 3) + --3 (4.93)

must satisfy

I : o(4.94)

It 
c

or

or w 3 -2 (t + 1 ) (4 95)

With this value of w2 the frequency of the Fourier transform at

t = t1+t3+T1 is wo-$(T 3 - (TI-Ts )) radians/sec and at t = t1+t3+Ts+T 3

is wo0+8(T3 - (T1-Ts)) radians/sec, and is therefore centered within this

region. With this value of 2 the time to frequency correspondence for
2

the Fourier transform of f(t)exp(J28t 2 ) is glven by

w= 28(t-t3) - 2w1 -2w 3-W+(T 1 +T3 +TS ) (4.96)

At t-t the frequency at this point is given by
c

Wc =2~(T+T 3 T9+t) - (w1 9~3)- w(4.97)

0J
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For

+W 3 >> 8(tI+TI+T3+Ts) (4.98)

this transform will not interfere with the desired form and can be ignored.

Since

Go f(T)e - JWr dT =-A(w*+o) + A(,-w o )

+ JB(aw o+ - JB(w-wo) (4.99)

where

A(w) = a(T)e - J WaT = RA(w) + JXA(w) (4.ioo)

and

B(w) b( )eJWT dT = B(W) + JXB(w) (4.ioi)

then by making the substitution w' = -wo and discarding the negative

spectrum (since it does not get displayed over'the output interval), the

output of the CMC chirp transform system over the time interval

tl+t 3+T1 _ t < t1 +t 3 +Ts T3 is given by

Output = e-J((l2+2tl)t)A(W') - JB(W')j + C.C. (4.102)

where

' 20(t - t I - t 3 -. (T+T +T (4.103)

and

* = W (w3- 2-'1 ) + (W2 -W3 )t 1  (wl.a 2 )t 3 -2tlt 3+$ 3 -/ 4  (4.104)

or

Output V W I (RA() + XB())cos((wl..+2 +2tl)t4)

(- (B~W - XA(w))uin( (wl4W2+2$tl)t44) I (4.lo)
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Eq. (4.105) is the complex conjugated and frequency inverted transform

of the input signal. Note that the factor AT78 after every transformation

will result in a 1/82 term after an inverse transformation. Since,

however, there will be four chirp filters, in such a system, 
the (B)1 12

factor used for each impulse response will cancel this term.

If the CMC transform is centered about -w 0 then

WIt-t c

or

w2 =° 3 -w-20(t + (T1 + T3 + T)) (4.107)

so that the time to frequency correspondence becomes

w=28(t-t 1 -t 3  i (TI+T 3+Ts)) - (4.108)

for the Fourier transform of f(t) and

w = 20(t-t3 ) - 2w3-2w, %+O(T+T 3 +Ts) (4.109)

for the Fourier transform of f(t)exp(j2t 2). At t--t c

W = 28(t +T +T +Ts) - (I ) + Wo  (4.110)
c 1 3 s 3 o

so that for

l+3 >> 6(tI+TI+T3+Ts) + wo (4.111)

the two transforms do not interfere. In this case, making the substitution

wt = .- the output is given by
0

outputJA(w') + JB(wy). + c.c. (4.112)

where w' is given by Eq. (4.103). This equation can be rewritten as



94

Output (R -" - t(iA(w') -X.'))cos((WlW +2$tl )t+)

+ (RB(w') + XA(w'))sin( (l+ 2+26tl)t+D)l (4.113)

which is the Fourier transform of the input signal. As would be expected

since

A(w) + JB(w) = (RA(u) - XB()) + j(RBm) + XA(J)) (4.114)

and

A(w) - JB(w) = (RA(w) + XB(W)) - J(RB() - XA(W)) (4.115)

the transform obtained using one of the spectrums is the complex conjugated

and frequency inverted version of the transform obtained using the other

spectrum. In a CMC system, using down-chirp filters, the negative spectrum

is required in order to obtain the Fourier transform. Ignoring device

delays the output of an up-chirp filter CMC system is given by

8utpu - I(A() - XBw))cos((Wl+w2 )t4)

- (RB(w) + XA(w))sin((wlw 2 )t44)I (4.116)

using the positive frequency spectrum. This output is the complex con-

jugated Fourier transform of the signal. Using the negative spectrum

results in the output

Outpu u ~ (RA(W) + XB(W))cos((wl* 2 )tN4)

+ (RB(w) - XA(w))sin((wl4w2 )t44)1 (4.117)

vhich is the frequency inverted transform of the signal. Note the similarity

1 . .



in these results with respect to those obtained for the MCM technique.

In the MCM systems, the transform is frequency inverted when up-chirp

filters are used and not inverted if down-chirp filters are used. For

CMC systems using their negative spectrums, up-chirp filter systems produce

frequency inverted transforms and down-chirp filter inverted systems

produce a non-inverted transform. Furthermore, the CMC chirp transform

system possesses the additional facility to complex conjugate and time

invert its transform by utilizing its positive frequency spectrum. If

DP is used to signify a down-chirp filter system utilizing the positive

frequency spectrum, DN the same system using the negative spectrum, UP

an up-chirp filter system utilizing the positive spectrum and UN this

same system using the negative spectrum, then these results can be

summarized as follows:

f(t DP F (-w) (1.118)

f~t -- a T) F(L' 1 29

f(t) UP-- F (w) (4.120)

f(t) UN-- F(-w) (4.121)

Since no chirp slope changes are required, these systems are simply cas-

caded to realize transform inversions. The schemes that will produce a

signal that is not time inverted are given by

f (t UP--- DN-- f *(t) (4.122) I

f(t)- N-- DN- f(t) (4.123)

f(t)- uP- -uP----- f(t) (4.124)

f(t) -UN up - f*(t) (4.125)
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f(t) - DN DP f (t) (4.126)

f (t) DP ---- -- -- * f (t) (4.127)

f(t) - DN - UN - f(t) (4.128)

f(t) DP DP f f(t (4.129)

where the relationships

F (t.m.2iff f(-w) (4.130)

F(t-0o-27r C (w) (4.131)

F(-t)-*-e- 2r f(w) (4.132)

have been utilized. Similarly, the time inversion schemes are given by

f(t) - DP - DN - f(-t) (4.133)

f(t) - DP - UP f f(-t) (4.134)

f(t) -- DN-- DN - f(-t) (4.135)

f (t) DN UP f (-t) (4.136)

f(t) - UP- DP f (-t) (4.137)

f(t) up UN f (-t) (4.138)

f(t)- UNDP- f (-t) (4.139)

f(t) UN ---- UN--- f (-t) (4.140)

Of course, if the rf carriers on the Fourier transfofms are not of the

proper frequency for the following system, they must be adjusted before

inputting the transform into this other system.

The CMC chirp transform systems require twice as many devices

than are required in MCM systems. For cascaded system configurations,
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this can represent quite an appreciable loss in system dynamic range.

Although MCM systems typically require twice as many mixing operations V

than is required in CMC systems, a mixing operation can usually be

eliminated between cascaded systems, CMC systems do not have the ability

to perform properly after the elimination of a chirp filter between stages.

CMC systems, however, will not suffer from the many cross products that

arise in MCM systems due to their many necessary mixing steps. Compromises

may be made, therefore, when cascaded systems are required, by utilizing

both structures in one configuration. Note that the final mixing stage

can be eliminated in an MCM system and the Fourier transform on a chirp

carrier is obtained. Elimination of the final device in a CMC system

results in an output of the form of Eq. (4.91), which is a chirp modulated

Fresnel transform of the input. Filtering can be performed before the

final MCM mixing stage but not before the final CMC chirp filter.

Fourier transformation properties will now be examined in

relatior to their realizations utilizing these chirp transformation

systems. Time inversion has already been covered in some detail. It

was seen that the Fresnel transform as well as the Fourier transform

can be used to realize this function. (Since the chirp filter has been

shown to behave as a Fresnel transformer, this transform may some day

prove to be indispensable in the analysis of chirp filter systems. It

is for this purpose that Appendix A, concerned with Fresnel analysis,

was included in this report. An attempt was made to derive as many

relationships as possible, thereby improving the probability of developing

some form of signal processing theory based upon this transform.)

Using the Fourier relationship
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f(t-t) - F()e - j ut o (4.141)

a variable time delay system can be set up. Since the output transform

of a chirp transform system is of the form

Output eJ a(t) F(w) + e-JO(t) F (w) (4.142)

where a(t) is some function of time, then reuritting this as

Output = eJ(a~t)+to) e- j t o F(w)

+ e - j ( a(t)+ t ° ) ejWto F*(w) (4.143)

the Fourier transform of the delayed function can be obtained if a signal

with phase c(t)+wt is used to demodulate this output. The variable w0

represents the time to frequency relationship of the transform. After

this demodulation, a signal delayed by t0 seconds is obtained if the

transform is inputted into another chirp system set up to perform the

inverse Fourier transformation. The converse will occ, "z for signals Vith

high frequency carriers. Since the chirp system will be tuned to either

the positive or negative spectrum of this signal, when the carrier is

changed the Fourier transform of the signal envelope is shifted. This

follows from the Fourier relationships

f(t)e J~ot  F (w-%o) (4.144)

1
f(t)cos 0t - -{F(w%) + F( w-w ) (4.145)

and

f(t)s inwt - o--- F ) - o ) F (w-) (4.146)

Note, however, that time delay can also be implemented using the
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Fresnel transform. When a carrier modulated signal is inputted into a

chirp filter, the output is in the form of a Fresnel transform (see Eq. (4.86)).

Since this transform itself is carrier modulated, its carrier frequency can be

controlled by a mixing process. When the transform is inputted into a chirp

filter having opposite slope to the first, the output is the inverse Fresnel

transform or the original signal delayed. However, the delay of this signal

will be dependent on the carrier frequency of the Fresnel transform. The

group delay, in this case, is a linear function of frequency. This can be

seen using the Fresnel relationship

B,8 {f(t)eJw2t) = e-J(( 1 2)t 4 1

&$j + (Wl-)/ 2 8 {f(t)ei (4.147)

Except for a phase factor, the Fresnel transform of two signals having

different carrier frequencies are delayed from one another by a delay.

that is linearly proportional to the difference in these frequencies

(i.e. the delay = (w2 -W 1 )/2Bin Eq. (4.147)). Signal expansion and

compression can be performed using the Fourier relationship

f1at F(W) (4.148)
V fa a

If the Fourier transform of a function, f(t), is obtained using a chirp

transform system with chirp filters of slope 81, then the time to frequency

correspondence of this transform is proportional to 81. If the same signal

is transformed by a chirp system having 82 slopes, then the time to fre-

quency correspondence of this transform is proportional to 82. Ignoring

delay then

* - i~,
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2$1t (4.149)

and

2- 2t (4.150)2I2

so that

22

2[

With t

/J

F (Wi) = rC f-(tjwlt dt (4.152)
1/

and

F (W= f dt (4.153)
2 2

then

F i(w= 2 1 W2) (4.154)2

if F 1(wi) is Fourier inverted using a system set up for F2 ' the output

of this system will be proportional to 2~ ) since

F (sI  ) !2 f- 02 t (4.155)
2 02 2 $

This scale change for 0 2 0Involves the use of chirp filters having

/2

different slopes. The carrier of the Fourier transform must be mixed with

a chirp that has a slope that is the sum (or difference) of the two device

slopes before the inversion can be performed. Again, this process can also

be performed in the Fresnel domain and, as usual, this eliminates the need

for pre-multiplying chirps and the need for synchronization that is

necessary for the proper performance of a Fourier transform. The main

disadvantage in using the Fresnel transform is that spectral modificat~n

techniques cannot be used since the Fresnel transform is not a frequency

/ aa a.~.-
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spectrum representation of the signal. This transform represents the

signal as an infinite sum of delayed chirps and maps the magnitude and

phase of the chirps (all having the same slope, a, which represents

another degree of freedom for this transform) as a function of their

delay. (A signal, such as a radar return composed of a sum of delayed

chirps, will have a Fresnel transform that is composed of impulses.)

When a single chitp is modulated by a signal, the Fresnel transform of

this combination (for the proper slope B) is a chirp modulated version

of the Fourier transform of the signal. This is a special case (see the

Fourier/Fresnel relationship in Appendix A). Since

T  f(t)I -- eJit - -J lt 1 2 al (4.156)"81 I j=28t

then for 61 = a82 this becomes

59f't) = e - j a k~ t 2F 1If (te Jat- (4.157)0a 2 lft]1=2a 2 t

If this is mixed with a chirp of slope 82(a-1) and the inverse Fresnel

transform witb respect to 82 is taken then

c-l eJ$2(a-l)t 2
82 'a$ 2 i f ( t ) 1 = f/)( .<8
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Using the Fourier relationship

f~ (tW 2f(t- r)dT --. F(w)F2 (W) (4.159)

where

FI(w) W f (t)e -Jt dt (4.160)
-~1

and

F2 (W) - f2 (t)e-Jut dt (4.161)

the convolution of two functions can be obtained by taking the inverse

transform of the product of their transforms. In particular, if a real

signal is to be correlated with itself, then
*[

f 2 (t) - fl(-t) .-. F* (W) (4.162)

so that

P fl(T)fl( -t)dT FI(w)FI*(w) (4.163)

Since

F1 (w) = R1 (W) + Jxi(w) (4.164)

then

F1(W)F *() = RI2 (W) + X12(W) (4.165)

The output of a chirp transform system for the input fl(t) is given by

Output = Rl(28t)cosa(t) + Xl(2$t)sina(t) (4.166)

where a(t) is some function of time (a chirp or an rf). Performing the

product with this signal gives

F1C20t)F3 (20t) = (R (20t) - X_1 2(20t))

+ (R2 (28t) + X 2(2Bt))cos(2(t)) (4.167)

.. . ....
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where the desired form of the transform is modulated by cos(2a(t)) and can

be filtered fro* the baseband terms. The Fourier transform need not be

complex conjugated by a special step. For instance, if one transform is

given by Eq. (4.166) and the other by

F2 (2 t) R(26t)cos(y(t)) + Xl(2at)sin(y(t)) (4.16)

where y(t) is a time function different from c(t), then their product is

given by

F1 (20t)F2 (2Bt) = R1
2 (28t)cos(a(t) - y(t))

2
" X1 (20t)sin(a(t) - y(t))

" R 1 (20t)cos(alt) + y(t))

- Xl2 (2$t)cos(a(t) + y(t))

+ 2Ri(28t)X1 (28t)sin(a(t) + y(t)) (4.169)

Since

(t *jX ) ( JX, ) = R, 2 -X12 J 2'RXl (4.170)

is the Fourier transform of the autoconvolution of fl(t), Eq. (4.169) shows

that by choosing c%(t) and y(t) properly, the Fourier transforms of the

autocorrelation and autoconvolution can be filtered from one another and

used to obtain either of these time functions. The correlation and con-

volution of two different functions can be obtained in the same way. Note

that in order to display the entire valid convolution or correlation of

two functions using this technique, the valid time interval after the

.transform inversion of the product of the two transforms must be of

duration equal to the combined duration of the two signals.
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If a signal has passed through a linear system, then its Fourier

transform is multiplied by the transfer function of the system. The

system may actually distort the signal beyond recognition. If, however,

the Fourier transform of this distorted signal is obtained and the system

transfer function is also available (i.e. by taking the Fourier transform

of the system impulse response), then the original signal transform can

be theoretically recovered by dividing the distorted signal transform by

the system transfer function. The original signal is then obtained by

taking theinverse transform of this. This is classified as a tdeconvolution'

process. In reality, points at which the system transfer function is zero

would blow up if divided into the distorted transform so that only an

aproximation to this process can typically be realized in actual practice.

Also, if major portions of the original signal have been altogether

eliminated by the system, then an exact recovery of the original transform

is impossible. The product of two different transforms is given by

Output = R (26t)R 2(2t) - Xl (2Bt)x 2 (2 St) cos(c(t))

+ (R1 (20t)X 2 (2$t) + X1 (28t)R 2 (20t))sina(t)

+ Rl(20t)R 2 (2ft) - XI(20t)X2(28t) (4 .lTl)

If this product is multiplied by

M(t) 2 (2t) cos(ct(t))
(R 1

2 (20t) + x12(28t))

x, (2Bt)

2 t 2 _ sin(a(t)) (.72)
(RI 2 (20t) + Xl1(2Bt))



the transform R 2 (2Bt) + JX2 (2$t) is recovered by a high pass filter.

A similar technique is utilized in a 'pre-whitening system'.

In this case a continuous signal is transformed in segments. Before the

signal is transformed, however, it is delayed long enough so that an

estimate can be made of the signal. The signal is subtracted off leaving,

ideally, only the noise. (Typically, the signal is a binary code and a

matched filter is used to estimate it.) This noise is transformed, the

transform is squared and a reciprocal is taken. Then a convolution with

a window is performed so as to make this a better approximation of the

inverse power spectral density of the noise. This transform is then used

to multiply the combined signal and noise spectrum or inverse transformed

and convolved with the input signal. The result is that the noise has

been optimized for the matched filter by utilizing estimates of the

noise power spectral density.

6t

* * -'
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2.5 The Saw Convolver and the Chirp Transform

A chirp filter is typically a single input, single output

device. It is usually designed symmetrically so that it behaves identi-

cally whether either port is used as input or output. If designed using

surface acoustic wave (SAW) technology, its chirp impulse response can

be straightforwardly tailored to have a slope of many megahertz, a center

frequency into the hundreds of megahertz, time durations up to hundreds

of microseconds and initial delays that can be anywhere from a few micro-

seconds to also hundreds of microseconds if this be desired. Utilizing

the dispersive properties of the medium, the dispersive properties of

specially designed transducers or selective reflections along the surface

of the SAW delay line losses in the ballpark of 20 dB can be typically

obtained, for devices having time bandwidth products in the hundreds, or

30 dB, for devices having time bandwidth products in the thousands. Once

designed and fabricated,the impulse response of the chirp filter,

ignoring slight changes in its parameters vith age and changing environ-

ment, can be depended upon to be the same irrespective of when a signal

is applied. In other words, the impulse response of the chirp filter can

be assumed to be time invariant and will produce the same response for

the same signal irrespective of its application time. Therefore, if its

impulse response is known to be, h(t), then the output of the device for

an input f(t) can be expected to be given by

g(t) - K f f(t)h(t-T)dT (5.1)

This makes the analysis of a system utilizing these devices a straight

forward (yet not necessarily trivial) task. The section describing the

... . ... .", .. ...... . . , , ._ L - ,. -I ', ,.. *; .'
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chirp transform assumed that chirp filters were to be used as the main

compcnents. All the analysis there is based upon a device having a

scmewhat idealized impulse response, given typically by Fq. (4.6) for

an 'up chirp' device, and responding as io,- d be expected according to

Eq. (5.1).

Besides depending upon a device, such as a SAW chirp filter to

perform the necessary chirp convolution (based upon the usual convolu-

tionary response of a linear time invariaent device between its impulse

response and an input signal, the convolution can be performed using

a convolver. The output of a convolver, as the name implies, is expectedly

the convolution of its two input signals. To function as a chirp filter,

one of its inputs is simply made to be a linear FM or 'chirp'. The con-

vclver reed not be a physical device, such as something you'd be able to

grasp that has two visible input ports and an output port, but it could

be an algorithm in a digital computer. Representative of a physical

device vould be a CCD convolver set up to perform discrete convolution.

However, the subject of this section is neither of these. This section

is intended to stress the characteristics of the separated-medium

surface-accustic-wave (SAW) convolver when it is to be utilized in a

chirp transform system. Other sections briefly describe other uses

for this device along with some discussion on a modifed version possess-

ing storage capability. As a means for ccmparison, the chirp transform

ut!lizing SAW devices is compared with the carrent baseband techniques

utilized in ,"CD st'u,-tu ps in Arsenimit 19'9 wliere th F'T ni r Ir tii ti

is also discussed. In this section ufnly the, la-,:it' c-riter'i:-

sary in the utilization of' a convoiver in ,i (hirp :.yyt(er wi b

-a
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presented where the single stage MCM chirp transform system will be

utilized as an example. More complicated system configurations can be

analyzed on the basis of this information and that supplied in the

section emphasizing the chirp transform and chirp filters.

The SAW convolver is a device that can be grasped having two

visible input ports and a single output port. Intuitively, one would

not expect to be able to input a signal into one input port, now, and

an hour later obtain the convolution at the output port for this signal

with some other signal applied to the second input. To do this the

device would require a storage mechanism, however, the storage convolver

is a topic of another section. The convolver to be characterized in

this section has no memory. (Memory convolvers at the present time have

too weak an interaction to be useful in a complicated transform type of

arrangement in place of the non-memory convolver.) The point to be made

here is that the timing of the two signals, to be used as input signal

and effective device impulse response, is critical in order to utilize

the maximum amount of interaction time that the device can supply without

loosing part of the desired output.

A detailed description of the convolver structure and performance

is given in another section but for this discussion all that need be under-

stood is the basic mechanism underlying its ability to convolve two

signals. All timing criteria will be derived from this. The SAW convolver

consist of a crystal medium on whose surface so called Rayleigh waves are

caused to propagate. These surface waves penetrate on the order of one

surface-wave wavelength (on the order of microns to hundreds of microns)

into the crystal and are generated onto the surface by interdigital

-a



transducers that have been metallically deposited on the surface at both

of the crystal's extremeties. The surface waves generated by the two

transducers propagate toward one another with velocity v (2v with respect

to one another). Since the crystal is piezoelectric the surface waves

carry with them an electric field (although the majority of the surface

wave energy is contained in the mechanical fields). If the two contra-

propagating waves are allowed to overlap beneath a slice of semiconductor

that is within a few thousand angstroms of the surface, the electric

fields interact non-linearly with the charge carriers in the semiconductor

producing a non-linear current density. The semiconductor tends to

average out this effect which is equivalent to an integration over the

length of the overlap of the two signals. The detailed mathematics are

left for another section, however, the output of interest is of the form

c(t) = f(T)g(2t-t)dt (5.2)

The limits of integration in this equation can be set to plus and minus

infinity so long as the overlapping region of the two signals is forced

to remain beneath the semiconductor entirely. Here, f(t) and g(t) are

the two assumed input signals and the magnitude of this integral has

been set to unity for simplification although the actual magnitude is a

function of convolver efficiency. It should be stated that, being a

second order effect that is typically analyzed as though it were simply

a perturbation of the charge carrier density of the semiconductor and

the surface wave energy,this convolution output is necessarily small,

typically being on the order of 40 to 60 dB below the input levels.

Note also from Eq. (5.2) that the convolution output is compressed by
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a factor of two. This is inherent in the fact that both signals are

propagating with velocity v.

The interdigital transducers in conjunction with their matching

networks behave as bandpass filters whose center frequencies are dictated

by the surface wave wavelength corresponding to two times the center-

to-center transducer finger-spacings. Therefore, the input signals

must always be modulated upon carriers whose frequencies fall within [
this band being anywhere from a few to hundreds of megahertz. When both

f(t) and g(t) are given carriers of frequency w in Eq. (5.2) the difference

terms integrate to zero leaving

c(t) = cos2wt f, f(T)g(2t-r)dT (5.3)

where it can be seen that the output carrier is twice the input carrier

due to the compression factor. When these input signals are chirps or

modulated onto chirps their bandwidths must again fall within the band-

pass of the input transducers. (SAW chirp filter bandwidths are also

typically set by the input transducers or at least the maximum chirp

dispersion cannot be made greater than this.)

Since the SAW convolver possesses an input/output relation of

the form of Eq. (5.2), relative to one of the inputs the device has a

time varying impulse response. If it is assumed that g(t) = h(t) is the

effective impulse response of the device, then an impulse applied at t--t

will result in the impulse response h(2t-t I) and an impulse applied at

tat 2 will obtain h(2t-t 2 ) as a response. If the device was time invariant

the application of these two impulses spaced t2 -t1 seconds apart (t2 > tI )

should result in two identical responses spaced t 2 -t seconds apart.

2 .. , ,t...4, , _



Since, however, the responses actually emerge (t2-t1 )/2 seconds apart

the device is not time invariant. Moreover the output of the convolver

can only be a delayed version of h(2t) so long as h(t), as a modulated

surface wave, fits totally beneath the semiconductor and, even if this be

the case,the impulse is given a finite slot of time in which to be

applied,otherwise a truncated version of this signal, or no signal at all,

is obtained.

From this information some basic criteria can be developed to

insure that, when obeyed, the SAW convolver can effectively be utilized

not only as a convolver but as the main element in a chirp transform

system. To this end, we can develop a basic model for the device in

terms of time delays and an interaction time. First of all it will be

assumed that either signal requires a time tD after its time of applica-

tion to its input port, in order to just reach the edge of the interaction

region, defined as the region beneath the semiconductor, nearest its port.

Then, the last assumption is that the interaction region requires a

single point on a signal to travel for T seconds in order to propagate the

entire length of this region. In other words, an impulse applied to an

input at time tI will propagate on the crystal surface as an impulse sur-

face wave for a 'dead time' of th seconds reaching the closest edge of

the interaction region at time tI + tD . It will then propagate until it

reaches the farthest end of this region at time t1 + tD + T. It will

continue to propagate on the free surface of the crystal for another

'dead time' tD until it reaches the other transducer at time tI + 2tD + T.

Being a delay line, the impulse could now be detected by this transducer

in the equivalent manner in which it was generated, although when used

,i
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as a convolver this output would generally be ignored. A large portion

of the impulse also passes beneath the transducer and is absorb by an ,

acoustic absorber at the end of the crystal.

Now, since a Fourier transformation is desired, we know that

one of the signals is required to be a chirp and the other the desired

signal to be transformed modulated by a chirp having opposite slope to

the first. This, we will assume, is to be a chirp transform system

utilizing the MCM configuration. Since the equations have been written

up in detail in the section on chirp transformation for the 'down-chirp'

filter, let us assume, for comparison, that the convolver also takes on

the appearance of a 'down-chirp' filter. To this end, the following

chirp signal is applied to one of the convolver inputs at t=0

r(t) - [U(t) - U(t-Tr )jcos(W rt - (5.4)

where T is the overall length of the chirp and
r

d ( Wrt _ 8t2)I - 2 t t = ( (5.5)

dT r t=O r t-O r

is the instantaneous starting frequency of the 'down chirp' at t=O. The

phase of this chirp at t=O was arbitrarily set to zero.

The chirp modulated input signal will be given by

s(t) = f(t-ts)[U(t-t s ) - U(t-ts-Ts)Icos(s (t-tS) + B(t-ts) 2) (5.6)

where a delay t has been included in anticipation that just such a delay8

may be required as a method of optimizing the valid output duration of

the Fourier transform. The signal duration is assumed to be of length Ts
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which has been strictly imposed in Eq. (5.6). Here the chirp modulation

is that of an 'up chirp' as required for transformation and its instan-

taneous starting frequency at the start of the signal t=t is w . The
s S

phase at t-t is again set to zero.
s

Since, in the convolution between these two signals, the output

Fourier transform cannot be valid unless the signal given by Eq. (5.6) is

totally overlapped by the signal given by Eq. (5.4), in order that the

limits of integration be set to infinity, the first criterion is obviously

given by

T < T (5.7)
S r

Furthermore, the maximum length of time during which this condition can

occur is half the difference between these two durations since both

signals are propagating toward one another. Therefore, the maximum

duration of the valid portion of the Fourier transform is given by

T (T (-Ts)/2 (5.8)

To maximize the duration of the valid output, the time at which the signal

given by Eq. (5.6) just makes it totally beneath the semiconductor,

t = t s + tD + Ts , should be the same time at which the front edge of the

chirp given by Eq. (5.4) just reaches the farthest edge of the semicon-

ductor from its input or the edge closest to the signal input. In this

way the signal becomes totally overlapped by the chirp and the interaction

region at the same time. If the total overlap of the signal and chirp

occurred somewhere else beneath the interaction region, then part of this

interaction time has been wasted. If it occurs too early, then the outpit

is not entirely correct until the signal enters the interaction region



entirely, since only a portion of the overlap vill be integrated. The

point in time at which the chirp reaches the farthest end of the inter-

action region is t = tD + T seconds. Therefore, by setting these twoDl
times equal to one another the delay required on the input signal to

insure maximum interaction is g.ven by

t -T -T (5.9)
s s

Due to the finite size of the interaction region, there must necessarily

be restrictions on the size of the signal. Assuming that while totally

beneath the semiconductor the signal is also totally overlapped by the

chirp, the maximum time that the output can be expected to be accurate

is "he time required for the signal to propagate the length of the semi-

conductor without ever leaving the confines of the interaction region

defined by this semiconductor. This time is given by

:T = T - T (5.10)
M s

Since it doesn't make sense to try and obtain a valid region that is of

duration longer than that defined by Eq. (5.10),which is physically impos-

sible, then the maximum chirp length, Trmax, that is of any use is given

by equating Eqs. (5.8) and (5.10) and solving for Tr . This gives

T r 2T-T T (5.11)r S rmnax

which states in conjunction with Eqs. (5.9) and (5.10) that an impulse

applied at t a T will produce a valid output convolution beginning at

time t a t s + ti = T + t D and lasting until time t = ts + tD + T = 2T + t D

assuming that the other input signal, applied at t=O, is at least 2T sec-

onds long. This is the maximum convolution time obtainable assuming that

... . , . . ,., .. . .. .. . .. . . =• . . . .



i| -115

the signal, to be Fourier transformed, is totally overlapped by both the

chirp and the interaction region,which is a requirement for accurate

transformation. An impulse is the limiting size of the input signal that

produces the maximum length accurate Fourier transform of duration T or

half the duration of the 2T seconds long input chirp (due to the

factor-of-two compression). The longest duration that the signal, to be

transformed,can have is T seconds. Having this length or greater pro-

duces no output that is valid. The chirp need not be limited in duration

to the time given by Eq. (5.11), although any excess over this time will

be wasted. Any length less than that given by Eq. (5.11) is less than

optimum. By meeting the criteria defined by Eqs. (5.9) to (5.11), the

output Fourier transform can be assumed accurate over the interval

t + t + T < t <  t + t + T (5.12)
5 D s 5 D

Over this interval the output of the convolver for inputs given by

Eqs. (5.4) and (5.6) is proportional to

c(t + t + 1) = f f(T-t )COS(W (T-t) + (-r-t )2)
D 2 __W 5 s 5

cos(W (2t-T) - S(2t-T) ) dT (5.13)

T
where the duration T of f(t) is to be assumed. The advance to tD + -T

included in Eq. (5.13) is the amount of time required for two signals

to meet in the device if both are applied at the same time. Eq. (5.2)

assumes they meet immediately. Incorporating this advance into the

equation and expanding gives
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T T )2
c() e ej((2wr + hts)(t - tD - ) - 4(t t, - Wrts- ts)

f00f()e-(4t - 2t s - 4f - 28T + W s - r)T dT + c.c.

e-J(2wr + hts)(t - t D - ) t - ) - wrts - ts 2 )

2Sf(T)e~J2BTeJ(4Bt - 2Bt s - l4tD - 2RT - ws - )Tf(T~e e s r dT + C.C.

(5.14)

The delay of the function ts was absorbed into the exponentials by

utilizing the relation

f(t-t)------ e - j t S F(w) (5.15)

since both of the above sets of integrals are Fourier transforms. The

first set of integrals is the Fourier transform of f(t) with a time to

frequency correspondence given by

!-(t +T)]  (5.16)W= s - +  48[t - tD  - '

The second set of integrals is the Fourier transform 
of f(t)exp(j28t

2

with a time to frequency correspondence given by

= 4a[t - - (ts+T)] - w- (5.17)

The center of the Fourier transform of f(t) is given by

(i) -ws

t + t + I (t +T) (5.18)

whereas the center of the Fourier transform of f'(t)expIJ2St 2 is

given by



rs +tD + (ts+T) (5.19)

The center of the valid interval given by Eq. (5.12) is given by

tv = ts + (T+Ts  (5.20)
s D 2 s'

When Eq. (5.18) is set equal to Eq. (5.20) the following criterion is

obtained for centering of the Fourier transform of f(t) within the

accurate time interval; namely,

Wr Ws 1= (t +Ts) = T/2 (5.21)
S S

where Eq. (5.9) was utilzed assuming the maximum duration output was

de'sired. If the chirp given by Eq. (5.4), being the longest of the two ti
input signals, is designed so that its bandwidth extends over the entire

bandwidth B of the convolver, then w is the upper frequency limit andr

w - 2 $Tr is the lower frequency limit. Furthermore, if Tr is set equal

tu the maximum usable time length given by Lq. (5.11), then

28= 27rB =27B (5.22)
Tr 2T-T s

so that

f-f T
r__A - (2 - l (5.23)

B

Since T would never be made greater than T (since none of the output
s

would represent the accurate transform if that were to be done), the

above ratio Is never greater than one. Therefore, by choosing all the

parameters so as to optimize the available length of the output trans-

form and to utilize the entire convolver bandwidth, the required value

4



for w , dictated by Eq. (5.23) where w. 2irf , will always fall withins ~s

the bandwidth of the convolver. When T = T, ws = W - 25T or thes s r r

lower frequency bound of the convolver and since its width is also T
r

seconds wide in this case, its frequency after T seconds is wr, or the
rr

upper bound of the device. In the other extreme, when T = E = 0 thens

W s = r - BTr or the center instantaneous frequency of the chirp and..

likewise,of the convolver passband.

The Fourier transform of f(t) given by the first set of integrals

in Eq. (5.14), when centered in the valid interval given by Eq. (5.12),

spans an interval in frequency given by

-28(T-T )  <_ < 2S(T-T )  (5.24)

If Ts is chosen to be half the interaction region so that the output

transform is valid over half the interaction regionthen Eq. (5.24)

becomes

-18T < (5.25)

where, using Eq. (5.22), $T is one third the total bandwidth of the con-

volver, so that the Fourier transform spans two thirds of the convolver

bandwidth. When T=T the transform spans zero bandwidth as is expected

since there is no valid output. If T = E = 0 the transform spans 4$T5

radians/sec or, using Eq. (5.22), the entire convolver bandwidth. In

this case, however, the signal is too small to be of any real use.

From Eq. (5.19) it is seen that,when the Fourier transform of

f(t) is centered at t = 3T/2 + tD - T s/2 or the center of the valid

interval,the Fresnel transform,given by the Fourier transform of

f(t)exp(J2t 2) or the second set of integrals in Eq. (5.14), is

..........................................'. ..-
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centered at

wo Ts 3T s

t - + t + (--5.c282 D 2 2 (.6

which is w /28 seconds away from the center of the desired transform.
s

This will typically be quite a distance in time away from the valid

region so that only negligible high frequency components of this trans-

form will coincide with the desired transform. Therefore, the Fresnel

terms can usually be neglected so long as the system is not designed to

operate at extremely low frequencies. Neglecting these terms, Eq. (5.14)

can be written as

c(t) R(w)cos((2 r + 4$t )(t - t .. t - tD t

T 4( DT 2+ X(w)sin((2w r + 4at )(t - tD - W) - t D )

-W t - 6t 2 ) (5.27)
r" s s

where W is given by Eq. (5.16), t = T-T and
s s

F(w) = f(T)e -  dT = R(w) + JX(w) (5.28)

The real portion of the Fourier transform, R(w), and the imaginary

portion, X(w), can be isolated by mixing with either the cosine chirp

or the sine chirp and low pass filtering. If the criteria developed in

this section are adhered to the techniques discussed in the section on

the chirp transformation directly apply. Note, however, that the Fourier

transform obtained using the convolver is time compressed by a factor of

two. Also, the chirp modulation has a higher center frequency and four

times the slope of the input chirp. All these characteristics must be
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kept in mind for the design of following stages. These stages cannot be

identical since every stage causes a compression and a chirp slope

quadrupling. An important point to note is that the cascading of an

up-chirp transform system with a down-chirp transform system recovers a

version of the original signal compressed in time by a factor of four.

Although the signal in Eq. (5.28) is assumed to exist from t=0 to t=T

the transform of this signal centered at zero is obtained by adding an

additional WfT /2 term into the chirps of Eq. (5.27), where W is given by

Eq. (5.16) (i.e. different chirps are used).
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2.6 Spectrum Modifications

General System Specifications:

As discussed in Sect. 2.4 the output of a chirp transformation

system for an input of the form

input = fl(t)cos(c(t)) - f2(5)sin{c(t)} (6.1)

is of the form

output = R(w)cos{a(t)} ± X(U,)sin{a(t)) (6.2)

where W is given by the time to frequency correspondence for the structure

being utilized, a(t) is either a chirp prior to an MCM post-multiply or an

rf after this multiply for the MCM system or directly from the last chirp

filter of a CMC system. Eq. (6.1) is equivalent to the complex signal

fc(t) fl(t) + jf 2 (t) (6.3)

and Eq. (6.2) is likewise equivalent to

F(w) = R(w) ; JX(w) (6.4)

where

R(W) * RI(W) - X2 (W) (6.5)

X(w) = R2(W) + X1 (W) (6.6)

fc (t) F (w) (6.7)

fl(t) Fl(W) = Rl(w) + jX1(W) (6.8)

f2 (t
)4--F 2 (w) = R2 (W) + JX2 (W) (6.9)
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R1 (w) - H (-u)

R2(w) ,, R2(- ) (.0
2 2 (6.10)

X, -X

x2 (W) = 2(-W)

and the minus sign in Eqs. (6.2) and (6.4), signifying a complex conjugated

Fourier transform, results from performing a spectral inversion in the chirp

transform system. In Eq. (6.1) c(t) is either an rf so that the signal may

enter the first chirp filter of a CMC system or be multiplied by an offset

center frequency chirp at the pre-multiplication of an MCM system or it is

already a chirp and ready for inputting into the chirp filter of an MCM

system. Due to the complex nature of the input signal, the real and

imaginary parts of the Fourier transform given by Eqs. (6.5) and (6.6) do

not necessarily possess symmetry. The Fourier transformation output of a

nbirp transform system ! cnly valid over a finiti interval of time- ou t s!ee

of which it must be gated prior to the following stage. The time duration

of this valid time interval is T seconds and the input signal is time
F

limited to a duration of 2T seconds. For every variation of the chirp

transform system there is a linear r' -ationship between TF and Ts . In

particular, TF is given by the difference between the chirp filter impulse

response duration and T in an MCM system. Knowing the slope of a parti-
5

cular configuration, given by 20, the frequency span of the TF seconds wide

Fourier transform is 28TF rad/sec. The actual portion of the transform

that is displayed within the TF seconds wide window is a function of chirp

modulation frequencies and is contained in the time to frequency corre-

spondence relation W. Once the Fourier transform of a signal has been
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derived mathematically for a particular chirp transformation system, it

may be centered about t=O to simplify the analysis when this signal is

inputted into a second stage. When this is done the time to frequency

correspondence for this transform becomes w = 2$t.

Finite Signal and Finite Transform Effects:

When the Fourier transformation is performed with the assumption

that the signal is centeredat zero, then this signal exists over the

interval -T <_ t 'S T . The signal being transformed, f(t), may be a 2T

second wide segment of a continuous signal fc(t). The Fourier transform

of the continuous signal, Fc(w) , can theoretically have a fine structure

ha-ing infinitesimal proportions since the Fourier transform of an

infinite duration signal possesses an infinite resolution. In this case

two different frequency, infinite duration, tone,- produce frequency

impulses having zero width. The frequency of the two tones could be made

infinitcsimally vlose and yet still be rezolved. Since the sigr-al tc be

chirp transformed must be time limited to 2Ts seconds, namely

f(t) = JU(t) - U(t-2Ts)Jfc(t) (6.11)

and the chirp transform system performs a Fourier transformation of

f(t+T s ) when this signal is applied to it, then over the TF seconds wide

valid time interval the output is given by

2sinT w
F() =F(W) * S

c

F (w )sinT (w.-Jo)
2 c o 0 dti (6.12)

0
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where it will always be assumed that the transform of the quadratic phase

modulated signal (f(t+Ts )exp(J2B(t+T )2)) can be ignored.

Eq. (6.12) shows that the effect of limiting the continuous signal

to within a 2T second wide window is to convolve its transform with a
s

sinx/x function whose main lobe is 27/T rad/sec wide. By doing this,

two things have happened,where the Fourier transform of the continuous

signal could have been bandlimited, the transform of the finite segment L
of this signal is necessarily finite out to infinity since the sinx/x

function is an infinite duration continuous function. Also, the convolu-

tion of the transform of the continuous function with the sinx/x function

has effectively ironed out the fine structure of this transform so that

now the resolution in the frequency domain is on the order of 2/T s

rad/sec or the width of the main lobe (lobe centered about W=C) of the

sinx/x (x = T8 (w-0, )) function.

Now, if the Fourier transform is centered within the T second

wide valid time interval, it has then been bandlimited to the frequency

interval -STF _ w _ $TF and can be written as

F B) = JU(w+OT - U(w-TF )IF(w) (6.13)

where F(w) is a transform having infinite duration since the input signal

is finite. Since, for further processing through another chirp transform

system, the Fourier transform, which in reality is a time domain signal

representing a frequency domain one, must be limited in duration, the TF

second duration of the transform in Eq. (6.13) must be designed so that

the output of the following stage is accurate over a desirable time

interval. This interval will typically be the difference between the
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transform width and the chirp device impulse response duration for the

second stage of an MCM system. It is not necessary to utilize the entire

TF wide segment of the Fourier transform for the following stage although

no more than this can be used.

As discussed in Section 2.4, a down chirp followed by an up-

chirp system and vice versa will both produce Fourier transformations. The

output of such a system is a filtered version of the input signal since

only a finite portion of the infinite duration complex-conjugated Fourier

transform can be utilized for the second stage. Other variations of

cascaded chirp transformation systems result in filtered versions of

either the time inverted input signal, the complex-conjugated input signal r
or the complex-conjugated and time inverted input signal. If the Fourier

transform is centered within its valid T second wide interval then the
F

cascaded 'down chirp' system behaves essentially like a low-pass filter
having a 25T double-sided bandwidth and band edge roll offs defined by

the switching time slope of the Fourier transform T second wide gating
F

function. Any assymmetry in the gating of the Fourier transform will

cause what may in actuality be a real input signal to be complex at the

output of the cascaded system. In any case the bandlimiting of the

Fourier transform results in a signal that possesses an infinite duration

although it had been 2T seconds wide at the input to the cascaded systems

with zero magnitude outside this time interval. Although of infinite

duration only a finite segment of the signal will be valid at the output.

Furthermore, by utilizing a technique similar to that used to view long

transfrrmz [Ar!; natuilt, 19'(9] the eenloni ted portions )!' the' ;irlil heyond $ he

original 2TS secn(I (!an be (Hii 1 iyed. I!' mo!;t ()f th,' I" i rier tr',. t'orm

.ff,. -- ~*~ *F *""



is contained within the TF second wide time interval, then very little is

eliminated when it is gated to this time. In this case, the output of the

cascaded system will look very much like the input except that a small

amount of smoothing will be evident since large time derivatives are

suppressed, the gated extremes of the signal will tend to roll off smoothly

to plus and minus infinity and a small amount of ripple of period 47/TF

will be observable directly attributable to the aforementioned type of

sinx/x convolution except this time the signal, not the transform, is

being convolved.

Assume that a 'down chirp' cascaded chirp transform system is

to be used. The transform is symmetrically gated by a TF second wide

window. In order to recover the original input signal at the output

exactly, the entire Fourier transform would have to be utilized. This,

of course, as already mentioned, cannot be done. The form of the output

for an input f(t) is therefore given by

f (t) - L F(w)e jt d

OD sinQ(t-T)
f f () V(t--) dT (6.14)

where

= TF  (6.15)

and

F(W) - fo f(T)e-jWT d (6.16)

f dw = 2sinn(t-) ( 17)

, , , , , i . . . . . . . .I I "- I.. .
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were utilized to obtain the final relation.

Note that

lis f (t) = f(T)6(t-T)dT f(T) (6.18)

since

lim (Sin(t-T)) = S(t-T) (6.19) .1
Q -I- CO

so that the output of the cascaded chirp transform 'down chirp' system

utilizing symmetric transform gating approaches that of the input as

TF  . This, of course, assumes that all non-ideal system behavior can

be ignored on the basis of producing no noticeable effect (which may not

be true in real practice). If a system could possess chirp devices whose

impulse responses can be represented exactly by the idealized equations

used in their analysis and the rest of the system functions ideally in

such a manner, for instance, that amplifier response is non-distorting

and noiseless, that the finite delay through cables is zero and they

exhibit no dispersion and that the mixers do not permit carrier leak

through or produce harmonics other than the desirable sum and difference

terms, to name a few, then the analysis is exact. The effects studied

here are inherent even in the most ideal system.

Let's assume that the input signal to a cascaded chirp trans-

form system was originally smooth and continuous prior to the required

2Ts seconds wide time gating of this signal. The gating produces a

discontinuity to the originally smooth nature of the signal at both

extremes of the 2T seconds wide window. Although no gating pulse can

be produced or switch designed so that these discontinuities change at

an infinitely fast rate, relative to the frequency content of the signal



the assumption will be made that they do. These discontinuities represent

an abrupt change in the signal even if they tend to occur at signal zero

crossings, since any real signal will have continuous finite derivatives

at such a point whereas the ideal gate imposes a discontinuity in the

derivative. The practical gating function will also produce a finite

continuous derivative at the zero crossing; however, there will be a much

faster change in the derivative (produces larger higher order derivatives)

than there would have been in the ungated smooth signal at this point.

The gated smooth function can be written as the sum of two

functions. One of these functions is a finite ramp that rises from zero

to the function value at both ends of the gated interval and is connected

by a straight line between these points. This function typically exhibits

very large discontinuities at its extremes under the assumption of an

ideal gate. The other function exhibits all the time variation of the

original function and goes to zero at the extremes of the window. Since

the function was originally assumed to be smooth (sLowly -cne varying),

the discontinuities in the derivatives of this second function at the

window extremes will be assumed to be a much lower order effect with

respect to the ramp discontinuities. Therefore, the input signal can be

written as

f(t) = IU(t) - U(t-2Ts ) fc(t)l

= fs(t) + IU(t)- U(t-2T s)Ifc(o) + atl (6.20)

where

fc (2T) - fc (o) (6.21)
2T

5
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and f s(t) is the finite yet smoothly varying portion of the signal.

From Eq. (6.14) the output of the cascaded system for this input

is given by

fSsin (tt- )f Ct) = f fs(T) sit-t) dT
S7(r(t-T)

+ f (o) + U - j sin (t-) dT (6.22)

+~ - T5  t-T)

The first integral is very closely given by fs(t) since this function

varies very slowly. The second integral can be broken down into four

integrals, namely

t)= fc( i sinQ(t-T)1 c 0 T(t-T) d

f(o) + f (O)Si(Qt) (6.23)

where

si(nt )  f Ot sin dx (6.24)
0 x

f (t) -f~ () j sinQ(t-T)

2 - .2T Tr (t-T) ' d

s 1

- (o) - I (O)Si(s2(t-2Ts)) (6.25)

f(t) sin(t-t)

S0 7r(t-- n

O= 11t- + 1- Si(t)I - ft sinx cix (6.26)
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S- T sirn(t-T) dT4t) -a2T s 7 (t-T)

= t- + L S (t - 2QTs)I

sin(x - 2T s ) dx (6.27)

If OT is some multiple of 7r, thenS

f 3 (t) + f (t) = ( -1 S(t) - Si(I(t -2T))j (6.28)

since

c (sin(x - QT s ) - sinx)dx

-2a, t_ sin(QT )cos(x - T )dx = 0 (6.29)

Even if f2T s were not some multiple of ff, since Q =T F is usually a very

large number, the integrals given by Eq. (6.29) will usually be much

smaller than those in Eq. (6.28). The 2nd integral of Eq. (6.22) can

therefore be written as

fR(t) = * fSi(Qt) - Si(Qt - 20T s) Ifc (o) + at (6.30)

Since fs(o) = 0 and f (o) t co , then

lira 0.0 f Q(o) = f c (o)/2 (6.31)

f (o) + 2CiT

and sincE f s(2T) = 0 and fR(2Ts) -

lim frQ(2T) (fc(O) + 2cT )/2 (6.32)

The total output is therefore given by
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f(t) f s(t) + ASi(Qt) - Si(1t - 2T )IIfc (0) + at (6.33)

This equation shows that the bandlimiting of the Fourier transform of f(t)

to the interval -I <S w < S, where S = STF, has effectively only caused

ripples to appear before and after both discontinuities of the output of

the cascaded system. These ripples at discontinuities in the input signal

are a form of behavior typically labeled the Gibb's phenomenon. Increasing

= BTF only changes the time scale of the ridicules and not their form. For

practical values of Q the ripples from the two discontinuities essentially

do not interact since they become very small over a short segment of the

output interval. Interactions would occur, however, between the ripples

of close discontinuities that are inherently part of a wideband input

signal aside from the imposed gating discontinuities. It is important to

note that the ripples obtained at discontinuities for a signal passed

through a cascaded chirp transformation system are due to the use of a

step-like window to gate the Fourier transform. If this rippling type of

behavior at discontinuities cannot be tolerated, a window having smoother

transitions toward the extremes of the Fourier transform interval can be

utilized so that the rippling is reduced or eliminated at the cost of

increased smoothing of the signal and longer rise times at the discon-

tinuities.

Functional Weighting of the Chirp Transform:

The unmodified magnitude of the Fourier transform is given by

M o(W) 2() + ()) (6.34)

and the unmodified phase is given by

kI



P (w) = tan-l (x(w)/E(c)) (6.35)

where w is a function of time for the output of a chirp transformation

system. If only the magnitude is to be modified by a function A(w), Lhen

the new real and imaginary components of the Fourier transform R () and

Xn(c) satisfy the relationsni

A(w)Mo0M = (Rn2 () + xn2(w))r = M(n() (6.36)

and

P0 () = tan-l (x (w)/Rn(w)) (6.37)

or R(() = A(w)R(w) (6.38)

and

X (w) = A(w)X(w) (6.39)

If only the phase is to be modified by a function B(w), these components

satisfy the relations

M o(W) = (2(R ) + xn1())2 (6.4o)

B(w)P 0 ) = tan-1 (X ()/Rn(n)) = n (W) (6.41)

or
2

Rn (w) = Mo (w)/(l + tan 2Pn M)T (6.42)

and
2 1

Xn(c(w) = M (w)tanPn(w)/(l + tan2Pn (w))2  (6.43)

If both the phase and magnitude are to be modified, then

= Mn( n)l( + tan2Pn(w))2 (6.44)

and

Xn(w) = M (w)tsaPn(w)/(l + tan2Pw)) (6.h5)
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An Example - The Hilbert Transform:

Assume the input is real, B(W) = I and A(w) = sgnw where

sgnW= 1 W > 0

=- W < 0

=0 W = 0 (6.46)

then

R ( ) = R(w)sgnw

x ( ) = X(w)sgnw

31ni (t) j f(t .~~..(X (w,)sgnw - JR(W) sgnWo

n

= F(Lw)sgnw (6.48)

or

f- jF(w)sgnw (6.49)

since

J sgnW (6.50)

then the output ,)f the cascaded chirp transform system is

f(t) = f( d,

I

| ,.

L a



PART 3

EXP9EIMENTAL

3.1 Signal Processing with the SAW Separated-Medium Acoustoelectric

Convolver

Convolver Structure and Behavior:

The convolver structure utilized in the experiments can be

seen in Figure 3.1. A piezoelectric LiNbO delay line crystal was mounted
3

on a ground plane. At both ends, on the top surface of the delay line,

are interdigital transducers used to transform the electrical input sit-gnathi

into propagating surface waves on the crystal surface. When signals a-re

applied to both transducers, the generated surface waves propagate toward

one another. Waves are also generated that propagate towards the closest

edges, but the wax intentionally put on these ends behaves as an excellent

acoustic absorber so that little acoustic energy is reflected from these

ends. (As a matter of fact, the major troublesome reflection in this

device is the'triple-transit echo' obtained when a surface wave reflects

once from each of the two transducers. This, however, is usually suppressed

by mismatching the transducers.) The transducers utilized for these devices

(deposited photolithographically onto the delay line surface) had five

finger pairs where each finger was spaced betweetn centters by a half wave-

length corresponding to the transducr centtr frequency. For this number

of fingers the bandwidth of the transducer is aliut twenty percent ef its

center frequency (i.e. a 20% percentage bandwidth). Since the devices

used had center frequencies of 115 Mhz and 230 Mhz, this means that the

device bandwidths were about 23 Mhz and h6 Mhz, respectively, about these

frequencies. All transducers were matched to 50 Q2, at their center fre-

quencies, by a single inductor. Sincr, the transducers were designed tc
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be 50 at center frequency, no transforming networks were required. The

non-linear interaction between the two surface waves, that is required in

order to obtain the convolution, is obtained by placing a slice of semi-

conductor close enough to the delay line surface so as to be influenced

noticeably by the surface wave electric fields. The semiconductor used

was 40 Q-cm n-type silicon. The silicon was highly polished and then

sliced to size so as to cover most of the distance between the two trans-

ducers, when placed onto the delay line, and to encompass the entire beam

width (which is 108 times the acoustic wavelength at center frequency for

a 50 0 transducer). A more or less uniform air gap (adequate for most of

the work done here) could be obtained by simply placing the polished side

of the silicon in contact with the delay line surface and applying pressure

along its length. The 1000 to 2000 angstrom gap is obtained as a result of

surface imperfections on the two contacting materials, which prevents a

complete and intimate contact along the entire length of the semiconductor.

The back side of the silicon was coated with silver conducting paint which

played the part of the constant potentiel or averaging contact that

essentially averages out the potential variations over the entire surface

of the silicon. Those potential variations that are constant or vary very

little over space, such as the potential arising due to the interaction of

the charge density modulation due to one surface wave with the electric

field of the other contrapropagating wave, will produce large averages

and dominate the output potential over the contact defitied by the silver

conductive paint. The silver paint on the silicon back surface also

served as a bond to hold onto the output wire connection. Fine wires were

bonded to the pads of the interdigital transducers aIso by using this
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conductive paint. All connections were made through feed throughs

through the walls of the milled aluminum container used to house, support

and shield the entire convolver structure. The input inductors were

housed in separate chambers beneath the device and all connections to

the outside world were made through BNC or OSM connectors. The protective

milled aluminum container also supported the silicon pressure structure

that consisted of foam supported on a plastic slab the same size as the

semiconductor. This plastic slab is pressed against the semiconductor

(see Figure 3.1) by set screws firmly set within a plastic cover that is

bolted to the aluminum casing. Aluminum covers are bolted onto the top

and bottom of the finished device so that the entire unit is shielded

from outside interference. (Internally, this totally enclosed structure

takes on the characteristics of a waveguide.) The convolver gap uniformity

is adjusted by selectively changing the pressure exerted by the set screws

on the silicon. With an impulse applied to one convolver input and a

continuous tone applied to the other, the output convolution will essen-

tially represent a uniformity scan of the device, so that pressure can be

dynamically adjusted until this output becomes fairly Lonstant.

Typical separated-medium convolvers are shown in Figures 3.2a

and 3.2b. Figures 3.3a, 3.3b and 3.3c show the autoconvolution outputs

obtained using such a device when the inputs are both single square waves,

double square waves and five pulse square waves, respectively. The single

pulses must produce a triangle as they do in the second trace of Figure

3.3a. The third trace in this picture is one of the delayed outputs from

the transducer at the opposite end to which it was applied. Note that

the two pulses produce three peaks and the five pulses produce nine peaks



Figure 3.1: The Si-on-LiNbO3 SAW separated-medium ccnvolver.
(a) The overall convolver structure. Thi:r structure basically

consists of a slice of silicon in close proximity (" 2000 X)
to a LiNbO3 piezoelectric delay line. The evanescent surface
wave fields produce charge bunching within the silicon. The
localized current densities due to the product of the SAW
fields and the modulated charge density inside the silicon
produces a localized potential through the average conduc-
tivity of the silicor. (The charge density modulation due
to the SAW merely perturbs the silicon conductivity.) The
ohmic contact along the back surface of the silicon inte-
grates over the localized potentials. When two SAW's are
launched in counter-propagation, their interaction beneath
the silicon produces a stationary product component of
potential within the semiconductor that does not possess a
spatial carrier variation although it varies in time at
twice the frequency of a single surface wave. This compo-
nent will integrate out to a time varying potential on the
silicon back contact that is the convolution of the
envelopes of the two SAW's on a carrier having twice their
frequencies. The 5.5 pairs of transducer fingers overlap
by about 108 times the center frequency wavelength. This
structure produces a 20% percentage bandwidth and a 50 0
match at th center frequency. (The aluminum is typically
about 2000 A thick.) A series inductor is used to tune out
the inherent transducer capacitance at bandcenter. Wax
damps out the SAW propagating toward the immediate crystal
edge.

(b) A cross-sectional view of the composite convolver structure
including the silicon pressure support structare. Set
screws, in a threaded top plate, press against a plate
whose opposite side is covered by a shoot of foam followed
by waxed paper. This plate pres.es ar lan:t the slice of
silicon through the action of the set screws where the
localized forces are dispersed somewhat by the foam sheet.
The silicon polish d front surface is pressed into close
proximity (< 2000 A) to the LiN')- polished surface.
(Microscopic surface discontinuities prevent a zero gap
between the two surfaces from beinr attained.) The LiNbO3
piezoelectric delay line ir mnnt- upon an aluminum ground
plane that is the floor of' a cavity within a milled aluminum
box.
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Figure 3.2: Packaged SAW convolvers.
(a) Small version having OSM input and output connectors.
(b) Larger version (for the longer crystals used in the

memory work) having BIC input and output connectors.
The interdigital transducer tuning inductors (for tuning
out the transducer capacitance at center frequency) are
contained in isolated cavities beneath the main crystal
cavity all of which are milled into a solid aluminum
block and shielded by top and bottom aluzninum covers.
Both of the devices shovn are 110 *T"hz center frequency
devices having 20% bandwidths. Silicon lengths, and
therefore interaction times, varied; ho.:ever, a typical
3.5 cm-long bO S2-cm slice at the YZ-LiNbO3 velocity of
3h88 m/sec would produce an interaction ti e of about
10 ps. Depending on the application, silicon slices as
long as 7.5 cm were available from 3 inch diameter sili-
con samples. The 20,5 device bandwidths vere obtained by
utilizing 5-1/2 finger pairs on Li.T*.0 3 . ! Tatching of each
transducer to 50 Q for this piezoelectric was obtained by
requiring the interdigital finger overlap to be about 108
times th-. w velength at the center freiiency and using
about 2000 A of alninum for the transducers at a one-to-
one line-to-space ratio. The convolution output was
obtained directly from the back surface of the slice of
silicon by attaching a fine wire, using conductive silver
pain, to this surface. This wire was attached, through a
feedthrough, to the output BNC connector.
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Figure 3.2a

Figure 3.2b
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Figure 3.3: Performance characteristics of the SAW convolver.
(a) Trace 1 shows a 10 volts p-p (5 v/div) 11 Us wide (5 Vs/div)

pulse used as the input to the two input ports of a 110 Mhz
convolver. Both pulses (obtained by splitting) have a 110 Mhz
carrier. Trace 2 shows the 28 my p-p output convolution
(10 mv/div) of the two input pulses. The 6.5 Us before the
start of the convolution is the time required for the two
pulses (applied simultaneously) to meet within the device which
correponds to half the delay between the two input transducers.
Note that, due to the simultaneous propagation of both the

square pulses, the triangular convolution is compressed by a
factor of two, as are all the convolution outputs obtained in
this manner, and is exactly a pulse width wide. This output
is 51 dB down from the input corresponding to an efficiency
(F(d~m) = POUT(dBm) - 2PIN(dBm)) of about -75 dBm (-27 dBm -

48 dBm). Trace 3 shows the 1 volt p-p delayed output
(.5 v/div) of the convolver when it is utilized as a delay
line with the silicon in place. This output, obtained from
one of the convolver input ports, is 13 Us delayed from the
time of application of the pulse to the other input port and
has been attenuated by 20 dB. By studying these results it
can be seen that the interaction region must be at
least 11 ps long so that the 3.8 cm long slice of silicon is
situated about a third of a centimeter from either transducer
(3.8 cm = 3.488 x 105 cm/sec x 11 Us & 1/3 cm = 3.488 x 105
cm/sec x 1 is).

(b) Trace 1: A 6.2 Us wide signal (2 ps/div) consisting of two
spaced pulses of equal width. Trace 2: The compressed-by-
a-factor-of-two convolution of trace 1. The delay of the
convolution for this convolver is about 5.8 .s so that the
device transducers are spaced about 4 cm apart corresponding
to a delay between transducers of 11.6 Us. The silicon must
be at least 2.2 cm long to accommodate the entire convolution.

(c) Trace 1: A 9 Us wide signal (2 ps/div) consisting of 5
equally spaced pulses of equal width (1 jis pulse widths and
spaces). Trace 2: The compressed output convolution of
trace 1. The convolution arises about 7 Us after the signal
so that the transducer spacing for this device is about 5 cm.
The silicon for this device must be At'least 3.14 cm long.
The output in trace 2 has been video detected.
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as they should. In Figure 3.3c the carrier was re:oved coherently from

the output. The output convolution is usually on the order of 50 to 60

dB down from the input level so that a 10 volt peak to peak input pulse

produces millivolts of output. The pulses in these figures are a few

microseconds wide and the overall interaction time of the devices is

10 to 15 microseconds. Note that the factor of two time compression of

the convolution due to contrapropagation of the two waves (only one

signal shifts for the usual convolution) is evident in these pictures.

Convolver Fourier Transformation:

A powerful technique utilizing the SAW separated-medium con-

volver is the performance of a chirp transformation. The technique is

described theoretically in Section 2.5. Figure 3.4 shows a block diagram

of the system where inverse Fourier transformation is also being performed.

As described in Section 2.5, the output transforms are valid only during

specific time intervals due to the finiteness of the convolver time-

changing impulse response. (The time changing response produces the

compression factor.) Due to the output time compression, the Fourier

transforms are modulated by chirps having twice the slope and center fre-

quencies of their input signals and therefore must be inputted into a

higher frequency convolver to perform the inverse transformation, unless

the chirp is mixed to a lower frequency. In any case, after inverse

transformation the original signal is recovered compressed by a factor of

four.

Figures 3.5a to 3.5f show typical output Fourier transforms for

this system.
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Figure 3.4: A block diagram showing the utiliz.ation of SAW convolvers
for Fourier transformation followed by inverse Fourier
transformation. There is a factor of two compression after
every transformation so that the recovered signal upon
inversion is compressed hy four relative to the input. Chirps
are generated using a ramped VCO, doublers and rf mixing
stages. The signals to tho 2nd convo~ver have double the
original carrier frequency and four times the c.hirp slope.
The output aof this convolver has four times the carrier fre-
quency and sixteen times the original chirp sl ope.
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Figure 3.5: Fourier transformation outputs from the convolver-Fourier-
transformation system.
(a) Trace 1: A small input pulse (5 Vis/div). Trace 2: The

sinx/x Fourier transform of trace 1 (.2 ls/div). This
transform was 2 volts p-p (.5 v/div) after amplification.

(b) Trace 1: A positive and negative pulse input signal
(5 ps/div). Trace 2: The Fourier transform of trace 1
(.2 Us/div).

(c) Traces 2, 4 and 6: Small positive and negative pulses
with varying pulse separations (5 Vs/div). Traces 1, 3
and 5: The respective Fourier transforms of traces 2, 4
and 6 (.5 is/div). Note the increase in frequency for

wider pulse spacings.
(d) Traces 2, 4 and 6: A positive and negative, two positive

and two negative thin pulses, respectively (5 lis/div).

Traces 1, 3 and 5: The respective Fourier transforms of
traces 2, 4 and 6 (.5 Vs/div). Traces 1 and 2 correspond to
the cosine and its transform whereas traces 3 and 4 represent
the sine and traces 5 and 6 an inverted cosine. Note the
phase changes in the transforms of this figure.

(e) Trace 1: A five pulse input sequen-e (2 ps/div). Trace 2:
The Fourier transform of trace 1 (.2 is/div). Note that all
these Fourier transforms have not been coherently dechirped
so that the outputs are the magnitudes of the respective
Fourier transforms modulated by chirps whose phase variations
from quadratic are the respective phases of the Fourier trans-
forms. The real and imaginary components of these transforms
can be obtained by mixing the outputs in this figure with in-
phase and quadrature chirps. In this figure, however, all the
signals are real and either symmetric or antisymetric so that
the transforms have only real or imaginary components, respec-

tively. (Also, the real and imaginary Fourier components will
be symmetric and antisymmetric, respectively.) (See Section 2.5.)
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Figure 3.5a shows the Fourier transform of a single 3 Ps wide square

pulse. All these transforms correspond to about 1 Mhz per division.

The exact time to frequency correspondence of the transform is related

by twice the slope of the input chirps (i.e. w = ht + a constant where

2a is the chirp slope). Figure 3.5b shows the transform of a positive

and a negative pulse. If these pulses are made very thin, the transforms

behave as sines and cosines as seen in Figures 3.5c and d. All these

Fourier transformations are chirp modulated so that their envelopes are

the transform magnitudes and the transform phase is phase modulating

the chirp carrier. Phase quadrature chirps could have been used to

separate the real Fourier component from the imaginary component (see

Section 2.5).

Figures 3.6a and b show some filtering results using this

system configuration. In both cases input pulses were added to highly

monochromatic 'noise' and the main spectral peaks of this noise were

gated out of the combined spectrum. This is most clearly demonstrated

in Figure 3.6b where by gating out all but the central portion of the

Fourier transform, the orignal signal is essentially recovered.(compressed

by a factor of four). The input signal is shown on the same time scale as

the output, in this photograph, for comparison. Note that the finite

bandwidth of the system has forced the pulses to look like triangles.

These outputs have been video detected in a low noise narrowband amplifier.

Ambiguity Function Generation:

As discussed in Section 2.2 the convolver can be used to



Figure 3.6: Filtering by time gating of the Fourier trans:fur. in the con-
volver Fourier transformation system.
(a) Trace 1: Two .8 lis wide pulses (i Ws/div) separatei from

one another by about 4.5 ps. Trace P: A 3.3 Mhz sii.e
wave added to the signal given by trace 1. Trace ': The
Fourier transform of trace 2 (.2 ps/div). The cent-a
region of this transform is due primarily to the tw pulses,
whereas the two peaks are due to the 3.3 Mhz signa3. Since
these peaks are situated at ± 3.3 Mhy in the Fourier domain,
then this transform is being displayed on a _-cale f about
.776 Mhz/div. (The frequency scale uf the diisplayed trans-
forms from such a system is dependent on the slope -f the
VCO generated chirp, which is itself dependent on the con-
trolling ramp slope, so that the t ime-to-frequency ccrr -
spondence of the Fourier transforms r.hown in this figa.re
and Fig. 3.5 may all be different :nincc, nc effort wn miade
to match one result with another. Th! , it-ation ioe:IL't arise
when chirps are generated utilizing chirp filters (see
Section 2.4).) Trace 4: The time gate used to retain only
the central portion of the Fourier tranafn,,n in trace 3.
The actual gating is performed by applying both signals to
a mixer or preferably an rf switch (i.e. smaller feedthrough
due to leakage). Trace 5: The inverse transform (1 s/div)
of the gated Fourier transform. N-te that the gating has not
only eliminated the rf but has fi/tenc! the pulses to the
point where they've taken on a tr, azquuiLar appearance. Trace
5 is the factor-of-four compress,( version of trace 1 con-
volved with a sinx/x whose main loLoe is about .59 I's wide
(i.e. 2(4.4)(.776 x i06))-i) since the transform gate is
4.4 divisions wide.

(b) Trace 1: Fourier transform (.5 us/dhv) of the three pulse
signal (2 jis/div) displayed in the upper right quadrant of

the display. Trace 2: The inverse %--ansform of trace 1
(.5 ps/div) shown on an expanded seomle relative to the three
pulse input signal for comparison. 7'rare 3: The Fourier
transform (.5 ]is/div) of the three p-:r e signal with the
addition of a monochromatic noise ,omponent (- 4 Mhz). This
combined signal can be seen with a 2 jim/div scale in the bottom
right quadrant of the display. -race 4: qhe inverse transform

(.5 is/div) of trace 3. Tracc 5: A 1 ated version o, trace 3
where the dominant portion of the noise spectrum and the high
frequency (> 2.4 vhz) por rc- f the three pulse signal
spectrum have been eliminited. rra e 6: Th,. inverse trans-
form of trace 5. The fini 4 e banvlwAdth (_ 6 Mhz) of the low-
noise narrowband amp~i fier at th- -i;put ( f the system pro-
duced the filtered outputs shown in tracer, 2 and 4 whereas
the transform gating improve i t, cei n 1i Crom that given by
trace 4 to that of trace 6.

~i
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Figure 3.6a

-Eit
Figure 3.6b
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Figure 3.7: The block diagram of the system used to generate ambiguity
functions with three-dimensional formats (i.e. amplitude
versus time versus frequency). A 'slow-ramp' is fed to a VCO
whose output frequency is used to modify the center frequency
of the signal whose ambiguity function is desired. The change
in center frequency simulates Doppler shift and the compression
of the signal is ignored (since this is usually negligible).
The ramp is slow enough so that the frequency is essentially
constant over every convolution time interval. The convolver
is performed against an unchanging reference version of the
signal. The successive convolutions are displayed at increments
along the frequency axis by summing them with the slowly varying
ramp. A variation of this scheme would be to use a programmable
synthesizer that is programmed to Jinp a specified frequency
increment bef're each scan time of the oscilloscope and to
generate a stepwise ramp (using a clocked D/A converter, for
instance) as the signal to be summed at the oscilloscope. By
such a technique the frequency and oscilloscope display level
remain constant over each correlation time. Note that an
assymetric signal must be time inverted in order to obtain the
autocorrelation by convolving with the reference.
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generate delay versus Doppler shift functions otherwise known as ambiguity

functions. The essential process is to correlate a signal with a frequency

shifted version of itself and to display the correlations one above the

other spaced linearly in frequency. The reference version of the signal

(whose frequency remains constant) represents the impulse response of a

filter matched to the incoming signal. This referene must be a time

reversed version of the signal, however, only symmetric signals were used

here (except for chirps). To display the ambiguity function for a parti-

cular signal, it is applied, properly timed with the reference, to the

convolver input after its center frequency has been adjusted in accordance

with the slice of the two dimensional (two-variable; frequency vs. time

vs. magnitude) ambiguity function that it is to represent. Figure 3.7

shows a block diagram of the technique used to generate this function.

A slow ramp is used that produces a chirp (using a VCO) whose frequency

remains essentially constant over a single correlation time. The change

in frequency from one correlation Lu the next, however, is not so small

and, therefore, every time the signal is applied to the convolver it has

a different center frequency (i.e. the carrier has changed). An oscillo-

scope is triggered to display every correlation in proper time correspond-

ence with one another. By summing the slow ramp to the scope display and

adjusting vertical gain and horizontal expansion, the two dimensional

ambiguity function is displayed over the entire screen as a three dimen-

sional image. Note, however, that the individual correlati@ns must be

envelope detected before display. The rep rate for an entire frame can

be (but need not be) synchronized to the correlation trtg(er. This rep

rate is dependent on the time duration of the slow ramp and must be fast
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enough to eliminate 'flicker' of the display.

Figures 3.8a and bashow slices of the ambiguity function of a

square pulse. These photographs were obtained by a multiple exposure

technique whereby every correlation is meticulously placed on the

oscilloscope before its picture is taken. (The actual form of the

ambiguity functions shown here are given in equation form in Section 2.2.)

Figures 3.9a and b show the ambiguity functions of square waves for a

single and double input pulse, respectively, using the technique described

in the previous paragraph. This image has the appearance of a continuous

three-dimensional display and can be noted to agree well with the expected

form of the function (Skolnik, 1970)(Rihaczek, 1969). Note that the dis-

plays are essentially 'see through' versions of the function since no

blanking of the correlations is being performed for parts of the signals

that appear to fall behind the ambiguity function. Figures 3.10a and b

show the ambiguity functions for a linear-FM or chirp and a V-chirp,

respectively. Since the shape of the ambiguity function is an indication

of the time and frequency resolving capability of the particular form of

radar signal used, Figure 3.10a shows that the chirp has a fairly constant

resolving capability over the correlation time and Doppler shift interval

represented by the 'knife edge' formation. Tn this case the time and fre-

quency resolution are both good. As seen in Figure 3.9a the square pulse

has much better Doppler (frequency) resolution than range (time) resolu-

tion. The V-chirp, however, shown in Figure 3.10b is seen to be very

selective to a particular time and freauency. Figures 3.lla and b show

the chirp and double pulse ambiguity functions on different scales and

shifted in position on the display. Figure 3.11c shows the single pulse



Figure 3.8: Multiple exposure
square-pulse ambiguity functions
obtained using a SAW convolver.
(a) Trace 1: The autocorrelation
(equivalent to autoconvolution
for a symmetric signal) of the
square pulse without Doppler
shift (i.e. no difference be-
tween the signal and reference

carriers) (1 us/div). Trace 2:
The autocorrelation when the
Doppler frequency shift is equal
to the reciprocal of the pulse
width or .25 MHz (pulse width =
4 us). This corresponds to the
first null of the sinx/x varia-
tion of the ambiguity function
along the frequency axis. Figure 3.8a
Traces 3 to 5: The autocorre-
lation at successive .125 MHz
Doppler shift increments corre-
sponding to successive peaks
and nulls of the sinx/x response
along the frequency axis. Note
that all the ambiguity functions
are displayed in magnitude only,
in all these figures, as is
commonly done in practice. The
magnitude is obtained by passing
the rf modulated convolver out-
puts into an envelope detector
prior to display. Trace 5
corresponds to an overall Doppler
shift of .625 MHz from the 110 MHz
reference carrier frequency of the
4 us wide input signal.
(b) The- autoambiguity function c:
a 5 us square pulse (2 ps/div).
In this case the first sinx/x
null occurs at .2 MHz and each
slice in this multiple exposur,
is spaced 10 KHz from its neirh-
boring slices. The ambiguity
function spans about .6 1M1z
along the Doppler axis.



Figure 3.9: Three-dimensional
square-pulse ambiguity func-
tions obtained using a SAW
convolver (and the system con-
figuration shown in Figure 3.7).

(a) A 5 Ps square pulse auto-
ambiguity function. This
three-dimensional function
is being displayed on a fre-
quency scale of approxi-
mately .2 Mhz/div along the
vertical axis and 1 ps/div
along the horizontal axis.
The amplitude, a function
of the amount of amplifi-
cation following the con-
volver, is being displayed Figure 3.9a
at .5 v/div.

(b) The ambiguity function ob-
tained by convolving a 5 Ps
square pulse reference with
two 5 Ps square pulses
spaced from one another by

5 ps. By proper timing, two
signals whose combined dur-
ation equals twice the inter-
action time of the convolver
can be convolved in this
device without error. If
their combination exceeds
twice the device inter-
action time the convolution
output will be in error.
(i.e. For a symmetric con-
volver with interaction
time T and input signal dur-

ations T1 and T2 , the maximum Figure 3.9b
value of T1 + T2 is 2T.
Furthermore, if T1 + T2 = 2T,
then the signal having a duration of Tq seconds (where T,
must be applied to its input (T2 - T ) ;econd:; before the ] )

second-duration signal is applied to its input in order to obtain
the entire T-second-long convolution without d;tCI'tion.) The
interaction time of this convolver was approxim,-tely 10 os so that
the convolution of the 15 ]s and 5 Os siifnal., r& re;ented the mx-
imum allowable combined signal duration, thereby producin, the
maximum error-free output duratinn of' 10 os ( ,:'ii'). A:- in (a)
the frequency (vertical) axis represents upprox i!htezy . z er
division.
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Figure 3.10: Three dimensional
chirp ambiguity functions.

(a) The autoambiguity function
of a 5 Ws wide linear FM.
Since the frequency scale
is approximately 1 Mhz/div
and the time scale is
1 ps/div, Eq. 2.55 of
Section 2.2 (i.e. the equa-
tion of the line along the
'knife-edge' of this
ambiguity function) gives
a chirp slope of
26 = -R(3 Mhz/5 Ps)
= -2 x 1012. From Eq. 2.56 Figure 3.10a

of that section it is seen
that the ambiguity function
along this 'knife-edge'
describes the triangular
(compressed) convolution

of the 5 vis envelope of
the input chirp. This
ambiguity function is there-
by similar to the function
given in Fig. 3.9a, but
angled in the time-fre-
quency plane with a slope
given by the chirp slope.

Since the input chirp is
asymmetric, its time inverse -

had to be generated in order
to produce this ambiguity

function using a convolver.
(This was accomplished by Figure 3.10b
spectrally inverting the
input chirp so that the
chirp slopes of the two chirps were exactly matched in aiianittile
but of opposite polarity.) For a set Doppler shi!ft the outut from
the convolver is a compressed pulse whose peak pcnition in time i.
a linear function of the Doppler shift.

(b) The autoambiguity function of a 10 pn wi,le V-chirp .. n.Iiv).

The V-chirp consists of a 5 Ps linear incre:u' ni fr-eieiey fi-,ncwel
imediately by a 5 Ps linear decrease in frequency. The s[oe !'or
thi.3 chirp was on the order of 3 x 10-1" r de in :,ic'nItie cc
that thc peak of this ambiguity function is about ._ 1. wide cr
the width of the V-chirp divided by its timle-bndwilith ,rodoet
(i.e. TB - (4.8 Mhz) (i0 ps) = 48). Note that the width (,f" thet
correlation peak in (a) along the time axi r ,Nirutey . - i-,
since the time-bandwidth product of' thi: ')1 .' ut -.

The 'razor-edge' in (a) is theret'ere u . i. wi V.
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Figure 3 ,lla Figure 3.11b Figure 3.llc

Figure 3.11: Other ambiguity function displays.
(a) The autoambiguity function of a linear-FM having a slope

of approximately .12 x 1 0 12 rad/sec
2 , shown with a time

scale of 2 ps/div, a frequency scale of about .2 Mhz/div
and displayed utilizing a slow ramp of slope opposite in
polarity to that used in Fig. 3.10a so that the 'knife-
edge' is angled with slope opposite in polarity to that
of Fig. 3.10a.

(b) The same autoambiguity function displayed in Fig. 3.9b

except that the time scale has been compressed by a
factor of two and the peaks have been shifted upward
along the frequency axis by changing the center frequency
of the 'slow-chirp' used to produce the Doppler shift.
Note that no form of blanking is used in displaying these
three-dimensional functions so that they appear trans-
parent in that structures occurring behind taller struc-
tures tend to show through.

(c) The autoambiguity function of a 5 Ps square pulse (1 s/div)
displayed by modulating the z-axis (intensity) of the
oscilloscope display. The frequency scale is about
.5 Mhz/div. Deviation from ideal symmecry of this display
is a result of non-uniform application of pressure along
the slice of silicon inside the SAW convolver thereby
obtaining a non-uniform interaction along its length. (i.e.
a non-uniform silicon-to-piezoelectric gap width results.)



ambiguity function obtained by z-axis modulation of the oscilloscope

display (the intensity of the beam is controlled instead of its position

on the screen). Figures 3.12a thru f show the ambiguity function for the

square pulse at successive amplitude levels. Note the amplifier satura-

tion in Figures 3.12e and f.

Waveform design can be performed by utilizing the ambiguity

function. Figure 3.13 shows two triangular wave functions that are used

to drive a VCO. When these functions are gated by five pulses (shown as

the second trace) the output of the VCO is five consecutive V-chirps.

Note, however, that one function consists of uniform amplitude triangular

variations, whereas the other shows decreasing and increasing triangular

variation amplitudes. The effect of this slight variation of the ampli-

tude of the VCO controlling function and therefore the slope of the re-

sulting V-chirps on the shape of the resulting ambiguity functions can

be seen by comparing Figures 3.14a to c with Figures 3.15a to c. Figure

3.14a shows the compressed ambiguity function (no frequency axis) for

the uniform function. Comparing this with Figure 3.15a, it can be seen

that the relative peak amplitudes of the ambiguity function have changed.

Figures 3.14b and 3.15b show the respective three-dimensional forms of

these functions. Figures 3.14c and 3.15c show the respective results

when the spacing between pulses has been varied. These results show, in

a simplified way, that dynamic signal design is possible.

The Memory Correlator:

The basic structure of the memory correlator is shown in

Figure 3.16. Essentially this device is the same as the basic convolver,

except that the semiconductor surface facing the delay line contains some
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Figure 3.12: Successive three-dimensional 6 Us-square-pulse ambiguity
functions obtained by successively increasing the amplitude
of the input signal to the convolver (at a constant reference
level).
(a) = 11 dBm input level (= 2.3 vpp).
(b) = 15.4 dBM input level (= 3.7 vpp).
(c) = 18.4 d~m input level (- 5.3 vpp).
(d) = 20.5 dBm input level (- 6.7 vpp).
(e) = 22.3 dBm input level (= 8.3 vpp) with amplifier

saturation.
(f) = 24 dBm input level (= 10 vpp) with amplifier saturation.

All these functions are displayed on a 1 Ps/div time scale,
approximately .2 Mhz/div frequency (Doppler) scale and
.5 v/div amplitude scale.

L _ f
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Figure 3.12a Figure .12b

Figure 3.12c Figure 3.12d

Figure 3.12e Fi- 1 f
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Figure 3.13

Figure 3.13: VCO-control-signal generation for the production of a
symmetric series of V-chirps of different slopes (1 Us/div).
Trace 1: The triangular wave used to generate V-chirps of
constant slope after being gated by trace 2 and applied to
the control terminal of a VCO. Trace 2: The gating signal
whose pulses define the width of the individual V-chirps.
Trace 3: The modified triangular wave that, after being
gated by trace 2, is used to generate V-chirps of varying
slope by application to a VCO.

V



Figure 3.14: The autoam-
biguity function of a
series of five constant
slope V-chirps
(all 1 us/div).

(a) Shown with a com-
pressed frequency axis
(i.e. removal of the
slow ramp from the sum
port of the oscilloscope).

(b) Three-dimensional ambig-
uity function.

(c) The ambiguity function
obtained by using non-
uniform spacings between
V-chirps of different Figu-
widths.

Fig r. • .
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Figure 3.15a

Figure 3.15: The autoam-
biguity function of a
series of five V-chirps
with different slopes
(all 1 Ps/div).

(a) thru (c) are equivalent
to (a) thru (c),
respectively, of i *

Fig. 3.14 except that A "
the V-chirps have dif- 4 . ,
ferent slopes dictated
by the VCO control -.- ' . .
signal of Fig. 3.13
(trace 3 gated by
trace 2). Figure 3.15b

Figurp 3.15c



SUBSTRATE n S

OUTPUT 4 CNTI

TRANSDUCER S L~O RNDCR

GRQOUND PLATE

FIGURE 3 6

Figure 3.16: The structure of the SAW memory correlator. The surface
of the semiconductor facing the piezoelectric delay line

contains a storage mechanism (i.e. diodes or surface states).
Two 115 Mhz transducers are used to perform convolution and
storage whereas two 230 Mhz transducers a'e used for recalling

the signal stored at a spatial frequency of .066 cycles per
micron (i.e. 230 Mhz/3.h88 x 109 ur/see). Whereas the output

of the convolver at the backplate of the semiconductor for two

signals applied to the 115 Mhz transducers is the convolution
of these signals, the stored signal is a spatial version of
their correlatiou (see Section 2.3). Depending upon which

230 Mhz transducer a signal is applied to, the output, due to
the interaction of this signal with the stored spatial dis-
tribution, is either the convolution or the correlation of
the two signals. the igna stred t aspatal requncyof .66 ycle pe
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charge storage mechanism that can be made to react to the surface wave

electric fields. Some preliminary work was done using the surface states

on the silicon surface. The technique adopted in this work to affect

storage consisted of allowing the storage mechanism to integrate the

standing wave pattern produced by the interaction of the two contrapro-

pagating surface waves. Since this pattern is stored at half the wave-

length of the two signals, the reading surface wave must be inputted at

twice the frequency of the two inputs. Therefore, two sets of trans-

ducers were required. For this work the fundamental frequency was

115 Mhz and the reading signal was inputted at 230 Mhz. As discussed in

Section 2.3 this type of storage process stores the correlation of the

two input signals. Depending on which end of the delay line the reading

signal is applied, the output signal from the reading process is either

the convolution or correlation of this correlation with the reading

signal. Figures 3.17a thru d show results of surface state memory. In

all these figures a 5 1s-wide pulse is convolved with itself to produce the

amplifier saturated triangular convolution seen at the start of (a) thru

(c). If the storage mechanism behaves properly, the autocorrelation of the

5 Us pulse is stored along (3.488 x 105)(5 Ps) = 1.744 cm of the silicon

and the 1 Us-wide recall pulse produces a 6 ps-wide convolition with the

stored triangular correlation. Figures 3.17a thru c show that, "ilthough

storage is realized, it does not occur over the entire lenrth of this

silicon sample and last for only about 30 Us. Figure 3.17d shows the stored

convolutio6 from a better sample. The output is about 80db below the input.

In order to increase the storage time, p-n diode vidicon arrays

were then used in place of the semiconductor. These vidicons were pro-

cured from RCA and produced storage times on the order of 10 ms, as seen



Figure 3.17: Surface-state memory.
(a) The triangular convolution of two 5 Ps (115 Mhz) square

pulses is shown saturated at the start of this trace
(5 Ps/div). The small pulse toward the middle of the
trace is the signal obtained by applying a thin pulse
(< 1 Vs) to a 230 Mhz transducer, thereby generating a
surface wave to scan the stored information along the
silicon surface. Since the resultant signal is about
half the width that it should have been, this signifies
that only part of the silicon surface was being utilized
due to some form of non-uniformity. Direct radiative
feedthrough of the input square pulses and the recall
pulse was quite small when these results were obtained.
The distortion seen in the fourth division after the
main convolution can be attributed to self-convolution
due to reflections at the edges of the slice of silicon.
Note that the direct output convolution in division 3 is
due to spatial integration at every point in time
whereas the stored signal (shown recalled in division 6)
is due to temporal integration at every point in space.
It is this duality that causes one interaction to produce
a convolution while the other produces a correlation.
The duality is between time and space and is further
exemplified by the fact that the convolution is a time
function while the correlation is a spatial function.

(b) The same as (a) except that the scale is 10 us/div and
a very long (= 1 ms) recall pulsu wa. used. In this
case the stored signal i3 now essenetially scanning the
wide recall pulse and it can 1,e seen that its effect
decays by a factor of two after aboit 30 us beyond the
main convolution output.

(c) The same decay phenomenon shown in (1) except that three
small consecutive recall pulses have leen used.

(d) A recalled triangular convolution -;cunned by a very thin
pulse from a slice of silicon having a more unif(crm sur-
face state distribution than that ised for the results
of (a) thru (c). This output is about 30 dB down from
the main convolution or 80 dB down fror tie input signals.
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Figure 3.17a

Figure 3.17b

Figure 3.17c

Figure 3.17d
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in Figure 3.18a, where every recalled signal is shown spaced 1 ms apart.

Figure 3.18b shows the uniformity scans obtained using these vidicons.

Due to the back surface etching process that these vidicons always tend

to undergo, it was hard to produce a uniform air gap between these

devices and the delay line. The 2nd trace in Figure 3.18b shows the

uniformity obtained using only a few pressure points at the back surface

of the vidicon. The 3rd trace in this figure shows the uniformity obtained

by using a double row of higher density pressure points. The last trace

was obtained using a triple row of pressure points or 33 pressure points

over the vidicon interaction region. The convolver pressure support

structure was also modified to facilitate the removal of the vidicons

and to eliminate the need for slicing each wafer. The structure used is

shown in Figures 3.19a and b. A thin sheet of silver-conductive-paint

coated copper was placed between the foam and the vidicon so as to make

immediate contact with the vidicon to the outside world without the need

for attaching wires for every vidicon tried. Little difference was

observed in correlator performance and in diode voltage-current behavior

when a gold-chrome ohmic contact was deposited on the back surface of

the vidicons. Note in Figure 3.18b that the uniformity of the interaction

is improved, by this pressure system, only at the expense of the output

amplitude. (The increase in the number of pressure points

increased the damping of the surface waves.) It was felt, however, that,

for signal processing purposes, uniformity was ultimateiy more important

than output amplitude. It is not suggested that such a scheme be

adopted (much better schemes are certainly in use), but that this

represented one form of solution to the non-uniformity pr blem a' hand,
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Figure 3.18a Figure 3.18b

Figure 3.18: PN diode memory correlator performance.
(a) A multiple exposure showing a triangular convolution

being rt:Llled at I ms intervals for an overall 6 dB
decay on the order of 10 ms (I ms/div).

(b) Uniformity scans obtained by eonvolving the long and
short pulses seen in trace ( (5 Jis/div). Trace 2 is
the uniformity resulting when only a single row of'
8 pressure points is used to apply pressure over the
length of the silicon (I lis/div). The uniformity
improves somewhat in trace 3 where a double row of 8
pressure points or 16 points are used. Trace 4 shows
the result of using three rows of eleven or 33 pressure
points over the length of the vidicon. Notice that the
uniformity is quite good but that damping of the surface
waves due to the excessive pressure has decreased the
strength of the overall interaction. (This can be seen
by comparing the noise levels of the different traces.)
These three scans were obtaireA by dynamically adjusting
the pressure at every pressure pint (using set screws)
in the three different support structures having the
above mentioned pressure pui!' densities. These struc-
tures were also designed to fLi'itate the testing of a
wide variety of vidicon stmples.



Figure 3.19: PN diode SAW memory correlator structure (high pressure point
density vereion).
(a) qiree-dimensiuna] view, with ctitaways, of the memory

correlator (approximately 1.5 times actual size and shown
with the vidicon support structure removed from the
package). One end of the LiNbO 3 crystal is shown, thrcigh
the cut-out region of the milled aluminum box, to possess
three 230 Mhz transducers (closest to the end) and three
115 Mhz transducers. The best of the three of each type
of transducer was used. Very little reflections were
noticeable from the unused spare transducers. The 230 Mhz
transducers had to be placed behind the 115 Mhz transducers
since their apertures (108 X) were smaller for the same
impedance value (50 Q) at midband. The transducers were
connected to inductors in cavities beneath the delay line
cavity by using feedthroughs. The vidicon support strur-
ture, shown above the aluminum box, was designed so that
the vidicons need not be diced nor wires bonded onto their
back surfaces thereby simplifying the p;-ocedure for
checking their performance characteristics. This high
density pressure structure was constructed by imbedding
a high density matrix of set screws into an epoxy mixture.
Every set screw applied pressure to a smal] push rod
(shown through pressure structure cutaway ) through a
plastic guide. These rods pressed at localized points
along a silver-conductive-paint-coated copper sheet backed
with foam to somewhat disperse this force. The silver
coated side of the copper sheet in turn contacted the back
of the vidicon which was pressed against the piezoelec-tric
crystal surface. This contact to the -vidicon proved to be
an excellent electrical contact and - gold-chrcone contact
on the back surface of the vidicon was shown not to be
required. When the vidicon and pressure structure were in
place, contact was automatically male oetween th: vidicon
back surface contact and the output BNC through the
incorporation of a pin (shown through cutaway in box) and
socket arrangement. Top and bottom plates could be
attached for device shielding purposes.

(b) A two-dimensional cutaway of the memory correlatr with
the pressure structure and vidicon shown in place. This
is a simplified schematic (i.e. (nly lijr -t-, pressume points
of the 33 are shown) and has not beeni drawn to scale. All
the components described in (a) can t- seen in this drawing.
Note that since there are two oets of transducers, then
there are also two sets of tuning inductors and BNC con-
nectors along with the usual output b ro connector. (Ti (a)
one set of BNC connectors is behind the box.)



07,
co

10

CIO 4n

tn at

0 LL)
Cf. n

0

C 'n

z

Z
CL cc

0

Z
CL CO

0

uj
cc

cn D
0

LL) U-
uj ui

tn

Ix
uj
CL

0

0

CK
L'i

To

Li



Q--

00



thereby allowing some form of useful signal processing to be performed.

The size of the memory output can be inferred by comparing the square pulse

convolution output with the memory output in Figure 3.1'b for surface state

memory. The magnitude of the memory output is related to the strength of

interaction between the second order potential set up by the two inter-

acting surface waves and the charge carriers in the diodes or at the sur-

face of the silicon (for surface states).

Figures 3.20a and b show the memory outputs of a vidicon p-n

diode convolver for a single square wave autoconvolution and a double

square wave autoconvolution. In Figure 3.20a the first trace shows the

input convolution performed eighteen times after which the storea correla-

tion (identical to convolution for symmetric signals) is recalled about

400 ps later. Trace two shows the recalled output displayed above an

input convolution, where, since the reading pulse is fairly wide, the

convolution is seen to be a smoothed version of the actual convolution.

The multiple performance of the convolution, prior to reading, was tried

to see whether the stored signal would be retained any longer. No differ-

ence was noticed from that of a single read in. Figure 3.20b shows the

three peaks of a double pulse convolution. Due to the small size of the

output signal, the noise level is seen to be quite large.

A single square pulse was then loaded into memory using a

scanning impulse. This stored pulse was then correlated by a pulse whose

carrier was changed in increments, so that the ambiguity function, with

memory, could be generated. In this configuration, the memory correlator

behaved as a programmable matched filter. Figues 3.21a and b show a

multiple exposure of the ambiguity function obtained in slices.



Figure 3.20: PN diode memory correiator" pulse (-or:, tjons.
(a) Trace 1: Eighteen - ps square pulse convclutions are

performed (.2 ms/div) after whicl: the stored correlation
is recalled by a 1.5 Ws pulse about 1 .) ms later. Trace
2: An expanded version (5 ujs/div) of the recall pulse
and memory signal seen in (a). The convolution or
corr lation of the 3 us wide triangu-,ular correlation,
stored along the silicon, where the I us recall pulse
produces an output that appears similar to the correla-
tion due co an impulse recalling signal except that it

has a 1 Vs round-off of its peak and 1 us tails (hidden
below the noise). The correlation and convolution of
the stored signal with the recall ign'l obtained by
using the two 230 Mhz transducers (at opposite ends)
produces the same result for symmetric signals. Trace 3:
The input convolutions lined up with the memory signal in
trace 2 for compaison. These convolutions are on the
order of 50 dB below the inputs and the memory signal is
about 80 dB below these input signals. The recall signal

can be seen in trace 2 due to direct radiative feedthrough
from input to output. From this trace it can be seen that
this device had approximately 18 l's of delay between its
two opposite-end 230 Mhz transducers (= 9 us from pulse
center to memory signal center). A slight amount of input
pulse radiative feedthrough can be seen in trace 3 %hich

shows that there is about 15 Ps of delay between the two
115 Mhz input transducers (- 7.5 is from the pulse center
to the convolution peak). No improvement was evident in
the magnitude of storage or its retention by the use of
multiple convolutions before reading.

(b) Trace 1: Double pulse autocornvo3iuticx/autocor,'elution
obtained by first storing two I.5 ujs p.Ises spaced .8 us
apart and then correlating with this st.ored signal by
reading with the same type of signal (seen as radiation
ahead of the memory signal composed of three triangular
pulses). The signa had to be stored using a thin (< 1 ujs)
pulse and two 3.2 us pulses ceparated by 1.6 us due to the
factor of two compression of the stored signal. The read-
ing process does not become cmpressed, however, so that
the output is about 4 lis wide. Trace 2: An envelope
detected version of tract. 1 (2 jis/div).
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Figure 3.20a

Figure 3.20b

AZ



Figure 3.21c is the z-axis modulation technique version of this same

ambiguity function. Figues 3.22a, b and c show different views of the

three-dimensional images of the ambiguity function obtained utilizing the

stored signal as the device impulse response. Although almost buried by

the noise, the square pulse ambiguity function can still be seen. The

small size of this signal resulted from the trade-off between uniformity

and surface wave damping. The form of the ambiguity function is even

more undiscernable when the amplitude is increased by releasing some of

the pressure on the delay line surface since the uniformity is such a

critical factor for proper memory correlation. Figures 3.23a and b are

actual photographs of the memory correlatOr where the top pressure plate

structure has been removed and the double set of transducers are visible

(along with some unconnected spares that were later removed).

Figure 3.24 was included to show that since the stored signal

bandwidth, given by the first plot, is small about its center frequency,

then it is not necessary that there be a Nyquist sampling density of

diodes to store the signal. In other words, the sampling density need

only be high enough to store and recover the signal, not its carrier.

As seen by the last trace in Figure 3.24, depending on the sampling

density used, there are multitude of replicas of the signal spectrum

produced at varying points in frequency that do nnt overlap and therefore

do not interfere with one another. The signals having these spectrums

are the same except for their spatial carrier frequencies. Any one of

these signals (if their spatial periodicities are not to large) can be

recovered by a surface wave matching its spatial -arrier freqeuncy.

Note, however, that much less energy is possessed by any one frequency

band.



Figure 3.21: Square-pulse

autoambiguity function
utilizing a stored pulse
as the reference signal.

(a) A multiple exposure
showing the autoam- A S \
biguity function of a 7V !
5 Ps square pulse ob-
tained by convolving
reference stored AO

along the slice of
silicon (in p-n
diodes) (2 ps/div).

(b) The same as (a) show-
ing only six of the

eleven traces about Ui ':r..

the central peak.

(c) The ambiguity function
displayed by z-axis
(intensity) modula-

tion of the oscillo-
scope display.
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Figure 3.23a

Figur- ).L I

Figure 3.23: Photographs of the memory ?u rrelatcr.
(a) Device with pressure structure removed and displayed so

as to view the individual push rods used to apply pressure
to the back suirface of the vi icn (not shown)

(b) Same device witht ,t t he pressure struct'ire with a'lI the
transducers in pinir. view. Wires are bonned to the trans-
ducers using silvur r'~'iepaint. The black area
beneath the rente-r -f' the LiNl,(, crystal is a hole passirr
through the bo.x 1, failiitatce the illumination of the vidi-
con with light 'it 'ver ity st rage). The upper BNC's are
the 115 Mhz np t:,ho I-ttom I eft and right, FNC's are for
thse 2-10 Mhz reand- ui1 he 1( tt (m r-ent or RNC i s the
devioe o~ut plit



di(!

Figure 3.24: Narrowband sampling. This figure shows the spectrum of the
stored signal due to the finite diode density and, therefore,
the finite number of signal samples. In the present case
each diode is about 10 Pm in diameter with a center to center
spacing of about 12.5 pm. The bandwidth of the stored signal
could be as much as 4O Mhz centered about a center frequency
of 230 Mhz and would be stored as such if the storage medium
were a continuum. (The input signals possess a bandwidth of,
at most, 20 Mhz, however, the stored correlation is (KM::pressed

in space by a factor of two and will be recalled as a time
function compressed by this factor so that its bandwidth is
doubled (or 40 Mhz). The 230 Mhz transducers are 5.5 finger
pair transducers, as are the 115 Mhz transducers, so that
their bandwidths are both 20% or 40 Mhz and 20 Mhz, respec-
tively.) The sto-ed signal is therefore relatively narrow-
band with respect to the 230 Mhz center frequency. A wave-
length on LiNbO3 for 230 Mhz is about 15.2 pm. For the
maximum frequency component of the stored signal (i.e. 250 Mhz)
this corresponds to a wavelength of about 14 1!m. Th Nyquist
sampling rite requires that there be a sample taken at least
once every 7 pm and not once every 12.5 pm as is taken here.
However, this sampling rate assumes that the signal bandwidth
extends to zero which is not the case. As can be seen in the
last plot the sampling at a .4 duty cycle by these diodes
produces spectral replicas of the desired spectrum positioned
at different points in frequency (representing the same base-
band signal on a whole gamut of different carriers), however,
there is no overlap between them. What is more, the ecoired
spectrum at 230 Mhz is still available and is the lar.est,
even though it is supposedly not sampled enough. :t iS
therefore available for correlation or convolution with a
230 Mhz carrier modulated signal. The only obvious pr,3biem
with undersampling a narrowband sional is that more energy
is wasted on the unneeded version.s of the spectrum centered
at other frequencies than for an cver sam.p]ed sij nal since
in the latter case the sinx/x weighting -f the spectrum (du,,
to the finite sample width) would attenuate the )ther spectrums
much more than the desirable spectrum certered about 230 Mhz.
(The other spectrums would all fall beyoni 230 Mhz.) More
energy would have been available if oversampling had been
employed for this work, however, t.Mip techMique has shen that
much simpler diode matrices can be utilized by emnpioying under-
sampling at the expense of a weaker interaotion with the stored
signal at the desired carrier frequency.
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3.2 Signal Processing Using Chirp Filters

Chirp Filter Chirp Transformation:

The system depicted in block diagram form in Figure 3.25a was

set up to perform the Fourier transformation and inverse transformation

processes on an input signal. This process, discussed at length in

Section 2.4, was realized using IMCON devices procured from Andersen

Laboratory (Martin, 1973 and 1976). These dispersive devices possessed

impulse responses with durations on the order of 100 ps and linear fre-

quency dispersions over this duration of about 7 Mhz centered about

15 Mhz. The average loss for these devices was about 20 dB. The chirp

transformation scheme utilized (mainly to conserve on the required number

of devices) was the MCM structure. From Figure 3.25a it can be seen that

this consisted of impulsing one of these devices (all the devices were

identical) and then mixing the resulting impulse response with a carrier

at twice the device center frequency. This mixing process spectrally

inverts the chirp impulse response providing the signal with a chirp

carrier that has a slope that is the negative of the chirp device impulse

response slope. The output of the first device is a chirp modulated

Fourier transform of the signal where the chirp carrier is amplitude

modulated by the Fourier transform magnitude and phase modulated by the

Fourier transform phase. After spectrally inverting the chirp carrier

on the Fourier transform (that may have been modified by mixing with a

gate or some other signal) so as to change the chirp slope polarity, this

transform is inputted into another chirp filter. The output of this

filter, over the valid region defined in Section 2.4, is the complex

conjugate of the system input signal. Since only real signals were used
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in this work (no quadrature terms), then the original signal was obtained.

All the chirp devices used were up-chirp filters.

Figure 3.25b shows the impulse response of one of these chirp

filters in the first trace (20 Vs/div). The following traces show the

resulting output of this device when this impulse is increased successively

in width. For very thin pulses the output resembles the sinx/x Fourier

transform of the signal (2nd trace). Since the chirp filter behaves more

like a Fresnel transformer (see Appendix A) than a Fourier transformer

(the 'impulse' is rf modulated), the output doesn't compress any longer

when the pulse is made wider than trace 3 (as it would if this was a

Fourier transform), but instead, as seen in trace 4, it resembles the

input pulse. Distortion on the order of the 4iwr e

width exists only at the impulse response extremes" which o-.e usuoii'

gated out by purposely imposed gating- functions r by the finite

width of the input signal to be modulotei y thi: chirp. Pitue.

and d are the output sin(x)/x Fourier transforrs. o' an onput s

wave. Figure ?.:5d is an expanded version of Fi r'e .. ')o.

Figure 3.26a again shows the transform of a square pulse input

chovn in the first trace. Figure 3.26b shows the resulting output when

all that has been done is that the chirp slope polarity has been reversed.

In this case the Fresnel transform of the pulse has been obtained.

Figure 3.26c shows the Fourier transform being taken at a high repetition

rate using gating to prevent interference between transforms. The

transform is the center trace of this figure. The other traces are theLI



Figure 3.25: Fourier transformation utilizing the chirp transform technique
and chirp filters.
(a) This block diagram shows the technique for performing a

Fourier transformation, gating this time version of a
frequency function and then performing an inverse Fourier

transformation. The input signal is modulated onto a
chirp that is obtained by spectrally inverting the impulse
response of a SAW chirp filter. The modulated signal is
passed through another chirp filter whose output is the
chirp modulated magnitude of the input signal's Fourier
transform. The chirp modulation deviation from quadratic
phase is the Fourier transform phase. This transform is

gated in time, if filtering is required, and then spectrally
inverted prior to inputting into another chirp filter (since
all the chirp filters are assumed here to be identical).
The output of this last chirp filter is a chirp modulated
and filtere (if gating was performed) version of the input
signal. In the results to follow, all the chirp filters
had impulse responses centered about 15 Mhz with bandwidths
of about 7 Mhz and dispersions on the order of 100 Ps.
These chirp filters were IMCON *iv:.

(b) Trace 1: The impulse response of an IMCON (20 Os/div).
The impulse (shown in the third division) is made to con-
sist of about five cycl- of rf at the center frequency of
the chirp device (i.e. 15 Mhz in this case) which, in this
case, corresponds to a pulse width of about .33 Ps. This
concentrates most of the impulse energy within the passband
of the chirp device. This finite width of the impulse puts
only an imperceptable bow onto the impulue response and
distorts its extremities over about an impulse in width

(see appendices G thru I). The insertion loss for the
IMCONs averages about 20 dB. Since the time-bandwidth
product of these devices is alout 700 (7 Mhz x 100 Ps),
then the impulse undergoes an additional expansion loss of
about 29 dB (i.e. exp. loss = 10 log (TB product)).
Therefore, a 20 v'pp or 30 dBm impulse produces an impulse
response at about a -19 dBm level (i.e. 30 dBm - I.L. -

E.L.) or about 71 mvpp. The initial delay of the impluse
response from the time of application of the impulse to

the point Just beyond the rising portion cf the response

is about 40 ls. Trace 2: The impulse re-ponse of the
IMCON when the impulse is about 1.5 jis wide. In this
case the envelope if the response is approximately L

sinx/x having a main lobe half-width r-iven by the recipro-
cal of the impulse width divided by 7 x 3010 or the device
slope divided by 2Tr (i.e. the device slope - "
(7 Mhz/l00 ls)). From this the main lobe is seen to be
about 20 ps wide. Trace 3: The input to the MCON is a

| iill A
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pulse on the order of 8 us in width and the output envelope
can no longer be approximated by a sinx/x function. Trace
4: The input pulse to the IMCON has been expanded to about
25 Us. Note that the output of the device seems also to be
a pulse on the order of 25 Us in width. In actuality the
chirp filter is performing a Fresnel transform on the envelope
of the input signal (see Appendix A, Eq. A-65 ) that appears
like a Fourier transform for signals of small duration (i.e.
less than the reciprocal of the square root of the device
slope). Note the Fresnel ripples on the output pulse of
trace 4.

(c) The chirp modulated magnitude of the Fourier transform of a
20 Us square pulse (2 is/div). This Fourier transform has
a time-to-frequency correspondence of about 2 Us for every
140 Khz (i.e. 140 Khz = (2 Ps)(7 Mhz/100 Us)). The main lobe
of the sinx/x is given by twice the reciprocal of the pulse
width in terms of frequency or 100 Khz which translates to
about 1.4 Us in time (i.e. 1.4 Us = 100 Khz/7xl0l0 Hz/sec).

(d) An expanded version of (c) (1 us/div). Since the signal was
only 20 Us wide, the Fourier transforms in (c) and (d) were
valid over an 80 Us time interval (i.e. the impulse response
duration minus the signal duration). About 110 sinx/x side-
lobes can be seen over this time interval.

I
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Figure 3.26: Fourier transformation and chirp slope mismatch.
(a) Trace 1: A 10 us square pulse input signal (20 ps/div).

Trace 2: The chirp modulated magnitude of the Fourier
transform of trace 1 (5 Us/div). The chirp modulation
of the transform displayed in this manner always possesses
the phase of the Fourier transform as a deviation from
quadratic. The Fourier transform is shown here centered
below the input signal but, in actuality, if the trans-
form is centered within its valid output time interval
(approximately 100 Ps - 10 Us or 90 ps wide, in this
case), the main lobe of the sinx/x will arise about 50 Us
after the 10 Us square pulse input. The width of the main
lobe in frequency is given by twice the reciprocal of the
input pulse width. Dividing this by the chirp slope pro-
duces a main lobe width of about 2.9 Us (i.e.
2((10 Vs)(7 x 1010))-l). Note that the input square
pulse must be modulated onto a spectrally-inverted chirp-
device impulse response before inpUtting"Lnto a similar
device before this transform can be obtained.

(b) The input signal is the same, in this case, as it is in
(a) except that the chirp modulation, arising as the
impulse response of a chirp device, has not been spectrally
inverted before mixing with the baseband square pulse.
Trace 1: The 10 ps square pulse (20 ps/div). Trace 2:
The output of a chirp filter (5 Us/div) when the non-
spectrally inverted chirp-modulated signal in trace 1 is
its input. Since the chirp modulation on the input signal
is the same as the chirp device impulse response, correla-
tion between the two chirps is not achieved and the result-
ant output is a chirp modulated version of a Fresnel trans-
form (see Appendix A) that is valid over the same time
interval over which the Fourier transform in (a) is valid.
Note, however, that the width of this Fresnel transform
does not correspond with the Fresnel transforms of Fig.
3.25b for the same input pulse width (which would look
more like a compressed sinx/x as can be extrapolated from
this figure). This is due to the fact that a Fresnel
transform is a function of two parameters, time and chirp
slope (see Appendix A). The Fourier transform is only a
function of time in a chirp transformation system which
is related linearly to frequency through the chirp slope.
Fourier transforms obtained using systems with differing
slopes are time scaled versions of one another. The
Fresnel transform can be obtained by inputting an rf
modulated signal (Fig. 3.25b) or chirp modulated signals
of any slope into a chirp device; however, the resultant
Fresnel transforms are all different and, therefore,
functions of the chirp slope. As a matter of fact, the
Fourier transform can be visualized as a special case of
this process for which the Fresnel transform when the
input modulation and the chirp device slopes are of
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opposite polarity and equal magnitude. This is true since
the Fresnel transform of a signal is the Fourier transform
of the chirp modulated signal where the slope of the chirp,
in this case, is the sum of the slopes of the chirp modula-
tion and impulse response of the chirp device.

(c) This figure shows traces consisting of transforms obtained
in a continuous transformation system whereby a continuous
signal is transformed a piece at a time thereby producing a
continuous series of transforms and not the transform of
the entire signal (which is impossible to do if the signal
was of infinite duration since, if such a technique was
available, an infinite amount of time would be required
before the transform could be obtained and the signal would
have to be cut off somewhere inevitably). The signal, in
this case, is a constant DC level and only trace 3 is the
Fourier transform stream of this signal consisting of sinx/x's
due to the finite 50 Us segments of the chirp modulated DC
that can be transformed at each time. The slope of the chirp
modulations in all the other traces have been purposely mis-
matched from the device impulse response slope so that Fresnel
transforms have been obtained. The traces above trace 3 have
greater chirp modulation slopes and those below have lesser
slopes than that required for Fourier transformation (i.e.
the negative of the device slope). The technique for per-
forming continuous transformation is covered elsewhere.

*1m
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result of making the input chirp modulation slope successively larger

(top 3 traces) and smaller (bottom 3 traces) than the chirp device

slope.

Figure 3.27a shows the Fourier transform real and imaginary

components for the signal (a code) whose Fourier transform components

have been calculated using a computer FFT. This photograph was included

so that the accuracy with which a chirp transformation can be taken can

be assessed. Note that every little variation is essentially reproduced

by the chirp transform system. Figure 3.27b shows the Fourier trans-

forms of one, two, three and four pulses in the four traces shown.

Figures 3.28, 3.29 and 3.30 show expanded versions of the two, three

and four pulse Fourier transforms, respectively. The signals at the

top right of the transforms in Figures 3.32c to f are the corresponding

input signals for the transform directly below it. Figures 3.33a to c

show the Fourier transform of a low frequency (= 3 Mhz) carrier-

modulated seven-bit Barker code summed with a sine wave, a square wave

and a sawtooth wave, respectively. The top two traces in each figure

are the input signal added to a low frequency version of these inten-

tional 'noises' and the transform of this combination. The 3rd trace

in each figure is the summation of the carrier modulated code plus the

'noise' having a fundamental frequency of the order of the signal carrier.

Note the richness of the harmonics for the square wave and sawtooth

wave. The signal transform remains unchanged from transform to trans-

form. The signal sideband at the left of every trace is smaller than

the one on the right since it is outside the valid region of Fourier

trans formation.

..................... ..... .. .. ...... ......
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Figure 3.27: Chirp system
Fourier transformations.

(a) Trace 1: The real component
of the Fourier transform of
the 13-bit code. This
component (2 ps/div) com-
pares extremely well with
the computer generated
real component.
Trace 2: The imaginary
component of the Fourier . , . _=I

transform of the 13-bit
code. The component
(2 us/div) compares
extremely well with the
computer generated imag-
inary component. Figure 3.27a

(b) Square pulse chirp-modu-
lated Fourier transforms
(Magnitude - transform
magnitude and quadratic
phase deviation - trans-
form phase) (2 ps/div).
Trace 1: Fourier transform
of a single 6 Us pulse.
Trace 2: Fourier transform
of two 6 Us pulses separa-
ted by 6 Vs. Trace 3:
Fourier transform of three
consecutive 6 Us pulses
spaced 6 Us apart.
Traced 4: Fourier transform
of four consecutive 6 Us
pulses spaced 6 Us apart.
These transforms are all
weighted by the magnitude
of trace 1 whose main lobe
is defined by an individual
6 Us pulse width to be about
4.8 Us wide. The central
lobe of each of these trans- Figure 3.27b
forms (in frequency) is
given by twice the recip-
rocal of the overall signal
width which is divided by the chirp siope ',x il I~ ,brain
their widths in time. Since the sifna:; are d ,,
in width, then these central lobes are .os, 1., ! rind
.68 Us wide, respectively, as can be seen in thi2 Ii' .
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Fi gure 3. 28a

Fi ,ur , .28b

Figure 3.28: The chirp-modulhted Fourier- transform of two 6 s wide

square pulses separati 1,y 6 bjs.
(a) 2 Os/div
(b) . FIj s/ . , 'rt
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Figure 3.29a

Figure 3.29b

Figure 3.29: The chirp-modulatedi Fourier transform of three consecutive
6 pS wide square piil r. ; paced 6 ws apart.
(a) 2 Ps/div
(b) .5 lis/div

See Fig. 3.27b, tr',; .
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Figure 3.30: The chirp-.:- .. r , rm of four consecutive
6 is wide ou,':. *: c L s apart.

(a) 2 .s/,i-
(b) .5 Vsliv

See Fil. r
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Figure 3.31: Chirp transformations of special functions.
(a) Trace 1: A single cycle raised cosine approximately

7 Vs wide (10 ps/div). Trace 2: The chirp-modulated
Fourier transform of trace 1. The width, in frequency,
of the main lobe of this transform is four times the
reciprocal of the width of the raised cosine. Dividing
by the chirp slope (7 x 1010 Hz/sec, not 28 = 27(7 x 1010)
rad/sec) gives an 8 ps main lobe (10 ps/div).

(b) Trace 1: A 5 ps wide positive pulse and a 5 ps wide
negative pulse with no space between the two. Trace 2:
The chirp-modulated Fourier transform of trace 1. This
transform arises by squaring the transform of Fig. 3.26a
and multiplying this by jf or jt/7xl0 I0 , where t = 0
is the center of the main lobe. This is true since the
square of the sin/x transform of a square pulse is the
transform of the autoconvolution of this square pulse.
The signal of trace 1 is the derivative of this con-
volution so its transform is the convolution's trans-
form ((sinx/x) 2 ) multiplied by jf (10 ps/div).

(c) Trace 1: A 5 jis wide positive pulse and a 5 ws wide
negative pulse spaced a small distance apart. Trace 2:
The chirp-modulated Fourier transform of trace 1. This
transform is the product of jf and two sinx/x's whose
main lobes are slightly larger and smaller, respectively,
than the sinx/x of Fig. 3.26a, since the signal of
trace 1 is the derivative of the convolution of two
pulses whose widths are slightly smaller and larger,
respectively, than the pulse in trace 1 of Fig. 3.26g
by half the spacing between the pulses in trace I of
this figure (10 ps/div).

(d) Trace 1: An approximation of a Gaussian pulse (10 ps/div).

Trace 2: The chirp-modulated Fourier transform of trace 1
(2 Ps/div). Note that the transform looks like the input
signal. This is true since the Fourier transform of a
Gaussian pulse is also Gaussian in shape.
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Figure 3.31a

Figure 3.31b
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Figure 3.32: Chirp transformations of pulse sequences.

(a) Trace 1: Two .4 us pulses separated by "7.2 Ps (2 ,is/div).
Trace 2: The chirp-modulated Fourier transform of (a)

(2 Ps/div). This is a sinx/x moudlated cosine. The
width of a single cycle of this cosine is given by the
reciprocal of half the spacing between the pulses in
trace 1 or about 380 Khz. Dividing by the chirp device
slope (in Hz/sec) gives a width of about .4 ps. The
width of the main lobe of the sinx/x weighting of this
transform is given by twice the reciprocal of a pulse
width of about 71 Ps. Since the display shows only
about one quarter of this main lobe, the cosine varies
in height by only about 10% over this portion of the

transform. If the two positive pulses were ideally

infinitesimally thin in trace 1, the transform would

be an unweighted cosine over the valid output time
interval. Trace 3: The same as trace 1 except that
one of the pulses has been made into a negative pulse
(2 ps/div). Trace 4: The same as trace 2 except this
time the transform is a sinx/x weighted sine. A cycle
width is the same as in trace 2 (2 Vs/div). Trace 5:

Two negative pulses having the same dimensions as the
signal of trace 1 (2 s/div). Trace 6: The chirp-
modulated Fourier transform of trace 5 which, in this
case, is a sinx/x weighted cosine of identical appear-
ance to trace 2 but 1800 out of phase (i.e. a negative
cosine)(2 ps/div).

(b) Trace 1: (Upper left partial trace.) Two 1.5 Ps
pulses separated by about 8 ps. Whereas pulse spacing
to pulse width in (a) was about 18 in this figure, it
is only about 5.3 so that the sinx/x weighting over
the cosine transform will be more dramatic (10 ps/div).
Trace 2: The sinx/x weighted cosine chirp-modulated
Fourier transform of trace 1 (2 Ps/div). The main
lobe of the sinx/x is about 19 Ps wide (i.e.
2((1.5 Ps)(7 x 1010))-l). A single cycle of the cosine
is about 3.6 ps wide (i.e. l/((4 ls)(7 x 1010))). The
Fourier transform for two impulses spaced 2to seconds

about the time origin would be cos(2nfto). Trace 3:
(Inset) A negative and positive pulse having the same
form as trace 1 (10 Ps/div). Trace 4: The chirp-
modulated Fourier transform of trace 3. This is the
sine version of trace 2 (2 ps/div). Bottom trace: An
envelope detected version of trace 4 (5 ps/div).
Left bottom inset: Same as the bottom trace except
on a 10 ps/div scale. Right bottom inset: Sane as
trace 4 except on a 10 ps/div scale. Right bottom

inset: Same as trace 4 except on a 10 ps/div scale.

(c) Trace 1: (Upper right inset) A 6 ps square pulse

(20 Ps/div). Trace 2: The chirp-modulated Fourier

. ...... . .. . ... :' ' ,..-, ' '.4 4
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transform of trace 1. The main lobe of this transform is about

5 ps wide (i.e. 2((6 Ps)(7 x 1010))
-l) (1 s/div).

Trace 3: (Lower right inset) A five pulse sequence (20 Ps/div).
Trace It: The chirp-modulated Fourier transform of trace 3
(1 Ps/div).

(d) Trace 1: (Upper right inset) A two pulse sequence (20 Is/div).
Trace 2: The chirp-modulated Fourier transform of trace 1 (20 ps/div).
Trace 3: (Lower right inset) A six pulse sequence (20 ls/div).
Trace 4: The chirp-modulated Fourier transform of trace 3 (1 ps/div).
Note the absence of a DC component.

(e) Trace 1: (Upper right inset) A three pulse sequence (20 ps/div).
Trace 2: The chirp-modulated Fourier transform of trace 1 (1 ps/div).
Trace 3: (Lower right inset) A seven pulse sequence (20 us/div.)
Trace 4: The chirp-modulated Fourier transform of trace 3 (1 ps/div).
Any asymmetry in the transforms is a result of feedthrough through
the spectrally inverting mixers. Since all the chirp devices
utilized are the same, this feed-through produces a small Fresnel
transform that can destroy the symmetry in an otherwise symmetric
Fourier transform. The mixer feedthrough can be quite large when
mixers are heavily drive.

(f) Trace 1: (Upper right inset) A four pulse sequence (20 ps/div).
Trace 2: The chirp-modulated Fourier transform of trace 1 (1 ps/div).
Note the asymmetry due to Fresnel distortion as discussed in (e).
(Some distortion, however, may be attributable to slight mismatches
between the impulse responses of the chirp devices used to generate
the Fourier transforms.) Trace 3: (Lower right inset) An eight pulse
sequence (20 ls/div). Trace 4: The chirp-modulated Fourier trans-
form of trace 3 (1 lis/div). Note that if the 14 negative pulses had
been equal in size to the 4 positive pulses in trace 3, then there
should not have been a DC component. Essentially, the central lobe
of trace 2 should have diminished and split into two lobes smaller
than its own sidelobes when the additional opposite-polarity pulses
were added to the sequence. Due to an imbalance in the pulse
generating circuitry, however, this did not occur and a small sin/x
due to the additional DC component was summed with the desired trans-
form.
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Figure 3.32a

Figure 3.32b

FIu'e 3.32b

_ _ _ _ _ _ _ _ _ _ _
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Figure 3.32d

Figure 3.32e

.
~Figure 3.32?
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Figure 3.33: Chirp transformations of a carrier-Ymdulated seven-bit
Barker code with pure waveform jaimers.

(a) Trace 1: The 2.65 Mhz carrier-modulated seven-bit V
Barker code with a 275 Khz sine-wave jammer at about
three times the code carrier peak to peak amplitude
(5 ps/div). Trace 2: Th- chirp-modulated Fourier
transform of trace 1 (10 us/div). The 275 Khz jammer 10
components can be seen to be localized at 275 K'hz/7xl0 10

Hz/sec - 3.9 us on either side of DC. (Third and fifth
harmonic components are also visible at 7.8 Us intervals
probably resulting from slight input signal saturation.)
The positive and negative Barker code spectrums are seen
to be situated 2.65 Mhz/7xl0I0 Hz/sec = 38 Us on either
side of DC. Since the input signal is about 50 Us in
duration, only about 50 Us is available for accurate
output Fouri er transformation. Therefore only about
half of the transform in trace 2 can be accurate. in
this figure (and the following two figures) only tie
right portion of the transforms was tuned by adjusting
the center frequency of the input chirp modulation. Thus
the difference between the positive and negative Barker
code spectrums is due to this selective tuning. Expanded
versions of the two spectrums when both have been tuned
can be seen in Fig. 3.49a. Trace 3: The same as trace 1
except that the jamming sine-wave frequency has been
increased to 3.1 Mhz (5 Us/div). Trace 4: The same as
trace 2 except that the jammer sine-wave component at
275 Khz or 3.9 Us has moved to 3.1 Mhz or 3.1 Mhz/7xlO0
Hz/sec = 44 Us on either side of DC (10 Vs/div). Note
that (a), (b) and (c) of this figure show explicitly that
although the jammers become an integral part of the signal,
there is potential for their removal since their energy
becomes localized upon Fourier transformation and can be
gated from the desired signal transform (usually along
with the elimination of negligible portions of the
desired transform).

(b) Trace 1: The 2.65 Mhz carrier-modiated seven-bit Barker
code with an 85 Khz square-wave jammer (5 is/div). Trace
2: The chirp-modulated Fourier transform of trace 1
(10 us/div). The square-wave jammer is rich in harmonic
components with a fundamental 85 Khz/7x101 0 = 1.2 Us on
either side of DC. Trace 3: Same as trace 1 except with
a square-wave jammer frequency of 3.05 Mhz (5 us/div).
Note that the beat frequency is about 200 Khz or half the
difference between the code carrier and fundamental jammer
frequencies. Trace 4: The same as trace 2 except that
the Jammer square-wave fundamental component at 85 Khz
or 1.2 Us has moved to 3.05 Mhz or 3.05 Mhz/7xlO0 Hz/sec =
4.36 us on either side of DC (10 ps/div). Note that the

t
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square wave transform in trace 2 possesses only odd harmonics.
(c) Trace 1: The 265 Mhz carrier-modulated seven-bit Barker code

with 160 Khz saw-tooth wave Jammer (5 us/div). Trace 2: The
chirp-modulated Fourier transform of trace 1 (10 js/div). The
fundamental component of the saw-tooth jammer is located 160 Khz
or 160 Khz/Txl010 Hz/sec = 2.3 Ps on either side of DC. Note
that the saw-tooth has both even and odd harmonics. Trace 3:
The same as trace 1 except with a saw-tooth frequency of
1.15 Mhz (5 us/div). Trace 4: The same as trace 2 except that
the Jammer saw-tooth fundamental component at 160 Khz or 2.3 us
has moved to 1.15 Mhz or 1.15 Mhz/7xl0 0 Hz/sec 16.5 Ps on
either side of DC (10 Is/div).
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Mixer carrier feed through can lead to appreciable distortions

in the transform domain. Figure 3.34a shows a code and its Fourier

transform. Trace 3 is the inverse transform which appears to be a filtered

version of the input. As discussed in Section 2.4, however, this signal,

being purely real, must have a purely symmetric magnitude spectrum.

Figure 3.?4b shows the proper spectrum. The distortion in

Figure 3.34a was caused by the Fresnel transform of the signal due to

leak-through of the original modulating chirp when it was being spectrally

inverted. In this way two signals were effectively applied to the con-

volving chirp filter. These two signals, having opposite slopes, produce

a Fourier and a Fresnel transform concurrently. Both transforms, when

properly tuned, will inverse transform back to the original signal after

spectral inversion and application to the second chirp filter. Therefore,

the original signal in Figure 3.34a was recovered althcugh the transform

seemed wrong. Figure 3.34c shows a 255 bit P-N code, its Fourier trans-

form and its inverse transform also exhibiting slight transform distortion

which is usually dominated by mixer leak-through when the chirp devices

in the system are all the same and mixers are driven heavily.

Figure 3.35a shows a signal that was picked up by an acoustic

receiver where every pulse represents the reflection of an acoustic impulse
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Figure 3.34: Chirp transformation with zero/one codes.

(a) Trace 1: A 13-bit zero/one code (5 ps/div). Trace 2:

The chirp-modulated Fourier transform of trace I

(2 Is/div). This transform is highly asymmetric due

to mixer feedthrough producing a Fesnel transform of

the code at the same time as the Fourier transform, but

of smaller size. The main lobe of this transform is

2((2.1 Ps)(7xl0I 0 Hz/sec))-1 = 13.6 Us wide since a
single code bit is about 2.1 l's wide. Trace 3: The

inverse transform of trace 2. In this case the output

was optimized so that the inverse Fourier and Fresnel

transforms coincided thereby producing a filtered (due

to time limiting of the transform) version of the

input signal.
(b) Trace 1: (Upper left inset) The same code as in trace 1

of (a) except of different size (5 Us/div) and inputted

into a chirp system of slope 10 ffhz/30 us 
= 3.33 x 1011

Hz/sec. One bit is .98 us wide. Trace 2: The chirp-
modulated Fourier transform of trace 1 (2 ps/div). The

main lobe is 2((.98 vs)(3.33 x 1011 Hz/sec))
-2 = 6.1 Us

wide since a code bit is .98 s wide. Trace 3: The

same as trace 2 except on a .5 Ps/div scale.

(c) Trace 1: A 255-bit zero/one pseudo-random code (10 Vs/div).

A single bit is .12 Us wide. Trace 2: The chirp-modulated
Fourier transform of trace 1 (20 Us/div). This output is
accurate for over 70 us (the chirp device impulse response
width minus the code width). The main lobe of this trans-
form is about 238 Us wide (i.e. 2(.12 Us)(7xlOlO Hz/sec))- I )

so that only about one-third of the transform is obtained.

The DC component. of this code is quite prominent. In
order to enhance the information that is contained in
the main lobe, the component has been saturated down
to the level of its nearent sidelobes.

Trace 3: The inverse transform cf trace 2 (10 Us/div).
Even though only about a third (70 us) of the main lobe of
the Fourier transform (238 s) was available (the remaining
approximately 60 us of the 130 us long correlation was

gated out). As can be seen in tb , tr'ice, the ,

is just about readable. Furthermore, there is enough
information in the sidelobes and remaining portion of the
central lobe of the sinx/x due to the DC level in the code
that the DC level in the inverse transform has not changed
very much from its value at the input. The effect of
saturating the DC component becomes more prominent as the

codes become extremely long, so that the sinx/x due to the

DC portion compresses more and more about the DC point of
the transform. Such long codes, however, could not be
transformed utilizing the same system oonfilruratioA and
devices used to transform the code in trace 1.

..................- ,'..-..........•,,7JiZK, %: '. t.T....
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from objects in a water tank. The 2nd trace is the Fourier transform of

this signal and the 3rd trace is the inverse transform of this. Note

that since the transform of the signal had to be cut off prematurely,

the fast pulses end up oscillating a bit when the inverse transform is

obtained. Figure 3.35b demonstrates the existence of the Fresnel

transform of the signal that always exists at the same time as the

Fourier transform, for a chirp transformation system, but at a different

location in the frequency spectrum. As the center frequency of the chirp,

modulating the input signal, is changed, a different portion of the

Fourier transform is seen. However, as the Fourier transform of the sig-

nal shifts in one direction, the Fresnel transform of this signal shifts

in the other. Every trace in Figure 3.35b represents an approximate

5 Mhz of transform shift toward the left. The central traces have been

magnified so that the sidelobe structure is evident. By the 6th trace

the Fresnel transform has almost shifted into view within the valid trans-

form time interval. The sidelobe structure in trace 5 is due more to the

Fresnel transform, at this point, than the Fourier. Figure 3.35c demon-

strates how a wide bandwidth signal transform can be observed. The first

trace shows a narrowband version of the signal transform. When the time

signal is compressed so that its transform cannot be viewed all at once

within the output time interval, the transform can be viewed in slices

by varying the center frequency of the input chirp modulation. Traces

2 to 4 each show one third of the transform seen in the first trace

obtained by varying this center frequency.

Figure 3.36a demonstrates the delay insensitivity of the

Fourier transform. In this figure the input square pulse is delayed by
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Figure 3.35: The chirp transform of a pulse-echo return and its inverse
along with some chirp system characteristics.
(a) Trace 1: A pulse-echo return from an ultrasonic-

nondestructive testing system (2 ps/div). (Unless
specified otherwise, the input signal is typically
shown to be modulated by the input pre-multiplying
chirp.) Trace 2: The chirp-modulated Fourier trans-

form. Since a typical pulse is about .2 Vs wide,
the main lobe of this transform is about 2((.2 us) x

(Mx10 0 Hz/sec))-I = 143 Ps wide. Since about 80 ps
of the transform is valid, then more than half of the
main lobe is being displayed. The portions of the
transform more than 40 Ps away from DC may look similar
to the rest of the transform, but they are the result
of transforming a continually decreasing portion of the
signal that eventually shrinks to zero about 60 lis away
from DC. Trace 3: The inverse transform of trace 2
(2 Ps/div). Note that utilizing only about half cf the
transform main lobe produces oscillations where none
previously existed.

(b) The simultaneous existence of a Fresnel transform with
the Fourier transform is demonstrated to exist even in
a system consisting of ideal components. This Fresnel
transform is centered at a different position along the
output time axis from the Fourier transform. The dis-
tance between the two transforms is linearly dependent
upon the chirp device center frequency. At baseband
t,t. e two t -"'sf'o'm .. ..... - . .,t hi.-Y I
device center frequencies the main portion of the Fresnel
transform is far away from the Fourier transform and
therefore does not appear within the finite valid output
time interval when the center of the Fourier transform
is within this interval. However, since all input sig-
nals are of finite length, there will always be high
frequency components of the Fresnel transform within this
interval although they may be quite negligible. In this
figure all the traces are displayed on a scale of 20 us/div.
The input to the chirp transform system is a 10 s pulse
(20 Ps/div) seen as an inset in the top left of the figure.
In order to demonstrate the existence of the Fresnel trans-
form, the Fourier transform of this square pulse is shifted
to the left by changing the center frequency of the input

chirp modulation. When the Fourier transform shifts to the
left, the Fresnel transform will shift to the right. The
two transforms cross outside the valid output time interval
and then the Fresnel transform appears. Traces 3 and h

show expanded portions of the sidelobes of the Fourier
transform. Traces 5 and 6, however, are dominated by the
sidelobes of the Fresnel transform. The transform to
which the sidelobes belong is evident since the sidelobes
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decrease with increasing transform shift and then increase
as the Fresnel transform begins o dominate. The Fresnel
transform appears in the last two traces.

(c) This figurc demonstrateo the display X.f a transform (,f

duration longer than the output valid Lime interval. Trace
1 shows the Fourier transform of frur widely and evenly
spaced square pulses (20 Ils/div). In this case the pulses
are about .35 ps wide and spaced about 1.8 ps apart. Traces
2 to h show the chirp-modulated Fourier transform of the
same signal after it has been compressed by a factor of four.

Since the transform of such a signal is four times longer
than the transform of trace 1, it must be displayed in slices.
This has been done in traces 2 thru 4 where the center
frequency of the input modulation is adjusted for the desired
portion of the transform to be displayed. Trace 2 shows the
central region of the transform (20 ps/div) corresponding to
the portion of the transform in trace 1 within the central
two divisions. Traces 3 and h show the rightmost and leftmost
portions of this transform, respectively.
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about 10 ps in every other trace, yet the magnitude of the Fourier trans-

form remains stationary and of the soune appearance, as it should. Figure

3.36b, on the other hand, demonstrates the converse of Figure 3.36a. In

this case a delayed Fourier transform produces a stationary function.

The carrier frequency of the signal is changed to affect a specific shift

of the Fourier transform. Likewise, the chirp carriers of the Fourier

transforms in Figure 3.36a change their center frequencies as the input

signal shifts in time. Carrier frequency shifts, in both cases, represent

signal or transform phase changes and therefore do not effect magnitude.

Figure 3.36c demonstrates the summation of two signals. When the two

input signals in traces 1 and 3 are summed, the signal in trace 5 is

obtained. Likewise, the summation of their transforms will produce the

transform given in the final trace. Figure M-5 corresponds to this

situation.

Figures 3.37a, b and c demonstrate how well a chirp transform

system can be made to filter a signal by time gating in the Fourier

domain. Figure 3.37a shows three small input pulses in the first trace

and the same signal after passage through the chirp transform system in

the 2nd trace. In the third trace monochromatic noise or Jammer has been

added to the signal. The detected inverse Fourier transform with the

noise is seen in trace 4. Trace 5 is the Fourier transform of the com-

bined signal, where it can be seen that the noise has been localized and

seems to dominate the spectrum. However, when the central portion of

this transform is all that is inverse transformed, then a low pass filtered

version of the signal, without the Jammer, Is obtained. Figure 3.37b shows

this same situation for wider input pulses. Figure 3.37c shows a contrived

.. ._ *; v... -
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Figure 3.36: Chirp transformation results demonstrating some Fourier
properties.
(a) Traces 1, 3, 5 and 7: A successively delayed 10 jis

wide square pulse (10 ps/div). Traces 2, 4, 6 and 8:
The chirp-modulated Fourier transforms of traces 1, 3,
5 and 7, respectively (10 s/div). These results
demonstrate the insensitivity of the magnitude of the
Fourier transform to signal delay. Only the phase of
each successive transform changes with signal delay
change and is seen as a change iii the center frequency
of the output chirp modulation.

(b) Traces 1, 3, 5 and 7: A 10 Vis wide square pulse with
successive incremental change of the center frequency
of its chirp modulation (10 Ls/iiv). Traces 2, 4, 6
and 8: The chirp modulated Fourier transforms of
traces 1, 3, 5 and 7, respectively (10 ps/div). These
results demonstrate the converse of (a) in that a delay
of the Fourier transform produces nothing more than a
change in the signaL rf carrier frequency. In (a) the
delay of the signal and in (b) the deJay of the trans-
for is 60 Ps or more than half the total dispersion of
the chirp devices (1 100 lis). The center frequencies
of the transform in (a) and the signal in (b) change
by about 4.2 Mhz over the 60 lis range of delay. The
effect of the change in the chirp modulation center
frequency of the input signal in (b) on its Fourier
transform is the samte effect utilized to allow the dis-
play of any desired portion of the transform and is
demonstrated in Fig. 3.35c. It is a consequence of the
Fourier shifting theorem.

(c) This 1'inure d:Iepo:t at  ".;:If:' c, tiom . nrce : w
5i's positive pulses separated by r) it:; K i . ":,: l'o
modulated Fourier tr-an;1c'rm oI tr:icc i t ', /li\'). Trn ce -,: A it,-ative
5 ps pulse and a positive 5 p:, vatce set:: :1, e " by l ",S il:/,iv).
Trace 4: The chirp-modulated eourier trn:; tfl ! trance i (', is/div).
Trace 5: The sum of traces 1 rind i's ,i . 'Pr:w,, t): 'th" ;u o
traces 2 and ) (5 pls/div) ut i lizinK I wo i hle t. ic <'hirl cystes and the
same input chirp modulations. Note, th:itIn . 'ni,,c I ins 'ra in trnce
6 obtained by summiing the trn tXo I'lI;:. ill Ill ic: 'i I,1 " it cx lected
transforms for a sig7nal ,,liven by trae, ' t h, o' " tr rtes 1 .!ld . i

the input time origin is sett, ti l, ' nter' , t '!,, I lt " trace I, theni
the transform of this s1i -!tV "iA e y . . • no . l i ,t,hsln

transform of trace '; has only art i p!;ic:. "  sent,. Titerefto'e 1-ince the
pulse of trace )i is offset, ' ,iith, ti?,w i' i ., it wi'l h v , I rt :,e l Fourier
component given by trace i and the mat1', fIe " t 1 I';Sf'0i'm Will be Ilte

sinx/x gyiven in trace 6. NeI, t't I he 1::. ' 2't.m' -, vc ill tra-el;:
and )I possess phasc iunadi'atnre chil, i' lr irc :" h i ' i t, deviation from

quadratic) since one traitst'orm is pitv ro.le whI io t tlic' is t,1ti'ely

imaginary. The devintioll ftrn hoitlca i ' t1" ,I cti'p i';etti llct ini
trace 6 is given by the irive':,, L it;n' V I :, r'tl i, I'V t(i-', N t 'trace
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Figure 3.37: Filtering by the time Kating of "hirp 1,ent-rated Fourier
transforms.
(a) Trace 1: Three chirp-modulated iip ,it jl u ',ch af,,:t

2 11s wide (20 06/div). Trac, 2: T1,i. ,,nwtiope-dEterteo
inverse transformation of the chivp-tmonerated transforma-
tion of trace 1 (20 lis/div). Trace j: The same as trace
1 with the addition of a monochromatic (sine wave) 364 nz
Jammer (20 Ps/div). Trace 4: The envelope-detected inverse
transformation of the chirp-generated Fourier transform of
trace 3 (20 lis/div). Trace 5: The chirl-molulated Fourier
transform of trace 3 (2 ps/div). The 364 Khz/7x10I 0 Hz/sec
5.2 vs on either side of DC. "race 6: The time gate used
to low pass filter the signal and eliminate the bulk of the
jammer (2 ps/div). Trace 7: The envelope-detected inverse
transformation of trace 5 gated ly trace 6 (20 lis/div). The
gating of the Fourier transform has eliminated the janmer
almost completely and smoothed out the pulses due to the
low pass filtering.

(b) This figure is identical to (a) except that wider pulses
of different widths were used as the input.

(c) Trace I (consistinr of four consecutive insets): Inset I
is the input signal consisting of two 1 Vs pulses
(10 lPs/div). Inset, 2 is the chirp-modulated Fourier
transform of inset 1 (20 Is/div). inset 3 is the chirp-

modulated Fourier transform of a 750 Khz square wave
gated to 6 cycles (20 ps/div). Inset 4 is the combination
of the six -ycle q;quare wave and tho double pulse (10 jn/div).
Trace 2: The chirp-modulatedl Fourier transform of the signal
given by inset 4 of trace I (i.e. the six cyc] square wave
plus the two pulses)(5 Ps/div). 'T'race ': The (nvelope-
detected inverse transformation of tra-e 2 (2 Hjs/div). Note
the contrived similarity between the transform and its
inverse. Trace 4: A timt iate used to pick off only the
two large lobes of tht, Fouri'r' transfi rm in trace 2
(5 Vis/div). Trace '): The l.tcri-rm ,,f trace 2 fated by
trace 4 (5 Its/div). Trace 6: 'Pho envelope-detected
inverse transformation of trac 5 (2 r:/,iv'. Trace 7: A
time gate used to pick off only 1h- e ejttr, l nine lobes of
the Fourier transform in trace 2 (5 i:;/div). Trace 8:
The transform of trace 2 pated by trace 7 (5 Vus/div).
Trace 9: The envelope-detected inverse transformation of
trace 8 (2 ps/div). N ce that the r-,tontion of only the
two large transform peaks (with ! few sidelohes) produces
a signal having twelve peaks, which is a filtered version
of the magnitude of the input satiare wave. Retention of
only the nine central lobes of thc trns',rm, however,
produces a signal (the inverse trannorm) ,hat is essen-
tially a filtered version -f the twc inptit, pulses. This
form of signal wac used to demonct rat , tl. chirp-
transformation time-patinp ilterini- tcchnique due to its
particular characterijstic, wh,,r'dy t,C jcstt prirtion of
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the transform appears to produce a version of the ungated
portion upon inverse transformation. Note that only the
square wave fundamental component is utilized so that it
becomes essentially a sine wave upon inverse transformation.
Functions having the above property, whereby the function
appears to remain unchanged upon Fourier and inverse trans-
formation, are created by the summation of a real symmetric
signal and a baseband version of its transform. This
technique was approximated in this figure and is possible
due to the symmetry property of Fourier transformation,
whereby the performance of two consecutive Fourier trans-
formations recovers a symmetric signal (time-inverted if
the signal is asymmetric).

A _ __ _
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signal that behaves like the center of the unfiltered signal. When the

gate in trace 6 is used to only allow the central portion of the trans-

form through, then the resulting signal upon inverse transformation

appears to be the end lobes of the original signal. The actual input

signal used to generate this transform consisted of two pulses summed

with a smaller amplitude six cycle square wave. The two filtering steps,

in a sense, separated the two functions.

Figures 3.38a, b and c demonstrate filtering using a realistic

reflection return. Figure 3.38a shows the actual signal in the 1st

trace, its transform in the 2nd trace and its inverse transform in the

3rd trace. Figure 3.38b shows this same situation where an overwhelming

amount of monochromatic noise has been added. Note in the second trace

that the noise spikes now dominate the spectrum to the point where the

signal spectrum can hardly be seen. Figure 3.38 c shows the inverse

transform after the noise spikes have been selectively gated from the

spectrum. Note that the signal has been greatly improved by the gating

process to the point where most of the tiny reflections can now be seen

again. (The position of the output with respect to the input is irrelevant

in these photographs, since they do not normally coincide due to the chirp

system delays. An attempt to keep these signals lined up for these

pictures failed for the final trace of Figure 3.38c, which can be seen

shifted to the right by one division.) Note in the final trace of

Figure 3.38c that a pulse appears at the point defining the start of the

noise. This arises since such a discontinuity is rich in harmonics and

a small gating pulse cannot be expected to eliminate much of its spectral

energy from thi Fourier transform.
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Figure 3.38: Chirp-transformation filtering of pulse-echo returns by
time gating.
(a) Trace 1: A 20 Us long pulse-echo return obtained from

an ultrasonic non-destructive testing system (2 Us/div).
Trace 2: The chirp-modulated Fourier transform of trace
1 (20 Vs/div). This is about half of the main lobe of

the transform defined by twice the inverse of the smallest
pulse width. The transform is accurate over at least
80 Us and is gated to 80 Us prior to inversion. Trace 3:
The inverse transformation of trace 2 (2 ps/div). Oscilla-
tions after each pulse are the result of the filtering due

to the finite bandwidth of the system corresponding directly
to that portion of the transform displayed in trace 2.

(b) This figure is the same as (a) except that a monochromatic
noise source was included at the input to the chirp system.
The noise is a 1.82 Mhz rf. Trace i: The pulse-echo

reflections plus the 1.82 Mhz rf 'noise'. Note that the
echoes have essrntially been obliterated (I ps/div). Trace
2: The chirp-modulated Fourier transform of trace 1

(10 ps/div). The noise peaks dominate the transform and
are located 1.82 Mhz/7xlO 0 I}z/sec = 26 Us to either side
of DC. Trace 3: The inverse transformation of trace 2.

(c) Gating is utilized in this figure to recover the original
signal. Trace 1: The reflections plus the 1.82 Mhz
noise (2 ps/div). Trace 2: The chirp-modulated Fourier
transform of trace 1 (10 uis/div). Trace 3: A time gate
used to eliminate the transform lobes due to the noise

source (10 Us/div). Trace 4: The inverse transformation
of trace 2 gated by trace 3 (2 ps/div). Note that the
original signal is essentially recovered. The trace in
this figure has been shifted one division to the right
with respect to trace 1. Note also that due to the wide-

band nature of the rising edge of the noise the gate was
not so effective in eliminating this portion.
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Figures 3.39a and b compare the Fourier transform of a square

pulse with the Fresnel transform of the same signal. In Figure 3.39b

the pulse is increased in width from the first trace to the last. Note

in this figure that the Fresnel transform appears much like the Fourier

transform for small pulses (Fourier left, Fresnel right). The Fourier

transform continues to compress, however, while the Fresnel transform

expands. Fresnel ripples can be seen on the Fresnel transform in

Figure 3.39a. (A detailed documentation of the Fresnel transform has

been derived and included in Appendix A.) The reason for an interest in

the Fresnel transform is two-fold. First of all, the chirp filter

possesses an input-output relationship that is essentially a Fresnel

transform. Since this is the case, a detailed knowledge of Fresnel

analysis could lead to a chirp filter system analysis procedure based

upon use of this transform in a manner similar to the way the Fourier

transform has become so important in system analysis. Secondly, there

are times when the Fresnel implementation of a specific function repre-

sents a savings over using a Fourier transform to do the same thing. A

lot is said about this in Section 2.4, where it was mentioned that signal

time inversion could be performed using either transform. If only the

time inversion function is required, then there is no need in obtaining

the Fourier transform since none of the special properties of this form

of the signal are to be utilized. As discussed in Section 2.4, time

inversion essentially involves two repeated Fourier transforms or a

second Fresnel transformation after a double chirp multiplication. In

this section it was also found that time inversion of a signal using

the Fourier transform also required a double chirp mixing process due to
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the special properties of the spectral inversion process and the inherent

difference between a chirp system designed to use an up-chirp device

compared to one using a down-chirp device. Since,however, the Fresnel

transform scheme does not require a synchronization between multiplying

chirps, it is the simplest to implement. Figures 3.4 0a and b show the

two methods for obtaining the Fresnel transform of a signal and its

inverse using, in one case, only chirp filters and, in the other, only

convolvers, and, in both, only chirps of the same slope. Figures 3.4la

and b show the two possible Fresnel time complementation schemes. In

one case, all devices are the same and, in the other, an opposite slope

device is used saving a mixing and filtering step. Figures 3.42a and b

show some actual results utilizing the scheme in Figure 3.41a. Trace 1

of Figure 3.42a is a 255 bit pseudo-random (PN) code. The second trace

of this figure is a time inverted portion of the first part of this code

obtained by modulating only this portion of the Fresnel transform of the

code (since a continuous signal can be continually Fresnel transformed)

by the doubly sloped chirp. (The chirp has twice the slope of the chirp

filters.) The remaining traces in this figure show the time inversion of

successive slices of the signal. Figure 3.42b shows the time inversion

of an isolated code in proper time relationship in the first two traces

and expanded and re-oriented in the second two traces. Bandwidth limita-

tions produce the rippling effect since the input rise times are very

fast.

kI
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FIGURE 3-400

Figure 3.h0: Fresnel transformation block diagrams.

(a) Fresnel transformation and inversion using chirp filters.
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f4-- et p  Cos (2At + Atc.

2U 4

Cos t) Si-on-LiNbO 3

Convolver (Ia center freq.)

Si-on- LiNbO 3  (w center freq.)
Convolver

f(4t)cos(2wt)

Fig;ure 3.40: Fresnel transormation block diagrams.

(b) Fresnel transformation and inversion using Si-on-LiNbO3
convolvers. In both cases a spectral inversion is
required prior to the second device before the inverse
Fresnel transformation can be performed since devices
having identical slopes are being used. Note that since
the output of a convolver is compressed by a factor of
two, then a chirp with double the center frequency and
four times the slope of the input chirp is required for
the second device. Also, the output of the system is
compressed by a factor of four.
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Figure 3.41: Time complementation schemes utilizing Fresnel transformation.
(a) Fresnel time complementation (inversion) using identically

sloped chirp devices.
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(b) Fresnel time complementation using oppositely sloped chirp

devices. This scheme eliminates a filter and a spectra

inversion. In any case, the Fresnel transform of the
signal must be multiplied by a doubly sloped chirp prior
to inverse transformation to obtain a time inverted version
of the input signal. Furthermore, since narrowband signals
correlate principally with a small portion of the chirp
device impulse response centered about the center frequency
of the input carrier, then the Fresnel transformation can
be performed on a continuous basis with very little dis-
tortion resulting from the finite duration of the impulse
response. (See Eq. 4.86 of Part III.) Because of this,
any portion of the input signal can be selectively time
inverted by simply mixing the proper portion of the
Fresnel transform (to which there exist a one-to-one
correspondence with the input signal) with the doubly
sloped chirp that is derived by impulsing a chirp device
at the proper time and doubling the resulting impulse
response.
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Figure 3.
42a Figure 3.42b

Figure 3.42: Time complementation results utilizing the Fresnel trans-
formation technique.
(a) Trace 1: A repeating 255-bit zero/one pseudo-random

code (20 ps/div) modulated onto a 15 Mhz carrier for
inputting into the time complementing system. Trace
2: The time complemented version of approximately the
first 30 Ps of the code in trace 1. Traces 3, 4, 5 and
6: Successive time-complemented portions of the code
in trace 1 (20 lis/div). The successive portions were
obtained by delaying the impulse to the chirp device
used to produce the doubly-sloped chirp.

(b) Trace 1: A zero/one code (20 lis/div). Trace 2: The
time complemented version of trace 1 (20 lis/div). Trace

43: An expanded version of trace 1 ( 4 Vs/div
(uncalibrated)). Trace 4: An expanded version of trace
2 (= 4 Ps/div (uncalibrated)). Non-uniformity of the
impulse response amplitudes of the chirp devices, phase

distortions in these devices, mixer intermods and finite
bandwidth restrictions all lead to the type of distortions
seen on the time complemented output in trace 4.

r , . . .. . .. . . . .. . . . . . .. . .i , , k . - "" i . ':
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3.3 SAW Receivers Utilizing Chirp Transformation

A receiver configuration that takes the Fourier transform of

the incoming signal so that spectral modifications can be made (see

Section 2.6 on Spectrum Modifications) and then inverse transforms this

prior to matched filtering in a SAW convolver, is depicted in Figure

3.43a. All the processes involved in such a receiver have already been

demonstrated and very little is to be gained by showing the response of

such a receiver. A more versatile receiver can be realized by performing

the matched filtering in the Fourier domain. That is, if the signal

spectrum were to be multiplied by the spectrum of the impulse response of

the matched filter (i.e. its transfer function), then, upon inverse trans-

formation, the desired correlation is obtained. In this way a convolver

is not required. The detailed receiver structure is shown in Figure

3.43b. In order to obtain the output correlation of the input signal

that is the same as the output from a filter matched to this signal, a

time reversed version of the signal is required. In this case, the

incoming signal with noise is transformed and its spectrum modified, if

it be so desired. The time reversed signal is also transf rmed and this

is mixed (actually a pure multiplier should be used here as will be seen)

with the received signal spectrum. The product is then inverse trans-

formed and the correlation obtained. Figures 3.44a thru f demonstrate

the behavior of Just such a system. In this case a 255 bit PN code was

used as the signal and reference. The reference was generated time

reversed. These can be seen in traces 1 and 2 of Figure 3.1ha. Traces

3 and 4 are their respective transforms, trace 5 is their product and

trace 6 is the resulting correlation obtained by inverse transforming
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Figure 3.43: SAW receivrs incorporating chirp trnsformtion.

(a) A SAW receiver utilizing chirp transformation 
for

time-domain filtering and a convolver for matched it

filtering. The signal and noise are Fourier trans-

formed, weighted and then inverse transformed using .

chirp devices. The transform weighting can involve

simply the removal of a Jamming component by gating.

After the signal is inverse transformed, it is con-
volved with its time complemented version (i.e.

correlated).
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Figure 3.1i3: SAW receivers incorporating chirp transformation.

(b) A SAW receiver whereby correlation is performed in
the Fourier domain. The signal (plus noise) and its
time complemented version are individually Fourier
transformed. The two transforms are multiplied
together after the signal transform has undergone
weighting. The inverse transformation of this product
is the desired correlation. Since the chirp slope is
doubled, when the two transforms are multiplied, this
product must be mixed with a spectrally-inverted chirp
prior to inverse transformation.

k0 PAS
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the product. Figure 3.45b is the same thing with the last four traces

expanded. In these figures all the last four traces were lined up.

Figure 3.44c, however, shows the signals with their proper time rela-

tionships. The correlation spike is spaced the same distance from the

DC transform spikes as they are from the center of the signals. There

is an important thing to note here. Since these codes are not plus and

minus one as is required for PN correlation (see Appendix M for the

corresponding plot), the output correlation spike would normally emerge

on a pedestal. However, to the trained eye, trace 5 of Figure 3.44b has

undoubtedly been allowed to saturate. This saturation has essentially

eliminated most of the DC level in the zero to one input codes so that r
the output correlation appears as though the ccdes had been plus and

minus one's. The correlation spike is shown expanded in Figure 3.44d.

Figures 3.44e and f show results equivalent to Figures 3.44a and c

except that one of the codes has been summed to a sawtooth wave. Note

that although the spectrum of this signal is now reaping in harmonics,

the .correlation output has not been overly harmed by the process. Thus

the power of the matched filtering process is demonstrated.

Still another improvement can be made. As mentioned in

Section 2.4, the reference signal need not be intentional time inverted.

If the transform of the same signal as the expected signal to be received

by the system is mixed by an rf and the sum term is retained by high pass

filtering, then, when this transform is multiplied by the received signal

spectrum, there will be a product term representing the product of the

signal spectrum and the complex conjugated reference spectrum. This is

depicted as a complex conjugation process in Figure 3.45. Figures
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Figure 3.44: Performance of a product-of-transforms correlating receiver
where the correlation Is performed in the Fourier domain by
multlplying the aslpnIl t.rnnsfor, with the transform of its
time complement.
(a) Trace 1: A 255-bit zero/one pseudo-random code (5 ps/div).

Trace 2: The time complement of trace 1 (5 ps/div). Trace
3: The chirp-modulated Fourier transform of trace 1
(5 us/div). Trace 4: The chirp-modulated Fourier trans-
form of trace 2 (5 lis/div). Trace 5: The product of
traces 3 and 4 (5 ls/div). Trace 6: The chirp-modulated
inverse transform of trace 5 or the autocorrelation of
trace 1 (5 ps/div). The saturation of the DC spike in ik
trace 5 has essentially produced the autocorrelation of a
plus/minus (not zero/one) 255-bit pseudo-random code.

(b) Traces 1 and 2: The same as traces 1 and 2, respectively,
of (a). Traces 2 thru 6: The same as traces ? thru 6,
respectively, of (a) except on a .5 ps/div scale.

(c) This figure displays the same signals shown in (a) except
that they are being displayed in proper time perspective
(20 ps/div all). The transform main lobes in traces 3
and 4 can be seen to arise about 60 ps from the input
signal centers. The autocorretaLion spike in the last
trace arises about 75 ps after these transforms.

(d) The autocorrelation spike (.5 vis/div).
(e) This figure is identical to (a) except that the pseudo-

random code in trace I of (a) has been corrupted by a
160 Khz saw-tooth signal whose Fourier components can be
seen on either side of the main lobe of the signal trans-
form (the fundamental about 2.3 ps to either side of DC).
The correlation in trace 6 has changed very little due to
this corruption of the sigin-il. little hint of the
existence of the saw-tooth Fourer components can be seen
in the product transform of trace 5.

(f) This figure is the same as (,-) except that the signals
are being displayed in proper time perspective (20 ps/div
all). It should be noted thtat tne correlation is undoubt-
edly heavily distorted since the transform multiplication
is being performed using a mixer. This device does not
produce a linear multiplication unless one of its inputs
is always under saturation. This cannot occur in the
performance of the transform product. (See Fig. 3.64.)
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Figure 3.45: The block diagram of a product-of-transform system utilizing
complex conjugation thereby eliminating the need to generate
the time complement of the input signal. The same signal
expected at the input to the receiver is also used as the
reference signal. This signal is Fourier transformed and
then mixed with an rf and filtered prior to the multiplication

with the received signal's transform. This process effectively
complex conjugates the reference signal's transform thereby
producing the Fourier transform of a time complemented version
of this reference.
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3.46a to n demonstrate how well a correlating receiver of this type

performs the desired correlation. Figure 3.46a shows an input square

pulse and the output triangular correlation obtained. Figure 3.46b

shows this same correlation after it has been coherently dechirped

since the correlation is obtained on a chirped carrier. Figures 2.36 c

thru n are correlations of different types of square pulse inputs.

Figures 3.L'Ta thru e demonstrate further the correlating ability of

the system. Here is a sequence of ambiguity functions obtained for

a !;quare pulse :i- this ,;ystem. The different figures .;how the same

function ori oii'!'t-rerit cae , Ic

Fic-ure: *. %,ithru f show the correlations obtained for a

,-,even bit 'arker code sequence. FiFure 3.h8a shows the input Barker

code modulated by a low frequency carrier (relative to the chirp

filter center frequency) and the output correlation. Figure 3.4 b

shows the correlation and its envelope obtained by coherently detectingt

the output using a chirp and low pass filtering. Figure 3.i8e shows

his on a different scale. Figure 3.b8d shows the correlation only

partially detected by removing only the quadratic phase variation.

Figure 3.hf shows the output detected correlation for a positive

bit (where every 7 bit Barker code is a hit of a signal) in the

first trace and a negative bit in the second trace. Trace 3 is the

output when the bits are allowed to change at a Kilohertz rate.

Figure .%Rc shows the correlation when the input is shifted from

pius and minus one (first trace) to zero and one (last trace). The

upper and l ower ci-debanLds of this carrier modulated code are :shown in

Figure I. hga where it. is -,een that this center lob~e comnares- w,'
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Figure 3.h6: Autocorrelations obtained using the product-of-transforms
correlating receiver. The same uncorrupted si.gnal is used

for both the input signal and the reference.
(a) Trace 1. A 16 Ps wide square pulse (10 Ps/div). The

chirp-modulated autocorrelation of trace 1 obtained by
passing the product of the signal transform and complex-
conjugated reference transform through a chirp filter

(< 10 Ps/div uncalibrated).
(b) The same as (a) except that the autocorrelation has been

coherently dechirped leaving only an rf carrier.
(c) Trace 1: A 5.6 Ps square pulse (10 Ps/div). Trace 2:

The autocorrelation of trace 1 obtained by inverse
transformation of a product of transforms as are all the
remaining autocorrelations in this figure (10 ws/div).

(d) Trace 1: A 1, -1 pulse train (10 ps/div). Trace 2:
The autocorrelation of trace 1 (10 ps/div).

(e) Trace 1: A 1, -1, 1 pulse train (10 Vs/div). Trace 2:
The autocorrelation of trace 1 (10 ps/div).

(f) Trace 1: A 1, -1, 1, -1 pulse train (10 ps/div). Trace
2: The autocorrelation of trace 1 (10 Ps/div).

(g) Trace 1: A 1, -1, 1, -1, 1 pulse train (10 Ps/div).
Trace 2: The autocorrelation of trace 1 (10 ps/div).

(h) Trace 1: A 1, -1, 1, -1, 1, -1 pulse train (10 ps/div).
Trace 2: The autocorrelation of trace 1 (10 ls/div).

(i) Trace 1: A 1, 0, 1 pulse train (10 us/div). Trace 2:
The autocorrelation of trace 1 (10 Ps/div).

(j) Trace 1: A 1, 0, 1, 0, 1 pulse train (10 vs/div).
Trace 2: The autocorrelation of trace 1 (10 ps/div).

(k) Trace 1: A 1, 0, 1, 0, 1, 0, 1 pulse train (10 ps/div).
Trace 2: The autocorrelation of trace 1 (10 ps/div).

(1) Trace 1: A 1, 0, 1, -1, 0, -1 pulse train (10 Ws/div).
Trace 2: The autocorrelation of trace 1 (10 Js/div).
Trace 3: A 1, -1, 0, 0, 1, -1 pulse train (10 Ps/div).
Trace 4: The autocorrelation of trace 3 (10 Ps/div).

(m) Trace 1: A 1, 0, 1, -1, 0, -1, 1 pulse train (10 Vs/div).
Trace 2: The autocorrelation of trace 1 (10 s/div).
Trace 3: A 1, 0, 1, 0, 1, -1, 1 pulse train (10 ls/div).
Trace 4: The autocorrelation of trace 3 (10 Us/div).

(n) Trace 1: A -1, 0, -1, 1, -1 pulse train (10 lis/div).
Trace 2: The autocorrelation of trace 1 (10 ps/div).
Trace 3: A -1, 0, 0, 1, -1 pulse train (10 ps/div).
Trace 4: The autocorrelation of trace 3 (10 Vis/div).
Note that all thecorrelations are cchip modulated.
Furthermore, since the sum of the input signal duration
and the correlation cannot exceed about 100 us, then
any correlations due to signals greater than about

33 Us wide are not accurate over their entire durations.
For example, the signal in trace 3 of (m) is 40 us wide

so that its correlation should be 80 os wide. However,
due to the finite width (100 Us) of the chirp device
impulse responses, the correlation is accurate over only

60 us.
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Figure 3.46a

Figure 3.46b
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Figure 3.47: Autoambiguity functico1r A- . he product-of-

transforms correlating rco -
(a) thru (e) are autoanbiguity . - ot a 30 lis square

pulse shown on different t:- ,f frequency scales.
(a) 10 Ps/div along the delay cxls (horizontal) and about

28 Khz/div along the D p ! "'Iit (vertical).

(b) 10 ps/div along the dela-, :i : about 37 Khz/div
along the Doppler ax,-i.

(c) 10 ps/div along the dcbit -:about 61 Khz/div
along the Doppler axis.

(d) 10 ps/div along the de la y>x . albout 100 Khz/div
long the Doppler xi

(e) 20 Ps/div along the oie : 37 Khz/div
along the Doppler axv. .,:i:ull of the sinx/x
along the Doppler -,xirs ', : -I: to a frequency given
by the inverse of the p l]s( wi '. it Thout 33 Khz.

4
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Figure 3.48: Seven-bit Barker code correlations obtained using the
product-of-transforms correlating receiver.
(a) Trace 1: (Upper right inset) A 23 us seven-bit Barker

code (5 ps/div). Trace 2: The chirp-modulated auto-
correlation of trace 1 (5 Ps/div). This correlation
is the required 46 Ps in duration with a seven-to-one
main lobe to sidelobe ratio. The 7-bit Barker code in
trace 1 is modulated onto a 2.4 Mhz carrier. Due to
this carrier the transform between the positive and
negative spectrums spans about 68 Ps. Only one of
these spectrums, however, is required to obtain the
correlation if the code is narrowband enough so that
there is little interference between the two.

(b) Trace 1: The chirp-modulated autocorrelation of the
7-bit Barker code (10 Us/div). Trace 2: The coherently
dechirped version of trace 1 (10 ps/div). This correla-
tion has been detected down to baseband.

(c) This figure demonstrates the result of level shifting
the input code. Trace 1: (Upper left inset) The seven-
bit Barker code (50 lis/div). Trace 2: The chirp-
modulated Fourier transform of trace 1 (10 vs/div).
Trace 3: (Middle left inset) The 7-bit Barker code
level shifted so that the positive bits are half the
size of the negative bits (50 jis/div). Trace 4: The
chirp-modulated Fourier transform of trace 3 (10 ps/div).
Trace 5: (Lower left inset) The 7-bit Barker code with
no positive bits (50 ws/div) (fully shifted). Trace 6:
The chirp-modulated Fourier transform of trace 5
(10 Ils/div).

d) Trace 1: The chirp-modulated autocorrelation of the
7-bit Barker code (5 lls/div). Trace 2: The coherently
dechirped version of trae -1 (5 ps/div). The correlation
has been detected by a delayed version of the chirp
modulation producink u carrier-modulatea correlation.
The frequency of the carrier is given by the delay
between the chirps ultiplied by the chirp slope in
Hz/sec (7 x 1010 Hz/sec).

(e) The same as (d) except that the ccrrelation has been
detected to baseband in the second trace.

(f) Trace 1: The coherently dechirped correlation of a
positive 7-bit Barker code (10 Irs/div). Trace 2: The
coherently dechirped correlation of a negative 7-bit
Barker code (10 Ps/div). (Al the code bits have been
inverted or thS carrier-modulated bits have been
shifted by 180 .) Trace 3: The coherently dechirped
correlation of the 7-bit Barker ('ode with the code
polarity being continuously rhrned.
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with the computed transform. Figure 3.9b shows the transform of the

zero-one code.

Figures 3.50a thru f show the intentional addition of mono-

chromatic noise to the signal resulting in varying degrees of distor-

tion to the output correlation. In all these figures the noise spike

is gated from the spectrum and the undistorted correlation is obtained.

Figlures 3.50d to f show small to large noise levels. In Figure .50f

the signal was decreased to increase the effect of the noise. Fit-

ures 3.50a and b show correlation distortion that is a function of

the noise frequency. Figure 3.50c shows spectrum gating and its

effect on the detected correlation output.

Probability of error data was obtained using such a product

of transforms correlating receiver. At first the required Gaussian

noise was obtained by cascading amplifiers. Figure 3.51a shows in

the first trace that this wasn't adequnte. The signal transform fell

near this null in the noise spectrum. Wheni a diode noc cicc uit was

used the spectrum iven by the second truce was obtaine, i. Fitcur i.51b

shows the magnitude non-uniformity 3f' the spectrum analyzer, where con-

stant magnitude tones were used. Figure 3.52a shows the uniformity of

n -.r t r"i,,e fcrm over rtw-hn I  
ooi ut iiTh b tr; at

marker wa: due to i constant magnitude tone. The spacing, betwceen markers

represents half i meahertz. Figure i.52b shows the sig;nal spectrum, the
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Figure 3.50: Filtering by time gating the Fourier transform and its
effect on the output T-bit Barker code correlation. The
Fourier transforms in all these figures and the monochromatic
noise can be seen in Fig. 3.33a, traces 3 and 4. Only one of
the spectrums is utilized for these results (i.e. the positive
spectrum). (a) thru (c) demonstrate the effect on the correla-
tion when the Jamming frequency is varied. (d) thru (f) are
intended to demonstrate the effect of the Jammer for various
strengths of the input signal.
(a) Trace 1: The chirp-modulated Fourier transform of the

7-bit Barker code with the fundamental jammer component
seen to the right of its main lobe (5 Ps/div). Trace 2:
The chirp-modulated autocorrelation of the 7-bit Barker
code (10 ls/div). (The code duration is 23 ps for all
these figures.) Trace 3: The transform of trace I gated
by trace 4 (5 Us/div). Trace 4: The transform time gate
(5 vs/div). Trace 5: The autocorrelation following the
time gating of the transform (10 ujs/div). Note that the
correlation has undoubtedly improved due to the removal
of the Jalmmer fundamental component.

(b) This figure is the same as (a) except that the Jammer

frequency has been increased.
(c) This figure is the same as (a) except for a change in-

jammer frequency, the gating of the fundamental jammer
component along with a parasitic component and the dis-
play of the autocorrelation in its envelope detected

form. The correlation was poorly tuned in this figure.
(d) Trace 1: (Left) The chirp-modulated 7-bit Barker code

Fourier transform positive spectrum (there is a 2.6 Mhz
carrier on the code) (5 ps/div). (Right) The chirp-
modulated autocorrelation of the code (10 us/div).
Trace 2: The same as trace 1 except with the jamm.er.
Trace 3: The same as trace 2 with the Jammer funda-
mental component gated out.

(e) and (f) are the same as (d) except that the signal is
successively decreased in amplitude relative to the
jammer and the gating function is displayed. !ote the
improvement due to gating in each case.
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signal and noise spectrum and just the noise spectrum in the three traces.

The probability of error data obtained using this correlating receiver,

along with level detection and error counting circuitry, is shown in

Figure 3.53. Curve A is the theoretical matched filter curve. Curve P

is the response of this receiver which tends to stay within a half dB of

the ideal curve over a wide range. Curve C was obtained for a jammer to

signal level of about 18 dB. (The error rate was a sensitive function of

the jammer frequency in this case.) Curve D was obtained by gatini' the

jammer from the Fourier transform.

An attempt was made to obtain similar data for a continuous

system. A preliminary continuous Fourier transform system is shown in

Figure 3.54. Essentially, a continuous signal is broken up into two

alternating streams by mixing with two alternating chirp streams. The

individual streams are transformed separately. In this case the trans-

form streams were summed together before being inverse transformed, due

to a lack of chirp devices. Although this led to interference between

adjacent transforms, it was enough to prove the principle at that time.

Figures 3.55a thru f give an indication of the performance of this sys-

tem. Figure 3.55a shows a continuous data stream followed by the twr,

alternating chirp streams, the two alternating transform streams, the

summed transform stream and the inverse transform of this. Figures 3.55b

and c show expanded displays of the input and output for this system.

Figure 3.55c contains a 13 bit code for every bit of the signal. Figure

3.55d shows the different transforms obtained for different slices of

the signal. The output detail can he seen in Figurc .55e wherf, th(' c.de
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Figure 3.53: The probability-of-error pcrformance of the product-of-
transforms correlating receiver. (a) Curve A is for
optimum detection by matched filtering in the presence of
white Gaussian noise. Curve B is the performance of the

correlating receiver in the absence of janing. CurvE C
shows the degradation as a result of a constant jammer level

of lb dB relative to the signal at a signal-to-noise ratio
of about 13 dB. Since the noise was held constant and the

signal decreased to change the signal-to-noise ratio, then
the jaxner-to-signal ratio increased as the signal-to-noise
ratio decreased. For these curves the code carrier was set
at exactly 2 Mhz and the jammer was set at 2.069 Mhz, where
the greatest error seemed to occur. The code length was

28 Ps, the jammer was a constant tone of 3 vpp and 50 s
duration and the noise was kept at a level of .375 URM.
Since the single-sided noise bandwidth was about 6 Mh;,
the noise spectral density was no = (375)2/(50)(6xil 0 °)

4.7xl0 1- 0 joules/hz and the gignal energy per bit E was

given by E = (Vpeak)2(28x10 -)/100 = (2.8xl0-7)(Vpeak)
2

joules where Vpeak is the peak voltagr of the Barker code
and a bit is considered as an entire code. The sig-nal-to-
noise ratio was varied by varying Vpeak. Curve D shows
the result of gating out essentially the main lobe of the

jammer which was about .6 iis wide. The gatinr prCodUie an
appreciable improvement. Note that curve C was obtained
by varying the jammer frequency to produce the grate:st

amount of error while curve D was obtained by varying the
gate position and width to effect the Irc-itest improvement.
Since the Barker code polarity was controled by a 2?hz
pseudo-random code that repeated once every few hours, these
results were obtained by counting the errors after every
count of 1,048,575 which took 8.7 minutes per point. The
repetition cycle of 500 os was chosen to leave plenty of
time between individual correlations. Each pseudo-random
code bit lasted long enough so that it could be directly

compared with the pulse polarity cbtained upon threshold
detecting the output correlation peak. Any discrepancies
between the proper polarity and that obtained from the
detection process produced a pulse from the logic circuitry
that incremented the count in a counter. Latches were used
to pick up the error count after bit counts of powers of
two-minus one. The width of the correlation-peak window
could be varied. Only during the time period of this window
would discrepancies be looked for. The threshold level .f
the correlation threshold detector could also be varied,

however, this was always set to zero (since the output was
either plus or minus). (M) Error coutint, circuitry. The
correlation is zero-level detected and its peak value is
compared to the input bit used to generate the correlation.
An error triggers a counter and the count is regularly latched
and displayed. (c) The sy.stem used in the error analysis. An
extremely long PN code has every bit modulated by a seven-bit
Barker code and is correlated by this code in the product-of-
trans,;forms correlating reciver.

. .. ... ... .... ..... ........ .... ........ ....... ... . ... .... ... .. 2z_
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Figure 3.54: The block diagram of a system used to Fourier transform a
continuous signal. Two identical chirp transform systems
are used each handl ing 50% of the continuous siiul . The
sigtnal is gated back and f'orth between the two Lyy:;fer:: Ly
a flip-flop controlled gating pr,-,cess. This irranj,,ement
permitted adequate time before and after the signal to
eliminate interference from neighboring portions of the
signal. The gated time interval was set at anywhere from
50 to 80 ps leaving 20 to 50 Ps for the Fourier transfor!.

(enough to handle 1.4 to 3.5 Mhz bandwidth signals). The
system shown here summed the two transform streans and
utilized a single device to inverse transform this continuous
transform stream. This technique, however, can only work to

an extent even when the transforms are gated thereby leaving
appreciable space between one another. In this case, a
large portion of the inverse transform will be a version of

the original continuous signal, however, there will always
be an appreciable amount of distortion over a percentage of
this output due to interaction between transforms when
convolving with the chirp device impulse response. If less
of each transform is retained, the output is distorted over
a smaller percentage cf time (due to the transform interaction)
but it also becomes more filtered due to this gating.
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for an individual bit can be seen at the output in trcce )4. The first

four traces of Figure 3.55f show the input signal, the output signal,

the summed chirp streams (used for coherent detection of the output) and

the transform stream. The last two traces are expanded versions of the

input and output.

A continuous product of transforms ccrrelating receiver was

then built. Figure 3.56 shows the structure of this system which con-

sists of two independent product of transforms systems. Figure 31.57

shows the timing; (or sigrnais within thi:; r;:;;teri : ir i ,jr',. -.5 ci y:; n

dotailed desc'ription ()f siguial fl)w threi,,h th, systm . Ii hir,: *.

shows the two alternating input chirp modulation streams, the tw, alter-

nating transform streams, the two alternating crrrelation streams and

the summed correlation streams. Figure 3.59b shows expanded portions of

the transform stream, the input codes and the output correlations.

Figure 3.59c shows continuous correlation of 7 .six pulse repetitive

signal. Only part of the resulting7 eleven peak correlotion crn be seen.

Figure 3.59d shows the correlation peak,- when the system is mir:tuned

in frequency in the first and third trace.-. Fig'ure 3.5))e show:s the re-

sult when the chirp stream slopes do not match the chirp filter si(,pes

(traces 1 and 3). Figure 3.59f shows, fi lt.ering by timo rntin" ,f the

continuous signal transform stream. The transform for every ('ded bit

has nri upper and lower sideband due to the c ,rrier that wois ir cudel 1.,

facilitate the addition of noise to this sigin,1 i i mi -r,)wove ur. Ier.

The sig nal was lecreased in size so that it, ,oul 4 be (verwhelt I by the

noise. The first two traces are the I r:ai;forms : troam ind the ',rr Iat ion

i

I
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Figure 3.55: Results using the system of Fig. 3.5L.

(a) Trace 1: A baseband pseudo-random code input signal
(200 Is/div). Trace 2: Alternating chirp stream (41)
(50 Ps/div). Trace 3: Alternating chirp stream ($2)
(50 Is/div). Trace )i: Alternating Fourier transform
stream (4I) (chirp modulated) (50 ws/div). Trace 5:
Alternating Fourier transform stream (42) (chirp
modulated) (50 ps/div). Trace 6: The sun of traces 4
and 5 (50 ps/div). Trace 7: The inverse transform of
trace 6 (chirp modulated) (200 Lis/div). Since the

inaividual 80 ps segments of the input signal were of
relatively small bandwidth, the interaction distortion
between transforms is hard to see and somewhat inte-
grated out in time by the oscilloscope. This is true
since the chirp streams and input code ran asynchronously,
although they have been individually locked for this photo-

graph.
(b) Trace 1: The baseband pseudo-random code (200 ps/div).

Trace 2: The chirp-modulated output of the system delayed
by about 100 s from the input (200 Ps/div).

(c) This figure is the same as (b) except that every bit of
the pseudo-random code is a 13-bit plus/minus code. This
increases the bandwidth of the signal and even with osci]-
loscope integration the degrudat irn duo- to enhanced trari::-
f'(rrl interai ; n (t-oi i hI :;e.erl.

(d) The:;e traces show Ihe Four'ie t run:; tnrw:; :een nT. ,,-
tive locations along the Fourier transform stream (10 us/div).
Even though the input, signal for any one transform was con-
tinually changing some synchronism was evident since every
Fourier transform appeared to be different from the next.

(e) Trace 1: The coded pseudo-random baseband code (200 s/div).
Trace 2: The chirp-modulated output of the system
(200 Ps/div). Trace 3: Trace I expanded to 2 ls/div.
Trace 4: Trace 2 expanded to 2 ijs/div. Note that the cones
for every pseudo-random code bit are clearly seen.

(f) Trace 1: The coded pseudo-random baseband code (200 ps/div).
Trace 2: The chirp-modulated output of the continuous
transformation and inverse transformation system (200 lis/liv).
Trace 3: The summation of the two alternating chirp strear~s
(200 Ps/div) used for coherent detection of trace 2.
Trace 4: The chirp-modulated Fourier transform stream (fhe
summation of the two .hannels) (200 lis/div). Trace 5:
Trace I expanded to 10 is/div. Trace (: Trace 2 exp,.n,'(-
to 10 us/div where the individual rodes of earh bit can tt
discerned.
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Figure 3.56: The block diagram of a continuous product-of-transforms
correlating receiver. This system produces a continuous
stream of output correlations by processing, every other
coded bit of the input signal in one system and the
remaining coded bits in another identical system. By
'ping-ponging' between two systems in this fashion, streams
of 50% duty cycle are processed to produce alternating
correlation streams which become summed at the system out-
put. Both of the identical halves of the receiver employ

complex conjugation thereby eliminating the need for gener-
ation of the code time complement. The product transforms
from the two halves of the system are separately inverse
transformed before summation.
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Figure 3.57: Signal flow through the continuous product-of-transforms
correlating receiver. Tn this figure A is the width of a
single coded bit, k is a chirp device pedestal cf delay,
T is the impulse response duration, 2 is the slope (in
rad/sec 2 ) of the chirp devices, wo and w. are the starting
and ending frequencies, respectively, of the chirp device
impulse responses, w. is a chirp device center frequency
and w. and wf are the respective starting and ending
frequencies of the chirps when limited to A seconds.
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Figure 3.58: A block diagramn of one of the two identical correlating

halves of the receiver showing somewhat rigorcusly the flow
of information through the system. Below each mathematical

representation of the pertinent signal at each point is the
time period over which it is valid relative to a coded bit
existing from t ot = A. Te terminology is the same

in this figure as that used in Fig. 3.57. Bc is the band- !
width of the chirp filters. The relationships for the 21

centering of the Fourier transforms and the correlations

within their valid regions are also given. When sum or

diffe ernc e erms resultin from a mixing process are

ignored, it is because these terms are not important and

will be filtered by a purposely placed fi]ter or the chirp

devices themselves.
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Figure 3.59: Performance characteristics of and results obtained frum
the continuous product-of-transforms correlation receiver.
(a) Traces 1 and 2: The alternating chirp streams (50 ls/div).

(These streams in this work had to be generated using an
external VCO since not enough TMCON's were available.
This led to difficulties in coherently detecting the out-
put correlations due to VCO instability.) Traces 3 and 4:
The chirp-modulated alternating Fourier transform streams
(50 Ps div). Traces 5 and 6: The chirp-modulated
alternating correlation streams (50 ps/div). Trace 7:
The sum of traces 5 and 6 (50 jis/div).

(b) Trace 1: The chirp-modulated stream of contiguous trans-
forms (summed for display) (20 lis/div). Trace 2: The
baseband input signal consisting of a contiguous train
of 13-bit codes (20 vis/div). Trace 3: The chirp-
modulated stream of contiguous correlations (20 lis/div).

(c) Trace 1: The baseband input signal consisting of a con-
tiguous train of signals composed of 13 alternating
plus/minus pulses (20 1 s/div). Trace 2: The chirp-
modulated stream of contiguous correlations with trace
as the input. Note that since the correlations must be

gated to the same duration as the input signals, only
half of their duration can be displayed. In this case
only 12.5 of the 25 correlation peaks can be viewed.
Due to improper system tuning, however, only about 3
peaks can be seen in this figure. Trace 3: Trace
expanded to 10 ps/div. Trace L: Trace 2 expande, to
10 js/div.

(d) Trace 1: Improperly centered contiguous output cor-
relations (20 tis/div). Trace 2: Properly centered
correlations (poorly tuned, }owever) (20 is/lv'.
Trace 3: mpropery -ent-rcd urrcelatians (:0 Is/d"iv).

(e) Trace 1: A positiv mismatch between the slope of the
input chirp mudu aticns arid the ch irp Aeviee .1 npe and
the effect on the outhput correlatti n treain ("0 j-/djiv).
Trace 2: A good match (20 ls/div). Trace 3: A negati-
mismatch between slopes (20 ijs/div).

(f) Trace 1: The chirp-modulateci contiguous stream. e, Fourier
transforms of a 2 Khz carrier-modulated code ( 50 s/div'
Trace 2: The autocrrelations (-hirp-mcdulated) ,f thi
continuous code stream (50 li:,'Iiv). Trace 3: Trace I
with the addition of wideband noise (50 ljs/div). Trace

The autocorrelation stream with this ncise (5C ws/div).
Trace 5: A gating pulse stream used to perform low-pass
filtering to eliminate a large prtion of the noise ener -y
(50 Ivs/div). Trace 6: The gated transform stream
(50 lis/div). (Trace 3 gated by trace 5.) Trace 7: Th,
correlation stream after gating (50 lis/div) showing low-
pass filtered corr at ion peaks.

A
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stream, The next two traces are the same except with noise added.

Using the gating signal, trace 5, the correlation has been slightly

improved as seen in trace 7. Figure '.60 shows an isolated 7 bit

Barker code correlation oscillating between plus and minus one. In

the 2nd trace noise has been added, yet only the sidelobes are smeared

by the noise. Figure 3.61 shows why this continuous system could not

be used for probability of error measurements. What are supposed to

be definite positive and negative peaks turn out to be peaks of all

sizes. This, as it turns out, was due to the fact that an external

chirp generator had to be used (due to the lack of enough chirp filters)

that could not be locked to the system rf's.

Figure 3.6." has been included t(, demonstrate the lack of

aliasinw in a chirp transform system. These traces are the Foricr

transforms of consecutively higher frequency square waves.

Finally, Figures 3.6-a and b show the output of a mixer for

a ramp at one input and a continuous tone at the other for differing

implitudes of this tone. Note in Figure 3.6%n that as the level of the

'ant inuous signal beg;ins to Pall, the mixing prncess becomes n ,n-ltineanr

and deviates markedly (Figure 3.6Th) for very small signal levels.

Therefore, except in places where one of the signals can be made to

sat" "ate the mixer, multipliers should be used in place of mixers to

perform the multiplication between two varying signals. Special high

frequency multipliers are required in the microwave ares.
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Figure 3.6o: Trace 1: An isolated 13-bit Barker code correlation
fluctuating positive and negative to the polarity of the
input bits (20 Ps/div). Trace 2: Gaussian noise used to
sum to the input Barker ccde (20 Is/div). Trace 3: The
correlation after the addition of the noise (20 Us/div).
Note that the sidelobes are most greatly affected.

Figure 3.61: Trace 1: The chirp-modulated stream of output correlations

(50 ps/div). Traces 2 thru 7: The result of coherently
dechirping the correlation stream with an unstable VCO
chirp generator. In these traces all the correlation peaks
were supposed to be positive (50 ps/div).

Figure 3.62: This figure demonstrates the absence of aliasing in a
chirp transformation system. If there were aliasing,
the harmonics of the Fourier transform (of a square wave)
in trace 1 would double back into the viewing region as
the square wave frequency was progressively increased in
the following traces (2 Us/div).
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PART IV

DISCUSSION AND CONCLUSIONS

In Section 2.1 an analytic model of the convolver has been

developed that essentially follows the flow of information through the

device. The analysis decomposes the two input signals into their

Fourier components and determines the effect the convolver has upon

every component on an individual basis. By such a process the potentials

at any point inside the semiconductor due to the two counter propagating

surface waves are found to be given by the desired surface waves con-

volved by distortion functions that are dependent upon the input trans-

ducer matching networks, the functional dependence of the fields upon

ditance above the delay line and upon frequency, the mode structure of

the surface waves beneath the semiconductor as a function of space and

frequency and the dispersive nature of the wave in terms of both the

frequency dependence of velocity and of attenuation. Both the input

signals and the U:'stortion terms are r:al and in general they aie sia-

nals whose rf carriers can be both amplitude and phase modulated. These

signals were decomposed immediately into in-phase and quadrature components

nd the potentials within the semiconductor were used to obtain ani

equation ['or the output potential at the back cnntract of' the semi-

('rluctor was obt,.ined where only the second order interaction wa: (,I

rirteirent. As a resul t of this analytic approa.-h the potential cain beW

,wr t be ivon by ri summation of termi- conSI.i n , of a dominant

-.,,mpnerit. that i1, e,;ent .itin]y the, desired oenvolution with a zer -order-

m'~r i t, r'! 7ted il.tortlor weiF ht. ir with in the convolu i .n izitecTral and
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also additional smaller distortion terms that are integrals involving

higher order moments and derivatives of both the input signals and the

distortion terms.

In Section 2.2 a technique was described for the generation of

three-dimensional ambiguity functions utilizing the SAW convolver and

based upon the use of a 'slow ramp' and it application to a VCO for the

generation of a 'slow chirp' and to the oscilloscope where it is summed

to the correlation output of the convolver. The slow ramp must be slow

enough to be essentially constant over the time interval of a single

correlation and to allow enough correlations to occur over its duration

so as to produce a continuous display. The technique was demonstrated

to work quite well and in particular it was shown that the functions can

be dynamically modified with the potential for wave form optimization.

In Section 2.3 a general formulism was described for the inter-

pretation of convolver operation in the presence of storage. The direct

convolver output was shown to be the result of the interaction between

the fields accompanying the surface waves, due to stored charge along

the semiconductor and applied directly to the semiconductor back contact

and the perturbation of the average charge density of the semiconductor

due to these fields. The field/charge-density second order interaction

was shown to produce a multitude of time dependent terms some of which

are constant over a large portion of the interaction time whereas others

represent the desired convolution between the two surface waves and con-

volution or correlation between these waves and the stored charge pattern.

This formulism furthermore led to the types of interactions capable of
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inducing appreciable charge storage along the semiconductor from which the

evolution of the dual nature of storage correlation vs. output convolution

becomes evident. Storage and recollection utilizing the potential applied

directly to the back semiconductor contact and the convolutionary relation-

ships involving this signal also evolve from this study. Higher order

interactions of which there is growing interest are mentioned simply in

passing. Some experimental results demonstrating the existence of the

storage mechanism utilizing surface states and P-N diodes have been pre-

sented. An attempt to produce a simple convolver structure with the

inherent capability of producing a uniform interaction while simultaneously

allowing quick and easy sample substitution has been described. Results

demonstrating the capability of storing a reference signal and later

generating an ambiguity function using this reference have also been

presented in which case the uniformity of interaction was necessarily

an important performance characteristic. Although weak due to excessive

damping (in an attempt to obtain uniformity) the presence of the ambiguity

function was noted so that the existence of storage and its correlating

interaction with surface waves had been verified. During the performance

of this short lived investigation and thereafter the technology for con-

volver related storage has been well developed whereby essentially all

the techniques and interac ions here described have at some time been

verified and utilized in one form or another. At the present time much

of the work in this area is related to such devices as the integrating

correlator for which a third order (three signal) interaction is employed

These higher order interactions are being studied for their potential in

producing spurious-free outputs.
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In the remaining three sections of Part II of this report chirp

transformation has been described in some detail and its capabilities have

been demonstrated with respect to time domain spectrum modification and

most notably the ability to remove the bulk of a narrowband Jammer

utilizing nothing more than a time gate. The formulism was developed for

both the chirp filter and the convolver implementations. Some analysis

was also presented showing the inherent differences between the utilization

of up versus down chirp devices and the MCM versus the CHC chirp trans-

formation configurations. This formulism developed the relationships

necessary for the proper Fourier transformation of a necessarily finite

duration input signal. From this it was shown that the time origin of

the input signal is dependent upon the center frequency of the chirp used

to coherently dechirp the transform whereas the position of the transform

within the calculable output time interval is dependent upon the center

frequency of the chirp used to modulate the input signal.

The analysis also formulated the required multiplying factor

for a typical device impulse response (in order to produce reasonable

results) and it was found to be of the order of magnitude equal to the

square root of the chirp slope which, in most cases, is quite large

(typically about 106). Most of the analysis was performed utilizing

input signals having in-phase and quadrature components so that complex-

data Fourier transformation was automatically included and the necessary

formulism derived. The existence of the Fresnel component concurrently

with the desired Fourier component of the output was discussed and the

necessary criteria through which this unwanted component can be ignored
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were presented. The utilization of the properties of the Fourier trans-

form and the results of modifications to this transform with respect to

the inverse transform were also covered and the results of the experi-

mental work verify this discussion.

The experimental results demonstrated conclusively that the

Fourier transform can accurately be obtained in real-time and both its

real and imaginary components are readily accessible and seem visually

to correspond extremely well with the calculated components of the trans-

form when obtained using a well optimized systen. It was shown that

optimization involves the use of well-matched devices (implying extremely

linear chirp slopes of equal magnitude) and offset center frequencies

between the expansion chirp device (used to generate the chirp) and the

compression chirp device (from which the transform arises) so as to

eliminate interference from mixer internods and mixer feedthrough which

itself can produce a Fresnel transform arising simultaneously with the

Fourier transform at the device output.

T"he Fresnel transform was shown, in its own right, to possess

the capability to perform a useful signal processing function. This

transform, fairly completely documented in the appendix, was shown to

be applicable for the selective time complementation of a signal. The

transform is furthermore shown to be the natural describing relationship

between the input and outy-t of a chirp filter from whence its power is

derived. Chirp modulated signals also produce Fresnel transforms where

the Fourier transform arises only for a special case.

The power behind the Fourier transform'ition itilizing chirp

transformation has been demonstrated by employing the technique in a

'i
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variety of correlating receiver structures. Here it was shown that

inverse transformations performed on the product of two chirp transforma-

tions produced output signals equivalent to the correlation between the

two input signals which is a direct application of a well known Fourier

property (i.e. the convolution theorm). The correlating ability of such

a system was demonstrated using a variety of signals and by the generation

of ambiguity functions. The signal processing capability of this system

wat shown to be quite competitive by the generation of its probability

of error curve with and without jammer and with and without time gating

of the Jammer from the Fourier transform. The ability to dramatically

improve signal detection by time gating the jammer, however, sets this

receiver apart from other existing correlating receivers.

Overall, this report has demonstrated and analyzed a variety

of SAW signal processing techniques all some way or another involved with

convolution or Fourier transformation. The techniques were typically

built around the use of SAW convolvers and SAW chirp filters. Although

most of the convolver analysis has been directed specifically toward the

SAW separated-medium convolver the chirp-filter-related information is

general enough to apply to any filter capable of producing an approxi-

mation to the idealized form of device response assumed in this analytical

approach. All the analysis, however, was mainly directed toward surface

wave technology and the chlrp filters of large time bandwidth product

that are evolving in this area.
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APPENIDIX A28

Fresnel Anialysis*

Defining Equations (convolutional relationships)

Fresnel Transform:

2 2
-JO~t-T)JOT

(T) - f, t )] f t e ' dt -f(T)*e- (A-1)

Inverse Relationship:

-1 0 2c (F~T 2 jot 2
f(t) - (~t F (T)] F (TF~)ei~ dT (F (t eJ ) (A-2)

Proof of Transform:

f~~t)E f Ji0(to T)2 ]Ot- 2

fJt) - fo~ dto~i( dt

A f f(t )ei$(t 2_to 2 e~ ji20(to -t)T dTidt0

- f(t. )e JO(t 2 _to 2) 8(to t)dtc M fM)

Expansion of a Periodic Function in Quadratic Orthogonal Terms

f(t) - ; a enB(t-nTO) 2(A-3)

where To 7ri/$T.

Since

fT2e J t-To) 2a jO(t-n'To) 2dt (A-4)
;-T/2

- T when n w n

- o otherwise

- T(-'

*For further details see Arsenault (1979).
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then

a 1 fT/2 f Me-jB(t-nTo)2dt (A-5)
On =T -T/2

In the limit as T approaches infinity

- fT/2 f(t)e-JO(t-nTo)2  f(t)e-JB(t-T) 2dt

On =T/2 dtfd (A-6a)

- F (T)

8JO(t-nT 0 ) 2  0 o J~-)2
f t) Ta e To  f FS(T)ei (tt)2dT (A-6b)

7n=00 On 0T-~ 7r-

The Fresnel transform of the periodic signal given by equation (A-3) is

F (T) E n-w an6(T-nT°) (A-7)

As can be inferred form these equations, the Fresnel transform of a

signal represents a mapping of the magnitudes of infinite duration

quadratic phase terms as a function of their delays. A periodic signal

can be written as an infinite sum of these terms having magnitudes a8 n

and delays that are multiples of To M T/ST. The Fresnel transform maps

time to delay as a function of the variable $. This $ is arbitrary and

can be chosen to meet the requirements of the analysis to which the

Fresnel transform is employed.

In general

F8 (r) - R (T) + JX8 /T) - A (T)eJB (T ) (A-8)



284

where

A -T (R 2 ()+ x 1 ) (A-9)

and

0a()- tan-1 [Xa () /R a(T)J I (A-10)

With fi(t) - f R~ M jf ItM (A-11)

then

F (T) If L [f(t)COS(B(t-T) 2) + f (t)sin(O(t-T) 2 )dt

2 2

1 00 S f~~i((t-T) 2) - f (t)COS(O(t-T) 2)]dt (A-12)

so that

R a(T) L I R WCSOtT ) +f I(t)sin(B(t-r) 2)jdt (A-13)

and

X 0(r) - fR (t)sin(O(t--t) 2 f I(t)cos($(t-r)2 )]dt. (A-.14)

Furthermore

f~t) R (TCOB0(t-T) 2) - X('r)sin(O(t-r) 2)]dr

+ J k R [R(T)sin(O(t-T) ) + X (T)CO.(B(t-T) 2)]dT (A-15)

so that

f I T1*(OtT 2 X(si8t-)2 )d
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fM(t) - * r [Ri( )sn(o(t-T 2) + X (T)COS(S(t-T)2)]dT '(A-17)

From these equations it can be seen that with

f(t) * F (T) (A-18)B,t,T 0

then

f* t) F*B(T) (A-19)

Some other general relationships are

FI0(o) - L f(t)e- ttdt (A-20)

a 2
f(o) ,, F (T)ejT 'rdT (A-21)

'nT -J6r

f F (T)dO - Z e -T[f(2)+f(o)] (A-22)
T

Eq. (A-22) is obtained as follows:

F (T)dB - L L f(t)e- 0 (tT) dtdB

- L f(t)e -JOT227S(-t2+2tT)dt

2

-- •"e B8 2  
t f(t)[6(t-2t) + 6(t)]Jdt

S7-- e-JOT2[f(2T) + f(o)I

Here the equation

#S(t-t )
6(u(t)) - Z) (A-23)

jaCg (t n)I

___ __ ___' _ ___ __ _
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a(t) - -t2 + 2tT

c'(t) - -2t + 2T

t- - 0 zeroes of
(1(t)

t2 - 2TI

was used so that

6(-t 2 + 2t) - + 2 (A-24)

Energy Conservation

Since

f(t)f*(t) - If(t)l 2

2 jr 2 _ 12)S F()FJ*(T ' 2 2J2(T'-T)t
-I (T)e e drdr'

then

If(t)1 2dt IF 0 (r)1Idr (A-25)

since

im sj20(r'-(r-26B
-

2
0 

-T)t dt 10 6('-r) (A-6)

Therefore, if f(t) represents the voltage across a 1 (2 resistive load,

equation (A-25) says that the total energy dissipated in this resistor by

f(t) is proportional to the integral of the square of the Fresnel trans-

form over its entire spectrum.

...
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Causal Time Functions (real)

fe(t) = [f(t) + f(-t)]/2 (A-27)

Linearity

a, f(t) + * + a f (t) ' a,Fl(T) + ... + a F (T) (A-28)
n Ofl 0 n On

Symmetry

-8'( t )  ,,t 8 (T) (A-29)

i.e.

f (T) -; L F_ (t)e3BO(tT dt

Function Inversion

f(t) F (T

e(t) 800 - f(-T) (A-30)

Proof:

-JT2 
jt2

F8 (T) - e-JT [f(t)e-it] Iw2-

- e (f(t)e )ei28t dt (A-31)

20
e J2t2 F (t)e-J(t-T) dt

-jBT 2  2 dX]ei 2 1tT d

- e )e f'(Q)* 8  2 X dt

e-JOT
2 2w f(T)e-JBT

2

28

7-. f(-r)
Q.E.
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Proof: 
-O t T t( u s .X t t d t

f' f(t-t )eJ(r dt(0a.)- -,d t
0

go r (A.$(,x + to-T)2

- f(t)e 3  0 dt
Q.E.

Time Differentiation

dt O,t,T dT

Proof:

dfLI . A 0 J~-) (Cj0(t-T) 2

dt 7r aj~-)FC

w 2j Itf (t) - * 2j$F(Bj~ -)2d

dFTr) 00 -JO(t-T) 2

dT 2j 0(t-r) f (t).e dt

-2 STF(T) + 2J~tf (t)e-j tr) dt

df(t) _ p (" P) J (t-T) "dr + 2j Stf (t)
dt 7r- d'r

f" --r) 2 eJ t-)2 dd

f". 2j~t M~ )9*i0(to )~Btr t
6w T w . 0 0

-JOBo- 0(t-r)2  2 JB(t 2-t0 2 ) Ir
~~d -o ej(tr d6(t-)

9.Ut A e F JO(t-r) dr + 2j Otf (t) -2jOtf (t)
dt 7r dr

7! e'' dtQ.E.
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Time Scaling

f(at) F8  (aT) (a pos. or neg.) (A-33)

a

Fresnel Transform Conversions

"f(ct) 1C a:_ [f(t)] (c pos. or neg.) (A-31)
a-,bT 2 ,bCT

c

- ~ ~ b' - )I (a pos.) (A-35)

1 *C

-- E bTt)] (a neg. (A-36)
-f(t) real)

= IbI c~ar28 ,[f(bCt)] (a pos. or neg.) (A-37)

Time Shifting

f(t-to) 8tT F( r-to) (A-38)

Integration Theorem

)f F (T )d (A-39)

; f(to)dto 8,t, 8 0 o o

Time Convolution

fJt) 8t(-t F ) , f(t) * G (T)

fl(t) * f2 (t) T) * (T) (A-40)

or

f f (t) ' F (T) , f 2 (T) (A-14)flt) * 2(  B,t,T2

8,,

....................
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Frequency Convolution

fl(t) F (T) * f2 (t) G (T)I OlT 2 ,t,T 6

F8(t) * f2 (t) F (T) * G (T) (A-42)

or

f (t) G G6 (t) F(T) G (T) (A-43)

Fresnel/Fourier Relationships

With

Bf (t)e-B(t-)2dt - C;,T[f(t)]

and

0 [ f(t)e-jwt dt (A-44)

then

F (T) - e -j8T2 Cw 0 [f(t)e-jot2  (A-45)

and

0 f Ml] 3 eJ OT2 c , [f(t)ejBt21 (A-6)

Product of Two Simnalb

f(t)g(t) i e lf[( * * jt 2  I

or 0 -JOT 2 JOiBJo 2 -JT2
f(t)g(t) T- T , (t) ]e * _If ()e le ]

(A- )

Product of Fresnel Transforms

2 jot 2  
2~ jo 18 2 ~ t FC (T)_ et 2f(t)e- * -'*G*(T)eJ l ( (T)

8,t e,
(A-48)

or

- jBt 2 [(t)e- 2 -o * - F*(  jBG jlejBt2 I qtT F (T)G (T )
-e Ot t FtT B
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The Equivalent Gibbs Phenomenon For Fresnel Transforms

With F8 T CO I fw t)e 0 J(t 0-T)
2 dt

then

f~()-~f F (T)eIB(t-T)2 dT

2 2
f~ ~(t )ei0O(to -) e iO(t-) ito d'r

2 2jJ2(t *' .r jP t)T
- f(t0)ejt -to.) e cT it0

B co JB~t2_ 2 )sin(2BUt 0-t)SI)
Bff jBtot- 0 0

0 jeit 2ff(t)e -jBt 2* sin2f~t) (A-49)

For

f(t) -f c(t) + [f(O+) -f(0)W,(t) (A-50)

C4
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et 2  2 sin(2OQ(to-t))
f (t) - .. ,W_ f(to)e - t ° 2  dto

S c(t-t)

ej ot -jt+ j jf(0+) - f(0-)] f U(to)e -  0to2

sin(28Q(to-t))
dto (A-51)

(to-t)

The discontinuity at t-0 has now been replaced by the correlation of a sinxx

function with a causal baseband chirp due to the partial elimination of the

Fresnel transform prior to inversion. In Fourier transform theory the dis-

continuity becomes the correlation of a sinx/x function with a unit step.

This approaches a constant for t >> 0. Due to the chirp high frequency

variation, however, the step discontinuity approaches zero as t - for

finite S1.

Signal Product (Different Slopes)

In general

a e-jST2 cc JaTI2 2-Jyt2

f(t)g(t) ., e fm F (1 TL g( t)ei

(aTl-$T) 2 (aTl-BT)
2

•j(c+y-8)(t a- +y-B dt e -  a+y-8 dj (A-52)

or for y-O and 8-2a

2 8

O g(t) j  (t-(2T-T))dt ej  (2T-T) dT

2 8 2

ej 7 T21 (A-53)

ii
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Prbduct of Fresnel Transforms (Different Slopes)

In general

~C (t.) ejyej (-(cx I-(t) 2

(2t2_ 2)2
e t 0 j~t Go"y1 Ytl 1,tz a()G(T)(-)

f(t )e -T

2

1 F (T)) F

Fresnel Transform Pairs

(t) "* t, e - ST2(A-55)

1 e,TVe (A-56)

or by using Eq. (A-146) and the symmetry property.

eJt2  OL- /.I- 7j 2s
2a t . - -- I - j  T (for n& pos. (A-57)

e ,t,T e S~a, T e B8a or neg.)'IT 2

6 6(T) for a - B (see Eq. (A-148))O,t,T

COSBt 2  i __ 6(T) + T/ e - j W ej T2  (A-58)
B,tT 2a / a

Likewise

in 2  6~ ~ (T) + / e-j T e- j y2 (A-59)

cos(at 2+) I r e6(0 / -je-J e- j  2 (A-60)r,t 2 + Ta' e(-2

2

e-J0ot 7 /T e- eJ 78 eJoT(A- 61)B,t, (-1
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w2

cos• -
0 t T ' We e 4- coswo (A-62)

7 _j a8
cosctt BtT -~e $--a 4 [v/ i~te 8

2
fct8 -i 2 (A-63)

2
2 ww

2jWt8)~ +(- 64 )• ( Wt + at 2) e - j 2' /( +7 j (2T+w0•2-5

(28T + - )2
ej(ot + at2 ) -* *- JST / -e " 4 4(8-) (A- 65)

0,t,T e e/ e(A-a6)

2 2 (28T -W o2-j(Wot + cit2) e - z / .  - -J 4 j  (BSc) (A-66)

2 2-(28t - o)

e-j(Wot + t e-jOT 2 /7- e-j 4 88 (A-6 7 )

U(t) fT -jx 2  (A-68)

- 1 2 +C -

It eJSti dto u I (T) (A-69)

-8 t,t,T 8

st co~ 2 d U7) jT E B 2
test,r 28 Te- (A-70)88 2

te- t 2 d TU(/) e- j  
T ee fT0/ (A-1).--- O,tT To- 80~ (-l

U' + W/' (t./ '=) 20 C cos~x dx

L~ ...... i
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f(t) -at t>O I e ~dx dTo

10 t0 2
TT+T 2

P T(t) - U(T + t) - U(t - ~ , T- e dx (A-73)

L_[2 j C((tr+T) + (-T

427 1:.:
-jS((t+T) -JS((T-T)

Proof:

6(t+t0) + 6(t-t0 ) 77" 2e-j$(T2 tocos2BtoT (-4

28 ei0O(t 2+To 2).cos2ST t '"_ 6(tr+T0 ) + 6(T-T0 ) (A-75)

6(t+to) - 6(t..to) 7 2Jei 8S(T2 +to 2 sin2BtoT (A-76)t

J L- eOt 2 +T' sin2O0tt 6(T+T0 ) - 6(T-t 0 ) (A-77)

Ts S(t,,j + 'T- St, 2i8~x jU

+ j,/ eJ e_ *7 x~ 4 d (A- 78)

sin at i Jt 2  eT -JTIU(T + -7 U -T 6 (A-79)

In general

f~t~e ,t,T

2
e_ TIc f(t)e J2Ttdt
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2 e-jBT 2

U(t)eJ S tT T (A-81)

The Fresnel Transform and the Chirp Filter

The output, g(t), for an input, f(t), of a device having the

impulse response given by

h(t) - e-it 2  (A-82)

is -J~-)2is g(t) = f(T)e-J -)dT (A-83)

which is exactly the Fresnel transform of f(t).

The impulse response given by Eq. (A-82), however, is not

realizable. A realizable form is given by

h r(t) - [U(t) - U(t-T)]cos(wot - S2 ) . (A-84)

If f(t) exist over the interval 0 < t < T, (only) where TI < T, then over

the interval T1 < t < T the output of this device is given by
i 2

g(t) . 1 e o t I f()e-Joe -  t -  dT + c.c.

- . e j"ot - [f()e-J ot] + .C.

• , e1" - R~ + iX - c.C.

S 
2 [R ,t[f(T)e-JWoT ]coSWoT - X ,t[f(T)e-JWOT]sinwot] " (A'85)

-he output of this realizable (yet still somewhat idealized) device is

:herefore the real and imaginary Fresnel transforms of f(t) in phase

cuadrature to one another.

............... ........................ ............. . _ ... ,,,,,,,........ .,_c.._ - :. ,.-----------------------------.--------_--,------.,----.------------,-...,u ,
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With f(t) - fo (t)coswot

then

g(t) - i [RBt ff(T)]cOSWot - X8 ftf(T)]sinWot + R Btf(T)e- 2W°]

coswot - X ,t lf(T)e - j 2 woT ]sinwo t] (A-86)

and with f(t) - fo(t)coswlt

then

g(t) IRtlf(T)e-J(W°-ol)T]coswot - X If(T)e-J(W-Wl)T]sinwot
2 S,t 0 ,t 0

+ R ,tIf()e-J(wo+wl) ]coswot - X L,tf(T)e-J(Wo l)T]

sinwot] (A-8 ' )

In most cases the sum frequency terms in Eqs. (A- 86) and (A- 87) will

integrate to a much smaller value than the difference terms since they

will usually be of a much higher frequency. In this case, only one set

of quadrature real and imaginary Fresnel transforms is obtained. If the

slope is negated in Eq. (A- 81'), all the terms modulating sines in

Eqs. (A-86 ) and (A-87 ) are made positive and the complex exponentials

are complex conjugated. Note that since

,-,t{f(t)ewJwot) = ej(wot + 0/ , t+wo 2 {(t (A0-1'

Eq. A-179 becomes

g(t) - R8 (t(t)} "cos(wt + (W-W) /48)

+ Xt {f(t)) Ws t + (W -Wo) 2 /48)1 (AAB))
Ot-(W 20/ in 1 0

or the delayed components of the Fresnel transform of f(t).

p 
"FEW



APPEDIX B

Other Transforms

Section 2.5 describes the process by which the SAW convolver can

be used as the main constituent of a Fourier transform system. Essentially

the Fourier transform of a signal is obtained by convolving a signal, that

has been pre-multiplied by a chirp of one slope, with a chirp (linear FM)

of the opposite slope. The result of this process is the Fourier transform

on a chirp carrier. Coherent detection by mixing this convolver output with

properly phased chirps results in the isolation of the real and imaginary

components of the Fourier transform as baseband signals. Section 2.4 describes

the equivalent technique whereby a chirp filter can be used to perform the

Fourier transformation. In this case the chirp modulated input signal is

automatically convolved by an oppositely sloped chirp since this is exactly

the impulse response of a chirp filter. Although the output of the con-

volver and the chirp filter are both chirp modulated Fourier transforms,

the convolver output is compressed 1y a factor of two since it performs a

factor-of-two-compressed convolution.

The question may arise as to whether other transforms can be

obtained utilizing convolvers, chirp filters or both. It is the purpose

of this section to demonstrate that this is indeed the case. After describ-

ing the operations involved in obtaining some readily obtainable transforms,

some general criteria will be presented by which tests can be performed on

transform kernels to determine whether the transform can be obtained by a

convolution process. A variable transformation procedure will then be

described that shows how to transform a non-convolutionary transform into

a transform that can be obtained by a convolution process. Transforms

obtainable using a linear to exponential time transformation will then be

298
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described as well as a technique by which a signal can be exponentially

time transformed using a large time-bandwidth-product chirp filter.

The Laplace transform given by

L(c,w) I f(t)e "( w)t dt
0

f (f (t)e-Ot)e -j ~t dt (B-1)

is a function of the two variables a and w. As seen in Eq. (B-I), since

f(t) is always causal (f(t) = 0 for t < 0) this transform for any parti-

-at
cular value of a is given by the Fourier transform of f(t)e . This

suggests that the Laplace transform can be displayed for a causal time
-at

function by multiplying this function by e and using either the con-

volver or the chirp filter Fourier-transformation schemes (see sections 2.4

and 2.5 Y as methods for obtaining the Fourier transform of this combina-

tion. The Fourier transform obtained for a particular value of a can be

displayed in a raster type of display, alongside but spaced from the trans-

form for the previous value, on an oscilloscope screen. The parameter

would be incremented by a constant value between successive scans and all

the scans would be displayed evenly spaced. For very high scanning densi-

ties the Laplace transform would appear as a continuous three-dimensional

function. The exponential function exp(-at) could be obtained by elec-

tronically switching in smaller values of resistance in a passive RC

network. At the time for mixing between f(t) and exp(-Ot) the RC network

can be discharged and the exponentially decaying potential across the

resistor applied to a mixer to which f(t), already on some carrier, is

also applied. For negative values of a the same RC circuit output can De

..... .... ......•±:_. a , .,t:; , . a .;r .-# ' ' ' " n ; .. .... .4:
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passed through a reciprocal producing circuit, which is simply a divide-

into-one process, and the output from this circuit then applied to the

mixer. In either case, the exponentially weighted function is then mixed

with a chirp and convolved with a chirp of opposite slope in either a con-

volver or a chirp filter. The resultant slice of the Laplace transform

(along the Jw axis at ai) will be modulated onto a chirp after passage

through these devices. Removal of the chirp by diode detection will pro-

duce a baseband output that is the square of the magnitude of this trans-

form slice. By coherently detecting using sine and cosine chirps, the

real and imaginary components of the Laplace transform can be separated

and displayed independently. This technique can be used to pinpoint the

poles and zeroes of a passive network by impulsing the network and using

the resulting impulse response as the input function for every slice of

the Laplace transform that may be required for a clear and continuous

display. Since SAW convolvers and chirp filters utilize signals that are

Lmeasured iii microseconas, che loinger device impulse responses can be

captured into a CCD buffer memory using a slow clock (greater than the

required Nyquist sampling rate, however) and then clocked, using a much

faster clock, into the chirp transform system after the exponential

multiplication. As with the Fourier transform obtained using these

finite-impulse-response devices, the Laplace transform output will be

valid only over a calculable time interval.

The Stieltjes transform S(t) given by

* s~~t) = r f('r)d f(-t B2
0 t (-2)

ti T~
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or

s(-t) - f(t) .-A for f(t) -0 t < 0-t

and the Hilbert transform H(y) given by

T - f(t) ( B.3)t 1r=- * r-t iT -t"

are both convolutionary transforms and can therefore be Imediately

obtained, for a finite duration signal f(t), using a SAW convolver or any

other t-pe of convolver for that matter. The Stieltjes transform assumes

a causal signal (a device impulse response, for instance) whereas the

Hilbert transform does not. Note that except for a factor of 1/T, for

causal signals the two transforms are time inverse versions of one

anbther. Whether or not a signal is causal, however, the Hilbert trans-

form of the signal is nevertheless of identical form to the time inverted

Stieltjes transform and the Hilbert transform of a non-causal signal is

exactly the time inverted Stieltjes tranpform of a delayed and causal

version of the signal. Both transforms can therefore be obtained in an

identical fashion where one will be time inverted and the t = 0 reference

point for the input signal must be decided upon ahead of time. This flexi-

bV Lity is due to the fact that 't.e transforms are themselver, delayed for

a lelayed iriput 1 igna .

The Stieltjes transform is obtained when two repeated Laplace

transforms are performed on a function, i.e.

S(t) - r r f(x)e-px dx e-pt dp (3-4)
0 0

since

I.. e-p (X -Y ) dp = l/(x~y) (B-5)
0

'i.Ma



302

'he Hilbert transform of a function, when summed with this function, pro-

duces a complex signal (which can be carrier modulated producing in-phase

and quadrature components) that is purely single-sidebanded. This trans-

form can also be obtained by amplitude inverting the negative portion of

the Fourier transform of the signal and then taking an inverse transform

of this using a chirp transform system (see section 2.4).

If it is desired to obtain these two transforms directly using

a convolver, then the function f(-t) or f(t) must be convolved with 1/t

or -1/t in order to obtain S(t) or H(t), respectively. In either case

a reciprocal of t function is required and this function 'blows up' et

t a 0. A close approximation to this function can be used since the

signal, f(t), will typically have negligible frequency components beyond

- w rad/sec. Since

1-T.---.j- sgnw - j w > 0

...jrr 4< 0 (B-6)

the spectrum of -i/t for the bandlimited signal f(t) can be replaced by

g(W) - JlU(w) - U(w-2w 0  U( w+2w0  (B-7)

so that

-2si W to ) (B-8)

and the Hilbert transform becomes

2 t

Hf(t) --- a (B-9)

Likewise the Stieltjes transform can be approximated by
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2sin2 W t

s(t) - f(-t) 0 0 (b-10)t

Two other transforms can be readily obtained since they are mere t-

extensions of the Fourier transform. The Fourier sine and cosine trans- V

forms given by

F (w) = f" f(t)sinwt dt (B-11)
8 0

and

F (w) - f f(t)coswt dt (B-12)
c 0

are simply the real and imaginary components, respectively, of the complex

Fourier transform of the causal function f(t). These components are

natural products of a chirp transform system where the origin for the time

is controlled by adjusting the form of the post multiplying chirp (see

section 2.4). If the signal is not causal in such a system, the resultant

real and imaginary Fourier components are the Fourier cosine and sine

transforms, respectively, of the even enC odd components, respectively,

of the signal.

In general, the output of a convolution process can be written

as

' f(T)K(t,T)dT = h(t) f(T)g(T)1(t-T)dT

- h(t)If(t)g(t) * i(t)] (B--13)

where

* K(t,T) - g(T)h(t)1(t- ) (-4

can be the kernel for a transformation. In other words, if a transform

kernel can be written in the form of Eq. (_14), then the transform can

be obtained as a result of a convolution. For such a kernel, since
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- at - (t-T) (B-15)

then

L Kt)a K(t,T) + a K(t,t)j

1 ah(t) 1 ag(T) (B -16)
77~ at-+-T7 aT 1:

and

2

-- L = 0 
(B-17)

Eq. (B-17) is a necessary condition that must be satisfied-by a kernel in

order that it have a form given by Eq. (B-i4). Up to this point, it was

found that a kernel having the form of Eq. (B-14) must definitely satisfy

Eq. (B-i7), but this does not imply that other forms will not satisfy this

condition. However, in order for Eq. (B.-17) to-always be true, then

K( ,T) + 2-K(t,T)= K(tT)la(t) + O(t)

aK(t.T) (B-18)

where

t + I + f1 (s) (B-19)

and

= X + f2(,) (B-o)

Solution of Eq. (B-18) gives

K(t,r) - expif(Q(XA+f (6)) + 8(X+f 2 (s)))dX + f 3 (a)J

. =Pa(t) e + f3(@)

- a(t)B(y)y(t-T) (3-21)
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since

t = r1(S) f f2(S) f O(S) (B -22)

or

s - '(t-T) (B -23)

so that

I (--r -exp If 3(fl (-T) B 2

Therefore, Eq. (B-21) states that the form of kernel given by Eq. (B-14) is

the only form that will satisfy Eq. (B-17). From this, Ea. (B-17) can be

designated as a necessary and sufficient condition that must be satisfied

by a kernel of the form of Eq. (B-,14). If a kernel fails this test it does

not have such a form and if it passes it does.

If a transform kernel has the form of Eq. (-l)1), then since

a L 1 ab(t)) L (B-25)
rt t 77t at L

and

aT aT g7  aT (-6

h(t) and g(T) are given by

h(t) - expiffLtdt 21 (B-2T)

and

g(T) = expjffLTr2I (B3-28)

Using the relationship

1_ ' L -tT (B3-29)
M~- ) a~t- )rT F77) 5r -Ktt) T

and making the substitution z t-T gives
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iH

tVz) -x 1f (LdrK(z+- T)dz1 (B -30)
-- K7Z+T,r) raT

These results can now be applied to some well known transforms. The

Mellin transform given by

M(W) - f f(t)t - l dt ( -3)
0

has a kernel given by

K(t,W) t j -  (B-32)

Substitution into Eq. (B-17) gives

2t-- L = -J/t 2 0 0 (-3

W (B -33)

so that the Mellin transform cannot be written in the form of Eq. (B-13)

The Fourier transform given by

F(w) = f(te - 3  dt (B-3 4 )

has a keinel given by

K(t, ) 3e- j  (-35)

This kernel does satisfy Eq. (B-17) and using Eqs. (B-27), (B-28) and (B-30)

h(t) = exp(-j .) (B-36)

g(w) = exp(- .) (-2

and

(z) - exp(j ) (T3-38)

so that
2 t 2  t 2

F() " j I f ( t ) e j eT"j (B-39)
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Since K(t,W) can also be written as

i t2 JT2 j5t-)2
K(t,w) = K(t,20T) = e-  e-  e (i -4o)

then

2 2 2
F(w) = e-JT2[ f(t)e - j t * eJ (B -41)

where w = 20T and Eq. (B.41) is the complex baseband version of the already

familiar chirp transform algorithm.

The Hilbert transform given by Eq. (B-3) has already been shown

to be of convolutional form. This transform satisfies the criterion, as

it should, and Eqs. (B-27), (B-28) and (B-30) give for this case

h(t) = g(w) = 1 (B-42)

1(z) = L(t-W) = (t-W) " l  (B-43)

In actual practice there are few transforms that can be expected

to satisfy Eq. (B-14) and therefore become readily obtainable by the per-

for-mance of a single conv-i1utin. However, if variable transformations can

be made, an extra degree of freedom is introduced so that the transform

kernel may be forced into the proper form. As will be shown, at the con-

venience of being able to obtain a particular transform by a convolution,

the input and output signals must undergo variable transformations to

realize the overall transformation process.

It would now be desirable to find the variable transformations

t = fl('r) (p-l4 )

and

W - f2(v) (B3-45)

that would transform K(t,w) into the form
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K(t,W) - K(f0 (V.-')) (B -46)

Since

0 - 0 (B-47')[

then a kernel will satisfy the relationship

aK(t~w) 2t _. WKt~w) 2W = K t + K wW 0 (B-48)
at ar 3w av t v

From this it can be seen that

(Mt T)t =0 MttT + MtTt - O (B-4i9)

w e M = K /K W(B 
-50 )

and the criteria

(it) (B -51)

follows directly from this. A kernel must satisfy Eq. (B-.51) in order to

be a candidate for a transformation of the form of Eq. (B3,416). Eq. (B -49)

can be solved for T to give

Tr - f exp(f(Mt/M)dt)dt (B-52)

From Eq. (B-l4$) the variable v is found to be given by

v-a-f (M)flexp(f(Mt/M)dt)dw (B'-53)

When these equations are used for the kernel of the form

K(t,w) - G(tw,) 03-5I4)

Eq. 03-51) is satisfied and the variable transformations are given by
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T. I nt (B-55)

and

V = - (B3-56)

so that for

T(w&) = f t f(t)G(tw)dt (B -57)
ti

we obtain

T(-Lnw) f f(e )e G(e(V )d (B -58)
knt,

This result can now be applied to some typical transforms. The Hankel

Transform H a(w) is given by

H (W) = r tf(t )Jv(wt)dt (B-59)

where J v(t) is a Bessel, function of the first kind and order v. Using

Eq. (B -58) this becomes

(-nu 'r 2,r J( (V-T)

a & ff(e )eJe )

V 2V
=f(e )e 0J (e Ha(V) (B3-60)

In th:.s case the signal f(t) requires an exponential time transformation

and the result of the above convolution also requires an exponential

transformation before the Hankel transform is obtained. The Fourier sine

and cosine transforms given by Eqs. (B-li) and (B-12) can be transformed

to give

F (-tnw) - - f(e T)e TSin(e- (V-r) d

- f(e )e 
0 sin(e V) 

F3
~ 

((V6)
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and

F~ ~ (vt))T
Fc(- f(eT )e cou(e - ))dT

f(e)ev * cos(e" ) F c(V) (B-62)

The Y transform given by

1

g(w) = (t)7 f(t)Yv((wt)dt (B-63)

where Y (t) is a Bessel function of the second kind and order v, and its

inverse, the H transform, given by

1
f(t) = f" (Wt)T g(W)HV(wt)dw (B-64)

0

where H (t) is Struve's function given by

.( _.) r( t )v + 2r + 1

Hvt) v+ v >.-3  (B-65)r=o r(r + )r(r +v+ 3  2

can both be transformed using Eq. (B-58) to give

g(-En )~ 1 V-~Te~" T)y (e-(V-T))d

g(.nw)= f(e)e e- N v

- f(e) eV a e ' (e ) - g(v) (B-66)

and

f(tnt) * f g(e-*V )eCVe2(Tv(*T )dv

- g(e T )e"T • eT Hv(eT) (B-67)

Note that all these transforms can be obtained over a finite time period

and for signals of the proper duration using a SAW convolver assuming that
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the exponential variable c nange can be accomplished for both the signal

and the output. The functions multiplying the signal and those convolving

vith it must be electronically generated; however, they never have to be

changed. The output using a SAW convolver, it must be remembered, is

compressed by a factor of two.

A technique for the exponential time scaling of a signal that

utilizes the large time-bandwidth product of SAW chirp filters will be

described after the technique for taking the Mellin transform is dis-

cussed, since exponential scaling for this process is to be used as an

example. The Mellin transform given by Eq. (B-31) can be transformed

into
M(W) . f T JWT dT - (t)

T

by the substitution t = e . Note that by exponentially time scaling only

the input signal, the Mellin transform can be readily obtained by taking

the Fourier transform of this modified signal. A convolver or chirp

filter cn*rp transform system can be used to take the Fourier transform.

The Mellin transform is a powerful transform in optical processing since

its magnitude is invariant to a scale change in the signal that can occur

by variable adjustment of lens positions in an imaging system. In parti-

cular the following relationship is obtained:

,,f(at)) - M-3 R(f(t)) a a-iW MM (B-69)

The Mellin transform assumes a causal signal. For this discussion it

will be assumed that the signal exists over the interval a I t S b where

'a' can approach but never be zero since an exponential scaling of a

signal beginning at time t - 0 results in a signal of infinite duratior

Using the form of the Mellin transform given by

_ __ll..........



312

M() = •Jwna r f(eT+na) )e'1) d (B-TO)

and the identity

M(f(tc)) a c-1 M(W/c) (B-T)

the following equation is obtained

j C n, , T JWT
M(/C) c eJ c & f(aeC )e. d (B-72)

Eq. (B-T2) states that an expanded version (for c > 1) of the Mellin

transform can be obtained for the function f(t), existing between t - a

and t a b, by taking the Fourier transform of the function f(aeCT),

existing from T = 0 to T - c -In(b/a), and multiplying this result by c

and the phase term exp J(W/c)tna . If b-a is confined to being less than

soie time T (as it will have to be) and if the exponentially varying ver-

sion of the signal is to be of duration T-(b-a), then

C £.. b/a) (B -T3)S=T-(b-a)

This is the value of c that is also derived in the discussion of the

exponential scaling technique. Note that for Ln(b/a) << I the exponent

cT is always small so that

M(W/c) = c eJw(kna-c-1 ) j f(acT)e j3 T dT (B-714)

and the exponential scaling becomes a linear time scaling. For a constant

duration signal this occurs when a becomes approximately equal to b.

The exponential scaling technique assumes that the input to a

chirp filter having an impulse response given by

Ih " cos(W0 (t-t ) + B(t-t 0 ) 2 + #O) (B-T5)
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over the time interval to t < to + T in given by

INPUT - f(t+a)cow(t) (B-76)

where f(t+a) exists over the interval 0 < t I b - a. The desired output

of the chirp filter will be assumed of the form

OUTPUT * A(t)f(aec(t-td)) (B-T7)

where td is some delay. The actual output over the interval t + b - a

t + T is given by

OUTPUT a Re [ f( 4+a)e3w(t'T)dT (B.-78)

where

1(tT) - ± + - (t-T-t ° ) + (t-T-t)2 + (B-79)

The chirp filter slope, 20, is typically very large (> 1012 ) for SAW

devices so that the method of stationary phase can be utilized to approxi-

mate the output. In partiular, at &.,y yint --in real time t, the furct'on

p(t,T) will be forced to be stationary in T at

Ta a a(exp(c(t-td)) - 1) (11-80)

If this is to be true then

aut. T) (t'To (B-81)
a'r ITU Cu (~ 0c

which, using Eq. (L-79), gives

W '(T c ) - ± (w + 20(t-Tc-to))

* ± (w + 20(cl(T c a) - c'tna + td - Tc - t ))
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The function, w(T), in the-efore given by

w(*) w T T .28T(c'-1 na - td + to) T2

± 2Bc'-1 ((Tra)ln(T&) - T) + C (B-83)

where C is some constant. When this function is inserted into Eq. (B-79)

and this into Eq. (B-T8 ), one of the resulting integrals will be negligible

compared to the other since it will have a much higher frequency variation.

Therefore,

W(T) = % T - 2ST(c- Ln - td + t 0 ) - OT2

+ 2Bc- ((T+a)Ln(T+a) - T) + C (B-84)

and

U(tT) - 2C' 1 (+a)Ln(T+a) - 2(c-l(Lna~l) - td + t)

+ (t-t0 )(t - to + Wo/l)'+ C/o (B-85)

The derivative of this function is given by

V'(t,T) - 2c l n(T*a) - 2(c-l na - td + t) (B-86)

which equals zero for T = Tc, as it should.

For very large 0, the functions U(t,T) and f(Tr&), where f(T+S)

is assumed to vary more slowly that u(t,T), can be expanded about the

point Tc, of stationary phase, as follows:

1j(tT) - )jlTc ) + VU"(TC)(T-Tc) (N-87)

and

f*+)-f( & f(ae c(Tt d)) (B -8 8)
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so that the output beomes )

OUTPUT M Re ' 'iC + ;7 f(T+a) (B-89)
cP

Using the equations

U(t.T ) t2 + (wo/8 - 2t0 + 2a)t - 2ac 1 ec(t-td)

+ t0
2  W0t/8 + 2a'

1 Ina

- 2atd -
2ac"1 + o/0/ + C/B (B-90)

*"t,) = 2/(c('+&))- (B-91)

and

1" (t.r) = 2c"l exp(-JrUa - c(t-td)) (B-92)

this becomes

fie el/2(tna+c(t-td)l f(aeC(t-td))cosa(t) (B-93)

where

a(t) - (wo + 20(a-to))t + St 2 _ 20c-lac(t-td) +  (B'-94)

and

i Oto 2 _ W0to + 2Bc1 aina - 20atd - 2Bc-la +  0 + C (B-95)

Eq. (B-93) shows that the desired output can be obtained by multiplying

this output by (0/iC)1 /2 exp - l/2(kna + c(t-td)) and coherently detecting

the envelope with a cosine having the phase variation given by Eq. (B-94)

and constant phase given by Eq. (B-95) where C can be arbitrarily set to

zero. The input signal f(t.&) is modulated by a cosine having the phase

ri

...........................
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variation given by Eq. (B-84~). Since the entire valid output time interval t
should be utilized then

ac(t-td) i- ba0a(-6

or a B-6

td t 0 + b-a (B-9T)

and

,ec(t-td) i tut0 *T n b (B-98)

so that

C . nbla(B -T3)

as was previously specified. It should be noted that by following a

similar procedure it is found that for an input given b y

INPUT - f(t+a)cos((% + +a -d to))t) (B-99)

the output is given, using the stationary phase approximation, by

OUTPT - ,~*f(t-td)cos((Wo + 2(td + a+ to)t +)(~iO

where

*~ 2 Bt 2  ~2 _ 20at ~+ f* (B -101)

For td -to0 ~a+tD where t D in some delay, then

INPUT -f(t~a)cos((wO+2BtD)t) (B -102)

and

*UIU f(t + a -to - tD)cos(wo2( 03
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Since the delay through a chirp filter is linearly proportional to

frequency, by the chirp slope 2$, it can be seen from Eqs. (B-102) and

(B-103) that the stationary phase approximation assumes that f(t) is a

very narrowband signal (as Eq. (B-88) implies), otherwise the frequency

components of this function will be greatly dispersed by the chirp filter,

resulting in non-negligible distortion to this signal. Eq. (B-103)

assumes that the signal is only delayed by the inherent delay of the

chirp filter and the additional delay t that a component of frequencyD
28t would have to undergo.

D

' I

I


