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the time-compressed convolution of the two signals.

The memory correlator is similar to the convolver except that the semiconductor
possesses a charge-storage mechawism. Also additional transducers are required for
reccvery of stored information.
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One implementation of a SAW chirp filter consists of a piezoelectric crystal
with grooves etched onto its surface. A surface wave, launched by an interdigital
transducer, is selectively reflected to a second interdigital transducer situated
alongside the first. The groove spacing for this Reflective Array Compressor (RAC)
varies quadratically and a surface wave is reflected at a time linearly proportiona
to its carrier frequency producing a device impulse respohnse having a quadratic
phase variation.

The generaticn of three-dimensional ambiguity functions using a convolver is
described with the criteria. for its implementation. The equations for specific
functions are given and these and others are generated experimentally by this tech-
nique. The basic process is the generation of a 'slow chirp' by applying a 'slow
ramp' to a VCO. The 'slow chirp' modifies the signal center frequency and the
'slow ramp' is summed to the convolver output before display. The design for a
specific range/Doppler response by modification of the waveform while monitorin:;
the ambiguity function is demonstrated.

Chirp transtformation using a convolver is also described. The relationships
for its realization are derived and experimental Fourier transforms are shown.
Inverse transformation results are given where signals are corrupted by monochro-
matic noise and time gating of their transforms prior to inversion eliminates the
noise {rom the signals.

A reneral formulism is developed for the memory correlator where the.device outd
puts and stored charge are related to the interaction between surface waves, stored
charge and applied fields. The convolution/ccrrelation type relationships are de-
veloped from which the duality of output convolution versus stored correlation
arises. Some experimental results with surface states and PN diodes are given
where a modified device package required for uniformity and ease ot sample substi-
tution is described. An application whereby an ambipuity function is generated
using a stored reference is demonstrated.

Chirp transformation with chirp filters is analyzed in detail. Chirp-generated
vourier transform modification 1is also discussed. The transformation capability of
these systems is demonstrated by showing actual waveforms. More complex systems,
correlating receivers, where autocorrelations zre obtained by inverse transforming
transform .products, are demonstrated. Probability-of-error data is used to assess
the performance of a particular correlating receiver. Outputs from a correlating
receiver capable of operating on contiguous data are shown.

An appendix covering chirp-transformation-related topics has been included.
There is an extensive analysis of the Fresnel transform and a discussion on the ren<
eration ot other transforms using these devices.
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ABSTRACT

Three Surface Acoustic Wave (SAW) devices, the separated-

TR DT

4 medium convolver, the memory correlator and the chirp filter are analyzed

for signal processing applications. Fmphasis is placed on convolution/

correlation and Four;er transformation processes. The chirp filter theory
is more general aﬁd applies equally well to chirp filters fabricated by
alternate techniques.

In the SAW convolver there is a piezoelectric delay line. Two
surface waves are introduced onto the delay line surface by interdigital
transducers at its opposing ends.. The two waves overlap beneath a semi-
conductor spaced above the surface and their fields interact with its
charge carriers, A non-linear potential is produced and averaged over
the semiconductor. From its back contact is obtained the time-
compressed convolution of the two signals.

The memory correlator is similar to the convolver except that

the semicondauctor possesses a charge-stérage mechanism. Aiso additional

transducers are required for recovery of stored information.

One implementation of a SAW chirp filter consists of a piezo-

electric crystal with grooves etched onto its surface. A surface vave, ]
launched by an interdigital transducer, is selectively reflected to a %
second interdigital transducer situated alongside the first. The groove

spacing for this Reflective Array Compressor (RAC) varies quadratically

and a surface wave is reflected at a time linearly proportional to its

carrier frequency producing a device impulse response having a quadratic

phase variation.
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The generstion of three-dimensionel ambiguity functions using e

convolver is described with the criteria for its implementation. The

equations for specific functions are given end these and others are gen-

erated experimentally by this technigue. The basic process is the gener-

.ation of a 'slow chirp' by applying & 'slow ramp' to & VCO. The 'slow

chirp' modifies the signal:'center frequency and the 'slow ramp' is summed

to the convolver output before display. The design for a specifie
range/Doppler response by modification of the weveform while monitoring
the ambiguity function is demonstrated.

Chirp transformation using a convolver is alsoc described. The
relationships for its realization are derived and experimentel Fourier
transforms are shown. Inverse transformetion results ere given vwhere
signals are corrupted by monochrometic noise and time gating of their

transforms prior to inversion eliminates the noise from the signals.

A general formulism is developed for the memory correlator

where thé device outputs and stored charge are related to the interaction

between surface waves, stored charge and epplied fields. The convolution/

correlation type relationships are developed from which the duality of
output convolution versus stored correlation erises. Scme experimental
results with surface states and PN diodes are given where a modified
dcvice puckage required for uniformity end ease of sample substitution
is described. An application whereby an ambiguity function is generated
using a stored reference is demonstrated.

Chirp transformation with chirp filters is znalyzed in detail.
Chirp-generated Fourier transfo:m modification is also discussed. The

transformation capability of these systems is demonstrated by showing

iv




actual waveforms. More complex systems, correlating receivers, where
autocorrelations are obtained by inverse transforming transform products,
are demonstrated. Probsbility-of-error dats is used to assess the per-
formance of a particular correlating receiver. Outputs from a correlating
receiver capable of operating on contiguous data are shown.

An appendix covering chirp-transformation-related topics has
been included. There is an extensive analysis of the Fresnel transform
and a discussion on the generation of other transforms using these

devices.
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PART I

INTRODUCTION AND HISTORICAL REVIEW

Convolution and Fourier transformation are utilized extensively

for the analysis of:signals and the design of systems employed specifically

WS

for communications and radar applications. For instance, the Fourier

transform of the impulse response of a linear time-invariant system is its

transfer function. The Fourier transform of the output of the linear

3
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system is the Fourier transform of the input multiplied by this transfer

function. In the time domain this output is the convolution of the input

- gr———

signal with the system impulse response. In general, when two signals are
convolved in the time domain their Fourier transforms are multiplied in the

Fourier (or frequency) domain and, due to symmetry, when two signals are

e -

multiplied in the time domein their Fourier transforms are convolved in !
the Fourier domein. Since a system input is convolved with the system
impulse response, it may be more desirable to multiply, in the frequency

domain, the Fourier trensform of the input signal with the system transfer !

function. The Fourier transform of a signal conteins the magnitudes and

phases of infinite duration sines and cosines which, when summed together,

produce this signal exactly. When the signal is written as this infinite

sum of sines and cosines, each component can be treated independently in

puiihidgh iy i R

a linear system since the output of this system is due to the superposition
of every input component. The transfer function of a system is essentially

its frequency response, from which both the magnitude and phase respounse

B L T Py R

of the system for every frequency component can be found. The Fourier

transformation of a linear differential equation describing some linear
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system produces an algebraic equation that is much easier to solve. Con-
volution is the basic principle behind the technique of matched filtering,
wvhereby a signal is convolved with its time complement to produce a maximum
output wvhen the two signals are fully correlated. This technique is
heavily relied upon in spread spectrum systems and radar receivers where
large correlation gains make it possible to transmit signals that are
imperceptable and high range and Doppler resolution can be obtained with
moderate signal power levels, Furthermore, the shape of the output cor-
relation (i.e. convolution for which one of the signals is time reversed)
from a correlating receiver as a function of Doppler shift produces a
three-dimensional figure whose form indicates the range and Doppler resolu-
tion capability of the signal utilized for the particular radar application.
For these reasons and many others, convolution and Fourier transformation
form the backbones for the analysis of most systems utilized for the pro-
cessing of information (Papoulis, 1968) (Papoulis, 1977) (Skolnik, 19T0)
(Cook, 1967) (Rihaczek, 1969).

Due to the importance of convolution and Fourier transformation
as signal processing tools and in particular due to the versatile proper-
ties of the Fourier transform (namely its symmetry, conjugation, scaling,
modulation, shifting, moment, derivative, energy and convolution thecrems),
it would be highly desirable to possess the capability to perform these
functions in real time with relatively small devices at high frequencies
using & minimum of power and back-up equipment. Up until now the computer
has been the main mechanism for their realization. Although computers are
continually increasing in speed while decreasing in size, they are just

beginning to perform fast enough for real-time applications. It will
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furthermore be quite a while before such units are developed to the point
where they are small in size as well as in power consumption. Also, they
are inherently complex units and it will take a while before they can
perform satisfactorily in the microwave drigain. Charge-coupled devices
(cCD's) are demonstrating the potential for meeting all the desirable
requirements although they are still essentially baseband devices, are
complicated at the initial design stage and are inherently active devices.
There are, however, devices that can meet all the criteria and are the
result of the growing surface acoustic wave (SAW) technology. In parti-
cular, the process of convolution is directly performed by the so~called
SAW separated-medium convolver which is one of the devices that is
examined in detail in this thesis. The second device, generally called
a chirp filter, is the basic element in the realization of the signal
processing techniques utilized in most of the remaining portion of this
work. This device, an example of which is the SAW reflective array
compressor (or RAC), is heavily relied upon for the realization of

the Fourier transform. The bulk of this work is essentially dedicated
to the analysis of these two surface wave devices and attempts to demon-
strate their potential as invaluable signal processing elements.

SAW devices consist of crystals having at least one surface
upon vwhich a surface wave can propagate. A surface wave is a special
type of wave where the mechanical energy of the wave is confined to
within a few wavelengths of the crystal surface, This type of wave
can be compared to earthquake-propagating waves and most of the analytical
foundation has evolved from work done in this area. The crystals used

for surface wave devices are typically anisotropic and in such crystals
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there are only so many directions in which the surface wave and its
energy will propagate along the same path (i.e, normsl mode directions).
Although surface waves may obe excited on virtuslly eny crystalline sur-
face, it is the piezoelectric substrates that are easiest to uBe and
possess the most desirable characteristics., This is due to the ‘ease in
which surface waves can be made to propagate on these substrates using
interdigital transducers. These transducers initiate SAW propagation by
impressing time yarying electric fields having alternating polarities
between the individual transducer fingers onto the substrate. The sur-
face waves on these crystals possess electric fields that propagate with
the waves and evanesce above the piezoelectric substrate surface. The
electrical energy is small in comparison to the mechanical energy and is
dependent and proportional to the coupling constant of the material

(i.e. .0241 for YZ LiNbO3 used for many applications due to its large
coupling constant) which is given by the ratio of the change in velocity
of the surface wave when a metal (shorting) plane is deposited on the
surface (with negligible damping due to mass loading) to the unshorted
intrinsic velocity of the surface wave on the bare crystal surface. The
shorted velocity is always slower since piezoelectricity alweys tends to
stiffen the.elastic surface, The velocity of a surface wave is typicelly
105 times slower than the equivalent electromagnetic wave (3488 m/sec for
YZ LiNb03). The attenuation of these waves is small in comparison to
electromagnetic wave attenuation for the equivalent number of wavelengths
of propagation (i.e. = .01 dB per 3 U sec of propagation or about 1 cm
for YZ Lilb0, at 100 Mhz which is eq ivalent to a 34.9 um wavelength or

about 300 wavelengths per cm). The atienuation of the waves increases
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dramatically, however, up into the Ghz range (i.e. = 1 dB per cm for

YZ LiNbO, at 1 GHz) and the wavelength becomes too small for efficient

3
transducer deposition (done photolithographically using = 2000 K of
aluminum) whose fingers are a quarter wavelength wide (i.e. = .87 um for
YZ LiNbO3 at 1 Glz). Althougﬁ devices have been fabricated in this range,
the typical limit is somewhere in the lower Ghz range due to the above
limitations.

The basic usage for these devices is that of piezoelectric
delay lines. By designing special transducers utilizing variable finger
lengths or withdrawn fingers, virtually any desirable finite impulse
response filter can be designed heving extremely linear phase character-
istics. By varying the spacings between the transducer fingers, variable
phase responses can be built into these filters so that Linear-FM or
chirp filters can be realized., Due to bulk wave distortions, however, a
better mechanism for realizing chirp filters utilizes surface wave
reflections from gratings etched into the surface of the delay line
(i.e. the reflective array compressor or RAC). This technique has also
been used to fabricate high Q (in the tens of thousands) resonant cavity
devices (or resonators).“ Then there are the devices, of which the
separated-medium convolver is an example, that produce an output
by the interaction of the SAW electric fields with the cerriers in a
slice of semiconductor adjacent to the piezoelectric delay line surface
or the carriers within a piezoelectric/semiconductor substrate. These
are the so-called acousto-electric devices of which the SAW amplifier
is also representative. A variety of other types of devices have been

conceived and fabricated utilizing these surface wave techniques
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(Matthews, 1977) (Kino, 1976) (Oliner, 1978). The signal processing area
has benefitted greatly due to the advent of SAW technology (Kino, 1971)
(Maines, 1976) (Ash, 1978) (Hays, 1976). Many devices have been devised
and implemented for use in radar epplications (Maines, 1977) and for
spread spectrum communications (Collins, 1976) (Unkauf, 1977). The
excellent performance of chirp transformation anti-jam receivers
(Arsenault, 1978) (Milstein, 1978) and the potential for the integration
of SAW with CCD's (Whitehouse, 1973) open-up new avenues for the pro-
cessing of information.

The SAW convolver has undergone several stages of development
over the past years up to its presently accepted form, although its
predecessors are again being investigated as devices having the potential
for low cost production. The first of such devices utilized the non-
linearities in the crystel itself to obtain a second order mixing between
two counter-propagating surface waves. This second order output was
typically integrated over by a metallic plate or an interdigital type of
contact at twice the periodicity of the difference in frequency between
the two waves. The device is essentially an 'elastic convolver' (Quete,
1970) (Luukkala, 1971) (Kino, 1973). The output of such a device was
quite small ;nd led to the investigation of an enhanced non-linearity
mechanism. (The 'elastic convolver', however, is being reinvestigated
(Becker, 1979), since surface waves can be concentrated into higher
power-density modes, thereby increasing the second order non-linearity.
By proper guiding structures such devices have been shown to perform
almost as efficiently as the separated-medium convolver.) It was found

that the second order non-linearity was greatly enhanced (in the absence
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of beam concentration) by the interaction of the SAW fields with charge
carriers in a semiconductor and led to the piezoelectric-semiconductor
convolvers (Wang, 1972) (Turner, 1971) and the seperated-medium convolvers
(Wang, 1972) (Yamanishi, 1972) which are the subject of an appreciable
portion of this thesis. The theory for the SAW separated-medium convolver

has undergone significant development over the past years (Otto, 1976)

(Gautier, 1977). Section 2.1 of this report is an attempt to organize

the theory in a way that allows one to visualize the interaction between
two infbrmetion bearing surface waves and thereby witness the evolution
of a device-characteristically-weighted output convolution amidst a
series of distortion terms. This theory does not attempt to materialize
the individual spatial and frequency dependentlfunctions describing wave
propagation and the physics of the device (which can be found in one form
or another in the literature) but attempts to show where and how these
functions relate to the total device output and the spectral symmetry
relationships that these functions must obey for a physically realizable
device. The output of the device obtained in this follow-through fashion
is then compared with the output obtained by a converse technique whereby
a function is assumed to exist that describes the weighting between any
two frequency components of the two convolver input signals. Fourier
transformation theory and moment expansions are utilized extensively
throughout this section along with the epproximation that spatially
varying device characteristics vary much more slowly than the spatial
'freqnencies of the surface waves and are therefore separable functionms.
Most of the functions describing various aspects of device physics can be

derived from numerous sources investigating specific phenomena such as
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the accumulation of cherge at the silicon surface facing the surface of
the piezoelectric delay line (Smith, 1973). Note that another convolver
structure has also been developed and should be mentioned based upon the
tapped delay line structure (Reeder, 1973). The discrete device utilizes
individual dicdes at each tap (i.e. interdigital transducers) along the
piezoelectric delsay line surface to perform the non~lineerity. The diode
outputs are summed to produce the convolution between two surface waves.
The realization of convolvers by utilizing the principles of
surface wave propagation has presented the possibility for a wide variety
of applications. Ambiguity function generation was demonstrated by Das
(Das, 1974) utilizing the separated-medium convolver. The process is
improved upon in this thesis, whereby the ambiguity functions are shown
to be easily displayed in three dimensions (amplitude vs. frequency or
Doppler shift vs. time or range) utilizing a2 'slow ramp' and chirp. The
analysis of this process is presented along with analyticsl and experi-
mentally generated ambiguity functions. Some experimental results are
given that specifically demonstrate the dynamic design capability of such
a convolver implementation (Das, 1978). Another powerful convolver
application is the generation of Fourier transforms based upon the chirp
transformation algorithm (Otto, 1972). In Section 2.5 of this report
an analysis for the implementation of the convolver chirp transform is
presented, In Section 3.1 experimental results are given showing some
chirp-modulated output Fourier tremsforms from such a system. Also
shown are results demonstrating the time-gating of the Fourier transform
resulting in a filtered output obteined by inverse-Fourier transforming

the gated Fourier transform. Literature related to these results have
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been published concerning the topics of non-destructive testing (NDT)
for distortion elimination (Tiemann, 1976) and the implementation of
adaptable receivers (Das, 1975) (Milstein, 1977) both of which are based
upon the utilization of the SAW convolver and the chirp transform.

A modification to the convolver structure is utilized to produce the
memory correlator. This convolver has the capability for signal storage
by some form of charge storage mechanism elong the surface of the semi-
conductor in a separated-medium convolver structure. The preliminary
work in this area consisted of utilizing semiconductor surface states
(Bers, 1974). Some experimental results obtained using the surface
states found in untreated slices of LO Q-cm silicon are shown in
Section 3.1 of this report. ' The storage times were found to be quite
small (= 25 us) for these states which led to the use of diode arrays
vhereby charge is stored: through the imposition of a forward biasing
field and then held for tens of milliseconds (and seconds at cryogenic
temperatures) by the high back resistance of the diodes. This report

presents some results obtained using PN diode vidicon arrays in a

convolver package intended to facilitate vidicon array removal and possess

the capability to maintein uniform interactions. These results demon-
strated the ability to generate ambiguity functions with a stored
reference, Section 2.3, furthermore, presents a general formalism for
the operation of the convolver in the presence of a charge storage
mechanism and with fields imposed within the interaction region by
potentials applied directly to the semiconductor. The form of the
direct output signals. the spatially stored signals and those recalled

at a later time are all presented within this framework. This analysis
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is based upon the results obtzined over the years in conjunction with
the memory correlator. Not only has work been done utilizing PN diodes
(Defranould, 1976) (Das, 1977), but Schottky diodes are now being exten-
sively used (Ingebrigtsen, 1975) due to their fester response times and
structural simplicity. Theories detailing the influence of the ‘device
physics on its output are evolving in this area (Kino, 1976) and dev;ces
such as the coherent integrator, whereby the signal to noise ratio of a
repetitive signal is improved by the integration in storage and the
integreting correlator in which signals thousands of times the length
of the convolver interaction time can be integrated producing e piece of
the correlation of duration equal in length to the interaction time
(Ralston, 1977) are now beginning to leave the laboratory and enter the
applications stage. Most of these new devices are utilizing third and
higher order convolver interactions in order to reduce the background
spurious components stored along with the desired information.
The surface wave chirp filter end its implementation in the

generation of real-time Fourier transforms is studied extensively in

the remainder of this report. Chirp filters evolved from phase weighted
interdigital transducer devices (Gerard, 1973) (Gerard, 197T) to devices
utilizing selective reflections from quadratically spaced arrays of
grooves (Williamson, 1973) (Williamson, 1977). These latter devices
called reflective array compressors or RAC's were greatly influenced by
research related to the development of the IMCON's (IMpedance CONtrol
devices) at Andersen Laboratory (Martin, 1973) (Martin, 1976). The
IMCON is a chirp filter that utilizes groove array reflections, but the

wvave is a bulk wave in a thin metal sheet. Due to the close similarity
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in the operetion of these devices to that of RAC devices, the analysis
of their implementation for signel processing applications is identical
in either case, IMCON's were used for the demonstration of chirp filter

principles in this report due to their ready availability. (They were

Cm— e o~ = w
P o

supplied on loan by Andersen Laboratory.)

The chirp filter is finding wide applications in the area of

signal processing (Nudd, 1975). Systems utilizing these devices have
been dermonstrated, such as a variable bandwidth filter (Maines, 1975),

a variable delay line (Dolat, 1976) and a programmable pulse compression

— TRy v =
O RO .
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filter (Gerard, 1977). One application that utilizes the Fresnel trans-

formation input/output relationship of the chirp filter has been demon-

——

strated in Section 3.2 of this report whereby any desirable portion of a ﬂ
continuous signal is selectively time-inverted (Arsenault, 1977). The
Fresnel aspect of chirp filters has essentially evolved from the work
related to this thesis. A detailed documentation of the Fresnel trans- k
form, its properties and relationships, was derived specifically for

this work and is found in its complete form in Appendix A. Although no
such enalysis technique has been developed to date, this Fresnel analysis
was performed with the intention of developing a chirp system analysis

technique similar in form to the applicability of Fourier analysis to

the general design and analysis of linear systems,
A very important application of the chirp filter is its
utilization in a chirp transformetion system (Atzeni, 1975) (Hays, 1975).

A useful application of the Fourier transforms obtained using these

o me————-
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devices has been demonstrated in this thesis by the selective time gating
of monochromatic noise from an NDT (non-destructive testing) reflection
(Pas, 1978) and by implementating the process into a variety of correlating
receiver structures (Das, 1977) (Arsenault, 1978) (Milstein, 1977)
(Milstein, 1978). The basic transformation process was demonstrated

elsevhere in the literature (Otto, 1976) where it has also been utilized

for network analyesis (Jack, 1976). Continuous transformation has been
demonstrated in this work and although the continuous transform streams in
the receiver demonstrated in Section 3.3 of this repor£ were not separated
into real and imaginary components, the system demonstrated the ability
to perform three Fourier transformations, two to obtain the product-
of-transforms and one to take the inverse transform of this product and

thereby obtain the correlation of the input signal with a reference,

This system represented the incorporation of techniques developed in a
variety of receiver structures that are also documented in Section 3.3.
The chirp filter chirp trensformation process is discussed at length in

Section 2.4 ani the effect upon a signal by the modification of its }

chirp-generated Fourier transform is discussed in Section 2.6. Finally,
the ability to generate a wide variety of other transforms utilizing the
convolver and chirp filter is discussed in the Appendix. 1In this appendix
the techniques for generating a number of the more popular transforms
(Sneddon, 1972) are dwelled upon. Much of the discussion is based upon
time scaling which has already been utilized for the generation of the

Mellin transform in the area of optical signal processing (Casasent, 197T).
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PART 2 ':j
;
{

THEORY

2.1 The SAW Separated Mediun Convolver Input/Output Relationship .

A signal f(t) is applied to one input of the convolver and a P

bl
H
i
1

signal g(t) is applied to the other. Before producing an output from this
device both signals must pass through input “ransducer matching networks
(which may be only single inductors) after which they are transformed by
their respective transducers into surface waves that propagate toward one
another., The elecéric fields that propagate with these traveling surface
waves interact non-linearly (when the waves overlap) with the charge
carriers in the semiconductor (that is supported above the piezoelectric
delay line) so as to produce a time and space varying current density
within this semiconductor thet is proportional, at any point in time and
space,to the product of the fields of the two contrapropageting signals

at that point in time and space. This non-linear current density produces
a potential that is related linearly to the current through the average
semiconductor conductivity and is also a function of time and spaée. The
back ohmic contact of the semiconductor averages out this spatially
varying potential at every point in time and the resultant time varying

signal is transmitted through the output matching network of the con-

volver whereby it is sensed as the output of the device,
The two convolver inputs cen be written as infinite sums of

cosines as follows (where the 1/2m will be ignored in all the equations)

£(t) = § Aglw)eos(ut + 6,(w))aw (1.1)
glt) = L Ay (w)eos(ut + 6_(w))aw (1.2)
13
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Since both these signals are undoubtedly real, then from Fourier analysis
; Alw) = Al-w) ,  ¢lw) = ~¢(-w) (1.3) 3
s5 *het Egs. (1.1) and (1.2) can be rewritten as

f(t) = ‘L‘:Ar(w)ej¢f(w) ert dw = _f: F(m)edwt dm<——->F(w) (l.l&) ;

and
} glt) = 1 Ag(w)emg(w) Jut o =L 6(w)e?™ awe—=c(w)  (1.5)
where
Flw) = {: £(t)e™Yt at = Af(w)e3¢f(m) = F'(-w) (1.6)
and
clw) = [ g(t)e 3 ay = Ag(m)e3¢g(“) = 6" (-w) (1.7)

are the Fourier transforms of f(t) and g(t), respectively.
The transducers and their matching networks have impulse

responses mf(t) and mg(t) for the f(t) and g(t) inputs, respectively.

T~ese responses are surface waves injected onto the surface of the delay
line. (Impulses applied to the transducers produce surface wave displace-
ments mr(t) and mg(b) at points on the surface immediately foilowing t'-=
transéucers.) Therefore, the signals injected onto the delay line at each

transducer can bec written as®

£(t) = £(t) w m (t) = [7 £(T)n (t-T)ax

= Lo FluM (0)e?" au (1.2)

and

sl(t) = g(t) rmg(t) = {: g('r)mg(t-'r)dr

* Capital letters denote Fourier Transform. For example the Fourier
Transform of mr(t) is Mf(w).

.
RN ARG e T




I
-

R e T T TR

[OSPRPANITS WS WL SONL LY SR SRR,

s f G(m)Mg(w)eJm dw (1.9)

If the direction of propagation is the z direction and fl(t) and gl(t)
are injected at z = -Gf and z = L + 68, respectively, where Gf and 68 i
are the distances between each transducer and its nearest semiconducor

edge and L is the length of the semiconductor, then

it
[

() = £tz = -6.) {(1.20)

and

g (t) = g(t,z =L +6) (1.11)

T T PP Tt Tt e

If the intrinsic loss of the piezoelectric delay line (loss in
the absence of any close-proximity perturbing medium such as the semi-
conductor) is given by a_, then fl(t) and gl(t) will decay by a. and 8
respectively, after propagating to their nearest semiconductor edges

where

] a8, = e-o'°Gf (1.12)

and
by (1.13)

and aiffraction effects are ignored (perfectly parallel wave fronts

assumed). The signals at the semiconductor edges can be written as

fz(t,z = 0) = a, {: F(w)Mf(w)e"Jk°sf eJut dw (1.14)

and

* =3ko8g (Ut 4 (1.15) j
gyftsz = L) =a [ Glu)M (w)e™ToTE e w |

where d

k, = m/v° (1. 16)

il N . ,Mmg'““q@ oo '1;.7 ."
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and

v, = free surface (intrinsic) SAW velocity .

If x is the direction parallel to the wave fronts, diffraction effects
could have been included by utilizing weighting functions at z = 0 and

2 = L that are functions of both x and W. Since surface waves beneath
the semiconductor tend to remain collimated by the waveguiding properties
of the semiconductor/ground plane combination and even the semiconductor
support rails (if they are used), all spatial variations will typically
be slowly varying functions of space in comparison to the spatial wave-
length of the signal. These spatial variations due to waveguide moding
and diffraction will therefore be included in the spatial functions
'Sf(x,z,w) and Sg(x,z,w) for f(t) and g(t), respectively. In other words,
if it is assumed that the spatial dependences of any CW component of the
signals £(t) or g(t) at freguency w in the x and z directions is forced
to be constant for that component by the waveguiding action of the semi-
conductor piezoelectric convolver structure (which forces the component
to propagate in a well defined mode that may or may not be a function of
freqpency),then each component of the signal can be multiplied by a
constant spatial function in x and z for that particular fregquency where
any spatial variation will be assumed slow compared to the spatial fre-
quency of that component beneath the semiconductor.

Beneath the semiconductor, besides being weighted by the
spatial functions Sf(x,z,w) and Sg(x,z,w), the surface wave components
at any point have undergone attenvation,from the time they have entered
beneath the semiconductor,thet is frequency dependent due to the presence

of the semiconductor. This attenuation factor is given by the sum of the
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intrinsic piezoelectric attenuation and a frequency dependent term, namely

alw) = a + al(w) (1.17)

Furthermore, any component at any p2int z beneath the semiconductor is
delayed by an amount Gf/vo + z/v{w) for f(t) and Gglvo + {L-z)/v{(w) for
g(t) where v(w) is the velocity of that component which is also frequency
dependent -due to the presence of the semiconductor.

Incorporating this information, the signals seen at any point z

beneath the semiconductor can be written as

f3(xs2,t)= 8, [: F(w)Mf(w)Sf(x,z,w)e-dk°(6f+z) e-JB(m)z W 4y (1.18)
and
g4(x,z,t) = 8y I G(m)MS(m)Sg(x,z,w)e_‘jko(agﬂ"z)
e-JB(w)(L-z) Wt 4 (1.19)
where
Blw) = kl(w) - Jol(w) (1.20)
k(w) = k, + kl(m)
= w/v(w)- (1.21)
and
v(w) = v, - v, (w) (1.22)

since the piezoelectrically 'stiffened' surface wave velocity is decreased
due to the presence of the semiconductor representing an increase in the
spatial frequency k(w). Note that

kl(w) vl(w) vl(m)

= o~
k o Vo-vl (w) v

(1.23)

o]

80 that the ratio of the change in spatial frequency to the intrinsic value
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is approximately given by the ratio of the chanye in velocity to the
intrinsic velocity at any frequency w since the change in velocity is
typically quite small. The signal equations given by Eqs.(1.18)and (1.19)
represent the signal seen at any point (x,z) beneath the semiconductor at
the surface of the piezoelectric delay line as a function of time and
written in component form. Although to this point these signals could

have been representative of any mechanical or electrical component of the

surface waves, it will now be assumed that they represent the electric
potential ¢ of the waves. The electric field and the charge density
deviation inside the semiconductor can both be found from the potential

functions for both signals.

The decay of the potential of a surface wave away from the
surface of the plezoelectric delay line, which will be considered as the
positive y direction, in the absence of the semiconductor, is purely
exponential having a decay constant proportional to the spatial wavelength
of the wave, The introduction »f the semiconductor at a small distance h
above the delay line surface(at y =0) greatly perturbs this behevior so
that the actual behavior inside the semiccnductor (of width 4) is much
more complicated. Typically the solution for the variation of the potential
in the y directicn away from the delay line surface and inside the semi-
conductor consists of a summetiorn of ccmplex terms. In other words, a
component of the potential at the surface of the delay line having fre-

quency W and magnitudes and phases given in Eqs. (1.18) ana (1.19) will

appear, at any point (x,¥,2) inside the semiconductor, to consist of a
summation of components whose amplitudes decey independently into the ‘?

semiconductor (or the y direction) and, furthermore, some of these compon-
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ents take on the characteristics of potential waves propagating into the
semiconductor. When solved in detail, there are typically four components
that are the solutions of a fourth order differential equation. Therefore,
this type of variation can be included in the equations for the potential
by utilizing the complex function D{y,w) that is typically a summation of
four complex components. Not all of the four components are necessarily
complex. Those components that are complex represent potential waves
independently decaying ard propegating into the semiconductor at the point
(x,2). Recal components represcnt time varying replicas of each signal
component at the point (x,z) that simply decay independently into the
semiconductor and do not appear to propagate at this point. In the absence
of the semiconductor there is only one real component so that,ealong any
line in the y direction,the potential simply decays exponentially end vgries
temporally with the signal. When written in component form,the potential at

any point inside the semiconductor,for the two signals,would be of the form

£,(x,¥,2,t) = a, I F(m)Mf(w)sf(x,z'w)D(y,w)e-Jko(5f+z)
—dBlw)z Jut (1.24)
and
g, (x:¥,2,t) = o s G(w)Mg(U)SS(X,Z,w)D(y,m)e—Jko(63+I'_z)
I8l (l-z) Jut . (1.25)

vhere the sumation is over the N components of the y variation and

D_(y,w)

D(y:w) n

n
o B el

N
. |Dn(y,w)|eJ"g(Dn(y’“’)) (1.26)
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In actuality the functicn D(y,w) is an extremely weak fanction of the
spatial directions x and z, The differential equation describing the
potential interaction of which D(y,w) is the solution includes the spatial
varistions along these directions. However, due to the fact that the x
and z direction variations are much slower than the spatial variations of
the surface wave, where k(w) is the spatial frequency of the component of
frequency w, these variations can be neglected, as is typically done in

practice, with very little error.

This discussion assumes idealized uniformity along the length
of the device. If the device were not only perfectly uniform but sym-
metric with respect to the center of the slice of semiconductor, both
surface waves, from their points of injection, would undergo the same
amount of diffraction before reaching their closest semiconductor edges.
Furthermore, since both waves would essentially 'see' the same structure,
then the same restrictions would be imposed upon them by the waveguiding
action of the device. Under these conditions, therefore, it can be
expected that Sf(x,z,w) and Sg(x,z,m) would be space inverted images of

one another, i.e.

sf(x,z,w) = Sg(-x,L-z,w) (1.27)

where the width of the semiconductor extends from x = -a to x = a. Smoothly
varying device non-uniformities can be included in these terms without
foreing D(y,w) into becoming a fuﬁction of the x and z spatial variables,

if these non-uniformities are not due to appreciable changes in semiconduc-
tor to piezoelectric air gap, materia) dimensions or other material charac-

teristics. What is conétituted as an appreciable change is dependent on
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how great a change influences the parameters of the differential equation
for the y variation of pot-ntia’. If sorme such non-uriformities are in-
cluded in these terms, then Eq. (1.27) would not in general hold. In
particular for this discussion, it is being assumed that Gf # Gg so that
the x variation of a component at one semiconductor edge, injected from that
end,would be different from the x veriation of the same component along the
other edge,if injected from this other end, since the wave will undergo a
differing amount of diffraction in the two cases. Therefore, Sf(x,z,w) and
Sg(x,z,m) will be assumed independent of one another for the remainder of
this discussion.

Equations (1.24) and (1.25) for the potential of any point inside

the semiconductor can be rewritten as

s
fh(x,y,z,t) = £t - %—-- ;i) * fD(x,y,z,t) (1.28)
o o
and
z EE L
gh(x,y,z,t) = gt + e ;—) * gD(x,y,z,t) (1.29)
o o o
where
8
z & SINC:
£t v, vo)<——>F(w)e" ol8g+2) (1.30)
2 S 1 ~3ko (6 +L-2)
glt piraalidie —;—)HG(w)e o'*g (1.31)
o o )
fD(x,y,z,tX<h—-.—anf(w)Sf(x,z,w)D(y,w)e-JB(w)z
= FD(x,y.z,m) (1.32
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and

en(%:¥,2,t) «—> agMg(“’)Sg(X,z,w)D(y,w)e’JB(w)(L'z)

= GD(x,y,z,w) (1.33)

Equations (1.29) and (1.30) state that the potentials at any

point (x,y,z) inside the semiconductor are given by the time convolution
of surface waves derived from the original undistorted input signals with
time signals that are functions of position inside the semiconductor,
Essentially fD(x,y,z,t) and gD(x,y,z,t) can be considered as distortion
terms. The functions f(t), g(t), fD(x,y,q,t) and gD(x,y,z,t) are band
limited functions with a finite bandwidth around the center frequencies
wy and 5* Within these bandwidths the distortion functions and their
Fourier transforms can be expanded into a series of progressively de-
creasing terms which racilitate numerical computation (Arsenault, 1979).
The potentials produce time and space varying fields and charge

densities. The electric field at every point in conjunction with the charge

density produces a current density at that point. This current density in

turn produces a potential through the average resistivity of the semiconductor.

Since only the potential in the y direction is utilized for the convolver out-
put, then only the currents propagating in this direction are of any interest.
The current at any point (x,z) produces a potential across the semiconductor
at this point by propagating in the y direction through the distributed

resistance resulting from the unperturbed resistivity of the semiconductor
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at this point. In general this resistivity is a function of the y spatial
variable due to surface depletion, accumuletion and inversion. The time
varying resistivity due to the time varying charge density produced by the
two surface waves merely represents a perturbation to the semiconductor
resistivity so that the convolver output across this semiconductor can be
assumed entirely due to charge propagation through the unperturbed resistivity.
The y component of the current density is produced by the product of the y
component of electric field and the charge density at every point (x,y,z).
Since there are two y components of electric field present; namely, one due
to the input signal, f(t), and the other due to the other input signal, g(t),
and since, in addition to the avefage (unperturbed) charge density at every
point in the semiconductor, these signals, as surface waves, also produce
time varying components of charge densit&, then there is in actuality a sum
of current density compdnents at every point. Although every one of these

y components of current density will produce a potential across the semi-
conductor, it is only the non-linear ccmponents due to the cross produ.ts

of the electric fields and charge densities of the two propagating surface
waves fhat will produce an output proportional to the convolution of these
two signals. The interactions of the electric field of a propagating surface
wave with its own induced time varying charge density and with the unperturbed
semiconductor charge density (represented as a very large constant value) do
not result in potentiasl distributions with zero spatial frequencies as do the
interactions between the fields and charge densities of the two surface waves
due to the contrapropagation of these two waves. In this manner the convolu-
tion output is due entirely to the cross interactions that don't integrate to

zero. Finally, it must also be noted that, due to surface effects on heavily
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accunulated semiconductors, the mobility, M, required in the calculations
of current density, will also be a function of y. The mobility can change
‘ by a factor of two from the surface to the bulk of heavily accumulated
silicon. This has been verified by acousto-electric current intgractions

with the silicon surface under heavy accumulation (Cafarella, et al, 1972).

Since tﬁe surface waves propagate typically five orders of magni-
tude slower than electromagnetic waves in air, the electrostatic approxima-
tion, by which the field components are the negative gradients of the potential
in their respective directions, can be utilized in order to obtain the
y-components of electric field forlthe two signals inside the semiccnductor.

These components are given by
(1.3L)

0
Efy(x,y,z,t) = - 'a_y' fh(XQYaz’t)

and

3
Esy(x,y,z,t) = - W gh(x’y:zst) (1.35)

The charge density variations at every point inside the semiconductor can
be found using Poisson's equation which states that the charge deviation
is proportional to the negative Laplacian of the potential. From this the

charge density variations due to the two surface waves are given by

2
Pexs¥,2,t) = - €, V° 1,(x,y,2,t) (1.36)

and

Ds(x,y,z,t) =-c, v2 gh(x,y,z,t) (1.37)

here es is the semiconductor permittivity.
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The non-linear current density component in the y direction is

trerefore given at eny point in the semiconductor by

Jny(x,y,z,t) = qu(y)pf(x,y,z,’C)Egy(x,}'.zat)
+ qu(y)og(X.y.z,t)Efy(x,y,Z.t)
= Jfg(x,y,z,t) + Jgf(x,y,z,t) (1.38)

The potential across the semiconductor at every point (x,z) is obtained by
dividing Eq. (1.160) by the conductivity of the semiconductor (assumed to

vary only with y) and integrating along its width in the y direction. This

potential, Vo(x,z,t), is given by

ad, (x,¥,2,t)
= . (1.
VO(X,Z,t) {1 —La;)—-dy 39)
The total potential at the back ohmic contact of the semiconductor
(at y=d) is the average of the potentiasls at every point (x,z). This poten-

tial, Vl(t), is given by
( L foa ( t)dxd (1.L0)
v t) = 5:5'0- I, Vo X,z,t)dxdz - .

This equation represents the final output of the convolver if a purely
resistive load is connected to the back contact of the semiconductor., If
an output matching network is utilized, the output must be convolved with
the impulse response of this network., Since very little distortion is
expected rrom this output matching network, its transfer function can also
be assumed to be slowly varying over the signal bandwidth and therefore
this convolution cen also be written as a finite number of terms of a

moment expansion. It is the output at the back contact of the semiconductor

- v g . ———— e
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however, that most clearly characterizes the convolver and the matching
network can simply be regarded as another device of a string of device
following the convolver.

For a well made convolver only a few terms in sines expansion

are required to accurately describe the output. In particular, the

fundamental component is given by

v
= o ttr 1 _ ) - 534
Ve(t) 26T 41ty rét)gl2(t - E(T tro* tf)) T)Bl(vo(t 1) - §.)dt
(1.41)
vhere the substitution T =t - (z+6f)/vo has been made and
T =L/v (1.42)
o
= (1.13)
tf Gf/vo
t =6 /v (1.kk)
g g O

and Bl(z) is a function representing the distortion due to different

mechanisms discussed earlier.*® 1In general this Lerm will be a constant

for a well made convolver.

Other terms arise due to the non-linear interaction of the sur-
face waves with themselves, the average charge density of the semiconductor
at every point and applied or internal fields arising due to trapped charges.

The resulting current densities are proportional to

Jsf(x,y,z,t) = qp(y)pf(x,y,z,t)Efy(x,y,z,t) (1.45)
JSG(X.y.Z.t) = qu(y)pg(x.y,z.t)Egy(x,y,Z.t) (1.46)
Iepe(Xs¥szat) = @(y)n (¥)E. (x,¥,2,t) (1.47)

* For an actual expression for Bl(z) and its derivation see (Arsenault, 1979).
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J@c(X.y,z,t) = qu(y)no(y)ﬂgy(my.ht) (1.48)
| I o (x,7,2,8) = auly)e,(x,¥,2,t)E(x,y,2) (1.59)
Jeg(x,y,z,t) = qu(y)pg(x.Y.z,t)E(x,y.z) (1.50)

where no(y) is the average charge density of the semiconductor and E(x,y,z) Y

is an internal electric field due to outside application or some trapped

charge configuration. Note that u(y) and no(y) may also be functions of x

and z, especially when semiconductor edge effects are under consideration.

The output potential due to the above-mentioned terms will in general be

negligible for a useful convelver.

The foregoing analysis essentially produces a relationship for the
non-linear output potential of the convolver in terms of functions that in-
dividually describe épecific aspects of device behavior. This analysis was
besed upon treating the input signals to the convolver in terms of their

Fourier transforms and treating each component as an independent signal

kaving an infinite duration and a spectific value of ragnitude‘'and phase,
The output was then obtained by utilizing an expension that will converge
rapidly for small device distortions, which is equivalent to the require-

rent that the response of the device for two different Fourier components

be approximately the same. For a well made device this is essentially the

case.
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2.2 The Convolver and the Ambiguity Function
Ignoring initial delays and assuming that the entire overlap :
of £(t) and g(t) occurs beneath the interaction region of the convolver,

then its output can be written as v

L convolver output = K f: £t - %Og(t + %sz
J_ f{t)g{2t ~ 1)ar (2.1)

where K is simply some constant arising by assuming that the response is

independent of frequency. This is valid if the convolver efficiency

deviates very little over the passband of the device. Note that no

carriers were used for the input signals. In reality, however, the two

signals must be carrier modulated and the two carrier frequencies do not
have to be the same (degenerate operation) although their bandwidths
about these carrier frequencies must pass through the bandpass region of

the convolver. In particular, the two input signals will be given by

| £(t) = fo(t)coswlt (2.2)

: g(t) = go(t)cosw2t (2.3) i

4 ‘ ]
These signals can be directly substituted into Eq. (2.1) whereby the 5

output is given by

o
output = 2 [ fo(r)go(zt-T)coswlrcosw2(2t-r)dr
= L gJowgt (> _eyad (W1=wp )T
5 e Lo fo(T)go(Zt T)e dr + c.c. |

+ %-ejew?t {Z fo('r)go(zt-t)e"’(ml"“’z)T dat + c.c. (2.4)
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vhere all multiplicative constants have been ignored. If wy and w, are
large and almost equal, the integrals will be dominated by the variations
imposed by their surm and difference, since fo(t) and go(t) are typically
slowly varying functions. Since the variations in the second set of
integrels, under these conditions, are of much higher frequency than the
variations in the first set of integrals, they will essentially integrate
to a much smaller value over the entire interaction of fo(t) and go(t).
Therefore, only the first set of integrals need be retained. For

g,(t) = fo'(-t) Eq. (2.4) becomes

output = % ed 22t x(2t,9) + c.c.

= Ro(2t,¢)cos2w2t - Xb(Qt,¢)sin2w2t (2.5)

where

x(2t,8) = /7 £ (D)1 " (1-2£)e™IZMT 4

= autoambiguity function

= R (2t ¢) + 3X (2t,¢) (2.6)
R,(2t,0) = [7 £_(1)f, " (1-2t)cos2mét ar (2.7)
X (2t,6) = - J2 £ (1)f, "(1-2t)sinemét at (2.8)
¢ = (wy~w,)/2m (2.9)

»
and fo(t) =f (t) for a real input signal. Eq. (2.6) represents the
complex ambiguity functicn obtained when the signal fo(t)exp(let) is

passed through a matched filter having impulse response fo“(-t)exp(Jwet)
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vhere w, is different from w, if the signal has been Doppler shifted.

1 2
This assumes that a Doppler shift only effects the cerrier, which is a
good approximation in practice. In actuality a signal reflected from a
rmoving target is expanded or compressed dependent on the velocity and
acceleration of the target. This expansion or compression is the cause
of the carrier frequency change. For arbitrary target motion the
reflected signal for a transmitted signal fo(t) is of the form fo(t-D(t)),
where D(t) is a time dependent delay. Although the time envelope of a
radar signal is usually affected by the Doppler shift, it is small in
comparison to the change in the output of a matched filter due to a small
carrier frequency change. The embiguity function is determined solely by
the transmitted signal and the receiving filter characteristics (f(t) and
g(t)) and answers questions about resolution, ambiguities, measurement

precision, and clutter rejection obtainsble using this signal and filter,

Eq. (2.5) can also be written as
2 2 3
ocutput = (Ro (2t,¢) + X, (2t,¢))§'cos(2w2t -

tan™ (X, (2t,8) /R (2¢,0))) (2.10)

This equation shows that the envelope at the output of the convolver is
the magnitude of the ambiguity function. The phase of this function is
locked up into the phase of the carrier. Envelope detection of this
signal for a specific ¢ will give the magnitude of a single slice of this
inherently two-dimensional function along its time axis. The convolver
forces a time compression factor of two onto this function although the
frequency axis is unaffected (i.e. ¢ is directly proportional to the

difference wz-wl).
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For a real time function (i.e. an rf pulse) f
" 1
£ (t) = £ () (2.11) E
so that 1
3202t y(2t,4) = 3228 /70 (1)r_(1-2t)e™ET ar
Janmt -jemg(t-2t)
I fo(T)fo(T-zt)e ar
Jawt -jemét
e o T (T)E (142t )e at
= 92T (o2t ,4) (2.12)
In general, however,
£(t) = £ (t)cos(ut + ¥, (t))
= p, (t)cosw, t - q, (t)sinw b (2.13)
Likewise,
g(t) = go(t)ccs(wzt + ‘{’2(1:))
= Pz(t)COswat - q2(t)sinw2t (2.11)
The output of the convolver for these inputs is given by
output = e322° /7 ¢ (1)g (26-1)eIFT a1 + c.c, (2.15)
where
£,(1) = py(1) + Jo, (1) (2. 16)
g,(1) = p,y(1) + Jg, (1) (2.17)

i For the matched filter

‘ g(t) = £(-t) (2.16)




or

go(t) = £, (~t) (2.19)
In this case the cutput becomes

" -
output = ed2wat [: fc(T)fc (t-2t)e J2MT 4r + cuc.

= erw?t x(2t,¢) + c.c. (2.22)

The shape of the ambiguity function for a typical radar signal
gives an indicetion of how well the signal can resolve the distance and
velocity of a moving target. Typically the time (or distance) resolution
is inversely proportional to the signal bandwidth wherees the Doppler
(or velocity) resolution is inversely proportional to the signal duration.
The origin of an ambiguity function is always the largest point of the
function and the width of this peak a2long the time axis defines the time
resolution and along the frequency axis the frequency or Doppler resolu-
tion.

The output of the convolver can also be written in terms of

the so-called symmetrical ambiguity function given by

~jomt

o(2t,6) = e x(2t,9) (2.21)

so that the output becomes

output = oJ (w1 Hup)t o(2t,4) + c.c.
= Rl(2t.¢)cos((wl+m2)t) - Xl(et,¢)sin((wl*w2)t)
(R, 2(2t 2 3
= (R 7(2t,0) + X, 7(2,0))< cos((w )t

- tan™}(X) (26,8)/R, (26,))) (2.22)
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where

0(2t,4) = R (2t,0) + IX,(2t,9)

= S5 (1) £*(12t)e d2MO(TH) o4 (2.23)
R, (2t,0) = /7 £_(1)2_"(1-2t)cos(2np(t+t) )t

= 0,(2t,9) + 0 (2t,9) (2.2%)
X, (2t,0) = - [ fo(r)fo*(r-zt)sin(2w¢(r+t))dr

= - 3lo, (2t,6) + 0 (2t,0)) (2.25)

(cross-ambiguity functions)

£(t) = e(t) + oft) (2.26)
e(t) = (£(t) + £(-t))/2 | (2.27)
o(t) = (£(t) - £(-t))/2 ‘ (2.28)
Oe(2t,¢) = {: e(T)e*(T-Zt)e-32ﬂ¢(T+t) dr (2.29)
0,(2t,8) = /2 olt)o(r-2t)e™IZm(TH) o (2.50)
0,,(2t:¢) = I e(T)o*(t-2t)e 32T (TH) 4 (2.21)
Goe(Zt,¢) = {: o(T)e'(T-2t)e-J21¢(T+t) at (2.32)

Note that for 2t=0 (aelong the frequency axis)

-Jamét (2.33)

x(0,6) = £2 1z (1)) e ar

or the ambiguity function along the frequency axis is the Fourier trans-

form of the squared magnitude of fo(t). For ¢=0

x(2t,0) = [ £ (1)f *(1-2t)ar (2.34)

so that the embiguity furnction along the time axis is simply the auto-

correlation of fo(t).
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From the above relationships it can be seen that the ambiguity

functions obtained using a convolver will have symmetric magnitudes on
any line drawn through the origin. Before describing the technique by
which three-dimensional displays (time and frequency versus magnitude) of
the ambiguity function for a particular rader signal can be obtained
using SAW convolvers ags the main element, it would be worthwhile to
present a few of the major properties cf this function and to document
the signals and their ambiguity functions that have been utilized in

the experimental work.

The time and frequency scaling relationships are given by

f(at)g_.A_;.-l-ET 0, (2at,%) (2.35)
f(at)<_"‘_.|}Tl xf(2a.t,§-) (2.36)
Flaw) T‘}T 0, (2L,a) (2.37)
Fla) =T X (55r0) (2.38)

for
£(t)e—F(L) (2.39)
and

£(t) or F(w) w2 0,(2t,) or x,(2t,0) (2.1.0)

The ambiguity function of a sum of two functions is given by the sum of

the two ambiguity functions and their cross ambiguity functions, namely

r(t)<'_“_>ef(2t,¢) (2.%1a)
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g(t)<_f_.eg(2t,¢) (2..1b)

£(t) + g(t)._i.>ef(2t,¢) +0,(2t,0) + 0, (2t,8) +0,_.(2t,8) (2.12c)

Also

£(4)g(t) —tp I Gf(zt,f)eg(zt.sb-f)df (2.0
for the product of the signals and
F(0)6(w) atw2 /7 0,(21,0)0 (2t-21,4)at (2.43)

for the convolution of two signals which is equivalent to the product of
their transforms. Finally, 1f a function is given a quadratic phase,
then

2 A
£(e)ed® < A 0 (2t, ¢ + 2 1) (2.40)

or the ambiguity function of f(t) (autoembiguity function) is tilted
(the ¢ axis slice remains stationery) or angled with respect to the ¢
exis with slope 2R/m. This last property can be demonstrated by comparing
+he anbigulty function of a sguure pulse and a finite chirp (see the
experimental section). Other properties,of which there are quite a few,
can be found in the references (Skolhik, 1970) where the compression
factor of two is not used since ideal convolution is assumed.

The eutoambiguity function for the rectangular pulse given

by (£(t) = £_(t)cosw,t)

£,(8) = Zrect (3 =15 lt] <&

2
Y
= 0 elsevhere (2.5%)

is




sinmé(a - J2t])

X(Qt.‘t') a2 rect ('E')GJ2"¢t(a -alztj) ‘ﬂ'¢(6 _ |2t|)
where
-1 1
x(26,0) = F |k te, (6012 ] = & ([F(w) (D

= rect -('E') v——'——'—(a '6a|2t| )

x(0,¢) = a‘l'[lx_'o(t)lzl

_ sinm¢a

T wéa

sin __a_ w
= Flw)

57[f°(t)] =/

e

From Eqs. (2.20) and (2.57), if \l’l(t) = Bt2 or

£(t) = ro(t)cos(wlt + Bt2)

then

fc(t) = fo(t)coth2 + Jfo(t)sin8t2

2
= fo(t)eJBt

and the autocambiguity function for this chirp is given by

o - 2], Just?

x(2t,$) = rect (i—) e‘127r¢t ( =

simr(-g%f*-r ¢)(a - |2t])

(3B + 9)(a - |2t])

vhere
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(2.16)

(2.47)

(2.58)

(2.49)

(250)

(2.51)

(2. 52)

LL‘!:




x(2t,0) = rect (

a 2Bt{a = [2t])

X(o’¢) = Em_

Tda

t) (a’éath]) sin28t (e - }2tl) eJhBt2
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(2.54)

For this ambiguity function there is a so-called 'knife edge' along the

line defined by

2Bt/m + ¢ =0

Along

The r

this line the ambiguity function is given by

t, ;a - |2t
x(2t,4)|= rect (;9 (5_1;__._)

ectangular pulse (linear FM) V-chirp given by

1 : a,2
fc(t) = "']; — rect (.t_ + %) e-JB(t + E)
vy¥2|/a a

. a2
o Lorect (Eo Ly J8(t -3
Py a 2

has an autoambiguity function given by

where

Jerdt

x(2t,8) = E5—| 3™ o(<2t,4) + 7™ o(2t,0)

+0_(2t,0) + ec*(-zt,-¢)

-jemdt

G(at’¢) = e X°(2t9¢)

Xo(2t.¢) = Eq. (2.65)

(2.55)

(2.50)

(2.57)

(2.58)

(2.59)
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2
- e (a-2t)
o (2t,9) = -Jé;-//% rect (i-- %’) e~If 3
2
(wo)
e 38 [z'(xl) - 2°(x,) (2.60)
smy2/2
z(X) = gxe e gy (2.61)
X, =2t/ B/m+ ¢/ n/B
02t fa (2.62)
x2 = -2t /Y B/m + &/ n/B
X, = (2a - 2t) Y B/r + ¢/ n/B
a Szt <2a (2.63)

X, = (2t - 2a) Y B/m + ¢/ /B

The study of the ambiguity function is a subject in itself and
nothing further will be said about it except for the analysis of the
technique utilized to generate these functions in the laboratory three
dimensionally (appearance wise) on an oscilloscope using SAW convolvers,

Generation of an ambiguity tunction for a particular signal
(so that the frequency-time function can be displayed versus magnitude)
simply requires tracing the output of a filter matched to the signal at
successi?ely higher points on an oscilloscope for every frequency shift
of the signal carrier. For the general function given by Eq. (2.13),

the signal applied to one of the convolver inputs would be

input 1 = fo(-t)cos(wlt - Vl(-t))
= pl(-t)coswlt + ql(-t)sinwit (2.64)

This input signal reprezents the impulse response of the required match
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filter and after application of this signal to the SAW convolver the

BRI GRS SO U O

device output is essentially & compressed version of what would have -

been obtained from the matched filter where for this situation the input ;:

signal is epplied to the input not utilized by the reference signal of
Eq. (2.64). Although once Eq. (2.64) is applied to one of the convolver
inputs, the impulse response of the convolver with respect to the other

input is s compressed version of Eq. (2.64), this is only true over a

L IEPON R .- LA,

finite length of time and during this time the effective impulse response

has & finite Initial delay that is not constant but a linear function of

T e e s e - v w e

the time of application of the impulse (see Section 2.5) used to generate N
the impulse response, Essentially this is related to the factor of two fj

compression which evolves due to the fact that the device impulse response,

which can be represented by either one of the convolver's two input

signals, propagates within the device in the same manner that the device
input, represented by the remaining input, also propagates.
To genarate the embiguity funuction of the sigual giveu by

Eq. (2.13), this signal'’s carrier frequency must be varied linearly from

one scope trace to the next. Furthermore, each trace must be displayed

a predetermined distance above the last. Both these requirements can be

met by utilizing a slowly varying ramp. This ramp is summed to the output

of the convclver thereby displaying every trace above the last. It is
also applied to a voltage controlled oscillator whose output is mixed with
the signal. By choosing the initial carrier frequency of the signal
(before mixing) properly so that after mixing with the 'slow chirp' the ;
sum and difference spectrums and any strong harmonics do not interfere

with one another, the sum term of the mixing process can be filtered from

T e it Gy
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the rest and made to vary about the non-Doppler shifted frequency W .
Usually the natural bandpass characteristics of the convolver input
transducers is sufficient for this filtering process. 'Slow' is defined
in such & manner such that the veriation of the frequency of the 'slow
chirp' is small over the time period of a single correlstion. The
frequency varying signal is given by (input 2)
input 2 = fo(t)cos((w3m(t))t + vl(t)) (2.65)
and the continuous series of slow ramps can be written as
- g sty - vo-twnngg| e -
v(t) Ult-nTg) = U(t (n+1)T ) Yo, (t nTg » (2.66)
R
vhere w(t) is the output of the VCO given by
w(t) = yv(t) + w, (2.67)
= 2.6¢
Wy = Wy, ( )
30 that
w(t) = W) ~w, for v(t) =
wy = Y(v(£)) 0, = YW(n+l)T) (2.69)
In these equations wD represents the maximum plus or minus frequency
deviation about w, = wl-ué. Y is the change in output frequency for a

change in input voltage or the slope of the VCO and TSR is the periodic-
ity or time duration of every 'slow ramp'. If the oscilloscope is set

up 80 that the trace for v(t) = --(\r(‘t:))max = v(nTSR) = <u /Y is displayed
at the bottom of the screen and the trace for v(t) = (v(t))max

v((n+l)T

SR) = wD/Y is displayed at the top of the screen by displaying

A
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the convolver output plus v(t), then with w, given by Eq. (2.68) and the

output correlations triggered so that they are centered on the screen,

the very center of the display will be the origin of the ambiguity function

and the top and bottom of the display will represent the ¢ = w. /27 and !
“p ‘

¢ = -wD/2n slices, respectively, of the ambiguity function. .
With the maximum finite duration of the correlation given by
T and the period between successive correlations given by Ts’ it is

important that
T <<< TSR (2.70)

so that the variation of the carrier over a single correlation given by

2 .

w_ = =T rad/sec (2.71) N

€ TgR ?

is small enough to be ignored. Also 1
]

Ts << TSR (2. fL) .

so that there ure enough vraces on the oscilloscope so as to give the
output an appearance of continuity. The number of scans per frame will

e given by TSR/Ts° T should, however, be small enough so that

SR
flickering of the output display is not observed., This usually requires i
TSR to be less than about 1/60th of a second. The change in carrier i
frequency between scans will be
2
W = T;;'Ts rad/sec (2.73)
This 1is equal to We it T-= Ts which is much too high a repetition rate

since there will be cross correlation between preceeding and succeeding

inputs and therefore is never used. Usually T can be made much smaller




than Ts (or Ts made much larger than T since T is usually set by the
convolver intersction time) with still enough traces to give the appear-
ance of a continuous display. In some cases, however, where there may
be ambiguity functions having extremely fast Doppler variations (i.e. the
autoambiguity of high TB chirp§ and V-chirps), it may be desirable to
meke Ts as close as possible to T in order to obtain e continuous looking
display. In such cases it may be necessary tc 'home into' the rapidly
varying portion of the ambiguity function by decreasing the slope of the
slow ramp. This has the effect of expanding the ambiguity function
(along the frequency axis) since the oscilloscope display must be ex-
panded after this procedure to sgain fill up the entire screen with the
same number of traces which doesn't change by a change in ramp slope.

If the ramp is summed to the convolver output by applying these two
signals to the two channels of the oscilloscope and utilizing the scopes
sum channel A to channel B feeture, then the ambiguity function is ex-
panded aslong the frequency axis by changing the magnitude display of the
ramp channel, it is expanded along the time scale by changing the time
per division setting and its magnitude is adjusted by changing the meg-
nitude display of the convolver output channel. The number of scans per
Doppler frequency shift can only be changed by changing the slope of the
remp or the correlation repetition frequency {assuming the ramp duration
is kept constant to about 1/60th of a second}. Of course the display can
be expanded so that part of the function is off screen; however, this is
only a waste and in this case the spacing between scans will increase,

By utilizing this technicue the scope need cnly be triggered for every

correlation since every frame is automatically reset by the slow ramp.




Because of this, even though the ambiguity function itself will always

remain stationary, the individual scans will tend to roll across the

L - AP

screen. When the scan density is high enough this roll presents no
problem; however, for low scan line densities it may be desirable to
trigger the slow ramp generator by every Nth correlation trigger where
N = TSR/Ts is the total number of scan lines per frame. A technique
such as this would lock the individual scans in place on the screen.
An actual system with experimental outputs is described in the experi-

mental section of this report.
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2.3 Signal Processing with the Memory Correlator

The essential mechanism in & SAW convclver is a second order
output voltage that can essentially be visualized and modeled as a mechan-
ism that squares the total sum of all the electric fields present beneath
the interaction region of the device (defined by the slice of semicorducting
material) and integrates the result over the length of this region. This is
valid since the resulting non-linearity is due to the interaction of the
time and spatially varying fields with the time and spatially varying
carrier densities of any signal that may be present. This interaction
between fields and carriers produces time and spatial variating current
degsities thet are linearly proportional to voltages which become averaged
out over the surface of the semiconductor. &his seccnd order interaction
is small, being derived from the interaction of* electric fields propagating
with surface waves, where the electrical energy is negligible with respect
to the mechanical energy of the wave, and charge carriers in the semicon-
ductor where the charge carrier variation is so small for practical power
densities that it is usually treated as a perturbation of the semiconductor
carrier density. Even though the result of this interaction is fairly
small, the output is usually obtained for timelimited signals whose time
duration can be designed small enough so that the input signal is removed
before the start of the interaction within the convolver and no interfer-
ence is obtained between the output and radiation from the input. Further-
more, the convolution obtained through the interaction of two contra-

propagat ing surface waves produces a convolution output on a carrier having




a frecuency that is the sum of the two input carrier frequencies. In
this case the output can easily be isolated from input radiation by filter-
ing.

In the most general situation, however, there are three mechanisms
for introducing electric fields within the convolver interaction region.
The electric fields can be introduced by propageting surface waves that
cerry these fields into this region. This is the usual technigue whereby
two contrapropagating signals produce an output signal that is a time com-
pressed version of the convolution of the two signals. Another way of
introducing fields is by storing a spatially varying charge pattern along
the semiconductor. This is the basic mechanism utilized in the storage
correlator whereby charges are stored in surface states or within diodes
diffused into the semiconductor surface adjacent to the piezoelectric delay
line surface. More will be said about the mechanisms utilized to perform
this charge storage lster. The last means of introducing a field is by
applying a time varying potential to the back contact or the semiconductor
which behaves as the integrating ohmic contact cn the surface facing away
from the delay line. When a potential is applied to this contact an
essentially uniform field is introduced into the interacticn region that
is independent of space so long as the semiconductor, the delay line and
the spacing between the two is uniform. This spatially uniform field can
be varied temporally, whereas the spatially varying field set up by the
stored charge is necessarily time independent and the propagating waves
have fields that are both spatially and temporelly changing. These three
forms of electric field cover the possible combinations of time and space

variation and induce charge densities that also follow these variation:.




If the distances between the convolver inputs and the irteraction
region are ignored, the signel £t - z/v) is inputted at the z = C end of
the convolver, the signal g(t + z/v - D/v) is inputted at the z = 2 end,
t(t) is applied to the semiconductor back contect and s{z/v) is sicred as a
charge patterm in the semiconductor, the second harmonic output vcltage from
the back contact of the semiconductor for these signals, during the time
when both of the propagating signals are beneath the semiconductor, is

proportional to

output = {: (f(t - z/v) + g{t + z/v - D/v) + s(z/v) + t(t))2 az (3.1)

The fact that the two propagating signals are timelimited and completely
beneath the semiconductor allows the limits of this integration to extend
to plus and minus infinity without error during this time period only.
During any other time the limits must be set to O and D in place of —
and « respectively. Eq. (3.1) can be divided by 2v (twice the acoustic

velocity) end rewritten as

output = Klte(t) + Kzt(t) + K+ Cl(t - D/2v) + C2(t) + c3(t - D/v)

3 \
where
K, = D/2v = %; éD dz (3.3)
K, = [ (£(1) + g(t - D/v) + s(1))at (3.4)
¥y = %-{Z (£%(1) + g2(t = D/v) + s2(1))ar (3.5)

are constants during this time period,

c (t) = /2 £(D)e(2t - 1)dr (3.6)

Py




is the time compressed convolution of f(t) and g(t),

c,(t) = £ £(1)s(t - 1)ar (3.7)

is the convolution of f(t) and s(t) and

c5(t) = Jo g(t)s(t - t)ar (3.8)

is the correlstion of g(t) and s{t)., To oe more specifie, if f(t) exist
fromt =0 tot = te and g(t) exist fromt = 0 to t = tg where t. > tg,
then the period of time over which these equations are accurate is given
by

ts <t <D/v (3.9)

Over all time

D
K, = %.g (£(t - %Q + gt + %-— %Q + s(%))dz
t
= Ky(8) = { ) (e) + gt + OV s(ran (3.10)

Eq. (3.10) can be rewritten as
K, (t) = So{elr) + g(t)H{U(r = (t - D/v)) - U1 - t)}ar

D
e 27 s

= (£(t) + glt)) # (U(t) - Ut - T)) + T8(t) (3.11)

so that this function is simply the convolution of f(t) and g(t) with the
assumed uniform interaction region of the convolver representative of a

square pulse plus T times the average value of s(t) where

A
T = D/v = the interaction time (3.12




">

=3~

s(t) g‘ s{t)dt = a const. (3.22)

Since s(z/v) is space limited between z = 0 and z = D, it has been written
as a time function existing fromt = O to t = T in these integrals (since
z/v has units of time).

Similarly, Eq. (3.5 ) can be rewritten as

Ky(e) = 5 (£2(6) + g7(6)) w (U(t) - Ut = 1)) + 5 (5(e))° (3.1%)
vhere
1
s(t) =-% {gT 52(T)dT}E-= a const. (3.15)

so thaet this function is half the convolution of the sguares of f(t) and
g(t) with the interaction region plus T/2 times the square of the RMS
value of s(t).

These equations assume uniformity of the air gap between the
scmicondustor and the delay line 2long the direction c¢f propegation z.
If there is some variation in this gap, the signals f(t - z/v) and
g(t + z/v - D/v) will be affected in the same wey since they are both
surface waves. If the gap variation d(z/v) is small, the fields due to
these two waves can be modified by including a linear 1 - ald(z/v) factor
before these terms in the output equation, where ay is some positive con-
stent and a positive d(z/v) represents a wider gap. The time varying
function t(t) sets up a time varying potential across the back contact of
tre semiconductor. The field due to this potential is smaller inside the
seniconductor at points with wider gaps so that for small variations this

function can be mcdified by & linear 1 - a2d(z/v) factor where a, is nome

ORISRV

L e

e e it i e TR0

e cendiima




positive constant different from a

1" Once a charge pattern has been

stored along the semiconductor, the flelds produced inside the semicon-
ductor are also weakly dependent on the gap. The function s(z/v) will be
considered as the charge distribution along the semiconductor and therefore
is independent of gap. As will be seen, when this charge pattern is stored
through the interaction of some functions whose interaction is dependent on
gap, then the stored signel s(z/v) will represent a distorted version of a
signal that has been distorted due to gap variations. Also, once stored
this distorted signal will interact with other signals whose fields will

elso vary with gap. For small variations a linear 1 - a3d(z/v) factor for

s(z/v) can be used. The output becomes

output = gD (n (2/¥)(2(t = 2/v) + g(t + z/v = D/V))

ny(2/v)t(t) + ny(z/v)s(z/v)}° az (3.16)

where
ny(2/v) = 1 - a,d(z/v) (3.17)
ny(2/v) = 1 - ayd(z/v) (3.:8)
and ng(z/v) = 1 - ajd(z/v) (3.19)

for small gap variations. This can be seen if the variation of the fields
of the surface wave with gap is written approximately as a pure exponential
exp(-Bd(z/v)) where B is a constant given by 27 divided by the wavelength
of the surface wave carrier and the bandwidth of the modulation is assumed
to be small (so thet this approximation is valid). In this case, for

small variations

e
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e-Bd(z/v) = 1 « Bd(z/v) (3.70)

so that 8y = B, If es and sp are the dielectric constants of the semi-
conductor and piezoelectric, respectively, and ds’ dg + d(z/v) and dp are
the thicknesses of the semiconductor, gep end piezoelectric, respectively,

then the field inside the semiconductor due to a potential t(t) is given

by

E(z,t) t(t)_/(dg +dlz/v) +d /e + dp/ep)

e t(t)/(1 + aya(z/v))

13

azt(t)(l - azd(z/v)) (3. )

for small d(z/v) and &, = (dg + ds/es + dp/ep)-l. In these equations
anything beyond first order in d(z/v) has been ignored. Constant factors
are always assumed to be absorbed into the functions. Finally, the
electric field within the semiconductor due to the charge pattern s{z/v)
is proportional to (for s(z/v) being negative charge)

e d(z/v) +€d + d
P , D E D
eo{epds + esep(d(z/v) + dg) + esdp}

E(z/v) = -s(z/v)

[}

s(z/v)(1 - agd(z/v)) (3..)

from continuous normal displacement, zero potential and small d(z/v) and

a = ge fled +ed +eed)-¢e/(d +ed ) where ¢ is the per-

3 P ps s p sDEg P P D& c

mittivity of free space. Since in general ay # &, # a3 a single function
cannot be used in equation (3.16) to handle the gap variation with z,

For small gap variations the three different forms of signal behave

approximately linearly with gap, however, with different linear slope:c
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Transverse non-uniformities along the width of the slice of semiconductor

_are essentially averaged out et every point z along the propagation path

or equivalently these uniformities contribute to the uniformity defined

at every point z so that for parallel propegeting wavefronts the transverse
varistions can be absorbed by the longitudinal variation function. The gap
variation will be ignored for the remaining portion of this discussion sc

that

nl(Z/V) = na(-z/v) = n3(z/V) =1 (3.23)

will be assumed and would actually be one of the goals in the proper design
of a convolver., Minor gap variations can be handled by including the

above linear factors, but large variations require the more precise factors
for which the linear ones are only spproximations.

By including carriers on all these signals the traveling waves

become

f(t = z/v) = fo(t - z/v)cos(wlt -klz) (3.24)

g(t + z/v - D/v) = g (t + z/v - D/v)cos(w,t + k,z = k,D) (3.25)
vhere

L wllv (3. 20)
and

ky = wplv (3.27)

The time dependent and space dependent terms also become

t(t) = to(t)cos(w3t) (3. 28)
end

s(z/v) = so(z/v)cos(khZ) (3..9)

o e e e
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ky, =0 /v (3.20)

Note that since §(z/v) is always stationary and finite, the integrals
given by Egs. (3.7 ) and (3.8 ) can always be written with limits of plus
end minus infinity without loss of generality, Infinite limits cennot,
however, be used in Eq. (3.6 ) unless the overlap of the two signals is
totally beneath tpe semiconductor or equivalently within the interaction
region. By choosing the time durations of f(t) and g(t) (the functions
of time applied to the convolver transducers) properly, this can always
be the case. Even if part of the overlap of the two surface waves extends
outside the interaction region at a certain time and the output is
therefore due to truncated versions of these signals at this point in
time, any output obtained when the overlap is totally beneath the semi-
conductor is valid and can be gated from the invalid output where it must
then be kept in mind that only part of the valid ovtput convolution is
being displayed. During this velid time period the integrals can be
written using infinite limits. Note, however, that even though the output
may represent over a period of time an invalid portion of the convolution,
the output is nonetheless real and can be represented by a convolution
integral having the time varying limits given by Eq. (3.6 ).

Although Egs. (3.6 ), (3.7 ) and (3.8 ) can have infinite
limits over all time (if f(t) and g(t) are properly time limited), the
integrals in Eq . (3.10) cannot have infinite limits except
over finite periods of time. Over the time periods when f(t - z/v) and

g(t + z/v - D/v) have individually passed ccmpletely into the interaction
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region beneath the semiconductor, their respective integrals can be

written using infinite limits and are therefore constants. Wnile these
signals are entering and leaving this area, however, the integrals are

functions of time. This is obvious from the forms given in Egs. {3.21)

and (3.14).

Substitutineg Egqs. (3.24) and 3.25) into Eq. (3.6) gives

(assuming infinite limits can be used)

Cl(t) = {: fo(r)g°(2t - T)cos(wlr)cos(wz(zt - 1)dr

= %'AR(2t.¢)cos(2m2t) - %-AI(Zt.¢)Sin(2w2t) (3.31)

where

A(2t,8) = [7 £ (1)g (2t - £)e-d2meT o

= A (2t,0) + JA(2t,6) (3.32)

is the cross ambiguity function of f(t) end g(t) (see section 2,2 concern-
ing the embiguity function) which becomes the x(2t,¢) function in

section 2.2if g(t) = f*(-t) and also
AR(Zt.¢) = {: fo(T)Bo(zt-T)COS(Zn¢T)dT (3.33)

and

Ap(2t,8) = ~ [0 £ (1)g (2t-1)sin(2ngt)ar (3.34)

are the real and imeginary parts of A(2t,$) where ¢ = (wz-wl)/Zv. The
second set of integrals in Egq. (3.31) will be very much smaller than the
first for ml and w2 large and approximately equal, vhich represents the

usual cagse. For w, = w, (the degenerate case) this output becomes

c,(t) = %- cos(2w,t) L £, (1)g (2t-1)ar (3.3%)

e antE TRt ]
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wvhich is simply the time compressed convolution of {he signhal modulations
£ (t) and g (t) vith a cos(2u,t) carrier. 3

Substituting Egs. (3.24) and (3.29) in Eq. (3.7 ) results in

c,(t) = I £,(1)s_ (t-T)cos(w, T)cos(w) (t-1))dr ':
= 5 Agy (4,8 Joosuyt ~ % A (6,6, )sinut (3.36)

where

(t,0.) = £ (1)s (t-r)e_‘j2“¢1T at
Al 1 - "0 °

= ARl(t,¢l) + Jap (t.8)) (3.37)
is the cross-ambiguity function of f(t) end s(t)
Ay (t,8)) = [0 £ (1) (t-T)cos(2mp, T)ar (3.38)
A (,0) = = [ £ (1)s (t-T)sin(emd T)at (3.39) }_
and Ej
8y = (w,~v))/2m (3.40) i

In these equations the limits have been automatically set to plus and minus
infinity since s(t) is necessarily finite and equal in length to, at most,

T seconds. For the degenerate case, W) = Wy, 8O that

C, () = 3 coslwt) Lo £ (1)s (t-1)ar (3.01)

is the convolution of fo(t) and so(t) with a carrier of frequency w, - ;
Finelly, substitution of Egs. (3.75) and (3.70) into Eq. (3.8 )

results in an output given by

C3(t) = {: eO(T)aO(Tut)cos(mar)cos(wh(r-t))dr

1

i L
S Appl=tiby)cosut - 5 A

IZ(-t,¢2)sinwut (3.47)

PO P
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where

ayl=t,8,) = I go(T)so(T-t)e-Jz"¢2T at
is the cross-ambiuity function of g(t) and s(-t)

Ano(=t,0,) = [ g (T)s (1-t)cos(2mp, T)at (3.5%)

Apo(=t,9,) =-I7, 8, (1)s_(1~t)sin(2mé,T)dt (3.15)
and

¢, = (“’h"*’a)/a“ (3.46)

Infinite limits are again being used due to the time limitation of s(t).

For the degenerate case, m2 = Wy, SO that
C.(t) = = cosut S5 g (1)s_(1-t)a (3.47)
3 =3 coswyt [ g \T)s (T-t)dT o Vi

is the convolution ~f go(t) and so(~+) o~ the correlation of go(t) and
s, (t) vith e carrier of frequency w.

Note that for all the outputs at the semiconductor back contact,
it is the zero (or almost zero) spatial frequency components of the non-
linear mixing between signals that is of importence. In general, however,

the potential scross the semiconductcr at every point z is given by
2 2 2 2
potential « £ (t-z/v) + g (t+z/v-D/v) + s"(z/v) + t7(t)
+ 2f(t-z/v)g(t+z/v-D/v) + 2f(t-2/v)s(z/v)
+ 2f(t-z/v)t(t) + 2g(t+z/v-D/v)s(z/v) + 2g(t+z/v-D/v)t(t)

+ 2s(z/v)t(t) + first order terms (3.48)
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Using Eqs. (3.2L4) thru (3.30), the individual components of this potential

are given by

£2(t-z/v) = -;- foz(t-z/v) + % foz(t-z/v)cos(ault-.?klz) (3.59)

32(t+ZIv—DIV) = -2- soz(tﬂ/V-DIV)

+ -]2'- goa(t+z/v-D/v)cos(augt+2k22-2k2D) (3.50)
sa(z/v) = % soz(z/v) + % soe(z/v)cos(2khz) (3.51)
t2(t) = 3 toa(t) + % toz(t)cos(au3t) (3.52)

£ (t-z/v)g(t+z/v-D/v) =

1

> fo(t-z/v)go(t-i-z/v—D/v)cos((wl+w2)t- (kj_'kg)z - 2k2D)

+ % fo(t-z/v)go(‘t+z/v-D/v)cos((wl-wz)t - (k1+k2)z - 2k2D) (3.53)

£(t-z/v)s(z/v) = % £ (t-2/v)s_(2/v)cos(ut - (k -k, )2)

+ -]2;- fo(t—z/v)ss(z/v)cos(wlt - (k1+kh)z) (3.54)

£lt-z/v)t(t) = % £ (t-z/v)t_(t)cos((w+w )t = k;z)

+ 2 £ (tez/v)t (t)eos((0 %0 )t = k,2) (3.49)

S
]
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g{t+z/v-D/v)s(z/v) =

L & (t+2/v-D/v)s (2/v)cos(ut + (ky*k))z - 2k,D)

+ % so(t+z/v-D/v)so(z/v)cos(wat + (ke'kh)z - 2k2D) (3.56)

glt+z/v-D/v)t(t) =

% 8°(t+Z/V—D/V)to(t)cos«w2+m3)t + kZ - k2D)
+ %‘8°(t+z/v-D/v)to(t)cos«me-wB)t *+ k2 - k2D) (3.57)
and
s(z/v)t(t) = % so(z/v)to(t)cos(w3t+kuz)
+ %‘SO(Z/V)to(t)ces(wBt-khz) (3.58)

The first order terms are those given by Egs. (3.':), (3.7%), (3.°8) and
(3.29). These terms produce outputs by interacting with the DC or average
carrier density of the cemiconductor and are therefore much larger “hun tne
non-linear terms., The function t(t) produces an output directly since it
is applied directly to the output contact. In the equations derived pre-
viously for the output, it is only those terms in Egs. (3.4%) to (3."%)
with small or zero spatial varietions that contribute appreciably. Fast
spatial variations are integrated by the back contact of the semiconductor
to produce negligible outputs since this contact takes the average of the
total distributed potential,

During the time when f{t-z/v) and g(t+z/v-D/v) are beneath the
semiconductor, the first terms in Egs. (3.:v) and (3.9 ) produce constant

outputs, Thege terms contribute to the K3(t) output and as seen in
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Eq. (3.14) they are effectively convolved with a square pulse representative
of the assumed perfectly uniform interaction region., The second terms in
Eqs. (3.49) and (3.50), however, are traveling potential waves heving twice
the spatial frequencies of their acoustic counterparts so that no appreciable
output is produced at the output contact due to these terms. The first order
terms due to and proportional to f(t-z/v) and g(t+z/v-D/v) are traveling
potential waves of spatial frequencies k1 and k2, respectively. The output
average of these signals will also be small.

The signsl s(z/v) is stationary within the semiconductor. There-
fore, both terms in Eq, (3.51) will produce a constant output although the
first term will dominate since it has a zero spatial frequency. This term
is part of the K3(t) output. Note that the first order component of this
signal, proportional to s(z/v), will produce e negligible output if kh is
large.

The signal t(t) produces a direct output since it is applied
directly <to the semiconductor back contact from which the convelver output
is derived. Being only dependent on time, the non-linear terms in Eq. (3.59)
are outputted as they are with a proportionality constant given by K1 as
given by Eq. (3.3). These terms arise due to the interaction of the fields
set up by t(t) and the carrier density modulaticn produced by these fields.
The semiconductor, behaving as a non-linear medium, produces, in this case,
the second harmonic of the first order signal t(t).

Eq. (3.53) represents the product of the two contrapropagating
surface waves, Note that for the degenerate case, when wy = W, and k1 = kz,
one of the terms has a zero spatial frequency component whereas the other

term has no temporel frequency component., When averaged out cr integrated




by the cutput contact, the term without a spatially varying carrier will
dominate the two and produce an output proportional to the convolution of
fo(t) and go(t) (Cl(t) Eq. (3.6)) compressed by a factor of two and with

a carrier of frequency 2ml = 2w2. The other term, having a carrier with
only e spatial frequency component, averages out to a small value by the
output contact. Note, however, thet if this term was to be integrated,

by some mechanism, at every point z along the semiconductor, in time, then

the resultant spatiel distribution of potential, charge or field would be

proportional to

SD « cos(2k1(z-D)) {: fo(t-z/v)go(t+z/v—D/v)dt

= % cos(2k, (z-D)) {Z fo(z'/-.r)go(2z/v+z'/v—D/v)dz' (3.0 )

or the correlation of fo(t) and go(t) compressed by a factor of two {due

to the contrapropagation of f(t) and g(t)) and with a carrier of spatial
frequency 2k1 = 2k2. This is an important realization. It says that by
employing some type of non-linear medium, such as a slice of semiconductor,
to produce the non-linear current density and potential and also possessing
some mechanism for storage of charge at each point proportional to the time
average of the non-linear potential seen at these points, then the resultant
charge distribution will be proportional to & spatial representation of the
correlation of the envelopes of the two surface waves with a carrier at
twice their spatial frequencies,assumed to be the same. This represents
one of the possible storage techniques. In this case storage is affected
by the interaction of two surface waves. The signel is stored spatially

as a charge distribution., This charge distribution represents an imbalance

e i N e




in the otherwise uniform and neutral charge distribution of the semicon-

ductor and therefore an internal field proportional to this distribution

is set up with which successive surface waves (and plate fields t(t)) can
interact. Semiconductor surface states and high density pre-biased diodes
are examples of semiconductor storage mechanisms. In the case of the
diodes, if their response times are fast enough, a current will flow in
response to the potential set up by the product of the two signals. Over
the time perind of the interaction the current flow in each diode will
deposit, on one side of their Jjunctions, an amount of charge proportional
to the average potential seen at that point., The diodes are arranged as a
high density matrix over the surface of the semiconductor facing the piezo-
electric delay line, When the interaction between the two surface waves is
over, the high reverse resistance to flow of the diodes prevents the
charges from neutralizing the charge imbalance in the diode by recrossing
the Junction. In low leakage diodes this neutralization can take milli-
seconds for dicdes of the Schottky barrier type and seconds for p-n uiffused
Aiodes. Schottky barriers, however, can respond in nanosecends, a thousand
times faster than p~n diodes. The imbalance in charge at each diode sets
up & field that can interact with other signals. In this discussion such
fields are represented by the function s(z/v). Any signal varying too
quickly in time, such as those given by Egs. (3.19), (3.50) and (3.5.)

for large Wy and the first term of Eg. (3.7:), used to obtain the temporal
convolution of fo(t) and go(t) (in contrast to the spatial correlation of
these signals), cannot produce a noticeable amount of charge storage in
the diodes since their averages at every point in the semiconductor over

their durations are extremely small., Semiconductor surface states




represent another storage mechanism where, in this case, the charge is

stored, in response to the non-linear potential, in atomic states at the
surface of the semiconductor. The storage and response times for these
states are functions of their statistical properties.

If the interaction region is non-uniform, the stored charge
distritbution will be a distorted representation of the correlation of
fo(t) and go(t). Due to the device non-uniformity, any future interactions
with the charge distribution will produce outputs thet are doubly distorted.
For small distortions, approximate factors, such as given by Eags. (3.17) to
(3.19), can be utilized. In any case, the interaction between two contra-
propagating surface waves produces a component capable of producing the
spetial distribution s(z/v) which, in this case, is a representation of
the correlation of the envelopes of the two waves heving some distorticn
if the interaction region is non-uniform. TFurthermore, if one of the
surface waves is an impulse, the stored charge distribution is a spatial
rerresentation of the compressed envelope of the other surface wave with

a 2k1 or 2k, carrier spatial frequency. Likewise, the output from the

2
semiconductor contact is a time compressed version of this envelcpe with
a 2m1 or 2w2 carrier freguency. If one input is a continuous tone and
the other an impulse, the output convolution is proportional to the non-
uniformity of the interaction region {(time compressed) and the stored
charge would also be proportional to this non-uniformity. 1In one case,
the output occurs concurrently with the interaction, is a time function

and has a carrier frequency of twice the tone frequency. In the other

cese, a charge distribution is stored (until it is intentionally erased,

modified or it decays to zero) with a spatial carrier frequency of twi ‘¢




the spatial frequency of the continuous~tone-surface wave. Since the

stored signal is given by the function s(z/v), the mechanisms for reading
this information ere linked to the interactions of s(z/v) with f(t-z/v),
g(t+z/v-D/v) and t(t) as seen in Egs. (3.54), (3.56) and (3.5 ) to be
discussed shortly.

Egs. (3.55) and (3.57) show another technique fer storing signals
as stationary charge distributions along the semiconductor. First, however,

it should be mentiened that these signals, being traveling potential waves,

would typically produce little output at the output contact since their
spatial averages would be smell irrespective of the values of w1 wy and
L < w3 or w, = w3 there are terms in the

expansion of these products without temporal carrier frequencies. In these

W3- Note, however, that if w

cases, if the semiconductor possesses a storage mechanism, an apprecisble
signal could be stored., More precisely, the stored spatial charge dis-

tributions would be of the form

SF

R

cos(klz) {: fo(t-z/v)to(t)dt

%-cos(klz) {: fo(z'/v)to(z/v+z'/v)dz' (3.60)

R

S6 = cos(ky(2~D)) [, g (t+z/v-D/v)t_(t)dt

2 cos(ky(z-D)) [ & (2" /v)t (2" /v-z/veD/v)az’ (3.61)

where both distributions are correlations with the time function envelope
to(t); however, the correlation process in Egq. (3.00) (and likewise Eq. (3.57))

is a spatially reversed correlation relative to the positive z direction. 1In

both cases the stored signals are not spatially compressed, whereas the
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correlation stored by the correlation process of Eq. (3. ' is. The
spatial carrier frequencles of the stored signals are given by the spetial
frequencies of the respective surface waves. Note that if t _(t) is an
ideal impulse, both terms in Egs. (3.55) and (3.57) contribute to the
stored signal. Since ideal impulses cannot be realized anrd such signels
would tend to waste too much energy on unneeded portions cf the frequency
spectrum, a good approximation would be a pulsed rf having whatever number
of cycles at the frequency wy or w, is suitable to affect storage. In
this case the 'impulse' energy is localized about the signal bandwidth and
it can be made long enough in duration so as to give the storage mechanism
time to respond yet small enough so that the correlation of the desired
signal to be stored with this finite width 'impulse' does not appreciably
smooth out the signal. Too many rf cycles wouid tend to restrict the
bandwidth of the impulse and distort the tandwidth of a wide band signal
being stored. This is the equivalent operation in the frequency domein

of smcothing in the tire dumein. Too few cycles may ve insufficient in
terms of time to affect storage. It must be remembered aiso that although
the signal is stored as a function of space, any function that modifies
its frequency spectrum will modify its time representation since the ideas
will be to recell such a function or interact it with some other time
function in which case it is treated and actually becomes a time function,
If the distorted signal is recalled as it is, its time representation will
be distorted in the same manner as the spatial representation so that time
and space for the stored signal go hand in hand.

Ir k) = k), and k., = k), it can be seen in Egs. (3.-.) and (3.5)

2

that there will be terms without spatial carriers. These terms can pro¢iuce

. e e e




an appreciable output, whereas the remaining terms are of too high a

spatial frequency to produce other than a negligible output. Also note

that these additional terms are traveling potential waves so that they

vary too fast in time to affect storage. The outputs from the convolver

due to the terms without spatial frequency carriers ere given by Egs. (3..1)
and (3.%7) as the convolution of so(t) with fo(t) and the correlation of
so(t) with go(t) with carriers given by the respective carriers of the
surface waves f(t-z/v) and g(t+z/v-D/v). This represents one technique

for interacting with the stored signal. Moreover, if f(t) is an 'impulse'
with e finite number of wy rf cycles, the output of the convolver is pro-
portional to s(t) where t = z/v (where v is the average acoustic velocity
beneath the semiconductor). When g(t) is an 'impulse' composed of a

finite number of w, rf cycles, the output is proportional to s(-t). 1In
either cese, this assumes that the spatial freqhency of the stored carrier
is the same as the spatial freguency of the surface wave performing the
reading operation. When the surface wave is an 'impulse', it is effectively
scanning the information stored along the semiconductor and the convolver
output is a smoothed time version of this information, since this reading
'impulse' is also of finite width. It must be stressed that any correla-
tion or convolution between two signals, whether they are both surface waves
or only one of the two signals is a surface wave, is only valid for the
period in time when the surface waves are totally beneath the semiconductor.
At any other time the output convolution or correlation is due to only part
of the signal represented by the surface wave or waves. The situation is
different, however, for spatially stored convolutions and correlations. In

this case, every point along the semiconductor 'sees' the entire interaction
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between the two signals whether or not they are both surface waves, The
only problem is only D/v seconds of this interaction between the two signals
can be stored and the portion stored is dependent on the timing between the
two signals. In other words, although the correlation and convolution of
two T second long square pulses is a triangle with a 2T second long ltase
only D/v of this triangle will be seen. If T = D/v then for the correlsation
between t(t) and one of the surface waves only half the triangle will be
stored. Note, however, that the entire triangle is stored if the two pulses
are the two contrapropagating surface waves since the correlation stored by
this interaction is compressed by a factor of two., From this discussion it
can be seen that extremely long signals can be correlated in a convolver
having a small interaction length D or time D/v by utilizing the correlation-
storage mechanism, however, the correlation recovered by reading this stored
signal can only be a D/v second wide porticn of the extremely long correla-
tion of the two signals. This is the basis for‘the so-called 'integrating
correlator'.(Ralston, et.al., 1977)

There is very little output obtained at the semiconductor
(spatially-integrating) back contact for both terms in Eq. (3. ). For

large w, there is also very little effect, if any, on storage. However,

3
this term is far from useless. As a matter of fact it represents an alter-~
nate technique by which the stored signal can be read. If t(t) is an
impulse, the potential function so(z/v)coskhz is impressed onto the surface
of the piezoelectric delay line. The resulting rields then produce, in a
manner identical to the behavior of an interdigitel transducer, propagating
surface waves of the form so(t + z/v)cos(wht hs khz) where w), = khv. This

process can be visualized as the impulsing of an interdigital transducer

that has been weighted by the stored function. Surface waves identical
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to the impulse response of the transducer would propegate in both the
positive and negative z direction for this case. Therefore, the signsal
stored along the semiconductor cen be recovered by 'impulsing' the semi-
conductor (t(t) = 8(t)) and sensing the signal or its time reversed version
at one or the other of the convolver input transducers since such trans-
ducers are efficient receivers as well as transmitters. This reading
process is non-destructive so long as the impressed fields are not strong
enough and of the proper polarity to discharge the storage mechanism in

the semiconductor. In the cese of diodes, this requires not forcing them
into forward bias. In a sense the internal fields set up by the stored
charge modify the otherwise uniform field impressed onto the delay line
by't(t) in & manner identical tc the spatial distribution of this charge.
This spatially varying field impressed momentarily onto the delay line is
enough to initiate surface wave propagation sat Fhis spatial periodicity.
The large DC field impressed onto the line by t(t) cannot, however, produce
a wave with this periodicity.

Since the output of a convolver having a stored internal charge
distribution is the convolution or correlation of its input signal with
the stored signal then, in a sense, this device is a programmable~impulse-
response filter, Moreover, by properly storing a signal, the convolver
becomes a matched filter for the signal, if it is epplied to the input
that results in correlation with the stored version of the signal. The
signal to noise ratio of a signal can furthermore be improved if it is
repetitive and is successively stored, without pre-erasure, in the device.
In this case the random noise variations are integrated out. A device

utilizing this mechanism I1s called a coherent integrator.




Before concluding this discussion it is worthwhile to note that
higher order interactions are a2lso possible, All the interactions alluded
to here are of second order in that the fields are effectively summed and
then squared. Third order interactions involving a summation followed by

a cubic operation are also possible, but they can be expected to be gquite

small since the second order interactions themselves are small. However,
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third order interactions have been investigated since they possess the :
potential for allowing the signals to be stcored with spatial variations f
4
different from the input signals to the device, thereby suppressing spurious f
signals related directly to these inputs. The inherent small size of the ‘i
resultant outputs, however, may ultimately limit the usefulness of such ‘i
operations. A feel for the process by which such an interaction occurs L

can be obtained by looking &t the interaction of t(t) = cos((ml—wg)t) with

the second term in Eq. (3.53). 1In this case a first order term is directly
interacting with a second order term resulting in a stored spatial charge ;
distribution with spatial frequency k1 + k2. Not only can the two iuput
signals have different spatiasl periocdicities, but the stored pattern is

stored with & higher spatial periodicity than either input signal. Spurious
signals stored at the periodicity of either input signel will not be recovered
at the same frequency as the stored desired signal and therefore will not ;7
interfere with it. The time signal t(t) of frequency wlquz and uniform f

amplitude is usually called the pumping signal in this three-signal inter-

action. {
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2.4 The Chirp Transformation Using Chirp Filters

The chirp transformation is a process by which quadratic phase
signals and devices are utilized to produce the Fourier transform of a
signal. 1In simplified terms, the Fourier transform of the signal, f(t),

given by

Flo) = /2 £(1)e™ ar (4.1)
can be written as

2 ) 5
Flogt) = e 0B [2 p(r)e BT BT o

] e-aet"’( -38% , a8e? )

f(t)e

e I2BT 4o (k.2)

where w = 28t is the real-time to frequency correspondence of the trans-
form. This equation shows that the Fourier transform of f(t) can be
obtained by multiplying this signal by a unit-emplitude-quadratic-phase-
complex exponential, exp(-JBte), convolving this with another such
exponential, exp(JBtz), having opposite phase variation to the first and
then multiplying the result of the convolution by an exponential,
exp(-JBte), that is identical to the first. This is known as the MCM
or Multiply~Convolve-Multipy chirp transformastion scheme.

Utilizing the relationship

2 .- - T 2
o eiJBT e d2BtT THT e+JB(t+T) (4.3)

-l

_
TEy

o o)

the Fourier transform cen also be written as
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F(28t)

. , o, 2
JB ST 2 BT 2 (4 dBl80mT)T o IB(E0) gy

5. m 2 2 2
JE ST (7B (2(e) w oI )) 4 B

{: f(T)e'JeBtT at (L.4)

Thie equation shows that the Fourier transform of f(t) can be obtaired by
convolving this signal with éxp(JBte), multiplying by exp(-JStz) and then
convolving again with exp(JBtz). This is known as the CMC or Convolve-
Multiply~Convolve chirp transformstion scheme and is also considered as
the dual of the MCM scheme.

The backbone of a practical realizatiorn of either of these
schemes is the chirp filter. Ideally this device possesses a finite
duration impulse response that is perfectly flat over its duration with
a zero, first and second order phase variation. Actual devices, of

course, are only approximations to this type of device. (Variations from

ideally flat amplitude and quadratic pheoe ore trented in Arsenau.t 1970,)
Large time~bandwidth product surface-acoustic-wave (UAW) chirp 01 Cors
are typically very good approximations to the itesi chirp rifter.  An
ideal chirp filter can have one ot two torms of impulce response,  There
impulse responses ure of the torm

IR, = Kllu(t-tl) - U(t-tl-Tl)lcos(wl(t—tl) - B(t-tl)2 +é.)  (L.5)

and

IR, = K2|U(t—t2) - U(t-tz-T2)Icos(

, (t-t,) + Blt-1)% + 6)  (4.6)

(1)2 o

In these equations Kl and K, are constant amplitudes end ¢l and ¢2 are

2
constant phases. The impulse response given by Eq. (L4.5) begins after a

tl second time delay at an instantaneous frequency of wy radians/sec and

.~., -
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with a phase of ¢1 radians. The instantaneous frequency of this response
decreases at a rate of 28 radians/sec‘ go that -2B is considered as the ?
slope of the chirp device, which is negative in this case. T1 is the '

duration of IR,. The impulse response, IR,, given by Eq. (4,6) behaves

similarly except that its instantaneous frequency increases at a rate of

28 ra.dians/sec2 and therefore possesses & positive slope. This T, second

wide impulse response has an instantaneous frequency of W, radians/sec and

phase of ¢2 radians after a time delay of t, seconds. Equation (4.5) will

2
be considered as the impulse response of a 'down-chirp filter' and Eq. (4.6)

will be considered as an 'up-chirp filter' impulse response.

Parseval's theorem
2160 |® at = 2= 7 p@)|? aw (b.7)

is useful for finding the constants Kl and K2. In particular, if a chirp
filter transfer function can be approximated as flat over a finite 2mB
radian/sec wide passband (which is an accurate approximation for large
time-bandwidth product devices) and, if the loss over this passband is
given by L, then for an ideal impulse, 6(t), applied to the input of this

device where :4
§(t) -—s1 (4.8) |

the total spectral energy at the device output is given by

1 o= 2
Foum = R L [F(@)|" aw |
}

1 o
o I ]L(U(w—wc+wB) - U(w-wc-nB) |

+ Ulwho 41B) - U(wsw -1B)) | aw

28L2/R Joules (4.9) ;




where R is the resistance of the output network. If the resulting impulse
response is V volts peakx (vpp/2) and T seconds wide, then the energy
imparted to an R olm load by this response is given by

_12
Eygre = 3 V°T/R Joules (4.10)

Equatirg equations (4.9) and (4.10) gives
1 1
vV = 2L(B/T)2 = 2L(R/m)Z (k.11)

where B = TB/T is half the slope of the chirp filter, Since V is the peak

to peak voltage of the output impulse response, then

1
K 2L1(B/1r)§ (4.12)

end

=
|

1
= 2L2(s/n)§' (4.13)

where L1 and L2 are the respective losses for the down and up chirp
filters given by the ratio of the output to input peak voltage for

a continuous single frequency input. For SAW chiryp filters that have
impulse responses varying by many megahertz over tens of microseconds,
B is on the order of 1012 so that these constants are very large. By

not including K, and K., therefore, the device outputs would seem

29
negligibly small for these devices. Ll and L2, for SAW devices, are on
the order of .1 to .03 or equivalently 20 to 30 dB of signal attenuation
is evidenced (i.e. for SAW RAC's).

In order to obtain the Fourier transform of a signal, f(t),
using the MCM technique, this signal must be multiplied by a chirp.
(*Chirp' is the general term used tc signify a signal having gquadratic

phase.) A straightforward technique for generating the so~-celled

T eaan o Al pdi | g
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pre-multiplying chirp is to impulse a cuir; device, therery oo Ivins

its impulse resporse., ATter the chirp is obluined in tnito woaoee, 10
can be mixed with constant trequency rf's ond tiltesed o oo v cnungte
the sign of its slope or even the range of instuntuneous regiencice
over which it varies. For instance, by mixine 3. (.90 with

cms(w%(t-tl)) the modiried chirp

IR, = K {U(t-t)) - U(t=t -7 ) cos((w ) M t-t ) + B(t—tl)2 - ¢,) (4.1k)

is obtained as the difference term of the mixing process. For w3 > wl
the sign of the slope has been changed and the instantaneous frequency

at t=t, is now w_-w, instead of Wy, as it previously was. Whenever the
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sign of the chirp slope is changed the chirp is said to have been
'spectrally-inverted', Modified device impulse responses of this type
can also be used for the post-multiplication in an MCM chirp transform
system and the single multiplication in a CMC system. Whenever devices
having only one particuler slopve are evaileble, spectral inversion is a
poverful technique for obtaining siopes of opposite polarity, as is
required for the pre and post-multipliers of an MCM system.

The input to a chirp transformation system can either be at
baseband or on & carrier. The two cases, however, must be treated
differently. The baseband signal can be pre-muitiplied by & chirp that
is derived by merely impulsirg a device {that is identical tc the device
through which the signal is to be passed) and then simply ‘'spectrally
inverting' this response by utilizing & mixing rf at twice the chirp
center frequency. (This effectively time-inverts the device impulse

response.) Essentially, the pre-multiplied baseband signal is, in this




way, mixed up to the bandpass region of the device thrcugh which it must
pess. Mixing carrier modulated sigrels in this same way, however, would
result in signals that fall outside the bandpass of the device, fer large
carrier frequencies, These signals must be mixed with chirps that have
been properly teailored and, therefore, shifted in frequency so that, upon
pre-multiplication, the combined signal passes through the passband of

the chirp filter. As a matter of fact, if the carrier frequency of the
input signal is chosen properly, then the required 'spectral inversion'

of the chirp impulse response can be made to occur autcmatically when

mixed with this signal. If, however, the carrier is tco small, the sum

and difference terms, resulting from the pre-multiplication, will be both
of proper slope and fall within the bendpass of the convolving chirp filter,
In this case, it may be necessary to displey both the positive and negative
spectrums of the signal. Whenever a carrier mcdulated signal is pre-
nultiplied by a chirp, two terms result from this process. If the carrier
is large enough (i.e. greater than the sum ot the device and signal bangd-
widths), then the output transform can be centered about the transform of
one of these terms and little interference will occur from the other. When
centered about one cf the terms, then the trensform represents the Fourier
transform of the baseband information (i.e. the modulation envelope). If
the carrier is small enough, so that both transforms can te displayed, then
this represents the Fourier transform of the carrier mcdulsated signal.
Clearly, since Fourier theory shows that either positive or negative spec-
trums contain all the information in the basebtand signal, then, if no

overlap or negligible overlap occurs between the two, retaining only one

is essentially all that is required for later recovery (by Fourier

4‘;‘_. 2 WO




inversion) of the baseband signal . Although, at viewing time, 1t may not
seem too- important what portion of the transform is being locked at, when
inverse transforms are to be taken it is important that the transform be
properly displayed for proper reconstruction of the signal (see 'Spectrum
Modifications', section 2.6).

In general, let the input signal, over the time interval

0<t < T_» be given by

£(t) = a(t)eosw t - b(t)siny t k;
= £(t)cos(w t + ¢(t)) (4.15)
vhere 5
a(t) = (t)cosé(t) (4.16)
and
b(t) = £(t)siné(t) (4.17)

After pre-multiplication (and LPF) this signal is given by

f(t)cos(wlt - Bt2 + ¢1)

= a(t)cos(wst + Bt2 - ¢l) + b(t)sin(wst + Bt2 - .) (4.18)

1

where ws = W, W Here it was assumed that a chirp filter with impulse

1.
response given by Eq. (4.5) was impulsed at t = -t, and this response used

as the modulation. Since none cf the input signal is to be lost, then

T, < Tl' This signal will now be convolved with Eq. (4.5), the result of

which is equivalent to the output obtained by pessing Eq. (4.18) through

a device having impulse response given by Eq. (4.5). (The amplitude

factors (K1 and K2) are being ignored in this derivation.) The output of




the chirp filter, over the time interval t, + Ty <t < ty + Ty, is

proportional to

output = [: £(1)cos(w, T - 812 + ¢1)cos(w1(t-r—t ) - B(t—T-t1)2 + ¢, )dat

1 1

2 :
= %-e'J(wi(t‘tl) - B(t-t,)%) o a()e S (BB(t-ty) — o+ w)T oo

+ c.C.

3287°

2
+ %—e-d(wl(t'tl) - B(t-t)° - 2¢,) 2 a(t)e

e-J(QB(t—tl) -w - wT

iT + c.c

L =0y (6=t)) = B(6-61)%) o) —3(28(6-1) - )+ w )t

+ J Il-
4t + c.c.
b kemdo ety - Blt=t ) - 29.)
2
{: b('r)ej2BT e—j(QB(t—tl) i ws)T 4t + c.c, (4.19)
The first and third set of integrals can be written as
FT = £ (R (0) - X_(0)) coslw, (t-t.) - B(t=t.)?)
2 a D 1 1 1
+ %(Rb(m) + Xa(w))sin(wl(t-tl) - B(t—tl)Q) (k.20)
where
w=2plrat) s (4.21)
Ra(w) _alT)coswrdT (L.22)
X, (W) = - /. a(1)simwtar (4.23)
Rb(w) = ﬁ: b(T)coswtdT (L,24)
X.b(w) = - {: b(T)sinwTdr (4.25)




T€

This portion of the output is the real and imaginary ccmponents of the
Fourier transform of the input on in-phase and quadrature chirp carriers,
The transform is of a signal existing frem t=0 to t=TB. If it be desired
that the transform be of an advanced version, f(t+to), of the signal, then

the output can be rewritten sas

FT = %-lﬁa(m) - ib(w)*cos(wl(t—tl) - B(t-t1)2 + wto)

+ 3R (0) + X ()]sinlwy (t-t,) - B(t-t)? + wt) (4.26) .

vhere |
R (0) = £ a(t+t_)coswtar (k.27)
X (@) = - £2 a(t+t )sinutat (4.26)
ﬁb(w) = [: b(T+t_)coswtdt (4.29)
;(b(w) = - _J:: b(T+t_)sinwtdt (4.30)

Eqs. (4.20) and (4.26) show that the time location of the signal to be
transformed can be decided after the chirp conveclution by utilizing the
prescribed chirp needed to demodulate these real and iraginary Fourier
components. ln other words, if cor \O(t—tl) - B(t-—tl)2 + wto) is mixed
with Eq. (4.26), the outpwt di:ference term is

T = -12-|§a(w) - ;(b(w)lcos(.wst)

- %-lﬁb(w) + ia(w)lsinmst (L.31) 1

and the Fourier components of the delayed signal are obtained on quadrature

-« ~arriers, Quadrature carriers can be used, with low pass filters (LPF s),

~rarate the components.
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The Fourier components given by Egs. (k.20 ) and (L,26) ere
valid only over the time interval t, + Ts <t < t, + T;. Tt is only
during this time that the finite duration signal is totally overlapped
by the finite duration impulse response of the chirp device in the con-
volution integral defining the output of the device. Only during this
overlapping time period can the limits of integration in Eq. {(L.19) be
set to plus and minus infinity, All other times represent invalid
portions of the Fourier transform and typically would be time gated from
the valid portions. From this it can be seen that the valid porticn of
the Fourier transform is Tl-Ts seconds wide, If an inverse transfcrma-
tion is to be performed then, unless the entire Fourier transform is
centered within this region, the signal obtained is a filtered or dis-
torted version of the input. To center the Fourier transform it is

necessary that at the center of the valid regicn t =t  + %-(TS+T1)

® =2R(t -t.) —w, +w =0 (L,.32)
t=t c 1 1 s

or

w, =W - B(TS+T1) (4.33)

If this be the case, then the Fourier components from -B(Tl—TS) to

B(Tl—Ts) radians/second are displayed from t +Ts to t.+T. seconds of

1 171

real time, The time-to-frequency correspondence of a centered transform

is therefore given by

1
w=28(t -t --2-(T8+Tl)) (4.3k)

1

The time-to-frequency correspondence of the 2nd and Lth integrals in

Eq. (4.19) is given by
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w=28(t-t

1
L+ 3 (T ) - 2w (4.35)

when the 1st and 3rd integrals representing the Fourier transform of f(t)
are centered. These other integrals are similar to the 1lst and 3rd
except that they represent the transform of f(t)exp(J?Btg). The center

of this transform is at

w.
1 1
Botty - 5-(TS+T1) (L.36)

tc2 1

which is wl/B--Ts.-Tl seconds away from the center of the velid time

interval. Only for small w, or when wy = B(TS+$Q will this other trans-

1
form greatly interfere, Since f(t)exp(j28t2) is a finite duration signal
there will alweys be some portion of its transform in the output valid
time interval, however, this will be negligible if Wy is nuch greater

than B(TS+T1)- Note that, as discussed in Appendix B on long transforma-
tions, it is not necessary to display the transform centered about w=0,
especielly if viewing the transform is ¢f prime concern &nd no Fourler
inversion is to be performed. In this case, utilizing judicious filter-~
ing, en extremely wide bandwidth signal can have any 26(tl—Ts) rad/sec
porticn of its spectrum viewed by setting the time-to-fregquency corre-
spondence given by Eq. (4.21) equal to the center frequency of the desired
portionof the spectrum and sclving for the required ws with t=tc. The '1‘s
second wide signal may have such a wide bandwidth that filtering may be
required to eliminate undesirable cross products. Although Appendix C
describes a technique whereby the transform of very leng signals can be

taken, in many cases it may be just as satisfactory to transform a con-

tinuocus signel into a contiguous stream of Tl-Ts second wide transform:,




l"'!lIIIlIIIIIIIIIIIIIIIIH!EE!IE!:::!E“‘ ' b il et

In this case, each transform is the Fourier trensform of a Ts second wide
segment of the continucus signal each of which i1s acsumed to exist around
the time origin. (In fact by utilizing the proper post-multiplying chirps,
the individual transforms will be those for time-centered segments cf the
continuous signal.) To properly transform & continuous signal, however, it
must be broken up into at least two alternating streams (see Part III).

ir Tl-Ts = 'I's or Ts = Tl/2’ then the output transforms will be valid for

a time period equal to the width of the input signals. If the two alter-
nating streams are fed into two individual identical chirp transform
systems whose chirp filter inherent delays (tl) are alsoc T1/2 seconds,
then the same chirp streams used to modulate the input streams can be

used to demodulate the output transform streams. Set up in this way

the invelid portions of the output will not interfere with the valid
portions ard can be gated out, The two transform streams can then be
summed together.

The output Fourier transform given by Eq. (4.20) can be

rewritten as
1
FT = & ((R,(0) - ()7 + (R, (0) + X ()?)Z

cos(ml(t-tl) - B(t—tl)2 + tan-l((Rb(w) + Xa(w))/(Ra(m) - Xb(w)))

(4.37)
This equation shows that the output is essentially a chirp with an addi-
tionel phase variation given by the phase component of the Fourier trans-
form and a magnitude given by the magnitude of the Fourier transform.

Before post-multiply, the output of the chirp transform system, as seen

on an oscilloscope, appears to be the carrier modulated magnitude of the




Fourier transform. The signal given by Eq. (4.15) represents the complex

signal a(t) + Jb(t) and the output transform given by Eqs. (4.20) and (L.37)

represents (Ra(w) - Xb(w)) + J(Rb(w) + Xa(w)) or ((Ra(w) - Xb(w))e + '

2)1/2

(R, (0) + X ()°)2 exp(stan™ (R (0) + X_()/(R () - X (0))). 1f

f(t) is complex then the Fourier transform can be esymmetric about w=0. L
If £(t) is real (i.e b(t) = 0) then its Fourier transform must have a !
symmetric real and antisymmetric imaginary component about w=03. Further- i
more, its magnitude must be symmetric about w=0 and its phase must be
antisymmetric., If ¢ is a constant, then f{t) represents the complex signal
;(t)cos¢ + J;(t)sin¢. The magnitude of the Fourier transform of this
signal is salways symmetric, although its real and imaginary components will
not, in general, possess symmetry about w=0. With ¢=0 the input is pure
real with an even real Fourier component and an odd imaginary component.
With ¢ = m/2 the signal is pure imaginary with an odd real Fourier compo-
nent and an even imaginary component. The megnitude of the Fourier trans-
Torm looses its even symuetry when ¢ is a function of time. If improperly
phased pre and post-multiplying chirps are vsed in a chirp transform sys-

tem, a resl signal is treated as complex and a complex signal is treated

es an altogether different complex signal., When separating the real

Fourier component from the imaginary component,part of one of these compo-
nents is summed into part of the other. As the phase of the output post-
multiplying chirp is changed, the real and imaginary Fourier components

of the signal can be seen to swap back and forth. The transform compo-
nents are always valid but they may not be the transform components for
the form of the complex signal that may be desired. For the remainder of

this discussion the device inherent delays and ccnstant phases will be




ignored to simplify the equations. Furthermcre, ell chirps and impulse

responses will be of the form

c{t) = cos(+) or cos(-) (4.38)
where
2
(+) = wt + Bt

(<) = wt - Bt°

end the finite durations will only be implied. The output transforms will
be assumed to be accurate over a specified time interval, however, nothing
more will be said about this.,

The output of a down-chirp filter with impulse response (IR)

cos(~) for an input of a(t)cos(+) * b(t)sin(+) is given by

Output = lRa(2Bt) ¥ Xb(28t),cos(-)
¢ | Ry(28t) ¢ x_(28t)] sin(-) (4.39)

The down-chirp filter MCM system therefore takes the forward transform of
the signal. This will be signified by the following
£(t), — (=) ——F(w)_ ‘ (4.10)
# »
£ (t) > (=) ——=F"(w)_
wvhere the (+) and (-) subscripts refer to up and down-chirp carriers. If

Eq. (4.39) is mixed with cos2wt (spectrally-inverted) the difference term

is given by

Output = [Ra(ZBt) 3 Xb(ZBt)Icos(+)

3 ‘Rb(28t) + Xa(QBt)lsin(+) (4.42)

t
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so trat this process complex conjugates the Fourier transform eas well as

chinging the chirp slope. This will be signified by the following

Fw)_—> x(20) —F" (), (4.13) |

F' () x(20) ——>F(~0), (L.kk)

When a(t)cos(~) * b(t)sin(-) is inputted into &n up-chirp

filter with impulse response cos(+) the output is given by

Output = ‘Ra(ZBt) : Xb(2Bt)’c05(+)

+ lR.D(eet) ¥Xa(28t)|sin(+) (4.ks)

The up-chirp filter MCM system therefore performs a frequency inverted A
transform, which is equivalent to taking the Fourier transform of a time

inverted version of the signal. This will be signified by the following

f(t)_-———>(+) —-»F(-w)+ (L.L6)

£ (t)_ —— (1) —=F (), (4.17)

Multiplying Eq. (4.45) by cos2wt produces a difference term given by

adidant e

Cutput = |R, (28t) + X (28t)]cos(-)

g

by

Rb(28t) 5 xa(eet)lsin(-) (4.48)

so that, as before, the transform is complex ccnlugated and the chirp

slope changes sign. This will be signified by the following

F(w), — x(20) —F (=) (L.L9) i

F (), —> x(20) —F(w)_ (4.50)

- Inverse Fourier transformations will now be taken., An examplc
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will be worked out and then the different possibilities will be listed.

Assume the Fourier transform is given by

FT = A(t)cos(-) + B(t)sin(-) = F(w)_ (L.51)
where

A(t) = R (28t) - X (2Bt) (k.52)
and

B(t) = R (2Bt) + X_(2Bt) (4.53)

Since this is a complex signel similar to the input signal f(t)_, then the
output of an up-chirp filter for this input can be immediately written

down by inspection to give

Output = !rA(2Bt) + xB(28t)|cos(+)

+ | ry(28) - x,(280)] sin(+) (4.54)
where
w . a (t)
rp(28t) = [, A(T)cos2BtTat = /R (2B7)cos2Bredr = —% (4.55)
0 . S . 'bo(t)
xA(2Bt) = - {w A(T)sin2Bttdtr = {m Xb(281)51n261th =25 (L.56)
% o be(t)
rB(EBt) = {m B(T)cos2BttdT = {w Rb(2BT)c0528Tth = 38 (4.57)
00 ™ a (t)
xB(2Bt) =-J, B(t)sin2fttdt = - L Xa(2BT)sin2BTth = 78 (4.58)
a(t) = a (t) +a_(t) (4.59)
8 (t) = 3 (a(t) + al-t)) = &_(-t) (u.60)
a (t) =% (a(t) - a(-t)) = -a_(-t) (4.61)
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b(t) = be(t) + bo(t) (L.62)

b(t) = 5 (b(t) + b(~t)) = B (-t) (4.63)

bo(t) = %-(b(t) - b(-t)) = —bo(—t) (4.6k)
or

Output = %E a(t)cos(+) + b(t)sin(+) (L.65)

Since the actual device impulse responses contain a (8)1/2 factor, then
there will be a factor of B after the inverse transformastion process that
will cancel the B in Eq. (4.65). The B in this equation arose since the
(3)1/2 factor has been ignored up until now, The 1/28 factor (and all
multiplying factors, for that matter) will hereon be left out. Therefore,
the output of an up-chirp device for an input of (Ra(28t) ¥ Xb(28t))cos(-)

+ (Rb(2Bt) + Xa(2Bt))sin(-) is given by

Output = a(t)cos(+) * b(t)cos(+) (4.66)

The up-chirp filter MCM system takes the Fourier transform of the Fourier
transform, vhich is treated as though it is time inverted, so that the

original signal is obtained. This will be signified by the following

Flw)_ = (+) —1(t), (4.67)
»* *
F () _—— (#) == £ (t), (4.68)

When (R (2Bt) * X, (2Bt))cos(+) * (R (28t) ¥ X_(2Bt))sin(+) is
inputted into a down-chirp device the output is given by

Output = a(t)cos(=) * b(t)sin(-) (L.69)

so thet the dcwn-chirp Tilter MCM system tekes the Fourier transform n® a
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Fourier transform that is time inverted and the original signal is

obtained, This will be signified by the following

Flaw), —» (=) — £(t)_ (L.70)

* ¥*
Fw), —» (-} =+ £ (t)_ (4.71)

The two complete transform systems, not utilizing spectrasl inversion, are

given by
£(t), = (=) —= Flw)_ — (+) —» 1£(t), {L.72)
£(t)_ —> (+) —> Flw), —» () =+ £(t)_ (4.73)

Both of these systems recover the original signal complete with the original
chirp modulation, however, opposite slope devices are required. If spectral

inversion is used, the two possible complete transform systems are given by

£1), —> (-} = Fl)_ —> x(2) — F (), —>

(-) —m (2] (.74
£(t)_ = (+) — F(=w), —> x(2u) —» F (<) —

(+#) —o f“(t) (L.75)

+
Using these, the signal is recovered as a ccmplex conjugated version of the
input signal. 1In this case, however, identical devices can be used.

The above four schemes will always recover the signal or its
complex conjugate. Cpectral inversion by itself cannot be utilized as a
mechanism for causing a system to produce a time inverted version of the
input signal at the output. The reason for this is thet only the sign of
the transform chirp carrier slope must be changed tc allow a repeated trans-

form to be taken and therefore the time inverted signal to be obtained.

e b b, e e s i ._.-..w.j

e




! Eowever, spectral inversion not only changes the sign of this slope, but
it also complex conjugates the Fourier transform,
Time inverted versions of the input signal can only be ottained

if somehow the transform slope polarity is changed without complex con-

Jugation or vice versa. By mixing the transform with cos{2wt * 2Bt2) and
low pass filtering,the Fourier transforms can be complex conjugated with-
out a change in the chirp carrier slope polarity. This will be signified

by the relations

F(w) —» x(20,=28) ———»LPF —> F*(w)_ (L.76) 1

F(s) > x(2w,28)——>LPF ——> F (w), (8.77)

Adding a spectral inversion step, the transforms are not conjugated but

their slopes change polarity. This will be signified by
F{w) —— x(2w,-28) ——» LPF —» x(2w) ———>F(w), (4.78)
F(=w) > x(20,28) ———> LPF —— x(2u) ——— F(~0)_ (4.79)
From this, the four possible time inversion schemes are given by

£(t) > (-) —>x(2w,-28) ——=LPF —> F (W)~ (+)—>s1 (=t y

(4.80)

f(t)_——><+)~—~+x(2w,28) ——» LPF *"F*(-w); (L) f‘*(-t _

(L.81)

f(t)+—————> {(-)—» x(20,~2R) ~—-—»LPF —» x{20s) — —-»F(w)+~—~-> {(=)—» f(-—t)_

(4,82)




£(t) — (+)—>x(2uw,2B) — LPF —> x(2w) -— »F(-0) —>

(+) —s—2(-t), (4.83)
The first two schemes use different devices and complex conjugate the time
inverted signal. The second two schemes use identical devices and obtain
the tirme inverted signal with oppositely sloped carriers to the input. The
cdouble slope chirp can be obtained by passing the impulse response of a
device through a doubler. The above schemes represent exact techniques for
cbtaining time inverted signals assuming the bandwidth is not restricted bty
tire gating out some of the Fourier transform. This inversion is exact
because it is based upon the properties of the Fourier transform. Time
inversion, however, can also be performed, exactly, using the Fresnel
transform. {The Fresnel transform is detailed in Appendix A.) This can

be seen in Eq. (A- 30), which will be repeated here giving

2 2
J2BRt - T -J2RT
e FS(t) 8.tt B £{-1) (L.8Y)
where
2
Folt) = s £(1)e~dBT=8)" 4 (L.85)

is the Fresnel transform of f{t). This equation states that by multiplying
tne Fresnel transform by a double-slope chirp, a Fresnel transform of this
signal produces a chirp-modulated-time-inverted signal. For an input signal

f(t)cosw,t, the output of a chirp filter having impulse response

1
(t(e) - U(t-T))cos(wot—Bt2) is given over all time by

dt + c.c.

2
Output = el {tT f(T)eJ(wl'wo)T e~IB(t-1)

2
= eJWot [ pryed (1o)T BT o (4.86)




sincet - T<T1T =1t - %g (wo—wl) <t is & point of stationary phase.

Eq. (4.86) shows that the output of the chirp filter is the Fresnel trans-
form of f(t)exp(J(wlqno)t) with a carrier of frequency w_ . Eecause of the
complex conjugate, the output real and imaginary components of the Fresnel
transform are in phase quadrature. By utilizing the Fresnel transform
instead of the Fourier, it is not necessary to synchrcnize a pre-multiplying
chirp with a post-multiplying chirp since the irput modulation for the
Fresnel transform is an rf carrier. This is also an exact time inversicn
process, Note that if the input signal is extremely narrowband with
respect to the chirp filter bandwidth, simply multiplying the signal with
a double slope chirp and passing this signal through a single device of
opposite slope will produce an epproximation to that of & time inverted
signal. This technique, however, is not exact since it disperses the
frequency components of the signal. The extra chirp filters in both the
Fourier and the Fresnel transform time inversion techniques are required
to pre-disyerse the signal frequency conponentc, which are then brcught
back together by the second chirp filters, thereby preventing signel
distortion.

The CMC chirp transform system must obey a different set of
criteria for its practical realization. Therefore, a detailed description
of a typical system will be given after which the detail will be dispensed
with, The input signal to a down-chirp filter with impulse response given

by Eq. (4.5) is given by
Input = a(t)coswot + b(t)sinwot = f(t) {(L.87)

where

- 2BT, S w <y (L.88)

Wy




to make passage through the device pessible. The cutput from the chirp

filter over the time interval t, + Ty <t <t, + T, vhere the signal

1 1 i

exists from t=0 to t=TS, as before, is given by

oo
Output = /| (a(T)coson + b(T)sinon)

cos(u (t=T-t)) - B(t=T-t )% + ¢.) a1 (4.89)

This signal is then multiplied by an up-chirp (that may be obtained by
spectrally inverting the impulse respcnse of the dewn-chirp filter) thet

must exist from t = tl+TS to t = tl+TS+T so &s not to loose any of the

1
output represented by Eq. (L.89), The up-chirp, if gated to the valid
cutput interval t, + T_ <t 5'tl + T, over which the iimits of Eq. (L.89)
can be set to plus and minus infinity, will esutcometically gate out the

invalid portions of the first chirp filter output, upcen multiplication

with this signal. The up~chirp will be given by
2
uc = cos(wet + Bt°) (k.c0)

Before inputting to the second chirp filter, half of the output toc this
point can be discarded. The output ccnsists of two identical integrals

one having a complex rf carrier of the form exp(—J((wl+w2+2Btl)t - wltl
2

- Btl + ¢l)) and the other having a complex chirp carrier of the form

exp(—J((m14»2+28tl)t - 26t2 -ty - Btlg + ¢l)). Using the rf modulated

. . <
. - \ + 28t < 3 a o
integrals with Wy 28T3 Sw e, tl S wg vhere 2ll the second

chirp filter parameters have the number three as a subscript, the input

to this second chirp filter is given by
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Input = TI e J((wlﬂn2+28t1)t-m1t1—8tl +1)

o 2
/o (a(T)cosw T + b('t)sinwo-r)eJBT o~ (2Bt—wy-28t1 )T oo

+ C.C, (ho9l)

B i e ST I SR I

PR & R

over the interval tl + TB St f tl + Tl' The chirp modulated integrals

will not pass through the second chirp filter if w = W, + 2Bt1 < wy + 28T3.

Bl 2 sy il
PV i

e Al ?

The output of this second device is valid over the time interval

< t <
tl + t3 + Tl St tl + t3 + Ts + T3. Note that since the input to this
device is Tl-TB seconds wide, then Tl--T8 must be smaller than T,. As can

3
be expected the output of the second device is valid for a period of time

e et
TN PO

that is the device impulse response duration minus the input signal dura-

tion or T; - (Tl-Ts) seconds. The output of this device is given by

w-w-w)

Output = -8- /B /m, e "J —iﬂ_'_— -3 ((01+w2+28t1 "t

T T I LAl T T T T T e

e"’J ( (w2—03)t1 - (wl-bwa )t3-28tlt 3+¢3)

£: f(T)e-J(2B(t-t3) +wp3)T L N
(W, +0, )2

— T 31 ‘

N e i U |

oJ (2w twatnz)ty + (wytup)tg+2Btyt 3+28t,%443) i

2 ¢
f: f(T )eJaBt e'd(28(t-t1‘t3) - aﬂl-(ﬂz—m3)'r at c.c. (h.92) . ;
l
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Again, as with the MCM technique, there are two transforms. The treans-

form of f(T)exp(J?BTz) is not wanted and hopefully does not interfere
with the transform of f£(t1). Since f(T) is & carrier modulated signal,
the Fourier transform of this signal will consist of positive and nega-
tive frequency versions of the transform of a(t) + Jb(t) (the envelope

of the input). For large input carrier frequencies, the positive and

T M 1 1o RN

negative spectrums do not interfere. In order for one of the spectrums

n, g e b

to be centered within the valid window at t, =t +t3+3 (T +Ts),

then the time to frequency correspondence of this transform given by

W= 2B(t-t3) + Wy (k.93)

must satisfy

w =w (k.9%)

t=t °
o]

or

I VgL TR T RPN T

w, = Wyt —2B(t + = ( T3+Ts)) (4.95)

With this value of wy the frequency of the Fourier transform at

t o= by HgHT) is w B(T (Tl-Ts)) radians/sec and at t = t 143t T, +T

is w°+B(T3 - (Tl-Ts)) radians/sec, and is therefore centered within this

TR T

region. Witk this value of W, the time to frequency correspondence for

g,
¢
)
H

the Fourier transform of f(t)exp(J2Bt2) is given by

w= 2B(t-t3) - aul-2w3-w°+B(Tl+T3+Ts) (L.96)

At t-tc the frequency at this point is given by

wg = 2B(T¥TT +t)) = 2(wys0;) - 0 (h.97)
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For

W, oy >> e(tl+'rl+'r3+’rs) | (4.98)

this transform will not interfere with the desired form and can be ignored,

Since
_J_': f('r)e"Jm dr = % A(wmo) + A(m—wo)
+ JB(WO) - JB(w-wo) (b.99)
where
Alw) = £ a(1)e™T ar = R, (0) + 3%, (0) (4.100)
and
- B(w) = L. b(1)e 9T ar = Ry(w) + 3% (w) (4.101)

then by making the substitution w' = w-w_ and discarding the negative
spectrum (since it does not get displayed over ‘the output intervel), the
output of the CMC chirp transform system over the time intervel

< ¢ <
tl+t3+T1 St t1+t3+Ts+T3 is given by

//g o=d ({0 4wp+28t; )£ 40)

Output = %g Alw') - jB(w')}] + c.c. (L.102)

vhere

W= 286 -ty -ty - 3 (T 4TT)) (4.103)
and

¢ = 11‘; fw34n2-wl)2 + (wymw )ty = w4ty -2Bt tord-m/b (L.104)
or

Output = -3— /%- I(RA(m) + xB(m))cos((wlmz-taBtl t+d)

- (RB(w) - XA(w))sin((wlm2+2Bt1)t+0) (4.105)




Eq. (4.105) is the complex conjugated end frequency inverted transform
of the input signal. Note that the factor vn/B after every transformation

will result in a 1/B2 term after an inverse treansformation. Since,

however, there will be four chirp filters, in such a system, the (B)l/2

factor used for each impulse response will cancel this term.

If the CMC transform is centered about ~w_, then

w = -y (k.106)

t=t °
c

or

1
W —w°-28(tl *3 ('.l‘l + 7

p T W

3+ 7)) (k.107)

3
so that the time to frequency correspendence becomes

1
w= 28(t - tl - t3 -3 ('r1+'r3+'rs)) - w (4.108)

for the Fourier transform of f(t) and

w= 2B(t—t3) - 2w -2 +m°+B('rl+'r3+Ts) (4.109)

37

for the Fourier transform of f(t)exp(JZStz). At t=t

w, = 2e(tl+frl+'r3+'rs) - 2(m1-0w3) + W (Lk.110)
so that for
wy +y >> B(tlvrl+'r3+Ts) + o (%.,111)

the two transforms do not interfere. In this case, making the substitution

w' = W the output is given by

1 /g o3 (W) 4w, +2Bt, Jt40)

Output = 77 Alw') + JB(w")} + c.c. (4.112)

where w' is given by Eq. (4.103). This equation can be rewritten as




output = 3 /7 | (R, (00) - X ) kos( (w #u,+28t, Jt+d) i
|
&
+ (Ry{w') + X, ('))sin( (w40 +28¢, )t+0) (.113) '.
4
vwhich is the Fourier transform of the input signal. As would~be expected ' §
since
Alw) + jB(w) = (Ry(w) - X (w)) + J(RB(m) + X, () (b.114)
3 and
A(w) - 3B() = (R,(w) + X;(@)) = J(Ry(w) - X,(w)) (4.115)

the transform obtained using one of the spectrums is the complex conjugated

k and frequency inverted version of the transform obtained using the other

spectrum, In a CMC system, using down-chirp filters, the negative spectrum
is required in order to obtein the Fourier transform. Ignoring device

delays the output of an up-chirp filter CMC system is given by

Jutpui = % /g ‘(RA(U;) - XB{w))cos((wl-i-we)tw)

- (RB(m) + xA(w))sin((wl*w2)t+¢) (4.116)

using the positive frequency spectrum. This output is the complex con-
Jugeted Fourier transform of the signal, Using the negative spectrum

E results in the output

output = § /| (R, (0) + X(@))con( ()t )

Lﬁ + (Ry(w) = X, (0))sin( () 40,)t+0) (4.117)

vhich 1s the frequency inverted transform of the signal. Note the similarity
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in these results with respect to those obtained for the MCM technique.
In the MCM systems, the transform is frequency inverted when up-chirp
filters are used and not inverted if dewn-chirp filters are used, ¥For
CMC systems using their negative spectrums, up-chirp filter systems produce
frequency inverted transforms and down-chirp filter inverted systems
produce a non-inverted transform., Furthermore, the CMC chirp transform
system possesses the additional facility to complex conjugate and time
invert its transform by utilizing its positive frequency spectrum., If
DP is used to signify a dovn-chi:p filter system utilizing the positive
frequency spectrum, DN the same system using the negative spectrum, UP
en up-chirp filter system utilizing the positive spectrum and UN this
seme system using the negative spectrum, then these results can be

summarized as follows:

£(t) —— DP——»F (-0 (4.118)
£(%) —— DN i~—> F(n) (l,119)
£(t) ——> Up —> F*(w) (4.120)
£(t) > UN > F(-w) (L.121)

Since no chirp slope changes are required, these systems are simply cas=-
caded to realize transform inversions. The schemes that will produce a

signal that is not time inverted are given by

PRSP P - R R Y -

Py

f
b
v[‘
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i
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-

£(t) = UP =~ DN —» f*(t) (4.122) f‘
£(t) = UN—— DN~ f(t) (4.123)
£(t) ——> UP ~—> UP—>» 1(t) (4.124)
£(t) —— UN—~—— UP———s £ (t) (4.125) ,
i
- - i
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96 £
£(t) > DN > DP ——p- f*(t) (k.126) '

£(t) s DP et UNm—se £ (t) (k.127) P
r £(t) + DN * UN —— £(t) (4,128)
£(t) > DP ——2 DP = £(t) (4.129) 3
where the relationships %
F (<t)es 2 () (4.130) §
F(t)ws2n £ (w) (h.131) g
F(-t)=ee2r f(w) (4.132) ?
have been utilized. Similarly, the time inversion schemes are given by . ;
£(4) —— DP —— DN ——> £ (-t) (4.133) k-

f(t) — Dp —» UP — f(-t) (4.134)

£f(t) ——» DN —» DN —> £(-t) (k.135)

£(t) —— DN —— UP ——> 1" (-t) (4.136)

f(t) = Up ——> DP —> f(-t) (4.137)
£(4) ——= UP —— UN — £ (-t) (1.138) | |
‘f(t)—-—* UN ——» DP — f*(-t) (4.139) &
£(t) + UN > UN — f(~t) (4.1k40)
Of course, if the rf carriers on the Fourier transforms are not of the }

proper frequency for the following system, they must be adjusted before

T

inputting the transform into this other system.
The CMC chirp transform systems require twice as many devices

than are required in MCM systems. For cascaded system configurations,




this can represent quite an appreciable loss in system dynamic range.

Although MCM systems typically require twice as many mixing operations
than is required in CMC systems, a mixing operation can usually be
elimineted between cascaded systems, CMC systems do not have the ability
to perform properiy after the elimination of a chirp filter between stages.
CMC systems, however, will not suffer from the many cross products that
arise in MCM systems due to their many necessary mixing steps. Compromises
may be made, therefore, when cascaded systems are required, by utilizing
both structures in one configuration. Note that the final mixing stage
cen be eliminated in en MCM system and the Fourier transform on a chirp
carrier is obtained. Elimination of the final device in a CMC system
results in an output of the form of Eq, (4.91), which is a chirp modulated
Fresnel transform of the input. Filtering can be performed before the
final MCM mixing stege but not before the final CMC chirp filter.

Fourier transformation properties will now be examined in
relatior to their realizsations utilizinz these chirp trensformation
systems., Time inversion has already been covered in some detsail, It
was seén that the Fresnel transform as well as the Fourier transform
can be used to realize this function. (Since the chirp filter has been
shown to behave as a Fresnel transformer, this transform may some day
prove to be indispensable in the analysis of chirp filter systems. It
is for this purpose that Appendix A, concerned with Fresnel analysis,
was included in this report. An attempt was made to derive as many
relationships as pessible, thereby improving the probability of developing
some form of signal processing theory based upon this transform.)

Using the Fourier relationship
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£(t-t ) -—> Flw)e W% (4.141)
a variable time delay system can be set up. Since the output transform
of a chirp transform system is of the form
output = e3%(t) p(y) + e 32H) gy (4.142)
where a(t) is some function of time, then rewritting this as
Output = eJ(u(t)+wt°) e %% F(w)
s edlalthuto)  Juto g%, (4.143)

the Fourier transform of the delayed functicn can be obtained if a signal
with phase a(t)«uto is used to demodulate this output. The veriable w
represents the time to frequency relationship of the transform. After
this demodulation, a signal delayed by to seconds is obtained if the
transform is inputted into another chirp system set up to perform the
Inverse Fourier trensforuation., The convarse will occxr for signaZs with
high frequency carriers. Since the chirp system will be tuned to either
the positive or negative spectrum of this signal, when the carrier is
changed the Fourier transform of the signal envelope is shifted. This

follows from the Fourier relationships

£(t)e? 0" +—> Fluw ) (4.144)

£(t)cosu t +—> & {F(wta)) + Flu- )} (k.245)
and

£(t)sinn t <= L (Flut ) - Flu- )} (4.146)

Note, however, that time delay can also be implemented using the
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Fresnel transform. When a carrier modulated signal is inputted into a

chirp filter, the output is in the form of a Fresnel transform (see Eq. (4.86)).

Since this transform itself is carrier modulated, its carrier frequency can be

i

controlled by a mixing process. When the transform is inputted into a chirp
filter having opposite slope to the first, the output is the inverse Fresnel
transform or the original signal delayed. However, the delay of this signal
will be dependent on the carrier frequency of the Fresnel transform. The

group delay, in this case, is a linear function of frequency. This can be

v Ay ey o NNy SRR P

seen using the Fresnel relationship

(wy =)

JB’T{f(t)er2t} = eIy =0p)t - ——=—)

% Juyt
"‘B.T + (wl-wz)/zs{f(t)e 1% (b.1k7)

Except for a phase factor, the Fresnel transform of two signals having
different carrier frequencies are delayed from one another by a delay.
that is linearly proportional to the difference in these frequencies
(i.e. the delay = (wa-wl)/28in Eq. (L4.147)). Signal expansion znd

compression can be performed using the Fourier relationship

£(at) <—> LF(‘-;-’) (4.148)

2]

If the Fourier transform of a function, f(t), is obtained using a chirp P

transform system with chirp filters of slope Bl’ then the time to frequency

%
f
¥
@
&
¢

correspondence of this transform is proportional to Bl' If the same signal
is transformed by a chirp system having 82 slopes, then the time to fre-
quency correspondence of this transform is proportional to 82. Ignoring

delay then
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i
= J
and f
i;
Wy, = 28,5t (L.150) |
so that ?
B '
= —2‘- P re
w) B, W, e (k.151) ;
:
With 5
=2 Junt
Folw) =/ £(¢ dt (4.152)
/
and /
Folwy) =/ £(t)e 2% gt ‘ (4.153)
then
B1 .
Filw) = F2(§; w,) (L.15k)

If Fl(wl) is Fourier inverted using a system set up for Fz(w2), the output

of this system will be proportional to f(ga‘t), since
1

B B, B
Fg(gz- m2)<——-> E;f(g; t) (4.155)

This scale change for Bl # 82 involves the use of chirp filters having

different slopes. The carrier of the Fourier transform must be mixed with

a chirp that has a slope that is the sum (or difference) of the two device

slopes before the inversion can be performed. Again, this process can also

be performed in the Fresnel domain and, as usual, this éliminates the need
for pre-multiplying chirps and the need for synchronization that is
necessary for the proper performance of a Fourier transform. The main
disadvantage in using the Fresnel transform is that spectral modificatfnn

techniques cannot be used since the Fresnel transform is not a frequency
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spectrun representation of the signal, This transform represents the
signal as an infinite sum of delayed chirps and meps the nagnitude and
phase of the chirps (all having the seme slope, B, which represents
another degree of freedom for this transform) as & function of their
delay. (A signal, such as a radar return composed of a sum of delgyed
chirps, will have a Fresnel transform that is composed of impulses,)
When a single chitrp is modulafed by a signal, the Fresnel transform of
this combination (for the proper slope B) is a chirp modulated version
of the Fourier transform of the signal, This is a special case (see the

Fourier/Fresnel relationship in Appendix A). Since

4812 o =1 —1B1t°
CA lf(t)] = Bt g T (g )e IRt ]l (4.156)
1 w=28t
then for Bl = a82 this becomes
2 -1 - 2,
F s, [70)] = emIoBet & T r(r)e7oE" ]‘ (4.157)

w=r_a62t

If this is mixed with a chirp of slope Bz(a—l) and the inverse Fresnel

transform with respect to 82 is taken then

j;: [edﬁz(a-l)‘ﬁzg‘_aee lf(t)” = r(t/a) (4.158)

S
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Using the Fourier relationship

Lo (0, (£-1)aT a—s F,(0)F (W) (4.159)
vhere |
Fy(0) = [ £ (£)e™% at (4.160)
4
Folw) = £2 £,(6)e™% at (4.161)

the convolution of two functions can be obtained by taking the inverse

transform of the product of their transforms., In particular, if a real

signal is to be correlated with itself, then

£,(t) = £ (-t) =—> F."(0) (4.162)
so that

[ £ (08 (1-8)aT s Fy (0)F, " (0) (4.163)
Since

F,(w) =R, (w) + JX; (w) (4.16%)
then

P, ()F, "(0) = & %(w) + x %(w) (4.165)

The output of a chirp trensform system for the input fl(t) is given by

Output = Rl(28t)cosa(t) + Xl(2Bt)sina(t) (4.166)

vhere a(t) is scme function of time (a chirp or an rf). Performing the
product with this signal gives
*(28t) = = (R ° 2
F,(28t)F) (28t) = 3 (R “(28t) - X "(28t))

+ (312(2Bt) + x,%(28t))cos(2a(t)) (4.167)
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where the desired form of the transform is modulated by cos{2a{t)) and can
be filtered fram the beseband tercs. The Pourier transform need not be
complex conjugated by a special step. For instence, if one transform is

given by Eq. (4.166) and the other by

F2(28t) = Rl(26t)cos(y(t)) + xl(est)sin(y(t)) (4.168)

vhere y(t) is a time functinon different fram a(t), then their product is
given by

F)(288)F,(28) = 2 R “(2Bt)cos(alt) - (&)
+ X (28t )sinla(t) - y(t))
+ B 2(2Bt)cos(a’t) + y(t))
- X12(28t)cos(a(t) + y(t))
+ 2R, (28t )X, (28t )sin(a(t) + v(t)) (4.169)

Since

(R +3%, V(R +3%)) = R Zox Payem X (4.170)

is the Fourier transform of the sutoconvolution of fl(t), Eq. (4.169) shows
that by choosing a(t) and y(t) properly, the Fourier transforms of the
autocorrelation and autoconvolution can be filtered from one another and
used to obtain either of these time functions. The correlation and con-
volution of two different functions can be obtained in the same way., Note
that in order to display the entire valid convolution or correlation of
two functions using this technique, the velid time interval after the

. transforn inversion of the product of the two transforms must be of

duration equal to the combined duration of the two signals.
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If a signal has passed through a linear system, then its Fourier
ransform is multiplied by the transfer function of the system. The
system may actually distort the signal beyond recognition. If..hovever,
the Fourier transform of this distorted signal is obtained and the system
transfer function is also available (i.e. by taking the Fourier transform
of the system impulse response), then the original signal transform can
| be theoretically recovered by dividing the distorted signal transform by
the system transfer function. The original signal is then obtained by
taking theinverse transform of this. This is classified as a 'deconvolution®
process, In reality, points at which the system transfer function is zero
would blow up if divided into the distorted transform so that only an

approximation to this process can typically be realized in actual practice.

Bt e aemabh cab e s i dRd e it At ot Al et

Also, if major portions of the original signal have been altogether
eliminated by the system, then an exact recovery of the original transform

is impossible. The product of two different transforms is given by

Output = R1(28t)R2(28t) - xl(eet)xz(zat) cos{a(t))
+ (R1(2Bt)X2(28t) + Xl(28t)R2(2Bt))sina(t)
+ R1(2Bt)R2(2Bt) - xl(QBt)Xz(ZBt) (4.171)

If this product is multiplied by

Rl(eet)

M(t) = cos(a(t))

(R12(2Bt) + xia(est))

X1(2Bt)

- 2 2
(r,%(28t) + x,%(28t))

sin(a(t)) (4.172)
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the transform R2(2Bt) + JXQ(ZBt) is recovered by a high pass filter.

A similar technique is utilized in a 'pre-whitening system'.
In this case a continuous signal is transformed in segments. Before the
signal is transformed, however, it is delayed long enough so that an
estimete can be made of the signal, The signel is subtracted off leaving,
ideally, only the noise. (Typically, the signal is a binary code and a
matched filter is used to estimate it,) This noise is transformed, the
transform is squared and a reciprocal is taken., Then a convolution with
e window is performed so as to make this a better approximation of the
inverse power spectral density of the noise. This transform is then used
to rultiply the combined signal and noise spectrum or inverse transformed
and convolved with the input signal. The result is that the noise has
been optimized for the matched filter by utilizing estimetes of the

noise power spectral density.
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2.5 The Saw Convolver and the Chirp Transform

A chirp filter is typically e single input, single output
device. It is usually designed symmetrically so thet it tehaves identi-~
cally whether either port is used as input or output. If designed using
surface acoustic wave (SAW) technology, its chirp impulse response can
be straightforwardly tailored to have a slope of many megahertz, a center
frequency into the hundreds of megahertz, time duraticns up to hundreds
of microseconds and initial deleys that cen be anywhere from & few micro-
seconds to also hundreds of microseconds if this be desired. Utilizing
the dispersive properties of the medium, the dispersive properties of
specially designed transducers or selective reflections along the surface
of the SAW delay line losses in the ballpark of 20 dB cen be typically
obtained, for devices having time bandwidth products in the hundreds, or
30 4B, for devices having time bandwidth products in the thousands. Once
designed and fabricated,the impulse response of the chirp filter,
ignoring slight changes in its parsmeters with age end changing environ-
ment, can be depended upon to be the same irrespective of when a signal
is applied. In other words, the impulse response of the chirp filter can
be assumed to be time invariant and will produce the szme response for
the same signal irrespective of its épplication time. Therefore, if its
impulse response is known to be, h(t), then the output of the device for

an input f(t) can be expected to be given by

g(t) = K [ £(T)n(t-1)dt (5.1)

This makes the analysis of a system utilizing these devices a straight

forward (yet not necessarily trivial) task. The section describing the
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crirp transform assumed that chirp filters were to be used as the main :
compenents. All the analysis there is besed upon a device having a f
scmewzat idealized impulse response, given typically by Fq. (4.6) for f
!

an 'up chirp' device, and responding es wou1lé be expected mccording to i
Eq. (5.1). !
Besides depending upon a device, such as & SAW chirp filter to E

perform the necessary chirp convolution (besed upon the usual convolu-

J—

i
J

tionary response of a linear time invarient device between its impulse

resporse &nd an input signalx the convoluticn can be performed using

o
prees

a convolver, The output of a convolver, as the name implies, is expectedly

the convolution of its two input signals. To function as a chirp filter,

one of its inputs is simply made to be a linear FM or 'chirp'. The con-
velver reed not be a physicel device, such as something you'd be able to

grasp that has two visible input ports and en ocutput port, but it could

© e g e e

Py y

be en algorithm in a digital computer. Representative of a physical

device would be a CCD convolver set up to perZorm discrete convolution.

However, the sublect of this section is neiiher of these. This section L

is intended to stress the characteristics o® the separeted-medium

surface-sccustic-wave (SAW) convolver when it is to be utilized in a

chirp trensform system, Other sections triefly describe other uses

for this device along with some discuésion on & modifed version possess-—
ing storege capability. As a means for ccxparison, the chirp transform

utilizing SAW devices is compared with the current baseband techniques

' utitized in OCD structures in Arsenault 1979 where the ¥FFT aipoprithm ¢
i
is also discussed. Tn this section only the bLasiec criterin heces- 1

sary in the utilizatinon of a convolver in a chirp system wi::@ be

e — S,
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presented where the single stage MCM chirp transform system will be
utilized as an example. More complicated system configuretions can be

enalyzed on the basis of this information and that supplied in the

section emphasizing the chirp trensform end chirp filters.
The SAW convolver is a device that can be grasped having two

visible input ports end a single output port. Intuitively, one would

not expect to be able to input a signal into one input port, now, and

an hour later obtein the convolution at the output port for this signal
with some other signal applied to the second input. To do this the
device would require a storage mechanism, however, the storage convolver

is a topic of another section. The convolver to be characterized in

this section has no memory. (Memory convolvers at the present time have
too weak an interaction to be useful in a complicated transform type of
arrangement in place of the non-memory convolver.) The point to be made
here is that the timing of the two signals, to be used &as input signal
and effective device impulse response, is critical in order to utilize
the meximum amount of interaction time that the device can supply without
loosing part of the desired output.

A detailed description of the convolver structure and performance ’
is given in another section but for tbis discussion all that need be under-

stood is the basic mechanism underlying its ability to convolve two

signals. All timing criteria will be derived from this. The SAW convolver
consist of a crystal medium on whose surface so called Rayleigh waves are
caused to propagate, These surface waves penetrate on the order of one
surface-wave wavelength (on the order of microns to hundreds of microns)

into the crystal and are generated onto the surface by interdigital
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transducers that have been metallically deposited on the surface at both

P S S S S PR Y

of the crystal's extremeties. The surface waves generafed by the two
transducers propagate toward one another with velocity v (2v with respect
to one another). Since the crystal is piezoelectric the surface waves f;
carry with them an electric field (although the mejority of the surface
wave energy is contained in the mechanicel fields), If the two contra-
propagating waves are allowed to overlap beneath a slice of semiconductor
that is within e few thousand angstrams of the surface, the electric
fields interact non~linearly with the charge carriers in the semiconductor
producing a non-=linear current density. The semiconductor tends to
average out this effect which is equivalent to an integration over the
length of the overlap of the two signals. The detailed mathematics are

left for ancther section, however, the cutput of interest is of the form
(-]
e(t) =/ f(t)e(2t-1)ar (5.2)

'The limits of integration in this equation can be set to plus and minus
infinity so long as the overlapping region of the two signals is forced
to remain beneath the semiconductor entirely. Here, f(t) and g(t) are
the two assumed input signals and the magnitude of this integral has
been set to unity for simplification although the actual magnitude is a
function of convolver efficiency. It should be stated that, being a
second order effect that is typically analyzed as though it were simply
a perturbation of the charge carrier density of the semiconductor and
the surface wave energy,this convolution output is necessarily small,
typically being on the order of 40 to 60 dB below the input levels.

Note also from Eq. (5.2) that the convelution cutput is compressed by
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a factor of two. This is inherent in the fact that both signals are
propagating with velocity v,

The interdigitael transducers in conjunction with their matching
netwerks behave as bandpass filters whose center frequencies are dictated
by the surface wave wavelength corresponding to two times the center-
to-center transducer finger-spacings. Therefore, the input signals
must always be modulated upon carriers vhose frequencies fall within
this band being anywhere from a few to hundreds of megahertz. When both
£(t) and g(t) are given carriers of frequency w in Eq. (5.2) the difference

terms integrate to zero leaving

e(t) = cos2ut {: f(t)g(2t-1)ar (5.3)

where it can be seen that the output carrier is twice the input carrier
due to the campression factor. When these input signals are chirps or
modulated onto chirps their bandwidths must again fsll within the band-
pass of the input transducers. (SAW chirp filter bandwidths are also
typically set by the input trensducers or at least the meximum chirp
dispersion cannot be made greater than this.)

Since the SAW convolver possesses an input/output relation of

the form of Eq. (5.2), relative to one of the inputs the device has a

time varying impulse response. If it is assumed that g(t) = h(t) is the
effective impulse response of the device, then an impulse applied at t=t1
will result in the impulse response h(2t-t1) and an impulse applied at
t-t2 will obtain h(2t-t2) as a response, If the device was time invariant
the application of these two impulses spaced t,-t, seconds apart (t2 > tl)

should result in two identical responses spaced t2-t1 seconds apart.
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Since, however, the responses actually exerge (t2-tl)/2 seccnds apart
the device is not time invariant. Moreover the output of the conveolver
can only be a delayed version of h(2t) so long as h(t), as a modulated
surface wave, fits totally beneath the semiconductor and,even if this be
the case,the impulse is given a finite slot of time in which to be
applied,otherwise a truncated version of this signal, or no signal at all,
is obtained.

From this information some basic criteria can be developed to
insure that, when obeyed, the SAW convolver can effectively be utilized
not only as a convolver but as the main elerment in a chirp transform
system. To this end, we can develop a basic model for the device in
terms of time delays and an interaction time. First of all it will be
assumed that either signal requires a time t after its time of applica-
tion to its input port, in order to just reach the edge of the interaction
region, defined as the region beneath the semiconductor, nearest its port.
Then, the last assumption is that the interaction region requires a
single point on a signal to travel for T seconds in order to propagate the
entire length of this region. In other wecrds, an impulse applied to an
input at time tl will propagate on the crystal surface as an impulse sur-
face wave for a 'dead time' of FD seconds reaching the closest edge of
the interaction region at time tl + tp. It will then propagate until it
reaches the farthest end of this region at time tl + tD + T. It will
continue to propagate on the free surface of the crystal for another
‘dead time' ?D until it reaches the other transducer at time t, + 2t, + T,

Being a deley line, the impulse could now be detected by this transducer

in the equivalent manner in which it was generated, although when used




-0of the impulse also passes beneath the transducer and is absord by an
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as & convolver this output would generally be ignored. A large poertion

Acoustic absorber at the end of the crystal.

Now, since a Fourier transformation is desired, we know that
one of the signals is required to be a chirp and the other the desired
signal to be transformed modulated by a chirp having opposite slope to
the first. This, we will assume, is to be a chirp transform system
utilizirg the MCM configuration. Since the equations have been written
up in detail in the section on chirp transformation for the 'down-chirp'’
filter, let us assume, for comparison, that the convolver also takes on
the appearance of & 'down-chirp' filter. To this end, the following

chirp signal is applied to one of the convolver inputs at t=0
r(t) = [U(t) - U(t-Tr)]cos(wrt - 8t2) (5.4)

where Tr is the overall length of the chirp and

a 2 -
T (ot -8t _o=w -28t] o =w (5.5)

is the instantaneous starting frequency of the 'down chirp' at t=0. The
phase of this chirp at t=0 was arbitrarily set to zero.

The chirp modulated input signal will be given by

s(t) = f(t-ts)[U(t-ts) - U(t‘t.‘Ts)J°°s(“s(t‘ts) + B(t-ts)z) (5.6)

where a delay t8 has been included in anticipation that Just such a delay
may be required as s method of optimizing the valid output duration of

the Fourjer transform. The signal duration is assumed to be of length Ts




wnich has been strictly imposed in Fq. (5.6). Here the chirp modulstion
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~is that of an 'up chirp' es required for transformation and its instan-

teneous sterting frequency at the start of the signal t=ts is W, The

phase at t=ts is again set to zero.

Since, in the convolution between these two signals, the output

. -
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Fourier transform cannot be valid unless the signal given by Eqg. (5.6) is

. *

totally overlapped by the signal given by Eq. (5.4), in order that the

limits of integration be set to infinity, the first criterion is obviously

2 Ca A e ol

~given by
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T < T, (5.7)

Furthermore, the meximum length of time during which this condition can
occur is helf the difference between these two durations since both
signals ere propagating toward one another. Therefore, the maximum

duration of the valid portion of the Fourier transform is given by

Temax = (Tr—Ts)IZ (5.8)

To maximize the duration of the valid output, the time at which the signal
given by Eq. (5.6) Just makes it totally beneath the semiconductor,

t = ts +t 0+ Ts’ should be the same time at which the front edge of the

D
chirp given by Eq. (5.4) just reaches the farthest edge of the semicon-

ductor from its input or the edge closest to the signal input, 1In this
wvay the sigral becomes totelly overlapped by the chirp and the interaction
region at the same time. If the total overlap of the signal and chirp
occurred screwhere else beneath the interaction region,then part of this
interaction time has been wasted. If it occurs too early,then the outrut

is not entirely correct until the signal enters the interaction region
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entirely, since only a portion of the overlap will be integrated. The

point in time at vhich the chirp reaches the farthest end of the inter-

action region is t = t, + T seconds. Therefore, by setting these two

times equal to one eanother the delay required on the input signal to

insure maximum interaction is given by
t =T7-T (5.9)
s ]

Due to the finite size of the interaction region, there must necessarily
be restrictions on the size of the signsl., Assuming that while totally
beneath the semiconductor the signal is also totally overlapped by the
chirp, the maximum time that the output can be expected to be accurate
is *he time required for the signal to propagate the length of the semi-
conductor without ever leaving the confines of the interaction region

defined by this semiconductor. This time is given by

»
i

:M =TT (5.10)

Since it doesn't make sense to try and obtain a valid region that is of

duration longer than that defined by Eq. (5.10), which is physically impos-

sible, then the maximum chirp length, T s, that is of any use is given

P PO

by equating Eqs. (5.8) and (5.10) and solving for T.. This gives

Tr 2 2T - ’1‘s = Trmax (5.11)

|

which states in conjunction with EqQs. (5.9) and (5.10) that an impulse ;f
applied at t8 = T will produce a valid output convolution beginning at P
- = = §

time t = ts + tD =T+ tD end lasting until time t ts + tD + T=2T+ tD ;
assuming that the other input signal, applied at t=0, is at least 2T sec=- 5

onds long. This is the maximum convolution time obtainable assuming that

1 ‘
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the signal, to be Fourier transformed, is totally overlapped by both the
chirp and the interaction region,which is & requirement for accurate
transformation. An impulse is the limiting size of the input signsl that
produces the maximum lengith accurate Fourier transform of duration T or
half the duration of the 2T seconds long input chirp (due to the
factor-of-two compression). The longest duration that the signal, to be
transformed,can have is T seconds. Having this length or greater pro-
duces no output that is valid. The chirp need not be limited in duration
to the time given by Eq. (5.11), although any excess over this time will
be wasted, Any length less than that given by Eq. (5.11) is less than
optimum. By meeting the criteria defined by Egs. (5.9) to (5.11), the
output Fourier transform can be assumed accurate cver the interval

ts +t

+ < <
D Ts St= ts + t

Over this interval the output of the convolver for inputs given by

Fgs. (5.4) and (5.6) is proportional to

cé(t + tD + g& = £: f(T-ts)cos(ws(T-ts) + B(T-ts)g)

cos(u_(26-1) - 8(2t-1)%) at (5.13)

vhere the duration T_ of f£(t) is to be assumed. The advance to tp * %
included in Eq. (5.13) is the amount of time required for two signals
to meet in the device if both are applied at the same time. Eg. (5.2)

assumes they meet immediately. Incorporating this asdvance into the

equation and expanding gives

L b R i il
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o ¥ T (5.12)
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o(t) = e-d((20p + BBEI(t - tp - D) L UR(t - tp - PP -yt - BteD)
£: f(T)e-J(hBt - 2Btg - hBtD - 2RT + Wg = wr)T dt + c.c.
o omd(2u + 4BEG)(E = tp = 2) ~ 4B(t- tp - 1) _ g - Btg2) ’

2
{: f(r)eJ2BT e-j(het - 2Bt - LBty - 2BT - wg - wp)T T + c.c.

(5.14)

The delay of the function tg was absorbed into the exponentials by ,?
utilizing the relation P

~Jut

flt-ty)e— e s Flu) (5.15)

since both of the above sets of integrals are Fourier transforms. The

first set of integrals is the Fourier transform of f(t) with a time to

frequency correspondence given by

w=w, - * 4Bt -ty - & (£4T)) (5.16)

The second set of integrals is the Fourier transform of f(t)exp(jZBtz)

with a time to frequency correspondence given by

1
w=bB[t -ty - 3 (ts+’I‘)] -, - (5.17)
The center of the Fourier transform of f£(t) is given by
w_-w
r s 1 }
b= ~4g—* tp * 5 (M) (5.18) X

whereag the center of the Fourier transform of r(t)eprJ2Bt2] is

given by
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wrms 1
tcl= Té-— + tD + —2- (tS+T) (5-19)

The center of the valid interval given by Eq. (5.12) is given by

1
t = to vty v 3 (T+Ts) (5.20)

v D

When Eq. (5.18) is set equal to Eq. (5.20) the following criterion is
obteined for centering of the Fourier transform of f(t) within the

accurate time interval; namely,

W

r_ws 1
T =3 (ts+Ts) = T/2 (5.21)

where Eq. (5.9) was utilzed assuming the maximum duration output was
desired, If the chirp given by Eq. (5.l4), being the longest of the two
input signels, is designed so that its bandwidth extends over the entire
bandwidth B of the convolver, then W, is the upper frequency limit and
w, - 26’1’r is the lower frequency limit. Furthermore, if Tr is set equal

to the maximum usable time length given Ly Eq. (5.11), then

218 218
B =g = 5o (5.22
T, - 2T, )
so that
£ty Ts -1
5 = (2 - 7 (5.23)

Since Ts would never be made greater than T (since none of the output
would represent the accurate transform if that were to be done), the
above ratio is never greater than one. Therefore, by choosing all the
parameters so es to optimize the available length of the output trans-

form and to utilize the entire convolver bandwidth, the required value

- ———




for w_, dictated by Eq. (5.23) where wg = 2nf_, will alweys fall within

the bandwidth of the convolver. When Ts =T, we =W, - 28Tr or the
lower frequency bound of the convolver and since its width is also Tr
seconds wide in this case, its frequency after Tr seconds is wr, or the
upper bound of the device. In the other extreme, when Ts = ¢ = 0 then
we W, - BTr or the center instantaneous frequency of the chirp and,) F
likewise,of the convolver passband.

The Fourier transform of f(t) given by the first set of integrals

in Eq. (5.14), when centered in the valid interval given by Eq. (5.12),

spans an interval in frequency given by

-2B(T-T_) Swl 28(T-Ts) (5.2L)

If T8 is chosen to be half the interaction region so that the output i
transform is valid over half the imnteraction region,then Eq. (5.24)
becomes

-BT € w 2 BT (5.25)

vhere, using Eq. (5.22), BT is one third the total bendwidth of the con-
volver, so that the Fourier transform spans two thirds of the convolver
bandwidth. When T=Ts the transform spans zero bandwidth as is expected
since there is no valid output. If Ts = € = 0 the transform spans 4T
radians/sec or, using Eq. (5.22), the entire convolver bandwidth. 1In
this case, however, the signal is too small to be of any real use.

From Eq. (5.19) it is seen that,when the Fourier transform of
£(t) is centered at t = 37/2 + ty - Ts/2 or the center of the valid
intervalﬂthe Fresnel transform,given by the Fourier transform of

f(t)exp(328t2) or the second set of integrals in Eq. (5.1k4), is
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centered at
w T
= S 3X__s
to* @ttt -3 (5.26)

which is ws/28 seconds away from the center of the desired transform.
This will typically be quite a distance in time away from the velid
region so that only negligible high frequency components of this trans-
form will coincide with the desired transform. Therefore, the Fresnel
terms can usually be neglected so long as the system is not designed to
cperate at extremely low frequencies. Neglecting these terms, Eq. (5.1k)

can be written sas

Lo

c(t) = R(w)cos((aur + hets)(t -ty - %) - bg(t - t_ - 1)"‘ -0t - Btse)

D 2
+ X(w)sin((2w, + bBt )(t -ty - —g-) - bRt -t - %)2
2
-wt =Bt ") (5.27)
r s S
where w is given by Eq. (5.16), t, = T-T_ and
Flw) = /2 £(1)e™%T ar = Rw) + IX(w) (5.28)

The real portion of the Fourier transform, R{(w), and the imaginary
portion, X(w), can be isolated by mixing with either the cosine chirp

or the sine chirp and low pass filtering. If the criteria developed in
this section are adhered to the techniques discussed in the section on
the chirp transformation directly apply. Note, however, that the Fourier
transform obtained using the convolver is time compressed by a factor of
two. Also, the chirp modulation has & higher center frequency and four

times the slope of the input chirp. All these characteristics must be
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kept in mind for the design of following steges. These stages cannot be
identical since every stage causes a compressién and E’chirp slope
quadrupling. An important point to note is that the casceding of an
up-chirp transform system with & down-chirp transform system recovers a
version of the original signal compressed in time by a factor of four.
Although the signal in Eq. (5.28) is assumed to exist from t=0 to t=T_,
the transform of this signal centered at zero is obtained by edding an
additional w'rs/a term into the chirps of Eq. (5.27), where w is given by

Eq. (5.16) (i.e. different chirps are used).
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2.6 Spectrum Modifications

General System Specifications:

As discussed in Sect, 2.4 the output of a chirp transformation

system for an input of the form
input = £, (t)cos{e(t)} - £,(5)sin{c(t)} (6.1)
is of the form
output = R{w)cos{a(t)} * X(w)sin{a(t)} (6.2)

where W is given by the time to frequency correspondence for the structure
being utilized, a(t) is either a chirp prior to an MCM post-multiply or an
rf after this multiply for the MCM system or directly from the lest chirp

filter of a CMC system. Eg. (6.1) is equivalent to the complex signel
£.(t) = £, (t) + 31, (¢) (6.3)

and Eq. (6.2) is likewise equivalent to

F(w) = Rlw) 7 3X(w) (6.4)
where

R(w) = Ry (@) - X,(w) (6.5)

X(w) = Ry(w) + X (w) (6.6)

£, (t)+=—F(w) (6.7)

£;(t) <—=F, (0) = R, (w) + JX, (w) (6.8)

f,(t) =—=F,(w) = Ry(w) + IX,(0) (6.9)
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R (w) = Rl(-w)
Ry(w) = Re(‘”) (6.10)
X (0) = =X, (-w)
xz(m) = -X2(4n)

and the minus sign in Egs. (6.2) and (6.4), signifying a complex conjugated
Fourier transform, results from performing a spectral inversion in the chirp
transform system. In Eq. (6.1) c(t) is either an rf so that the signal may
enter the first chirp filter of a CMC system or be multiplied by an offset
center frequency chirp at the pre-multiplication of an MCM system or it is
already & chirp and ready for inputting into the chirp filter of an MCM
system. Due to the complex nature of the input signel, the real and
imaginary parts of the Fourier tramsform given by Egs. (6.5) and (6.6) do
not necessarily possess symmetry. The Fourier transformation output of a
crirp transform system i3 cnly valid over a finit=e intevval of tim~ ou-sile.
of which it must be gated prior to the following stage. The time duration
of this valid time interval is T

F
limited to a duration of 2Ts seconds. For every variation of the chirp

seconds and the input signal is time

transform system there is a linear rclationship between TF and Ts' In
perticular, '1‘F is given by the difference between the chirp filter impulse
response duration and Ts in an MCM system. Knowing the slope of a parti-
cular configuration, given by 2B, the frequency span of the TF seconds wide
Fourier transform is 2BTF rad/sec. The actual portion of the transform
that is displayed within the TF seconds wide window is a function of chirp

modulation frequencles and is contained in the time to frequency corre-

spondence relation w. Once the Fourier transform of e signal has been




derived mathematically for e particular chirp trensformation system, it
may be centered about t=0 to simplify the enalysis when this signel is
inputted into a second stage. When this is done the time to frequency

correspondence for this transform becomes w = 2ft.

Finite Signal and Finite Transform Effects:

When the Fourier transformation is performed with the assumption
that the signal is centeredat zero, then this signal exists over the
interval T, <t g T.. The signal being transformed, f(t), may be a 2Ts
second wide segment of a continuous signal fc(t). The Fourier transform
of the continuous signal, Fc(w), can theoretically have a fine structure
heving infinitesimal proportions since the Fourier transform of an
infinite duration signal possesses an infinite resolution. 1In this cese
two different frequency, infinite duration, tone: produce frequency
impulses having zero width. The frequency of the two tones could be made
infinit~.sim21ly nlose end yet still be rezolved., Since the sigral tc be

chirp transformed must be time limited to 2Ts seconds, namely
£(t) = |U(t) - ule-2T ) r (t) (6.11)

and the chirp transform system performs a Fourier transformation of

f(t+Ts) vhen this signal is applied to it, then over the TF seconds wide

valid time interval the output is given by

23inT W
S

Flw) = Fc(w) » m

Co F,(w,)sinT_(w-w )
= (0= )

aw (6.12)

.
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wvhere it will always be assumed that the transform of the quadratic phase
2
modulated signal (f(t+Ts)exp(J2B(t+Ts) }) cen be ignored.
Eq. (6.12) shows that the effect of limiting the continuous signal

to within & 2Ts second wide window is to convolve its transform with a

sinx/x function whose mein lobe is EW/TS rad/sec wide. By doing this,

—r-oe o
A

oy = gewreer -
" . o Bt o

two things have happened, where the Fourier transform of the continuous
signal could have been bandlimited, the transform of the finite segment
of this signal is necessarily finite out to infinity since the sinx/x
function is an infinite duration continuous function. Also, the convolu-
tion of the transform of the continuous function with the sinx/x function

has effectively ironed out the fine structure of this transform so that

— r—— -

now the resolution in the frequency domain is on the order of 2'rT/Ts
rad/sec or the width of the main lobe (lobe centered about w=C) of the

sinx/x (x = Ts(w-wo)) function.

i Now, if the Fourier transform is centered within the TF second

wide valid time interval, it has then been bandlimited to the frequency

interval -BTF Swc< BTF and can be written as
- - I
FB(w) = | UlweBT) - U(w-BTp) | F(w) (6.13)

where F(w) is a transform having infinite duration since the input signal

is finite. Since, for further processing through another chirp transform )

system, the Fourier transform, which in reality is a time domain signal

representing s frequency domain one, must be limited in duration, the TF

second duration of the transform in Eq. (6.13) must be designed so that
1 the output of the following stage is accurate over a desirable time i

interval. This interval will typically be the difference between the

-
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transform width and the chirp device impulse response duration for the
second stage of an MCM system. It is not necessary to utilize the entire
TF wide segment of the Fourier transform for the following stage although
no more than this can be used.

As discussed in Section 2.4, a down chirp followed by an up-
chirp system and vice versa will both produce Fourier transformations. The
output of such a system is a filtered version of the input signal since
only & finite portion of the infinite duration complex-conjugated Fourier
transform cen be utilized for the second stage. Other variations of
cascaded chirp transformetion systems result in filtered versions of
either the time inverted input signael, the complex-conjugated input signal
or the complex-conjugated and time inverted input signal. If the Fourier
transform is centered within its velid TF second wide interval then the
cascaded 'down chirp' system behaves essentially like a low-pass filter
having a ZBTF double-sided bandwidth and band edge roll offs defined by

the switching time slope of the Fourier transturm T., second wide gating

F
function. Any assymmetry in the gating of the Fcurier transform will
cause wvhat may in actuality be a real input signal to be complex at the
output of the cascaded system. In any case the bancdlimiting of the
Fourier transform results in a signal that possesses an infinite duration
although it had been 2Ts seconds wide at the input to the cascaded system
with zero megnitude outside this time interval. Although of infinite
duration only a finite segment of the signal will be valid at the output.

Furthermore, by utilizing a technique similar to that used to view long

transfnrms [Arnenault, JQYQ] the elongnted portions of the sienal beyond the
original 2T_ seconds can be displayed. [ most of the Fourier transtform
B TP
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is contained within the '1‘F second wide time interval, then very little is
eliminated when it is gated to this time. In this case, the output of the a
cascaded system will look very much like the input except that a small

smount of smoothing will be evident since large time derivatives are

suppressed, the gated extremes of the signal will tend to roll off smoothly

[

to plus and minus infinity and a small amount of ripple of period lm/TF

e e ———

will be observable directly attributable to the aforementioned type of
sinx/x convolution except this time the signal, not the transform, is

being convolved.

LR e P Tl

Assume that a 'down chirp' cascaded chirp transform system is
to be used. The transform is symmetrically gated by a TF second wide f'
window. In order to recover the criginal input signal at the output
exactly, the entire Fourier transform would have to be utilized. This, b

of course, as already mentioned, cannot be done. The form of the output

for an input f(t) is therefore given by

Q :
£a(t) = 22; fo Flw)e?® a i
= £ o(r) SERALESD) o (6.14) .
:
where i
Q = BT, (6.15) B
and
Flw) = {: f(r)e-JwT dt (6.16)

Q - -
I SJult-T) o . 2&%%%11 (€ 17)
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were utilized to obtain the final relation.

Note that
Lm fgle) = [o £(T)8(t-)ar = £(1) (6.18) |
since |
o (2BET)) < g(ger) (6.19)

so that the output of the cascaded chirp transform 'down chirp' system
utilizing symmetric transform gating approaches that of the input as

TF + «, This, of course, assumes that all non-ideal system behavior can
be igrored on the basis of producing no noticeable effect (which may not
be true in real practice). If a system could possess chirp devices whose
impulse responses can be represented exactly by the idealized equations
used in their analysis and tﬁe rest of the system functions ideally in
such a manner, for instance, that amplifier response is non-distorting
and noiseless, that the finite delay through cables is zero and they
exhibit no dispersion and that the mixers do not permit carrier leak
through or produce harmonics other than the desirable sum and difference
terms, to name a 'few, then the analysis is exact., The effects studied
here are inherent even in the most ideal system.

Let's assume that the input signal to a cascaded chirp trans-
form system was originally smooth and cocntinuous prior to the required
2Ts seconds wide time gating of this signal. The gating produces a
discontinuity to the originally smooth nature of the signal at both
extremes of the 2Ts seconds wide window. Although no gating pulse can
be produced or switch designed so that these discontinuities change at

an infinitely fast rate, relative to the frequency content of the signal
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the assunption will be mede that they do. These discontinuities represent 3
an abrupt change in the signal even if they tend to occur at signel zero

crossings, since eny reel signal will have continuous finite derivatives

i e e em

at such a point whereas the ideal gate imposes a discontinuity in the

derivetive. The practical gating function will also produce a finite .

[

continuous derivative at the zero crossing; however, there will be a much ‘

faster change in the derivative (produces larger higher order derivatives)
than there would heve been in the ungated smooth signal at this point.

Th; gated smooth function can be written as the sum of two
functions. One of these functions is a finite ramp that rises from zero
to the function value at both ends of the gated interval and is connected
by & straight line between these points. This function typically exhibits
very large discontinuities at its extremes under the assumption of an
ideal gate. The other function exhibits all the time varistion of the
original function and goes to zero at the extremes of the window. Since
the function was originally assumed to be smooth (slcwly time varying),
the discontinuities in the derivatives of this second function at the
window extremes will be assumed to be a much lower order effect with
respect to the ramp discontinuities. Therefore, the input signal can be

written as

£(t) = lU(t) - U(t-2Ts) fc(t)l

= £, (6) + {U(t) - vte2n ) [r (o) + ot (6.20)

where

£ (27.) - £ (o)
a =8 c?® (6.21)

2T
s
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and fs(t) is the finite yet smoothly varying portion of the signal.

Fram Eq. (6.14) the output of the cascaded system for this input

is given by

t(t) = [ £, (v) SRR o
sinQ(t-1)
m(t-T

+ £2 1 2,(0) + ax)]utr) - u(e-zr,)) at (6.22)

The first integral is very closely given by fs(t) since this function

varies very slowly. The second integral can be broken down into four

integrals, namely

0 - o) £ )
=21 (o) + ;17- £ (0)s, (0t) (6.23)
where ;
5,(at) = .r ginx 4. (6.24)
o
inQ(t-~ )
£5(t) = -£,(0) £T svr -1 T
= - ;‘,-f (o) - r (o)s (Q(t- 2T )) (6.25)
o inQ(t-1)
£3(8) = 0 [Tt SRyt
- at[l si(nt)‘ g fm sinx dx (6.26)
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s (t) = fco T sinﬂ(t-'r) art
Yy 2Ts m(t-T
1 1
- -at|g+ T sym - 2|
+ %ﬁ-{gt sin(x - 2QTS) dx (6.27)
If QTS is some multiple of T, then
() + £, (t) = s (0t) - s.((t -21.)) (6.28)
3 h n i i s ¢
since
%ﬁ'{gt {sin{x - 2QTS) - sinx)adx
= 222 /% gin(r )cos(x - 9T )ax = 0 (6.29)

Even if QTS vere not some multiple of 7, since @ = BT% is usually a very
large number, the integrals given by Fg. (6,29) will usually be much
smaller than those in Eq. (6.28). The 2nd integral of Eq. (6.22) can

therefore be written as

1
fR(t) == Si(Qt) - si(nt - 2QTS)|ffc(o) + at (6.30)
fc(O)
Since fs(o) = 0 and fR(o) == then
1imQ . falo) = £ (0)/2 (6.31)
' f,(0) + 20T
and since fs\ZTs) = 0 and fR(2Ts) ® —————>——, then
1imQ i fo(2T ) = (£ (o) + 20T )/2 (6.32)

The totel ocutput is therefore given by
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fQ(t) = fs(t) +% si(Qt) - Si(Qt - EQTS)HI‘C(O) + at (6.33)

This equation shows that the bandlimiting of the Fourier transform of f(t)
to the interval -Q € w < Q, where Q = BT,, has effectively only caused
ripples to appear before and after both discontinuities of the output of
the cascaded system. These ripples at discontinuities in the input signal
are a form of behavior typically labeled the Gibb's phenomenon. Increasing
Q= BTF only chenges the time scale of theg;iﬁﬁies and not their form. For
practical values of §I the ripples from the two diécontinuities essentially
do not interact since they become very small over & short segment of the
output interval., Interactions would occur, however, between the ripples
of close discontinuities that are inherently part of a wideband input
signal aside from the imposed gating discontinuities, It is important to
note that the ripples obtained at discontinuities for a signel passed
through a cascaded chirp transformation system are due to the use of a
step-like window to gate the Fourier transform. If this rippling type of
behavior at discontinuities cannot be tolerated, a window having smoother
transitions toward the extremes of the Fourier transform interval can be
utilized so that the rippling is reduced or eliminated at the cost of

increased smoothing of the signal and longer rise times at the discon-

tinuities.

Functional Weighting of the Chirp Transform:
The unmodified magnitude of the Fourier transform is given by

1
M_(w) = (R%(w) + XP(w))2 (6.34)

and the unmodified phase is given by




P (w) = tan " (X(w)/R(w)) (6.35)

where w is a function of time for the output of a chirp transformation
system. If only the megnitude is to be modified by a function A(w), ihen
the new resl and imaginary components of the Fourier transform Rn(w) and

Xn(w) satisfy the relations

2 2, 3
Alw)M_(0) = (R “(w) + X “(0))Z = M_(u) (6.36)
and
P_(0) = tan™ (X (w)/R_(w)) (6.37)
or R (w) = Alw)R(w) (6.38)
and
X (0) = A(w)X(w) (6.39)

If only the phase is to be modified by a function B(w), these components

satisfy the relations

2 2, \\&
M (w) = (R (w) + X “(w))2 (6.40)
B(w)P,(w) = tan™ (X_(w)/R_(0)) = P_(u) (6.41)
or
1
R () = M_(0)/(1 + tan’P_(0))2 (6.42)
and
1
X () = M_(w)tanP, (w)/(1 + tan’P, ()2 (6.43)
If both the phase and magnitude are to be modified, then
1
R (@) = M (0)/(1 + tan’P (0))2 (6.14)

and

1
X (W) = M_(w)tenP, (w)/(1 + tan°P, ()2 (6.45)

[ERYSCS = )4 LR S
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An Example - The Hilbert Transform:
Assume the input is real, B(w) = 1 and A(w) = sgnw where .
sgnw = 1 w>0 r
=1 w<O '
=0 w=0 (6.16) |
then ;
(6.47) r
Rn (w) = R{w)sgnw L
X (0) = X(w)egm i
n F
e, () = J;‘(t)<—>3<x(m)sgnw - JR(w)sgnw) »
= F(w)sgnw (6.48) r
|
or ;
T(t)e—s - JF(w)sgnw (6.19)
since :
(6.50) |

o - Jsgnw

t
!
i
4
I
|
{
then the output ~f the cascaded chirp transform system is }
i
!
!

1 _ = fl1
f(t)*wt'fwﬂé‘-%fh




PART 3

EXPERIMENTAL

3.. Signal Processing with the SAW Separated-Medium Acoustoelectric
Convolver

Convolver Structure and Behavior:
The convolver structure utilized in the experiments can be

seen in Figure 3.1, A piezoelectric LiNbO_ delay line crystal was mounted

3
on a ground plane. At both ends, on the top surface of the delay line,

are interdigital transducers used to transform the electrical input signats
into propagating surface waves on the crystal surface. When signals are
applied to both transducers, the generated surface waves propagate toward
one another. Waves are also generated that propagate towards the closest
edges, but the wax intentionally put on these ends behaves as an excellent
acoustic absorber so that little acoustic energy is reflected rrom these
ends. (As a matter of fact, the major troublesome reflection in this

device is the'triple-transit echo' obtained when a surface wave reflects
once from each of the two transducers. This, however, is usually suppressed
by mismatching the transducers.) The transducers utilized for these devices
(deposited photolithographically onto the delay line surface) had five
finger pairs where each finger was spaced betweon centers by a half wave-
length corresponding to the transduc-r center frequency. For this mumber

of fingers the bandwidth of the transducer is ab ut twenty percent of its
center frequency (i.e. a 20% percentage bandwidth). Since the devices

used had center frequencies of 115 Mhz and 230 Mhz, this means that the
device bandwidths were about 23 Mhz and Lé Mhz, respectively, about these

frequencies, All transducers were matched to 50 {2, at their center fre-

quencies, by a single inductor. Cince the transducers were designed to

- g -



be 50  at center frequency, no transforming networks were required. The
non-linear interaction between the two surface waves, that is required in
order to obtain the convolution, is obtained by placing a slice of semi-
conductor close enough to the delay line surface so as to be influenced
noticeably by the surface wave electric fields. The semiconductor used

was 40 Q-cm n-type silicon. The silicon was highly polished and then
sliced to size so as to cover most of the distance between the two trans-
ducers, when placed onto the delasy line, and to encompass the entire beam
width (which is 108 times the acoustic wavelength at center frequency for
a 50  transducer). A more or less uniform air gap (adequate for most of
the work done here) could be obtained by simply placing the polished side
of the silicon in contact with the delay line surface and applying pressure
along its length. The 1000 to 2000 angstrom gap is obtained as a result of
surface imperfections on the two contacting materials, which prevents a
complete and intimate contact along the entire length of the semiconductor.
The back side of the silicon was coated with silver conducting paint which
played the part of the constant potentiel or averaging contact that
essentially averages out the potential variations over the entire surface
of the silicon. Those potential variations that are constant or vary very
little over space, such as the potential arising due to the interaction of
the charge density modulation due to one surface wave with the electric
field of the other contrapropagating wave, will produce large averages

and dominate the output potential over the contact defined by the silver
conductive paint, The silver paint on the silicon back surface also
served as a bond to hold onto the output wire connection. Fine wires were

bonded to the pads of the interdigital transducers aiso by using this
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conductive paint., All connections were made through feed throughs

through the walls of the milled aluminum container used to house, support
and shield the entire convolver structure. The input inductors were
housed in separate chambers beneath the device and all connections to

the outside world were made through BNC or OSM connectors. The protective
milled aluminum container also supported the silicon pressure structure
that consisted of foam supported on a plastic slab the same size as the
semiconductor. This plastic slab is pressed against the semiconductor
(see Figure 3.1) by set screws firmly set within a plastic cover that is
bolted to the sluminum casing. Aluminum covers are bolted onto the top
and bottom of the finished device so that the entire unit is shielded

from outside interference. (Internally, this totally enclosed structure
takes on the characteristics of a waveguide.) The convolver gap uniformity
is adjusted by selectively changing the pressure exerted by the set screws
on the silicon. With an impulse applied to one convolver input and a
continuous tone applied to the other, the output convolution will essen-
tially represent a uniformity scan of the device, so that pressure can be
dynamically adjusted until this output becomes fairly constant.

Typical separated-medium convolvers are shown in Figures 3.2a
and 3.2b, Figures 3.3a, 3.3b and 3.3c show the autoconvoliution outputs
obtained using such a device when the inputs are both single square waves,
double square waves and five pulse square waves, respectively. The single
pulses must produce & triangle as they do in the second trace of Figure
3.3a, The third trace in this picture is one of the delayed outputs from
the transducer at the opposite end to which it was applied., Note that

the two pulses produce three peaks and the five pulses produce nine peaks

"t




I et e

Figure 3.1:

The Si-on-LiNbO3 SAW separated-medium counvolver.
(a) The overall convolver structure. This structure basically

(v)

consists of a slice of silicon in close proximity (< 2000 &)
to a LiNbO3 piezoelectric delay line. The evanescent surface
wave fields produce charge bunching within the silicon, The
localized current densities due to the product of the SAW
fields and the modulated cherge density inside the silicon
produces a localized potential through the average conduc-
tivity of the silicor. (The chargc density modulation due
to the SAW merely perturbs the silicon conductivity.) The
ohmic contact along the back surface of the silicon inte=-
grates over the localized potentials., When two SAW's are
launched in counter-propagation, their interaction beneath
the silicon produces a stationary product component of
potential within the semiconductor that dces not possess a
spatial carrier variation although it varies in time at
twice the frequency of & single surface wave. This compo-
nent will integrate out to a time varying potential on the
silicon back contact that is the convolution of the
envelopes of the two SAW's on a carrier having twice their
frequencies. The 5.5 pairs of transducer fingers overlap
by about 108 times the center frequency wavelength. This
structure produces a 20% percentage bandwidth and a 50
match at the center frequency. (The aluminum is typically
about 2000 A thick.) A series inductor is used to tune out
the inherent transducer capacitance at bandcenter. Wax
damps out the SAW propageting toward the immediate crystal
edge.

A cross-sectional view of the composite convolver structure
including the silicon pressure support structure., Set
screws, in a threaded top plate, presc against a plate
whose opposite side is covered by a sheet »f foam followed
by waxed paper. This plate presses arainci the slice of
gilicon through the sction of the se* screws where the
localized forces are dispersed somewhat by the foam sheet.
The silicon polished front surface is pressed into close
proximity (< 2000 A) to the LiNt0,; polished surface.
(Microscopic surface discontinuities prevent a zero gap
between the twe surfaces from beinr attained.) The LiNbO3
piezoelectric delay line is mountc?! upon an aluminum ground
plane that is the floor of a cavily within a milled aluminum
box.

.
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Figure 3.2:

1L0

Packaged SAW convolvers.

(2) Small version having OSM input and output connectors.

(b) Larger version (for the longer crystals used in the
memory work) having BKC input and output connectors.
The interdigital transducer tuning inductors (for tuning
out the transducer capacitance at center frequency) are
contained in isolated cavities bereath the main crystal
cavity all of which are milled into a solid aluminum
block and shielded by top and bottom aluminum covers.
Both of the devices shown are 110 Mhz center frequency
devices having 20% bandwidths. Silicon lengths, and
therefore interaction times, varied; hovever, & typical
3.5 cm-long 40 Q-cm slice at the YZ-LiNb0O3 velocity of
3488 m/sec would produce an interaction time of about
10 ps. Depending on the application, silicon slices as
long as 7.5 cm were available from 3 inch diameter sili-
con samples. The 20% device bandwidihs were obtained by
utilizing 5-1/2 finger pairs on Lilir03. l'atching of each
transducer to 50 Q for this piezoelectric was obtained by
requiring the interdigital finger overlap to be zbout 108
times th~ wgvelength 2t the center freency and using
about 2000 A of aluminum for the transducers at a one-to-
one line~to-space ratio. The convolution output was
obtained directly from the back surface of the slice of
silicon by attaching a fine wire, using conductive silver
pain, to this surface. This wire was attached, through a
feedthrough, to the output BNC connector.
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Figure 3.2a
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Figure 3.2b




Figure 3.3:

1k2

Performance characteristics of the SAW convolver.

(a)

(v)

(¢)

Trace 1 shows a 10 volts p-p (5 v/div) 11 us wide (5 us/div)
pulse used as the input to the two input ports of a 110 Mhz
convolver. Both pulses (obtained by splitting) have a 110 Mhz
carrier, Trace 2 shows the 28 mv p-~p output convolution

(10 mv/div) of the two input pulses. The 6.5 us before the
start of the convolution is the time required for the two
pulses (applied simulteneously) to meet within the device which
correponds to half the delay between the two input transducers.
Note that, due to the simultaneous propagation of both the
square pulses, the triangular convolution is compressed by a
factor of two, as are all the convolution outputs obtained in
this manner, and is exactly a pulse width wide. This output
is 51 3B down fram the input corresponding to an efficiency
(F(dBm) = Poyr(dBm) - 2Pyj(dBm)) of about -75 dBm (~27 dBm -~
48 dBm). Trace 3 shows the 1 volt p-p delayed output

(.5 v/div) of the convolver when it is utilized as a delay
line with the silicon in place. This output, obtained from
one of the convolver input ports, is 13 us delayed from the
time of application of the pulse to the other input port and
has been attenuated by 20 dB. By studying these results it
can be seen that the interaction region must be at

least 11 pus long so that the 3.8 cm long slice of silicon is
situated about a third of a centimeter from either transducer
(3.8 cm = 3.488 x 105 cm/sec x 11 pus & 1/3 cm = 3.488 x 102
cm/sec x 1 us).

Trace 1: A 6.2 ps wide signal (2 us/div) consisting of two
spaced pulses of equal width. Trace 2: The compressed-by-
a-factor-of-two convolution of trace 1. The delay of the
convolution for this convolver is about 5.8 us so that the
device transducers are spaced about 4 cm apart corresponding
to a delay between transducers of 11.6 us. The silicon must
be at least 2.2 cm long to accommodate the entire convolution.
Trace 1: A 9 us wide signal (2 us/div) consisting of 5
equally spaced pulses of equal width (1 us pulse widths and
spaces). Trace 2: The compressed output convolution of
trace 1. The convolution arises about T us after the signal
so that the transducer spacing for tﬂIs device is about 5 cm.
The silicon for this device must be at‘least 3.14 cm long.

The output in trace 2 has been video detected.
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as they should. In Figure 3.3c the carrier was removed coherently from

the output. The output convolution is usuully on the order of 50 to 60
dB down from the input level so that a 10 volt peak to peak input pulse
produces millivolts of output. The pulses in these figures cre a few
microseccnds wide and the overall interaction time of the devices is

10 to 15 microseconds. Note that the factor of two time compression of
the convolution due to contrapropagation of the two waves (only one

signal shifts for the usual convolution) is evident in these pictures.

Convolver Fourier Transformetion:

A powerful technique utilizing the SAW separated-medium con-
volver is the performence of a chirp transformation. The techrique is
described theoretically in Section 2.5. Figure 3.4 shows a block diagram
of the system where inverse Fourier transformation is alsoc being performed.
As described in Section 2,5, the output transforms are valid only during
specific time intervals due to the finiteness of the convolver time-
changing impulse response. (The time changing response produces the
compression factor.) Due to the output time compression, the Fourier
transforms are modulated by chirps having twice the slope and center fre-
quencies of their input signals and therefore must be inputted into a
higher frequency convolver to perform the inverse trensformation, unless
the chirp is mixed to a lower frequency. In any case, after inverse
transformation the original signal is recovered compressed by a factor of
four,

Figures 3.5a to 3.5f show typical output Fourier transforms for

this system.
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FIGURE 3.4

A block diagram showing the utilization of SAW convolvers

for Fourier transformation followed by inverse Fourier
transformation. There is a factor of two compression after
every transformation so that the recovered signal upon
inversion is compressed by four relative to the input. Chirps
are generated using a ramped VCO, doublers and rf mixing
stages. The signals to the 2nd convolver have double the
original carrier frequency and four times the chirp slope.

The output of this convolver has four times the carrier fre-
quency and sixteen times the original chirp slope.



Figure 3.5:

Fourier transformation outputs from the convolver-Fourier-
transformation systenm,

(a)

(v)

(c)

(a)

(e)

Trace 1: A small input pulse (S us/div). Trace 2: The
sinx/x Fourier transform of trace 1 (.2 us/div). This
transform was 2 volts p-p (.5 v/div) after amplification.
Trace 1: A positive and negative pulse input signal

(5 us/div). Trace 2: The Fourier transform of trace 1

(.2 us/div).

Traces 2, U and 6: Small positive and negative pulses

with varying pulse separations (5 us/div). Traces 1, 3

and 5: The respective Fourier transforms of traces 2, L4

and 6 (.5 us/div). Nnte the increase in frequency for

wider pulse spacings.

Traces 2, 4 and 6: A positive and negative, two positive

and two negative thin pulses, respectively (5 us/div).

Traces 1, 3 and 5: The respective Fourier transforms of
traces 2, 4 and 6 (.5 us/div). Traces 1 and 2 correspond to
the cosine and its transform whereas traces 3 and 4 represent
the sine and traces 5 and 6 an inverted cosine, Note the
phase changes in the transforms of this figure.

Trace 1: A five pulse input sequenre (2 us/div). Trace 2:
The Fourier transform of trace 1 (.2 us/div). Note that all
these Fourler transforms have not been coherently dechirped

so that the outputs are the magnitudes of the respective
Fourier transforms modulated by chirps whose phase variations
from quadratic are the respective phases of the Fourier trans-
forms. The real and imaginary components of these transforms
can be obtained by mixing the outputs in this figure with in-
phase and quadrature chirps. In this figure, however, all the
signals are real and either symmetric or antisymmetric so that
the transforms have only real or imaginary components, respec-
tively. (Also, the real and imaginary Fourier components will
be symmetric and antisymmetric, respectively.) (See Section 2.5.)
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Figure 3.5a shows the Fourier transform of a single 3 us wide square
pulse. All these transforms correspond to about 1 Mhz per division.
The exact time to frequency correspondence of the transform is related
by twice the slope of the input chirps (i.e, w = UBt + a constant where
28 is the chirp slope). Figure 3.%b shows the transform of a positive
and a negative pulse. If these pulses are made very thin, the transforms
behave as sines and cosines as seen in Figures 3.5¢ and d. All these
Fourier transformations are chirp modulated so that their envelopes are
the transform magnitudes and the transform phase is phase modulating
the chirp carrier. Phase quadrature chirps could have been used to
separate the real Fourier component from the imaginary component (see
Section 2.5).

Figures 3.6a and b show some filtering results using this
system configuration. In both cases input pulses were added to highly
monochromatic 'noise' and the main spectral peaks of this noise were
gated out of the combined spectrum. This is most clearly demonstrated
in Figure 3.6b where by gating ocut all but the central portion of the
Fourier transform, the orignal signal is essentially recovered.(compressed
by a factor of four). The input signal is shown on the same time scale as
the output, in this photograph, for comparison. Note that the finite
bandwidth of the system has forced the pulses to look like triangles,

These outputs have been video detected in a low noise narrowband amplifier,

Ambiguity Function Generation:

As discussed in Section 2.2 the convolver can be used to




Figure 3.6: Filtering by time gating of the Fourier trans .. in the con-
volver Fourier transformation system.

(a)

(v)

Trace 1: Two .8 us wide pulses (1 us/div) separatea from
one another by sbout 4.5 ps. Trace 2: A 3.3 Mhz sire

wave added to the signal given by trace 1, Trace 3: The
Fourier transform of trace 2 (.2 us/div). The cent ui
region of this transform is due primarily tc the tw pu.ses,
whereas the two peaks are due to the 3.3 Mhz signal. Oince
these peaks are situated at * 3.3 Mhz in the Fourier domain,
then this transform is being displayed on & ucale f about
.776 Mhz/div. (The frequency scale of the displayed trans—
forms from such a system is dependent on the slope of the
VCO generated chirp, which is itself dependent on ‘he con-
trolling ramp slope, so that the timc-to-frequency ccrre-
spondence of the Fourier transforms shown in this fipfure

and Fig. 3.5 may all be different since nc effert wes nude
to match one result with another. The citnation doeun't arise '
when chirps are generated utilizing chirp filters (see
Section 2.4).) Trace 4: The time gate used to retain only
the central portion of the Fourier transform in trace 3.
The actual gating is performed by applyinug both signals to
a mixer or preferably an rf switch (i.e. smaller feedthrough |
due to leakage). Trace 5: The inverse transform (1 us/div)

of the gated Fourier transform, Nrte that the gating has not

only eliminated the rf but has filterc? the pulses to the

point where they've taken on a triangular appearance. Trace

5 is the factor-of-four compressad! version of trace 1 con-

volved with a sinx/x whose main 1lote is abcut .59 us wide

(i.e. 2(4.4)(.776 x 100))~1) since the transform gate is

h.h divisions wide.

Trace 1: Fourler transform (.5 \:s/div) of the three pulse

signal (2 ps/div) displayed in the upper right quadrant of

the display. Trace 2: The inverse -~ransform of trace 1

(.5 ps/div) shown on an expanded scule relative to the three

pulse input signal for comperison. Trace 3: The Fourier

transform (.5 us/div) of the three pilre signal with the

addition of a monochromatic noise component (= 4 Mhz)., This

combined signal can he seen wilh n 2 us/div scale in the bottom

right quedrant of the display. ‘race 4: The inverse transform

(.5 us/div) of trace 3. Trace 5: A rated version of trace 3

where the dominant portion of the noise spectrum and the high

frequency (> 2.4 Mhz) portion cf the three pulse signal

spectrum have been eliminatced. Tra e 6: The inverse trans-

form of trace 5. The fini*e baniwidth (~ 6 Mhz) of the low-

noise narrowband amplifier at tlie ou.put ¢f the system pro-

duced the filtered outputs shown in traces 2 and 4 whereas

the transform gating improved the e mt {'rom that given by

trace 4 to thet of trace 6. i




Figure 3.6a

Figure 3.6b
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The block diagram of the system used to generate ambiguity
functions with three-dimensional formats {i.e. amplitude

versus time versus frequency). A 'slow-ramp' is fed to a VCO
whose output frequency is used to modify the center frequency

of the signal whose ambiguity function is desired. The change
in center frequency simuldtes Dcppler shift and the compression
of the signal is ignored (since this is usually negligible).

The ramp is slow enough so that the frequency is essentially
constant over every convolution time interval. The convolver

is performed against an unchanging reference version of the
signal. The successive convolutions are displayed at increments
along the frequency axis by summing them with the slowly varying
ramp. A variation of this scheme would be to use a programmeble
synthesizer that i1s programmed to Jump a specified frequency
increment bef re each scan time of the nscilloscope and to
generate a stepwise ramp {(using a clocked D/A converter, for
instance) as the signal to be summed at the oscilloscope. By
such a technique the frequency and oscilloscope display level
remain constant over each correlation time. Note that an
agsymetric signal must be time inverted in order to obtain the
autocorrelation by convolving with the reference.
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generate delay versus Doppler shift functions otherwise known as ambiguity
functions. The essential process is to correlate a signel with a frequency
shifted version of itself and to display the correlations one above the
other sraced linearly in frequency. The reference version of the signal
(whose frequency remains constant) represents the impulse response of a
filter matched to the incoming signal. This reference must be a time
reversed version of the signal, however, only symmetric signals were used
here (except for chirps). To display the ambiguity function for a parti-
cular signal, it is applied, properly timed with the reference, to the
convolver input after its center frequency has been adjusted in accordance
with the slice of the two dimensional (two-variable; frequency vs. time
vs. magnitude) ambiguity function that it is to represent. Figure 3.7
shows a block diagram of the technique used to generate this function,

A slow ramp is used that produces a chirp (using a VCO) whose frequency
remains essentially constant over a single correlation time. The change
in frequency from one correlation .o the next, however, is not so small
and, therefore, every time the signal is applied to the convolver it has

a different center frequency (i.e. the carrier has changed). An oscillo-~
scope is triggered to display every correlation in proper time correspond-
ence with one another. By summing the slow ramp to the scope display and
adjusting vertical gain and horizontal expansion, the two dimensional
ambiguity function is displayed over the entire screen as a three dimen-
sional image. Note, however, that the individual correjaticns must be
envelope detected before display. The rep rate for an entire frame can
be (but need not be) synchronized to the correlation trigger. This rep

rate is dependent on the time duration of the slow ramp and must be fast




enough to eliminate 'flicker' of the display.

Figures 3.8a and b show slices of the ambiguity function of a
square pulse. These photographs were obtained by a multiple exposure
technique whereby every correlation is meticulously placed on the
oscilloscope before its picture is taken. (The actual form of the
ambiguity functions shown here are given in equation form in Section 2.2.)
Figures 3.9a and b show the ambiguity functions of square waves for a
single and double input pulse, respectively, using the technique described
in the previous paragraph. This image has the appearance of a continuous
three-dimensional display and can be noted to agree well with the expected
form of the function (Skolnik, 1970)(Rihaczek, 1969). Note that the dis-
plays are essentially 'see through' versions of the function since no
blanking of the correlations is being performed for parts of the signals
that appear to fall behind the ambiguity function. Figures 3.10a and b
show the ambiguity functions for & linear-FM or chirp and a V-chirp,
respectively. Since the shape of the ambiguity function is an indication
of the time and frequency resolving capability of the particular form of
radar signal used, Figure 3.10a shows that the chirp has a fairly constant
resolving capability over the correlation time and Doppler shift interval
represented by the 'knife edge' formation. Tn this case the time and fre-
qQuency resolutinn are both good. As seen in Figure 3.9a the square pulse
has much better Doppler (frequency) resclution than range (time) resolu-
tion. The V-chirp, however, shown in Figure 3,10b is seen to be very
selective to a particular time and frequency. Figures 3.11a and b show
the chirp and double pulse ambiguity functions on different scales and

shifted in position on the display. Figure 3.1lc shows the single pulse
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Figure 3.8: Multiple exposure
square-pulse ambiguity functions
obtained using a SAW convolver.
{(a) Trace 1: The autocorrelation
(equivalent to autoconvolution
for a symmetric signal) of the
square pulse without Doppler
shift (i.e. no difference be-
tween the signal and reference
carriers) (1 us/div). Trace 2:
The autocorrelation when the
Doppler frequency shift is equal
to the reciprocal of the pulse
width or .25 MHz (pulse width =

L pus). This corresponds to the
first null of the sinx/x varia-
tion of the ambiguity function
along the frequency axis.

Traces 3 to 5: The autocorre-
lation at successive .125 MHz
Doppler shift increments corre-
sponding to successive peaks

and nulls of the sinx/x response
along the frequency axis. Note
that all the ambiguity functions
are displayed in magnitude only,
in all these figures, as is
commonly done in practice. The
magnitude is obtained by passing
the rf modulated convolver out-
puts into an envelope detector
prior to display. Trace 5
corresponds to an overall Doppler
shift of .625 MHz from the 110 MHz
reference carrier frequency of the
4 us wide input signal.

(b) The autoambiguity function o
a 5 us square pulse (2 us/div).
In this case the first sinx/x
null occurs at .2 MHz and each
slice in this multiple exposure
is spaced 10 KHz from its neirh-
boring slices. The ambipguity
function spans about .6 MHz

along the Doppler axis.
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Figure 3.9: Three-dimensional

square-pulse ambiguity func-
tions obtained using a SAW
convolver (and the system con-
figuration shown in Figure 3.7).

(a) A 5 us square pulse auto-

(b)

ambiguity function. This
three-dimensional function
is being displayed on a fre-
quency scale of approxi-
mately .2 Mhz/div along the
vertical axis and 1 ps/div
along the horizontal axis.
The amplitude, a function

of the amount of amplifi-
cation following the con-
volver, is being displayed Figure 3.9a
at .5 v/div.

The ambiguity function ob-
tained by convolving a 5 us
square pulse reference with
two 5 s square pulses

spaced from one another by

5 Us. By proper timing, two
signals whose combined dur-
ation equals twice the inter-
action time of the convolver
can be convolved in this
device without error. If
their combination exceeds
twice the device inter-
action time the convolution
output will be in error.
(i.e. For a symmetric con-
volver with interaction

time T and input signal dur-
ations T; and To, the maximum Figure 3.9b

value of T; + Tp is 2T.

Furthermore, if Ty + To = 2T,

then the signal having a duration of T, seconds (where Ty 2 T])
must be applied to its input (T, - T1)7? seconds before the Ty
second-duration signal is applied to its input in order to obtain
the entire T-second-long convolution without distortion.) The
interaction time of this convolver was approximateiy 10 us so that
the convolution of the 15 us and 5 us signals rejresented the max-
imum allowable combined signal duration, thereby producins the
maximum error-free output duration of 10 ps (! ps/diiv). As in (a)}
the frequency (vertical) axis represents approximately .. Mhz per
division.




Figure 3.10: Three dimensional
chirp ambiguity functions.

{a) The autoambiguity function

of & 5 us wide linear FM.
Since the rrequency scale
is approximately 1 Mhz/div
and the time scale is

1 us/div, Eq. 2.55 of
Section 2.2 (i.e. the equa-
tion of the line along the
'knife-edge' of this
ambiguity function) gives

a chirp slope of

2B = -m(3 Mhz/5 us) \
= -2 x 1012, Frgm Eq. 2.56 Figure 3.10a
of that section it is seen
that the ambiguity function
along this 'knife-edge'
describes the triangular
{compressed) convolution

of the 5 us envelope of

the input chirp. This
ambiguity function is there-
by similar to the function
given in Fig. 3.9a, but
angled in the time-fre-
quency plane with a slope
given by the chirp slope.
Since the input chirp is
asymmetric, its time inverse
had to be generated in order
to produce this ambiguity
function using a convolver.
(This was accomplished by Figure 3.10b

spectrally inverting the

input chirp so that the

chirp slopes of the two chirps were exactly matched in marnitude
but of opposite polarity.) For a set Doppler shift the output from
the convolver is a compressed pulse whose peak position in time ia
a linear function of the Doppler shirft.

The autoambiguity function of a 10 ps wide V-chirp ... us/div).

The V-chirp consists of a 5 us linear increasc in treguency followed
imnediately by a 5 us linear decrease in frequency. The slope for
this chirp was on the order of 3 x J04¢ rad/sece in megrnitude so

that thc peak of this ambiguity function is about .. ps wide or

the width of the V-chirp divided by its time-bandwidth prroduct

(i.e. TB = (4.8 Mhz) (10 ps) = LB)., HNote that the wiith o the
correlation peak in (a) along the time axis io approximatety .90 us,
since the time-bandwidth product ot this % Hs chiry [ abeut 30,

The 'razor-edge' in (a) is theretcere about 39 po wide.

._‘
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Figure 3.11b Figure 3.llc

Figure 3.1lla

Figure 3.11: Other ambiguity function displays.

(a) The autoambiguity function of a linear-FM having a slope
of approximately .12 x 1012 rad/sec®, shown with & time
scale of 2 us/div, a frequency scale of about .2 Mhz/div
and displayed utilizing a slow ramp of slope opposite in
polarity to thet used in Fig. 3.10a so that the 'knife~
edge' is angled with slope opposite in polarity to that
of Fig. 3.10e.

(b) The same autoambiguity function displayed in Fig. 3.9b
except that the time scale has been compressed by a
factor of two and the peaks have been shifted upward
along the frequency axis by changing the center frequency
of the '"slow-chirp' used to produce the Doppler shift,
Note that no form of blanking is used in displaying these
three-dimensional functions so that they appear trans-
parent in that structures occurring behind taller struc-
tures tend to show through.

(c) The autoambiguity function of a 5 pys square pulse (1 ps/div)
displayed by modulating the z-axis (intensity) of the
ogcilloscope display. The frequency scale is about
.5 Mhz/div. Deviation from idesl symmecry of this display
is a result of non~-uniform application of pressure along
the slice of silicon inside the SAW convolver thereby
obtaining a non-uniform interaction along its length. (i.e.
a8 non-uniform silicon-to-piezoelectric gap width results.)

T s e smbe et 5,



ambiguity function obtained by z-axis modulation of the oscilloscope
display (the intensity of the beam is controlled instead of its position
on the screen). Figures 3.12a thru f show the ambiguity function for the
square pulse at successive amplitude levelg. Note the amplifier satura-
tion in Figures 3.12e and f.

Waveform design can be performed by utilizing the ambiguity

e

function. Figure 3.13 shows two triangular wave functions that are used

2o

to drive a VCO. When these functions are gated by five pulses (shown as
the second trace) the output of the VCO is five consecutive V-chirps.
Note, however, that one function consists of uniform amplitude triangular
variations, whereas the other shows decreasing and increasing triangular
variation amplitudes. The effect of this slight variation of the ampli-
tude of the VCO controlling function and therefore the slope of the re-
sulting V-chirps on the shape of the resulting ambiguity functions can
be seen by comparing Figures 3.lla to ¢ with Figures 3.15a to c¢. Figure
3.14a shows the compressed ambiguity function (no frequency axis) for
the uniform function. Comparing this with Figure 3.15a, it can be seen
that the relative peak amplitudes of the ambiguity function have changed.
Figures 3.14b and 3.15b show the respective three-dimensional forms of
these functions., Figures 3.1llc and 3.15c show the respective results
wvhen the spacing between pulses has been varied. These results show, in

a simplified way, that dynamic signal design is possible.

The Memory Correlator:
The basic structure of the memory correlator is shown in
Figure 3.16, Essentially this device is the same as the basic convolver,

except that the semiconductor surface facing the delay line contains some



Figure 3.12:

59

Successive three-dimensional 6 us-square-pulse ambiguity
functions obtained by successively increasing the amplitude
of the input signal to the convolver (at a constant reference
level).

(a) = 11 dBm input level (= D)

= 2.3 .
(b) = 15.4 dBM input level (= 3.7 vpp).
(c) = 18.4 aBm input level (= 5.3 vpp).
(d) = 20.5 dBm input level (= 6.7 vpp).
(e) = 22.3 dBm input level (= 8.3 vpp) with amplifier

saturation.

(£f) = 24 aBm input level (= 10 vpp) with amplifier saturation.
All these functions are displayed on a 1 us/div time scale,
approximately .2 Mhz/div frequency (Doppler) scale and
.5 v/div amplitude scale.

.



Figure 3.12a

Figure 3.12¢

Figure 3.12e

Figure <.12b

Figure 3.124
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Figure 3.13:

Figure 3.13

VCO-control-signal generation for the production of a

symmetric series of V-chirps of different slopes (1 us/div).

Trace 1: The triangular wave used to generate V-chirps of
constant slope after being gated by trace 2 and applied to
the control terminal of a VCO. Trace 2: The gating signal
whose pulses define the width of the individual V-chirps.
Trace 3: The modified triangular wave that, after being
gated by trace 2, is used to generate V-chirps of varying
slope by application to a VCO.
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Figure 3.14: The autoam-
biguity function of a
series of five constant
slope V-chirps

(all 1 us/div).

(a) Shown with a com-
pressed frequency axis
(i.e. removal of the
slow ramp from the sum
port of the oscilloscope).

(b) Three-dimensional ambig-
uity function.

(c) The ambiguity function
obtained by using non-
uniform spacings between
V-chirps of different
widths.

Figio

Fipnr:
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Figure 3.15: The autoam-
biguity function of a
series of five V-chirps
with different slopes
(all 1 ps/div).

(a) thru {c) are equivalent
to (a) thru (e),
‘respectively, of
Fig. 3.1h4 except that
the V-chirps have dif-
ferent slopes dictated
by the VCO control
signal of Fig. 3.13
(trace 3 gated by
trace 2).

Figure 3.15a

Figure 3.15b

Figure 3,15¢
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FIGURE 3.16

Figure 3.16: The structure of the SAW memory correlator. The surface

of the semiconductor facing the piezoelectric delay line
contains 8 storage mechanism (i.e. dicdes or surface states).
Two 115 Mhz transducers are used to perform convolution and
storage whereas two 230 Mhz transducers a'e used for recalling
the signal stored at a spatial frequency of .066 cycles per
micron (i.e. 230 Mhz/3.488 x 109 um/sec). Whereas the output
of the convolver at the backplate of the semiconductor for two
signals applied to the 115 Mhz transducers is the convolution
of these signals, the stored signal is a spatisl version of
their correlation (see Section 2.3). Depending upon which

230 Mhz transducer & signal is applied to, the ocutput, due to
the interaction of this signal with the stored spatial dis-
tribution, 1s either the convolution or the correlation of
the two signals.
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charge storage mechanism that can be made to react to the surface wave
electric fields. Some preliminary work was done using the surface states
on the silicon surface. The technique adopted in this work to affect
storage consisted of allowing the storage mechanism to integrate the -

standing wave pattern produced by the interaction of the two contrapro-

-

pagating surface waves. Since this pattern is stored at half the wave- .

length of the two signals, the reading surface wave must be inputted at

twice the frequency of the two inputs. Therefore, two sets of trans-

ducers were required, For this work the fundamental frequency was ii

115 Mhz and the reading signal was inputted at 230 Mhz. As discussed in

Section 2.3 this type of storage process stores the correlation of the D]

two input signals. Depending on which end of the delay line the reading

signal is applied, the output signal from the reading process is either

the convolution or correlation of this correlation with the reading

signal. Figures 3.17a thru 4 show results of surface state memory. In

all these figures a 5 Us-wide pulse is convolved with itself to produce the

amplifier saturated triangular coanvolution seen at the start of {a) thru

(c). If the storage mechanism behaves properly, the autocorrelation of the

5 WUs pulse is stored along (3.488 x 105)(5 Us) = 1.744% cm of the silicon

and the 1 us-wide recall pulse produces a 6 us-wide convolition with the

stored triangular correlation. PFigures 3.17a thru ¢ show that, <4lthough

storage is realized, it does not occur over the entire length of this

silicon sample and last for only about 30 us. Figure 3.17d shows the stored

convolutiof from a better sample. The output is about 8041k below the input.
In order to increase the storage time, p-n diode vidicon arrays

wvere then used in place of the semiconductor, These vidicons were pro-

cured from RCA and produced storage times on the nrder of 10 ms, as seen
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Figure 3.17: Surface-gtate memory.

(a) The triangular convolution of two 5 us (115 Mhz) square
pulses is shown saturated at the start of this trace
(5 us/div). The small pulse toward the middle of the
trace is the signal obtained by applying a thin pulse
(< 1 ps) to a 230 Mhz transducer, thereby generating a
surface wave to scan the stored information along the
silicon surface. Since the resultant signal is about
half the width that it should have been, this signifies
that only part of the silicon surface was being utilized
due to some form of non-uniformity. Direct radiative
feedthrough of the input square pulses and the recall
pulse was quite small when these results were obtained.
The distortion seen in the fourth division after the
main convolution can be attributed to self-convolution
due to reflections at the edges of the slice of silicon.
Note that the direct output convolution in division 3 is
due to spatial integration at every point in time
whereas the stored signal (shown recalled in division 6)
is due to temporal integration at every point in space.
It is this duality that causes one interaction to produce
a convolution while the other produces a correlation.
The duality is between time and space and is further
exemplified by the fact that the convoluticn is a time
function while the correlation is a spatial function,

(b) The same as (a) except that the scale is 10 us/div and
a very long (= 1 ms) recall pulsc wa: used. In this
case the stored signal is now essentially scanning the
wide recall pulse and it can te¢ seen that its effect
decays by a factor of two after abroit 30 us beycend the
main convolution output.

(¢) The same decay phenomenon shown in (t) except that three
small consecutive recall pulses have lLeen used.

{(d) A recalled triangular convolution sconned by a very thin
pulse from a slice of silicon having a more unifcrm sur-
face state distributicn than that used for the results
of (a) thru (c). This output is about 30 dB down from
the main convolution or 80 dB down trom the input signals.
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in Figure 3.18a, where every recalled signal is shown spaced 1 ms apart.
Figure 3.18b shows the uniformity scans obtained using these vidicons.
Due to the back surface etching process that these vidicons always tend

to undergo, it was hard to produce a uniform air gap between these

devices and the delay line. The 2nd trace in Figure 3,18b shows the
uniformity obtained using only a few pressure points at the back surface
of the vidicon. The 3rd trace in this figure shows the uniformity obtained
by using a double row of higher density pressure points. The last trace
was obtained using a triple row of pressure points or 33 pressure points
over the vidicon interaction region. The convolver pressure support
structure was also modified to facilitate the removal of the vidicons

and to eliminate the need for slicing each wafer. The structure used is
shown in Figures 3.19a and b. A thin sheet of silver-conductive-paint
coated copper was placed between the foam and the vidicon so as to make

immediate contact with the vidicon to the outside werld without the need

for attaching wires for every vidicon tried. Little difference was
observed in correlator performance and in diode voltage-current behavior
when a gold-chrome ohmic contact was deposited on the back surface uof

I the vidicons. Note in Figure 3.18b that the uniformity of the interaction

is improved, by this pressure system, only at the expense of the output
| amplitude. (The increase in the number of pressure points

increased the damping of the surface waves.) It was felt, however, that,

for signal processing purposes, uniformity was ultimately mcre important
than output amplitude. It is not suggested that such a scheme be V.
adopted (much better schemes are certainly in use), but that this

represented one form of solution to the non~uniformity problem a* hand,
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Figure 3.18a Figure 3.18b

PN diode memory correlator performance.

(a)

(v)

A multiple exposure showing a triangular convolution
being reccolled at 1 ms intervals for an overall 6 dB
decay on the crder of 10 ms (1 ms/div).

Uniformity scars obtained by convelving the long and
short pulses seen in trace 1 /5 uis/div). Trace 2 is
the uniformity resulting when only a single row of

8 pressure points is used to apply pressure over the
length of the silicon (1 ps/div). The uniformity
improves somewhat in trace 3 where a double row of 8
pressure points or 16 points are used. Trace 4 shows
the result of using three rows ¢f eleven or 33 pressure
points over the length of the vidicon. Notice that the
uniformity is quite good but that damping of the surface
waves due to the excessive pressure has decreased the
strength of the overall interaction. (This can be seen
by comparing the noise levels of the different traces.)
These three scans were obtaire:d by dynamically adjusting
the pressure at every pressure p-int (using set screws)
in the three different support structures having the
above mentioned pressure poirt Jdensities. These struc-
tures were also designed to fuciitate the testing of a
wide variety of vidicon samples,
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Figure 3.19: PN diode SAW memory correlator structure (high pressure point
density version).

(a)

(v)

Three-dimensional view, with cutawnys, of the memory
correlator (approximately 1.5 times actual size and shown
with the vidicon support structure removed from the
package). One end of the LiNb03 crystal is shown, turcugh
the cut-out region of the milled aluminum box, to possess
three 230 Mhz transducers (closest to the end) and three
115 Mhz transducers. The best of the three of each type
of transducer was used. Very little reflections were
noticeable from the unused spare transducers. The 230 Mhz
transducers had to be placed behind the 115 Mhz transducers
since their apertures (108 A) were smaller for the same
impedance value (50 Q) at midband. The transducers were
connected to inductors in cavities beneath the delay line
cavity by using feedthroughs. The vidicon support struc-
ture, shown above the aluminum box, was designed so that
the vidicons need not be diced nor wires bonded onto their
back surfaces thereby simplifying the pirocedure for
checking their performance characteristics, This high
density pressure structure was constructed by imbedding

a high density matrix of set screws intc an epoxy mixture.
Every set screw applied pressure to a small push rod
(shown through pressure structure cutaway ) through a
plastic guide. These rods pressed at localized points
along & silver-conductive-paint-coated copper sheet backed
with foam to somewhat disperse this force. The silver
coated side of the copper sheet in turn ccntacted the back
of the vidicon which was pressed against the piezoelectric
crystal surface. This contact to the vidicon proved to be
an excellent electrical contact and -~ gold-chrcre contact
on the back surface of the vidicon was shown not to be
required. When the vidicon and pressure structure were in
place, contact was automatically made vetween th: vidicon
back surface contact and the output BNC through the
incorporation of a pin (shown through cutaway in box) and
socket arrangement. Top and bottom plates could be
attached for device shielding purposes.

A two-dimensional cutaway of the memory correlat-r with
the pressure structure and vidicon shown in place. This
is a simplified schematic (i.e. ¢nly *hree pressure points
of the 33 are shown) and has not been drawn to scale. All
the components described in (a) can t« seen in this drawing.
Note that since there are two sets of transducers, then
there are also two sets of tuning inductors and BNC con-
nectors along with the usual output LNC connector. (In (a)
one set of BNC connectors is behind the box.)
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thereby allowing some form of useful signal processing to be performed.
The size of the memory output can be inferred by comparing the square pulse
convolution output with the memory output in Figure 3.17b for surface state
memory. The magnitude of the memory output is related to the strengtn of
interaction between the second order potentisl set up by the two inter-
acting surface waves and the charge carriers in the diodes or at the sur-~
face of the silicon (for surface states).

Figures 3.20a and b show the memory outputs of a vidicon p-n 3
diode convolver for a single square wave autoconvolution and a doﬁble I
square wave autoconvolution., In Figure 3.20a the first trace shows the
input convolution performed eighteen times after which the storea correla- .
tion (identical to convolution for symmetric signals) is recalled about

400 us later, Trace two shows the recalled output displayed above an

input convolution, where, since the reading pulse is fairly wide, the
convolution is seen to be a smoothed version of the actual convolution.
The multiple performance of the convolution, prior to reading, was tried
to see whether the stored signal would be retained any longer. No differ-
ence was noticed from that of a single read in. Figure 3.20b shows the
three peaks of a double pulse convolution. Due to the small size of the
output signal, the noise level is seen to be quite large.

A single sqﬁare pulse was then loaded into memory using a

scanning impulse. This stored pulse was then correlated by a pulse whose

carrier was changed in increments, so that the ambiguity function, with

memory, could be generated. In this configuration, the memory correlator

behaved as a programmable matched filter. Figues 3.21a and b show a

multiple exposure of the ambiguity function obtained in slices.

[ERT S




Figure 3.20: PN diode memory correlator pulsc corr«lntions,

(a) Trace 1: FEighteen 3 uUs square pulise convelutions are
performed (.2 ms/div) after which the stored correlation
is recalled by a 1.5 Ws pulse about 1.4 ms later. Trace
2: An expanded version (5 ls/div) of the recall pulse
and memory signal seen in (a). The convolution or
corr- lation of the 3 us wide triangular correlation,
stored along the silicon, where the 1 uUs recall pulse ‘
produces an output that appears similar to the correla- L
tion due co an impulse recalling signal except that it
has a 1 Us round-off of its pesk and 1 Us tails (hidden
below the noise). The correlation and convolution of
the stored signal with the recall signel cbtained by
using the two 230 Mhz transducers (at opposite ends)
produces the same result for symmetric signals. Trace 3:
The input convolutions lined up with the memory signal in
trace 2 for comparison. These convolutions are on the
order of 50 dB below the inputs and the memory signal is
about 80 dB below these input signals. The recall signal
can be seen in trace 2 due to direct radiative feedthrough
from input to output. From this trace it can be seen that
this device had approximately 18 s of delay between its
two opposite-end 230 Mhz transducers (= 9 us from pulse
center to memory signal center). A slight amount ~f input
pulse radiative feedthrough can be seen in trace 3 which
shows that there is about 15 pus of delay between tle two
115 Mhz input transducers (= 7.5 ys from the pulsc center
to the convolution peak). No improvement was evident in
the magnitude cof storage or its retention by the use of
multiple convolutions before reading.

(b) Trace 1: Double pulse autoconvoiution/antocorrelation
obtained by first storing two 1./ jis pilses spaced .8 Uus
apart and then correlating with this stored signal by
reading with the same type of signal (seen as radiation
ahead of the memory signal compnsed of three triangular .
pulses). The signal had to be stored nsing a thin (< 1 us) .
pulse and two 3.2 is pulses ceparated by 1.6 ps due to the H
factor of two compression of the storud signal. The read- j
ing process does not become compressed, however, so that
the output is about 4 us wide, Trace 2: An envelope
detected version of trace 1 (2 js/div).

— .
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Figure 3.21c is the z-axis modulation technique version of this same
ambiguity function. Figues 3.22a, b and c show different views of the
three-dimensional images of the ambiguity function obtained utilizing the
stored signal as the device impulse response. Although almost buried by
the noise, the square pulse ambiguity function can still be seen. The
small size of this signal resulted from the trade-off between uniformity
and surface wave damping. The form of the ambiguity function is even
more undiscernable when the amplitude is increased by releasing some of
the pressure on the delay line surface since the uniformity is such a
critical factor for proper memory correlation. Figures 3.23a and b are
actual photographs of the memory correlator where the top pressure plate
structure has been removed and the double set of transducers are visible
(along with some unconnected spares that were later removed).

Figure 3.24 was included to show that since the stored signal
bandwidth, given by the first plot, is small about its ceanter frequency,
then it is not necessary that there he a Nyquist sampling density of
diodes to store the signal. In other words, the sampling density need
only be high enough to store and recover the signal, not its carrier.

As seen by the last trace in Figure 3.2k, depending ¢n the sampling
density used, there are multitude of replicas of the signal spectrum
produced at varying points in frequency that do not overlap and therefore
do not interfere with one another. The signals having these spectrums
are the same except for their spatial carrier frequencies. Any one of
these signals (if their spatial periodicities are not to large) can be
recovered by a surface wave matching its spatial carrier fregeuncy.

Note, however, that much less energy is possessed by any one frequency

band.

-

-




Figure 3.21: Square-pulse
autoambiguity function
utilizing a stored pulse
as the reference signal.

(a) A multiple exposure

(v)

showing the autoam-
biguity function of a
5 Us square pulse ob-
tained by convolving
reference stored
along the slice of
silicon (in p-n
diodes) (2 us/div).

The same as (a) show-
ing only six of the
eleven traces about
the central peak.

The ambiguity function
displayed by z-axis
(intensity) modula-
tion of the oscillo-
scope display.

Figure
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Figure 3.23a

Figure 3.3t

FPigure 3.23: Photographs of the memory oorrelatcer.
(a) Device with pressure structure removed and displayed so '
as to view the individual push rods used to apply pressure i
to the back surfuace of the vidicen (not shown), 3
(b) Same device withcut the pressure structure with all the
transducers in plair view, Wires are bonaed to the trans-
ducers using siiver contuctive paint, The black area
beneath the center «f the Lillt(, crystal is a hole passing
through the btoex t: fuecilitate the illumination of the vidi-
con with light {t: verify st.rage). The upper BNC's are
4 the 11% Mhz inputs, the bettom Yeft and right BENC's are for |
the 230 Mhz resd ciprwic and the ottom center BNC is the

device output.
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Figure 3.2k:

.

Narrowband sampling. This figure shows the spectrum of the
stored signal due to the finite diode density and, therefore,
the finite number of signal samples. In the present case

each diode 1s about 10 um in diemeter with a center to center
speacing of about 12.5 um. The bandwidth of the stored signal
could be as much as 40 Mhz centered about a center frequency
of 230 Mhz and would be stored as such if the storage medium
were a continuum. (The input signals possess a bandwidith of,
at most, 20 Mhz, however, the stored correlation is compressed
in space by a factor of two and will be recalled as & time
function compressed by this factor so that its bandwidth i=
doubled (or 40 Mhz). 'The 230 Mhz transducers are 5.5 finger
pair transducers, as are the 115 Mhz transducers, so that
their bandwidths are both 20% or 40 Mhz and 20 Mhz, respec-
tively.) The sto-~ed signal is therefore relatively narrcw-
band with respect to the 230 Mhz center frequency. A wave-
length on LiNb03 for 230 Mhz is about 15.2 um. For tre
maximum frequency component of the stored signal (i.e. 250 Mhz)
this corresponds to a wavelength of about 14 i'm, The Nygquist
sampling rute requires that there be a sample taken at least
once every T um and not once every 12.5 um as is taken here,
However, this sampling rate assumes that the signal bandwidth
extends to zero which is not the case. As can be seen in the
lest plot the sampling at & .4 duty cycle by these diodes
produces spectral replicas of the desired spectrum positioned
at different points in frequency (representing the same base-
band signal on a whole gamut of different carriers), however,
there is no overlap between them., What is more, the aecsired
spectrum at 230 Mhz is still available and is the largest,
even though it is supposedly not sampled enough. [t is
therefore available for correlation or convolution with a

230 Mhz carrier modulated signal. The only obvious problem
with undersampling a narrowband sirnal is that more encrgy

is wasted on the unneeded versions of the specirum centered

at other frequencies than for an cver sampled sifnal since

in the latter case the sinx/x weighting ~f the spectrum (due
to the finite sample width) would attenuate the nther spectrums
much more than the desirable spectrum ceriered about 230 Mhz.
(The other spectrums would all fall beyona 230 Mhz.) More
energy would have been available i7 oversampling had been
employed for this work, however, this technique has shewn that
much simpler diode matrices ran be utilized by employing under-
sampling at the expense of a weaker interaction with the stored
signal at the desired carrier frequency,




A:)Jj.

vZ'€ 3ANOI4

0
- —I_“ " y B— "E »
ZHWN 082
= LU / |
L E ANNH103dS INVLIINS3H
] f WNNH1D3dS ONITdWVYS
ZHW 082 0 yd o
A’Vl’lll h’ X _\\\\\\.\* v
A.h\p i el [4suod p=)] \\\\\\\\\
— e
—J___ o - tFl R
! 1 LT - TR,
L
S
) ZHWN 0€2 S31dNVS
e + -

NNHLO3dS TVYNOIS




18;

3.2 Signal Processging Using Chirp Filters

Chirp Filter Chirp Transformation:

The system depicted in block diagram form in Figure 3.25a was
set up to perform the Fourier transformation and inverse transformation
processes on an input signal. This process, discussed at length in
Section 2.4, was realized using IMCON devices procured from Andersen '
Laboratory (Martin, 1973 and 1976). These dispersive devices possessed
impulse responses with durations on the order of 100 us and linear fre-
quency dispersions over this duration of about 7 Mhz centered about i
15 Mhz. The average loss for these devices was about 20 dB, The chirp
transformation scheme utilized (mainly to conserve on the required number |

of devices) was the MCM structure. From Figure 3.25a it can be seen that

this consisted of impulsing one of these devices {all the devices were
identical) and then mixing the resulting impulse response with a carrier
at twice the device center frequency. This mixing process spectrally
inverts the chirp impulse response providing the signal with a chirp
carrier that has a slope that is the negative of the chirp device impulse
response slope. The output of the first device is a chirp modulated
Fourier transform of the signal where the chirp carrier is amplitude
modulated by the Fourier transform magnitude and phase modulated by the
Fourier transform phase. After spectrally inverting the chirp carrier
on the Fourier transform {that may have been modified by mixing with a
gate or some other signal) so as to change the chirp slope polarity, this
transform is inputted into another chirp filter. The ocutput of this
filter, over the valid region defined in Section 2.4, is the complex

conjJugate of the system input signal. Since only real signals were used
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in this work (no quadrature terms), then the original signal was obtained.
All the chirp devices used were up-chirp filters.

Figure 3.25b shows the impulse response of one of these chirp
filters in the first trace (20 us/div). The following traces show the
resulting output of this device when this impulse is increased successively
in width. For very thin pulses the output resembles the sinx/x Fourier
transform of the signal (2nd trace). Since the chirp filter behaves more
like s Fresnel transformer (see Appendix A) than a Fourier transformer
(the 'impulse' is rf modulated), the outpuf doesn't compress any longer i
when the pulse is made wider than trace 3 (as it would if this was a
Fourier transform), but instead, as seen in trace L, it resembles the
input pulse. Distortion on the order of the imvulse

width exists only at the impulse response extremcs which ure usunliy

cated out by purposely imposed gating tunctions or by the Tinite

width of the input signal to be modulnted ty thic chirp. Yieures
and d are the output sin(x)/x Fourier transtforms o an input s ,unrs
wave. Figure 5.°5d is an expanded version of Fieure <,.5¢.

Figure 3.26a again shows the transform of a square pulse input
chown in the first trace., Figure 3.26b shows the resulting output when
all that has been done is that the chirp slope polarity has been reversed.
In this case the Fresnel transform of the pulse has been obtained.

Figure 3.26c shows the Fourier transform being taken at a high repetition

rate using gating to prevent interference between transforms. The

transform is the center trace of this figure. The other traces are the




Figure 3.25: Fourier transformation utilizing the chirp transform technique
and chirp filters.

(a) This block diagram shows the technique for performing a
Fourler transformation, gesting this time version of a
frequency function and then performing an inverse Fourier
transformation. The input signal is modulated onto a
chirp that is obtained by spectrally inverting the impulse
response of a SAW chirp filter. The modulated signal is
passed through another chirp filter whose ocutput is the
chirp modulated magnitude of the input signal's Fourier
transform. The chirp modulation deviation from gquadratic
phase is the Fourier transform phase. This transform is
gated in time, if filtering is required, and then spectrally
inverted prior to inputting into another chirp filter (since
all the chirp filters are assumed here to be identical).
The output of this last chirp filter is a chirp modulated
and filtere (if geting was performed) version of the input
signal. In the results to follow, all the chirp filters
had impulse responses centered about 15 Mhz with bandwidths
of about 7 Mhz and dispersions on the order of 100 us.
These chirp filters were IMCON .ievice:.

(b) Trace 1: The impulse response of an IMCON (20 us/div).
The impulse (shown in the third division) is made to con-
sist of about five cycle- of rf at the center frequency of
the chirp device (i.e. 15 Mhz in this case) which, in this
case, corresponds to a pulse width of about .32 us. This
concentrates most of the impulse energy within the passband
of the chirp device. This finite width of the impulse puts
only an imperceptable bow onto the impulue response and
distorts its extremities over about an impulse in width
(see appendices G thru I). The insertion loss for the
IMCONs averages about 20 dB. Since the time-bandwidth
produet of these devices is atout 700 (7 Mhz x 100 us),
then the impulse undergces an additional expansion loss of
about 29 dB (i.e. exp. loss = 10 log (TB product)}.
Therefore, a 20 vpp or 30 dBm impulse produces an impulse
response at about a ~19 dBm level (i.e. 30 dBm ~ I.L. -
E.L.) or about 71 mvpp. The initial delay of the imrluse
response from the time of application of the impulse to
the point just beyond the rising portion ¢f the response
is about. 40 ys. Trace 2: The impulsc response of the
IMCON when the impulse is about 1.5 us wide. 1In this
case the envelope if the response is approximately w
sinx/x having a main lobe half-width siven by the recipro-
cal of the impulse width divided by T x 1010 or the device
slope divided by 21 (i.c. the device slope = 27

(7 Mhz/100 us)). From this the main lobe is seen to be
about 20 us wide, Trace 3: The input to the IMCON is a
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(e)

(a)
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pulse on the order of 8 us in width and the output envelope
can no longer be approximated by a sinx/x function. Trace
4: The input pulse to the IMCON has been expanded to about
25 us. Note that the output of the device seems also to be
a pulse on the order of 25 us in width. In actuality the
chirp rilter is performing a Fresnel transform on the envelope
of the input signal (see Appendix A, Eg. A-05 ) that appears
like a Fourier transform for signals of small duration (i.e.
less than the reciprocal of the square root of the device
slope). Note the Fresnel ripples on the output pulse of
trace k4,

The chirp modulated magnitude of the Fourier transform cof a
20 us square pulse (2 ps/div). This Fourier transform has

a time-to-frequency correspondence of about 2 us for every
140 Knhz (i.e. 140 Knhz = (2 us)(7 Mhz/100 us)). The main lobe
of the sinx/x is given by twice the reciprocal of the pulse
width in terms of frequency or 100 Khz which translates to
about 1.4 ps in time (i.e. 1.4 us = 100 Khz/Tx1010 Hz/sec).
An expanded version of (¢) (1 us/div). Since the signal was
only 20 us wide, the Fourier transforms in (c¢) and (d) were
velid over an 80 us time interval (i.e. the impulse response
duration minus the signal duration). About 110 sinx/x side-
lobes can be seen over this time interval.
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Figure 3.26: Fourier transformation and chirp slope mismatch,

(a)

(v)

Trace 1: A 10 Us square pulse input signal (20 us/div).
Trace 2: The chirp modulated magnitude of the Fourier
transform of trace 1 (5 us/div). The chirp modulation

of the transform displayed in this manner always possesses
the phase of the Fourier transform as a deviation from
quadratic. The Fourier transform is shown here centered
below the input signal but, in actuality, if the trans~
form is centered within its valid output time interval
(approximately 100 us -~ 10 Us or 90 us wide, in this
case), the main lobe of the sinx/x will arise about 50 us
after the 10 Uus square pulse input. The width of the main
lobe in frequency is given by twice the reciprocal of the
input pulse width. Dividing this by the chirp slope pro-
duces 8 main lobe width of about 2.9 us (i.e.

2((10 us)(7 x 1019))-1). Note that the input square
pulse must be modulated onto g spectrally-inverted chirp-
device impulse response before inputting into a similar
device before this transform can be obtained.

The input signal is the same, in this case, as it is in
(a) except that the chirp modulation, arising as the
impulse response of a chirp device, has not been spectrally
inverted before mixing with the baseband square pulse.
Trace 1: The 10 us square pulse (20 us/div). Trace 2:
The output of a chirp filter (5 us/div) when the non-
spectrally inverted chirp-modulated signal in trace 1 is
its input. Since the chirp modulation on the input signal
is the same as the chirp device impulse response, correla-
tion between the two chirps is not achieved and the result-
ant output is a chirp modulated version of a Fresnel trans-
form (see Appendix A} that is valid over the same time
interval over which the Fourier transform in (a) is valid.
Note, however, that the width of this Fresnel transform
does not correspond with the Fresnel transforms of Fig.
3.25b for the same input pulse width (which would look
more like a compressed sinx/x as can be extrapolated from
this figure). This is due to the fact that a Fresnel
transform is a function of two parameters, time and chirp
slope (see Appendix A). The Fourier transform is only a
function of time in a chirp transformetion system which

is related linearly to frequency through the chirp slope.
Fourier transforms obtained using systems with differing
slopes are time scaled versions of one another. The
Fresnel transform can be obtained by inputting an rf
modulated signal (Fig. 3.25b) or chirp modulated signals
of any slope into a chirp device; however, the resultant
Fresnel transforms are all different and, therefore,
functions of the chirp slope. As a matter of fact, the
Fourier transform can be visualized as a special case of
this process for which the Fresnel transform when the
input modulation and the chirp device slopes are of

i
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(c)

opposite polarity and equal magnitude. This is true since
the PFresnel transform of a signal is the Fourier transform
of the chirp modulated signal where the slope of the chirp,
in this case, is the sum of the slopes of the chirp modula-
tion and impulse response of the chirp device.

This figure shows traces consisting of transforms obtained

in a continucus transformation system whereby a continuous
signal is transformed a plece at a time thereby producing a
continuous series of transforme and not the transform of

the entire signal (which is impossible to do if the signal
was of infinite duration since, if such a technique was
available, an infinite amount of time would be required
before the transform could be obtained and the signal would
have to be cut off somewhere inevitably). The signal, in
this case, is a constant DC level and only trace 3 is the
Fourier transform stream of this signal consisting of sinx/x's
due to the finite 50 Us segments of the chirp modulated DC
that can be transformed at each time. The slope of the chirp
modulations in all the other traces have been purposely mis-
matched from the device impulse response slope so that Fresnel
transforms have been obtained. The traces above trace 3 have
greater chirp modulation slopes and those below have lesser
slopes than that required for Fourier transformation (i.e.
the negative of the device slope). The technique for per-
forming continuous transformation is covered elsewhere.




190

Figure 2.00a
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result of making the input chirp modulation slope successively larger
(top 3 traces) and smaller (bottom 3 traces) than the chirp device
slope.

Figure 3.2Ta shows the Fourier transform real and imaginary
components for the signal (a code) whose Fourier transform components
have been calculated using é computer FFT. This photograph was included
so that the accuracy with which a chirp transformation can be taken can
be assessed, Note that every little variation is essentially reproduced
by the chirp transform system. Figure 3.2Tb shows the Fourier trans-
forms of one, two, three and four pulses in the four traces shown.
Figures 3.28, 3.29 and 3.30 show expanded versions of the two, three
and four pulse Fourier transforms, respectively. The signals at the
top right of the transforms in Figures 3.32c¢ to f are the corresponding
input signals for the transform directly below it. Figures 3.33a to c
show the Fourier transform of a low frequency (= 3 Mhz) carrier-
modulated seven-bit Barker code summed with a sine wave, a square wave
and a sawtooth wave, respectively. The top two traces in each figure
are the input signal added to a low frequency version of these inten-
tional 'noises' and the transform of this combination. The 3rd trace
in each figure is the summation of the carrier modulated code plus the
'noise' having a fundamental frequency of the order of the signal carrier.
Note the richness of the harmonics for the square wave and sawtooth
wave. The signal transform remains unchanged from transform to trans-
form. The signal sideband at the left'of every trace is smaller than
the one on the right since it is outside the valid region of Fourier

transformation.
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Figure 3.27: Chirp systenm
Fourier transformations.

{a) Trace 1: The real component
of the Fourier transform of
the 13-~bit code. This
compenent (2 us/div) com-
pares extremely well with
the computer generated
real component.

Trace 2: The imaginary
component of the Fourier
1 transform of the 13-bit
code. The component
(2 us/div) compares
extremely well with the
computer generated imag-
inary component. Figure 3.27a

(b) Square pulse chirp-modu-
lated Fourier transforms
(Magnitude - transform
magnitude and quadratic
phase deviation ~ trans-
form phase) (2 us/div).
Trace i: Fourier transform
of a single 6 us pulse.
Trace 2: Fourier transform
of two 6 us pulses separa-
ted by 6 us. Trace 3:
Fourier transform of three
consecutive 6 yus pulses
spaced 6 Jus apart.

Traced 4: Fourier transform
of four consecutive 6 us
pulses spaced 6 Us apart.
These transforms are all
weighted by the magnitude
of trace 1 whose main lobe
is defined by an individual
6 us pulse width to be about
4.8 us wide. The central
lobe of each of these trans- Figure 3.27b |
forms {in frequency) is i
given by twice the recip-

rocal of the overall signal :
width which is divided by the chirp siope {{ x 1 *o obtain 1

their widths in time. Since the signals are © ps, 40 U8 ond o us {
in width, then these central lobes are h.% us, 1.6 jo,.97 po oand £

.68 us wide, respectively, as can be seen in this ticure.
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Figpure 2.28b

Figure 3.28:

The chirp-modulnted Fourier transform of two 6 us wide
square pulses separated by 6 us,
(a) 2 us/div
(b) .5 us/div
See Fig. .74




Figure 3.29:

Figure 3.29b

The chirp-modulated Fourier transform of three consecutive
6 us wide square pulses spaced 6 ps apart.

(a) 2 us/div

(b) .5 us/div

See Fig. 3.2Tb, truce 3

REY




Fraure <, 30b

Figure 3.30: The chirp-mo i st i ¥ o7 “ranstorm of four consecutive
6 us wide squae 1loen cpaeced £ us apart.
(a) 2 us/aiv
(b) .5 us/div

See Fip., .., ‘ro-
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Figure 3.31: Chirp transformations of special functions.

(a) Trace 1: A single cycle raised cosine approximately .
7 us wide (10 us/div). Trace 2: The chirp-modulated .
Fourier transform of trace 1. The width, in frequency, ‘
of the main lobe of this transform is four times the
reciprocal of the width of the raised cosine. Dividing
by the chirp slope (7 x 1010 Hz/sec, not 28 = 2n(7 x 1010) i
rad/sec) gives an 8 us main lobe (10 ps/div). y

(b) Trace 1: A 5 us wide positive pulse and a 5 us wide
negative pulse with no space between the two. Trace 2:
The chirp-modulated Fourier transform of trace 1. This
transform arises by squaring the transform of Fig. 3.26a
and multiplying this by Jf or jt/7x1010, where t = 0
is the center of the main lobe. This is true since the
square of the sin/x transform of a square pulse is the
transform of the autoconvolution of this square pulse.
The signal of trace 1 is the derivative of this -con-
volution so its transform is the convolution's trans-
form ((sinx/x)2) multipiied by jf (10 us/div).

(c) Trace 1: A 5 us wide positive pulse and a 5 us wide
negative pulse spaced a small distance apart. Trace 2:
The chirp-modulated Fourier transform of trace 1. This 4
transform is the product of Jf and two sinx/x's whose ~1
main lobes are slightly larger and smaller, respectively, .
than the sinx/x of Fig. 3.26a, since the signal of e
trace 1 is the derivative of the convolution of two !
pulses whose widths are slightly smaller and larger, £
respectively, than the pulse in trace 1 of Fig. 3.26g 1
by half the spacing between the pulses in trace 1 of t
this figure (10 us/div). i

:
i
|
F
!

(d) Trace 1: An approximation of a Gaussian pulse (10 us/div).
Trace 2: The chirp-modulated Fourier transform of trace 1
(2 us/div). ©Note that the transform loocks like the input
signal. This is true since the Fourier transform of a
Gaussian pulse is also Gaussian in shape.
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BT R o T A




197

Figure 3.3la

Figure 3.31b
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Figure 3.31c

Figure 3.314
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Figure 3.32:

Chirp trensformations of pulse sequences.

(a)

(b)

(c)

Trace 1: Two .4 us pulses separated by 7.2 ps (2 us/div).

Trace 2: The chirp-modulated Fourier transform of (a)
(2 ps/div). This is a sinx/x moudlated cosine. The
width of a single cycle of this cosine is given by the
reciprocal of half the spacing between the pulses in
trace 1 or about 380 Khz. Dividing by the chirp device
slope (in Hz/sec) gives a width of about .L ps. The
width of the main lobe of the sinx/x weighting o7 this
transform is given by twice the reciprocal of a pulse
width of about 71 us. Since the display shows only
about one quarter of this main lobe, the cosine varies
in height by only about 10% over this portion of the
transform. If the two positive pulses were ideally
infinitesimally thin in trace 1, the transform would
be an unweighted cosine over the valid output time
interval. Trace 3: The same as trace 1 except that
one of the pulses has been made into a negative pulse
(2 us/div). Trace 4: The same as trace 2 except this
time the transform is a sinx/x weighted sine. A cycle
width is the same as in trace 2 (2 ps/div). Trace 5:
Two negative pulses having the same dimensions as the
signal of trace 1 (2 us/div). Trace 6: The chirp-
modulated Fourier transform of trace 5 which, in this
case, is a sinx/x weighted cosine of identical appear-
ance to trace 2 but 180° out of phase (i.e. a negative
cosine)(2 ps/div).

Trace 1: {(Upper left partial trace.) Two 1.5 ps
pulses separated by about 8 us. Whereas pulse spacing
to pulse width in (a) was about 18 in this figure, it
is only about 5.3 so that the sinx/x weighting over
the cosine transform will be more dramatic (10 us/div).
Trace 2: The sinx/x weighted cosine chirp-modulated
Fourier transform of trace 1 (2 us/div). The main
lobe of the sinx/x is about 19 us wide (i.e.

2((1.5 us)(7 x 1010))=1), A single cycle of the cosine
is about 3.6 us wide (i.e. 1/((4 us)(7 x 1010)}), The
Fourler transform for two impulses spaced 2t seconds
about the time origin would be cos(2nfty). Trace 3:
(Inset) A negative and positive pulse having the same
form as trace 1 (10 us/div). Trace b4: The chirp-
modulated Fourier transform of trace 3. This is the
sine version of trace 2 (2 us/div). Bottom trace: An
envelope detected version of trace 4 (5 us/div).

Left bottom inset: Same as the bottom trace except

on a 10 us/div scale. Right bottom inset: Same as
trace 4 except on a 10 us/div scale. Right bottom
inset: Same as trace L except on a 10 us/div scale.

Trace 1: (Upper right inset) A 6 us square pulse
(20 ps/div). Trace 2: The chirp-modulated Fourier

r
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transform of trace 1. The main lobe of this transform is about

5 pus wide (i.e. 2((6 ps)(7 x 1010))~1) (1 us/div). .
Trace 3: (Lower right inset) A five pulse sequence (20 ys/div). '
Trace 4: The chirp-modulated Fourier transform of trace 3 ;
(1 us/div). |

Trace 1: (Upper right inset) A two pulse sequence (20 Us/div). i
Trace 2: The chirp-modulated Fourier transform of trace 1 (20 us/div).
Trace 3: (Lower right inset) A six pulse sequence {20 us/div). |
Trace L4: The chirp-modulated Fourier transform of trace 3 (1 us/div).
Note the absence of a DC component.

Trace 1: (Upper right inset) A three pulse sequence (20 ups/div).
Trace 2: The chirp~modulated Fourier transform of trace 1 (1 us/div).
Trace 3: (Lower right inset) A seven pulse sequence (20 us/div.)
Trace L: The chirp-modulated Fourier transform of trace 3 (1 ps/div).
Any asymmetry in the transforms is a result of feedthrough through

the spectrally inverting mixers. Since all the chirp devices -
utilized are the same, this feed-through produces a small Fresnel
transform that can destroy the symmetry in an otherwise symmetric
Fourier transform. The mixer feedthrough can be quite large when
mixers are heavily drive.

Trace 1: (Upper right inset) A four pulse sequence (20 ps/div).
Trace 2: The chirp-modulated Fourier transform of trace 1 (1 us/div).
Note the asymmetry due to Fresnel distortion as discussed in (e).
(Some distortion, however, may be attributable to slight mismatches
between the impulse responses of the chirp devices used to generate
the Fourier transforms.) Trace 3: (Lower right inset) An eight pulse
sequence (20 us/div). Trace 4: The chirp-modulated Fourier trans-
form of trace 3 (1 us/div). Note that if the L4 negative pulses had
been equal in size to the 4 positive pulses in trace 3, then there
should not have been a DC component. Essentially, the central lobe
of trace 2 should have diminished and split into two lobes smaller
than its own sidelobes when the additional opposite-polarity pulses
were added to the sequence. Due to an imbalance in the pulse
generating circuitry, however, this did not occur and a small sin/x
due to the additional DC component was summed with the desired trans-
form.
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Figure 3.324

Figure 3.32f
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Figure 3.33: Chirp transformations of a carrier-modulated seven-bit
Barker code with pure waveform jammers.

(a) Trace 1: The 2.65 Mhz carrier-modulated seven-bit
Barker code with a 275 Khz sine-wave jammer at about
three times the code carrier peak to peak amplitude
(5 us/div), Trace 2: The chirp-modulated Fourier
transform of trace 1 (10 us/div). The 275 Khz jammer 1
components can be seen to be localized at 275 Khz/Tx10 0
Hz/see = 3,9 Us on either side of DC. (Third and fifth
harmonic components are also visible at T.8 us intervals
probably resulting from slight input signal saturation,)
The positive and negative Barker code spectrums are seen
to be situated 2.65 Mhz/Tx10'0 Hz/sec = 38 us on either
side of DC, Since the input signal is about 50 us in
duration, only about 50 us is available for accurate
output Fourier transformation. Therefore only about
half of the transform in trace 2 can be asccurate, In
this figure (and the following two figures) only the
right portion of the transforms was tuned by adjusting
the center frequency of the input chirp modulation. Thus
the difference between the positive and negative Barker
code spectrums is due to this selective tuning. Expanded
versions of the two spectrums when both have been tuned
can be seen in Fig. 3.49a. Trace 3: The same as trace 1
except that the Jamming sine-wave frequency has been
increased to 3.1 Mhz (5 us/div). Trace L: The same as
trace 2 except that the jammer sine-wave component at g
275 Khz or 3.9 Ws has moved to 3.1 Mhz or 3.1 Mhz/Tx1010
Hz/sec = bk us on either side of DC (10 us/div). Jote
that (a), (b) and (c¢) of this figure show explicitly that
although the jammers become an integral part of the signal,
there is potential for their removal since their energy
becomes localized upon Fourier transformation and can be v
gated from the desired signal transform {usually along
with the elimination of negligible portions of the
desired transform).

(b) Trace 1: The 2.65 Mhz carrier-modulated seven~-bit Barker
code with an 85 Khz square-wave jammer (5 uws/div}. Trace
2: The chirp-modulated Fourier transform of trace 1
(10 us/div). The square-wave jammer is rich in harmonic
components with a fundeamental 85 Khz/7x1010 = 1,2 us on
either side of DC., Trace 3: Came as trace 1 except with
a square-wave jammer frequency of 3.05 Mhz {5 us/div).

Note that the beat frequency is about 200 Khz or half the
difference between the code carrier and fundamental jammer
frequencies. Trace L4: The same as trace 2 except that

the jammer square-wave fundamental component at 85 Khz

or 1.2 us has moved to 3.05 Mhz or 3.05 Mhz/Tx1010 Hz/sec =
4.36 us on either side of DC (10 ps/div). Note that the
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(c)
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square wave transform in trace 2 possesses only odd harmonics.
Trace 1: The 265 Mhz carrier-modulated seven-bit Barker code
with 160 Khz saw-tooth wave jammer (5 us/div). Trace 2: The
chirp-modulated Fourier transform of trace 1 (10 us/div). The
fundamental component of the saw-tooth jammer is located 160 Khz
or 160 Khz/Tx1010 Hz/sec = 2.3 us on either side of DC. Note
that the saw-tooth has both even and odd harmonics. Trace 3:
The same as trace 1 except with a saw-tooth frequency of

1,15 Mhz (5 pus/div). Trace L: The same as trace 2 except that
the jammer saw-tooth fundsmental component at 160 Khz or 2.3 us
has moved to 1.15 Mhz or 1.15 Mhz/Tx1010 Hz/sec = 16.5 Us on
either side of DC (10 us/div).
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Mixer carrier feed through can lead to appreciable distortions

in the transform domain. Figure 3.34a shows a code and its Fourier
transform, Trace 3 is the inverse transform which appears to be a filtered
version of the input. As discussed in Section 2.4, hewever, this signal,
being purely real, must have a purely symmetric magnitude spectrum.

Figure 3./314b shows the proper spectrum. The distortion in

Figure 3.34a was caused by the Fresnel transform of the signal due to
leak~through of the original modulating chirp when it was being spectrally
inverted. In this way two signals were effectively applied to the con-
volving chirp filter. These two signals, having opposite slopes, broduce
a Fourier and a Fresnel transform concurrently. Both transforms, when
properly tuned, will inverse transform back to the original signal after
spectral inversion and application to the second chirp filter. Therefore,
the original signal in Figure 3.3%a was recovered althcugh the transform
seemed vrong. Figure 3.34c shows a 255 bit P-N code, its Fourier trans-
form and its inverse transform also exhibiting slight transform distortion
which is usually dominated by mixer leak-through when the chirp devices

in the system are all the same and mixers are driven heavily.

Figure 3.35a shows a signal that was picked up by an acoustic

receiver where every pulse represents the reflection of an acoustic impulse
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Figure 3.34: Chirp transformation with zero/one codes.

(a)

(v)

(c)

Trace 1: A 13-bit zero/one code (5 us/div). Trace 2:
The chirp-modulated Fourier transform of trace 1

(2 us/div). This transform is highly asymmetric due

to mixer feedthrough producing a Fesnel transform of
the code at the same time as the Fourier transform, but
of smaller size. The main lobe of this transform is
2((2.1 pus)(7x1010 Hz/sec))=l = 13.6 us wide since a
single code bit is about 2.1 pus wide. Trace 3: The
inverse transform of trace 2, In this case the output
was optimized so that the inverse Fourier and Fresnel
transforms coincided thereby producing a filtered (due
to time limiting of the transform) version of the

input signal.

Trace 1: (Upper left inset) The same code as in trace 1
of (a) except of different size (5 us/div) and inputted
into a chirp system of slope 10 Mhz/30 us = 3.33 x 1011
Hz/sec. One bit is .98 us wide. Trace 2: The chirp-
modulated Fourier transform of trace 1 (2 us/div). The
main lobe is 2((.98 us)(3.33 x 1011 Hz/sec))= = 6.1 us
wide since a code bit is .98 s wide. Trace 3: The
same as trace 2 except on a .5 us/div scale.

Trace 1: A 255-bit zero/one pseudo-random code (10 us/div).
A single bit is .12 us wide, Trace 2: The chirp-modulated
Fourier transform of trace 1 (20 us/div). This output is
accurate for over 70 us (the chirp device impulse response
width minus the code width). The main lobe of this trans-
form is sbout 238 ps wide (i.e. 2(.12 us)(7x10%0 Hz/sec))~1)
so that only about one-third of the transform is obtained.

The DC component of this code is quite prominent. 1u
order to enhance the information that is contained in
the main lobe, the component has been saturated drown

to the level of its nearest sidelobes.

Trace 3: The inverse transform cf trace 2 (10 ps/div).
Even though only about a third (70 us) of the main lobe of
the Fourier transform (238 us) was available (the remaining
approximately 60 Us of the 130 uUs long correlation was

gated out). As can be seen in this trace, the cone

is Just about readable, Furthermore, there is enough
information in the sidelobes and remaining portion of the
central lobe of the sinx/x due to the DC level in the code
that the DC level in the inverse transform has not changed
very much from its value at the input. The effect of
saturating the DC component becomes more prominent as the
codes become extremely long, so that the sinx/x due to the
DC portion compresses more and more about the DC point of
the transform. Such long codes, huwever, could not be
transformed utilizing the same system ~onfiguration and
devices used to transform the code in trace 1,
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from objects in a water tank. The 2nd trace is the Fourier transform of
this signal and the 3rd trace is the inverse transform of this. Note
that since the transform of the signal had to be cut off prematurely,
the fast pulses end up oscillating & bit when the inverse transform is
obtained, Figure 3.35b demonstrates the existence of the Fresnel
transform of the signal that always exists at the same time as the
Fourier transform, for a chirp transformation system, but at a different
location in the frequency spectrum. As the center frequency of the chirp,
modulating the input signal, is changed, a different portion of the
Fourier transform is seen, However, as the Fourier transform of the sig-
nal shifts in one direction, the Fresnel transform of this signal shifts
in the other. Every trace in Figure 3.35b represents an approximate
5 Mhz of transform shift toward the left., The central traces have been
magnified so that the sidelobe structure is evident, By the 6th trace
the Fresnel transform has almost shifted into view within the valid trans-
form time interval. The sidelobe structure in trace 5 is due more to the
Fresnel transform, at this point, than the Fourier. Figure 3.35c demon-
strates how a wide bandwidth signal transform can be observed., The first
trace shows a narrowband version of the signal transform. When the time
signal is compressed so that its transform cannot be viewed all at once
within the output time interval, the transform can be viewed in slices
by varying the center frequency of the input chirp modulation. Traces
2 to 4 each show one third of the transform seen in the first trace
obtained by varying this center frequency.

Figure 3.36a demonstrates the delay insensitivity of the

Fourier transform., In this figure the input square pulse is delayed by

- R Aty

. o .
O NN ARG T W

i




v Figure 3.35: The chirp transform of a pulse-echc return and its inverse
along with some chirp system characteristics.
§ {a) Trace 1: A pulse-echo return from an ultrasonic- 4
nondestructive testing system {2 us/div). (Unless ’
gpecified otherwise, the input signal is typlcally
{ shown to be modulated by the input pre-multiplying
chirp.) Trace 2: The chirp-modulated Fourier trans- '
form. Since & typical pulse is about .2 us wide,
the main lobe of this transform is about 2((.2 us) x !
(Tx10%0 Hz/sec))™) = 143 us wide. Since about 80 us
of the transform is valid, then more than half of the
main lobe is being displayed. The portions of the
transform more than L0 us away from DC may look similar
to the rest of the transform, but they are the result
of transforming a continually decreasing portion of the
signal that eventually shrinks to zero about 60 us away
from DC. Trace 3: The inverse transform of trace 2
(2 us/div). Note that utilizing only about half cf the
transform main lobe produces oscillations where none
previously existed.
(b) The simultaneous existence of a Fresnel transform with
the Fourier transform is demonstrated to exist even in
8 system consisting of ideal components. This Fresnel
transform is centered at a different position along the
output time axis from the Fourier transform. The dis-
tance between the two transforms is linearly dependent
upon the chirp device center frequency. At baseband
these two transtorms: o1aei-, At hi-h
device center frequencies the main portion of the Fresnel
transform is far away from the Fourier transform and
therefore does not appear within the finite valid output
time interval when the center of the Fourier transform
- is within this interval. However, since all input sig-
nals are of finite length, there will always be high
frequency components of the Fresnel transform within this
interval although they may be quite negligible. 1In this
figure all the traces are displayed on a scale of 20 us/div.
The input to the chirp transform system is a 10 s pulse
(20 us/div) seen as an inset in the top left of the figure.
In order to demonstrate the existence of the Fresnel trans-
form, the Fourier transform of this square pulse is shifted
to the left by changing the center frequency cf the input
chirp modulation, When the Fourier transform shifts to the
left, the Fresnel transform will shift to the right. The
two transforms cross outside the valid output time interval
and then the Fresnel transform appears. Traces 3 and b
show expanded portions of the sidelobes of the Fourier
trensform. Traces 5 and 6, however, are dominated by the
sidelobes of the Fresnel transform. The transform to
vwhich the sidelobes belong is evident since the sidelobes
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decrease with increasing transform shift and then increase

as the Fresnel transform begins to dominate. The Fresnel
transform appears in the last two traces.

This figure demonstrales the displuy «f a transform of
duration longer than the output valid time interval. Trace

1 shows the Fourier trunsform of four widely arnd evenly
spaced square pulses (20 is/div). 1In this case the pulses

are about .35 us wide and spaced sabout 1.8 us apart. Traces
2 to L4 show the chirp-modulated Fourier transform of the

same signal after it has been compressed by a factor of four.
Since the transform of such a signal is four times longer
than the transform of trace 1, it must be displayed in slices,
This has been done in traces 2 thru 4 where the center
frequency of the input modulation is adjusted for the desired
portion of the transform tc be displayed. Trace 2 shows the
central region of the transform (20 ps/div) corresponding to
the portion of the transform in trace 1 within the central
two divisions. Traces 3 and U show the rightmost and leftmost
portions of this transform, respectively.
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about 10 us in every other trace, yet the magnitude of the Fourier trans-
form remains stationary and of the swne appearance, as it should., Figure
3.36b, on the other hand, demonstrateé the converse of Figure 3.36a. In
this case a delayed Fourier transform produces a stationary function.

The carrier frequency of the signal is changed to affect a specific shift
of the Fourier transform. Likewise, the chirp carriers of the Fourier
transforms in Figure 3.36a change their center frequencies as the input
signal shifts in time., Carrier frequency shifts, in both cases, represent
signal or transform phase changes and therefore do not effect magnitude.
Figure 3.36c demonstrates the summation of two signals. When the two
input signals in traces 1 and 3 are summed, the signal in trace 5 is
obtained, Likewise, the summation of their transforms will produce the
transform given in the final trace. Figure M-5 corresponds to this
situation.

Figures 3.37a, b and ¢ demonstrate how well a chirp transform
system can be made to filter a signal by time gating in the Fourier
domain, Figure 3.37a shows three small input pulses in the first trace
and the same signal after passage through the chirp transform system in
the 2nd trace. 1In the third trace monochromatic noise or jammer has been
added to the signal. The detected inverse Fourier transform with the
noise 1s seen in trace 4. Trace 5 is the Fourier transform of the com-
bined signal, where it can be seen that the noise has been localized and
seems to dominate the spectrum. However, when the central portion of
this transform is all that is inverse transformed, then a low pass filtergd
version of the signal, without the jammer, is obtained. Figure 3.37b shéws

this same situation for wider input pulses, Figure 3.37c shows a contrived
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Figure 3.36: Chirp transformation results demounstrating same Fourier
properties.

(a) Traces 1, 3, 5 and (: A successively delayed 10 us
wide square pulse (10 pus/div). Traces 2, 4, 6 and 8:
The chirp-modulated Fourier transforms of traces 1, 3,
5 and 7, respectively (10 us/div). These results
demonstrate the insensitivity of the magnitude of the
Fourier transtorm to signal delay. Only the phase of
each successive transform changes with signal delay
change and is seen as 4 chunge i the center f(requency
of the output chirp modulation,

(b) Traces 1, 3, 5 and 7: A 10 us wide square pulse with
successive incremental change of the center frequency
of its chirp modulation (10 pe/div). Traces 2, k4,
and 8: The chirp modulated Fourier transforms of
traces 1, 3, 5 and 7, respectively (10 ps/div). These
results demonstrate the converse of (a) in that a delay
of the Fourier transform produces nothing more than a
change in the signal rf carrier frequency. In (a) the
delay of the signal and in (b) the deiay cf the trans-
for is 60 us or more than half the total dispersion of
the chirp devices (= 100 Us). The center frequencies
of the transform in (a) and the signal in (b) change
by about 4.2 Mhz over the 60 ps range of delay. The
effect of the change in the chirp modulation center
frequency of the input signal in (b) on its Fourier
transform is the sume effect utilized to allow the dis-
play of any desired portion of the transform and is
demonstrated in Fig. 3.35c. Tt is a consequence of the
Fourier shifting theorem.

{¢) This Uipure demonstrate:s superposition. Trace t: fwoe
5us positive pulses separated by 5 ls (Y ps/div).  Trace 2 The chirp-
modulated Fourier transform of trace | (% ua/div). Trace +: A neeative
5 us pulse and a positive 5 us pulae sepaorated by & s (5 pe/div).

Trace h: The chirp-modulated Fourier transtorm of trace 3 (5 ps/div).
Trace 5: The sum of traces 1 and 3 (5 ps/divd. Traece o: The sum o
traces 2 and I (5 us/div) utilizing two fdenticatl chirp systems and the
same input chirp modulations. Noto that the Moogior treansform in trace

6 obtained by summing the transtorm: in Lraceos 0 and bols the expected
transforms for a sirnal gilven by trace oo the cam of fraces T oand 3. it
the input time origin is sct at Lthe contoer o the signal of trace |, then
the transform of this sipnal has only o cend coeenent s Likewise, the
transform of trace 3 has only an imnacinary conponent. Therefore, since the
pulse of trace U is offset rom the Lime oricin, it will have a real Fourier
component given by trace h and the minituwde orf the Lransform will be the
sinx/x given in trace 6. Note that the two Drccomms civen in Lraces O
and 1 possess phase quadrature chirp carrviers (hovine no deviation from
quadratic) since one transrorm in purely real whiite the other ic purely
imaginary. The deviation from quadratic- of the chirvp modulation in

trace 6 is piven by the inver:ce tangent. ot the patio of trace b to trace .,
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Figure 3.37: Filtering by the time gating of ~hirp generated Fourier

transforms.

(a) Trace 1: Three chirp-moduleted input pulnes ewch aboat
2 us wide (20 Us/div). Trace 2: The envelope-detected
inverse transformation of the chirp-generated transforma-
tion of trace 1 (20 us/div). Trace 3: The same as trace
1 with the addition of a monochromatic {sine wave) 364 Khz i
Jammer (20 us/div). Trace L: The envelope-detected inverse
transformation of the chirp-generated lourier transform of
trace 3 (20 us/div). Trace 5: The ~hirj-modulated Fourier
transform of trace 3 (2 ps/div). The 364 Khz/7x1010 Hz/sec =
5.2 Us on either side of DC. ™race 6: The time gate used
to low pass filter the signal and eliminate *he bulk of the
Jeammer (2 us/div). Trace 7: The envelope-detected inverse
transformation of trace 5 gated bty trace 6 {20 us/div). The
gating of the Fourier transform has eliminated the jammer |
almost completely and smoothed out the pulses due to the
low pass filterinp.

(b) This figure is identical to {(a) except that wider pulses
of different widths were used as the input.

(c) Trace 1 (consisting of four consecutive insets): Inset |
is the input signal consisting of two 1 Us pulces
(10 us/div). 1Inset 2 is the chirp-mrdulated Fourier
transform of inset 1 (20 ys/div). 1inset 3 is the chirp-
modulated Fourier transform of a 750 Khz square wave
gated to 6 cycles (20 ps/div). Jluset 4 is the combination
of the six ~ycle square wave and the double pulse (10 ps/div). : .
Trace 2: The chirp-modulated Fourier transform of the signal
given by inset b of trace 1 (i.e. the six cycle square wave l
plus the two pulses){5 us/div). “race 3: The cnvelope- !
detected inverse transformation »f trace 2 (2 us/div). Note ;

i
|

-

the contrived similarity between the transform and its
inverse. Trace L: A time pate used to pick off only the
two large lobes of the Fourier transform in trace 2

{5 us/div). Trace %: The trum.form of Ltrace 2 pated by
trace k (5 us/div). Trace 6: The envelope~-detected
inverse transformation of trac- ¢ (2 prs/liv). Trace 7: A
time gate used to pick off only the ~entral nine lobes of
the Fourier transform in trace 2 (5 us/div). Trace 8:

The transform of trace 2 gated bty trace 7 (5 us/div).
Trace 9: The envelope-delected inverse transformaticn of
trace 8 (2 us/div). N-te that the retention of only the
two large transform peasks (with : few sidelobes) produces
a signal having twelve peaks, which ic a filtered version
of the magnitude of the juput souare wave, Retention of
only the nine central lobes of the transform, however,
produces a signal (thc inverse transf-rm) that is5 essen-
tially a filtered version ~f the twe input pulses, This
form of signal wa: used to demonastrat~ the chirp-
transformation time-pating filterings technique due te its
particular characteristic, wherety tiec rated portion of

. ; . _ i AL b St 'i
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the transform appears to produce a version of the ungated
portion upon inverse transformation. Note that only the
square wave fundamental component is utilized so that it
becomes essentially a sine wave upon inverse transformation.
Functions having the above property, whereby the function
appears to remain unchanged upon Fourier and inverse trans-
formation, are created by the summation of a real symmetric
signal and a baseband version of its transform. This
technique was approximated in this figure and is possible
due to the symmetry property of Fourier transformation,
whereby the performance of two consecutive Fourier trans-
formations recovers a symmetric signal (time-inverted if
the signal is asymmetric).
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Fipure 3.37a

Figure 3,37b




signal that behaves like the center of the unfiltered signal, When the
gate in trace 6 is used to only allow the central portion of the trans-
form through, then the resulting signal(upon inverse transformation
appears to be the end lobes of the original signal. The actual input
signal used to generate this transform consisted of two pulses summed
with a smaller amplitude six cycle square wave, The two filtering steps,
in a sense, separated the two functions.

Figures 3.38a, b and c¢ demonstrate filtering using a realistic
reflection return. Figure 3.38a shows the actual signal in the Ist
trace, its transform in the 2nd trace and its inverse transform in the
3rd trace. Figure 3.38b shows this same situation where an overwhelming
amount of monochromatic noise has been added. Note in the second trace
that the noise spikes now dominate the spectrum to the point where the
signal spectrum can hardly be seen. Figure 3.38c shows the inverse
transform after the noise spikes have been selectively gated from the
spectrum, Note that the signal has been greatly improved by the gating
process to the point where moét of the tiny reflections can now be seen
again, (The position of the output with respect to the input is irrelevant
in these photographs, since they do not normally coincide due to the chirp
system delays. An attempt to keep these signals lined up for these
pictures failed for the final trace of Figure 3.38c, which can be seen
shifted to the right by one division.) Note in the final trace of
Figure 3.38¢c that a pulse appears at the point defining the start of the
noise. This arises since such a discontinuity is rich in harmonics and
a small gating pulse cannot be expected to eliminate much of its spectral

energy from th2 Fourier transform.
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Figure 3.38: Chirp-transformation filtering of pulse-echo returns by
time gating. !
(a) Trace 1: A 20 us long pulse-echo return obtained from
an ultrasonic non-destructive testing system (2 us/div).
Trace 2: The chirp-modulated Fourier transform of trace
1 (20 us/div). This is about half of the main lobe of
the transform defined by twice the inverse of the smallest
pulse width. The transform is accurate over at least
80 us and is gated to 80 us prior to inversion. Trace 3:
The inverse transformation of trace 2 (2 ys/div). Oscilla-
tions after each pulse are the result of the filtering due
to the finite bandwidth of the system corresponding directly
to that portion of the transform displayed in trace 2.
(b) This figure is the same as (a) except that a monochromatic
noise source was included at the input to the chirp system.
The noise is a 1.82 Mhz rf. Trace l1: The pulse-echo
H reflections plus the 1,82 Mhz rf 'noise'. Note that the

-y v e -
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echoes have esscntially been obliterated (1 us/div). Trace
2: The chirp-modulated Fourier transform of trace 1
(10 us/div). The noise peaks dominate the transform and
are located 1.82 Mhz/7x1010 Hz/sec = 26 us to either side
of DC. Trace 3: The inverse transformation of trace 2.
(c) Gating is utilized in this figure to recover the original
signal, Trace 1: The reflections plus the 1.82 Mhz
noise (2 us/div). Trace 2: The chirp-modulated Fourier
transform of trace 1 (10 ps/div). Trace 3: A time gate
used to eliminate the transform lobes due to the noise
source (10 us/div). Trace 4: The inverse transformation
of trace 2 gated by trace 3 (2 us/div). Note that the
original signal is essentially recovered. The trace in
this figure has been shifted one division to the right
with respect to trace 1, Note also that due to the wide-
band nature of the rising edge of the noise the gate was
not so effective in eliminating this portion.
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Figures 3.39a and b compare the Fourier transform of a square

il s oirn i

pulse with the Fresnel transform of the same signal. 1In Figure 3.39b
the pulse is increased in width from the first trace to the last, Note -
in this figure that the Fresnel transform appears much like the Fourier

transform for small pulses (Fourier left, Fresnel right). The Fourier ' |

transform continues to compress, however, while the Fresnel transform
expands. Fresnel ripples can be seen on the Fresnel transform in

Figure 3.39a. (A detailed documentation of the Fresnel transform has
been derived and included in Appendix A.) The reason for an intérest in
the Fresnel transform is two-fold. First of all, the chirp filter
possesses an input-output relationship that is essentially a Fresnel
trangsform. Since this is the case, a detailed knowledge of Fresnel
analysis could lead to & chirp filter system analysis procedure based
upon use of this transform in a manner similar to the way the Fourier
transform has become so important in system analysis. Secondly, there
are times when the Fresnel implementation of a specific function repre-
sents a savings over using a Fourier transform to do the same thing. A
lot is said about this in Section 2.4, where it was mentioned that signal
time inversion could be performed using either transform., If only the
tiﬁe inversion function is required, then there is no need in obtaining
the Fourier transform since none of the special properties of this form
of the signal are to be utilized. As discussed in Section 2.4, time
inversion essentially involves two repeated Fourier transforms or a
second Fresnel transformation after a double chirp multiplication. 1In
this section it was also found that time inversion of a signal using

the Fourier transform also required a double chirp mixing process due tc

.
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Figure 3.39:

Figure 3.3%a

The Fresnel transtors i o o mrarizon s the Fourier transform
of the same input si;nn:,
(a) The chirp-moinlaril ¥ aricr ‘ranstorm {left) and the

chirp—nofilatod Kreornel ¢ ranstorm {right) of a 15 ps

wide ogasre poloe 0 e v

(b) Trace 1: The Fooier treanstrn (left) and the Fresnel
transform (right) - ¢ o “.% 15 square pulse (20 us/div).
Trace O: ['ame o, ‘raco  except that the pulse has been
expanded to € e, Tpnee it Came as trace 1 except that
the pulse B dowe oo ot 00 "0 s, The Fresnel trans-
forms were cepesstor oty Drpettine the square pulses on

rf curriers fnotea 0 o

e
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the special properties of the spectral inversion process and the inherent
difference between a chirp system designed to use an up-chirp device
compared to one using a down-chirp device, Since,however, the Fresnel
transform scheme does not require a synchronization between multiplying
chirps, it is the simplest to implement. Figures 3,40a and b show the
two methods for obtaining the Fresnel transform of a signal and its
inverse using, in one case, only chirp filters and, in the other, only
convolvers, and, in both, only chirps of the same slope. Figures 3.kLla
and b show the two possible Fresnel time complementation schemes. 1In
one case, all devices are the same and, in the other, an opposite slope
device is used saving a mixing and filtering step, Figures 3.42a and b
show some actual results utilizing the scheme in Figure 3.4la. Trace 1
of Figure 3.42a is a 255 bit pseudo-random (PN) code. The second trace
of this figure is a time inverted portion of the first part of this code
obtained by modulating only this portion of the Fresnel transform of the
code (since a continuous signal can be continually Fresnel transformed)
by the doubly sloped chirp. (The chirp has twice the slope of the chirp
filters.) The remaining traces in this figure show the time inversion of
successive slices of the signal. Figure 3.42b shows the time inversion
of an isolated code in proper time relationship in the first two traces
and expanded and re-oriented in the second two tiraces, Bandwidth limita-
tions produce the rippling effect since the input rise times are very

fast.




Figure 3.U40:
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FIGURE 3.40a

Fresnel transformation block diagrams.
(a) Fresnel transformation and inversion using chirp filters.
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cos(wt) |Si-on-LiNbO4

[1")
L center freq.)
Convolver 2 9

-« elot Fg (281)+ cc.
cos (2wt) Fresnel of f(21)

cos (wt +812)

Si-on~LiNbO3

Convolver (w center freq.)

f(4t) cos(2wt)

Figure 3.40: Fresnel transormation block diagrams.

(b) Fresnel transformation and inversion using Si-on-LiNbO3
convolvers. In both cases & spectral inversion is
required prior to the second device before the inverse
Fresnel transformation can be performed since devices
having identical slopes are being used. Note that since
the output of a convolver is compressed by a factor of
two, then a chirp with double the center frequency and
four times the slope of the input chirp is required for
the second device. Also, the output of the system is
compressed by a factor of four.
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Figure 3.41: Time complementation schemes utilizing Fresnel transformation.
(a) Fresnel time complementation (inversion) using identically
sloped chirp devices.
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level
shifted  cos(wtegt?) l———-‘
f(t) —
cos(wt)
variably
delayed | cos(wt + 812)
"impuise’ ’
Doubler
cos(wt - 812)
f(-t)cos(wt-28t2)—>
J
Diode
Detector
f(-1)
level shifted
Floare 3.41: Time complementation schemes utilizing Fresnel trunstormatio. .

{b) Fresnel time complementation using oppositely sloped chirp
devices. This scheme eliminates a filter and a spectral
inversion. In any case, the Fresnel transform of the
signal must be multiplied by a doubly sloped chirp prior
to inverse transformation to obtain a time inverted version
of the input signal, Furthermore, since narrowband signals
correlate principally with a small portion of the chirp
device impulse response centered about the center frequency
of the input carrier, then the Fresnel transformation can
be performed on a continuous basis with very little dis~
tortion resulting from the finite duration of the impulse
response. {(See Eq. 4.86 of Part III.) Because of this,
any portion of the input signal can be selectively time
inverted by simply mixing the proper portion of the
Fresnel transform (to which there exist a one-to-one
correspondence with the input signal) with the doubly
sloped chirp that is derived by impulsing a chirp device
at the proper time and doubling the resulting impulse
response.
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Figure 3.42b

Figure 3.42a

Figure 3.b2:

Time complementation results utilizing the Fresnel trans-
formation technique.

(a)

(v)

Trace 1: A repeating 255-bit zero/one pseudo-random
code (20 ps/div) modulated onto a 15 Mhz carrier for
inputting into the time complementing system. Trace

2: The time complemented version of approximately the
first 30 ps of the code in trace 1. Traces 3, 4, 5 and
6: Successive time-complemented portions of the code

in trace 1 (20 pye/div). The successive portions were
obtained by delaying the impulse to the chirp device
used to produce the doubly-sloped chirp.

Trace 1: A zero/one code (20 Us/div). Trace 2: The
time complemented version of trace 1 (20 us/div)., Trace
3: An expanded version of trace 1 ( U us/div
(uncalibrated)). Trace 4: An expanded version of trace
2 (= 4 us/div (uncalibrated)). Non-uniformity of the
impulse response amplitudes of the chirp devices, phase
distortions in these devices, mixer intermods and finite

bandwidth restrictions all lead to the type of distortions

seen on the time complemented output in trace U,
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3.3 SAW Receivers Utilizing Chirp Transformation

A receiver configuration that takes the Fourier transform of

the incoming signal so that spectral modifications can be made (see }
Section 2.6 on Spectrum Modifications) and then inverse transforms this j
prior to matched filtering in a SAW convolver, is depicted in Figure
3.k3a. All the processes involved in such a receiver have already been
demonstrated and very little is to be gained by showing the response of
such a receiver. A more versatile receiver can be realized by performing i
the matched filtering in the Fourier domain. That is, if the signal
spectrum were to be multiplied by the spectrum of the impulse response of
the matched filter (i.e, its transfer function), then, upon inverse trans-
formation, the desired correlation is obtained., 1In this way a convolver
is not required. The detailed receiver structure is shown in Figure
3.43b, In order to obtain the output correlation of the input signal !
that is the same as the output from a filter matched to this signal, a
time reversed version of the signal is required. In this case, the
incoming signel with noise is transformed and its spectrum modified, if
it be so desired. The time reversed signal is also transsi.rmed and this
is mixed (actually a pure multiplier should be used here as will be seen)
with the received signal spectrum. The product is then inverse trans-

formed and the correlation obtained, Figures 3.hla thru f demonstrate

the behavior of Just such a system. In this case a 255 bit PN code was
used as the signal and reference. The reference was generated time |
reversed. These can be seen in traces 1 and 2 of Figure 3.kka. Traces

3 and 4 are their respective transforms, trace 5 is their product and

trace 6 is the resulting correlation obtained by inverse transforming
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Figure 3.43: BSAW receivers incorporating chirp transformation.
(a) A SAW receiver utilizing chirp transformation for 4
time-domain filtering and a convolver for matched
filtering. The signal and noise are Fourier trans-
formed, weighted and then inverse transformed using
chirp devices. The transform weighting can involve
simply the removal of a Jamming component by gating.
After the signal is inverse transformed, it is con-

volved with its time complemented version (i.e.
correlated).
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T YMPULSE FIGURE 21.43b
Figure 3.h3: SAW receivers incorporating chirp transformation.

(v)

A SAW receiver whereby correlation is performed in

the Fourier domein. The signal (plus noise) and its
time complemented version are individually Fourier
transformed. The two transforms are multiplied
together after the signal transform has undergone
weighting. The inverse transformation of this product
is the desired correlation., Since the chirp slope is
doubled, when the two transforms are multiplied, this
product must be mixed with a spectrally-inverted chirp
prior to inverse transformation.
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~ except that one of the codes has been summed to a sawtooth wave. Note
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the product. Figure 3.U5b is the same thing with the last four traces
expanded. In these figures all the last four traces were lined up.

Figure 3.hkc, however, shows the signals with their proper time rela-
tionships. The correlation spike is spaced the same distance from the e

DC transform spikes as they are from the center of the signals. There

is an important thing to note here. Since these codes are not plus and
minus one as is required for PN correlation (see Appendix M for the
corresponding plot), the output correlation spike would normally emerge
on a pedestal. However, to the trained eye, trace 5 of Figure 3.&hb has
undoubtedly been allowed to saturate, This saturation has essentially
eliminated most of the DC level in the zero to one input codes so that
the output correlation appears as though the ccdes had been plus and
minus one's. The correlation spike is shown expanded in Figure 3.Lkd.

Figures 3.4lbe and f show results equivalent to Figures 3.lka and ¢

that although the spectrum of this signal is now reaping in harmonics,
the correlation output has not been overly harmed by the process. Thus
the power of the matched filtering process is demonstrated.

Still another improvement can be made. As mentioned in

Section 2.4, the reference signal need not be intentional time inverted.

If the transform of the same signal as the expected signal to be received
by the system is mixed by an rf and the sum term is retained by high pass
filtering, then, when this transform is multiplied by the received signal
spectrum, there will be a product term representing the product of the
signal spectrum and the complex conjugated reference spectrum. This is

depicted as a complex conjugation process in Figure 3,45. Figures




Figure 3.4b:
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Performance of a product-of-transforms correlating receiver
where the correlation is performed in the Fourler domain by
multipliying the slgnal transform with the tranaform of its
time complement.

(a)

(v)

(e)

—~—
e

(f)

Trace 1: A 255-bit zero/one pseudo-random code (5 ps/div).
Trace 2: The time complement of trace 1 (5 ys/div). Trace
3: The chirp-modulated Fourier transform of trace 1

(5 us/div). Trace 4: The chirp-modulated Fourier trans-
form of trace 2 (5 us/div). Trace 5: The product of
traces 3 and 4 (5 us/div). Trace 6: The chirp-modulated
inverse transform of trace 5 or the autocorrelation of
trace 1 (5 us/div). The saturation of the DC spike in
trace 5 has essentially produced the autocorrelation of a
plus/minus (not zero/one) 255-bit pseudo-random code.
Traces 1 and 2: The same as Lraces 1 and 2, respectively,
of (a). Traces 2 thru 6: The same as traces 2 thru 6,
respectively, of (a) except on a .5 us/div scale.

This figure displays the same signals shown in (a) except
that they are being displayed in proper time perspective
(20 us/div all)., The transform main lobes in traces 3

and 4 can be seen to arise about 60 ps from the input
signal centers. The autocorrelation spike in the last
trace arises about 75 uys after these transforms.

The autocorrelation spike (.5 us/div).

This figure is identical to (a) except that the pseudo-
random code in trace 1 of (a) las been corrupted by a

160 Khz saw-tooth signal whose Fourier components can be
seen on either side of the main lobe of the signal trans-
form {the fundamental about 2.3 us to either side of DC).
The correlation in trace 6 has changed very little due to
this corruption of the sigrnul. little hint of the
existence of the saw-tooth Fourier components can be seen
in the product transform of trace S,

This figure is the same as (o) except that the signals

are being displayed in proper time perspective (20 us/div
all). It should be noted thut the correlation is undoubt-
edly heavily distorted since the transform multiplication
is being performed using a mixer, This device does not
produce a linear multiplication unless one of its inputs
is always under saturation. This cannot occur in the
performance of the transform product. (See Fig. 3.6L,)
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Figure 3.45:
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FIGURE 3.45

The block diagram of a product-of-transform system utilizing
complex conJugation thereby eliminating the need to generate
the time complement of the input signal. The same signal
expected at the input to the receiver is also used as the
reference signal, This signal is Fourier transformed and

then imixed with an rf and filtered prior to the multiplication
with the received signal'’s transform. This process effectively
complex conjugates the reference signal's transform thereby
producing the Fourier transform of a time complemented version
of this reference.
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3.h6a to n demonstrate how well a correlating receiver of this type

I S A

performs the desired correlation. Figure 3.46a shows an input square

A AL

pulse and the output triangular correlation obtained. Figure 3.46b
shows this same correlation after it has been coherently dechirped
since the correlation is obtained on a chirped carrier. Figures 2.36¢
thru n are correlations of different types of square pulse inputs.
Figures 3.L7a thru e Jdemonstrate further the correlating ability of
the system. Here is a sequence of ambiguity functions obtained for

a square pulse using this system, The different figures show the same
function on ditf'ferent scales,

Fisures <.4%q thru 1 show the correlations obtained for a
seven bit “arker code sequence. Figure 3.48a shows the input Rarker
code modulated by a low frequency carrier (relative to the chirp
filter center frequency) and the output correlation. Figure 3.L8b

shows the correlation and its envelope obtained by coherently detecting

the output using a chirp and low pass filtering. TFigure 3.48e shows
this on a different scale. Figure 3.48d shows the correlation only
partinlly detected by removing only the quadratic phase variation.

Figure 3.L8f shows the output detected correlation for a positive

bit (where every 7 bit Barker code is a bit of a signal) in the

first trace and a nepative bit in the second trace. Trace 3 is the

cutput when the bits are allowed to change at a Kilohert:z rate.
Figure 3.L8¢ shows the correlation when the input is shifted from i
pins and minus one (first trace) to zero and one (last trace). The

npper and lower sidebands of this carrier modulated code are shown in

Figure 3.19a where it is seen that this center lobe compares woe!'!
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E Figure 3.46: Autocorrelations obtained using the product-of-transforms

| correlating receiver. The same uncorrupted signal is used

for both the input signal and the reference.

(a) Trace 1: A 16 us wide square pulse (10 us/div). The
chirp-modulated autocorrelation of trace 1 obtained by
passing the product of the signal transform and complex-—
conjugated reference transform through a chirp filter
(< 10 us/div uncalibrated).

(b) The same as (&) except that the autocorrelation has been
coherently dechirped leaving only an rf carrier,

(c) Trace 1: A 5.6 us square pulse (10 us/div). Trace 2:
The autocorrelation of trace 1 obtained by inverse
transformation of a product of transforms as are all the
remaining autocorrelations in this figure (10 us/div).

(d) Trace 1: A 1, -1 pulse train (10 us/div). Trace 2:

The autocorrelation of trace 1 (10 us/div).

(e) Trece 1: A 1, -1, 1 pulse train (10 us/div). Trace 2:
The autocorrelation of trace 1 (10 us/div).

(f) Trace 1: A1, -1, 1, -1 pulse train (10 ps/div). Trace
2: The sutocorrelation of trace 1 {10 us/div).

(g) Trace 1: A1, -1, 1, -1, 1 pulse train (10 us/div).
Trace 2: The autocorrelation of trace 1 (10 us/div).

(h) Trace 1: A1, -1, 1, -1, 1, -1 pulse train (10 ps/div).
Trace 2: The autocorrelation of trace 1 (10 us/div).

(i) Trace 1: A 1, 0, 1 pulse train (10 uys/div). Trace 2:
The autocorrelation of trace 1 (10 us/div).

(3) Trace 1: A1, 0, 1, 0, 1 pulse train (10 us/div).

Trace 2: The autocorrelation of trace 1 (10 us/div).

Trace 3: A -1, 0, 0, 1, -1 pulse train (10 us/div).
Trace The autocorrelatlon of trace 3 (10 us/div).
Note that all thecorrelations are cchip modulated.
Furthermore, since the sum of the input signal duration
and the correlation cannot exceed about 100 us, then
any correlations due to signals greater than about
33 us wide are not accurate over their entire durations.
For example, the signal in trace 3 of (m) is L0 us wide
so that its correlation should be 80 us wide. However, |
due to the finite width (100 us) of the chirp device
émpulse responses, the correlation is accurate over only
0 us.

(k) Trace 1: A1, 0, 1, O, 1, O, 1 pulse train (10 us/div).
Trace 2: The autocorrelation of trace 1 (10 us/div).

(1) Trace 1: A1, O, 1, -1, 0, -1 pulse train (10 us/div).
Trace 2: The autocorrelation of trace 1 (10 us/div).
Trace 3: A1, -1, 0, 0, 1, -1 pulse train (10 us/div).
Trace U: The autocorrelation of trace 3 (10 us/div).

(m) Trace 1: A1, 0, 1, -1, 0, =1, 1 pulse train (10 ps/div).
Trace 2: The autocorrelation of trace 1 (10 us/div).
Trace 3: A1, 0, 1, 0, 1, -1, 1 pulse train (10 us/div).
Trace 4: The autocorrelation of trace 3 (10 us/div).

(n) Trace 1: A -1, 0, =1, 1, -1 pulse train (10 us/div).
Trace 2:

3
)4.

The autocorrelation of trace 1 (10 us/div). ﬁ?
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Figure 3.bL7:

Autoambiguity ftunctions . iLtulred i the product-of-

transforms correlating receiver,

(a) thru (e) are autoambiguity ru.ti.ns of a 30 Us square
pulse shown on different {ime und frequency scales,

{a) 10 pus/div along the delay axis (horizontal) and about

28 Khz/div along the Doppler axis (vertical).

(b) 10 us/div elong the delay =x.- ant about 37 Khz/div
along the Doppler wxis.

(¢) 10 us/div along the delay wx s ard about 61 Khz/div
along the Doppler axis.

(d) 10 us/div along the delay uri: wrri about 100 Khz/div

long the Doppler axius,

(e) 20 pus/div along the delay =i ani wbout 37 Khz/div
along the Doppler axis, "te lrs: null of the sinx/x
along the Doppler =xis corvrowy nic te a frequency given
by the inverse of the pilsc wiatlh v about 33 Khz.
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Figure 3.48:

Seven-bit Barker code correlations obtained using the
product-of-transforms correlating receiver.

(a)

(b)

(c)

(e)
()

Trace 1: (Upper right inset) A 23 us seven-bit Barker
code (5 us/div). Trace 2: The chirp-modulated auto-
correlation of trace 1 (5 ps/div). This correlation

is the required L6 us in duration with a seven-to-one
main lobe to sidelobe ratio. The T-bit Barker code in
trace 1 is modulated onto a 2.4 Mhz carrier. Due to
this carrier the transform hetween the positive and
negative spectrums spans about 68 us. Only one of
these spectrums, however, is required to obtain the
correlation if the code is narrowband enough so that
there is little interference between the two.

Trece 1: The chirp-modulated autocorrelation of the
T-bit Barker code (10 us/div). Trace 2: The coherently
dechirped version of trace 1 (10 pus/div). This correla-
tion has been detected down to baseband. )

This figure demonstrates the result of level shifting
the input code. Trace 1l: (Upper left inset) The seven-
bit Barker code (50 pus/div). Trace 2: The chirp-
modulated Fourier transform of trace 1 (10 ps/div).
Trace 3: (Middle left inset) The 7-bit Barker code
level shifted so that the positive bits are half the
size of the negative bits (50 us/div). Trace 4: The
chirp-modulated Fourier transform of trace 3 (10 us/div).
Trace 5: {(Lower left inset) The 7-bit Barker code with
no positive bits (50 pus/div) (fully shifted). Trace 6:
The chirp-modulated Fourier transform of trace 5

(10 us/div).

Trace 1: The chirp-moduliaterd aulocorrelation of the
7-bit Barker code (5 lis/div]. Truce 2: The coherently
dechirped version of trace 1 (5 us/div). The correlation
hag been detected by a delayed vercgion of the chirp
modulation producing a carrier-modulated correlation.
The frequency of the carrier is given by the deley
between the chirps nultiplied by the chirp slope in
Hz/sec (7 x 1010 Hz/cec).

The same as (d) except that the correlation has been
detected to baseband in the second trace,

Trace 1: The coherently dechirped correlation of a
positive 7-bit Barker code (10 us/div). Trace 2: The
coherently dechirped correlation of a negative T-bit
Barker code (10 ps/div). (A1l the code bits have been
inverted or thg carrier-modulated bits have been
shifted by 180°,) Trace 3: The coherently dechirped
correlation of the 7-bit Barker code with the code
polarity being continuously changed.







with the computed transform. Figure 3.40b shows the transform of the
zero-one code.
Figures 3.50a thru f show the intentional addition of mono-

chromatic noise to the signal resulting in varying degrees of distor-

5\

tion to the output correlation. 1In all these figures the noise spike

>

is gated from the spectrum and the undistorted correlation is obtained.

. ey o p—————
g, ke ineiie Y i 0 :

Firures 3.50d4 to f show small to large noise levels. In Figure .50f
the sipgnal was decreased to increase the effect of the noise. Fig-

ures 3.50a and b show correlation distortion that is a function of

— -

the noise frequency. Figure 3.50c shows spectrum gating and its

e

effect on the detected correlation output.

Probability of error data wuas obtained using such a product

of transforms correlating receiver. At first the required Gaussian
noise was obtained by cascading amplifiers. Figure 3.51a shows in
the first trace that this wasn't adequate. The sirnal transform fell
near this null in the noise spectrum. When a diode noise circuit was
used the spectrum siven by the second trace was obtained, Firure 3.51b ;
shows the magnitude non-uniformity ot the spectrum analyzer, where con-
stant magnitude tones were used. Fipure 3.52a shows the uniformity of
‘ne Foorter teanaform over one-half ot cypecteam begsinr i oot 7 00 Faeh
marker was due to a constant magnitude tone. The spacing between markers

represents half n merahertz. Figure 3.5°b shows the signal spectrum, the

-
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Figure 3.50:

Filtering by time gating the Fourier transform and its

effect on the output T-bit Barker code correlation. The

Fourier transforms in all these figures and the monochromatic

noise can be seen in Fig. 3.33a, traces 3 and 4. Only one of

the spectrums is utilized for these results (i.e. the positive
spectrum). (a) thru (c) demonstrate the effect on the correla-
tion when the jamming frequency is varied. (d) thru (f) are
intended to demonstrate the effect of the jammer for various
strengths of the input signal,

(a) Trace 1: The chirp-modulated Fourier transform of the
7-bit Barker code with the fundamental jammer component
seen to the right of its main lobe (5 us/div). Trace 2:
The chirp-modulated autocorrelation of the T-bit Barker
code (10 us/div). (The code duration is 23 us for all
these figures.) Trace 3: The transform of trace 1 gated
by trace 4 (5 us/div). Trace 4: The transform time gate
(5 us/div). Trace 5: The autocorrelation following the
time gating of the transform (10 us/div). Note that the
correlation has undoubtedly improved due to the removal
of the Jammer fundamental component. )

(b) This figure is the same as (a) except that the jammer _
frequency has been increased.

(c) This figure is the same as (a) except for a change in-
Jammer frequency, the gating of the fundamental jammer
component along with a parasitic component and the dis-
play of the autocorrelation in its envelope detected
form. The correlation was poorly tuned in this figure.

(d) Trace 1: (Left) The chirp-modulated 7-btit Barker code
Fourier transform positive spectrum (there is a 2.6 Mhz
carrier on the code) (5 us/div). (Right) The chirp~
modulated autocorrelation of the code (10 us/div).

Trace 2: The same as trace 1 except with the jammer,
Trace 3: The same as trace 2 with the jammer funda-
mental component gated out.

(e) and (f) are the same as (d) except that the signal is
succegsively decreased in amplitude relative to the
Jammer and the gating function is displayed., MNote the
improvement due to rating in each case.
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signal and noise spectrum and Just the noise gpectrum in the three traces.
The probability of error data obtained using this correlating receiver,
along with level detection and error counting circuitry, is shown in
Figure 3.53. Curve A is the theoretical matched filter curve. Curve E

is the response of this receiver which tends to stay within a half 4B of
the ideal curve over a wide range. Curve C was obtained for a jammer to
signal level of about 18 dB. (The error rate was a sensitive function of
the jammer frequency in this case.) Curve D was obtained by gating the
Jammer from the Fourier transform.

An attempt was made to obtain similar data for a continuous
system, A preliminary continuous Fourier transform system is shown in
Figure 3.54. Fssentially, a continuous signal is broken up intc two
alternating streams by mixing with two alternating chirp streams. The
individual streams are transformed separately. In this case the trans-
form streams were summed together before being inverse transformed, cue
to a lack of chirp devices. Although this led to interference btetween
adjacent transforms, it was enough to prove the principle at that time.
Figures 3.55a thru f give an indication of the performance of this sys-
tem. Figure 3.55a shows a continuous data stream followed by the two
alternating chirp streams, the two alternating transform streams, the

sumned transform stream and the inverse transform of this. Figures 3.55b
and c show expanded displays of the input and output for this system.
Figure 3.55c contains a 13 bit code for every bit of the signal. Figure
3.55d shows the different transforms obtuined for different slices of

the signal. The output detail can be seen in Figure 3.55%¢ where the code




Figure 3.53:
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The probability-of-error performance of the product-of-
transforms correlating receiver. (a) Curve A is for
optimum detection by matched filtering in the presence of
white Gaussian noise. Curve B is the performance of the
correlating receiver in the absence of jamming. Curve C
shows the degradation as a result of a constant jammer level
of 1b dB relative to the signal at a signal-to-noise ratio
of about 13 dB. Since the noise was held constant and the
signal decreased to change the signal-to-noise ratio, then
the jammer-to-signal ratio increased as the signal-to-noise
ratio decreased. For these curves the code carrier was set
at exactly 2 Mhz and the jammer was set at 2,069 Mhz, where
the greatest error seemed to occur, The code length was

28 us, the Jammer was a constant tone of 3 vpp and 50 s
duration and the noise was kept at a level of .375 URMS.
Since the single-sided noise bandw1dth was about 6 Mhé

the noise spectral density was n, = (. 375)/(50) (6x10°)
L.7x10-10 joules/hz 4nd the Zlgnal energy per bit E was
given by E = (Vpeax)?(28x1070)/100 = (2.8x10” 7)(vpeak)2
Joules where Vpeak is the peak voltage of the Barker coce
and a bit is considered as an entire code. The sirnal-tc-
noise ratio was varied by varying Vpegk. Curve D shows

the result of gating out essentially the main lobe of the
Jammer which was about .6 Us wide. The gating prcduce: ar
appreciable improvement., Note that curve C was ottaired

by varying the jJammer frequency to produce the greatest
amount of error while curve D was obtained by varying the
gate position and width to effect the preatest improvement.
Since the Barker code polarity was contrclled by a 2Khz
pseudo-random code that repeated once every few hours, these
results were obtained by counting the errors after every
count of 1,048,575 which took 8.7 minutes per point. The
repetition cycle of 500 uUs was chosen to leave plenty of
time between individual correlations., Each pseudo-random
code bit lasted long enough so taat it could be directly
compared with the pulse polarity cbtained upon threshold
detecting the output correlation peak., Any discrepancies
between the proper polarity and that obtained from the
detection process produced a pulse from the logic circuitry
that incremented the count in a counter. Latches were used
to pick up the error count after bit counts of powers cof
two-minus one. The width of the correlation-peak windcw
could be varied. Only during the time period of this window
would discrepancies be looked for. The threshold level «.°
the correlation threshold detector could also be varied,
however, this was always set to zero (since the output was
either plus or minus). (b) Brror counting circuitry. The
correlation is zero-level detected and its peak value is
compared to the input bit used to generate the correlation.
An error triggers a counter and the count is regularly latched
and displayed. (c) The system used in the error analysis. An
extremely lon¢g PN code has every bit modulated by a seven-bit
Barker code and is correlated by this code in the product-of-
transforms correlating rec-iver.
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Figure 3.54: The block diagram of a system used to Fourier transform a
continuous signal. Two identical chirp transform systems
are used each handling 50% of the continuous siifnal, The
signal is gated back and forth between the two systens vy
a flip-flop controlled gating process, This arrancement
permitted adequate time before and after the signal to
eliminate interference from neighboring portions of the
signal. The gated time interval was set at anywhere from
50 to 80 us leaving 20 to 50 us for the Fourier transform
(enough to handle 1.4 to 3.5 Mhz bandwidth signals). The
system shown here summed the two transform streams and
utilized a single device to inverse transform this continuous
transform stream. This technique, however, can only work tc
an extent even when the transforms are gated thereby leaving
appreciable space between one another, In this case, a
large portion of the inverse transform will be a version of
the original continuous signal, however, there will always
be an appreciable amount of distortion over a percentage of
this output due to interaction between transforms when
convolving with the chirp device impulse response, If less
of each transform is retained, the output is distorted over
a smaller percentage cf time (due to the transform interaction)
but it also becomes more filtered due to this gating.
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for an individual bit can be seen at the output in trece 4, The first ,j
four traces of Figure 3.55f show the input signal, the cutput signal,

the summed chirp streams (used for coherent detection of the output) and
the transform stream. The last two traces ar¢ expanded versions of the

input and output.

N

A continuous product of transforms ccrrelating receiver was

v — -
A

—a- - 3 o
Ml VY a4 e K

then built. Figure 3.56 shows the structure of this system which con-

sists of two independent product of transforms systems, Fipure 3.57

s

shows the timing of sipnals within this system amd Figure 4050 prives o

detailed description of signal flow through the system.  Figure 5,900

shows the two alternating input chirp modulation streams, the two ualter~

nating transform streams, the two alternating cecrrelation streams and

C e .
Ty

the summed correlation streams. Figure 3.59b shows expanded portions of

the transform stream, the input codes and the output correlations.

Figure 3.59¢ shows continuous correlation of = six pulse repetitive

signal. Only part of the resulting eleven peak correlation cnn be seen.
Figure 3.59d shows the correlation peanks when the system is mictuned

in frequency in the first and third traces. Fijrure 3.59% shows the re-
sult when the chirp stream slopes do not match the chirp filter slopes
{(traces 1 and 3). Figure 3.59f shows filterings by time yatine of the

continuous signal transform stream. The transform for every coded bit

has an upper and lower sideband due to the crarrier that was included to
facilitate the addition of noise to this sipnal in a4 microwave summer.
The sipgnal was decreased in size so that it could be overwhelmced by the

noise. 'The first two traces are the tranaform ctream and the correlation

[P -Mm‘.m «

- .
PEESELT D & $ S B




r i e e [ e G e e b At A s - v -

Figure 3.55: Results using the system of Fig. 3.5,

(a) Trace 1: A baseband pseudo-random code input signal
(200 us/div). Trace 2: Alternating chirp stream (41)
(50 us/div). Trace 3: Alternating chirp stream (42)
(50 us/div). Trace 4: Alternating Fourier transform
stream (¢1) (chirp modulated) (50 us/div). Trace 5:
Alternating Fourier transform stream (¢2) (chirp .
modulated) (50 us/div). Trace 6: The sum of traces 4
and 5 (50 us/div). Trace 7: The inverse transform of
trace 6 (chirp modulated) (200 us/div). Since the
inaividual 80 us segments of the input signal were of
relatively small bandwidth, the interaction distortion
between transforms is hard to see and somewhat inte-
grated out in time by the oscilloscope. This is true
since the chirp streams and input code ran asynchronously,
although they have been individually locked for this photo-
graph.

(b) Trace 1: The baseband pseudo-random code (200 ps/div).

Trace 2: The chirp-modulated output of the system delayed
by about 100 s from the input (200 Ws/div).

(c) This figure is the same as (b) except that every bit of
the pseudo-random code is a 13-bit plus/minus code. This
increases the bandwidth of the signal and even with oscil-
loscope integration the depradation due to enhanced tran:-
form interaction can be seen,

{(d) These traces show the Fourier transforms seen st concecu-
tive locations along the Fourier transform stream (10 us/div).
Fwven though the input signal for any one transform was con-
tinually changing some synchronism was evident since every
Fourier transform appeared to be different from the next.

(e) Trace 1: The coded pseudo-random baseband code (200 s/div).
Trace 2: The chirp-modulated output of the system
(200 us/div). Trace 3: Trace 1 expanded to 2 us/div.

Trace L: Trace 2 expanded to 2 us/div. Note that the ccdes
for every pseudo-random code bit are clearly seen.

(f) Trace 1: The coded pseudo-random baseband code (200 us/div).
Trace 2: The chirp-mndulated output of the continuous
transformation and inverse transformation system (200 us/4iv).
Trace 3: The surmation of the two alternating chirp streams
(200 ps/div) used for coherent detecticn of trace 2,

Trace L: The chirp-modulated Fourier iransform stream [the
summation of the twn rchannels) (200 us/div). Trace 5:
Trace 1 expanded to 10 usz/div. Trace 6: Trace 2 exprnded
to 10 us/div where the individual rodes of each bit can te
discerned,

.
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Figure 3.56:
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FIGURE 3 56

The block diagram of a continuous product-of-transforms
correlating receiver. This system produces a continuous
stream of output correlations by processinp every other
coded bit of the input s5ignal in one system and the
remaining coded bits in another identical system. By
'ping-ponging'! between two systems in this fashion, streams
of 50% duty cycle are processed to produce alternating
correlation streams which become summed at the system out-
put. Both of the identical halves of the receiver employ
complex conjugation thereby eliminating the need for gener-
ation of the code time complement. The product transforms
from the two halves of the system are separately inverse
transformed before summation,
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Figure 3.57: Signal flow through the continuous preoduct-of-transforms
correlating receiver., 1In this fipgure & is the width of a
single coded bit, % is a chirp device pedestal of delay,

1 T is the impulse response duration, 2B is the slope (in

rad/sec?) of the chirp devices, wy and w, &re the starting

and ending frequencies, respectively, of the chirp device
impulse responses, w, is a chirp device center frequency
and wg and we are the respective starting and ending
frequencies of the chirps when limited to A seconds.
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Figure 3.58: A block diagram of one of the two identical correlating
halves of the receiver showing somewhat rigorcusly the flow
of information through the system. Below each mathematical
representation of the pertinent signal at each point is the
time period over which it is valid relative to a coded bit
existing fromt = 0 to t = A. The terminology is the same
in this figure as that used in Fig. 3.57. Be is the band-
width of the chirp filters., The relationships for the
centering of the Fourier transforms and the correlations
within their valid regions are also given. When sum or
difference terms resulting from a mixing process are
ignored, it is because these terms are not important and
will be filtered by a purposely placed filter or the chirp
devices themselves,
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Figure 3.59: Performance characteristics of and resultc obtained frum

: the continuous product-of-transforms correlation receiver.

' (a) Traces 1 and 2: The alternating chirp streams (50 us/div).
(These streams in this work had to be generated using an
external VCO since not enough IMCON's were available,

This led to difficulties in coherently detecting the out- ]
put correlations due to VCO instability.) Traces 3 and k: i
The chirp-modulated alternating Fourier transform sireams
(50 ys div). Traces 5 and 6: The chirp-modulated
alternating correlation streams (50 us/div). Trace T:
The sum of traces 5 and & (50 us/div).

(b} Trace 1: The chirp-modulated stream of contiguocus trans-

- forms (summed for display) (20 ps/div). Trace 2: The

baseband input signal consisting of a contiguous train

of 13-bit codes (20 pys/div). Trace 3: The chirp-

modulated stream of contiguous correlations (20 pus/div).

(c) Trace 1: The baseband input signal consisting of a con-
tiguous train of signals composed of 13 alternating
plus/minus pulses (20 ps/div). Trace 2: The chirp-
modulated stream of contiguous correlations with trace 1
as the input. Note that since the correlaticns must be
gated to the same duration as the input signals, only
half of their duration can be displayed. 1In this case
only 12.5 of the 25 correlation peaks can be viewed.

Due to improper system tuning, however, only about 3

peaks can be seen in this figure, Trace 3: Trace .

expanded to 10 ps/div. Trace L: Trace 2 expandea to
10 pys/div.

{(d) Trace 1: Improperly centered contiguous output cor=-
relations (20 pys/div). Trace 2: Properly centered
correlations (poorly tuned, bowever) (20 us/div).

Trace 3: [mproperly centercd corrclations (00 us/div).

(e} Trace 1: A positive mismatch between the slope of the
input chirp modulations and the chirp device slopes and
the effect on the output correlatin stream (100 ur/div).
Trace 2: A good match (20 ps/div). Trace 3: A negative
mismatch between slopes (20 ps/div).

(f) Trace 1: The chirp-modulate? contiguons stream <. Fourier
transforms of a 2 Mhz carrier-modulated code (50 ps/div'.
Trace 2: The autocoerrelations (chirp-modulated) ~f thiz
continuous code stream (50 uc/iiv)., Trace 3: Trace .
with the addition of wideband noise (50 us/div). Trace :
The autocorrelation streem with this ncise {5C us/div).
Trace 5: A gating pulse stream used to perform low-pass
filtering to eliminate a large p.rtion of the noise eneryy
(50 us/div). Trace 6: The gated transform stream
(50 us/div). (Trace 3 gated by trace 5.) Trace T: The
correlation stream after gating (50 us/div) showing low-
pass filtered corrclation peaks,
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stream, The next two traces are the same except with noise added.
Using the gating signal, trace 5, the correlation has been slightly
improved as seen in trace 7. Figure 3.60 shows an isolated 7 bit
Barker code correlation oscillating between plus and minus one. Tn
the 2nd trace noise has been added, yet only the sidelobes are smeared
by the noise. Figure 3.61 shows why this continucus system could not
be used for probability of error measurements. What are supposed to
be definite positive and negative peaks turn out to be peaks of all
gizes. This, as it turns out, was due to the fact that an externpl
chirp senerator had to be used (due to the lack of enoush chirp filters)
that could not be locked to the system rf's.

Figure 3.6. has been included to demonstrate the lack of
aliasing in a chirp transform system, These traces are the Fourier
transforms of cornisecutively hircher frequency square waves.

Finally, Figures 3.63a and b show the output of a mixer for
2 ramp at one input and a continuous tone at the other for differinge
amplitudes of this tone, Note in Figure 3.63a that as the level of the
continuous sipnal besins to fall, the mixing process becomes n-n-linear
and deviates markedly (Figure 3.63b) for very small signal levels,
Therefore, except in places where one of the signals can be made to
sat' "ate the mixer, multipliers should be used in place of mixers to
perform the multiplication between two varying signals. Special high

frequency multipliers are required in the microwave area.
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Figure 3.60:

Figure 3.€1:

Figure 3.62:

Trace 1: An isolated 13-bit Barker code correlation -
fluctuating positive and negative to the polarity of the :
input bits (20 ps/div). Trace 2: Gaussian noise used to
sum to the input Barker ccde {20 us/div). Trace 3: . The
correlation after the addition of the noise (20 us/div). i
Note that the sidelobes are most greatly affected.

Trace 1l: The chirp-modulated stream of output correlations
(50 us/div). Traces 2 thru T: The result of coherently
dechirping the correlation stream with an unstable VCO
chirp generator. In these traces all the correlation peaks
were supposed to be positive (50 us/div).

This figure demonstrates the absence of aliasing in a
chirp transformation system. If there were aliasing,

the harmonics of the Fourier transform (of a square wave)
in trace 1 would double back into the viewing region as
the square wave frequency was progressively increased in
the following traces (2 us/div).
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PART IV
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DISCUSSION AND CONCLUSIONS

; In Section 2.1 an analytic model of the convolver has been
developed that essentially follows the flow of information through the
i device. The analysis decomposes the two input signals into their
Fourier components and determines the effect the convolver has upon
every component on an individual basis. By such a process the potentials ri
; at any point inside the semiconductor due to the two counter propagating 'Q
surface waves are found to be given by the desired surface waves con- i{
volved by distortion functions that are dependent upom the input trans- rg
ducer matching networks, the functional dependence of the fields upon i
dittance above the delay line end upon frequency, the mode structure of

the surface waves beneath the semiconductor as a function of space and

frequency and the dispersive nature of the wave in terms of both the

frequency dependence of velocity and of attenuation. Both the input ?2
signals and the Cistortion terms are r:al and in gerera” tley axe siz- i
nals whose rf carriers can be both amplitude and phase modulated. These |
signals were decomposed immedistely into in-phase and quadrature components o
and the potentials within the semiconductor were used to obtain an E
equation for the output potential at the back contract of the semi-

condurtor was obtained where only the second order interaction was of
interest. As a result of this analytic approach the potential can be
sbown b be piven by a summation of terms consisting of u dominant %

component. that o essentially the desired ocnvolution with a zero-order-

moment, related distortion weighting within the convoluticon integral and
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also additional smaller distortion terms that are integrals involving
higher order moments and derivatives of both the input signals and the

distortion terms.

In Section 2.2 a technique was described for the generation of
three-dimensional ambiguity functions utilizing the SAW convolver and
based upon the use of a 'slow ramp' and it application to a VCO for the
generation of a 'slow chirp' and to the oscilloscope where it is summed
to the correlation output of the convolver. The slow ramp must be slow
enough to be essentially constant over the time interval of a single
correlation and to allow enough correlations to occur over its du¥ation
so as to produce a continuous display. The technique was demonstrated
to work quite well and in particular it was shown that the functions can
te dynamically modified with the potential for wave form optimization.

In Section 2.3 a general formulism was described for the inter-
pretation of convolver operation in the presence of storage. The direct
convolver output was shown to be the result of the interaction between
the fields accompanying the surface waves, due to stored charge along
the semiconductor and applied directly to the semiconductor back contact
end the perturbation of the average charge density of the semiconductor
due to these fields. The field/charge-density second order interaction
was shown to produce a multitude of time dependent terms some of which
are constant over a large portion of the interaction time whereas others
represent the desired convolution between the two surface waves and con-
volution or correlation between these waves and the stored charge pattern.

This formulism furthermore led to the types of interactions capable of

T2
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inducing apprecisble charge storage along the semiconductor from which the
evolution of the duel nature of storage correlation vs. output convolution
becomes evident. Storage and recollection utilizing the potential applied
directly to the back semiconductor contact and the convolutionary relation-
ships involving this signal also evolve from this study. Higher order
in@eractions of which there is growing interest are mentioned simply in
passing. Some experimental results demonstrating the existence of the
storage mechanism utilizing surface states and P-N diodes have been pre-
sented. An attempt to produce a simple convolver structure with the
inherent capability of producing a uniform interection while simﬁltaneously
allowing quick and easy sample substitution has been described. Results
demonstrating the capability of storing a reference signal and later
generating an embiguity function using this reference have also been
presented in which case the uniformity of interaction was necessarily

an important performance characteristic. Although weak due to excessive
damping (in an attempt to obtain uniformity) the presence of the ambiguity
function was noted so that the existence of storage and its correlating
interaction with surface waves had been verified. During the performance
of this short lived investigation and thereafter the technology for con-
volver related storage has been well developed whereby essentially &ll

the techniques and interac;ions here described have at some time been
verified and utilized in one form or another, At the present time much

of the work in this area is related to such devices as the integrating
correlator for which a third order (three signal) interaction is employed
These higher order interactions are being studied for their potential in

producing spurious-free outputs.
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In the remaining three sections of Part II of this report chirp
transformation has been described in some detail and its capabilities have
been demonstrated Qith respect to time domain spectrum modification and
most notably the ability to remove the bulk of a narrowband jammer
utilizing nothing more then a time gate. The formulism was developed for
both the chirp filter and the convolver implementations. Some analysis
was also presented showing the inherent differences between the utilization ;%
of up versus down chirp devices and the MCM versus the CMC chirp trans- %
formetion configurations. This formulism developed the relationships ﬁﬁ
necessary for the proper Fourier transformation of a necessarily finite i,
duration input signal. From this it was shown that the time origin of
the input signal is dependent upon the center frequency of the chirp used r
to coherently dechirp the transform whereas the position of the transform "4
within the calculable output time interval is dependent upon the center
frequency of the chirp used to modulate the input signal.

The analysis also formulated the required multiplying factor ;s
for a typical device impulse response (in order to produce reasonable
results) and it was found to be of the order of magnitude equal to the

square root of the chirp slope which, in most cases, is gquite large

input signals having in-phase and quadrature components so that complex-

i

|

|

|

|

€ 1
(typically sbout 10" ). Most of the analysis was performed utilizing i
I

|

data Fourier transformation was automatically included and the necessary }
|

formulism derived. The existence of the Fresnel component concurrently

with the desired Fourier component of the output was discussed and the

necessary criteria through which this unwanted component can be ignored




were presented. The uvtilization of the properties of the Fourier trans-
form and the results of modifications to this transform with respect to
the inverse transform were also covered and the results of the experi-
mental work verify this discussion.

The experimental results demonstrated conclusively that the
Fourier transform can accurately be obtained in real-time and both its
real and imaginary components are readily accessible and seem visually
to correspond extremely well with the celculated components of the trans-
form when obtained using a well optimized system. It wes shown that
optimization involves the use of well-matched devices {implying extremely

linear chirp slopes of equel megnitude) and offset center freguencies

between the expansion chirp device (used to generate the chirp) and the
compression chirp device (from which the transform arises) so as to
eliminate interference from mixer internods and mixer feedthrough which
itself can produce a Fresnel transform arising simultaneously with the
Fourier transform at the device output.

The Fresnel transform was shown, in its own right, to possess
the capability to perform a useful signal processing function. This
transform, fairly completely documented in the appendix, was shown to
be applicable for the selective time complementation of a signal. The
transform is furthermore shown to be the natural describing relationship
between the input and outr.t of a chirp filter from whence its power is
derived. Chirp modulated signals also produce Frecnel transforms where
the Fourier transform arises only for a special case.

The power behind the Fourier transformation itilizing chirp

transformation has been demonstrated by employing the technique in a
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variety of correlating receiver structures. Here it was shown that
inverse transformetions performed on the product of two chirp transforma-

tions produced output signals equivelent to the correlation between the

two input signals which is & direct application of a well known Fourier
property (i.e. the convolution theorm). The correlating ability of such
a system was demonstrated using a variety of signals and by the generation
of ambiguity functions. The signal processing capability of this system
was shown to be quite competitive by the generation of 'its protability
of error curve with and without Jammer and with and without time geting
of the jammer from the Fourier transform. The ability to dramatically
improve signal detection by time gating the jammer, however, sets this
receiver apart from other existing correlating receivers.

Overall, this report has demonstrated and analyzed a variety
of SAW signel processing techniques al]l some way or another involved with
convolution cr Fourier transformation. The techniques were typically
built arcund the use of SAW convolvers and SAV chirp filters. Although
most of the convolver analysis nas been directed specifically toward the
SAW separated-medium convolver the chirp-filter-related information is
general enough to apply to any filter capable uf producing an epproxi-
mation to the idealized form of device response assumed in this analytical
approach, All the analysis, however, was mainly directed toward surface
vave technclogy and the chirp filters of large time bandwidth product

that are evolving in this area.
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APPENDIX A
Fresnel Analysis*
Defining Equations (convolutional relationghips)
Fresnel Transform:
- -18(t-1)2 -3pt?
I-TB(T) = 38",T[f(t)] - ._fa f(t)e dt = f(1) % e (A-1)

Inverse Relationship:

£(r) = T, [Fa(D] = B R r@d® a2 B r 0 « I8 -2

Proof of Transform:

2 2
f(t) = _B.‘[: [£: f(to)e-jB(tO-T) dtolejs(t-‘t) dt

=

2 2
(to)ejB(t -to )[‘!—': ejZB(to_t)T dT]dto

Al
—~
8

-
-0

2 2
-0 f(ta)ejs(t o )G(to-t)dto = £(t)

Expansion of a Periodic Function in Quadratic Orthogonal Terms

2
£(t) = n-an aBnejB(t"“'o) (A-3)

where T, = w/BT.

Since

T/2 2 v |2
IT/Z eJB(t-n‘to) .-JB(t-n To) dt (A-4)

-Twhenn-n'
= o0 otherwise
= T8(n-n")

* Por further details see Arsenault (1979).




then
U =3 Loy * (077380, (a-5)
In the limit as T approaches infinity
/2 ., ~3B(t-nty)> ® ooy miB(E-T)?
Tasn = '-£T/2 £(t)e °’ dt TTw""._fm f(t)e dt (A-6a)
= Fg(D)

o 2 . 2
0 =8 T 10, S e B 2 (0B e (a6

The Fresnel transform of the periodic signal given by equation (A-3) is

Fa(1) = § I g 8(t-nTp) (A-7)

As can be inferred form these equations, the Fresnel transform of a
signal represents a mapping of the magnitudes of infinite duration
quadratic phase terms as a function of their delays. A periodic signal
can be written as an infinite sum of these terms having magnitudes aBn
and delays that are multiples of T " n/BT. The Fresnel transform maps
time to delay as a function of the variable B. This f is arbitrary and
can be chosen to meet the requirements of the analysis to which the
Fresnel transform is employed.
In general

FB(T) = Ry(T) + jxe('r) - Aa(r)ejd’ﬁ(ﬂ

(A-8)

TS T T




where

{ s

Ag(D) = RgA(D + X0’

and
8g(T) = tan-l[xe(r)/RB(T)] .
With £(t) = £ (t) + ij(t)
then
Fo(m) = 7 [£,(t)cos(B(t-1)%) + £, (t)sin(B(e-1)D)]dt
- 3 £ 15 (Detn(B(e-1)%) - £ (D)cos(B(t-0) ) lae

so that

RG(¥) = £ [£ (t)eon(B(t-D)") + £ (t)sin(B(t-)7)1dt

and

Xg(1) = -f2 [£(t)stn(B(e-D)%) - £ (Dcos(B(e-T) ) ]at .

Furthermore

£(0) = 8 £ IR (D cos(Be-?) - xy(MatncB-nHar

+3 -:-{: [ne(r)sin(a(t-r)z) + xB(r)cos(B(t-r)z)]dr

so that

%“)-%f[%ﬂn“waﬂf)-%hhmw&ﬂfnh

P4
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(A-9)

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)




£,(0) = & 22 Ry(sta(8t-0? + Xy (Decos(B(e-1 D 1ar .

From these equations it can be seen that with
erm—
f(t) B.t,1 FB(T)

then
* *
£7(t) Bt Fg(T) .
Some other general relationships are
00 - Btz
Fg(o) = L7 £()e” 3 at
o 812
£(0) = & £ F, (e ar

2
Lo Fatnag = 2 &P [ 20)4£ (o))

Eq. (A-22) 1is obtained as follows:

: 2
Lo Fa(mdas = £5 12 £(e)e 3BT geqg

2
= /2 £(0)e 3BT amg(-tZe2erar

T
B e
T

- B 2 0

e 3BT /2 £(e)[8(t-21) + 8(r)]de
i -5812

=2 P g2y 4 £(o0)

Here the equation

§(e-t )

8(a(t)) = L ——B
B la (e )]
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(A-17)

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)

(A-23)

QY < A AT TN T AT

e WA [ N =




where
2
a(t) = =t~ + 2t71
a'(t) = -2t + 2t
ty = 0 | zeroces of

a(t)
ty = 27 ]

was used so that

s=t? + 2er) = ${8) 4 $C=2D) (A-24)

Ener Conservation
Inergy

Since

£(0)E*(r) = [£(8)| 2

- i:. oL FB(T)FB*(T')eje('tz_r'z)eJZB(T'-‘t)t dxax’
1r
then
EHOIRTE % I 'FB(T)lzdr s
since
£ e § 8¢’ (A-26)

Therefore, if f(t) represents the voltage across a 1 Q resistive load,
equation (A-25) says that the total energy dissipated in this resistor by
£(t) is proportional to the integral of the square of the Fresnel trans-

form over its entire spectrum.




Causal Time Functions Stealz

£ (t) = [£(t) + £(-£)])/2

Linearity

a,f,(t) + oo0 + anfn(t) "“:T—": a,FBl(-r) + s 4 anl-‘en(-r)

. Symmetry
PrUSEES. | |
P_p() g g D

. 2
O JRO Ll

T -

Function Inversion

£(t) ‘&T’T’ FB(T)

2 2
ejZBt -— T e'j 287 £(~T)

Fg(t) "ae,1 B

Proof:

2

2
F( = e BT e O] o

2 2
- 3T 2 (£()e 3B ) I2BTE 4¢

2 2

2 2
= BT 2L e e BN ) I B ) I BT ge

2 2
=T 2 £y

2
- % e-jZBT £(-1)

Q.Eo
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(A=27)

(A~28)

(A-29)

(A-30)

(A-31)
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Proof:
2
£: f(t-to)e'js(t-‘l’) dt (subst. A= t-to' di dt)

2
- -f: f(l)e-je(k + to-‘[) a

T e LG

Time Differentiation

AdEB(T)
B,t,T dT

df(t)

de

Proof:

2
dgtt) _%{: 2jB(t-T)FB(-r)e55(t-‘r) dt

2
= 2jBtf(t) - % £: 2jBTFB(T)ejB(t'T) dt

—r—= 2
dg;“') - {: sz(t-‘r)f(c)e'.‘]B(t-'r) dt

2
= —23BTF(T) + [ 238ts (e Bt g

.» 32
#m .8 220 JBCE=T) gz 4 258eE(r)

| 2 2
- % —f: [: 2JBt°£(t°)e-je(t°-T) ejB(t-T) dtodT
e

2 2 22
~ ~3B(to=T) eje(t:-r) it = e;\B(t -ty ) %G(to_t)

2
ditt - %'5: E%éll ‘je(t‘r) dt + 2jBtf(t) ~ 2jBtf(t)

2
B (= dF (1) _§B(t-T)
'w-f-n'Tg'l' dt -
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:
I
Time Scaling g
—1 I
f(at) 8,t,T |:| FB__ (at) (a pos. or neg.) (A-33) 3
; 32 ‘1,
Fresnel Transform Conversions :
i
5;8 bT[f(Ct)] - |21-| 33" [£(t)] (c pos. or neg.) (A~3k) '
’ = B,beT ?
C k}
¢
1 o & v,
" %, /a brlf (7 V] (a pos.) (A-35)
L o2 e 0] ( (A~36) :
= = a neg. - %
Jrap < 8+Y1a] b Ve £(t) real) {
= |b] %2B’T[f(b0t)] (a pos. or neg.) (A~3T7) E
f
Time Shifting E
f£(e-t) g, o Fplt-ty) (A-38) g
Y
Integration Theorem
i
t e T - '
.L' f(to)dto 8,t,1 f_“ FB(To)dTO (A-39) :
Time Convolution
— -
£,(t) B,t,T FB(T) » £,(1) B.t,T Gg(T)
Al
fl(t) # fz(t) B,t,T fl('r) * GB('r) (A~L0)
or
Apr————— <
fl(t) * fz(t) B.t,T Fe(r) * fz('r) (A41) |




Frequency Convolution

£,(0) T < Fg(r) , £,(t) .o GB(T)

' &, T 8,t,T g
i Fg(t) » £,(¢) ‘m’ Fg(T) % Go(1) (A-42) E
or i

£1(t) * Gy(t) ‘rm’ Fa(T) * Gy(1) (A-43)

Fresnel/Fourier Relationships

With
2
E Fo(0) = L2 £(e)e B ge & & LE®)]

and

J‘:[f(t)] -0 £(rye Ut gt (A=Lk)
then

-jB'r2 o -jBtz

Fs(T) =e ;_zsr[f(t)e ] (A'hS)

and
2 2
Tt 1= T g e (A=46)

Product of Two Signals

a2 2 s s iar? _spe?
TG Ry TR C AR LR SN TCEb Dl

or 2 2 o« 2 a2
ENC Rrwenal PRl E SNOIELGEE SRS Rl

(A-UT)

Product of Fresnel Transforms

2 2 * 2 2
Rl HOTEAIR R A ((OTEES TR Rrwanalt AOTRO

(A-48)

or

2 -1* 2 2
RIS ORI N UDE S Tl Rwangh RUTNC

8
m
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The Equivalent Gibbs Phenomenon For Fresnel Transforms i

2
With F (1) = /. f(co)e'je(t°'r) dt,

8
then ;
2 i

£o(t) = B 1 po () dBLET) T f

=

2 2 .
fn {: f(to)e-je(t°-1) ejB(t“T) dt, dt !

Ao
o

A |
8

2,2
I, f(to)ejs(t -ty ) [g ejZB(to-t)r at deg

I f(to)eje(tz’toz) 2n(BED
B(tgy-t)

A |w

o

2
-jBt x sin289t] ' (A-k9)

2
ejBt [f(t)e 3t

-8
v

For

£(r) = £,(t) + [£(0) - £(0D)]U(L) (-50)




: 2

i jge 2 sin(28Q(t,-t)) )
# ® -jBt o 4
£(t) = E—— 17 £ (tp)e IFto dt !
Q T c o (tomt) o {1
2 1

jBe o 2 ‘

+ S [£(0%) - £(00)] £ u(e)e % ;

sin(2B8(to-t))

RS S R S O

dt, . (a-51)
(to-t)

The discontinuity at t=0 has now been replaced by the correlation of a E%EE

function with a causal baseband chirp due to the partial elimination of the
Fresnel transform prior to inversion. In Fourier transform theory the dis-
continuity becomes the correlation of a sinx/x function with a unit step.
This approaches a constant for t >> 0. Due to the chirp high frequency
variation, however, the step discontinuity approaches zero as t + @ for

finite Q.

Signal Product (Different Slopes)

In general

2 2 e
(08 S v 2o L (el [T (e -
'$y 4 i
(aty-B1) , (a'tl-B'c)z »
o (aty-B) (¢ - T-PY:B—) at eJ T i1 (A-52)

or for y=0 and B=2a

2

-—a g -jBT @ B
e g 5 e T el 7T
2

I g(t)e™d % (t'(ZT-Tl))zdt o g’ (21-17)° a7y

-— B -jB'l’z h | % 1_2 % )
£(£)g(t) T 1 [f(n)]e a3 (a(0)]
B.t.-z- i 8 2 T
S 7T (A=53)
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Product of Fresnel Transforms (Different Slopes) !
!

In general

2 2 2 . (at 1 BT) 3
%e:!Bt I f(tl)e-jatl I GY(T)err oI owy-B) (v - —p— 2 s
i
(at -Bt) i
&J i
"'é dty R pa(r)cY(r) (A-5%4) |
Fresnel Trangform Pairs i
-8 2
IO 38T (A-55)
- [T -j ut
1 etv/ge ¢ (a~56) |
!
or by using Eq. (A-146) and the symmetry property.
2 — |B-a| m ., aB .2
jot” @——u /° -} Ta— =T (for o pos. (A-57)
€ B, t,T v lg:hl € B-o 7 e’ B or neg.)
|
B,t,T “ §(1) for o = B (see Eq. (A-148))
cosgt? == L 5(r) + /T I T e -3 § (A~58)
s 8,t,T 2B v/ 8B ¢
‘% Likewise
2e——a T TR X
sinft e.t.c 78 §() +3 Sgge  be 2 (A-59)
con(Beiey e T Mgy « ST BT 37T 60)
_p e 2B SM + /g (A-
2
tluot e-—oun /T jn .‘lw—o tjw,T
° B vES G ABeT (A-61)




cosw t < > /x -j%ejzg-cosuwr
° Byt,T "B (]
A e T: S
cosatz‘m%e" B-a 4[/|-B-1T_E‘ ej e
B .2
[T =T
+/lB+0t|e B )
2
Yo w
J(wt+8t) T = == Yo, -
° ‘é_:‘;’ee 466(1+28)
(287 + w )2
Jlagt + at?) e—w —gpr? SH T 4 X g0
B,t,T Y/ [B=l ®© 4 e 4(B-a)
- 2
(28T mo)

ot + at 2y e -:lBT / e 7T 3 TTE

B,t,T 4 lBﬂ!l
2
(28T - wo)

— i
oI (ot + Bt2 )..E:.e-js‘l' //127_8 i B —w

2
U(t) f‘l’ -3Bx dx

B,t,T =
17
- /hzreI e /28) -jS(‘r/zs)]
t JBtz “—2>p T
f-dbe odto Bt‘l’ BU(T)
B 2
18t e ST TG
g,t,1 v 88 ¢ dre 2
— T B 2
{:cosszdx Btr.lZT-B‘U(T)"'//E-B' e-jz{:e-:’f% dt,

//-"82 /;B C(t//:s) = f cosfx dx

(A-62)
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i E‘
aT To :le l.-'
L £(t) ={at t>0 ‘B_Tr. Il f e dx dt, (A-T2) ';
{5 ’
{1 0 t<0 %
‘ 7 ™+T ., 2 1
Po(t) = [U(T + %) - Ut - —)] '_’B P TI e~ IBx gy (A-73) E
2 )
§ _ ] _ .
{ - et T e JB v oen B
i
: - sseom /By - gscan /By
Proof:
2,, 2
8lt+tg) + S(t-to) 5o 2e71B(T+0 ) og28e (A-Th)
28 _38(t%+7oH) —_— ORI (aes)
7 © 0 ‘cos2BT,t B,t,T (T+T0) + 8(T-T,
I8P
S(t+ty) - S(t-ty) = 8o, e ° ‘gin2Bt,T (A-76)
28 _1B(t241o0) — (A-T7)
g e 0 “gin2BT,t 8,t,T 8 (T4+1,) = 8(T-T,)
28. 2
S s/ By v Jl e 1L sublex S - g U@
— T B 2
+3 et LT .
: 2
, sin at jBt T e jBT _ _a_
: — e B.tt B v + ) u(r 28)]
' In general
¢
AN 2 _181'
' jBt” *—— e (£(t))
£(t)e Bt 281:

2
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2
2 =-3jBT
Bt e—p , T e
u(t)e B, t,T ] B T

(A-81)

“he Fresnel Transform and the Chirp Filter

The output, g(t), for an input, £(t), of a device having the
impulse response given by

2
h(t) = e 3Bt (A-82)

! is 2
: gt) = L. £(r)e IB(E=T "y (A-83)
which is exactly the Fresnel transform of f(t).

The impulse response given by Eq. (A-82 ), however, is not

realizable. A realizable form is given by
h (£) = [U(t) - U(t-T)Jeos (et - Bt?) . (A=BY)

If £(t) exist over the interval 0 £ t £ T; (only) where Ty < T, then over

zhe interval T, X t £ T the output of this device is given by

=

2
g(t) eI%ot {: f(T)e-jw°Te-jB(t"T) dt + c.c.

o=

= - ejwot JB T[f(T)e-jon] + c.c.

N~

ejwot[RB,t + ] +c.c.

g, e

[R

]
N

B’t[f(T)e'jonlcoson - XB.t[f(T)e-onT]sinwot] . (A-85)

“he output of this realizable (yet still somewhat idealized) device is
zherefore the real and imaginary Fresnel transforms of f(t) in phase

quadrature to one another,

eyt —
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With f£(t) = £ (t)cosuyt
then
g(t) = [ Rg. [LE(T) Jeoswgt = XB,tIf(T)]Si““’ot + Re’t[f(T)e-ijor]
coswpt = xB't[f(T)e-j2w°T]simu°t] (A-86)

and with £(t) = f,(t)cosw;t

then
g(t) = %-I JE(De 3 @o=0) Ty gt - X (lE(De 3 W T ) gt

_j(w°+m1)1]cosw t - x [f(r) j(“’0“"“’1)1']

RB,tIf(T)e
sinwgt] (A-87)

In most cases the sum frequency terms in Eqs. (A- 36) and (A-87) will
integrate to a much smaller value than the difference terms since they
will usually be of a much higher frequency. In this case, ouly one set
of quadrature real and imaginary Fresnel transforms is obtained. 1If the
slope is negated in Eq. (A- 8l), all the terms modulating sines in

Eqs. (A-86) and (A-87 ) are made positive and the complex exponentials

are complex conjugated, Note that since

Fg,(f(t)e Hugty o It * u/u8) &, t+wo/2B{f(t)} (a-Bt
Eq. A-179 becomes
g(t) = ;{Ra’t_(w:fi:;}escos(wlt + oy )218)
¥ xB.t-(wif(f;g;ess“‘(“’lt * (“’l-wo)elhs)} (A-0)

or the delayed components of the Fresnel transform of f£(t).

T

T




APPENDIX B

Other Transforms

Section 2,5 describes the process by which the SAW convolver can
be used as the main constituent of a Fourier trensform system. Essentially
the Fourier transform of a signal is obtained by convolving a signel, that
has been pre-multiplied by a chirp of one slope, with a chirp (linear FM)
of the opposite slope. The result of this process is the Fourier transform
on a chirp carrier. Coherent detection by mixing this convolver output with
properly phased chirps results in the isclation of the real and imaginary
components of the Fourier transform as baseband signals. Section 2.4 describes
the equivalent technique whereby & chirp filter can be used to perform the
Fourier transformation. In this case the chirp modulated input signal is
automatically convolved by an oppositely sloped chirp since this is exactly
the impulse response of a chirp filter. Although the output of the con-
volver and the chirp filter are both chirp modulated Fourier transforms,
the convolver output is compressed »y a factor of two since it performs a
factor-of-two-compressed convolution.

The question may arise as to whether other transforms can be
obtained utilizing convolvers, chirp filters or both, It is the purpose
of this section to demonstrate that this is indeed the case. After describ-
ing the operations involved in obtaining some readily obtainable transforms,
some general criteria will be presented by which tests can be performed on
transform kernels to determine whether the transform can be obtained by a
convolution process. A variable transformation procedure will then be
described that shows how to transform a non-convolutionary transform into
a transform that can be obtained by a convolution process, Transforms

obtainable using e linear to exponential time transformation will then be

-




A R, Lt 050

299

described as well as a technique by which a signal can be exponentially
time transformed using a lerge time-bandwidth-product chirp filter.

The Laplace transform given by

Lia,w) = g‘” f(t)e’(d'l'.jw)t at

- (£(t)e %) I at (B-1)

is a function of the two variables & and w. As seen in Eq. (B-1), since
£(t) is elways causal (f(t) = 0 for t < 0) this transform for any parti-
cular value of & is given by the Fourier transform of f(t)e‘at. This
suggests that the Laplace transform can be displayed for a causal time
function by multiplying this function by e-at and using either the con-
volver or the chirp filter Fourier-transformation schemes (see sections 2,k
and 2.5) as methods for obtaining the Fourier transform of this combina-
tion. The Fourier transform obtained for a particular value of a can be
displayed in a raster type of display, alongside but spaced from the trans-
form for thie previous value, on an oscilloscope screen. The parameter
would be incremented by & constant value between successive scans and all
the scans would be displayed evenly spaced. For very high scenning densi-
ties the Laplace transform would appear as & continuous three-dimensional
function. The exponential function exp(:at) could be obtained by elec-
tronically switching in smaller values of resistence in a passive RC
network. At the time for mixing between f(t) and exp(-at) the RC network
can be discharged and the exponentially decaying potential across the

resistor applied to a mixer to which f(t), already on some carrier, is

also applied. For negative values of a the same RC circuit output can oe

—
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passed through a reciprocal producing circuit, which is simply e divide-
into-one process, and the output from this circuit then applied to the
mixer. In either case, the exponentially weighted function is then mixed
with a chirp and convolved with & chirp of opposite slope in either e con-
volver or a chirp filter. The resultant slice of the Laplace transform
(along the jw exis at a) will be modulated onto a chirp after passage
through these devices. Removal of the chirp by diode detection will pro-
duce a baseband output that is the square of the magnitude of this trans-
form slice., By coherently detecting using sine and cosine chirps, the
real and imaginary components of the Laplace transform cen be separated
and displayed independently. This technique can be used to pinpoint the
poles and zeroes of & passive network by impulsing the network and using
the resulting impulse response as the input function for every slice of
the Laplace transform that may be required for a clear and continuous
display. Since SAW>convolvers and chirp filters utilize signals that are
neasured in microseconus, che louger device impulse responses can be
ceptured into a CCD buffer memory using & slow clock (greater than the
required Nyquist sampling rate, however) and then clocked, using a much
faster clock, into the chirp transform system after the exponential
multiplication. As with the Fourier transform obtained using these
finite-~-impulse-response devices, the lLaplace transform output will be
valid only over a calculable time interval.

The Stieltjes transform S(t) given by

s(t) = [° %—}%‘h = £(-t) » % (-2)

0o
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or

s(-t) = £(t) » :% for £(t) =0 t <0

and the Hilbert transform H(y) given by

are both convolutionary transforms and can therefore be immediately
obtained, for e finite duration signal f(t), using a SAW convolver or any
other t;pe of convolver for thaet matter. The Stieltjes transform assumes
a causal signal (a device impulse response, for instance) whereas the
Hilbert transform does not. Note that except for a factor of 1/m, for
causal signalé the two transforms are time inverse versions of one
another. Whether or not a signal is causal, however, the Hilbert trans-
form of the signal is nevertheless of identical form to the time inverted
Stieltjes transform and the Hilbert transform of e non-causel signal is
exactly the time inverted Stieltjes traneform of a delsyed and causal
version of the signal. Both transforms can therefore be obtained in an
identical fashion where one will be time inverted and the t = 0 reference

point for the input signal must be decided upon ahead of time. This flexi-
bility is due to the fact that tre transforms are themselves delayed for

a Jdelayed input signal,

The Stieltjes transform is obtained when two repeated Laplace

transforms are performed on a function, i.e.
s(¢) = [0 [ tx)e™ ax e ap (h-b)

since

{,. e P a5 a1 /(xey) (r-5)
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The Hilbert transform of a function, when summed with this function, pro-
duces a complex signal (which can be carrier modulated producing in-phase
end qQuadrature components) that is purely single-sidebanded. This trens-
form can also be obtained by amplitude inverting the negative portion of
the Fourier transform of the signal and then taking an inverse transform
of this using e chirp transform system (see section 2.L).

If it is desired to obtain these two transforms directly using
a convolver, then the function f(-t) or f£(t) must be convolved with 1/t
or -1/t in order to obtain S(t) or H(t), respectively. In either case
a reciprocal of t function is required and this function 'blows up' et
t = 0, A close approximation to this function can be used since the
signal, f(t), will typically have negligible frequency components beyond

W= W rad/sec. Since

-%4—-»:]17 sgnw = JT  w >0

-3n w<o (B-6)

the spectrum of -1/t for the bandlimited signal f(t) can be replaced by

glw) = Jﬂ[2U(w) - U(w—2w°) - U(w+2w°)] (B-7)
so that
-2sin2w t
S o —g(w) (B-8)

aend the Hilbert transform becomes

2-1n2w t
0

- (5-9)

H(t) == 1(t) »

=}

Likewise the Stieltjes transform can be approximated by
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Zsinzwot
s(t) = £(-t) # —4—— (8-10)

Two other transforms can be readily obtained since they are mere
extensions of the Fourier transform. The Fourier sine and cosine trans-

forms given by

F (w) = /% £(t)sinut at (B-11)
8 o

and

F (w) = /7 £(t)cosut at (B-12)
c o

are simply the real and imaginary components, respectively, of the complex
Fourier transform of the causel function f(t). These components are
natural products of a chirp transform system where the origin for the time
is controlled by adjusting the form of the post multiplying chirp (see
section 2.4). If the signal is not causal in such a system, the resultant
real and imaginary Fourier components are the Fourier cosine and sine
transforms, respectively, of the even enc odd :omponents, respectivel.y,

of the signal,

In general, the output of a convolution process can be written

as
/2 2(0K(t,T)ar = n(t) Lo £(r)e(t)e(t-1)ar
- h(t)[f(t)g(t) » 2(t) (5-13)
where
K(t,1) = g(t)h(t)(t-T) (B-1L)

can be the kernel for a transformation., In other words, if a transform
kernel can be written in the form of Eq. (C-14), then the transform can

be obtained as a result of a convolution. For such a kernel, since

L - Yt o
[OOSR S SRS SEPNS WS- Y W SRS - SR
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3k(t-1 2(t-t) _ _ 32(t-71) _
Wet) o - er) . ) (3-15)

then
—(—1-3 7 K(t,7) +--K(t r)]
_ 1 3n(t 1 93g(T) B
and
a2
FryTs L=20 (B-1T)

Eq. (B-1T7) is a necessary condition that must be satisfied by a kernel in
order that it have a form given by Eq. (B-14)., Up to this point, it was

found that a kernel having the form of Eq. (B-1L4) must definitely satisfy
Eq. (B=17), but this does not imply that other forms will not satisfy this

condition. However, in order for Eq. (B~1T7) to -always be true, then

5—-1((4»,1) + 5= K(t,1) = K(t r)'a(t) + B(t)

- Hrar) (-18)
where
t =)+ rl(s) (B-19)
and
T= )+ ra(s) (B=20)

Solution of Eq. (BE-18) gives
K(£,7) = exp[fla(rer, (s)) + BAety(s)))aA + £,(s)]

- e:xpla(t) + ;é(‘r) + 23(-)

= ;(t);('r)ylt-r)

e
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since

t-t = £,(s) - £,(s) = fo(s) (B -22)
or

-1

s=sf (t=-1) (B-23)
so that

7 (t-1) = exp r3(f'l(t-t))] (B-2k)

Therefore, Eq. (8-21) states that the form of kernel given by Eq. (8-14) is
the only form that will satisfy Eq. (B-17). From this, Eg. (R-17) can be
designated as a necessary and sufficient condition that must be satisfied
by & kernel of the form of Eq. (B-14). If a kernel fails this test it does
not have such a form and if it passes it does.

If a transform kernel has the form of Eq. (R-1k), then since

3. _3 1 ) .

50 L =50 BT et < Ly (B-25)
and

9 3_ 1 glt) - ]

LAt (g—(ﬂ' ar ) = Ly (8-26)

h(t) and g(1) are given by

h(t) = exp|r/r ae?] (B-27)
and

glt) = explffLTd'ta] (B8-28)
Using the relationship

af(t-t) _ _ 1 23g(r) 1 3a_
e=T) 3(t-1) ~ gl1) 8T~ K(t,1) a7 K(t»T) (8-29)

and making the substitution 2 = t-T gives

R~ e e
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:
F
k
:
; 2z) = exp[f(fL at - 1 a K(z+1,T))dz (8-30) g
T K(z+T,T) ot |
-
These results can nov be applied to some well known transforms, The ;
{
] Mellin transform given by '
M) = £° £(6)e9 ay (5-31)
has a kernel given by
w=1
K(t,w) = ¢ (B-32)
Substitution into Eq. (B-17) gives
2
9 2 |
Seag v = I/t #0 (B-33) :

so that the Mellin transform cannot be written in the form of Eq. (B-13) |
i

The Fourier transform given by

Flw) = _.g: £(t)e~ I 4t

has & keinel given by

K(t,1) = e 9% (8 -35)

This kernel does satisfy Eq. (B~17T) and using Eqs. (B-27), (B-28) and (B-30)

h(t) exp(- 2—) (B-36)

g(w) (8=37)

2(z) (-38)
80 that

Flw)
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Since K(t,w) can also be written as

2 2 2
K(t,w) = K(t,2B1) = e-JBt e-JBT eJB(t-T) (B=4o)

then

2 2 2
Flw) = e~JBT f(t)e-JBt w I8t (B -k1)

where w = 2BT and Eq. (5-U41) is the complex baseband version of the already
familiar chirp transform algorithm.

The Hilbert transform given by Eq. (B-3) has already been shown
to be of convolutional form, This transform satisfies the criterion, as

it should, and Eqs. (B-27), (B=-28) and (B-30) give for this case
h(t) = glw) =1 (B=k2)
2(z) = A(t=w) = (t-0)7? (B-43)

In actual practice there are few transforms that can be expected
to satisfy Eq. (B-1Lk) and therefore become readily obtainable by the per-
formance of e single conv~luticn., Howewver, if variable transformations can
be made, an extra degree of freedom is introduced so that the transform
kernel may be forced into the proper form. As will be shown, at the con-
venience of being able to obtain a particular transform by a convolution,
the input and output signals must undergo variable transformations to
realize the overall transformation process.

It would now be desirable to find the variable transformations

t = fl(r) (p-bl)

and

w= fz(v) (B=b5)

that would transform K(t,w) into the form

T i

e e sy
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%.
K(t,w) = K(£_(v-1)) (B -46)
i
-
Since (4
at_(v-1)  =3f (v-t) P
o .o (B-47) b
?T v ‘
then a kernel will satisfy the relationship !4
3K(t,w) 3t . 3K(t,w) dw _ .
5% 3t T dw v - f% KW =0 (B-48)
From this it can be seen that
(M6, )y = Mt + Me = O (8-49)
3 where
M=K/K (B-50)
and the criteria
@) =0 (B-51)
w
follows directly from this. A kernel must satisfy Eq. (B~51) in order to
be a candidate for a transformation of the form of Eq. (B-U6). Eq. B-49)
can be solved for T to give
T = [ exp(/(M, /M)at)at (B-52)
From Eq. (B-48) the variable v is found to be given by
-1
v = =f (M) "exp(/(M /M)at)dw (8=53)
When these equations are used for the kernel of the form
K(t,w) = G(tw) (B -54)

EQq. B-51) is satisfied and the variable transformations are given by
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e

Va - L (B-56)

so that for
ta
™w) = { f(t)c(tw)at (B-57)
1
we obtain
intp Ty Tar =(V=1)
T(-Lnw) = {m f(e )e'c(e )drt (B-58)

1

This result can now be applied to some typical transforms. The Hankel

Transform Ha(u) is given by
H () = t£(t)J (wt)at (B-59)

vhere Jv(t) is & Bessel function of the first kind and order v. Using

Eq. B-58) this becomes

B (-2mw) = £ £(e5)e?%5 (""" ar

= £(eV)e » Jv(e-v) = Ha(v) (8-60)

In this case the signal f(t) requires an exponential time transformation
and the result of the above convolution also requires an exponential
transformation before the Hankel transform is obtained. The Fourier sine
end cosine trensforms given by Egs. (B-11) and (B~12) can be transformed
to give

P (-tw) = £ £(e¥)estn(e™V"T)ar

= 2(e”)e’ # sin(e”) = F(v) (Rr=61)




i
A

310

and
Fc(-lnw) = {: f(eT)eTcos(e-(v-T))dt
= r(e’)e’ & cos(e”) = Fc(\a) (B-62)

The Y transform given by

1
glw) = /7 (wt)Z £(1)Y, (ut)at (B-63)

wvhere Yv(t) is a Bessel function of the second kind and order v, and its

inverse, the H transform, given by
o 1
£(t) = /' (wt)Z glw)H (wt)dw (B-6k)
0

where Hv(t) is Struve's function given by

H(t) =3 v -2 (8 -65)
v =0 r{r + %)l'(r +v+ %) 2

(_,l)r(l £)’ +2r +1
2

can both be transformed using Eq. (B=58) to give

1
gl-tnw) = /> f(eT)e"e” Fw-1)y (e"'(\’-'f))d.l.
- v

1
= £(eV)e” & e~ 2V Yv(e-v) = g(v) (B-66)

and

1
£(uat) = L7 gle™)e Ve Vg (T Viav

1
=gle e # 27 Hv(et) (B -67)

Note that all these transforms can be obtained over a finite time pericd

and for signals of the proper duration using a SAW convolver assuming that

v g~ - v YT T TN T
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the exponentiel variable change can be accomplished for both the signal
and the output. The functions multiplying the signal and those convolving
vith it must be electronically generated; however, they never have to be
changed. The output using a SAW convolver, it must be remembered, is
compressed by a factor of two.

A technique for the exponential time scaling of a signal that
utilizes the large time~-bandwidth product of SAW chirp filters will be
described after the technique for taking the Mellin transform is dis~
cussed, since exponentisl sceling for this}process is to be used as an
example. The Mellin transform given by Eq. (B-31) can be transformed
into

Jut

M(w) = Lo £(e")e’™" at = M(e(t)) (B-68)

by the substitution t = eT. Note that by exponentially time scaling only
the input signal, the Mellin transform can be readily obtained by taking
the Fourier transfo?m of this modified signal, A convolver or chirp
filter chirp trensform system can be used to take the Fourier transform.
The Mellin transform is a powerful transform in optical processing since
its magnitude is invariant to a scale change in the signal that can occur
by variable adjustment of lens positions in an imaging system. In parti-

cular the following relationship is obtained:

Mirat)) = a9 M2()) = a 9% M(w) (8-69)

The Mellin transform assumes a causal signal. For this discussion it
will be assumed that the signal exists over the interval a S t £ b where
'a' can approach but never be zero since en exponential scaling of a

signal beginning at time t = 0 results in a signal of infinite duratior

Using the form of the Mellin transform given by
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Jwlna = {T+lna), Jjuwrt
S, f(e Je d

Mw) = e T (B-T0)

end the identity
M(£(%)) = ¢ M(w/c) (B-T1)

the following equation is obtained

J %" fna TyeduT

M(m/c) s c e !: f(aec dat (B-72) ]

Eq. (B-T72) states that an expanded version (for ¢ > 1) of the Mellin
trensform can be obtained for the function f£(t), existing between t = a
and t = b, by taking the Fourier transform of the function f(aeeT).

l existing from T = 0 to T = c-lln(b/a.), and multiplying this result by c
and the phase term exp j(w/c)na . If b-a is confined to being less than

some time T (as it will have to be) and if the exponentially varying ver-

sion of the signel is to be of duration T-(b-a), then

- 2n(b/a
c = falel (B-73)

This is the value of ¢ that is also derived in the discussion of the

exponential sceling technique. Note that for n(b/a) << 1 the exponent

¢T is always smsll so that

-1
Mlw/e) = ¢ er(!.na-c ) _{: f(a.c‘l’)e"wt ar (B=TL)

ari the exponential scaling becomes a linear time scaling. For a constant
duretion signal this occurs when a becomes approximately equal to b,
The exponential scaling technique assumes that the input to a

i chirp filter having an impulse response given by

IR = cos(w (t-t ) + B(t-t°)2 +9,) (B=T5)
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over the time interval to.S t < o+ T is given by

INPUT = f(t+a)cosw(t) (r=T6)

vhere f(t+a) exists over the interval 0 St < b - a. The desired output

of the chirp filter will be assumed of the form

OUTPUT = A(t)f(a.ec(t-td)) (B-T7)

wvhere td is some delay. The actual output over the interval to +b.8

<t <t +Tis given by

(o]
OUTRUT = Re J= f(rea)edB %)y (B-78)
where
(tr)=+m+&°-(t t ) + (¢ t)2+2-°- (B-79)
uit, T B 8 =% =% 8

The chirp filter slope, 28, is typically very large (> 10'2) for SAW
devices so that the.method of stationary phase can be utilized to approxi-
mate the output, In partizular, at a.y p.int In real time t, the fuzction

u(t,T) will be forced to be stationary in T at

T, " a(exp(c(t-td)) - 1) (B-80)
If this is to be true then
aggt,rz
aT

|T=Tc " u'(t’rc) =0 (r-61)

which, using Eq. (E-79), gives

u'('tc) -3 (wo + 28(t=1 -t _))

=t (u + 2s(c"1zn(rc+a) - cLona + ty - T - t)) (8-82)
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The function, w(t), is thel-efore given by
wit) m twrT¥F 2Br(e'12ns -t, +t ) F 812
"o d °
t 2Bc’l(('r+a)£n(t+a) -T) +C (B-83)

vhere C is some constant. When this function is inserted into Eq. (B-79)
and this into Eq. (B-78), one of the resulting integrals will be negligible

compared to the other since it will have a much higher frequency variation.

Therefore,
o(T) = w.T - 281(c'12.na. -t, +t.) - BT2
(o} d o
+ 28¢™Y((v+a)tn(1+a) - 1) + C (5-8k)
and

u(t,7) = 207 (tsa)2n(tea) - 2(c™ (tnatl) - £y + t)
+ (t-t )t -t +w /B) +C/B (B-85)
The derivative of this function is given by
' -1 -1
p (t,1) = 2¢ 2n(t+a) = 2(c "fna -t

at t) (B-86)

which equals zero for T = Tos 88 it should.
For very large B, the functions u(t,t) and f(1+a), vhere f(t+a)
is assumed to vary more slowly that u(t,t), can be expanded about the

point t e’ of stationary phase, as follows:

u(e,1) = ulty) + % u"(r,) (et )? (8-87)

ftea) = £(1_+a) = £(aec{T-ta)) (5-88)

N

— w5 oo

NN Ry TOS 4R By Sof W P BT




so that the ocutput becomes

———
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—— o
OUTPUT = Re /m eJ(Bu(t,‘rc) +y) t(‘tc*&) (-89)
e

> .

T ke

Using the equations
u(t,te) = ¢ (w,/8 - 2t + 2a)t - 200~1 o0{t-ta) j

2 -]
+ to - osoto/B + 28c Lna

- 2at, - 2ac™ 4+ ¢_/B + C/B (5 ~90) ‘
W"(t,1) = 2/(c(tea))} (5-91) {

and
u"(t.rc) - 2071 exp(-ina - c(t-td)) B -92) ?
this becomes %
i
_ ., ;
OUTPUT = //%g el/e(lnuc(t-td)l f(aec(t-td))cou(t) (8-93) ;
where ?
a(t) = (wo + 28(;—t°))t + 8t2 - 2Bc-lae°(t'td) + ¢, (B'=9k) *
end i
2 =1 -1 N
¢, = Bt~ ~wt + 2B sina - 2faty ~ 26c & + ¢, +C (B-95) \

Zq. (B-93) shows thet the desired output can be obtained by multiplying

this output by (8/11'0)1/2 exp -~ 1/2(%na + c(t-td)) and coherently detecting

the envelope with a cosine having the phase variation given by Eq. (B-9L)

and constant phase given by Eq. (B-95')> where C can be arbitrarily set ¢o

The input signal f(t+a) is modulated by & cosine having the phase

zero,
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variation given by Eq. (B-84). Since the entire valid output time interval

f should be utilized then y

clt=ty) s

| SR e (-56) {

1 ]

or ' V

ty=t +b-a (8-97) '

g

t-t -

a.ec( d)|t-'t o b (3-98) ;

| ° !

‘ v

| so that 2

fnb/a 3

'; c = t= b-‘ (3-73) é

’f

J

;T as wasg previously specified., It should be noted that by following a i
similar procedure it is found that for sn input given by

INPUT = f(t+a)cos((w, + 2B(ty +'a - £ ))t) (B-99) |

the output is given, using the stationary phase approximation, by

OUTPUT = //% £(t-tg)cos((w  + 28(t, + & + ¢ )t + ¢) (B -100)

" where ?
2 ', 2 2 n .
¢ =Bt " - Btd - Ba” - 2Bst, - wt, +tgt ¢, (B-101) ;

For td = to -a+ tD' vhere tD is some delay, then

INFUT = f(t+a)cos((m°+2BtD)t) (B -102)

OUTPUT = //§ r(t +a = to - tD)col(w°¢28tD)t + ¢) B -'n3)
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Since the dele: through & chirp filter is lineerly proportional to 2
frequency, by the chirp slope 28, it can be seen from Eqs. (B-102) and
(3-103) that trhe stetionary phase approximation assumes that f£(t) is a E
very narrowbend signel (as Eq. (B-88) implies), otherwise the frequency L

components of this function will be greatly dispersed by the chirp filter, )

resulting in non-negligible distortion to this signal. Eq. (B-103)
assumes that the signal is only delayed by the inherent delay of the

chirp filter and the edditional delay tD that a component of frequency

RS R

28tD would have to undergo.




