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I. INTRODUCTION[

The purpose of this paper is to convey to the reader a sense of how the wide

variety of approaches to testing, analysis, verification and validation of soft-

ware can be combined by a single overall strategy. The goal of this strategy

is to enable the user to incrementally raise his confidence in his software

through incremental expenditures of effort and resources. This is to be done

by employing the various tools and techniques currently and foreseeably available

in an orderly systematic way which exploits their complementary patterns of

strength and weakness.

In order to best appreciate the integration strategy it is important to first

understand the rationale for taking the goal of confidence raising as being of

central importance. It is becoming widely agreed and accepted that software is

best thought of as a product. As such, its production must be carefully managed

through a succession of stages. This succession of stages is commonly referred

to as the software production lifecycle. A primary goal of establishing such a

lifecycle is to establish interim phases of the production process and the

products of these intermediate phases. It is through examination of these inter-

mediate products that management should be able to determine whether the produc-

tion process is proceeding satisfactorally, and if not determine the appropriate

remedial actions.

The ability of management to observe, interpret and evaluate all the products

(intermediate and final) of the software production process is generally reg~rded

as being the pivotal capability for the success of a software project. Corre-

spondingly, there has been a great deal of work done on creating various lifecycle

models, rigorizing and subdividing the various lifecycle phases, defining inter-

mediate products, and devising management guidelines. These and related topics

are dealt with elsewhere in this volume. In this paper we deal with the issue

of raising confidence in software products, which we claim is central in impor-

tance to the goal of effective management.

A major purpose in subdividing the production process into phases is to

create intermediate points in the process for the purposes of monitoring and

review. These monitoring, or review, activities have as their goal the determina-

tion of whether or not current progress has been sufficient to warrant proceeding

to the next lifecycle phase (or subphase). The review process which occurs after

coding (the final lifecycle production phase) is usually called acceptance

testing, and is regarded by some people to be an entire lifecycle phase by itself.



In any event, its purpose is to enable a decision as to whether progress to date

has been sufficient to justify release of the finished product. In this essen-

tial sense, this review can be seen to be similar in nature to all other reviews

- having as its goal the raising of the confidence of the reviewers in the

product or products at hand.

Thus in a very important sense it is reasonable to say that all progress

through the software development process is predicated upon our ability to gain

confidence in our completed products. This confidence is gained in many ways,

and in different ways by different people. Testing, analysis and verification

procedures are used. Automated tools, manual procedures, and informal means are

employed. Formal organizational procedures and totally informal means are

employed. Unfortunately there is little understanding of the inherent value of

most of these procedures, and little appreciation of how these diverse approaches

might be integrated to enable systematic, incremental confidence raising.

Hence very important decisions are often based upon confidence which is badly

placed, or worse yet at a regrettably low level.

Clearly what is needed is an orderly systematic procedure for raising

confidence incrementally at incremental cost of effort and resources. It must

be understood at the outset that there are no absolutes in this process. Confi-

dence, as a human emotion, cannot be uniformly and unerringly described and

manipulated. Different individuals under different sets of circumstances become

more or less confident in response to identical procedures. Moreover, different

individuals under different sets of circumstances set different threshold levels

as being sufficient to declare that progress to date has been "sufficient" or

"adequate." The procedure outlined in this paper attempts to take these diffi-

culties into account. It offers no ways of obtaining absolute assurances, but

rather a coordinated set of ways in which confidence can be raised in various

aspects of various software products. As such it should be a highly useful

procedure to software decision makers - be they coders, analysts or managers.

The notion of confidence is inextricably tied in with the notion of an

error. Confidence in a software product decreases with discovery of errors and

increases as assurances of the absence of errors are given. Hence our integra-

tion strategy focusses on being able to find and eliminate errors, and then

progressively rule out the possibility of errors of various kinds. With errors

being of such central importance, it is necessary to have a firm notion of what

an error is.
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We define an error to be a failure of an algorithmic process (e.g. a body

of code) to perform as expected. Thus our integrated strategy is directed

sharply at detecting and disproving deviations of solutions from intent. What

is most'striking is that the process of detecting and disproving errors is

heavily dependent upon knowing the intent of a solution, and yet this intent is

rarely specified in any rigorous form. It is crucial to observe that in the

absence of complete, formal specifications of intent, error detection and dis-

proof are doomed to also be incomplete, informal, and inadequate bases for

meaningful confidence incrementation. Thus a key component of our strategy is

the incorporation of a capability for allowing the user to incrementally supply

specifications of intent as the bases for error detection and disproof. These

specifications of intent are to be supplied in the form of assertions - predicates,

whose value, the user claims, is always true. By allowing different users to

supply their own assertions we believe we have devised a mechanism whereby

different users can, at different times, each effectively pursue the raising

of their own confidence levels to their own desired confidence thresholds.

Before we can effectively promulgate this integrated strategy it is neces-

sary to first describe the major classes of tools and techniques to be incor-

porated. In the following sections, we present these classes of techniques and

specify the strengths and weaknesses of each in being able to discover and/or

disprove adherence of solution to specifications of intent. Most of these

techniques have been devised and developed with the aim of facilitating confi-

dence improvement for code. In a later section we shall show that these tech-

niques are also useful in increasing confidence in intermediate software products

such as requirements and design specifications. We believe, however, that their

inherent capabilities can best be presented, compared, and contrasted in the

context of their most familiar application - namely to code. Thus, to facili-

tate the presentation of these capabilities, they will all be applied to a single

example FORTRAN program. This program, shown in Figure 1, is somewhat contrived

to appear plausible, yet contain a variety of errors.

The purpose of this program is to compute, store, and print out the costs of

covering a sequence of areas with some covering materials. The program reads

in N, the number of costs to be computed, initializes pi, and then enters the

primary iteration DO loop. Inside this loop, the program reads in PSF, the

cost per square foot of the material; LCRT, an integer used to denote whether the

area is a rectangle (if LCRT is 1), a circle (if LCRT is 2), or a triangle

4



Statement #

COMMON/B/AREA (10), COST (10)
1 READ (5,1) N
2 PI=3.1416
3 DO 200 I=1, N
4 READ (5,2) PSF, LCRT, DI, D2
5 IF (LCRT.NE.2) TO TO 10
6 AREA (I)=AREAR (DI, D2)
7 GO TO 100
8 10 IF (LCRT.NE.2) GO TO 20
9 AREA (I)=AREAC (P,D1)

10 GO TO 100
11 20 CALL AREAT (D1, D2, AREA (I))
12 100 CALL DOLS (PSF, I)
13 WRITE (6,3) COST (I)
14 200 CONTINUE
15 STOP

1 FORMAT (12)
2 FORMAT (F6.2, 12, 2FI0.4)
3 FORMAT (1H, F8.2)

END
16 FUNCTION AREAR (A,B)
17 AREAR=A*B
18 RETURN

END
19 FUNCTION AREA C(PI,RAD)
20 AREAC=PI*RAD**2
21 RETURN

END
22 SUBROUTINE AREAT (B,H, AREA)
23 AREAT=0.5*B*H
24 RETURN

END
25 SUBROUTINE DOLS (PSF,I)

COMMON/B/COST (10), AREA (10)
26 COST (I)=PSF*AREA (I)
27 RETURN

END

Figure 1. A program containing some errors designed to show the relative
capabilities of the techniques discussed in this chapter.
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(if LCRT is 3); and Dl and D2, the two dimensions of the area (D2 is unused if

LCRT is 2). The program then branches on LCRT to three different subprograms,

AREAR, AREAC, and AREAT, which are supposed to compute the area of the rectangle,

circle or triangle (respectively), and place the value of this area in the array

location AREA (I). Subroutine DOLS is then called to compute COST(I), the

product of AREA(I) and PSF. Finally COST(l), the desired result, is ?rinted out.

The program then returns to the READ statement to obtain new values for PSF,

LCRT, DI and D2. This loop is iterated N times at which time the iteration stops

and program execution terminates.

Close inspection of the program reveals that it contains errors, some of

which are not very obvious. Perhaps the most obvious error is that the value of

pi is set into the variable PI, but the variable P is used to pass this value

into AREAC, the subprogram which requires it. A second error is that there is

a misspelling in the subroutine AREAT. The third parameter is named AREA, but

the body of the subroutine defines a value for the variable AREAT instead.

Hence upon return there is no value given to the main program variable AREA,

which is referenced in a subsequent computation. A third error involves the

COMMON block B, which is used for communication between the main program and

DOLS. B contains the variables AREA and COST. DOLS, which expects AREA to con-

tain the computed area, uses it to compute the value of COST, which is then

passed through B back ro the main program. Unfortunately, the order of declara-

tion of AREA and COST in the main program is the reverse of the order of declara-

tion in DOLS. A fourth error is found in statement 4. The test of LCRT .NE.2 is

incorrect - it should be LCRT.NE.1. Because of this, LCRT is not correctly used

as a switch.

We shall now proceed to show how each of four different classes of tech-

niques is able or unable to detect or disprove these and other types of errors

in this specimen piece of code.

II. DYNAMIC TESTING

The term dynamic testing, as used here, is intended to apply to most of the

systems known as execution monitors, software monitors, and dynamic debugging

systems (see for example [1,2,3,4]). The term dynamic testing is used because

in contemporary usage it has come to suggest the most important feature of this

technique.

In dynamic testing systems, a comprehensive record of a single execution of

the program is built. This record -- the execution history -- is usually
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obtained by instrumenting the source program with code whose purpose is to

capture information about the progress of the execution. Most such systems

implant monitoring code after each statement of the program. This code captures

such information as the number of statement just executed, the names of those

variables whose values have been altered by executing the statement, the new

values of these variables, and the outcome of any tests performed by the state-

ment. The execution history is saved in a file so that after the execution

terminates it can be perused by the tester. This perusal is usually facilitated

by the production of summary tables and statistics such as statement execution

frequency tables and variable evolution trees.

Suppose that the following inputs are read in by the example program in

Figure 1:

Input Record #

(N)

1 3

(PSF LCRT Dl D2)

2 2.00 1 3.3 4.0

3 3.50 2 5.0

4 4.50 3 2.0 5.0

Following is an execution history which is typical of what would be created by

a dynamic testing system such as [1,2,3,4]:

Variables Used Variables Used Next Outcome
Execution Statement as Inputs and as Outputs and Stmt. if an IF

# # Type Their Values Their Values Exec. Statement

1 1 READ N:3 2
2 2 Assignment PI:3.1416 3
3 3 DO N:3 1:1 4
4 4 READ PSF:2.00 5

LCRT:1

D1:3.0
D2:4.0

5 5 IF LCRT:l 8 TRUE
6 8 IF LCRT:l 11 TRUE
7 11 CALL DI:3.0 Set upon 22

return
D2:4.0

I:l
AREA(l) :*

8 22 Subroutine 23

9 23 Assignment B:3.0 AREAT:6.0 24
H:4.0

10 24 RETURN 11

7



(continued) Variables Used Variables Used Next Outcome

Execution Statement as Inputs and as Outputs and Stmt. if an IF

# # Type Their Values Their Values Exec. Statement

11 11 CALL(Value D1:3.0 12

return) D2:4.0
12 12 CALL PSF:2.00 AREA(I):* 25

I:l
13 25 SUBROUTINE 26

14 26 Assignment PSF:2.00 COSTCl):* 27

I:i
AREA(l):*

15 27 RETURN 12

16 12 CALL(Value PSF:2.00 13
return)

17 13 WRITE COST(l):* 14

18 14 CONTINUE I:i I 1:2 4

19 4 READ PSF:3.50 5
LCRT:2
D1:5.0
D2:*

20 5 IF LCRT:2 6 FALSE
21 6 Assignment D1:5.0 Function 16

D2:* Invoked
22 16 FUNCTION 17

Definition
23 17 Assignment A:5.0 AREAR:* 18

B:*

24 18 RETURN 6
25 6 Assignment AREAR:* AREA(2):* 7

Function 1:2

Return
26 7 GO TO 12
27 12 CALL PSF:3.50 Subroutine 25

1:2 invoked
28 25 SUBROUTINE 26
29 26 Assignment PSF:3.50 COST(2):* 27

AREA(2):*
1:2

30 27 RETURN 12
31 12 CALL(Value AREA(2):* 13

return)
32 13 WRITE COST(2):* 14

33 14 CONTINUE 1:2 1:3 4

34 4 READ PSF:4.50 5
LCRT:3
D1:2.0
D2:5.0

35 5 IF LCRT:3 8 TRUE
36 8 IF LCRT:3 11 TRUE
37 11 CALL D1:2.0 Subroutine 22

D2:5.0 invoked
1:3
AREA(3)*

8



(continued) Variables Used Variables Used Next Outcome

Execution Statement as Inputs and as Outputs and Stmt. if an IF
# # Type Their Values Their Values Exec. Statement

38 22 SUBROUTINE 23
Definition

39 23 Assignment B:2.0 AREAT:5.0 24
H:5.0

40 24 RETURN 11
41 11 CALL AREA(3):* 12

Value
Return

42 12 CALL 1:3 Subroutine 25
PSF:4.50 invoked

43 25 SUBROUTINE 26
44 26 Assignment 1:3 COST(3):* 27

PSF:4.50

AREA(3):*
45 27 RETURN 12
46 12 CALL(Value AREA(3):* 13

return)
47 13 WRITE COST(3):* 14
48 14 CONTINUE 1:3 I:* 15
49 15 STOP

This value is undefined. The dynamic testing system will record a specific
value, namely the one assigned by the execution environment.

The previous table shows the wealth of detail captured in the execution history.

It also indicates a primary problem in using the dynamic testing technique for

error detection. Erroneous values are concealed amid a plethora of other infor-

mation, complicating their discovery. It should be noted that the asterisks in

the previous table indicate undefined values, but specific numbers (presumably

incorrect) will appear in the actual output from a dynamic test. For this

reason, summary statistics and tables are important products of dynamic testing

executions.

A common summary table is the statement execution frequency table. For the

previous execution this table would be:

Statement # Number of Executions

1 1
2 1
3 1
4 3
5 3
6 2
7 1
8 2
9 0

10 0

9



(continued) Statement # Number of Executions

11 4
12 6
13 3
14 3
15 1
16 1
17 1
18 1
19 0
20 0
21 0
22 2
23 2
24 2
25 3
26 3
27 3

This table shows which statements were heavily used in the test execution.

This is important in attempting to improve the program's efficiency. From an

error detection point of view, it is more significant tc note that some state-

ments (9, 10, 19, 20, 21) were never executed at all. These statements are the

ones involved in computing the area of a circle. The test data is clearly

intended to exercise this code. Hence, an error is indicated. Examination of

the program's control flow should pinpoint the error in statement 5.

A variable evolution tree can also be useful in error detection. The

variable evolution tree helps to indicate how data values are created out of

program inputs and other data values. Suppose that the value printed by state-

ment 13 at execution sequence number 47 is recognized as being incorrect. The

source of the erroneous value can be found more readily by determining how the

value was created. In this case, many dynamic testing systems are able to

determine the computation which produced -iny value evolved by the pro-

gram. The sources of all values of all variables used in that computation can

likewise be determined. This process can be continupd until constant values and

read-in values are reached. This entire record can in some systems be summarized

and displayed as a tree structure.

In the example, the source of the value printed at execution sequence number

47 does not exist. This is a clear indication that the value, supposedly gener-

ated by subroutine DOLS is not emerging as expected. Examination of the variable

evolution tree for the value of AREAT at execution sequence number 39 is helpful.

The dynamic testing system shows AREAT received its value at sequence number 39

10



as the result of multiplying B by H. In s;queace number 38, B and H were associ-

ated with variables DI and D2 respectively. These, in turn, were initialized

by a READ statement at sequence number 34. This evolution sequence is correct.

Thus, the workings of the value passing from AREAT to the main program must be

suspected, as well as the communications between DOLS and the main program.

Both are in fact incorrect.

Despite the existence of such tables and statistics, it is often quite

difficult for a human tester to detect the source or even the presence of errors

in the execution. Hence, many dynamic testing systems also monitor each state-

ment execution checking for such error conditions as division by zero, out-of-

bounds array references and references to uninitialized variables. The monitors

implanted are usually programmed to automatically issue error messages to a

special file immediately upon detecting such conditions in order to avoid having

the errors concealed by the bulk of a large execution history.

Thus, for example, most dynamic testers automatically insert error monitor-

ing code into the program being tested. Before a division is attempted, this

monitoring code checks the divisor for zero. If it is zero, a message is gener-

ated and the division is averted. This avoids loss of execution control due to

seizure by the execution environment. Similarly, before a subscripting operation

is attempted, monitoring code will (at the user's option) check the subscript

value to see if it is within the range declared for che array dimension being

subscripted. In many dynamic testing systems, all variables are initialized to

a special value which is unlikely or impossible to arise in an actual computation.

Before any value is used in a computation, it is compared for equality to this

special value. If the comparison succeeds, then the computation being attempted

is referencing an undefined value. Monitoring such as this will identify the

presence of undefined references in execution sequence numbers 14, 17, 21, 23,

25, 29, 32, 44 and 47.

Some systems [2,31 also allow the tester to use assertions to create his

own monitors, direct their implantation anywhere within the program, and specify

where and how their messages are to be displayed. The greatest power of these

systems derives from the possibility of using them to directly determine whether

a program execution is proceeding in accordance with explicit formal statements

of intent. The intent of the program is expressed formally by the tester, using

sets of assertions about the desired and/or correct relation between values of

program variables. These assertions may be specified to be of local or global

11i



validity. The dynamic testing system then creates and places monitors as neces-

sary to determine whether the program is behaving in accordance with asserted

intent as execution proceeds.

Thus, for example, it would be useful to assert that at source statement

number 13, the predicate

COST(I) = AREA(I) * PSF,

is always true.

In most actual dynamic testing syste'ms this is done by Inserting a statement [
of the form

C ASSERT COST(I) = AREA(I)* PSF

immediately after statement 13. This statement is a Fortran comment, and is

hence ignored by usual compilers; serving only the useful purpose of being good

code documentation. The statement is, however, recognizable by a probe inser-

tion preprocessor, because it begins with

C ASSERT

The preprocessor converts this comment statement into the executable statement

IF(COST(I).NE.AREA(I) *PSF) report violation

and places it after statement 13 in the source text stream to be directed to a

conventional compiler. A diagram of the information flows in a dynamic testing

system is shown in Figure 2.

Similarly, the assertion

C ASSERT AREA(I) - 3.1416* Dl**2

inserted between statements 9 and 10 will help identify the misspelling in state-

ment 9. It is important to observe that this error will not be noticed at all

until the error in statement 5 is corrected, allowing statement 9 to be executed.

This indicates a significant weakness in the dynamic testing technique, which

will be elaborated upon shortly.

The preceding two examples are of local assertions - assertions whose valid-

ity is checked only at the point of specification of the assertion. The ability

to create global assertions is a more powerful capability. A global assertion

is one whose validity is asserted (and is, therefore, to be checked) over a

specified range or extent within the source text. Most usually, one specifies

an assertion to be valid throughout the execution of an entire procedure. This

is specified by an assertion of form such as:

C ASSERT GLOBAL procname assertion.

It is worthwhile to note that array subscript checking is a specific

instance of this type of assertion. It is equivalent to inserting in each

12
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program unit of our example program an assertion such as:

C ASSERT GLOBAL pgmunit 1 SUBSCRIPT (AREA, COST)- 10

Because this is such a frequently made request, most dynamic testing systems

offer it as an option specifiable without the need for assertions. With the full

assertion capability, however, it is possible to check any subscript, indeed any

named variable, to see whether it remains within any range of values, over any

specified body of code. Thus, for example, it would be useful to

C ASSERT GLOBAL mainpgmn 1 I N

It should be clear that such assertions require the generation of testing

probe code at arbitrarily many places within the source text. In the array sub-

script range checking examples, there would probably be a probe placed before

execution of every reference to an array being monitored. In simple variable

range checking, there would have to ba a probe after every alteration of the

simple variable.

Often it is useful to create assertions specifying which procedure parameters

are to be changed by the procedure execution and which are to remain unchanged.

In particular an assertion of the form:

C ASSERT GLOBAL AREAT ALTER(AREA),

C STET(B,H)

placed after line 22 of our example, would have directly indicated an important

flaw in AREAT. An assertion of this type requires saving the incoming argument

values for later comparison to corresponding values upon execution of a RETURN.

The previous paragraphs have made it clear that dynamic testing systems

have strong error detection and exploration capabilities. They excel at

detecting errors during the execution of a program, and also at tracing these

errors to their sources. These systems are capable of examining only a single

execution of a program, however, and' the results obtained are not applicable to

any other execution of the program. Hence, the non-occurrence of errors in a

given execution does not guarantee their absence from the program itself. It is

thus seen that dynamic testing systems offer strong capabilities for detecting

the presence of virtually any error which the user might specify. They have,

however, no inherent capabilities for showing the absence of errors. Hence

there is an important limitation on their ability to raise confidence, strongly

suggesting the desirability of coupling them with other, complementary techniques.

It should also be clear that the wealth of detailed execution information

which is responsible for much of the power of this technique is obtained only as

14



a result of an execution occurring i '. respcnse to actual program input data.

It is important to point out that this iniormatiun is obtained at the cost of

(often considerable) increases in execution time, and source code size. Further-

more, the generation of input daca is tht- responsibility of the tester, and in

many cases involves quite a significant ;,mount of effort and insight into the

program. It is important to recall i i this context, moreover, that a signifi-

cant amount of human invo±vemert -s aso requirea in order to effectively use

the capabilities of the system to detect and explore execution errors. Hence,

it is seen that the power to obtain detai!cd insight comes in part from signifi-

cant involvement of the human program tester, and is strongly predicated upon his

close familiarity with the potential Ciaws in the program. Thus it is highly

desirable that the human tester'- es Wrt -)e somehow directed to the exploration

of program phenomena which are cerr.iai or likely sources of error. Here too,

the use of other tools and techniques sno.ild be expected to be of help.

Thus, summarizing, dynamic testiig systems provide strong error recognition

and exploration capabilities, bat :r,' unabic to determine the absence of errors.

Their results are narrowly applicable, being valid only for a single program

execution. These results are quite extensive and detailed, however, providing

sufficient material for deep insighL. These systems allow extensive human

interaction, and their power is most fuivy realized when a skilled human tester

is using them interactively. They require as input a complete set of actual

program input data. The success of a Iynamic testing run as a vehicle for

discovering and exploring errors is largely denendent upon the selection of

revealing and provocative input dat1. ThIs urually presumes the involvement of

a human tester who is knowlega~le about the program being tested. The efforts

of this human can be most effectively utilized if they are somehow steered in

the direction of interesting and revealii,,; phenomena.

III. STATIC ANALYSIS

In static analysis systems, the text of a source program is examined in an

attempt to determine whether cche program is defective uue to local malformations,

improper combinations of program event.-, or improper sequences of program events.

In order to make this determination, eaci; statement of the program is represented

by a small, carefully selected set of characteristics. The static analysis

system can then examine each characteristic set on a statement-by-statement

basis for malformations, and various combinations and sequences of statements on

a characteristic-by-characteristic hv,.i:; for faulty program structure or
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coordination. No attempt is made at replicating the entire behavior or function-

ing of the program. Rather, static analysis attempts to examine the behavior

of the entire program only with respect to certain selected features.

The syntax checking of individual statements of a program provides a good

example of statement-by-statement static analysis. Here each statement is repre-

sented only by its source text, or the derived token string. This representation

is far from a complete characterization of the statement (its semantics are

totally unrepresented, for example), but it is sufficient for the determination

of the statement's syntactic correctness. None of the errors in the program in

Figure 1 can be detected by this type of scan, but this technique could identify

as either errors or causes for concern each of the following variants of state-

ments in Figure 1:

2 PI = 3.14.6
3 DO 200 I = O,N
4 READ(5,2)

17 AREAR = A* 1
23 ,kREAT = 0. * B* H

It should be noted that soie of these scatements are found erroneous by the

syntax scanner of any conventional compiler. Others are not syntactically

incorrect, but either violate semantic rules or strongly suggest the presence or

symptom of an error. These could be found by statement-by-statement analysis.

Compilers could readily detect such errors, but very few do so. There are

stand-alone static analyzers which perform such analysis.

More interesting and valuable error detection is obtained by examining the

characteristics of combinations of statements. For example, illegal combina-

tions of types can be detected by examining det laration statements and then

examining the executable statements which refer to the variables named in the

declarations. Similarly, mismatches between argument lists and parameter lists

associated with the invocation of procedures or subroutines can also be made by

static analysis systems. In such cases, the invocation and procedure definition

statements are both represented by such information as the number of arguments

or parameters, the type of each, any dimensionality information associated with

each, and input/output characterizations for each. The static analysis consists

of comparing the characteristics of the corresponding arguments and parameters.

Mismatched lengths, types and functional usages can be detected in this way.

Some of the types of static analysis discussed above are available with some

conventional compilers. Other types, such as argument/parameter list agreement
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are far less common in compilers, but are found in stand-alone static analysis

systems [5,61. None of the errors in the program in Figure 1 can be detected

by this type of static analysis, but this technique could identify that errors

are caused by each of the following variants of statements in Figure 1:

6 AREA(I) = AREAR(DI)
9 AREA(I) = AREAC(DI)

13 WRITE(6,3)COST(I,I)
19 INTEGER PI
25 COMMON/BB/COST(10),AREA(10)

The use of static anaiyois tectiniques to examine sequences of program events

enables the detection of still more subtle types of program errors. In [7]

each statement of a progzam is represented by two lists -- a list of all varia-

bles used to supply values as inputs Uo the computation, and a list of all

variables used to carry away values produced as output by the computation. The

static analysis then consists of examination of sequences of statement execu-

tions which are possible given the program's control flow structure, and deter-

mination of such things as whether it is possible to reference an uninitialized

or otherwise undefined variable, and whether it is possible to compute a value

for a variable and then never refer to the computed value. In such cases, the

static analyzer determines and outputs the statement sequence for which the

anomalous pattern of references and definitions occurs.

This type of static analysis is often called data flow analysis. It can be

used to detect manifestations of most of the errors in the program in Figure 1.

The misspelling of the variable PI would be indirectly detected by data flow

analysis in two ways. First, a scan of the main program will show that PI is

defined (receives a value) at statement number 2, but is never subsequently

referenced. Second, the variable P will be found to be referenced before any

definition. This latter conclusion will be reached after a scan of AREAC has

been made, showing the first parameter to be used as an input (reference) by

AREAC. Thus, it is known that P in statement 9 is used as a reference. Neither

of these two diagnostics directly states that a misspelling has occurred, but

both strongly indicate the error.

In a similar way, the error in the calling sequence of SUBROUTINE AREAT

can be indirectly detected by static data flow analysis. The first indication

of the error is that the third parameter of AREAT (namely AREA) is used neither

as an input nor an output. The second indication is that the local variable

AREAT is defined at statement 23, but never subsequently referenced. These two
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diagnostics indicate that subroutine AREAT is generating a value which is never

used, and that one of its parameters is not being used for interprocedural

communication. It is not difficult to notice the variable naming mismatch based

upon these indications.

This same type data flow analysis facilitates the detection of the COMMON

list inversion between the main program and SUBROUTINE DOLS. The first array in

COMMON in DOLS (called COST) is used as output, while the second array (called

AREA) is used as input. Yet in the main program the second array (called COST)

is used as an input following the invocation of DOLS, while the first array

(called AREA) is defined immediately prior to the invocation of DOLS. Thus,

the first array in COMMON is defined in the main program. Then DOLS is invoked

and it is defined again without an intervening reference. The second array in

COMMON is never defined in the main program at all. When DOLS is invoked, it

is referenced, and upon return from DOLS it is referenced again. The patterns

of reference and definition for both arrays are anomalous. Static data flow

analysis will detect this anomalous behavior and focus attention on its cause.

The inverted order of the two lists should then become apparent.

The DAVE static data flow analysis system [7] carries out such scans and

produces messages such as described here. Systems such as this can use search

techniques first developed in connection with program optimization [8,9,10,11]

to carry out these scans in a highly parallel fashion. The patterns of reference

and definition of all variables along all paths can be scanned for errors essen-

tially in parallel. Hence, the existence of data flow errors such as described

here can be detected or their presence can be disproven by these algorithms.

This capability is nicely complementary with the capabilities offered by

dynamic analysis. This is perhaps best seen by observing that the static

analysis capabilities just described (especially static data flow analysis) are

in some cases capable of demonstrating the possibility or impossibility of

violating assertions. In being able to show the impossibility of assertion

violations, an improvement on the power of dynamic testing is offered, without

the necessity for test executions.

For example static data flow analysis can readily verify the assertion

C ASSERT GLOBAL AREAT STET(B,H)

and readily be used to disprove

C ASSERT GLOBAL AREAT ALTER(AREA)

Static data flow analysis could also be used to show that it is impossible
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to ever violate the assertion

C ASSERT GLOBAL mainpgm 1 SUBSCRIPT (AREA, COST) < N

This follows from the fact that all subscript references are through the variable

I, whose range is regulated between 1 and N by statement 3. This is readily

discernable by a static data flow analyzer.

Is is worthwhile to note that static analysis could do little to verify

the assertion

C ASSERT GLOBAL mainpgm 1 < SUBSCRIPT (AREA, COST) 10

(i.e. the assertion that array bounds are never violated). This is because the

array accesses never exceed the value of N, which is rcad in as an essentially

unregulated value. If the statement

1.5 IF(N.CT.IO)STOP

were inserted after statement 1, then static analysis could report the inviol-

ability of the assertion. Without this check, however, the assertion's correct-

ness could not be established. This in itself indicates the desirability of

subsequent dynamic testing aimed at exercising this assertion. Hence we see how

static analysis can be used to focus dynamic testing efforts. Static analysis

is being used to demonstrate the lack of value or redundancy of certain assertion-

generated dynamic test probes. Where this is possible the probes should be removed,

thereby reducing the size, running time, and cost of the dynamic test execution

without loss of analytic power. Where this is not possible dynamic testing attention

and power should thereby be focussed on more probable sources of error and concern.

It can be seen from the preceding paragraphs that static analysis techniques

offer capabilities for detecting and disproving the existence of deviations from

intent. This is done by discarding a great deal of detailed information about

the program. The static analyzer then determines the possible effects of execut-

ing all program paths considering only those aspects of the execution for which

information has been gathered. Hence, static analysis only examines narrow

aspects of a program's structure and functioniag, but the results of this

analysis are comprehensive and broadly applicable to all possible executions of

the program. These capabilities are obtained without the need for human input

or interaction. Efficient algorithms are used, generally making the cost of

this analysis rather modest. A human tester is required, however, in order to

interpret the results of the analysis and pinpoint the root sources of errors.

In an important sense it can be seen that static analysis rarely detects errors

at all, but rather detects symptoms of errors, leaving the actual error detection



to human analysts.

Probably the greatest weakness of static analysis, particularly data flow

analysis, is its inability to examine the functional behavior of a program, and

hence detect deviations of this behavior from intent. This renders static

analysis useless as a tool for studying assertions of functional equality such

as

C ASSERT COST(I) = AREA(I) * PSF

and

C ASSERT AREA(I) = 3.1416* D1** 2

which were discussed earlier.

Because this type of assertion is one of the most important vehicles for

raising confidence in a program, tools and techniques for studying it are

extremely important. Dynamic testing can be used to detect the occurrence of

violations, but in addition, there is a need for techniques and tools to demon-

strate the impossibility of violating such assertions. Such techniques and tools

are discussed in the next section.

IV. FORMAL FUNCTIONAL ANALYSIS

In formal functional analysis, the code comprising a program or algorithmic

specification is compared to the functional intent of the program or specifica-

tion, as captured and expressed in the form of assertions. The goal of this

analysis is to prove theorems stating that the algorithmic specification

actually achieves the intended functional behavior. Thus, both the assertions of

intent and expressions of actual functioning must be phrased in rigorous mathe-

matics.

This section is d±vided into two subsections. The first describes a tech-

nique for mathematizing the functional effect of a program. The second describes

a technique for comparing this effect to a mathematical statement of intent in

such a way as to comprise a rigorous proof of 1 dosired theorem. A principal

reason for this subdivision is that the technique for mathematizing the effect

of a program, symbolic execution, has become an important technique in itself.

Symbolic execution was originally thought of as a necessary adjunct, but has

recently been recognized as a significant independent testing, analysis and

verification technique. Hence, it will first be described from this point of

view.

Symbolic Execution

In symbolic execution, symbolic representations (in the form of formulas)
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are kept for the evolving values of variables instead of numeric quantities.

For a given path through the program, the values of all the variables encountered

are maintained as formulas. The only unknowns in these formulas are the input

values to the program (these may be arguments, in the case a procedure is being

tested, or read-in values); all other values of variables are functions of con-

stants and these input values and, thereofre, can be removed by substitution.

The formulas can be examined by a human tester to see whether they embody the

intent of the program, or, more important, they can be automatically compared

to formal assertions of functional intent. If they are consistent with these

assertions, then the tester has determined that the program will yield the desired

results for all executions which follow the given program path. A number of

symbolic execution systems have been produced [12,13,14,15]. The following indi-

cates how a typical system can be used to determine the computational effect of

paths through the program in Figure 1.

Consider the program path, 1, 2, 3, 4, 5, 8, 11, 22, 23, 24, 11, 12, 25, 26,

27, 12, 13, 14, 15. A symbolic execution of this path will keep track of the

functional relation of every program variable to the program inputs values at

every point along the path. The input values will be denoted by Roman numerals

for the sake of clarity, and the functional relations involving these values will

be expressed as formulas. The following table shows which variables are resk

as each statement is executed and also shows the resulting functional relations

of these variables to the input values. Thus, the current values of any variable

at any given statement execution can be found by searching backwards in the

table from the execution until a definition of the variabl< is found.

COMMON Variables - Block B Main Program Variables

B(1):* B(11):* N:*
B(2):* B(12):* PI:*
B(3):* B(13):* I:*
B(4):* B(14):* PSF:*
B(5):* B(15):* LCRT:*
B(6):* B(16):* Dl:*
B(7):* B(17):* D2:*
B(8):* B(18):* P:*
B(9):* B(19):*
B(10):* B(20):*

*: Value is undefined
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AREAR Variables AREAT Variables

AREAR:* B:*
A:* H:*

B:* AREA:*
AREAT: *

AREAC Variables DOLS Variables

AREAC: * PSF: *
PI:* I:
RAD:*

*: Value is undefined

After Execution of Statement #: Values Defined are:

I N: I
2 PI: 3.1416
3 1: 1
4 PSF: II

LCRT: III
D1: IV
D2: V

5
8
11
22 B: IV

H: V

AREA: * (Set from B(1))
23 AREAT: 0.5*IV*V
24 AREAT: *
11 D1: IV

D2: V
B(1):*

12
25 PSF: II

I: 1
26 B(1): II * (*)

(second operand is undefined -

it is taken as the value of
component I of the second 10-
element subarray of COMMON
block B. This is element 11
of block B, which is currently
undefined (*).)

"-7

12 PSF: II
I: 1

13
14 1: 1+1(=2)
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Looking at this table, it can be seen, for example, that after execution of

statement 23, AREAT's value will be 0.5 times the product of input values IV and

V (i.e., the last two values read in by statement 4). Variable I maintains the

value I from execution of statement 3, until statement 14 is executed. The

execution of statement 14 causes the value of I to be incremented by 1. This

value is maintained as 2, rather than 1+1, for convenience and comprehensibility.

The incremental simplification of formulas as they are evolved is an important

feature of symbolic execution. In extensive computations this feature helps to

keep the results of the symbolic execution in a simple enough form to enable

effective comparison to the intent of the computation.

Some error detection capabilities can be seen from the above example. When

statement 13 is executed, the value of B(11) (the alias COST(1) is used by the

text) is printed out. It is easy to detect that this value is undefined.

Further, the execution of statement 26 shows that B(1) is set by multiplying

input value II by an undefined value. These findings suggest the inversion in

the COMMON list described earlier. Similarly, the undefinition of AREAT at

statement 24, immediately after its definition at statement 23, suggests an error.

This discussion makes clear how the symbolic execution of appropriate paths

will show that the previously described assertions of functional equality cannot

hold true.

Symbolic execution also offers some error detection and analysis capabili-

ties which are qualitatively different from those described above. The specifi-

cation of an execution path, required as input to symbolic execution, can be

used to determine the conditions necessary for execution of the path. This infor-

mation also has important diagnostic and error detection power.

For example, the path specified above entails a transfer from statement 5

to statement 8. This implies that on execution of statement 5, the value of

LCRT.NE.2 must be true. Thus, execution will jump to statement 8 if and only if

the current value of LCRT is # 2. Using the results of symbolic execution, the

current symbolic value of every variable is known at all times. In this case,

the value III is the current value of LCRT. Thus, the jump from statement 5

to statement 8 will occur if and only if input III is # 2. The path specifica-

tion then stipulates a jump from statement 8 to statement 11. This can occur if

and only if LCRT.NE.2 evaluates to true. The current symbolic value of LCRT is

input value III. Thus, here too, the jump will occur if and only if III A 2.

From this it is inferred that AREAT will be invoked along the path 1, 2, 3, 4,
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5, 8, 11 if and only if III, the value read in for LCRT is #2.

Specifically, the values 1 and 3 will cause the execution of AREAT along

this path. This deviates from the intent of the program. If that intent were

expressed by the assertion

C ASSERT I.EQ.3 .AND. I.NE.I.AND.I.NE.2

placed after line 11, then symbolic execution could demonstrate the possibility

of violating this assertion as well as the conditions under which the violation

could occur.

It is intended that statement 6 will be executed if LCRT receives the value

1. This will occur if the path 1, 2, 3, 4, 5, 6 is executed. Using symbolic

execution of this path and a constraint vxamination process, such as shown above,

it is determined that this occurs only if the transfer from 5 to 6 is made. This

transfer occurs if and only if LCRT.NE.2 evalutes to false. Hence, 1, 2, 3, 4, 5,

6 occurs if and only if III is read in as a 2.

This, too is a deviation from intent. An input value of 2 for LCRT should

cause the execution of statement 9 along the path 1, 2, 3, 4, 5, 8, 9. In order

for this path to be executed, however, the two symbolic constraints

III # 2 (arising from jump (5,8))

and

III = 2 (arising from jump (8,11))

must be simultaneously satisfied. There are no values which can simultaneously

satisfy both constraints. Such a set of constraints is inconsistent.

If a set of constraints if found to be inconsistent, the path generating those

constraints is thereby shown to be unexecutable. Thus, it is shown that state-

ment 9 cannot be reached along the path 1, 2, 3, 4, 5, 8, 9. All of these

determinations make clear that there is an error in the control flow of the

program. The nature of this error is most clearly indicated as a set of

deviations from the intent as captured by flow-of-control specifying assertions.

This example has illustrated the importance of combining constraint solu-

tion with symbolic execution. This technique can be used to match statements of

computational effect to statements of the conditions under which those effects

are obtained. These matchings can be viewed as input-output specifications

and can be compared to input-output assertions used to express the intent of

the program. This is a powerful verification technique.

Constraint solution can also be coupled with symbolic execution to enable

demonstration of the impossibility of violating other classes of assertions.

24



For example, whenever a division operation is encountered in the process of

symbolically executing a path, a new, t!mporarv constraint can be created, con-

straining the divisor to be zero. The current system of constraints, accumulated

to this point, is augmented by this new zero divisor constraint. If this aug-

mented system of constraints is inconsistent, then a division by zero error is

impossible along the given path to this point. Otherwise, a solution to the

system of constraints will produce program input data which forces the traversal

of the given input path, followed by a zero-divide error at the given point. If

this analytic result can be obtained for all paths leading to a particular

division, the need for executing dynamic tests of the divisor is nullified.

In a similar fashion, constraints can be created which test for the possi-

bility of array bounds violations and DO statement loop control variable errors

(e.g. non-positive values for these variables). For example, a constraint can

be created, constraining the value of N to be < 0 before execution of statement 3

in the program in Figure 1. Using symbolic execution, it is seen that this is

not inconsistent with any other constraint, but only constrains input value I

to be ! 0. Thus, if the first input value to the program is - 0, an illegal DO

parameter error will definitely occur when statement 3 is executed. This points

out the error of omission previously observed. The variable N should be tested

before being used in statement 3.

As a more interesting example, consider the problem of detecting an out-of-

bounds array reference error. The previous section indicated that static analysis

can be used to verify subscript bounds assertions. This is only true under

certain restricted conditions. Suppose, for example, that statement 3 were

replaced by

3 DO 200 1 = 1,N

3.5 T=J

or some such similarly obfuscating statemont sequence.

Such analysis systems would be hard pressed to properly analyze the full

range of possible variations of such code. Hence a more powerful technique such

as symbolic execution is needed. Thus assume that the above modification to the

source text has been made. Note that such an error will occur at statement 6,

for example, if variable I is constrained to be > 10. But symbolic execution

along any path leading to statement 6 must go through statement 3.5 and cause

the constraint at statement 6 to be expressed as:

(current value of J) > 10

2)



Statement 6 can be reached by path 1, 2, 3, 4, 5, 6 and by all other paths '1
including the statement sequence ..... 12, 13, 14, 4, 5, 6. The only constraint

on these sequences are the constraints on the jumps 14 to 4 and 5 to 6. The

first constraint can be expressed as:

(current value of J) (input value I)

The second constraint can be expressed as:

(current value of LCRT) = 2.

Thus, the three constraints are:

(current value of J) > 10

(current value of J) ! (input value I)

(current value of LCRT) = 2

This set of constraints simplifies to:

10 < (current value of J) (input value I)

(current value of LCRT) = 2.

Hence, if input value I is > 10 and input value II = 2, then an array subscript

bounds violation error will occur at statement 6.

If the test

IF(N.GT.10) STOP

is inserted between statements 2 and 3, this will become a constraint incompati-

ble with any out-of-bounds array reference error constraint. Thus, the impossi-

bility of such errors is proven. Systems which automatically generate such

error constraints and attempt to solve them current exist [12]. There are

theoretical limitations on totally automating them, however.

From the previous discussions, it can be seen that symbolic execution

systems are capable of both detecting and disproving possible assertion viola-

tions. Error detection or disproof for program computations can be obtained by

creating and comparing to assertions the formulas generated by the system.

Examination of the systems of constraints arising from the symbolic execution

yields other powerful assertion verification capabilities. If a system of

constraints leading up to a division is consistent, yet the system augmented

by a zero-divisor constraint is inconsistent, then there is no way that a divi-

sion by zero can occur at that division, provided the division is reached by

the given path. Hence, this procedure is capable of demonstrating the absence

of division by zero errors along the path. We chall refer to this as pathwise

verification. Clearly pathwise verification is not totally satisfactory because

an error such as division by zero may still occur in the program simply by
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reaching a division along some path other than the one given as input to the

symbolic execution system.

The previous discussion also shows that the information gathered about a

program by a symbolic execution system is less detailed, but has more general

applicability than the information obtained from a dynamic testing system. It

is, however, more detailed but less generally applicable than the information

obtained from a static analysis system. Virtually no information about specific

values of program variables is obtainable from symbolic execution systems.

Instead, what is obtained is information about the relations of possible values

to each other, and about the manner in which the values are derived. This

relation and derivation information is applicable to the class of all executions

which follow the given input path. This situation is in contrast to the situa-

tion for dynamic testing systems, where highly detailed, specific information

is obtained, but only relative to a given execution. It also contrasts with

the static analysis systems where very vague, but broadly applicable, informa-

tion is obtained.

Method of Inductive Assertions

As was already observed, formal verification is the process of comparing

the code comprising a program to the total intent of the program, as captured

and expressed in the form of assertions. Assertions are used to describe the

program output expected in response to specified program inputs. The goal of

the formal verification is to prove a theorem stating that the program code

actually achieves this asserted input/output transforamtion. The proof of this

theorem is reduced to the proof of a coordinated set of lemmas. The statements

of these lemmas are derived from a set of intermediate assertions, positioned

in specific locations throughout the program code. These assertions describe

precisely the desired status of program computations at the locations of the

assertions. Differences in the functions specified by pairs of assertion sets

separated in position by a body of code, embody the transformation which that

code segment is intended to perform. Proving that the code segment achieves

the transformation establishes the lemma that the segment is correct. The

intermediate assertions must be positioned so that they partition each possible

program path into a set of simple (i.e., loop-free) segments. If this is done,

then proving all resulting lemmas establishes the theorem that all computation

sequences perform as specified. A total formal verification is achieved if the

program is also proven to always terminate.
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It is quite significant to observe that symbolic execution is the technique

used to determine the transformation effected by a given code segment. Hence,

the symbolic execution technique is central to formal verification. Formal veri-

fication can, in fact, be viewed as a formalized framework for carrying out a

rigorously complete and coordinated set of symbolic executions and comparisons

to intended behavior.

The great strength of formal verification is this rigor and completeness.

The end result of a successful formal verification is a proof that the program

completely and correctly implements its intent as captured by the assertions.

This result is clearll stronger and more encompassing than those achieved through

the limited applications of static analysis and dynamic testing which we have dis-

cussed, As observed, it is the most which can be achieved with symbolic execu-

tion.

The weaknesses of formal verification are its impracticality and unreasonable

underlying assumptions. The impracticality is attributable to the formidable

amount of work involved in formal verification. The assertion sets required are

frequently numerous and their aggregate size is often larger than the code they

describe. This gives rise to very large numbers of lemmas and proofs. The

proofs of the lemmas are often quite straightforward, but not infrequently they

are tricky and intricate. As a result, the entire verification is invariably

far larger than the original code, and is shot through with mathematical intri-

cacy. Thus, formal verification requires a sizeable amount of work by a person

with a good deal of mathematical facility. This occasions great cost.

The size and intricacy of the proof also invites suspicion about the possi-

bility of error. It is unreasonable to assume that a long and sometimes tricky

mathematical proof is more accurate than a shorter body of code. In addition,

the expected size of the proof often causes the prover to shorten the proof by

omitting details. This omission of details further invites errors.

The interested reader should refer to [16,17,18,19) for further details

about this method and for examples of inductive assertion proofs.

Most of these worries about the reliability of formal proofs can be removed

by employing an automated verification system such as GYPSY [16). Such systems

rely upon humans primarily for guidance in producing thoroughly detailed, totally

justified First Order Predicate Calculus lemmas in support of the formal verifi-

cation. Despite the size and intricacy of such proofs, a high degree of confi-

dence in their correctness is justified.
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More technical proof difficulties cause the imposition of other unreason-

able assumptions upon the formal verification process. it is known, for example,

that attempted proof of an incorrect lemma may never reduce to an obvious

absurdity [19]. Hence, a proof of the incorrectness of an incorrect program

cannot necessarily be expected. This is particularly damaging to attempts to

use automatic verification systems.

A more serious problem is that formal verification must rely upon an

assumed mathematical model of a program's behavior. The purpose of symboli-

cally executinga sequence of code is to determine whether it performs the trans-

formation specified by its bounding assertion sets. The assertion sets are

specified in precise mathematical notation. Hence, the effect of executing code

must be described mathematically. Many commonly used programming constructs,

such as GO TO statements and manipulations on floating point numbers and pointer

variables, cannot be readily modeled with complete accuracy. Thus, these

techniques, too, have serious limitaticns in their ability to raise conficence

in a program or algorithmic specification.

Finally it is important to stress that even formal verification cannot be

used to raise confidence to a level of absolute certainty. Fven if adherence

to all specified assertions of intent is satisfactorally shown, there may still

be reasonable suspicion about whether a complete, accurate set of assertions has

actually been specified.

In summary, formal verification is the most rigorous, thorough and powerful

of the four techniques presented here. There are sizable problems in carrying

it out, however. The size and intricacy of the work make it costly. The need

for exact mathematical models of the desired and actual behavior of a program

invite errors and weakening inaccurate assumptions. It seems generally agreed,

however, that the discipline and deep perception needed to undertake formal

verification are useful in themselves. Anticipation of formal verification

invariably leads to improved insight into both the goals and implementation of

a program.

V. THE INTEGRATION STRATEGY

In the recent past, each of the four techniques just described (dynamic

testing, static analysis, symbolic execution and formal verification) has re-

ceived considerable attention and investigation. Stand-alone systems, Imple-

menting each have been constructed, and experience has been gained in using each.

Partly as a result of this experience, there is a growing concensus that no
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single technique adequately meets all program testing, verification and analysis

needs, but that each contributes some valuable capabilities. It thus becomes

clear that the four techniques should not be viewed as competing approaches, but

rather that each offers useful but different capabilities. Attention then

naturally turns to the examination of how the various capabilities can be merged

into a useful total methodology for effectively raising the confidence of diverse

users beyond their arbitrarily-set confidence threshholds.

In this section, it shall be shown that the strengths and weaknesses of

the four techniques just discussed are fortuitously complementary. It shall be

seen that it is reasonable to consider the creation of an integrated methodology

for confidence incrementation. The methodology described here makes provision

for the progressive detection and exploration of errors leading in a smooth

natural way to demonstrations that different aspects of program behavior never

violate intent.

As already indicated, the central organizing principle of this methodology

is the use of diverse tools and techniques to demonstrate whether differences

between actual behavior and asserted intent either exist or are impossible.

Central to this methodology is the presence of a specification of intent, in

as formal a form as possible. Ideally, intent is expressed in the form of

explicit user assertions. At the most basic level, however, a few specifications

of intent can be implicitly assumed. For example, it seems safe to assume that

a coder intended all divisions to be by r.on-zero quantities, all refer-

ences to arrays to be within defined array bounds, and in general that the code

produced to be consistent with all rules of the language. Beyond this basic

level of intent specification, it is expected that each user will add and then

verify explicit assertions of intent incrementally in such a way as to systemat-

ically raise his confidence in the code or algorithmic solution at hand.

It is important to observe that the intent specifications, both explicit

assertions and basic implicit assumptions, can each be transformed into monitor-

ing probes, as indicated in the section on dynamic testing. As observed there,

these probes will indicate the presence of a deviation from intent (error) dur-

ing a test execution. The absence of such errors during a testing regimen,

however, is not sufficient to raise the confidence of most users to a satisfac-

tory level. Thus it is proposed that other techniques be used, where possible,

to raise confidence further by demonstrating the absence of error from any

possible execution. This is to be done by demonstrating that specific test
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probes are redundant or superfluous. Static analysis and formal functional

analysis techniques are to be used for this purpose.

Figure 3 summarizes in more detail the flow of the proposed methodology.

It shows that confidence raising can be done in a variety of ways, ranging from

simple-minded, straightforward and inexpensive to complex, powerful and costly.

In the most straightforward case, one can start only with code or algo-

rithmic specification, and no explicit assertions. Static analysis can be

applied, yielding assurances of the absence of such errors as references to

uninitialized variables and parameter/argument mismatches. Dynamic testing can

be undertaken to yield definitive answers about the absence or presence of array

reference and zero division errors from specific test executions. Final and

intermediately-computed values can be produced for qualitativd assessment by the

user. This procedure, widely followed today, is also widely agreed to be insuf-

ficient to raise the confidence of most users to satisfactory levels. Hence

our proposed methodology indicates stronger measures.

The next stronger step involves the use of more sophisticated staLic

analyzers to examine the instrumented program and attempt to suppress redundant V
probes prior to dynamic testing. This process should result in a reduction in

size of the subject program, without any loss in diagnostic power. Hence the

testing process is made more efficient. As observed earlier, the probes remain-

ing are now more likely to indicate the presence of errors. Hence it is

desirable to next employatest path generator (e.g.[20]) to focus testing effort

on those situations and specific statements which are most likely to betray

errors. In the unlikely case that all probes are removed through static analysis,

the sole rationale for doing any dynamic testing would be to obtain a qualitative

"feel" for the program by examining test results.

The most significant way in which confidence can be increased is to take

the next step, and begin the process of fashioning assertions to express the

intent of the code or algorithmic specification. Here again the assertions are

to be translated into monitoring code, and imbedded in the program. Direct

dynamic testing is now possible, but not recommended. Once again static analysis

can and should be used to remove embedded test probes. This will result in a

smaller, more efficient test program, and less expensive testing. It will also

enable more effective more sharply focused testing, possibly to the point where

all probes have been removed and dynamic testing can only yeild a qualitative

feel for the execution behavior of the program.
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It is more likely that the resulting program will have imbedded probes

remaining. In this case, the more sharply focused testing can uncover exist-

ing errors, or may fail to do so. If it fails to reveal residual errors, most

users would now wish to raise their confidence still further by demonstrating

the absence of these errors. This can be done by employing formal functional

analysis techniques such as symbolic execution.

As described in an earlier section, symbolic execution can often be used

to remove monitoring probes that static analysis could not remove. These may

be array bounds or zero division probes, or probes arising out of assertions

of functional behavior. This technique is more difficult, expensive and uncer-

tain. Hence it should be attempted cautiously at first, aimed at removal of a

small number of selected probes to assure that confidence is being effectively

raised at reasonable cost.

After sufficient confidence has been gained (a very subjective decision)

the user may wish to create additional assertion sets, capturing more of the

range and depth of the program. Incremental confidence gaining is possible now

by following the same procedure for testing and removing the probes created by

these new assertions. The iterative creation and removal of new assertions

should continue as long as the user wishes to gain more confidence and has

resources to pursue this procedure.

In the rare case where a user may wish to obtain the strongest formal

assurances possible, the user should continue this iterative process until he

has expressed the total intent of the program with assertions, and formally

removed all probes arising out of these assertions. It is important to caution

that, because formal functional analysis techniques make certain incorrect

assumptions, as stated earlier, even this process cannot absolutely assure the

total absence of errors. Dynamic testing, used in conjunction with judicious

test path selection, can and should be used to raise confidence still further.

It can be seen from the preceeding paragraphs that the strategy described

organizes the four techniques into a progression of capabilities which is

natural in a number of important ways. The strategy begins with a broad scan-

ning procedure and progress to deeper and deeper probing of erros and anomaly

phenomena. This initially requires no human interactionor input. It progresses

to involve more significant human interaction as human insight becomes more

useful in tracing errors to their sources and constructing mathematical demon-

strations of correctness. The strategy provides the possibility of some
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primitive verification without human intervention, and then allows error detec-

tion based upon the negative results of the verification scan.

There also appears to be a natural progression of costs for the processing

of the various phases of this strategy. Static analysis appeazs to be the

least expensive, most straightforward operation. It involves a scan over the

program text, parse or flowgraph, using encoded information and algorithms which

execute rapidly. The symbolic execution phase appears far more costly. It

entails performing considerable symbol manipulation and constraint solving for

each of the presumably many paths generated by both the static analyzer and path

generator. Dynamic testing is likewise relatively costly and, perhaps, more

involved than the other two. It entails performing a number of closely monitored

executions of the program. Each execution may take as much as several times as

long as an unmonitored execution [21] and will generate a large data base of

diagnostic information which may have to be probed extensively by human inter-

action. Formal verification appears to be the most costly of the four techniques.

It requires extensive amounts of mathematical labor. It is thus reasonably

placed as a high-cost option at the end of the methodology.

It is also interesting to observe how the use of assertions provides a

unifying influence in integrating the four techniques. All techniques except

static analysis use explicit assertions to demonstrate either the presence or

absence of errors. Static analysis uses implicit assumptions of proper behavior

as embodied in language semantics, but also benefits from explicit assertions.

Seen in this light, the four techniques basically differ in the manner and

extent to which they perform assertion verification. Thus, it seems reasonable

to require that a program and initial set of assertions be submitted. The

adherence of program to assertions would be examined at every stage. The stages

would test the adherence in different ways, progressively establishing firmer

assurances of adherence or focusing more sharply on deviations.

VI. SOFTWARE LIFECYCLE CONSIDERATIONS

The previous sections of this paper have established the importance of

having assertions to represent the intent of a program or algorithmic specifica-

tion to be tested, analyzed and verified. While the importance of the assertions

has been established, the source of the assertions has not been discussed. In

this section we propose that the assertions reasonably and naturally originate

in the early requirements and design phases of the software production process.

We also propose that the testing, verification and analysis techniques already
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described are at least partially applicable to these earlier phases.

Figure 4 is a diagrammatic view of how the software production and main-

tenance process might be divided into phases. It is an adaptation of the

"waterfall chart" [22] which has become widely accepted as a model of those

activities. The primary goal of these models is to divide software production

and maintenance into definable phases and monitoring points. This division

should lead to better defined criteria for judging the quality and completeness

of work in progress. We shall show how this process also produces assertions

and how tools can assist in the process.

The requirements definition phase of this process is the phase during

which the basic needs of the software project are enunciated. These needs are

to be expressed as precisely and cowpletely as possible, but in such a manner

as to not suggest or bias an algorithmic solution. One of the most effective

ways to do this is to specify the required functional and performance charac-

teristics of the proposed program. Such a specification need not and should

not suggest how the functions are to be computed. These specifications should,

from the perspective of this paper, be viewed as assertions of the intent which

the eventual program must satisfy. Hence the eventual code assertions must be

directly traceable back to these original statements of intent. We shall

explore potential mechanisms for doing this shortly.

The preliminary de'.ign phase is characterized by the process of exploring

possible strategies for building an algorithmic solution which satisfies the

requirements specification. During thic phase processing modules and data

abstractions are defined, and algorithmic processes and data flows are repre-

sented, usually hierarchical, showing, when complete, how the principal compo-

nents of the algorithmic solution are decomposed into successively more detailed

specifications of data and processing. In practice, such a decomposition pro-

cess invariably leads to greater understanding of the problem and consequent

changes in requirements. Hence the requirements and preliminary design activi-

ties should be viewed as iterative and intertwined. Together they should be

considered to be the process of gaining an understanding of the nature of the

problem, and agreement about an acceptable approach to its solution.

From the point of view of this paper, preliminary design is important

because it specifies the required functional behavior (assertions) which apply

to the various components of the solution. Hence this phase begins the process

of attaching successively more detailed assertions to.uuccessively smaller algorithmic
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units. This process should terminate with thc construction of code around very

detailed assertions.

The detailed design phase is the phase during which the outline of the

solution, established during preliminary design, is elaborated down to the level

of actual specifications for code. Detailed design should not be viewed as

merely an extension of the preliminary design activity. At the start of detailed

design it is necessary for the designers to reoriezht their thinking from a prob-

lem understanding orientation to a software construction orientation. This is

a crucial phase of the software production process, during which the solution

elements proposed during preliminary design must be grouped and reorganized

into modules and data abstractions [23) [24]. This reorganization should be

guided by the desire to clearly capture independent solution concepts in code,

and to use standard interfaces to conceal the details of their implementation.

The module specifications are statements of the functional behavior required in

order to realize the various design concepts. Hence they are assertions. The

hierarchical decompositions of the high level modular assertions analogously

become assertions specifying the behavior of the submodules comprising higher

level modules. The detailed design process terminates with the creation of

specifications (assertions) such as those described and shown in earlier sections

of this paper, which are so detailed that chey can be met with just a few lines

of code.

As already noted, one of the primary reasons for following this phased

approach to software construction is that it affords obvious opportunities for

observing and evaluating progress at intermediate stages. Extensive reviews

are conducted at the conclusion of each phase. One of the primary goals of

such reviews is to establish whether or not the work completed during that phase

meets the objectives as enunciated at the conclusion of the previous phase.

Hence the review can quite reasonably be viewed as a testing, analysis and

verification procedure, using the output of the previous phase as the statement

of intent.

These reviews are invariably based upon documentation and analysis done

primarily by humans. It is our contention that they can be heavily supported

by tools and techniques like those described earlier in this paper. In order

to do this the requirements and design specifications must be stated in terms

of a rigorous formalism. Some such formalisms have already been devised.

Pseudo-code languages and design representation languages such as CLU [25) are
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examples of rigorous formalisms for expressing detailed design. Clearly they

can be parsed and subjected to certain types of semantic analysis. Virtually

all forms of static analysis and symbolic execution can be carried out on them.

Hence some verification and probe removal can be done automatically. If the

detailed design and preliminary design are both complete and rigorous enough it

is possible to go so far with formal functional analysis as to produce a com-

plete formal verification that the detailed design meets its preliminary design

objectives.

It is clearly not possible to dynamically test design specificAtions in

the same way that code can be tested. There is, however, an analog to this

process. The specification can be taken to be a model of the way that the

completed code is to work, and thus a blueprint for a simulation of that code.

A simulation language can be used to create the simulation. Alternatively,

the high levels of the design specification can be cast directly into code,

and the lowest levels replaced by invocations of stubs, crude simulations of

the eventual code. Execution of these simulations can serve many of the same

purposes as executing a dynamic test. Clearly the primary difference is an

obligatory loss of detail. Good familiarity with specific simulated execution

characteristics can, nevertheless be obtained.

It is perhaps more surprising to note that such capabilities can reasonably

be extended to requirements and preliminary design specifications. Here again

the prerequisite is rigor in the specification. A number of rigorous specifica-

tion methodologies have been proposed (e.g., SAMM [26], SADT [27], PSL/PSA [28]).

All seem to be based upon a graphical representation of the requirements and/or

preliminary design.

The SREM methodology [29] is the most interesting as it is strongly sup-

ported by the RSL/REVS family of tools [30]. RSL is a language which is used to

capture a requirements/preliminary design specification and recast it into a set

of objects and relations stored in a centralized data base. The contents

of the data base are looked upon as a collection of annotated graphs,

modelling the problem and its proposed solution. The REVS system of analytic

tools examines the data base and produces documentation, analysis and limited

forms of verification. Each processing element in the design has as part of

its specification its input/output behavior, and a functional description which

may be stated as an algorithmic graph structure. Hence input/output behavior

can be statically analyzed and verified for consistency. Symbolic execution
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traces can be created as documentation and for the purposes of verification.

Dynamic simulations can also be created by REVS to provide an indication of the

expected run-time behavior of the eventual coded program. It is important to

note that since SREM captures both the requirements and preliminary design in a

natu.cal intertwined fashion, verification of internal consistency is tantamount

to a verification that preliminary design meets requirements.

We finally are able to see where the code assertions originate. The func-

tional descriptions attached to the various processing elements bf an RSL-like

specification are the initial program assertions. If the specification technique

represents the hierarchical decomposition of these elements, then at eacn decom-

position level functional description is attached to the prozessing elements.

As these descriptions become more algorithmic and rigorous, the possibility of

rigorous and automatic verification increases. By the beginning of detailed

design they have evolved into rigorous module specifica.tions, and are certainly

a suitable basis for the automatic verification approaches described earlier.

Some of the documentation, verification and testing techniques described

earlier in connection with code analysis have been applied to requirements and

design representations. It remains to be demonstrated that the methodology out-

lined in Section V and its implementation by the tools proposed can be substan-

tially applied equally well to requirements and design. This would establish

the feasibility of a single analytic methodology and tool configuration for

application at all phases of the software production process.
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