

RADC-TR-80-200 Final Technical Report July 1980

DHRS TECHNICAL REPORT

AD A 089953

Northrop Corporation

Gary Wycoff William Baker

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER Air Force Systems Command Griffiss Air Force Base, New York 13441

10 6 6 17 80

This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-80-200 has been reviewed and is approved for publication.

ANDREW R. PIRICH Project Engineer

Gun R. Tourtes

APPROVED:

APPROVED:

OWEN R. LAWTER, Colonel, USAF Chief, Intelligence & Reconnaissance Division

FOR THE COMMANDER:

and Phuse

JOHN P. HUSS Acting Chief, Plans Office

5 NO. 4 N

SUBJECT TO EXPORT CONTROL LAWS

This document contains information for manufacturing or using munitions of war. Export of the information contained herein, or release to foreign nationals within the United States, without first obtaining an export license, is a violation of the International Traffic in Arms Regulations. Such violation is subject to a penalty of up to 2 years imprisonment and a fine of \$100,000 under 22 U.S.C 2778.

Include this notice with any reproduced portion of this document.

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (IRRE) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

V V KEPUKI DULUMENTATION FAC	E	BEFORE COMPLETING FORM
RADC-TR-80-200	AOS995	3. RECIPIENT'S CATALOG NUMBER
DHRS TECHNICAL REPORT	9	5. IXPE OF REBORT A DEMOS OVERED Final Technical Report , 1 Oct 79 - 31 Mar 80
	l.	S. PERFORMING OJG. REPORT HUMBER
Sary/Wycoff J/Schinch Villiam/Baker Gourd/Hall	15	B. CONTRACT OR GRANT NUMBER(*) F30602-79-C-0269
PERFORMING ORGANI Northrop Corporation/Image Systems Electronic Division, 2301 West 1200 Hawthorne CA 90250	Branch th Street	10 PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS 63208F 665A 004
CONTROLLING OFFICE NAME AND ADDRESS Rome Air Development Center (IRRE)	(Π)	Jul Beng ang
A MONITORING AGENCY NAME & ADDRESS// different from	Controlling Office)	41 15. SECURITY CLASS. (of this report)
Same	111	UNCLASSIFIED
	711	15a. DECLASSIFICATION/DOWNGRADING
7. DISTRIBUTION STATEMENT (of the abstract entered in Rig	ock 20, 11 dillerent fra	m Report)
DISTRIBUTION STATEMENT (of the aberract entered in Bla Same Supplementary notes RADC Project Engineer: Andrew R. F	ock 20, 11 dillerent fro Pirich (IRRE	n Report)
7. DISTRIBUTION STATEMENT (of the abstract entered in Blo Same 8. SUPPLEMENTARY NOTES RADC Project Engineer: Andrew R. F 9. KEY WORDS (Continue on reverse vide if necessary and ider Real Time Processing Digit Detection Enhar Identification Reporting	Pirich (IRRE	
7. DISTRIBUTION STATEMENT (of the abstract entered in Blo Same 8. SUPPLEMENTARY NOTES RADC Project Engineer: Andrew R. F 9. KEY WORDS (Continue on reverse vide if necessary and iden Real Time Processing Digit Detection Enhar Identification Reporting 1. ABSTRACT (Continue on reverse slife if necessary and iden The Final Technical Report submitted brief synopsis of the problems enco Data Handling Recording System (DHR of the hardware design to handle 10 of the important results of the Nor delay caused by the assumed target Dutput rate) cannot be improved upon 1. JAN 73. EDITION OF 1 NOV 65 IS OBSOLETE	Pirich (IRRE Pirich (IRRE nully by black number) cal Imagery icement (If by black number) ed by Northro puntered dur: tS) program.)" bits of di throp study input rate on except by	p Report) p Corporation contains a ing the design phase of the An analysis is presented igital imagery data. One was that a fundamental (exceeding the exploitation employing additional (Cont d)

UNCLASS IF [ED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) Item 20 (Cont'd) exploitation stations or by assuring a longer exploitation time. $\sqrt{}$ UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

Strand

INDEX

SECTION

100 - 15 Er 63

1.0	Introduction		1
2.0	Overall System		1
2.1	Technical Problem		1
2.2	General Methodology		1
2.3	Technical Results		3
3.0	Cache Storage		3
3.1	Technical Problem		3
3.2	General Methodology		9
3.3	Technical Results		9
4.0	Mass Storage		9
4.1	Technical Problem		17
4.2	General Methodology		17
4.3	Technical Results		17
5.0	Displays		17
5.1	Technical Problem		17
5.2	General Methodology		17
5.3	Technical Results		22
6.0	Target Screener		22
6.1	Technical Problem		22
6.2	General Methodology		22
6.3	Technical Results		22
7.0	Compression-Expansion		31
7.1	Technical Problem		31
7.2	General Methodology		31
7.3	Technical Results	1 Alexandre	31

i

A

LIST OF ILLUSTRATIONS

FIGURE NO.

وتنعز والاعتياد ليرو والاعكر والعرف

أتكون كالمربعة والمتكر فالتكلية ومرجع وموميته استخرب فللمراد

TITLE

PAGE

and the second second

1	Mission Scenarios	2
2	Reconnaissance Mission (Mini-Mission)	4
3	Data Paths for System Control	7
4	Data Handling and Recording System	8
5	DHRS Input Assumptions	10
6	RTPM Throughput	11
7	Cache Content	12
8	DHRS, AN/AAD-5 Input	13
9	AN/AAD-5 Cache Loading	14
10	AN/AAD-5 Reporting Delay	16
11	Storage and Retrieval Module Requirements	18
12	S/RM Candidates Technologies	19
13	MTU Characteristics	20
14	S/RM Technology Trade-Off	2]
15	Objective of Target Screener Study	26
16	Evaluation Criteria	27
17	Preliminary Survey	28
18	Investigation Highlights	29
19	Basic Algorithm	30
20	NEMD "ATC"	31

TABLES

an data . Weissels they had the second

and the second second

			PAGE
Table	1	Average Throughput Rates	5
Table	2	Cache Operation	15
Table	3	Display System Comparison	23
Table	4	Display System Comparison-Continued	24
Table	5	Display System Comparison-Continued	25

111

a de state

Č./C.

EVALUATION

Northrop Corporation, addressed six technical topics that received special analysis during the Phase I study to establish the DHRS baseline configuration. These topics are:

- 1. Overall System Design
- 2. Cache Storage
- 3. Mass Storage
- 4. Displays
- 5. Target Screeners
- 6. Compression/Expansion Techniques

The parameters which drove the preliminary architectural design of the DHRS were that (for the DHRS to operate without delays), the Image Interpreter must finish his exploitation/reporting tasks in less than 4.8 to 120 seconds. For worst case, as many as 6 exploitation stations would be required to process target data in real-time if each processing task took (on the average) only 30 seconds. Due to the high cost of multiple exploitation stations, Northrop decided on only one exploitation station, and thus the baseline architecture was designed.

Kil. C ANDREW R. PIRICH Project Engineer

Service States and a state of the service of the se

ABSTRACT

The following document constitutes the final technical report on Contract F30602-79-C-0269, Data Handling/Recording System - Phase I. The work was performed in the Image Systems Branch of Northrop Corp., by Messrs Gary Wycoff, William Baker, J. Sekiguchi, and Dr. Gerry Haas.

almi strate de Bear

CDRL A002

DHRS TECHNICAL REPORT

1.0 INTRODUCTION

The Data Handling and Recording System is a system of personnel, equipment, computer software and procedures capable of receiving and exploiting tactical reconnaissance information in near real time. The reconnaissance information is infrared imagery and location data from the AN/AAQ-9 forward-looking infrared (FLIR) and AN/AAD-5 downward-looking infrared (DLIR) multiplexed with AN/ARN-101 computer inertial navigation information. After demultiplexing, data is routed to the data processing and video and display consoles. Exploitation equipment is housed in a 20by-8 by 8-foot shelter. The shelter contains computer and peripherals (magnetic tape units and disks) and conversion, and target/intelligence report writing. The shelter is modular, mobile, air transportable and capable of global deployment.

The DHRS technical report addresses six topics that received special analysis during the DHRS Phase I study to establish the baseline configuration submitted as CDRL A003, Technical Proposal/ Program Plan. These topics are discussed under the following subsections: Overall System, Cache Storage, Mass Storage, Displays, Target Screeners and Compression-Expansion.

2.0 OVERALL SYSTEM

2.1 Technical Problem

A significant difference exists between an operational future DHRS and the Advanced Development Model used to evaluate target screeners and to evaluate system response timeliness. Specifically, target input rates dramatically impact the size of the DHRS exploitation station, since Image Interpreter (II) exploitation time limits the DHRS throughput. It also affects the size of the cache memory (which functions as a buffer between the target input rate and the II exploitation rate). And finally, it determines a fundamental system parameter, throughput timeliness, and thus the requirements for real time and near real time target processing.

2.2 General Methodology

To bound the target input rates, two mission scenarios were developed (see Figure 1). The minimum is the surveillance mission. It is a low-altitude, wide-field-of-view updating of already located targets and consists of a 2 hour flight with 6 imaging segments each yielding one formation target and new targets in

MISSION SCENARIOS

SURVEILLANCE — UPDATE LOCATED TARGETS (DA)

NOISSIM-INIM

LOW ALTITUDE

WIDE FOV

2 HOUR YIELDING B IMAGE SEGMENTS EACH CONTAINING

1 FORMATION TARGET

3/4 NEW TARGETS

2

• RECONNAISSANCE – FIND NEW TARGETS

MAXI-MISSION

HIGH ALTITUDE

NARROW FOV

30-MINUTE CONTINUOUS STRIP CONTAINING:

3 FORMATION TARGETS

30 INDIVIDUAL TARGETS

60 NON-TARGETS

FIGURE 1

هما رئينا بطرا عظهم عظمتنده ار

three out of four such segments. This mission is depicted in Figure 2. The maximum mission, called reconnaissance, is used to find new targets in an unsurveyed region. It consists of a high altitude flight with continuous sensor imaging and will collect images of 3 formation targets, thirty individual targets and 60 man made objects that are not targets. These figures are based on battlefield target densities described by General Stubblebein for the BETA program.

Within these bounds on target thougput rates, table 1 was constructed for both the AN/AAD-5 and the AN/AAQ-9 sensor in three scenarios; the present ADVISOR-62 data, during tests of the DHRS, and operationally as in a Reforger Exercise.

2.3 Technical Results

The critical parameters that impact the DHRS timelines and cache size are the average target frame rate and the average targets per target frame. For the DHRS to operate without delays, the II must finish his exploitation/reporting tasks in less than 4.8 to 120 seconds. Therefore, for worst case, as many as 6 exploitation stations would be required to process target data in realtime if each processing task took on the average of only 30 seconds. These parameters drove the preliminary architectural design of DHRS (see figure 3). It was obvious that the cost of multiple exploitation stations was prohibitive and unnecessary to the purpose of an Advanced Development Model (ADM). The project managers made a decision that only one exploitation station would be procured for the ADM and thus the baseline as shown in figure 4 was defined.

Before leaving this section, a time compression in the collected versus inputted target data must be mentioned as illustrated in figure 2. Although the sensor collects the image data over sixfour minute segments in two hours, the Advisor-62 tape input to the DHRS plays back this data as if a continuous twenty-four minute image was collected, thus speeding up the target data rate by, at most, a factor of 5. The program managers made a decision that the Advisory-62 could be played back in segments that would simulate the actual target image collection rate.

3.0 CACHE STORAGE

3.1 Technical Problem

As mentioned in paragraph 2.1, the cache memory is simply a buffer that stores target input images when the input rate exceeds the exploitation output rate. The questions are then; How Large must the cache memory be? How does the difference in input versus output rate affect the system timelines?, and How should the cache be implemented?

AVERAGE THROUGHPUT RATES

SCENARIO AD-62 TEST OP AD-62 TEST MISSION DURATION (MIN) 120 TOTAL IMAGING TIME (MIN) 24 24 24 24 MISSION DURATION (MIN) 24 24 24 24 24 INAGING SEGMENTS 6 4 6 4 0.8 30 RAGING SEGMENTS 20+10 20+10 20+10 8+2 4+1 3+1 TARGETS PER REGNENT 20+10 20+10 20+10 8+2 4+1 3+1 TARGETS PER MISSION 7.5 5 0.5 12.5 5 0.5 AUERAGE TARGET RATE (PER MIN) 7.5 5 0.5 17.280° 43.200 43.200 TOTAL FRAMES PER MISSION 17.280° 17.280° 17.280° 43.200 43.200 43.200 AVERAGE TARGET FRAME 2.5 2.5 2.5 5 4 4 AVERAGE TARGET FRAMES 17.240° 17.240°	SENSOR		AAD-5			AAQ-9	
MISSION DURATION (MIW) 120 24 26 60 30 30 361 371 341 <th>SCENARIO</th> <th>AD-62</th> <th>TEST</th> <th>d0</th> <th>AD-62</th> <th>TEST</th> <th>9</th>	SCENARIO	AD-62	TEST	d 0	AD-62	TEST	9
TOTAL IMAGING TIME (MIN) 24 26	MISSION DURATION (MIN)	:	:	120	;	:	120
IMAGING SEGMENTS 6 4 6 6 60 30 SEGMENT DURATION (MIN) 4 6 4 0.4 0.8 31 TARGETS PER SEGMENT 20+10 20+10 20+10 8+2 4+1 3+1 TARGETS PER SEGMENT 20+10 20+10 8+2 4+1 3+1 TARGETS PER MISSION 180 120 80 300 120 AVERAGE TARGET RATE (PER MIN) 7.5 5 0.5 12.5 5 TOTAL FRAMES PER MISSION 17,280* 17,280* 43,200 43,200 FRAME RATE (PER MIN) 7.5 5 0.5 12.5 5 TOTAL FRAMES PER MISSION 17,280* 17,280* 17,20° 1,800 1,800 AVERAGE TARGET FRAME 2.5 2.5 2.5 5 4 4 AVERAGE TARGET FRAME 3 2 0.2 2.5 5 4 4 AVERAGE TARGET FRAME 3 2 0.2 2.5 5 4 4 TOTAL FRAMES PER INTAL FRAMES 1720* 1720*	TOTAL IMAGING TIME (MIN)	24	24	24	24	24	24
SEGMENT DURATION (MIN) 4 6 4 0.4 0.8 TARGETS PER SEGMENT 20+10 20+10 8+2 4+1 3+1 TARGETS PER MISSION 180 120 80 300 120 TARGETS PER MISSION 180 120 60 300 120 AVERAGE TARGET RATE (PER MIN) 7.5 5 0.5 12.5 5 TOTAL FRAMES PER MISSION 17,280* 17,280* 17,280* 43,200 43,200 FRAME RATE (PER MIN) 720* 17,280* 17,280* 17,280* 43,200 43,200 AVERAGE TARGET FRAMES 25 2.5 2.5 2.5 5 4 AVERAGE TARGET FRAME 2.5 2.5 2.5 5 4 AVERAGE TARGET FRAMES 1720* 1720* 1720* 1,200 1,800 1,800 AVERAGE TARGET FRAMES 1720* 2.5 2.5 2.5 4 2.5 1,25 AVERAGE TARGET FRAMES 1,720* 1,720* 1,720* 1,720* 1,720* 1,720* 1,25 1,25 <	IMAGING SEGMENTS	9	4	G	60	30	18
TARGETS PER SEGMENT 20+10 20+10 8+2 4+1 3+1 TARGETS PER MISSION 180 120 80 300 120 TARGETS PER MISSION 7.5 5 0.5 12.5 5 AVERAGE TARGET RATE (PER MIN) 7.5 5 0.5 12.55 5 TOTAL FRAMES PER MISSION 17,280* 17,280* 17,280* 43,200 43,200 FRAME RATE (PER MIN) 720* 17,280* 17,280* 17,280* 43,200 43,200 FRAME RATE (PER MIN) 720* 720* 17,280* 17,280* 17,280* 43,200 AVERAGE TARGET FRAME 2.5 2.5 2.5 2.5 5 4 AVERAGE TARGET FRAME 2.5 2.5 2.5 5 4 AVERAGE TARGET FRAME 3 2 0.2 2.5 1.25 AVERAGE TARGET FRAME 3 2 0.2 2.5 1.25 1.25 AVERAGE TARGET FRAMES 1.1240 1.1240 1.1240 1.1240 1.1240 1.1240	SEGMENT DURATION (MIN)	4	9	4	0.4	0.8	1.3
TARGETS PER MISSION 180 120 60 300 120 AVERAGE TARGET RATE (PER MIN) 7.5 5 0.5 12.5 5 AVERAGE TARGET RATE (PER MIN) 7.5 5 0.5 12.5 5 TOTAL FRAMES PER MISSION 17,280* 17,280* 17,280* 43,200 43,200 FRAME RATE (PER MIN) 720* 720* 720* 17,280* 17,280* 43,200 43,200 FRAME RATE (PER MIN) 720* 720* 720* 720* 17,280* 43,200 1,800 1,800 AVERAGE TARGET FRAME 2.5 2.5 2.5 2.5 5 4 AVERAGE TARGET FRAME 2.5 2.5 2.5 1.26 1.25 TARGET FRAMES PER TOTAL FRAMES 1/240 1/240 1/240 1/1240 1/1240 1/1240	TARGETS PER SEGMENT	20+10	20+10	8+2	4+1	3+1	3+1
AVERAGE TARGET RATE (PER MIN) 7.5 5 0.5 12.5 5 TOTAL FRAMES PER MISSION 17,280* 17,280* 17,280* 43,200 43,200 FRAME RATE (PER MIN) 720* 720* 720* 17,280* 17,280* 43,200 43,200 FRAME RATE (PER MIN) 720* 720* 720* 720* 720* 1,800 1,800 AVERAGE TARGET FRAME 2.5 2.5 2.5 2.5 5 4 AVERAGE TARGET FRAME 2.5 2.5 2.5 5 4 TARGET FRAMES PER TOTAL FRAMES 1/240 1/260 1/250 1/1260 1/1260	TARGETS PER MISSION	180	120	60	300	120	72
TOTAL FRAMES PER MISSION 17,280* 17,280* 17,280* 43,200 43,200 FRAME RATE (PER MIN) 720* 720* 720* 720* 1,800 1,800 AVERAGE TARGET FRAME 2.5 2.5 2.5 5 4 AVERAGE TARGET FRAME 2.5 2.5 2.5 5 4 AVERAGE TARGET FRAME 2.5 2.5 2.5 5 4 AVERAGE TARGET FRAME 2.5 2.5 2.5 1.25 1.25 AVERAGE TARGET FRAMES 1/240 1/240 1/240 1/240 1/1200 1/1200 1/1260	AVERAGE TARGET RATE (PER MIN)	7.5	ß	0.5	12.5	6	0.6
FRAME RATE (PER MIN) 720* 720* 720* 1,800 1,800 1,800 AVERAGE TARGET FRAME 2.5 2.5 2.5 2.5 5 4 AVERAGE TARGET FRAME 2.5 2.5 2.5 2.5 5 4 AVERAGE TARGET FRAME RATE (PER MIN) 3 2 0.2 2.5 1.25 TARGET FRAMES PER TOTAL FRAMES 1/240 1/260 1/260 1/1260 1/1260 1/1260	TOTAL FRAMES PER MISSION	17,280*	17,280-	17,280*	43,200	43,200	43,200
AVERAGE TARGET FRAME 2.5 2.5 5 4 AVERAGE TARGET FRAME RATE (PER MIN) 3 2 0.2 2.5 1.25 TARGET FRAMES PER TOTAL FRAMES 1/240 1/240 1/240 1/240 1/1240	FRAME RATE (PER MIN)	720-	720•	720*	1,800	1,800	1,800
AVERAGE TARGET FRAME RATE (PER MIN) 3 2 0.2 2.5 1.25 TARGET FRAMES PER TOTAL FRAMES 1/240 1/260 1/260 1/240	AVERAGE TARGETS PER TARGET FRAME	2.5	2.5	2.5	ß	4	4
TARGET FRAMES PER TOTAL FRAMES 11240 11260 11200 11720 111446	AVERAGE TARGET FRAME RATE (PER MIN)	R	2	0.2	2.5	1.25	0.15
	TARGET FRAMES PER TOTAL FRAMES	1/240	1/360	1/720	1/720	1/1440	1/2400

5

FRAMES

TABLE 1

- Lonin Charles and Article

DATA PATHS FOR SYSTEM CONTROL

FIGURE 3, PRELIMINARY DHRS SCHEMATIC

A State of the sta

14. 14

-n UNITS NRTEM.

DATA HANDLING RECORDING SYSTEM

7

FIGURE 4

•

3.2 General Methodology

The assumed DHRS inputs are defined in figure 5. Figure 6 examines each of three ways that this data rate affects the system throughput based on an exploitation output rate of one target frame per minute. In case one an unlimited cache is available and the twenty-four minutes of Advisor-62 is input continuously. In case 2 either a 20 or 30 frame cache is available and when either is filled (10 minutes for 20 frame cache and 15 minutes for 30 frame cache), the input from the Advisor-62 is interrupted until the cache is emptied (30 minutes and 45 minutes respectively). It is then restarted and in case of the 20 frame cache stopped again at 40 minutes and restarted at 60 minutes. The third case has no cache and the Advisor-62 input is stopped after each target image is received. In all cases, all processing of 72 target images is completed in 72 minutes. Figure 7 shows the number of images stored in the cache at any time. These data were developed without simulating the timeline of the data collection. Figure 8 shows the input when a realistic mission timeline is simulated and Figure 9 shows the cache loading for both 1 and 2 minute exploitation times. Table 2 shows how frame storage is performed by the cache. Finally, regardless of the cache size, delays in the system will occur because of exploitation/reporting time. Figure 10 examines these delays.

A final concern is the cost of the cache and the cost associated with exceeding the cache capacity. The cost of implementing the cache in RAM memory is two orders of magnitude more expensive per target frame than that of a disk memory. Second, the cost of storing the retrieving target frames that exceed the cache capacity in another memory device has associated with it a considerable cost in software and computer overhead.

3.3 Technical Results

The fundamental delay cause by the assumed target input rate exceeding the exploitation output rate cannot be improved upon except by employing additional exploitation stations or by assuming a faster exploitation time. A disk cache with virtually unlimited capacity costs about the same as a RAM cache of 7.5 target frame capacity. In addition, it will save all the software and computer costs associated with storing excess target images in another storage device. Finally, as shown in the Technical Proposal, the delays cause by implementing the cache in disk versus RAM will not exceed 2 seconds worst case, and thereby will not be objectional to the II. The disk cache was included in the baseline DHRS configuration.

4.0 MASS STORAGE

8

A Incollection States

10

ALL ALL CONTRACTOR

A REAL PROPERTY AND A REAL

- inite

A STATE OF THE OWNER OF THE OWNER OF THE

IMAGING	TARGET	IN	IN CACHE		DELAY
TIME (MIN)	FRAME NO.	NRTEM	1 2 3 4 5 6 7 8	REPORTED	(MIN)
	1				
1	2	1	2		
	3		2 3		
	4				
2	5	2	3 6	1	1
			3		
3	,	2			1.6
5	0	5	4 9		1.0
	10		5 10		
4	11	4	5 11	3	23
÷	12	•	5 12	Ŭ	2.0
			6		
5		5	6 12	4	3
			6 12		
			7 12		
6		6	7 12	5	3.6
			7 12		
			8 12		
7		7	8 12	6	4.3
			8 12		•
		•	9 12		_
8		ð	9	7	5
			9 12		
٩		•	10 - 12		
3		3	10 12		5.6
			11 12		
10		10	11 12	9	6.3
			11 12	_	
	13		12 13		
11	14	11	12 14	10	7
1	15		12 15		
	16		13 16		
12	17	12	13 17	11	7.6
	18		13 18		
	19		14 19		
13	20	13	14 20	12	8.3
	21	·	14 21		
	22		15 22		
14		14		13	3

TABLE 2 CACHE OPERATION

14

- Line Cartal State

The second s

AN/AAD-5 REPORTING DELAY

FIGURE 10

4.1 Technical Problem

Figure 11 summarizes the mass storage requirement of the DHRS. The characteristics of candidate technologies that might satisfy these requirements are shown in Figure 12. Included in the optical disk technology survey were those under development by RCA, MCA and the GE Advanced Archival Storage System (BEAMOS extension). Although these devices have been demonstrated in laboratory environments, no prospective manufacturer would commit to a production model delivery to support the DHRS schedule. Figure 13 tabulates the characteristics of instrumentation tape unit technology selected for the baseline DHRS configuration. The minimum cost for 10^{12} bits on line of 500 thousand dollars is considered excessive.

4.2 General Methodology

Figure 14 summarizes the conclusions of the technology trade off in selecting a mass storage device. With the characteristic defined for the mass storage, a request for proposal was prepared and sent to the following vendors:

> Honeywell Ampex Bell and Howell Sangamo RCA (no bid)

4.3 Technical Results

With the mass storage device relieved of storing any cache overload (see paragraph 3.3) and with data compression, (see paragraph 7.3) a single reel of 28 track tape can store an entire 24 minutes of digitized Advisor-62 tape. It was selected as the most cost effective method of providing the required mass storage. Of the tape units, the Ampex HBR-3000 was selected for its match to the mass storage requirements and its cost, and is included in the DHRS baseline configuration.

5.0 DISPLAYS

5.1 Technical Problem

The AN/AAD-5 produces imagery of very large extent. How can this imagery be presented on a limited extent CRT, cost effectively?

5.2 General Methodology

A simply linear relationship exist between number of displayed pixels and cost, i.e. a 2048 line by 2048 pixel display costs approximately 4 times a 1024 line by 1024 pixel display and 16

STORAGE AND RETRIEVAL MODULE (S/RM) RFP REQUIREMENTS

CAPACITY: 10¹² BITS EQUIVALENT (4.1.1.2.1)

OPERATING MODES: SIMULTANEOUS RECORD AND/OR PLAYBACK (4.1.1.3.3.1) DATA TRANSFER RATES: 4.1.1.1.6: "... PRESENT BANDWIDTHS OF 6 TO 7 MH2..."

17

4.1.1.1.3: "... 100 MEGABITS/SEC."

4.1.1.2.5: "... SHALL STORE BOTH THE ... RTPM OUTPUT

AND THE INPUT IMAGE."

FIGURE 11

1.1.1

r

· • · · · · ·

S/RM CANDIDATE TECHNOLOGIES

- MAGNETIC DISC: A DISC SYSTEM FOR 10'2 BITS IS NOT WITHIN REASON IN TERMS OF COST AND SIZE
- OPTICAL DISC: A MATURE PRODUCT IS NOT EXPECTED TO BE AVAILABLE AS REQUIRED BY DHRS. DEVELOPMENTS IN THIS AREA WILL BE MONITORED

18

- COMPUTER PERIPHERAL TAPE UNITS: DATA RATES AND STORAGE CAPACITIES AVAILABLE D0 NOT SATISFY DHRS REQUIREMENTS
- INSTRUMENTATION TAPE UNITS: THIS IS THE TECHNOLOGY SUITED TO THE DHRS REQUIREMENTS

FIGURE 12

دنيك إخ

1.450

MTU CHARACTERISTICS

. .

NUMBER OF TRACKS	14	28	42	84
TAPE WIDTH, INCHES	-	-	-	7
RECORD SPEED FOR 100 Mb/s (ips)	240	120	80	40
TAPE CAPACITY, BITS (APPROX.)	½ x 10''	10"	1% x 10"	3 x 10"
NUMBER OF REELS FOR 10'2 BITS	20	10	7	4
TAPE CHANGE INTERVAL FOR CONTINOUS Recording of 100 mb/s data, minutes	1.1	15.3	23.1	46.2
APPROXMATE MTU COST, QUANTITY ONE	\$ 56K	X96\$	\$160K	\$500K
FOR 10'2 BITS ON LINE	\$1120K	\$960K	\$1120K	\$1052K
W/SHARED ELECTRONICS	\$685K	\$500K	\$474K	
FLOOR SPACE (SQUARE FEET)	120	09	84	48

FIGURE 13

4.4. A

S/RM VIEW

- SYSTEM PERFORMANCE/COST TRADE-OFF WILL ULTIMATELY PROVIDE A BASIS FOR S/RM **CONFIGURATION CHOICE**
- THE 28 TRACK SYSTEMS OFFER ADEQUATE DATA RATE CAPABILITY AND THE OPPORTUNITY TO **MINIMIZE COST**
- THE 84 TRACK SYSTEMS OFFER SUPERIOR PERFORMANCE
- OPTICAL DISC SYSTEMS OFFER PROMISE FOR THE FUTURE
- SYSTEM USAGE OF DATA COMPRESSION COULD SAVE COST

FIGURE 14

times more than a conventional 512 line by 512 pixel display. However, from a utility point of view, the 2K x 2K display is more effective than 4 and 16 times, respectively. This results from requiring overlap to avoid cutting targets in half when segmenting an image into smaller subdivisions. If 20% overlap is provided then a 2K x 2K display will require 5.8-1K x 1K and $33.2-5K \times 5K$ displays. Therefore the cost benefit of a 2K x 2K display is 44% better than a 1K x 1K display and 101% better than .5K x .5K. These calculations imply that the largest display that supports the DHRS schedule, and is within DHRS budget limitation, should be utilized.

5.3 Technical Results

The cost and developmental risk associated with a 2K by 2K display eliminated it from further consideration at this time. A survey of ten companies that produce lower resolution image displays was conducted. The results of this survey is shown in tables 3-5. The Comtal Vision one/20 was selected for inclusion in the DHRS baseline since it provides 1K by 1K display with versatility and reasonable cost and delivery.

6.0 TARGET SCREENER

6.1 Technical Problem

Figure 15 is the objective of the effort assigned to MC^2 under a subcontract agreement. Specific evaluation criteria are shown in Figure 16.

6.2 General Methodology

A preliminary survey was made of 13 potential target screeners for which data was available. These target screeners were subsequently categorized as shown in Figure 18. All screeners used a basic algorithm generalized in Figure 19. The specific details used in the NEMD "ATC" are diagrammed in Figure 20.

6.3 Technical Results

The three previous mentioned screeners as well as the Rockwell International "ISA" target screener were considered equivalent, in that they all performed similarly and all equally failed to meet the evaluation criteria. Therefore, to evaluate availability in meeting the DHRS schedule and cost, request for proposal was sent to Westinghouse, Honeywell, Rockwell International and Northrop Electro-Mechanical Division. The responses received from the last two companies are included as Appendix B and C to CDRL A003 Technical Proposal/Program plan. DISPLAY SYSTEM COMPARISON

			REFRESH MEM	fory		DISPLAY PRI	ESENTATION	
	MODEL	NLYBER	SIZE	KOOZ	TRUE COLOR	TEST PATTERNS	SPLIT SCREEN	EFRESH RATE
AYDIN	5216	æ	512x512x8	2, 4, 8, 16	YES	ALL	4-WAY	60 Hz
CONTAL	ONE /20	64	512x512x8	2, 4	YES	ALL	4-WAY	30 Hz 60 Hz
DE ANZA	5000	4	512x512x8	2, 4, 8	YES	ALL	4-WAY	30 HZ
GENISCO	3000	e	512x512x8	2, 4, 8	YES	NONE	NONE	30 Hz 40 Hz
GRINNELL	270	Þ	512x512x8	2, 4, 8	YES	ALL	LEFT/RIGHT TOP/BOTTOM	30 HZ
HAZELTINE	17	10	512x512x8	NONE	YES	NONE	4-WAY	30 Hz
ISI	VIEWS	PROG.	PROG. (1 MBYTE)	1, 2,,16	YES	ALL	NONE	30 Hz
1 ² s/stc	70	12	512x512x8	1, 2,,16	YES	ALL	4-WAY	30 Hz
LEXIDATA	3400	7	640x582x8	1, 2,,16	YES	ALL	LEFT/RIGHT	30 Hz 60 Hz
RAMTEK	0076	4	512x512x8	1, 2,,16	YES	ALL	4-WAY	30 Hz

TABLE 3

Section of the second

ŵ

DISPLAY SYSTEM COMPARISON (Cont'd)

فمحتجز والمنتحر والافار مطالعه والمستحد والمرار

	PR	OCESSING CAPABI	ILITIES (DISPLAY PRESENT	ATION	
	MICROPROCESSOR	VIDEO PROCESSOR	FEF.DBACK LOOP	HISTOGRAM HARDWARE	TRUE COLOR	TEST PATTERNS	SPLIT F SCREEN	EFRESH RATE
XIQXY	8085	0X	ON	ON	YES	ALL	4-WAY	60Hz
CONTAL	LSI-11	YES	8 BIT	YES	YES	TTF	4-WAY	30 Hz
DE ANZA	LSI-11	DUAL 16 BIT	DUAL 16 BIT	YES	YES	ALL	4-WAY	60 Hz 30 Hz
GENISCO	IN-HOUSE DESIGN	NO	OK	ON	YES	NONE	NONE	30 Hz 40 Hz
GRINNELL	NONE	YES	16 BIT	YES	YES	ALL	LEFT/RIGHT TOP/BOTTOM	30 Hz
HAZELTINE	NONE	ON	8 BIT	YES	YES	NONE	4-WAY	30 Hz
ISI	LSI-11	ON	ON	YES	YES	ALL	NONE	30 Hz
1 ² s/stc	11/03	13 BIT	16 BIT	YES	YES	ALL	4-WAY	30 Hz
LEXIDA1À	IN-HOUSE DESIGN	ON	NO	ON	YES	ALL	LEFT/RIGHT	30 Hz 60 Hz
RAMTEK	Z80 & 2901	ON	Q	ON	YES	ALL	4-WAY	30 Hz

TABLE 4

DISPLAY SYSTEM COMPARISON (Cont'd)

		GRAPI	HICS OVERLAYS AN	D CURSORS			LUTS	
	NLYBER GRAPHICS	NUMBER CURSORS	CURSOR SHAPE	METHOD OF COMBINATION	VECTOR/ CHARACTER	B&W SIZE	PSEUDO LO. SIZE	AD DURING RETRACE
AYDIN	ę	Q	16x16 PROG.	REPLACE SUMMATION	FIRMWARE HARDWARE	409 6x 12	256x24	YES
CONTAL	512	-1	16x16 PROG	REPLACE SUMATION	FIRWWARE	256x8	256x24	YES
DE ANZA	80	£	16x16 PROG. 8 STD. SHAPES	LUT	F I RMWARE HARDWARE	256 x 8	256x24	YES
GENISCO	e.	7	4 STD. SHAPES	REPLACE	F I RMWARE HARDWARE	256x8	4096x24	ON
GRINNELL	-1	ব	PROM	REPLACE	HARDWARE	4096x8	1024x24 4096x12	YES
HAZEL TINE	ØD	2	FIXED	REPLACE CONTRAST	NONE	256x8	256x24	YES
ISI	PROG.	5	FIXED/ WINDOW	LUT	FIRMUARE	256x16	512x14	YES
1 ² s/stc	ŵ	2	64x64 PROG.	REPLACE SUMMATION	FIRMWARE	256x10 8192x10	256×30	YES
LEXIDATA	9	1	64x64 PROG.	LUT or HARD-WIRED	FIRMWARE	4096x32	4096x24	YES
RAMTEK	16	ω	GRAPHICS OVERLAY	REPLACE LUT	FIRMWARE	4096x8	256x24	YES

TABLE 5

the second s

OBJECTIVE

DEFINE THE OPTIMUM TARGET SCREENER FOR DHRS

-- OVERRIDING CONSTRAINT --

25

ONE OF THOSE ALREADY DEVELOPED AND FIELDABLE DURING OR BEFORE NO MAJOR DEVELOPMENT. THE TARGET SCREENER WILL BE BASED UPON DHRS PHASE II. ENHANCEMENTS REQUIRING MINIMAL DEVELOPMENT COST WILL BE CONSIDERED.

FIGURE 15

EVALUATION CRITERIA

FLEXIBILITY AND EXPANDABILITY TO PROVIDE FOR:

- ACCOMMODATION TO NEW SENSORS
- INTRODUCTION OF NEW ALGORITHMS
 INTRODUCTION OF NEW TARGET CLASSES
 - INTEGRATION INTO DHRS

AVAILABILITY/MATURITY

FUNCTIONAL AND OPERATIONAL REQUIREMENTS

- 100 Mbps INPUT RATES
- EIGHT CLASSES OF TARGETS
 - **EFFECTIVENESS:**
- 90% DETECTION
- 80% CORRECT CLASSIFICATION 10% OR LESS MISCLASSIFICATION
 - VAN ENVIRONMENT

COMPATIBILITY WITH OVERALL DHRS **RELIABILITY/MAINTAINABILITY** COST

FIGURE 16

PRELIMINARY SURVEY

		LEVEL OF MPN	LENGNTATION			IJ	APABILITIE			
		PYPERMENTAL	DESTINED FOR	RECTHEN	CATION		FEATURE	2018/11	CLARENT	OTHER
5	ONGIN	LABORATORY	FIELD USE	RADIOMETRIC	GEOMETRIC		EXTRACT.			
5.TM	TIBRABNOH		7	6.	¢.	7	7	7	7	
3	00000		7	7	6.	7	7	7	7	
S. S	Z	>		•	¢.	7	7	7	7	
		2				7	7	7	۲	
AUTOTINESHOLDI AUTOBCHERHENATTRA	HOMEYWELL	2		~	¢.	¢.	7	7		
BA	Wa	7		e .	¢	7	7	7	7	
ao Filten cue	NUOMES	>				7	۲			
3	3	2					7	7	ć	
6	AFCM.	1					7	7	¢	
ILLENDACE	anguna	2					7	7	ć	
		1					۲	7	ę	
BU RITEACTIVE SVOTEN	3	2					7	7	¢	
	Ŧ	2				7	7	7		

FIGURE 17

INVESTIGATION HIGHLIGHTS

CATEGORY 1 - SYSTEMS

HONEYWELL - "PATS"/"ISA" WESTINGHOUSE - "SMART SENSOR" NEMD - "ATC"

CATEGORY 2 - COMPONENTS

28

ROCKWELL - "ALO"/"ISA" (PROBABLE CATEGORY 1) HUGHES - PROGRAMMABLE ANALOG CHIP

CATEGORY 3 · IDEAS/LABORATORIES

PAR - "IPS"

U. of MD. - RELAXATION, ANTI-PARALLEL PAIRS SUNY (BING.) - TEXTURE CLASSIFICATION (80% ACCURACY) USC - TEXTURE CLASSIFICATION (89% ACCURACY)

FIGURE 18

A

7.0 COMPRESSION-EXPANSION

7.1 Technical Problem

The DHRS requires considerable amounts of expensive memory in the FIFO Buffer and Formatter of the SIM, the MTU's of the SRM, and Delay Buffer, Overview Buffer, Cache and Output Buffer of the RPTM. See Figure 4.

7.2 General Methodology

The literature on image data compression was surveyed to find a method of reducing the dynamic range of the image data while retaining its fidelity.

7.3 Technical Results

Differential Pulse Code Modulation (DPCM) was selected for inclusion in the DHRS baseline. DPCM was employed because: it exploits the signal statistics of digital imagery and the visual properties of the observer, it is simple to implement and it halves required memory and its attendent costs. (1)

 Netravali, Arun N., and Limb, John O., Picture Coding: A Review, IEEE 1980

MISSION of

HANKANKANKANKANKA

୶ୡ୬ଽୡ୬ଽୡ୬ଽୡ୬ଽୡ୬ଽୡ୬ଽୡ୬ଽୡ୬ଽୡ୬ଽୡ୬

Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence $\{C^3I\}$ activities. Technical and engineering support within areas of technical competence is provided to ESD Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.

XAXA

~~~~~

୶ଊ୶ଡ଼୶ଡ଼୶ଡ଼୰ଡ଼୰ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼

COLUMBER STORES