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CHARACTERISTICS OF ICE IN WHITEFISH BAY
AND ST. MARYS RIVER DURING

JANUARY, FEBRUARY AND MARCH 1979

by

George P. Vance

Introduction

Presented in this report are the environmental data collected as
part of the full-scale trials of the new U.S. Coast Guard Great Lakes
Icebreaker Katmai Bay (WTGB-1O1). These data were collected in an
effort to document the performance of the new icebreaker under various
ice conditions. The tests were carried out between 20 January and 15
March 1979 in Whitefish Bay and the St. Marys River in northern Michigan.

The Katmai Bay is an ice-breaking tug that is 140 ft (42.6 m) long,
with a 37.54 ft (11.4 m) beam and a draft of 12 ft (3.6 m). The vessel
is powered by a 92,500-hp diesel engine and is outfitted with an air
bubbler lubricating system.

The vessel was tested in various thicknesses of sheet ice with snow
cover and in various thicknesses and concentrations of brash ice (Table
1). Thickness and temperature profiles were obtained and the mechanical
properties of the ice were inferred from these profiles. Limited
salinity and density profiles were also obtained to verify these parti-
cular properties of the ice cover. Friction tests were conducted to
determine the coefficient of friction between the ice and a steel
plate (coated and uncoated) under various conditions.

Ice Thickness Profiles

The plate ice thickness was determined by drilling through the
ice with a 1.5-in. ice auger and lowering a thickness tape measure into
the hole and pulling up on the tape until the T-bar held rigidly to the
bottom of the ice sheet. The snow thickness was measured by inserting a
steel rule into the snow cover.

At several sites during the early stages of the test program, an
impulse radar was utilized to determine the continuous profile of the
ice sheet and the brash thickness. In all cases, the radar readings
were within + 2 in. of the physical measurements.

In addition to the limited radar measurements, the brash ice
thickness was determined by poking through three or four places in
the brash and dropping the thickness tape through the hole and carefully
withdrawing the tape until the T-bar held rigidly. The procedure was
repeated several times at each hole.
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Table 1. Daily sumnaries of tests conducted and weather conditions.

Tuesday, 30 January 1979

Conducted continuous icebreaking tests in 12-15 in. of plate r
ice with 2-3 in. of snow cover without the bubbler system.
Measured surface roughness of vessel hull. Conducted brash
ice tests in shipping channel with no measurement of brash
thickness. Obtained salinity, temperature and density data.
Weather was overcast with an average temperature of 20*F and a
5 to 8-knot wind from 3500 true north (T) (Hourly weather summaries

are contained in Internal Report 628).

Wednesday, 31 January 1979

Conducted continuous icebreaking tests in 13-20 in. of plate
ice with and without the bubbler system. Obtained thickness
and temperature profiles. Conducted tests in brash ice in
the shipping channel. Utilized the impulse radar to determine
thickness profiles in plate ice. Weather was overcast with an
average temperature of 14*F and a 15-knot wind from 3500 T.
Draft of the vessel taken in the ice was 10 ft 6 in. forward and
12 ft 6 in. aft.

Thursday, 1 February 1979

Conducted brash ice tests in the shipping channel with and with-
out the bubbler system. The impulse radar was utilized to ob-
tain brash thickness in the channel. Attempted ramming tests
in pressure ridges; however, the ridges were not consolidated
enough or strong enough to stop the vessel. Weather was partly
cloudy with average temperatures of 12'F and a 12- to 14-knot wind
blowing from 3300T.

Friday, 2 February, to Sunday, 4 February 1979

Conducted no tests, ship was in operational status.

Monday, 5 February 1979

Held demonstrations for Coast Guard representatives. Drafts
read at the dock were 10 ft 6 in. forward and 12 ft 2 in. aft,
and at the Poe Locks the drafts were 11 ft 10 in. forward and 12 ft
7 in. aft.

Tuesday, 6 February 1979

Left dock on operational mission in White Fish Bay. Conducted

test in brash ice in ship channel; however, no thickness of
brash was obtained. Conducted ad-hoc ramming tests in heavy
ice enroute to USS Munson. Weather was overcast with an
average temperature of 10F with some snow and a wind of 16
knots from 130*T.
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Table I (con't)

Wednesday, 7 February 1979

Continued operational tasks; no tests conducted.

Thursday, 8 February 1979

Conducted brash ice tests in St. Marys River in area of
Stribbley Point with and without bubbler system. Brash
was documented to be 2-4 ft thick. Weather was clear with
average temperature of 7*F with a wind of 10-14 knots from
0400T.

Friday, 9 February 1979

Conducted comparison tests with 110-ft icebreaking tug
in 14 in. of ice with 5 in. of snow cover. The Katmai
Bay progressed at about 6 knots and gained approximately
2.3 miles in 10 minutes on the 110-ft icebreaking tug.
Conducted continuous tests in approximately 10 in. of ice
with 2 in. of snow cover. Ice was under heavy pressure

from the prevailing wind. Hull roughness measurements
were made. The weather was clear with an average tempera-
ture of -10F and a wind of 8-14 knots from 130*T.

Saturday, 10 February 1979

Conducted brash tests in St. Marys River in approximately
4 ft of brash ice with and without bubbler system. Con-
ducted continuous tests in 27 in. of plate ice with 12 in.
of snow cover in anchorage area. Plate ice had incipient
cracks due to vessel traffic and thermal effluent. Con-
ducted friction tests on ice and steel plates coated or
not coated with Inerta 160. Weather was clear and bright with
average temperature of OF and a wind of 6 knots from 270*T.

Monday, 12 February 1979

Conducted friction tests on ice. Weather clear and bright
similar to Saturday, 10 February. Testing for Phase I com-
pleted.

Tuesday, 13 March 1979

Conducted tests in brash ice in St. Marys River with and
without bubbler system. Very good documentation of brash
thickness. Weather was clear with average temperature
rather high at 40*F and an 8-knot wind from 130*T.

Wednesday, 14 March 1979

Started to conduct turning tests in brash when a steering

casualty was experienced requiring two days of repair work.
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Table 1 (Con't)

Thursday, 15 March 1979

Conducted friction tests on uncoated steel plate at the
dock. The weather was clear and sunny with average tem-
perature of 17*F and a wind of 8 knots from 290 0T.

Friday, 16 March 1979

Conducted friction tests at dock side with steel plate
coated with Inerta 160. Weather was clear and bright with
average temperature of 40°F with a 4-knot wind from 195'T.

Saturday, 17 March 1979

Conducted ramming tests in Whitefish Bay in plate ice
22-30 in. thick with 3-4 in. of snow cover. Roughness
data on the ship's hull was obtained for the final phase
of the tests. The weather was clear with an average tem-
perature of 420 F and a wind of 8-12-knots from 150*T.

Thickness profiles are presented in Appendix Figures Al-A12.
The thickness between data points may not be exactly as depicted in
the profiles but will lie between the maximum and minimum shown for the
particular run. The specific data for each run will be found in
Internal Report 628.

Snow cover thickness varied greatly due to the wind effect on the
snow cover.

The brash ice thickness was a function of the frequency of ship
passage, location and time. The variations in brash ice thickness were
much greater than those of the plate ice.

Temperature Profiles

Temperature profiles (Fig. A13-A17) were taken in all the plate
ice in which the vessel was tested. Profiles were also taken in the
plate ice adjacent to the channels in which the brash ice tests were
conducted.

The temperature profiles were obtained by drilling into the ice
with a 1.5-in. drill and inserting a thermistor (which read out

directly on a bridge calibrated in degrees Celsius) in the hole until
it made contact with the ice surface. Extreme care was taken to ensure
that all snow and loose ice chips were removed from the hole when the
temperature measurements were taken.

Ice temperatures during the early phase of the tests, i.e. January
and February 1979, were much lower (-5* to -10C) than those measured
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during the March test (i.e. 0* to -3*C). In fact, some of the ice
temperatures during March were so close to OC that it was difficult
to observe any reading on the thermistor bridge.

Mechanical Properties

The mechanical properties of freshwater plate ice will vary with
temperature and growth history as well as testing procedures. In
addition, in-situ determination of such properties requires an exten-
sive amount of time; therefore, only temperature profiles were taken

at various data sites. The mechanical properties of the ice can then
be inferred from these profiles.

The enclosed graphs (Fig. A18-A21) summarize the results of the

efforts of many researchers (Butyagin 1972, Frankenstein 1961, Gow
et al. 1978, Hawkes and Mellor 1972, and Lavrov 1969) over many years.
The standard deviation indicates the diversity of test results due to

different test conditions and techniques. In addition, the results are
not as linear as indicated in these summary curves, particularly as the
melting point is approached.

There are two curves (Fig. A20 and A21) presented for the elastic

modulus E of freshwater ice. The higher values of E are obtained
using acoustic techniques and represent the ideal or linear portion of
the stress-strain curve. The lower curve labeled E _ is referred to asstr
a strain modulus and is determined by field and laboratory work in
beam bending and sheet deflection. It represents the portion of the
stress strain curve that incorporates elastic and plastic deformation.

The values presented in this section were obtained from the

references given in the Selected Bibliography.

Density and Salinity Measurements

Snow density measurements were made using the CRREL snow density

kit.

Ice density was determined by withdrawing an ice core approxi-
mately 2 in. in diameter and carefully measuring the length and diameter
of a section of the core and carefully weighing the sample. The
weight per unit volume was determined.

Due to the excessive effort involved in making such measurements,

their relative inaccuracy, and the limited effect of density on the
overall program, only one set of density measurements was made.

Salinity was determined by melting sections of a 3-in. ice core
and measuring the residual salinity with a Beckman field salinometer.

As expected, the salinity was essentially zero.

Snow density (specific weight) varied between 0.32 and 0.36 
g/cm 3

and the ice density (specific weight) was found to be 0.898.
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Table 2. Friction coefficients

Dynamic
February March

1279 1979

Inerta-ice with screw jack 0.020 0.015

Inerta-ice with winch 0.045 0.030

Inerta-water with screw jack 0.060 -

Inerta-snow with screw jack 0.145 0.115

Inerta-snow with winch - 0.085

Steel plate-ice with screw jack 0.050 0.150

Steel plate-ice with winch 0.071 0.100

Steel plate-water with screw jack 0.100 -

Steel plate-snow with screw jack 0.165 0.165

Steel plate-snow with winch - 0.170

Static

Inerta-ice with screw jack 0.037 0.085

Inerta-ice with winch 0.080 0.185

Inerta-water with screw jack 0.135 -

Inerta-snow with screw jack 0.200 0.240

Inerta-snow with winch - 0.250

Steel plate-ice with screw jack 0.080 0.215

Steel plate-ice with winch 0.201 0.310

Steel plate-water with screw jack 0.120 -

Steel plate-snow with screw jack 0.480 0.250

Steel plate-snow with winch - 0.410

Friction Measurements

One of the most difficult parameters to measure precisely is the
coefficient of friction between the ice and snow and the ship hull. Due
to the extreme difficulty of measuring the coefficient of friction on
the hull itself, the friction was measured between the ice and snow and
a metal plating similar to that of the ship. Friction tests were con-
ducted on several different occasions and the results, using different
instrumentation and different locations, are fairly consistent (Table 2).
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An attempt was made to vary the conditions of the test in as many
ways as possible. These variations included two speeds (0.31 and 0.132
knots), two different surfaces (Inerta 160* coating and uncoated steel),
several intensities of loadings, and several environmental conditions
(i.e. ice and plate, snow and plate, water and plate).

Difficulty was encountered due to the lack of control of the
ambient environment. When the sun was bright, the plates absorbed
solar radiation, and as the loading increased, a meltwater lubricating
layer formed between the ice and plate. During the tests where the

sun was not as bright, i.e. cloudy days or late afternoon tests, the
water layer would freeze in a nonhomogeneous fashion. These diffi-
culties led to some inconsistencies in the results; however, a dis-
tinct and logical trend can be determined from the Figures A38-A42.
The only significant inconsistency was in the relative low results of
Inerta 160 and snow when utilizing the higher speed winch.

The two towing speeds utilized were 0.31 knots (0.52 ft/sec) and
0.132 knots (0.225 ft/sec), and the trend indicates an increase in fric-
tion coefficient with speed except for the Inerta-snow-winch combination.

The friction tests were conducted by loading a 1-ft ice block
with 25-lb lead weights such that the normal load could be varied from
the weight of the ice block and towing cage to approximately 500 lb.
The towing speed was varied by either pulling the block and weights with
a small winch or a screw jack. The winch, being a more elastic system,
experienced stick-slip phenomena, which made it slightly more difficult
to determine a mean value. The jack provided a smoother pulling force
but its speed (0.225 ft/sec) was less than half that of the winch
(0.52 ft/sec).

The normal force was determined by weighing the ice block, towing
harness and weights. The tangential force was obtained with a load
cell positioned between the towing harness and the winch cable or jack
screw. The tangential force was recorded on a Hewlett-Packard recorder.
Typical recorder records are shown in Figures A22 and A23. A summary
of all friction tests records is contained in Internal Report 628.

The roughness of the plates utilized is delineated in Figures A24-
A26. The roughness was determined using a Surtronic 3 surface pro-
filometer, with three readings at each point being averaged.

Conclusions

This report presents the ice conditions and characteristics en-
countered during the full-scale trials of the Katmai Bay. It can be
seen from the data presented that the ice thickness of the plate ice
in Whitefish Bay was very consistent throughout any particular series
of tests. The brash ice thickness, on the other hand, had wide varia-
tions from one end of the test area to the other and the coagulation

* Inerta 160 is a non-solvented epoxy compound distributed by International
Paints and used for low friction hull coating.
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of the brash also varied from test to test. Thus, it can be expected

that the brash ice test results have a wider range of uncertainty.

The temperature profiles for the tests indicate the ice was at
its coldest in January and February and therefore at its strongest. In
March the temperature of the ice began to rise and approached the melting
point, leading to weaker ice. This increase in temperature resulted in
an estimated 20-25% decrease in ice strength based on data provided
in the literature.

The E /a fratio varied between 6250 and 7250, increasing as the
temperature increased. The density of the ice and snow and salinity
of the ice was in the range expected.

One of the more extensive areas of the tests was the determination
of the friction coefficient between the ice and ship. The series of

tests conducted indicates that the coefficient of dynamic friction
between ice and Inerta 160 varies from 0.015 to 0.020, and between snow
and Inerta 160 from 0.115 to 0.145. The dynamic friction coefficient
between ice and steel was about 0.05 and between steel and ;now was
approximately 0.165. There was a trend indicating an increase in the

friction coefficient with an increase in speed. In general, a decrease
in the coefficient of friction tended to coincide with an increase in
the density of loading until about 500 psf, where it asymptotically
approached the values shown in Table 2.

The static coefficient of friction was some two to five times
higher than the dynamic coefficient, varying from 0.037 to 0.48.

It is difficult to state a specific coefficient of friction to
apply to the vessel. The exact ice condition and lubrication factors

varied greatly during the test; however, one could suggest the following
values for the dynamic friction coefficient based on observations and
the tests conducted:

Smooth hull (Inerta 160) well-lubricated 0.05

Smooth hull (Inerta 160) not well-lubricated (snow) 0.10

Rough hull (old steel) well-lubricated 0.125 to 0.150

Rough hull (old steel) not well-lubricated (snow) 0.175 to 0.200

Recommendations

Although the ice properties were well-documented, several improve-
ments could be made in test procedures and test techniques. It would
be more expeditious if ice thickness could be determined in real time,
using a remote sensing device such as the impulse radar under development
at CRREL. The few times that the radar was used during the tests pro-
vided continuous ice thickness measurements that were verified by actual
measurements. However, use of the radar in its present configuration
is too time-consuming. An instrument and/or technique should be developed
to determine the thickness and coagulation of the brash ice in a more
reliable and expeditious manner.

8
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A device and/or instrumentation should be developed to determine F:
the coefficient of friction between the vessel itself and the ice environ-
ment. As this may be difficult or impossible to do, an alternative
would be to develop a technique of correlating roughness (which is
relatively easy to measure on the vessel) and the coefficient of friction.

It would be very useful to conduct friction tests under controlled
laboratory conditions that are similar to those conducted in the field
in order to explain or eliminate the inconsistencies evidenced in the
friction data collected on-site. It is recommended that these tests
be carried out in the near future in order to validate the field test
results presented here.
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APPENDIX A: ICE THICKNESS PROFILES, TEMPERATURE PROFILES,
PLOTS OF FRESHWATER ICE PROPERTIES, AND FRICTION TEST RESULTS
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Figure A22. Typical records of ice-steel Figure A23. Typical records of Inerta-
friction force for four runs. snow friction force for

six runs.
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a. Inerta-coated plate, b. Uncoated steel plate,
10 February 1979. 12 February 1979.

Figure A24. Roughness measurements.
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Figure A25. Roughness measurements on Figure A26. Roughness measurements on steel
Inerta plate, 16 March 1979. plate, 15 March 1979.
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Figure A27. Dynamic coefficient of friction vs normal load for Inerta

160, 12 February 1979.
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Figure A28. Dynamic coefficient of friction vs

normal load for Inerta 160, 0 February 1979.
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Figure A29. IQynamic coefficient of friction vs normal

load for uncoated steel plate, 12 Februa-y

1979.
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Figure A30. Dynamic coefficient of friction vs normal
load for uncoated steel plate measured

with screw jack, 15 March 1979.
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Figure A31. Dynamic coefficient of friction vs

normal load with winch for Inerta 160,

15 March 1979.
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Figure A32. Dynamic coefficient of friction vs
normal load for steel plate and ice,

15 March 1979.
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Figure A33. Dynamic coefficient of friction vs normal

load for steel plate and snow, 15 March 1979.
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Figure A34. Static coefficient of friction vs
normal load for Inerta 160, 10 and

12 February 1979.
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Figure A35. Static coefficient of friction vs

normal load for steel plate, 10 and
12 February 1979.
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Figure A36. Static coefficient of friction vs

normal load for Inerta 160, 15-16
March 1979.
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Figure A37. Static coefficient of friction vs
normal load for steel plate, 15-16
March 1979.
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Figure A39. Dynamic tests, 15-16 Figure A40. Static tests, 10 and

March 1979. 12 February 1979.
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