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A static decentralized team is represented by the nodes of a2 network

working together to optimize the expected value of an exponential of a
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quadratic funciion of the state and control variables. The information
consists of kuown linear functions of the norm: 1ly distributed state
corrupted by additive Gaussian noisc. TFor certain ranges of the system
parameters, the stationmary condition for optimzlity arc satisfied by a
linear decision rule operating on the avaijable information. Theoe
stationary conditions reduce to a set of algebraic matrix equations aund a
matrix in equality condition from vhich the valves of the decision gains are

determined. Although the stationary conditions are necessary for the linear

control law to be minimizing in the class of non-linecr cortrol laws, sufficiency

is obtained for our lincar controller to be minimizirg in the class of linear

control laws. Since the quadratic performance criterion produces the ouly

previously known clo ed form decentralized decision rule, the exponential
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[_ I. 1Introduction
4 A team can be visualized as the nodes of a metwork working together to
E optimizc some common cost criterion. Controlling a system of nodes sometimes
}

3

1

§

requires a decentralized decision-making function throughout the network. g
Each node is assumed to have assess to a limited amount of information and the

contrcl law for best processing this information must be determined.

In [1), Radner obtains conditions for a Bayes decision rule under some

‘B

o fairly general (but restrictive) assumptions. He shows explicitly that a '
i
quadratic cost criterion results in a Bayes decision rule for a decentralized R

' i

information pattern when the a priori probability of the "state of the world" o

i

and measurement functions are jointly Gaussian. This result has formed the

o B

basis for the dynamic, nonclassical information controllers in [2,3].

DuEerym

Previously, only the quadratic cost criterion produced an implementable
linear decision rule. It is shown here that the exponential of a quadratic

function displays similar properties.

’
e e S O LA 2

The quadratic cost criterion used as the basis of LQG control synthesis
is an additive cost criterion. However, a simple representation of a

wultiplicative cost criterion can be formed by the exponential of a quadratic

v e g R TEE Y VT 2

function, since the exponential has the property of beingimultiplicative

when its argument is additive. The exponential form is quite flexiable. In

many problems the cost function that is chosen to evaluate overall performance

is of a probabilistic form where the conditional probabilities are determined

iyt

from &rown constant probabiiities whose exponents are functions of the state

and control variables. This form can be easily converted to the exponential form.
A theory based upon the exponential cost criterion is given in [4] for the

dynamlc centralized control problem with lincar dynamics and Gaussian noise.

Our results for thc static team problem with cxponential cost show that under

certain condition: the optimal declsicen rules are linear in the available
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observations. This decentralized decision process contains phenomena not

present in the previous works. For example, there exists what has been
called an "uncertainty threshold principle" [5]. This means that if the
value of some of the system parameters are too la;ge, then a éolution
may not exist.

We begin by formulating the team problem with exponential cost criterion.
Next, a theorem of Radner which gives sufficent conditicns for a decision
rule to be Bayés (ninimizing) is stated. The conditions of Radner's theorem
are satisfied over the class of linear control laws for the positive exponcential
cost criterion, and these conditions are derived in detail. However, over
the class of non-linear control laws one of Radner's conditions has not becn
verified and only stationarity for the linear control law is established.

Finally, computation of the linear decision rule is illustrated for a two

"node network.

2. Problem Formulation

Consider the problem of finding the decision function u for a K node

network which minimize the cost criterion:

J(u) = E{u expy ¥/2} ' Q)
where
V= x0Qx + ulx + uRy )
K
.3
- n 1517
wvhere x € R denotes the state space and u € R is the control

vector over all nodes where j denotes the jth node and pj denotes
the dimension of the control vector of the jth node. The matrices R, N,

and Q are given constant matrices, NT = [NI,...,NE], and R = [R

AIR FORCE OFFICE OF SCIENTIPIC -
IPIC RESEAR
NOTICE OF. TRANSMITTAL TO m>c-Ic SEARCH (Arsc)

This teohnical re
POrt has been revi
8pproved for pudlic release Iaw A;RQ;;S-::d(;:)

sl

Distribution is unlimi
A. D. BLOSE nited.

Technieal Information Offiger

v il R

.
S TN BRIt T | A LA S, 7




The state space is not obscrved dircctly at cach node but through the

-
noisy lincar measurcment

s b}
zj=uj x+vl 3 o2 emrY , §=1,....K (3)

vhere qj denotes the dimension of the measurcment at the jth node.

- e —y

It is assumed that at each node the control is based only on the information

A

z” and that the information at each node is not shared*. Therefore,

e R

the control at each node is confined to be of the form

T T Wy e o

o = Yd) | (%) '

It is to be shown that under certain conditions if the "state of the world"

Ve p ®

x and {vj;j=1,...,K} are Gaussian, then the optimal decision rule is found
and an algorithm for determining the gains of this decision rule is presented.

We assume that the "state of the world" x and {vj;j=1,...K} are normally

[ A Y

distributed with zero mean and variances
jé s E{xxT} =P, E{vj(vi)T} = vjéij’ E{x(vj)T} =0 (5)

The assumption of zero mean has a simplifying effect on the resulting algorithm

et e S

for determining the decision gains but the inclusion of nonzero mean is

straightforward.

*This qualification is done for simplicity in presenting the theory but

’ . ession For
can casily be gencralized to neighbors sharing data. Aee e
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3. Conditions for Baycs Decision Rule

The decision functions ?j(-) defined in (4) are Bayes decision functions
if they winimize the expected cost criterion J(y). We restate below a f
theorcm due to Radner {1] which gives sufficient conditions for y = s %
to be optimal. First, following [1] we make a definition.

Definition: The cost functional J(y) is said to be locally finite at

1. )| <o
2. For any admissible decision function 6 such that
IJ(? + 6)| < o , there exist a scalar B > 0 such that

if sup lhjl_i B for 3j=1,...,K then
3 :
et + neti o fe m 8] <o

We arc now ready to state Radne?‘s theofem specialized to our particular case:
i Theorem (Radner): If D is the set of admissible controls %D, and
1. u exp [uh(x,u)/2] is convex and differentiable in u for
almost every x,
2. inf J(y) > - o, .
YeD
3. y=¥% is stationary,
4. J(Y) 1is locally finite at ¢ ;
then ¥ is a Baycs decision rule.
Condition one is satisfied for u > 0 but if y < 0, then u exp [UP(x,u)/2)

is not convex in u. Hence, the theorem docs not apply for y < 0 and we leave

open Lthe question of sufficient conditions for optimality in this case.

Conditfon two quarantees a finite minimum and conditions three and

four together ave sufficient to quarantece J(§) is optimal.
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Unfortunately, condition (4) is difficult to verify for the general
case. However, it is easy to verify that it is satisfied if we restrict
the decision rules to be affine functiouns of the observations. Hence,

in the remainder of this paper; it should be understood that we are

referring only to control laws over the affine functions unless wve

ey gy
in

specifically specify otherwise. Furthermore, this global sufficiency

condition for this restricted class of controls produces the global optimal

affine control law. We speculate that the optimal affine rule is, in fact, %
the optimal rule over all appropri#tely measureable functioﬁs but offer é
no proof. Nevertheless, the stationary condition, which will be seen to g
be satisfied by affine control laws, is an iﬁportant necessary condition f
for optimality over the class of non-linear control laws and for the negative %

¥
exponential cost criterion. Note that even in the class of affine centrol ;

laws, a global minimum has not been established for the negative exponential

cost criterion.

4. Stationary Conditions for Bayes Decision Rule

The stationary conditions for a minimum are now presented. Suppose that

the decision function of all but one of the tcam members are fixed. Then,

a one-person minimization is performed by assuming that the fixed decision
functions of the other person are at their one-person minimum given by (4).

The one~person cost criterion is the conditional cxpectation

E{wexpu/2 ¥, why/z3) 8 klpexplu/2 0812, ...,
. . » | | | (6)
¢, W, 9P GO, Ry o)

.
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where E{(-)/zj} denotcs conditional expection. Due to condition one and
the monotone convergence theorem, the interchange of the operations of

expectation and differentiation gives

LTI

2 Elnexpn/2 T, (w1 /23) = B2 expp/2 Ty /2d) (17)
ou’d 3 auJ

from which the following set of K stationary conditions arise as

Bl —2 expu/2 , (wl)/20) = 0 | ®)
ol J
for j=1,...,K.

By condition three of the theorem, a necessary condition that the
decision function be Bayes is that uj satisfies (8) and the cost criterion
be finite. More explicitly, the stationary conditions (8) using (2)

become the K set of equations

r

E{ [l‘_ N.x+ul R .?i(zi) + 1R .uj]euﬁjlzlzj} =0 (9)
23 j=1 1J i3 .
i#j

for j=1,...,K and the cost criterion (1) J(§)< «. This is the precise

definition of stationarity required for the theorem.

5. Linear Bayes Decision Rule for the Exponential Cost Criterion

The results of this section for the exponential payoff parallel the

results of Radner's theorem 5 [1] for the quadratic payoff. Observe that

. the minimum of the function eu‘p/2 is

YGx) = R INx/2 (10)




It is shown here that if the a priori distributions induce a normal distribution
on all the measurements zj and the vector Y(x), then the Bayes decision
function can be linear in the measurements, This'is done by cxplicitly

assuming a lincar decision rule and showing that the stationary conditions

(9) are satisfied. 1If J(¥)< @ is not satisf{ied by any lincar decision

rule satisfying (9), known results do not exclude the possibility of an

optimal non-linecar solution, although this secms unlikely.

5.1 Exponent of Exponential Function as an Explicity Function of the Linear

*

Decision Rule

Suppose the linear decision rule is

?j(zj) =D

;
jz + Cj | (11)

3 3

where D, and Cj are pv x qJ and p

3

to be determined through the necessary conditions (9). Introducing (11)

x 1 matrices, respectively,

into (9) results in the K set of equations

N K .
E(Ei x 2 45 Rij(Dizi + Ci)eu$/2/zj] = 05 §=1,...,K

i=1 (12) .

where

T K i T
P=xQx+ZI (D,z + C,)'N, x -3
) i=1 i i’ 1 : B

K K

+I (D
i=1 k=1

i

T .k
28+ C) R, (0 2

N + C) (13)
Since the a priori distributions induce normal densitics conditioned on the
medasurcments {zj;j=1,...,K} » the expectation in (12) can be determined in

closed form. The stationary conditions then reduce to a coupled set of K




B XA

algebraic matrix cquations. This is because the normal density is an
expgncntiul and, therefore, the integration implied by the expectation
operation is performed by completing the square.

We now derive this set of coupled matrix algebraic equations. First,

we note that since the expectation in (12) is conditioned on zJ, then the

explicit form of 2 ;i#j (3) should be introduced. This defines

AT i T 3 T
o 2 + ) . 4
D, FxQx+ I (DHx+ DV + C)Nx (Djz + cj) N x

J i#j
+ % Z(DHx+Dvi+C)TR (Dlx+ka+C)
a8 Dyl i 17 Ri (Pl K K
ifj k#j
3 T j i T k
+ .z + C.Y R, . (D,z) +C,) +L .z +C)O R, O, x+D +C
(Jz cJ)ij(Jz J) kﬁZ(DJz j) Jk(kkx K’ » (14)

where L denotes a sum from k=1 to K excluding k=j. Let

i3
3 8 6 b DL L@ F gl as

in which X§ - represents the underlying random variables associated with
the expectations of (12). Using (15), $j can be rewritten in a more

convenient form as

T S W | T 3 ii
By = X,Q%, + CNX, + C'RC + (o) [k + UgC + U2 ) (16)

Let [wjk] denote a matrix with matrix elements wik' and i denoting

block rows and k denoting columns. The'nogation (wik]i#j denotes a

k#j
matrix which excludes k=j and ‘i=j elements. A matrix with a single
subscript with or without fixed index j, i.e., [wji], denotes a block

row matrix. With this notation, the following matrixes are defined

TR e - -
AR A SIS L W T

-
Yookl "

TN WO




i

+

% DR,
R

k#j

B T
T 0 DN
Q+: OH)'N, + % X (DH)R,DH, |5
i?‘-j i i’/‘j l\f_] 11 ik k'k . 2
g, ° |
3 T
DNy T ~ T,
5 tEDRADBL s DR D)y
k#j i#j K43
N ® N+ 20 I RDHT s 2[Ry Dy gy
—J k#j
j A T T T
Uy DN, + LR, DL 2[1)J,Rjkn;]1_\¥j
k#)
jA T
u. = 2D.R,
¢ i ik
i A
ul s DR, .D,
2 33373

5.2 Dénsity Functions of the Randem Variables

RN

To perform the expectation in (12), the explicit forms of the

probability densities are needed. Having assumed zero mean statistics

for {vl;3=1,...,K}, the density for - using (5) is

1 -1 §+ K
p(v ,...,vJ ,vJ 1,...,v )
- L exp -1/2 % (vHTy
ﬁ q /2 : it
ifj K 1/2
(2m) v
i=1

i#j

i

11
v

it

an

(1%)

(20)

(22)




IR

] 11
vhere TU denotes the product operation and |(’)| denotes the determinant.
Also, since the a priori wmean of % is assumed zero, the posteriori
conditional density is
3y 1 NI T S g
p(x/27) 777 73 exP 1/2(x szj) Pj (x hjzj) (23_)
(2n™"|p, | 3
] j
i
vhere P1 is the posteriori error variance produced from ' i
R v 3
-1 _ -1 T -1 ‘ 3
P.- =P "+ (U V. H, (24)
b ° ( j) j i
»
and Kj is the Kalman filter gain producing thc posteriori mean of the 2
state as szj and is determined from i
T T 1 F
K, =P (H,) (WP (R,)” + V) 25 '3
AR RCRRCRNCREE RN (25) i

5.3 Algebraic Equations for Determining the Decision Gains

By using (22) and (23), the expectation operation in (12) is explicitly

written as (the integral sign denotes the implied- multiple integration)

N
gin ] ' i h| .
Ji; {2 x+ I Rij(DiHix +Dov 4 ci) + R (?jz + cj)]x

i =
exp 1/2 uh, - ¢ OV - xR,z )P (x-K,2,)]
VS i 3737 73 31
x dxdvy,...,davd 7 a3t K - o - _ (26)

Again simplifying the notation by using (15), the integral is

S Lt ST A b e Sy




|

t

d " . b
[L.X, 4+ R, C+ R,.,D zj) exp 1/2{x’h.x + ncqn |
300 33 3 - oo

1

. 3 13
(27) .
+ pcre + (2HT (ﬁixj + uugc 1 Uzz]] ax; = 0 :
[
A | :
vhere Rj = [kji] and t
i
N : |
_ X i (28)
L. = [~1 + LR, D, [R..D.]. ]
3 2 i iji ij i i#]
|
P;l I 0
A . R T
0 i [Vi 61k]i¥j
k#j -
iAo ,Ip—1
ﬂx uUX + IZI\J.Pj , 0] | (30)
R, | T5-1,
ﬁz = WU, - ij kj &} 8)

The procedure for the determination of the integral in (27) in closcd
form is to complete the square with respect to the vector Xj so that the

argument of the exponent of the exponential is

1/2 [x§6jxj + (uc?yj + (zj)T”i)xj + auere” + )7 ile + Uizj))]

- Tx . T, o Taade + w3y - T,
=.1/2 [(X, + cj) Qj(Xj + cj) + (UCRC™ + Fz ) (wuge + B)20)) - 1/4 ¢;8e; (32)

J
where

PSS WA SRR, N o | ‘
Gy = Qe+ M) e)/2 - (33)
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In this new form a sct of new variables of integration are suggested

-

to put the integral in a well knowm form, Let

fhpesinr s

!

Yj = Xj + Gj . ' | (34)

and Yi is the new variable of integration, where

de = de (35)

Therefore, ignoring scalar coefficients which can be removed from under
the integral sign, (27) is finally reduced to

r 3, M2 Y,
L.Y, - L.G, + R.C + R,,D,z ]e . dy, = 0 2!
o L i 173 3 3373 ! k| )

For this integral to remain finite, the matrix Qj nust be negative

definite. Then

T
1/2 v,0.Y
’ 3733 =
Lj » Yje de 0 , _ (37)

The stationary condition reduces to the condition that

(TR R ¥ O S

= J . =
I.jGj ch + RijjZ -, J=1,...,K (38)

|

This coupled set of algebraic equations can be decomposed to produce the

gaing C and {Dj;j=1,...,K} which form the Bayes decision rule. Since

z, 1is arbitrary, then (37) becomes

J
gt T B S . iz
1/2 Lij [Ux] kjjnj s 3=1,...K (39)
/2L, 8N - R,J €= 0 ;3 §=1,...K “40)
. 3°3 3 3 ! ’

The stationary condition (40) is a homogencous linear equation in C. If

the zero mean assumption is relaxed, then a non-homogencous linear equation for

C results. .

[ Ve




5.4 Conditions for Stitionarity

For the stationary conditions (39) to yleld a meaningful solution,

the conditions Qj <0 for j=1,...,K must also be mect. This restriction

does not occur for the quadratic cost criterion. The concept here is that
there are parameter values above which the cost criteria does not exist.

This phenomena is referred te as the "uncertainty threshold principle.”

?
:
F

i
]
d

Furthermore, it should be pointed out that 63 < 0; j=1,...K 1is only

W

a necessary cendition for the cost of (1) to be finite. Note that

3@ = eGP 2 L eV /2,4y (45)

W@ /2,3

The existence of E{je is necessary for J(§) to be finite but

not sufficient. This is satisfied by the condition Qj <0 for j=1,...K.
To quarantec that J(f) is finite, § of (13) is rewritten in terms of all

the underlying random variables as

¢ = x'qx + cnx + cTre ' (42)
where
T T
T
XT a [x ,v1 ,...,vN ] 43)
and where Q and N are the same as gj and gj in (17) and (18),
respectively, without the exceptions on the sums and matrices for j.
The rcquirement for statfonmarity (J(§)<») is that
-1
Po i 0
\
3= - v <0 (44)
LN A

Note that (44) implies Qj <0 for j=1,...,K. Therefore, only (44)

necd be choecked.




Although (39) 1s a complex function of the puains Dj for j=1,...K,

i1 any solution of these equations results which satisfies (44), this
solution is minimizing by the theorem of Schion.S in Lhe class of affine
control laws. No other decision rule can reduce the cost criterion (1)
any further. Note that for the zero mean assumption, C€=0 is the unique

solution. The zero wean assumption does not affcct (39).

6. vo-Node __l\_\_-_x:_({nt ralized PDecision Rule tor Exponential Cost
The theory in Section 5 is illustrated for a two-node nctwork with

scalar decision or control variables and measurcements located at cach node.

Referring back to the preblem formulation of Section 2, the parameters have he

dimensions; Q, Po, Vl’ V2, "1’ H2 arc scalars, N is a 2-vector, and R

is a 2x2 matrix. The posteriori error variance (24) and Kalman gain (25) are

plep gy , K. =PN
o] o}

2 . - .
j 3’ 3 /(HjP0 + Vj) sy 3=1,2 (45)

3

The linear decision rule, where p=1, is given by (11) where the scalars
Dj for 3=1,2 (C=0) are to be determined from the stationary conditions

(39) where, from (29) and (17),

2. 2 -1 NPy o

Q+ D2"2N2 + D2R22H2 - Pl . —E*“ + D2R22"2
46)
q, - (
1] N
2%y 2 2. -1
2 T DRty » DaRya Y,
where from (30) and (19),
) ')-1
DINI + 2D1h1202"2 + 2&111 .
1.T
17 - (47)
2D;R, 9D,
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and vhere from (28),

N L

]
1,1 [2 + 1«121)2112 . R1202] (48)

Similar expressions can be obtained for 62, Ui, and L2. 3
In gencral, for this two-node problem, the set of two ilgebraic }

stationary cquiations reduce to a fifth order polynomial in either Dl or D2. ?

At most, only one root will satisfy the negative definite requirements.

1f the parameter describing conditions at cach node are the same, then

the polynomiil reduces to third order. In the following, it is this

problem that we study.

6.1 Node hiscription Fqual

1f the parameters at cach node are the same, then we write

o

g

H. =H, ~ R, V

1 2 = V2 =V, N, =N, =N, R, =R, =R

1 1 2 11 22

(49)

SV I THE- R S T T ST Sl

Since there are no differences between the nodes, the resulting decision

gains should be the same at cach node, {.ec.,
D1 = D, =D (50)

The stitionary condition of (39) using (49) and (50) in (46), (47), and

(48) 1. comes

Q + pin + @ Zk-r7t -’;-'-’ + 2} 7Y on o+ 20%kn? + 2xe”d
‘,
[—'21 + ggm,gn] =qp (51
LI , iRyt 20%R

2 -
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Performing the indicated operations, (51) reduces to a third-order polynomial
from vhat had appeared to be a fifth-order polynomial (the cocefficients of

the fifth and fourth order terms cancel) as

®R-R) (N2 - 2@+R) Q-1 - n¥vH 13 + amv (r-ryp?

-12 (52)
+ 12k vt - Y Ty - v h = 0

Obscrvation: If R=K, then (52) reduces to a lincar equation in D. This
decentralized result scems to be cqhivalent to a centralized control problem
with a single sca’ar decision function of both measurements and using a control
welghting R and N.

For simplicity let us now assume R=0. This polynomial has been programmed -
Three rcal roots have becen found for certain choices of the parameters. Two

roots are eliminated because § of (44), given here as

B 2 -1 2 -2 ]
(Q + 2DHUN + 2(DH)" R - Po ),1/2 DN + D HR, 1/2 DN + D“ HR
3= | 1/2 o8 + p? mR , D°R - vT , O , (53)
1/2 DN + D2R , 0 o, plr - vl
— ' .

is not ncgative definite. Only one root satisfies this condition.
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6.2 A Numerical Example H
A _numerical Lrample !
“A siwple example is presented where the polynomial of (52) reduces to i
a quadratic. This case occurs when _
1 B
- - .
+ (RV) vz _ *%Eﬂ!i*f:i (54) ﬁ
N"+417RV

This condition is satisfied by choosing R =V =1 =1, N = 2,
where one root of (52) is always D =-1. For Po = 1, the resulting

quadratic is

5p2 - 2 - 1 = Q0 - D) (55)

v For various values of R, the following table gives the gain that

; satisfied all conditions except for R=3.

Q | 0. 1. 2. 3.
D

[ .26 -.39 -.58 -1.

When Q > 3, therc is no solution. This is a simple illustration of
the "“uncertainty threshold principle".
Consider now a more complex example where R=1, Q= 2.6 , Po = 1.5.

In Figure 1 a log J versus R plot for V = .75 is presented * showing

the relative performance of the control law with perfect information (V=0),

*The calculations for this problem were obtained by Fredrick Machell.

o e b




the control law with centralized information (z] and z, are available

at cach node), and the decentralized control lav wvhose gains are determined
irom‘(52) and (53).  Jn cach case the curves rise as R increases and

escape for positive values of R, Mowever, an intceresting pathelogical
development occurs when Vo is allowed to increase, say V = .95, as shown

in Figure 2. For the decentralized control law the value of the cost critericn
escapes for negatives values of R as well as positive values. Both the perfect

information and ceatralized control laws still exhibit the same behavior as

shown 1In Vigure 1.

7. Discussion and Conclusion
Linear control laws for decentralized control has been presented which
allows the cost criterion by being exponential to be in a aultiplicative
form. The sufficiency theorem of Radner is applicable to this cost criterion
if the class of adwissible control laws are restricted to be affine and to
the positive exponential cost criterion. Otherwise, over the class of non-linecar
control laws or for the negative exponential cost criterion, the lincar control
law may only satis{y the necessary condition of stationarity. The exponential
form can be motivated as a reasonable model for probabilistic costs. 1In
practice many probability and density functions can be approximated by this
functional form. An alternative viewpoint might be to consider the exponential
as a type of membership function for which fuzzy set theory [6,7]) could be applied.
The extension of our static results to dynamic decentralized problems is a
logical sticep in the development of a complete control theory for the exponential
cost criterion. The applicﬁtion of dynamic programming to dynamic decentrali:iced
problems is, in general, beyond the capability of current theory. However, the

lincar-exponential-Caussian problem with one-stup delayed information sharing
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pattern yields an implementable dynamic controller for the terminal cost

problem (only the weighting on the terminal state is nonzero). This development
parallels that for the LQG one-step delayed problem [3]. This extension

depends heavily on the reproduction of the exponential cost functional form

for the cost-to-go (the optimal return function) at cach stage.
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