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0A static decentralized team is represented by the nodes of a network

working together to optimize the expected velue of an exponential of a

quadratic function of tile state an'd control variables. The information

consists of ki-own linear functions of the nor.. ily distributed state

corrupted by additive Gaussian noise. For certain ranges of the systen.

parameters, the stationary condition for optimality are satisfied by a

linear decision rule operat'ng on the available info.r.tation. Thc::

stationary conditions reduce to a set of algebraic matrix equations aihd a

tatrix in equality condition from which the valves of the decision gains. are

determined. Although the stationary conditions are necessary for the linear

control law to be minimizing In the class of non-linear control laws, sufficiency

is obtained for our linear controller to be winimizirg in the class of linear

control laws. Since the quadratic performance criterion produces the only 00

previously known closed form decentralized decision rule, the exponential

criterion is an important generalization.
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I. Introduction

A team can be visualized as the nodes of a network working together to

optimize some common cost criterion. Controlling a system of nodes sometimes

requires a decentralized decision-making function throughout the network.

Each node is assumed to have assess to a limited amount of information and the

control law for best processing this information must be determined.

In [1], Radner obtains conditions for a Bayes decision rule under some

fairly general (but restrictive) assumptions. He shows explicitly that a

quadratic cost criterion results in a Bayes decision rule for a decentralized

information pattern when the a priori probability of the "state of the world"

and measurement functions are jointly Gaussian. This result has formed the

basis for the dynamic, nonclassical information controllers in [2,3].

Previously, only the quadratic cost criterion produced an implementable

linear decision-rule. It is shown here that the exponential of a quadratic

function displays similar properties.

The quadratic cost criterion used as the basis of LQG control synthesis

is an additive cost criterion. However, a simple representation of a

multiplicative cost criterion can be formed by the exponential of a quadratic

function, since the exponential has the property of being multiplicative

when its argument is additive, The exponential form is quite flexiable. In

many problems the cost function that is chosen to evaluate overall performance

is of n probabilistic form where the conditional probabilities are determined

from k1rown constant probabiiities whose exponents are functions of the state

and control variables. This form can be easily converted to the exponential form.

A theory based upon the exponential cost criterion is given in [4] for the

dynamic centralized control problem with linear dynamics and Gaussian noise.

Our results for tc static team problem with cxponential cost show that under

certait, condition.; the optimal. dectiron rules are linear In the availablu
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observations. This decentralized decision process contains phenomena not

present in the previous works. For example, there exists what has been

called an "uncertainty threshold principle" [5]. This means that if the

value of some of the system parameters are too large, then a solution

may not exist.

We begin by formulating the team problem with exponential cost criterion.

Next, a theorem of Radner which gives sufficent conditi:ons for a decision

rule to be Bayes (minimizing) is stated. The conditions of Radner's theorem

are satisfied over the class of linear control laws for the positive exponential

cost criterion, and these conditions are derived in detail. However, over

the class of non-Jinear control laws one of Radner's conditions has not been

verified and only stationarity for the linear control law is established.

Finally, computation of the linear decision rule is illustrated for a two

node network.

2. Problem Formulation

Consider the problem of finding the decision function u for a K node

network which minimize the cost criterion:

J(u) =E{i. expp /2) l

where

x*Qx + + (2)

K

where x R denotes the state space and u c 3RJ Z1 is the control

vector over all nodes where j denotes the j th node and p denotes

ththe dimension of the control vector of the j node. The matrices R, N,
and Q are given constant matrices, NT . [N,.,N T and R [Rl
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The state space is not obs-erved directly at each node but through the

noisy linear measurement

zi x. + vi ; C , J=],...,K (3)

where q denotes the dimension of the measurement at the jth node.

It is assumed that at each node the control is based only on the information

zi and that the information at each node is not shared*. Therefore,

the control at each node is confined to be of the form

uj = (z j ) (4)

It is to be shown that under certain conditions if the "state of the world"

x and {vJ;j=l,...,K) are Gaussian, then the optimal decision rule is found

and an algorithm for determining the gains of this decision rule is presented.

We assume that the "state of the 'world" x and {vJ;j=l,..,K are normally

distributed with zero mean and variances

E{xxT)= P0 , E{vJ(vi)T vj6i , E{x(vi)T 0 (5)

The assumption of zero mean has a simplifying effect on the resulting algorithm

for determining the decision gains but the inclusion of nonzero mean is

straightforward.

*This qualification is done for simplicity in presenting the theory but

can easily be generalized to neighbors sharing data. Accession For
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3. Cowdition; for Baycsl D,'ci-ion Rule

Vie decision functions j3 (.) defined in (4) are Bayes decision functions

if they minimize the expected cost criterion 3(y). We restate below a

theorem due to Radner [1] which gives sufficient conditions for y =

to be optimal. First, following [1] we make a definition.

Definition: The cost functional J(y) is said to be locally finite at

y- if

1. IJ(,)l <

2. For any admissibJe decislon function 6 such that

IJ(5 + 6)! < , there exist a scalar B > 0 such that

if sup 1hj I < for Jil,...,K then
J

13(y^' + h '1...,'Y V h Z < <

We arc now ready to state Radner's theorem s;pecialized to our particular case:

Theorem (Radner): If D is the set of admissible controls 1D, and

1. v exp [is'(xu)/ 2] is convex and differentiable in u for

almost every x,

2. inf J(y) > -

yCD

3. Y _ is stationary

4. 3(y) is locally finite at

then I in a Bayes decision rule.

Condition one is satisfied for 11 > 0 but if p < 0, then I exp [jin,(x,u)/2]

is not convex In u. lence, the theorem does not apply for p < 0 and we ]eave

open the question of sufficient conditions for optimality in this case.

Condit llon two qpir;antcc; .1 finite Iitimuin and conditions three and

four together art- sufficient to quarantee J(?) is optimal.

. .4
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Unfortunately, condition (4) is difficult to verify for the general

case,. However, it is easy to verify that it is satisfied if we restrict

the decision rules to be affine functions of the observations. Hence,

in the remainder of this paper it should be understood that we are

referring only to control laws over the affine functions unless we

specifically specify otherwise. Furthermore, this global sufficiency

condition for this restricted class of controls produces the global optimal

affine control law. We speculate that the optimal affine rule is, in fact,

the optimal rule over all appropriately measureable functions but offer

no proof. Nevertheless, the stationary condition, which will be seen to

be satisfied by affine control laws, is an important necessary condition

for optimality over the class of non-linear control laws and for the negative

exponential cost criterion. Note that even in the class of affine control

laws, a global minimum has not been established for the negative exponential

cost criterion.

4. Stationary Conditions for Bayes Decision Rule

The stationary conditions for a minimum are now presented. Suppose that

the decision function of all but one of the team members are fixed. Then,

a one-person minimization is performed by assuming that the fixed decision

functions of the other person are at their one-person minimum given by (4).

The one-person cost criterion is the conditional expectation

Efijexplj/2 j (ui ) / z j } 6= E{jiexp[jj/2 y(l(zl)...

(6)
I"J-3(z J-1) u j , J+I.(zJ-l),...,' IK (z K )x/z J )

-- " K, • .. . , .L .. ,,-2- .- .,., ,, ,;
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where E{(.)/z J) denotes conditional expection. Due to condition one and

the monotone convergence theorem, the interchange of the operations of

expectation and differentiation gives

Elpexp/2- (ullzj } = E{j--- expp/2 T(u )Iz j 1 (17)

from which the following set of K stationer. conditions arise as

Fil expp/2 j (uJ)/z j ) = 0 (8)
auJ

for j=,...,K.

By condition three of the theorem, a necessary condition that the

decision function be Bayes is that uj satisfies (8) and the cost criterion

be'finite. More explicitly, the stationary conditions (8) using (2)

become the K set of equations

EI[- Nx + p R (z + IiR j ePj2/Z (9)

i=1

ij

for J1,...,K and the cost criterion (1) J(?)< . This is the precise

definition of stationarity required for the theorem.

5. Linear Bayes Decision Rule for the Exponential Cost Criterion

The results of this section for the exponential payoff parallel the

results of Radner's theorem 5 [1] for the quadratic payoff. Observe that

the minimum of the function ejI1/2 is

Y(x) -R-Nx/2 (10)



It is shown here that if the a priori distributions induce a normal distribution

on all the measurements zi and the vector y(x), then the Bayes decision

function can be linear In the measurements. This is done by explicitly

assuming a linear decision rule and showing that the stationary conditions

(9) are satisfied. If J(?)< - is not satisfied by any linear decision

rule satisfying (9), known results do not exclude the possibility of an

optimal non-linear solution, although this seems unlikely.

5.1 Exponent of Exponential Function as an Explicity Function of the Linear

Decision Rule

Suppose the linear decision rule is

J(zi)  D zj + C. (ii)
3

where D and C. are p x q and p x 1 matrices, respectively,

to be determined through the necessary conditions (9). Introducing (11)

into (9) results in the K set of equations

N 2 K i)$/2/j
E2{ xe~/ + E Rlj(Diz + Ci)e /zj) 0; j=l,...,K

i=l (12)

where

T K . T
Qx + E (D i z+ C) Ni x

K K T k
+ E (Diz + Ci)TRik(Dkzk + Ck) (13)i=l k=1

Since the a priori distributions induce normal densities conditioned on the

measurements {z1 ;j=l,.. .,K , the expectation in (1.2) can be determined in

closed form. The stationary conditions then reduce to a coupled set of K

A,_-.
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algebraic matrix equations. This is because the normal density is an

exponential and, therefore, the integration implied by the expectation

operation is performed by completing the square.

We now derive this set of coupled matrix algebraic equations. First,

we note that since the expectation in (12) is conditioned on zi, then the

explicit form of z ;i-j (3) should be introduced. This defines

i. XQ+ !(Di~ix + ~ 1 +c.)TNix + DzJ + c.)TN'x

_ Xj = xTQx + E D.k i + - TDj

+ E (D.Hix + D.v i + Ci) TR x Dk V k+
i~ #ji ikmk + T R

+ (D zi + C.)T R (D zi + C.) +kZ 2(Dz1 + C)T Rjk(Dkllkx + Dkvk + C (14)
jj i kjj .3 k k k~

where E denotes a sum from k=1 to K excluding k=j. Let
k~j

T A T, 1 lT. .. ,(vJ-1)T,(v j+l)T,..., K)T T A [CT...C T (15)

T
in which X • represents the underlying random variables associated with.3

the expectations of'(12). Using (15), i j can be rewritten in a more

convenient form as

=T C X + C TRC + (zj)[UX + ic + U z 1(16)j xT ij i

Let [W.] denote a matrix with matrix elements Wik and i denotingft ik l

block rows and k denoting columns. The notation [W I denotes a
ik i~j

k~j

matrix which excludes k=j and i=j elements. A matrix with a single

subscript with or without fixed index J, i.e., [W ji, denotes a block

row matrix. With this notation, the following matrixes are defined



• 1 0

Q + (DI i) TN + (Di) R D II, T- + D DTRikll T

A DT 11 D
.. N + 1 ,TR DU [DRDl

2kj i ik k i ik k iij

N. N + 2k[ E RDk , 2[RikDk]IJJ
-J I kk j 

( .)

Uj-- + E 2 Dj R Dk k , 2[D RjkDIk j (1M)x 3 3 kijj k " k-

[2D T R] (20)

z " RjDj (21)

5.2 Density Functions of the Random Variables

To perform the expectation in (12), the explicit forms of the

probability densities are needed. Having assumed zero mean statistics

for {v3;j=l,...,K}, the density for vi using (5) is

1 j-l j~l K
p(v ,...,v ,v ,...,v K )

i exp-1/2 T (vi)Tv.-ivi (22)
-q2 2 iCj ).

i~j K 1/2
(27Y) I vil

i-i
i#j
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where 11 denoto,, the piroduet. opera tion and (.) denotes the determinant.

Also, -since the a priori wean of x is assumed V.ero, the posteriori

conditional density is

p(x/zj) 2 / / exp -l/2(x-K z.)T p -(x-K z (23)

where P. is the posteriori error variance produced fromJ

T -lI
P. 1 = 0- + (H) V. H. (24)3 0 3 3

and K. is the Kalman filter gain producing the posteriori mean of the3

state as K.z. and is determined from
33

K. = P (H) T (1Po(HT + V-1 (25)

3 03 O J

5.3 Algebraic Equations for Determining the Decision Gains

By using (22) and (23), the expectation operation in (12) is explicitly

written as (the integral sign denotes the implied, multiple integration)

{ x + Z R.(D.H.x + D.vi + C ) + R (D z + c.))x

2 #j 3 11 1 i ii 3 3

exp 1/2 [Iijo - (vi) T V-ii - (x-K z)TP3-1(x-K zi~j

x dxdv1 =. .. ,dv J-1 dv j+ l .. . dv K  0 (26)

Again simplifying the notation by using (15), the integral is
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f' L . R c+R 1, i ) .X, 1/.2f X(.x -+ )I X
(2?)

+ CTRC I (z) T' lXj + 1ItC -f Iz]) dxj 0
. z

where R = IR and
Iii

a-. If R D(28)

S 0 I V i 6 ik) iij

J. :ux  12K JP1 0] (30)

tj i = 10 - K!p;!K1 . (3)

zK.P.Ji .1

The procedure for the determination of the integral in (27) in closed

form is to complete the square with respect to the vector X. so that the

argument of the exponent of the exponential is

12 [XTO.X. + (1iCN. + (zj)T J)X .+ ( C Tc1  + (zj)T (iD 1C + Ujzj))]

=.1/2 [(X 1 + C)TQ (X + C.)+ (ICRCT + (zi)T (pU C + DJ7zJ)) - 1/4 GTQGj (32)
i i i J i z

where

G -1 -(Nc . i) /2  (33)

_1

. . . . ... .... .. . .... .... ....... .. ...... . , .. ,' g %, k u
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In this new form a set of new variables of integration are suggested

to put the integral. In a well known form. Let

j X j + Gj (34)

and Y is the new variable of integration, where

dCy dX (35)

Therefore, ignoring scalar coefficients which can be removed from under

the integral sign, (27) is finally reduced to

LjY1 -LGj + RjDjz3:e . 3  dYj = 0(:)

For this integral to remain finite, the matrix Oj must be negative

definite. Then

r 1/2 YT .Y

Lj Yj e dYj d 0 (37)

The stationary condition reduces to the condition that

L G i RjC + R z ; J=,...,K (38)

This coupled set of algebraic equations can be decomposed to produce the

gains C and {D ;J=I,...,K) which form the Bayes decision rule. Since

Z is arbitrary, then (37) becomes

1/2 Ljl[p]T _ HD ; j=l,...K (39)
i J X iiiJ

112j - - R I C -0 ; J-1y ... K (40)

The stationary condition (40) is a homogeneous linear equation in C. If

the zero mean ansumption is relaxed, then a non-homogencous linear eqlation for

C results.

" .., , * .... ~ ~~~. . . . _a..Ai"--
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5.4 CondLt ions~ for Statiof.inri ty

For the ;tatloaa ry condition; (39) to yil d a meaui ,ful solution,

the conditions 0 < 0 for j=l,.. ,K must also be met. This restriction

does not occur for the quadratic cost criterion. The concept here is that

there are parameter values above which the cost criteria does not exist.

This phenomena is referred to as the "uncertainty threshold principle."

Furthermore, it should he pointed out that < 0; j=l,...K is only

a necessary ccn(lit:ion for the cost of (1) to be finite. Note that

J(?) - E{itet( (1) 12} = E{E{jePq )() /2 1zj } }  (45)

The existence of E{;Ie (?)/2/zJ} is necessary for J(?) to be finite but

not sufficient. This is satisfied by the condition 0 < 0 for j=l,....

To quarantee that J(j) is finite, of (13) is rewritten in terms of all

the underlying random variables as

TX + C'TNX + C RC (42)

where

T A T IT NT
X = x ,v ,...,v ] (43)

and where q and N are the same as qj and. N. in (17) and (18),

respectively, without the exceptions on the sums and matrices for J.

The requirement for stationarity (J(?)<-) is that

P-l
0  0

(44)"IJ.. 0 [V '1- < 0 /)

Note that (44) implies < 0 for jml,...,K. Therefore, only (44)

need be checked.



Althoulih (39) is a cotup] ex func t on of the , Ins D for j-l.,

iI ally soltt ion of ti,,; q: t i otil.,; resil t s whIch sat i :;ff es (44) , this

solution it; mjlii)izitiU by the theorew of Section 3 in the class of afflne

control laws. No other decision rule can reduce the cost criterion (1)

any further. Note that for the zero mean assunption, C'-0 is the unique

Lolutlon. The zero muan a.s,;ut ption does not affect (39).

6. Tlyo-Nodo, Dhcent ra I i zd Dec is i oi Ru I v I Or V )xpon1') i al C-oSt

The theory in Svt tion 5 is, illustrated for a two-node network with

scalar decision or control variahlcs and measurements located at each iiode.

Referring back to the problem formulation of Section 2, the parameters have he

dimensions; Q, P09 V1 9 V2' Ip 112 are scalars, N is a 2-vector, and R

is a 2x2 matrix. The posteriori error variance (24) and Kalman gain (25) are

p- I p + If2 / Y P /(i 2 P+ V J=., (45)

The linear decision rule, where V=l, is given by (11) where the scalars

D for J=1,2 (C-0) are to be determined from the stationary conditions

(39) where, from (29) and (17),

IN 2 2 - N2D2

2D 2  2  2|22 1 2 2R2 212

41 N2D 2  + 2 R H 2 R -1 ( 6
L 2 222 2  D 2R 2 2  2 J

where from (30) and (19),

DIN + 2D1 12D2112 + 2K1PI
1

lul T (47)

L L2DIR 2D2 1 (
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Wnd .here f ro, (28)

N l

1 - 1 I 121)2112 . R1 2 D2  (48)

Similar eypre.sions can be obtained for 02' U2 * and L2 .

In general, for this two-node problem, the set of two .ltgebraic

stationary equations reduce to a fifth order polynomial in either D or D2.

At rist, only onc root will s;atisfy the negAtive definite requirements.

I the Ivpar,,,t.v r detc r Jing Cnd it j On, at .ach nod v are the same, then

the polynomial reduce., to thirdorde.r. In the following, it is this

problem that we study.

6.] Node D-rjpLon q'l

If the parameters at each node are the same, then we write

H, " 2  H, V VI v2  V, N N 2 N, Rl Rz2 2 -R

(49)

112 "R21 I P 2 - P. K, - K2 " K

Since there are no differences between the nodes, the resulting decision

gains should be the same at each node, i.e.,

D I 2 ' D (50)

The ni itlonary condition of (39) using (49) and (50) in (46), (47), and

(48) 1. comes

2 -1 NI) 2 -- 1 2 2 -
Q+MIN+,(DII) -. + 1) 111 DN + 21) I1I + 21P

+ RDHRI)] 2 ]D (51)

ND + 21)2R
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PerformA.ng the indicatd operations, (51) reduces to a third-ordcr polynomial

from what had appeared to be a fifth-order polynomial (the coefficients of

the fifth and fourth order terms cancel) as

(R-R) [N2 - 2(+R) (Q-P- 1 - H 2 V- 1 ) ]D3 + 3NHV- 1 (-R)D 2  [
(52)

2R (Q-P)V -11 v(V+ [2R(Q~-1)V-1- 2(V- !)2 -]I) - N(V-I)2II 0

Observation: If R=k, then (52) reduces to a linear equation in D. This

decentralized result seems to be equivalent to a centralized control problem

with a single sca'ir decision function of both measurements and using a control

weighting R and N.

For simplicity let us now assume R=O. This polynomial has been programmed.

Three real roots have been found for certain choices of the parameters. Two

roots are eliminated because Q of (44), given here as

(Q + 2DIN + 2(DH) 2 R - P0 1),1/2 DN + D 2 11R, 1/2 DN + D2 HR

Q' l/D+2H 2 -r
1/2 DN + D HR D R V 0 )(53)

2 2 -1l/2DN + DR , 0 , R - V-

is not negative definite. Only one root satisfies this condition.
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6.2 A Numrical ix mpl

'A simple example is presenred where th polynomial of (52) rcduces to

a quadratic. This case occurs when

+ (RV)-1/2 =- 4NHV (54)
2 2 -1N +411 RV

This condition is satisfied by choosing R = V = 11 1, N 2,

where one root of (52) is always D = -1. For 110 = 1, the resulting

quadratic is

5D2 - 2D - 1 - Q(D2 - D) (55)

For various values of R, the following table gives the gain that

satisfied all conditions except for R=3.

Q 0. 1. 2. 3.

D -.29 -.39 -.58 -1.

When Q > 3, there is no solution. This is a simple illustration of

the "uncertainty threshold principle".

Consider now a more complex example where R = 1 , Q = 2.6 , Po 1.5.

In Figure 1 a log J versus R plot for V = .75 is presented * showing

the relative performance of the control law with perfect information (V=0),

*The calculations for this problem were obtained by Fredrick Machell.



the control law with central i:-vd inlormation (zI and z 2 are available

at eacah 11ode) , a Id lI e decc cntral .cd cont rol I, v whose ga ins arv det':rcriinc-d

I row (52) and (53). in vach case the curves rise as R increases and

escape for positive value.; of .R. However, an interesting pathelogical

development occurs wliven V is allowed to increase, say V = .95, as Shown

in Figure 2. For the decentralized control law the value of the cost criterion

escapes for negatives values of R as well as positive values. Both the perfect

information and centralized control laws still exhibit the same behavior as

shown in Figuire 1.

7. I)iscussi on and Conclusi on

Linear control laws for decentralized control has been presented which

allows the cost criterion by being exponential to be in a nultiplicative

form. The sufficiency theorem of Radner is applicable to this cost criterion

if the class of adi. issible control laws are restricted to be affine and to

the positive exponential cost criterion. Otherwise, over the class of non-linear

control laws or for the negative exponential cost criterion, the linear control

law may only satisfy the necessary condition of stationarity. The exponential

form can be motivated as a reasonable model for probabilistic costs. In

practice many probability and density functions can be approximated by this

functional form. An alternative viewpoint might be to consider the exponential

as a type of membership function for which fuzzy set theory [6,71 could be applied.

The extension of our static results to dynamic decentralized problems is a

logical step in the development of a complete control theory for the exponential

cost criterion. The application of dynamic programming to dynamic decentrali.ed

problems is, in general, beyond the capability of current theory. However, the

lincar-expunentlal--a-ssfan problem with one--stvp delayed information sharing
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pattern yields an impcjcintabJ.e dynamic controller for the terminal cost

problem (only the weighting on the terminal state is nqnzero). This development

parallels that for the LQG one-step delayed probler, [3). This extension

depends heavily on the reproduction of the exponential cost functional form

for the cost-to-go (the optimal return function) at each stage.

A
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