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A. DEFECT THERMOCHEMISTRY

Contract work in this area has focussed on two areas - the
mechanism of pulsed laser annealing and the proper analysis of deep
level transient spectroscopy (DLTS) spectra.

The pulsed laser annealing mechanism has been a controver-
sial subject. Although early workers, particularly in the U.S.S.R.,
felt it must be a nonthermal mechanism of some sbrt, the opinion,
originated by E. Rimini of Italy, that it was purely thermal involving
ordinary melting and very rapid recrystallization became widely ac-
cented in the U.S.A. and most other Western countries. Together
with collaborators in the Netherlands, we showed that most experimen-
tal data regarding the pulsed annealing, particularly acoustic,
optical reflectivity, impurity redistribution, and surface strain
data could not reasonably be attributed to a strictly thermal process
with severe temperature gradients and transients (Appendix A, B, C).
We developed the alternative theory that annealing was occuring in
the presence of a dense electron-hole plasma produced by the laser
and persisting as long 800°ns. (Appendix B, C, D) with lattice temp-
erature no higher than 300 C. We treated the kinetics of defect
motion and removal under such conditions, the diffusion of the plasma
and reasons that it would persist so much longer than had previously
been believed (Appendix C, D, E, F, G, H). striking confirmation
of our plasma-induced annealing theory has now been obtained by
H. W. Lo and A. Compaan, Phys. Rev. Lett 44, 1604 (1980) and to
be presented at the September Conferences in Japan. With time-
resolved Raman measurement of surfage lattice temperature, they
confirmed that it was less than 300 °C during pulsed laser anneal-
ing condition, at least up to 40Ons after the end of theoannealing
pulse, while the carrier temperature remained over 2000°C.

In the DLTS analysis, we sought to understand why the reported
defect concentrations were less than predicted by theory, observed
by transmission electron microscopy and thought to be required in
order to explain carrier lifetimes and the degradation of electro-
optic devices. The conventional DLTS analysis assumes that the
experiment succeeds in trapping only electrons or holes at the
defect sites and then measures only the detrapping of those car-
riers singley when the material is driven into depletion. We
showed (Appendix I) that, in addition to this contribution to
the DLTS signal, there are also contributions from recombination,
reorientation, and internal reconfiguration of multiple carriers
at defects that are composed of two or more point defects. How-
ever, these multiple contributions are much weaker for each event
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than simple detrapping. Thus, the number of such defects contribu-
ting to a given experimental spectrum would be much larger than the
conventional analysis implies. We also show that in several cases
it is likely the present experimental design would not succeeed

in screening out such multiple carrier effects. We suggest exper-
imental tests of this hypothesis; seme data in support of it has
already been obtained.

B. ELECTRONIC STRUCTURE

The major accomplishment in the area of electronic structure
is the self-consistent calculation of the reconstructed vacancy in
Si. After completing our work on the unrelaxed vacancy, described
in detail in Appendices J and K, we extended the method and calcu-
lated the electronic structure which has undergone a Jahn-Teller
distortion as determined by experiments. The results of the cal-
culation are described in Appendix L. In independent work, we
further extended the method to treat chemical impurities. As part
of this contract, comparisons were drawn between the results of the
vacancy and the impurities and understanding of both was furthered.
(Appendix M.)

Another issue that was addressed is the nature of final stages
in the process of ionizing deep defects and impurities. The im-
portance of localized final states was stressed and available ex-
perimental data were analyzed. The details are given in Appendix
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REASONS TO BELIEVE PULSED LASER ANNEALING OF Si
DOES NOT INVOLVE SIMPLE THERMAL MELTING

J.A. Van VECHTEN ! and R. TSU

IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, US4

and

F.W. SARIS and D. HOONHOUT

FOM Instituut voor Atoom- en Molecuulfysica, Amsterdam, The Netheriands

Received 3 September 1979

Many recent publications dealing with Si pulsed laser annealing have assumed that the transformation is strictly thermal
melting—recrystallization. We recount obsefvations indicating the material was not subjected to thermal melting.

In many of the recent publications dealing with the
annealing of amorphous Si by pulsed (30 ps to 150 ns)
lasers operating in the 1.06 to 0.26 um wavelength re-
gion, it has been claimed that the annealing transfor-
mation occurs by a strictly thermal melting and recrys-
tallization mechanism. It has been assumed: (a) that
the energy of the incident photons is converted into
heat in the lattice in a layer of depth given by the pho-
ton absorption length, and in a time small compared
to the duration of the pulse; (b) that, to obtain a good
anneal, it is necessary to melt through the amorphous
layer to the single crystal Si substrate; and (c) that the
recrystallization process, which occurs as the material
cools, is liquid phase epitaxial growth [1-4].

However, in a recent review of the subject (5],
Khaibullin, who is credited with the discovery of
pulsed laser annealing, concluded *“The mechanism of
laser annealing is not yet finally established. But even
now one can state that in the case of the nanosecond
regimes one cannot reduce it to the ordinary thermal
effect. Different factors such as photoionization, im-
pact wave, powerful light fields etc. play a significant
role”. Two particularly convincing reasons were given
for dismissing the melting hypothesis. First, crystal-

! Supported in pert by the Air Force Offlce of Scientific Re-
search under Contract No. F49620-79-C-0077.

line order at the surface was observed by diffraction
techniques to occur within 20 to 30 ns of the begin-
ning of a 15 to 20 ns annealing puise. If melting had
occurred, then by all estimates the molten phase would
have required several times this interval to recrystal-
lize. Second, as the molten phase has a reflectivity at
normal incidence that varies between 72 and 74%
through the visible wavelengths whereas amorphous
and crystalline Si have significantly lower reflectivities
at all temperatures, an abrupt increase in the amount
of radiation reflected back should have been observed
as soon as the sample surface had meited about one
skin depth deep (about 8 nm), but this was repeatedly
observed not to occur in cases where full annealing
was observed. The second observation has also been
made in experiments in Japan [6] and in our labora-
tory (7].

The simple thermal melting model is also inconsist-
ent with at least five other observations.

(1) Let us continue on the subject of the reflectivi-
ty of the sample surface during the annealing event.
In several laboratories a significant increase in the re-
flectivity of the surface has been observed [6—10] at
wave lengths ranging from 1.06 um to 533 nm. but
not at 266 nm, for normal incidence and for both
§7.5° and 45° off normal incidence. Let us consider
how well the observations of this reflectivity increase

417
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fit the hypothesis that it is the result of the presence
of a layer of ordinary molten Si at the surface of the
sample. The complex index of refraction of molten Si
has been measured by Shvarevetal. [11] *! at 1.0,
0.7 and 0.4 um from 57.5° off normal incidence.
Auston et al. (8] reported the time resolved reflec-
tivity at A = 0.63 um, 57.5° from the surface normal
for both parallel and perpendicular polarization, R,
and R, . during laser annealing at 1.06 um with 50 ns
pulses. The observed values for the Ry and R, during
the high reflectivity phase of the annealing process
were R (0.63 um) =47% and R, (0.63 um) = 82%,
respectively. The values for molten Siare R (0.7 um)
= 57%, Ry (0.4 um) = 56% and R, (0.7 um) = 85%,
R, (0.4 um) = 84%. One might imagine several effects,
including the presence of a vapor over the surface
or ripples on the surface or a temperature depend-
ence of the reflectivity, which might cause the reflec-
tance measured during pulsed laser annealing to differ
from that normalily measured from molten Si. How-
ever, most of these would affect both R, and R,
whereas we see that the discrepancy in the former is
only 2% while that of the latter is 20%. If the temper-
ature of the surface were affecting the measurement,
then at the end, just before recrystallization, the re-
flectivity should have risen to the normal value for
molten Si at the meiting point.

When one considers the time dependence of the
reflectivity, two qualitative discrepancies between the
data and the thermal melting hypothesis are evident.
At the beginning of the high reflectivity phase, both
Auston et al. [8] and Hodgson et al. [7] observed that
the reflectivity increase occurred near the peaks of
their pulses at the lowest power for which it was ob-
served. (The rise was quite abrupt and moved out of the
leading edge of the pulse as the net pulse energy was
increased.) If the reflectivity incr-ase were due to the
presence of a moiten layer, or due to any process that
simply involved heating the surface layer to a high
temperature, then this increase would have occurred
well down the trailing edge of the pulse at the lowest
total energies. This is obvious if one considers the
case of a square wave pulse for which the maximal
temperature must always occur at the end of the

*} (1. e.g. Stratton [12] for the relation between complex
index of refraction and reflectivity of 2 metallic surface off
normal incidence.
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pulse. One can easily prove that the maximal tempera-
ture can never occur at the peak or leading edge for
any shaped pulse. The exact time of the maximal sur-
face temperature depends on pulse duration, thermal
diffusivity (which is generally T dependent), pulse
shape, and extinction coefficient of the laser light. In
general. the shorter the pulse duration, the squarer the
pulse shape, or the lower the thermal diffusivity. the
farther out of the trailing edge the maximal temperature
occurs. This is because less of the integrated absorbed
laser power diffuses away. Using the diffusivity of
heat in Si measured under furnace conditions, one
finds *? that for the conditions of Auston etal.’s
experiment [8.9] the onset of melting for a minimum
energy pulse that melts one skin depth deep would
occur 30 to 40 ns after the peak of their 25 ns HWHM
gaussian pulse rather than within experimental error
(less than 5 ns) of the peak. One may force the onset
of the reflectivity rise to agree with experiment by
adjusting the assumed value of the diffusivity of what-
ever it is that causes the reflectivity to rise at a critical
density. In order to bring the calculated position of
the reflectivity rise into agreement with experiment.
one must assume the diffusivity is at least two orders
of magnitude larger, e.g. 18 cm?/s, the ambipolar dif-
fusivity of a plasma in Si at room temperature [13],
instead of 0.117 ¢m¥’s, the thermal diffusivity at the
melting point [14,15]).

When the reflectivity decreases back to values ap-
propriate to normal single crystal Si. this should. ac-
cording to the melting hypothesis, occur in a time
less than 5 ns. (The skin depth is less than 10 nm and
estimates of the recrystallization rate range [1-3]
from 2.5 m/s to 4.5 m/s and even higher.) However.
the observation, for example fig. | of the reports by
Auston et al. [8.9] is that the duration of this transi-
tion is about 100 ns. Although Auston et al. [8] were
sampling a spot centered in their annealed region and
containing less than 1% its area, one might suggest
that inhomogeneity in the laser beam caused the ma-
terial to melt much deeper in some places than in
others and that this might explain the slow decay of
the reflectance. Such an effect would have produced a

*2 We are grateful to G.J. Lasher for providing the computer
simulation code used to establish this point. A similar con-
clusion for somewhat different laser annealing conditions
is drawn trom fig. 3 of Baerietal {2].
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rough surface with uneven dopant concentration both
laterally and vertically. Good quality material does
not show this [16].

2) Consider now the mechanical forces that must
act on the surface layer if it were to meit. Suppose
that an amorphous layer 100 nm thick were to be
heated to the melting point, 1400°C. in 10 ns. The
outward acceleration due to thermal expansion [17]
(a=4X 1076/°C) would be 5.6 X 108 cm/s2 =6
X 103 G. If this layer were to melt in the next 10 ns,
then, due to the 1 5% contraction upon meiting *3,
there must be a snap-back force and an acceleration
back towards the substrate if the molten layer is not
to fly off. If this contraction were three-dimensional
(as seems to us most likely) then that acceleration
would be 5 X 106 G, but this would require that the
surface breakup into an array of small molten drops,
which would seem inconsistent with the surface mor-
phology flat to within 5 nm found by various authors
after annealing. If, in order to account for this mor-
phology, we assume the contraction to be one dimen-
sional, then the snap-back acceleration must be 1.5
X 107 G. The only source of such a snap-back force
that we can imagine is the surface tension of the
molten phase, but the surface tension acts only in the
plane of the surface. Surface tension can only hold
the liquid in contact with the substrate in places
where the liquid is “balled up™ so that the surface is
substantially normal to the substrate and extends
down to it. But this would not produce the very flat
annealed region that is observed.

(3) Von Gutfeld and Tsu [21] have measured the
thermoelastic waves produced by the incident laser
beam on the free surface of the Si during the pulsed
laser annealing event as a function of incident energy.
These waves were detected by a 20 MHz + 25% con-
tact transducer attached to the opposite face of the
Si wafer. The elastic signal is observed to rise smooth-
ly with increasing incident energy density. There is no
discontinuity at the threshold for single shot annealing
nor in the range in which good quality material is ob-
tained. There is a sharp discontinuity at higher powers

*3 van Vechten |18, especially p. 1491] deduced this value
from the Clapeyron equation, the entropy of fusion of
Hultgren et al. [19) and the phase diagram of Bundy (20].
A value of 107, based on an old volumetric measurement,
is sometimes quoted, but we regard this value as less relia-
ble due to experimental difficuities with moiten Si.
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for which surface damage and evidence of Si evapora-
tion are observed. This discontinuity is not unlike that
observed by McCelland and Kniseley [22] at the point
where Ge was melted with a choppeZ CW laser. These
observations of von Gutfeld and Tsu are consistent
with crystallization without thermal melting and the
concomitant volume contraction. Further experiments
are in progress to calibrate and elaborate this thermo-
elastic technique.

(4) Baeri et al. {23] have irradiated Cu-implanted
Si crystals with Q-switched ruby laser single pulses.
After irradiation at an energy density in excess of |
J/em?2, Cu was found to accumulate at the surface.
Baeri et al. argue that accumulation of Cu atoms is a
consequence of surface layer melting and resolidifica-
tion, the redistribution being related to the low value
(4 X 10~%) of the segregation coefficient of Cu. Simi-
lar arguments were put forward by Cullis et al. [24],
who observed redistribution of Ga and by White et al.
[25], for Cu and Fe. However, in the last case Fe was
found to segregate to the surface less than Cu although
the redistribution coetficient of Fe is smaller.

Hoonhout and Saris [26] have made a systematic
investigation of this effect for eight common dopants
in Si with redistribution coefficients ranging from 0.33
to 10~8. Their results show that. under implantation
and pulsed laser annealing conditions similar to those
of Baeri et al. {23], there is no correlation between the
observation of dopant redistribution and the normal
thermal redistribution coefficient. Bi, which has a
redistribution coefficient ko = 7 X 10~4 simlar to
that of Cu, does not segregate as much as Cu. Se and
Te (kg = 10~8 and 8 X 108, respectively) are ob-
served to segregate even less. Assuming that impurities
are frozen in because the liquid—solid interface moves
to the surface faster than the impurities. one wouid
still predict those impurities which have the lowest
redistribution coefficient to segregate most. Yet this
is not observed, whereas liquid-phase diffusivities for
these impurities do not vary by more than one order
of magnitude. Hence. surface segregation cannot be
used as evidence for the thermal melting model.

(5) The fact that the *‘Heating 5" computer simula-
tion code [1] of Oak Ridge National Laboratory gives
a reasonable fit to the redistribution data for a number
of cases actually militates against the melting hypoth-
esis because this code neglects five large effects which
would greatly increase the calculated redistribution if

419
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included. (Actually, for the specific case presented in
ref. [1], Heating S has already overestimated the redis-
tribution. It was calculated that the doped layer
would remain molten for 250 ns, whereas the distribu-
tion data was fit by assuming it was molten for only
180 ns.) The five effects neglected by Heating 5 are

as follows: (1) As shown by van Gurp et al. [27], the
molten layer should become turbulent in times short
compared with the calculated persistence of the mol-
ten phase. The Heating 5 calculation assumed there
was no turbulence. Turbulence will greatly increase
the redistribution of elements within the molten layer
and aiso produce lateral inhomogeneities. (2) The im-
purity diffusivity, DY), is assumed constant and equal
to that measured at the melting point of pure Si, T'F,
although the calculation shows the temperature of the
liquid going 1400 K above TF. It is known that liquid
state diffusivities are temperature dependent [28] and
usually well described by an activation energy.

AH (D, of order 0.5 eV. Therefore, an order of mag-
nitude increase in the effective DI(I) should have been
assumed. (3) In fact the initial material is not single
crystal but is amorphous and thus possesses an excess
heat of recrystallization AHR(Si) which has been esti-
mated by Turnbulil [29] to be

1/3 AHF(Si) = AHR(S) >0.5(TF - 300K)C,,

where AHF and T'F are the heat and temperature of
fusion and Cj, is the specific heat. This effect lowers
the energy required to melt the damaged layer by an
amount about half as large as that required to raise
the temperature of an equivalent mass of pure single
crystal Si to its melting point. The material should
melt sooner and deeper than calculated. (4) The sup-
pression of TF due to the impurity [ was neglected.
The magnitude of the suppression of the equilibrium
freezing point TF (Si. I, X) for an impurity concentra-
tion, X, can be found in the literature [30] up to the
normal (equilibrium) saturation value Y. Most values,
e.g. for I = As, are

TF(Si) - TF(Si, I X,) = 200K.

However, much of the empirical data being fit are for
concentrations grossly in excess of normal saturation,
X » X,. For example in the case of [ =B, X = 104X,
is reported. In this circumstance TESH - TFSL L
X,) is certainly very large and would require a detailed
knowledge of the kinetics of the particular reaction to
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determine. The material would melt sooner and stay
molten longer than Heating S would calculate. (5) The
degree of supercooling required to make the material
recrystallize at the very large rate (about 200 cm:s)
assumed is very large. In view of the considerations
just mentioned, no rigorous estimate of this effect can
be made. However, one couid note that float zone or
Czochralski Si is normally grown at about 3 mm/min
=5 X 1073 cmy/s with about 0.5 K of supercool-

ing [31].

In conclusion. although we do not doubt that it is
possible to melt Si with a laser pulse, we claim that
those annealed samples having the remarkably high
crystallographic and morphological quality are proba-
bly obtained by pulsed laser annealing via a nonther-
mal process in which thermal gradients are mild at
least at the time that rapid atomic motion ceases. We
believe that a realistic description of pulsed laser an-
nealing must take account of the dense plasma pro-
duced by the absorption of the light. This will be dis-
cussed in the accompanying paper [32].
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Appendix B

IMPORTANCE OF THE PLASMA TO PULSED LASER ANNEALING (%)

J. A. Van Vechten

IBM Thomas J. Watson Research Center, lorktowm Heights, Jew York 10538, U.Z.A.

Abstract.- In the presence of a dense (> 10°'/cm?) electron-hole plasma which may
be produced by the intense irradiation during pulsed laser annealing, the covalent
bonding of tetrahedral semiconductors like Si will be severely weakened because a
significant fraction of the bond charge has been excited across the gap into anti=-
bonding or plane wave states, The crystal structure may even become unstable and ?
undergo a phase transition if the bond charge is reduced beyond a critical point ﬂﬁ
where the transverse acoustic modes g0 to zero frequency. This transition has o
previously been estimated from the temperature dependence of the gap to occur at a i
density of 8x102!'/cm® for a lattice temperature of 0 X and at lower densities for i
higher lattice temperatures. In this state the material would not be able to support

a shear and so should be called a ligquid, but it would be very distinct from molten r.
Si. The energy from the laser would be concentrated in the electronic excitation and - 5
not in kinetic energy of the atoms, as in the thermal case. Recrystallization cculd 3
occur without the destructive effects of severe thermal gradients when the material R
passes back through this phase transition to the covalently bonded phase. However, {
recrystallization of ion-implanted material should also be possible without passing |
through this phase transition if the atoms are reordered by the optically induced
gliding of dislocations out of the damaged zone, as has been observed in crystalline
semiconductors. Point defects should be removed from amorphous or damaged material
at a rate much greater than normal furnace annealing due to five separate effects. :
First, they may be eliminated by recryvstallization following the phase transition. {
Second, they may experience recombination enhanced diffusion within the covalent

phase. Third, the coulombic trapping by charged impurities, which normally reduces E
the net rate of vacancy (or interstitial) migration drastically, will be suppressed

by the flux of free carriers in the dense plasma. Fourth, point defects may be swep=

out of the material as the large concentration of dislocations, which are ideal 1
sinks, glide out. Fifth, the energy of formation of fast diffusing interstitial
species can be greatly reduced by the dense plasma. It is claimed that these effects
are required to account for the very high crystallographic, morphological and
electrical quality of Si produced by pulsed laser annealing.

In his 1977 review of the subject of theories for Laser damage /4-7/ indicate
pulsed laser annealing I. B. Khaibullin that the material should be heavily damaged,
concluded /1/, "The mechanism of laser annea- not annealed, if all the energy of the laser
ling is not yet finally established. But pulse were converted to local heating of the
even now one can state that in the case of material in times of order the duration of

the nanosecond regimes one cannot reduce it the pulse. Simple analysis /8/ of the

to the ordinary thermal effect. Different mechanical forces that would be generated
factors such as photoionization, impact wave, by thermal expansion and by contraction upon

powerful 1ight fields etc. play a significant melting in times of order the duration of

role." Kachurin, et al., /2,3/ also showed these laser pulses show that a molten layer 4
evidence that pulsed laser annealing is a could not remain in contact with the subs~ \j
nonthermal proceoss. trate unless it balled-up to an extent

In addition to the convincing arguments completely inconsistent with the very flat ‘
that pulsed laser annealing could not be a surface morphology that is obtained. '
simple thermal effect and could not be sinple Thermoelastic measurements /9/ made during
thermal melting followed by rapid crystalli- pulsed laser annealing of Si show no eviden- )
zation and quench which are given in those ce for the snap=-back force that would have
papers, several more observations and argu- to occur if the surface melted and contrac-
ments lead to the same conclusion. There is, ted until one increases the laser energy
of course, the fact that long standing above the damage threshold. Indeed, it has

x been shown that thermal expansion forces in
Supported in part by Air Force Office of

Scientific Research under Contract No. Si subjected to either 1 .s or 100 .s
F49620-79-C=~-0077, |
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pulses /10,11/ will fracture the material

without raising its temperature to the mel-
ting point.
that annealing may occur without any signi-

In addition to the observation

ficant increase in surface reflectivity

/1, 12-14/ it has been noted /8/ that when a
rise in surface reflectivity is observed
/15-17/ it rises and falls in a manner ex-
pected for a dense electron~hole plasma and
not that expected for molten Si. (Indeed,
the traditional explanation for the abrupt
rise in reflectivity of Si mirrors used for
Q-switching lasers has been the formation of
a sufficiently dense electron-hole plasma
/18/). Moreover, there is no close agreement
/8,13,14,16,19/ between the measured reflec-
tivity during the high reflectivity period
and the known reflectivity of molten Si /20/4
There is close agreement between the reflec-
tivity of molten Si and that measured when
one increases the laser energy well above
the threshold for damage to the wafer /l4/.
Furthermore, the redistribution of dopants
has been shown /8,21,22/ to be inconsistent
with the hypothesis of crystallization from
normal molten Si.

It may also be noted that Matthews and
Ashby observed /23/ nonthermal annealing of
ion implanted amorphous Si by the electron
beam of their electron microscope in 1972.
The author believes the physical processes
involved in electron beam annealing are
essentially the same as those in laser
annealing.

It is the author's opinion that it is
the photoionization, the dense electron-hole
plasma created by the intense laser pulse,
which principally accounts for the remarka-
ble properties of pulsed laser annealing and
that the process is indeed nonthermal in the
sense that the thermal transients that do
occur are neither helpful to the annealing
nor particularly severe. Let us call this
the "Plasma Annealing", PA, theory and
process.

By far the most difficult aspect of the PA
theory of pulsed laser annealing is the
question why the plasma remains dense for
such a long time and transfers its energy to
it seems

the increased

the lattice so slowly. However,
that the observations that
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surface reflectivity, which has the proper-
ties of a dense plasma and not chose cf a
molten layer, may persist /16,17/ as long

as 800 ns demonstrate the point experimen-
tally. Explanations for this long lifetime
and slow transfer are given in deta:il
elsewhere /24-27/. These explanaticns invol-
ve: a) the decoupling cf the lattice from
the plasmons of the excited carriers when
ﬁwp beccmes much larger than all phonen
modes /25/
exceeds 10*%/cm?); b) the screening of the

(when the excited carrier density

deformation potential coupling between hct
carriers and rhonons ,26/; c) an argument
that under normal conditions the coupling
of the

plasmons is more important than that via

lattice to the carriers via the

the deformation potential, particularly Ior
intervalley scattering with the emission
of longitudinal phonons /24/; and d: a
calculation showing that in Si the only
optic phonons coupling to plasmons have
(100) wave vectors so that plasmons with
wave vectors in other directicns will be
long lived when fuw _ is much larger than
acoustic branch energies /27/.

However, let us note that even if there
were no slowing of the energy transfer from
hot carriers to the lattice, even iI che

phonon emission time were 1x10 '?

s, cne
would not melt a typical 100 nm thick
damaged layer back to the substrate at the
observed threshold for annealing. The ener-
gy required to heat crystalline Si from
room temperature to the melting point and
to melt it is 7.3x10' J/cm®, Due to the
heat of recrystallization (which has rnot
yet been determined experimentally for Si),
the energy required to heat and melt amor-
phous Si is somewhat, perhaps a third, less.
Therefore, the energy required to melt a

100 nm layer of ion implanted Si be abcut
0.05 J/cm® if there were no diffusicn of
energy to the substrate. As the normal
incidence reflectivity rises from about 35 &%
at the beginning of the pulse to about 60 %
during the observed high reflectivity
period, the energy absorbed is abcut half
that incident., Thus the incident energy
density threshold required to melt a 100 om

layer with no diffusion would be about

b
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0.10 J/cm® for an amorphous ion implanted
surface. The observed incident energy
threshold for single shot complete annealing
of a 100 nm amorphous layer with either 30 ns
or 30 ps pulses is about 0.5 J/cm? for 533 nm
light /19,28/ which is absorbed in the same
100 nm or about 0.25 J/cm® for 266 nm light
which is absorbed in the first 8 nm, The
energy of a 533 nm photon exceeds the energy
gap of Si by more than 1l eV; this energy
would appear as kinetic energy of the carriers
excited across the gap. Free carrier absorp-
tion would leave the carrier with more than
2.3 eV of kinetic energy. Auger recombination
would add 1.1. eV to the kinetic energy of
the third carrier in the process. Even if a
phonon emission time of 1x10™'’s is assumed,
these carriers would still diffuse more than
200 nm before giving up 1 eV to the lattice.
This alone would double or triple the energy
required to melt 100 nm with 533 or 266 nm
light. The thermal diffusivity of Si under
(in the dark)
varies from 0.86 cm?/s at room temperature

to 0.117 cm?/s at the melting point /29,30/.
If we take D = 0.117 and T = 30 ns, a typi-

normal furnace conditions

cal laser pulse duration, and if we make a
rough estimate of the extent of thermal
diffusion, we find (01)* = 600 nm or six
times depth of the layer to be annealed.
(For a more detailed account of these two
effects see the recent study of E. J. Yoffa
/31/) In fact the diffusion of the heat that
has been delivered to the lattice will be
substantially greater than this estimate
because the laser pulse produces a carrier
concentration which, by all estimates, is
much larger than the thermal intrinsic value
{2¥10'%/cm? at the melting point and less at
lower temperatures).and because 40 % of the
thermal diffusivity at the melting point is
due to the intrinsic free carriers /30/. If
we make the conservative estimate /26/ that
the carrier concentration during the laser
pulse is 2x102°/cm?, then the diffusivity at
the melting point would be 0.54 cm?/s and
(0T)* = 1.3 um. Combining this consideration
with that of the diffusion of the carriers
evenwitha1x10"!’ s phonon emission time, we
conclude that the incident energy would have
to exceed 1 J/cm? to melt a 100 nm amorphous

layer with either 533 or 266 nm light. Thus 4
the damaged layer will not be melted back
to the substrate at the observed incident
energy density thresholds of 0.25 J/cm® for
266 nm or 0.5 J/cm? for 533 nm light. (Some 1
published computer simulations /19,32-34/ ’
of the heating of the material during pulsed :
laser annealing have concluded that the

annealing threshold is the level at which
melting does extend to the damage interface.
These neglect the effects of carrier diffu-

sion as phonons are being emitted and the

%%
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enhancement of thermal diffusivity due to

v e w s

a large number of excited electrons and

the excess carrier concentration produced ‘ﬁ
by the intense laser light). ﬁf
Now let us outline the PA hypothesis. h;

Two central ideas are that the presence of >
| 1

f

3

holes produced as the laser light is absor-
med will: 1) weaken the covalent bonding,
particularly the bond bending forces, and
render the material much more plastic than r

proow 3. Y

normal; and 2) detrap point defect clusters L
which are normally bound coulombically so -
that the defects will be much more mobile.

In the presence cf a dense (>10%'/cm’)

electron-hole plasma which may be produced

py the intense irradiation during pulsed [
laser annealing, the covalent bonding of
tetrahedral semiconductors like Si will be
severely weakened because a significant
fraction of the bond charge has been exci=- i
ted across the gap into antibonding or

plane wave states. The crystal structure
may even become unstable and undergo a
phase transition if the bond charge is
reduced beyond a critical point which would

|
|
depend on lattice temperature, TL. If ﬁ
TL = 0 K, this transition would be second l:
order and should occur where the transverse !
acoustic modes go to zero £requency. This u

transition has previously been estimated
/35/ from the temperatdte dependence of the
gap to occur at a density of 8x10%!/cm’.

At finite TL the transition should be )
weakly first order because the atomic mo- H
tion will increase as the bond bending
forces are weakend until the structure
becomes unstable. In this state the mate-
rial would not be able to support a shear
and so should be called a liquid, but it
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would be very distinct from molten Si. The
energy from the laser would be concentrated
in the electronic excitation and not in ki-
netic energy of the atoms, as in the thermal
case. Recrystallization could occur without
the destructive effects of severe thermal
gradients when the material passes back
through this phase transition to the covalen-
tly bonded phase. It would be necessary that
the plasma density fall sufficiently slowly
that cne bonding forces remain weak for a
sufficient time so that the atoms could
regain long range order in the normal tetra-
hedral phase. If the density were to fall
too rapidly, one should expect the resultant
material to be amorphous and tetrahedrally
bonded, (A completely reversible crystalline
to tetrahedrally bonded amorphous transition
has been observed /36,37/ to occur under
certain laser irradiation conditions. The
author feels the transition from the dense
plasma phase is a much more likely cause of
this amorphous material than is the normal
molten phase. Reasons for this belief are
that molten Si is more than fourfold coordi-~
nated and 15 % more dense than crystalline
si, that glasses quenched from a melt retain
the structure of the melt, that no one has
succeeded in making amorphous Si by splat-
cooling, and that rapid quenching from a
high temperature would be expected to damage
the material). However, recrystallization of
ion-implanted material should also be possi-
ble without passing through this phase tran-
sition if the atoms are reordered by the
optically induced gliding of dislocations out
of the damaged zone, as has been observed in
crystalline semiconductors /38/. Monemar, et
al., /38/ proved that when this process
occurred in GaAlAs double heterostructures,
it was nonthermal. Porter, et al., /39,40/
observed laser annealing of heavily disloca-
ted Si and showed that the effect could not
be the result of epitaxial regrowth from any
phase because there was no epitaxial relation
between the annealed material and the Si on
any of its five sides. (The annealed matedal
was free of dislocations and completely
surrounded be heavily dislocated material.
By definition, epitaxial growth on a dislo-

This observation could only be explained by
rapid glide or climb of the dislocations
during the annealing event. The observations
by Narayan /41/ of the removal of disloca-
tion loops and P precipitates from Si during
pulsed laser annealing have to be explained
in the same way because epitaxial regrcwth
would have produced material that was not
single crystal above the precipitates and
dislocations that remained in the phase
boundary. Point defects should be removed
from amorphous or damaged material at a rate
much greater than normal furnace annealing
due to five separate effects., First, they
may be eliminated by recrystallization
following the phase transition. Second, they
may experience recombination enhanced diffu-
sion within the covalent phase /42/. Third,
the coulombic trapping by charged impurities,
which normally reduces the net rate of va=-
cancy (or interstitial) migration drastical-
ly /43/, will be suppressed by the flux of
free carriers in the dense plasma. Fourth,
point defects may be swept out of the mate=-
rial as the large concentration of disloca-
tions, which are ideal sinks, glide out.
Fifth, the energy of formation of fast
diffusing interstitial species 44/ can be
greatly reduced by the dense plasma.

We must now elaborate upon the third
point. There must be at least some moderate
lattice heating of the sample during pulsed
laser annealing. Therefore, let us make
calculation easy by assuming kTL = 0.05 av,
TL = 307 C, where TL is, again, the lat%tice
temperature - as distinguished from the
temperature of the plasma, Ty which would
be much greater. It would be very difficult
to attain an accurate phonon spectrum for
the material during pulsed laser annealing,
but we may assume that the lattice attempt
frequency, v, 1s given by

hv = kT (1)

LI

which implies that
v=l1l.,2 <108 (2}

We also do not know empirical values for

the enthalpies of migration of vacancies
in amorphous Si, so we approximate them

cated surface produces dislocated overgrowth), with values determined for crystalline Si.
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Thus, we use Watkins's measured /45/ values
for the activation energy for single
vacancy migration for the neutral, Vx, and
double acceptor, V ®, ionization states,
which were noted before,

AHm(V-z) = 0.18 eV, (3)
and

AHm(Vx) = 0.33 ev, (4)

and the standard expression for vacancy
diffusivity in the diamond lattice

D(Tp) = 0.0625 a* v exp(ASm/k)

exp(-AHm/kTL), ()

where a is the lattice constant of Si, a =
0.543 nm, and the factor 0.0625 results

from a combination of geometrical and corre-
lation of hoping direction considerations.
AS is the entropy of vacancy migration.
This has been estimated from purely gjeome=
trical grounds by Swalin /46/. That estimate
has been checked against accurate data by
van Vechten and Thurmend /43/. It is

as; = 4.1 k (6)

The result is

D(VT?, T=307 C) = 3.7 x 107! cmi/s, (7)
and

D(V®, T=307 C) = 1.8 x 10°"* cm?/s, (8)

Therefore, if the isolated vacancies migrate
without trapping for t = 200 ns., there
d = [DT]“® will be

d(v™3, 307 ¢, 200 ns.) = 270 nm, (9)
and
da(v*, 307 ¢, 200 ns.) = 60 nm. (10)

If the depth of damage is 50 to 100 nm, the
vacancies would have roughly sufficient time
to migrate all the way to the free surface.
Note that a) as the V 2's migrate out, more
v¥'s are ionized to maintain the electronic
equilibecium; and b) the vacancies need not
migrate all the way to the free surface -~
they can, and apparently do, /47/ collect

in voids, which may take longer, and more
energy, to remove., Note that we have assumed
that the untrapped migration of the vacarcies
occurs only as long as the high reflectivity
was observed /10/ at 630 nm at the annealing

C419

threshold, which corresponds to an electron
density of order 102! em™’. It might well
be that it actually persists significantly
longer.

Next, there is the question of the
diffusivity of the impurities. Because we
are assuming there is no effective b.nding
between the vacancies and impuritigs, we
should expect, at least in first approxi=-
mation, that

D(D) = vl p(v™ ) + WDy an

/

WX ov®) + v pivth
i.e., that the diffusivity of atoms that
migrate by vacancy motion is just the vacan-
cy diffusivity times the probability of
exchange with a vacancy, which in this case
is taken to be just the atom fraction of
vacancies. As the initial vacancy concen-
tration, the excess volume is several
percent /48/ the impurity diffusivity, D(I),
will be several percent of the vacancy
diffusivities just calculated until the
excess volume is expelled. Therefore, we
should estimate

D(I, 307 C) =2 = 10°“ cm’/s (12)

as long as the vacancies are at this high
concentration. Wang, et al., 21/ who report
some of the largest impurity redistributions
measured, fir their data by assuming

D(I) = 2.4 x 107" em®/s for 180 ns.

We now address the problem of surface
segregation of ion implanted impurities.
Impurity segregation will occur across any
phase boundary where the free energy of the
impurity is less on one side than on the
other. The magnitude of this effect will
depend upon this driving force, the diifu-
sivity of the impurity and the time avai-
lable for diffusion. If the material were
melting, one would expect impurities with
similar molten phase diffusivities to be
segregated in proportion to their normal
molten-solid segregation coefficients.
(Note that with a diffusivity of 1¥10™* cm?
a period, t, of only 160 ns would give
(2Dt) Y2 = 100 nm, the entire thickness of
a typical damaged layer). This is not
obgerved /21,22/ Group VI impurities are
very little segregated by pulsed laser

o
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annealing even when they are very much
segregated by the normal melting transition.
The Group V impurity Bi is segregated less
than would be predicted from the melting
hypothesis. Cu, Zn, Fe and the Group III
elements Ga and In are substantially segre-
gated by pulsed laser annealing. If the
plasma remains dense long enough for the
vacancies and other host lattice defects to
diffuse out, then there are very few vacan-
cies available to diffuse impurities when
the plasma=normal phase boundary sweeps to
the surface. Group IV, V, and Vi impurities
reguire a vacancy (or other host lattice
defect) to diffuse and therefore should be
expected to segregate very little during
plasma annealing. Cu, Zn, and Fe normally
diffuse as interstitials without any host
lattice defect and therefore should remain
mobile as the plasma boundary sweeps to the
surface. Therefore, such impurities should

segregate providing there is a driving force..

The fact that these impurities are present
above the saturation limit of the normal Si
assures such a driving force. There is alsc
the observation that there is a strong cor-
relation between the valence of an impurity
and the energy (excess heat of mixing)
required to create it in a semiconductor
host. The most soluble interstitials have
valence 1 (Li, MNa, K, Cu, Ag, and Au):
elements with valence 2 are observed as
interstitials but with lower solubility

(Be, Mg, and 2n). In irradiated Si one finds
/45/ as many Group III interstitials as
there are Si{ vacancies that have been intro-
duced; the Si self interstitial has never
been observed and only the smallest Group IV
element, C, has been observed /49/, only in
irradiated Si. Group V interstitials have
never been observed /45/ in irradiated or
non-irradiated Si. A simple but quantitative
explanation /50,51/ of this observation has
been based on electronic structure and the
requirement to orthogonalize the wave func-
tions of the interstitial against those of
the host lattice. In the presence of a dense
electron-hole plasma the energy of formation
of a Group III interstitial should be redu-
ced by the ionization of both host and
impurity atoms that interstitial diffusion

could become significartin plasma prase.
This would then explain the ruch jreater
degree of segregation that is found with
Group III impurities than with Grcup V
impurities having similar molten phase
diffusivities and segregation coefficients.
tlow let us consider the diffusion of
the plasma itself. The dense plasma, wn:ich
is essentially a super heated electron -
hole drop, will expand into the substrate,
The ambipolar diffusivity of carriers 1in
51 at room temperature /52/ is 10 om°,s.
Under pulsed laser anrealing conditions
this diffusivity would probably be jreater
due to an elevated value of the effect.ve
carrier temperature, Te {which must be
distinguished from the effective lattice
temperature, TL) and due to increase in
phonon scattering time which we have argued
must occur in order to account for the
observed persistence of the plasma Zor
several hundred nanoseconds. Indeed an
increase in ambipolar diffusivity in Ge
subjected to picosecond laser irradiation
has been determined from direct observation
of carrier diffusion /53/. It was found to
be about three times the normal room tempe-
rature value. Yoffa's /26/ estimated
diffusivity of a homogenecus plasma subject
to irradiation typical of nancsecond laser
annealing in Si is between 100 and 500 cm'/s.
Because the carrier scattering time and
diffusivity is strongly dependent on plasma
density and temperature, the diffusivity
will vary with position and with time as
the plasma expands. An accurate description
of the process will have to consider the
effect of the moving boundary of the dense
plasma beyond which carriers will rapidly
loose their energy to the lattice. Boundary
effects will thus limit the effective olas-
ma diffusivity. However, for the  urpose
of making a crude estimate of the magnitude
of the plasma expansion, let us assume a
constant effective 3iffusivity

DP = 100 cm‘/s (13)

with these simplifing approximations, we
predict that the plasma expands into the
substrate a distance

d = OP- ¥ = 39 um nYy
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for a time 7 = 150 ns. This would be an ex-
pansion of a factor of order 390 from the
volume in which the 533 nm light was obser-
bed. When and where the plasma becomes
underdense, it will no longer be metastable
and will dump its energy into the lattice,
but this energy will be dumped intc a very
large volume. Whereas a typical E4 = 0,25 J/
cm® of absorbed energy (0.5 J/cm® incident)
would be sufficient to melt 0.15 um of
(crystalline) Si if there were no diffusion,
it cannot hear 39 .m more than 40° C,

Recall that it is hypothesized that
the single shot annealing threshold is
determined by the requirement that the plas-
ma be made sufficiently dense that it can
remain above critical density, "min’
although it is expanding rapidly, long
enough for the vacancies to migrate out, fme
nirically this time /16/ seems to be about
150 ns, which was consistent with our rough
estimate of the vacancy diffusion. Consider
now the density of the plasma that might be
produced by the initial laser pulse. In
figures 1 and 2 we plot the variation with
time of the surface energy density, E(%),
for laser pulses with a triangular pulse
shape (in time) with full widths, 2t = 30ns

and 30 ps respectively, a constant and
I T T T T i T T T LR
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Fig. t. Surface energy density as a function of
time for a triangular laser pulse having half
width T = 15 ng for a diffusivity of 100 :mzls

and for optical absorption depths of 9 nm, 100 nm,
and 10 um, This figure i3 jenerously supplied by
R. A, Ghez,

uniform energy Jdiffusivity of 100 cm?/s and
for optical absorption depths of & nm (for
266 nm light), 100 nm (for 533 nm light),
and 10 um (for 1.C6 um light). E(t) is plo-
ted in reduced units so that values may be

deduced for any value of the peak incident

intensity, IO. If the we take the ralue,

EQ = 0.25 C/cm?, of -he absorbed :0.5 J/:wm’
incident) energy per unit area as the one
shot annealing threshold 19,28/ fcr 533 am
jreen light, we would have a maximal energy
density of

E ax(0:25 J/em?, 30 ns, 333 nm) =

86 J/cm’ = 5.5 « 10°° ev/em’, (15)
I T T l N A
16010°7 '~ 0+100cmess -
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Fig. l. Surface energy 3ensity as 3 fuanction of

time for a trianguar laser pulse naving a nalf
width 7 = (5 ps for a 3iffus:vity of 120 =m° s
and for optical absorption depths of 3 nm, (GC nm,
and 10 .m. This figure :s jenerously supplied by
R. A. Ghez,

If we hypothesize that none of this energy
is transferred from the electronic system
to the lattice, but take account of the
expansion of the plasma during the pulse,
we have about 5x102°/cm’ excited electrons
and holes at the maximum, which occurs
shortly after the laser's peak, and about
1.2¥102%/cm’ after 150 ns. With the 30 ps
pulse, the maximum excited electron c-oncen-
tration would be about 1.7x10%%/cm’ for
0.25 J/cm’ and the same absorption and
diffusivity., However, after 150 ns, energy
and carrier density would be essentjally
the same as for the 30 ns pulse of the same
energy. Therefore, we conclude that for
this threshold pulse eneryy, the 30 ns
pulse would not drive the materiai throuch
the weakly first order phase transition,
but the 30 ps pulse would., It would %-ake
an estimated 3.6 S/cm’ to produce the
phase transition to the electrcnically in=
duced liquid state with a 30 ns laser pul=-
se. However, the 30 ns pulse would drive
the carrier concentration beyond 20 :imes
the intrinsic value at the melting point

and keep it more than 3 times that value
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for the 150 ns required for vacancy diffu-
sion. This level is well above that required
for optically induced dislocation glide /33/,
about 2x10'%/cm’, so that the material would
be rather plastic. If the effective diffusi-
vity were equal to the handbook value,

18 cm’’s, the carrier density would be higher
and the energy requirement lower by a factor
of 2.4, (It should be noted that most annea-
ling is done with incident absorbed energies
considerably higher than the 2.25 J/cm®
~hrashold so that one should axpect >f%en to
see the effects of the plasma £luid phase,
especirally at the "hot spots" of an inhomo-
geous laser beam).

Are these threshold concentrations
reasonably consistent with the properties
ascribed to them? Because it i3 claimed that
the increased surface reflectivicy results
¢rom che plasma and not from a molzen layer
hwp must exceed the eneryy of the probing
photcn for the observed peridd. For the
commonly used He-lNe laser the photon enersy
is8 1.97 eV, In the standard expression for

P

oy " "4ne’ / em* 2 16

it is not obvious what value of the carrier
effective mass, m°, or of the effective
dielectric constant, <, ought %o be assumed
under PLA conditions (amorohous material and
a ve-y large carrier density). However, let
ug estimate : = 12 and m* = 0,2 Mg where Mg
is the free electron mass. Then the concen-
tration of 1.2x102%/cm’ estimated <o occur
150 ns after the onset of a 0.25 J/cm®
(absorbed) 10 ns 533 nm threshold pulse
would have fiw_ = 2.6 eV, sufficient “o 3jive
the observed high reflectivity, As this is
also 50 zimes the maximal phcnon enerjyy,
plasmon-phonon coupling would also be weak
/24,25,27/. According to Yoffa's estimate
/26/, the intravalley phonon scattering via
the deformation potential channel would te
screened down by a factor of 23 at this
soint.

Murakami, et al, /13/ showed that
annealing with a mode-locked laser (which
emitted 30 os pulses az 1) ns intervals for
150 ns) required an energy density ‘usc
great enough that the reflectivity >f a
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He~Ne .aser was barely increased. This
implies that the critical value of the
plasma density, Rpins MUsSt be 25 % or sco
below that which would make ﬁup = 1,37 ev,
the He-Ne photon energ . This reascning
implies that Rrin
twice the excited carrier concentration ac
the melting poant.

Note that because the mode~locked laser

x 5%x10%%/cm?, which 1is

puts in energy continuously throughout the
duration of the annealing event, the maxi~
mal carrier concentrat:on does not need :C
be as jreat as in the case of annrealing
with C-switched lasers, which put all the
energy in at the beginning of the event an:
then allow it to di1ffuse away. This leads
to the predicition that better guality
material will be produced with less pcwer
consumed using mode-locked rather taan 2=
switched lasers. It seems that any model
which maintains the criterion for gocd
annealing is that a sufficiclent temperature
or degree of melting be obtained must make
the opposite prediction. This is because
more heat will diffuse out of the zone in
the 150 ns of a mode-.ocked laser pu.se
train than in the 10 n8 or so of a QJ=swit-
ched laser pulse, It seems that the predic-
tion of the PA model 1s correct., , 54,35/
The fact that the reflectivity decrea-
ses back to a normal Si value snly rather
slowly, 13 explained in the plasma avpothe-
sis by the fact that the plasma edge is nct
a sharp step but is broadened by interacticn
between the plasmons and the single parzi-
cle excitations, which 18 strong because

““p exceeds the band gap, E_ . Thus, as the

plasma expands and ﬂup decri:ses «hrough
the energy of “he probing phctons, the
reflectivity coefficient slides down a
gentle slope.

The fact that abgcrbed energy thres-
hold required for annealing with £33 and
266 nm light does not change measurably
/15/ between 3C pc. and 30 ns pulse dura-
tions is explained in the PA modeli by <he
consideraticn that the requirement for
completed annealing, as opposed *o the
threshold for a transient reflectivity
increase, is a sufficiently dense i1nitial
plasma. Once one i{s over “he threshcld




for metastability of the plasma, a suffi-
cient energy must be put in to create this
critical density and it does not matter
what the time interval is so long as it is
short comparated with the 150 ns, or so,
that the plasma must persist to get the
excess volume out. One should expect to see
somewhat of a decrease with shorter pulses,
Because the power is greater, less energy
is wasted to the lattice before the plasma
becomes metastable, but this is not a large
factor. Suppose that metastability was
reached only at the peak of the pulse, then
some portion of the first half of the pulse
would be wasted as heat, Auston, et al. /16/
found that single shot Q-switch laser
annealing requires that the energy absorbed
be twice that required to cause a few ns
increase in the reflectivity of 630 nm He-Ne
light. (Vle have shown above that this re-
flectivity implies a carrier density sligh-
tly greater than that required for metasta-
bility). Therefore, we may conservatively
estimate that the reduction in absorbed
energy density between 30 ns and 30 ps
pulses of light that will be absorbed on a
scale of order the layer thickness or less
should not be greater than some portion of
one quarter the energy of the 30 ns pulse.
(Note that the melting model predicts the
change should be a factor of 6 or more due
to the diffusion of heat that occurs in

30 ns. Any theory in which the maximal sur-
face temperature is the determining parame=~
ter will also predict a far lower threshold
for 30 ps pulses than for 30 ns pulses
because that maximal temperature will be
larger by a factor cf 30 in the case of the
ps pulse).
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In the sccompanying paper we have given evidence that pulsed laser annealing ot Si does not involve normal thermal
melting and cecrystallization. Here we argue the importance of the electron—hole plasma produced by the laser 1o the an-

nealing process.

In the accompanying [1] paper reasons have been
given to doubt that the pulsed laser annealing of Si

involves normal thermal melting. Here we try to answer
two quesuons: (1) how can the material escape melting;

and (2) what 1s the role of the electron—hole plasma
produced by absorption of the laser light.

How can the material vscape melting. The energy

required to heat crystalline Si from room temperature

to the melting point and to melt it is [2] 7.3 x 103 J/
am3. Due to the heat of recrystallization (which has
not vet been determined experimentally for Si). the
energy required to heat and melt amorphous Si is
somewhat, perhaps 4 third, less [3]. Therefore, the
energy required to melt a typical 100 nm layer ot ion
unplanted Si would not exceed 0.073 J cm= if there
were no diffusion ot energy to the substrate. As the
normal incidence retlectivity rises from about 357

at the beginning of the pulse to about 60% Juring
the observed lugh reflectivity period [4-6] the
energy absorbed is about halt that incident. Thus the
incident energy Jensity threshold required to melt a

100 nm layer with no diffusion could not exceed 0.15

Jicm* and would be more like 0.10 J ¢m? for an
amorphous 1on impianted surface.

! Supported in part by the Air Force Otfice of Scientific Re-
search under Contract No. F49620-79-C-0077.
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The observed incident energy threshold for single |
shot complete annealing of a 100 nm amorphous layer |
with either 30 ns or 30 ps pulses is about 0.5 J 'm” t
for 533 nm light [7,8] which is absorbed in the same
100 nm or about 0.25 Jicm? for 266 nm light 8]
which is absorbed in the first 8 nm. Theretore, at this
threshold several times more energy is absorbed than
would be required to melt the amorphous (damaged)
layer if it were all delivered as heat in that laver and
none diffused out. The question whether the surface
layer melts, gets hot without melting or is warmed
only moderately turns on the rates at which (a)
eneryy is transterred from the electrons and hoies
creaied by the laser to the lattice as heat, 1b) this
plasma ot carr.2rs expands into the substrate, and (¢)
the heat delivered to the lattice diffuses into the sub-
strate.

The energy ot a 533 nm photon exceeds the energy
2ap of Si by more than | eV, this energy would appear
as kinetic energy of the carriers excited across the gap.
Free carrier absorption would leave the carner with
more than 2.3 eV of kinetic energy. Even it a phonon
emission time of 10713 s 1s assumed [9] these carriers
would still diffuse more than 200 nm hetore gving
up ! eV to the lattice. This alone would Joubie or
triple the energy required to melt 100 nm with 333
or 266 nm light. The thermal Jiffusivity of Si ander
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normal furnace conditions (in the dark) varies from
0.86 cm? ‘s at room temperature 10 0.117 em?/s at
the melting point [10.11]}. [f we take D=0,117 and
7= 30 ns. a typical laser pulse duration, and if we
make a rough estimate of the extent of thermal diffu-
sion, we find (Dr)¥2 = 600 nm or six times the depth
of the layer to be annealed. (For a more detailed ac-
count of these two effects see the recent study of
Yoffa [12].) In fact the diffusion of the heat that has
been delivered to the lattice will be substantially great-
er than this estimate because the laser pulse produces
a carrier concentration which, by all estimates, is
much larger than the thermal intrinsic value (2 X 10'?
cm™3 at the melting point and less at lower tempera-
tures) and because 40% of the thermal diffusivity at
the melting point is due to the intrinsic free carriers
{11]. If we make the conservative estimate [12] that
the carrier concentration during the laser pulse is
2x10%0 cm"3, then the diffusivity at the melting
point would be 0.54 em?/s and (D)2 = 1.3 um.
Combining this consideration with that of the diffu-
sion of the carriers even with a 10713 s phonon emis-
sion time, we can conclude that the damaged layer
will not be melted back to the substrate at the ob-
served incident energy density thresholds of 0.25
J/em? for 266 nm or 0.5 J/cm? for 533 nm light,
(Some published computer simulations {7,13—15] of
the heating of the material during pulsed laser anneal-
ing have concluded that the annealing threshold is the

level at which melting does extend to the damage inter-

face. These neglect the effects of carrier diffusion as
phonons are being emitted and the enhancement of
thermal diffusivity due to the excess carrier concentra-
tion produced by the intense laser light.)

We interpret the often reported rise in surface re-
flectivity as the result of an electron~hole plasma of
sufficient density that hw,, exceeds the energy of the
photons used to determine the reflectivity. This is the
conventional interpretation of the surface reflectivity
rise [16—18], for example that given for the Q-
switching effect of Si mirrors, but contrary to the
recent suggestion of Auston et al. [4) that the effect
might be due to melting of the surtace. In the accom-
panying paper [1] we showed that the meiting
hypothesis does not account for the manner in which
the reflectivity rises and fails and that there is no
close agreement between the measured reflectivity

during the period that it is increased and the reflectivity of
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normal molten Si. Theretore, we contend that the ob-
servation of the duration of the period of enhanced
surface retlectivity, from a few ns to as much as
several hundred ns, indicates that the transfer of
energy from the dense plasma to the lattice requires
a comparable time, much longer than 10713 5, under
pulsed laser annealing conditions. If we take the
phonon emission time for the dense plasma to be
several orders of magnitude longer than 1 X 10-135
then we must conclude that the surface is not even
warmed more than a few 100°C.

In separate publications [19.20] we explain why this
rate should be so much slower than that extrapolated
from measurements at lower levels of irradiation. These
explanations involve: (a) the decoupling of the lattice
from the plasmons of the excited carriers when Aw
becomes much larger than all phonon modes (when the
excited carrier density exceeds 10!? cm=3): (b) the
screening of the deformation potential coupling be-
tween hot carriers and phonons (an effect which Yoffa
has treated in some detail [21]): (c) an argument that
under normal conditions the coupling of the lattice to
the carriers via the plasmons is more important than
that via the deformation potential, particularly for
intervalley scattering with the emission of longitudinal
phonons: and (d) a calculation [20] showing that in
Si the only optic phonons coupling to plasmons have
(100) wave vectors so that plasmons with wave vectors
in other directions will be long lived when frwp is much
larger than acoustic branch energies.

Plasma annealing. How can the material be annealed
if it does not meit but does have a dense electron—
hole plasma excited within it? In order for the material
to be annealed two things must occur. The crystalline
order must be reestablished and the large supersatura-
tion of lattice defects, or equivalently the excess
volume [22] (about 9%) of the damaged layer with re-
spect to the crystal, must be diffused out.

There are two ways the crystalline order may be re-
established without melting. If more than a critical
number of electrons, which has been estimated to be
8 X 102! ¢m=3 from considerations of Si band struc-
ture and temperature dependence of its band gaps
[23-25], are excited out of the bonding states of the
valence band into the antibonding states ot the con-
duction band, then a second order phase transition will
occur. The bond charges will be so depleted that they
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will no longer be able the stabilize the TA phonon
modes [26]; the crystal will no longer resist shearing
stresses but will become fluid. This fluid is distinct
from the normal molten phase of Si because the latter
is the result of a strictly first order phase transition
that is driven by the violent motion of the atoms at
high temperature. In the plasma case we maintain

that the energy is still retained in the electronic sys-
tem so that the atoms are not in violent motion.

As the plasma becomes less dense due to expansion and
due to transfer of energy to the lattice, the material
will pass back through the second order phase transi-
tion at 8 X 102! cm™3 and the covalent bonding will
gradually reappear. If this process is not too fast, the
material will recrystallize as epitaxial single crystal
because this is the state of lowest energy. (We believe
that the crystalline to (fourfold coordinated) amorph-
ous transition that has been observed [27,28] with

30 ps laser pulses of low energy results from passing
through this second order transition so rapidly that
the atoms were not able to establish long ranged order
in the covalent phase before they lost all mobility. The
hypothesis that the material was thermally melted

and quenched like a glass suffers from the fact that
molten Si has a nontetrahedral structure with a co-
ordination greater than four (6 or more depending on
temperature [29]) and glasses retain the structure of
the molten phase [30]). Even if this critical carrier
density for the second order phase transition is not
reached, crystalline order may be regained by sufficient-
ly weakening the covalent bond bending forces that
the atoms will rearrange themselves in response to the
stresses imposed by the crystalline substrate or any
other source. This process is analogous to that of the
optically induced gliding of dislocations in crystalline
material that has been observed at much lower power
level [31]. (One may view the reordering as the gliding
of a large number of dislocations out of the damaged
region.)

We believe that the rate limiting step in the anneal-
ing process is the removal of the excess lattice defects
that were introduced by ion implantation and the con-
comitant excess volume. As an amorphous damaged
layer is less dense typically by about 9% than the
crystalline material [22] and has essentially the same
nearest neighbor distance [32], we view the excess
volume as a 9% concentration of trapped vacancies.

Now, vacancies are known [33] to be mobile in Si
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at 80 K. The reason they do not migrate out at room
temperature is that they have both donor and accep-
tor charge states and become bound coulombically to
other charged centers in the lattice. In the presence of
a dense electron—hole plasma, these vacancies should
diffuse with negligible trapping. If one simply takes
the migration rates and activation energies measured
at low temperatures by Watkins and extrapolates to
some moderate temperature, .. 307°C, one finds the
diffusivity of the vacancy in its double acceptor state,
for example, to be 3.7 X 103 ¢cm?’s. Then if one
takes 7 = 160 ns, a typical duration for the observed
high surface reflectivity, (D(V) .,)112 =240 nm, This
would seem to be enough to insure that most of the
excess vacancies could diffuse out of a typical 100
nm thick damaged layer.

The rate of impurity diffusion by the vacancy mech-
anism would be just the vacancy diffusivity times the
fraction of vacancies present. Assuming an initial con-
centration of about 9%, this would give an initial im-
purity diffusivity of 3.3 X 10~* cm?/s, which would
be adequate to account for the impurity redistribution
that is observed in pulsed laser annealing. (A typical
example was fitted [34] assuming a constant diffusivi-
ty of 2.4 X 10~* for 180 ns. In the plasma case the
diffusivity should not be constant as the number of
excess vacancies decreases during the event.) If the
material undergoes the second order phase transition
to the plasma fluid, then the redistribution will be in-
creased during that period, but the concentrations of
vacancies (excess volume) should be reduced by volume
contraction of this fluid, so that after return to the
covalently bonded phase the diffusion of impurities via
the vacancy mechanism should be suppressed.

Finally we address the problem of surface segrega-
tion of ion implanted impurities. Impurity segregation
will occur across any phase boundary where the free
energy of the impurity is less on one side than on the
other. The magnitude of this effect will depend upon
this driving force, the diffusivity of the impurity and
the time available for diffusion. If the material were
melting, one would expect impurities with similar
molten phase diffusivities to be segregated in proportion
1o their normal molten—solid segregation coefficients.
(Note that with a diffusivity of 10~% cm?/sand a
period, 7, of only 160 ns would give (2D!)”2 =100 nm,
the entire thickness of a typical damaged layer.) This is
not observed [35). Group V1 impurities are very little
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segregated by pulsed laser annealing even when they
are very much segregated by the normal melting transi-
tion. The group V impurity Bi is segregated less than
would be predicted from the melting hypothesis.
Cu, Zn, Fe and the group Il elements Ga and In are
substantially segregated by pulsed laser annealing. If
the plasma remains dense long enough for the vacan-
cies and other host lattice defects to diffuse out. then
there are very few vacancies available to diffuse im-
purities when the plasma—normal phase boundary
sweeps to the surface. Group IV, V, and VI impurities
require a vacancy (or other host lattice detfect) to
diffuse and therefore should be expected to segregate
very little during plasma annealing. Cu, Zn, and Fe
normally diffuse as interstitials without any host
lattice defect and therefore should remain mobile as
the plasma boundary sweeps to the surface. Therefore,
such impurities should segregate providing there is a
driving force. The fact that these impurities are present
above the saturation limit of the normal Si assures
such a driving force. There is also the observation that
there is a strong correlation between the valence of an
impurity and the energy (excess heat of mixing) re-
quired to create it in a semiconductor host. The most
soluble interstitials have valence 1 (Li, Na. K, Cu, Ag,
and Au); elements with valence 2 are observed as
interstitials but with lower solubility (Be, Mg, and Zn).
In irradiated Si one finds [33] as many group III inter-
stitials as there are Si vacancies that have been intro-
duced: the Si seif interstitial has never been observed
and only the smallest group [V element, C. has been
observed [36], only in irradiated Si. Group V inter-
stitials have never been observed [33] in irradiated or
nonirradiated Si. One of us (J.A.V.V.) has offered
[37,38] a simple but quantitative explanation of this
observation based on electronic structure and the re-
quirement to orthogonalize the wavefunctions of the
interstitial against those of the host lattice. We suggest
that in the presence of a dense electron—hole plasma
the energy of formation of a group III interstitial
should be reduced by the ionization of both host and
impurity atoms that interstitial diffusion could become
significant in plasma phase. This would then explain
the much greater degree of segregation that is found
with group [l impurities than with group V impurities
having similar moiten phase diffusivities and segrega-
tion coefficients.

In conclusion, we teel that tlie hypothesis of anneal-

PHYSICS LETTERS 10 December 1979

ing of a relatively cool lattice in the presence of a
dense electron—hole plasma, plasma annealing, offers
a much more satisfactory explanation for the process
which produces remarkably high quality material
during pulsed laser annealing of Si than does the
hypothesis of simple thermal melting with subsequent
rapid quenching.
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Defect Diffusion During Pulsed Laser Annealing*
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Abstract

In the presence of a dense (> 10%'/cm?) electron-hole plasma which may be produced by
the intense irradiation during pulsed laser annealing, the covalent bonding of tetrahedral
semiconductors like Si will be severely weakened because a significant fraction of the bond
charge has been excited across the gap into antibonding or plane wave states. The crystal
structure may even become unstable and undergo a second order phase transition if the bond
charge is reduced beyond a critical point where the transverse acoustic modes go to zero
frequency. This transision has previously been estimated from the temperature dependence of
the gap to occur at a density of 8x10°!/cm3. In this state the material would not be able to
support a shear and so should be called a liquid. but it would be very distinct from molten Si.
The energy from the laser would be concentrated in the electronic excitation and not in kinetic
energy of the atoms. as in the thermal case. Recrystallization could occur without the
destructive effects of severe thermal gradients when the material passes back through this
second order phase transition to the covalently bonded phase. However, recrystallization of
ion-implanted material should also be possible without passing through this second order phase
transition if the atoms are reordered by the optically induced gliding of dislocations out of the
damaged zone, as has been observed in crystalline semiconductors. Point defects should be
removed from amorphous or damaged material at a rate much greater than normal furnace
annealing due to five separate effects. First, they may be eliminated by recrystallization
following the second order phase transition. Second, they may experience recombination
enhanced diffusion within the covalent phase. Third, the coulombic trapping by charged
impurities, which normally reduces the net rate of vacancy (or interstitial) migration drastical-
ly, will be suppressed by the flux of free carriers in the dense plasma. Fourth, point defects
may be swept out of the material as the large concentration of dislocations, which are ideal
sinks, glide out. Fifth, the energy of formation of fast diffusing interstitial species can be
greatly reduced by the dense plasma. It is claimed that these effects are required to account
for the very high crystallographic, morphological and electrical quality of Si produced by
pulsed laser annealing.

* Supported in part by Air Force Office of Scientific Research under Contract No. F49620-
79-C-0077.

-
ot

& o




Page 1

In his 1977 review of the subject of pulsed laser annealing 1. B. Khaibullin concluded!,
"The mechanism of laser annealing is not yet finally established. But even now one can state
that in the case of the nanosecond regimes one cannot reduce it to the ordinary thermal effect.
Different factors such as photoionization, impact wave, powerful light fields etc. play a
significant role.” In addition to the convincing arguments that pulsed laser annealing could not
be a simple thermal effect and could not be simpie thermal melting followed by rapid crystaili-
zation as quench which are given in that paper, several more observations and arguments lead
to the same conclusion. There is, of course, the fact that long standing theories for laser
damage?-S indicate that the material should be heavily damaged, not annealed, if all the energy
of the laser pulse were converted to local heating of the material in times of order the duration
of the pulse. Simple analysis® of the mechanical forces that would be generated by thermal
expansion and by contraction upon melting in times of order the duration of these laser pulses
show that a molten layer could not remain in contact with the substrate unless it balled-up to
an extent completely inconsistent with the very flat surface morphology that is obtained.
Thermoelastic measurements’ made during pulsed laser annealing of Si show no evidence for
the snap-back force that would have to occur if the surface melted and contracted until one
increases the laser energy above the damage threshold. In addition to the observation that
annealing may occur without any significant increase in surface reflectivily.“g it has been
noted® that when a rise in surface reflectivity is observed® !0 it rises and falls in a manner
expected for a dense electron-hole plasma and not that expected for moiten Si. Moreover,
there is no close agreement between the measured reflectivity during the high reflectivity
period and the known reflectivity of molten Si. Furthermore, the redistribution of dopants has
been shown®!!-12 10 be inconsistent with the hypothesis of crystallization from normal molten

Si.

it is the author’s opinion that it is the photoionization, the dense electron-hole plasma

created by the intense laser pulse, which principally accounts for the remarkable properties of
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pulsed laser anncaling and that the process is indeed nonthermal in the sense that the thermal
transients that do occur are neither helpful to the annealing nor particularly severe. Let us call

this the "Plasma Annealing”. PA, theory and process.

By far the most difficult aspect of thl: PA theory of pulsed laser annealing is the question
why the plasma remains dense for such a long time and transfers its energy to the lattice so
slowly. However, it seems that the observations that the increased surface reflectivity, which
has the properties of a dense plasma and not those of a molten layer, may persist as long as
800 ns demonstrate the point experimentally. Explanations for this long lifetime and slow
transfer are given in detail elsewhere.!2-!5 These explanations involve: a) the decoupling of the
lattice from the plasmons of the excited carriers when fiwp becomes much larger than all
phonon modes!3 (when the excited carrier density exceeds 10'?/cm?); b) the screening of the
deformation potential coupling between hot carriers and phonons“; ¢) an argument that under
normal conditions the coupling of the lattice to the carriers via the plasmons is more important
than that via the deformation potential, particularly for intervailey scattering with the emission

3. and d) a calculation showing that in Si the only optic phonons

of longitudinal phonons
coupling to plasmons have (100) wave vectors so that plasmons with wave vectors in other

directions will be long lived when Aw_ is much larger than acoustic branch energies. '’

However, let us note that even if there were no slowing of the energy transfer from hot
carriers to the lattice, even if the phonon emission time were 1013 s, one would not melt a
typical 100 nm thick damaged layer back to the substrate at the observed threshold for
annealing. The energy required to heat crystalline Si from room temperature to the melting
point and to melt it is 7.3x10% J/cm3. Due to the heat of recrystallization (which has not yet
been determined ¢xperimentally for Si), the energy required to heat and melt amorphous Si is
somewhat, perhaps a third, less. Therefore, the energy required to melt a 100 nm layer of 100
implanted Si be about 0.05 J/em? if there were no diffusion of energy to the substrate. As the

normal incidence reflectivity rises from about 35 “o at the beginning of the pulse to about 60
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% during the observed high reflectivity period, the energy absorbed is about half that incident.
Thus the incident energy density threshold required to meit a 100 nm layer with no diffusion

vould be about 0.10 J/cm® for an amorphous ion implanted surface.

The observed incident energy threshold for single shot complete annealing of a 100 nm
amorphous layer with either 30 ns or 30 ps pulses is about 0.5 J/cm? for 533 nm light'6:!7
which is absorbed in the same 100 nm or about 0.25 J/cm?® for 266 nm light which is absorbed
in the first 8 nm. The energy of a 533 nm photon exceeds the energy gap of Si by more than
1 eV: this energy would appear as kinetic energy of the carriers excited across the gap. Free
carrier absorption would leave the carrier with more than 2.3 eV of kinetic energy. Auger
recombination would add 1.1 eV to the kinetic energy of the third carrier in the process. Even
if a phonon emission time of 1x10"13 5 is assumed. these carriers would still diffuse more than
200 nm before giving up 1 eV to the lattice. This alone would double or triple the energy
required to melt 100 nm with 533 or 266 nm light. The thermal diffusivity of Si under normal
furnace conditions (in the dark) varies from 0.86 cm?/s at room temperature to 0.117 cm?®’s
at the melting point.!®:19 If we take D = 0.117 and = = 30 ns, a typical laser pulse duration.
and if we make a rough estimate of the extent of thermal diffusion, we find (Dr)!'2 = 600 nm
or six times depth of the layer to be annealed. (For a more detailed account of these two
. fects see the recent study of E. J. Yoffa.2?) In fact the diffusion of the heat that has been
Jelivered to the lattice will be substantially greater than this estimate because the laser pulse
sroduces a carrier concentration which, by ail estimates. is much larger than the thermal
“atrinsic value (2x10'° /cm? at the melting point and less at lower temperatures) and because
40 % of the thermal diffusivity at the meiting point is due to the intrinsic free carriers.'? If we

mnake the conservative estimate!¢

that the carrier concentration during the laser pulse is
2x102%/cm?, then the diffusivity at the melting point would be 0.54 ¢cm?/s and (D7)! * = 1.3
un. Combining this consideration with that of the diffusion of the carriers even with a

1x10"'3 s phonon emission time, we can conclude that the damaged layer will not be melted

“ack to the substrate at the observed incident energy density thresholds of 0.25 ), cm* for 266
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nm or 0.5 J/cm? for 533 nm light. (Some published computer simulations'6-2!-33 of the
heating of the material during pulsed laser annealing have concluded that the annealing
threshold is the level at which melting does extend to the damage interface. These neglect the
effects of carrier diffusion as phonons are being emitted and the enhancement of thermal

diffusivity due to the excess carrier concentration produced by the intense laser light.)

Now et us outline the PA hypothesis. In the presence of a dense (> 10*! ‘em®) electron-
hole plasma which may be produced by the intense irradiation during pulsed laser annealing
the covalent bonding of tetrahedral semiconductors like Si will be severely weakened because a
significant fraction of the bond charge has been excited across the gap into antibonding or
plane wave states. The crystal structure may even become unstable and undergo a second
order phase transition if the bond charge is reduced beyond a critical point, which has
previously been estimated-* from the temperature dependence of the gap to occur at a density
of 8x10%!/cm3, where the transverse acoustic modes go to zero frequency. In this state the
material would not be able to support a shear and so should be called a liquid, but it would be
very distinct from moiten Si. The e¢nergy from the laser would be concentrated in the electron-
ic excitation and not in kinetic energy of the atoms, as in the thermal case. Recrystallization
could occur without the destructive effects of severe thermal gradients when the material
passes back through this second order phase transition to the covalently bonded phase.
However, recrystallization of ion-implanted material should also be possible without passing
through this second order phase transition if the atoms are reordered by the optically induced
gliding of dislocations out of the damaged zone., as has been observed in crystalline
semiconductors.2’ Point defects should be removed from amorphous or damaged material at a
rate much greater than normal furnace annealing due to five separate effects. First, they may
be eliminated by recrystailization following the second order phase transition. Second. they
may experience recombination enhanced diffusion within the covalent phase.”® Third, the

coulombic trapping by charged impurities, which normally reduces the net rate of vacancy (or
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interstitial) migration drastical]y,27 will be suppressed by the flux of free carriers in the dense
plasma. Fourth, point defects may be swept out of the material as the large concentration of

dislocations, which are ideal sinks, glide out. Fifth, the energy of formation of fast diffusing

interstitial species?® can be greatly reduced by the dense plasma.

We must now elaborate upon the third point. There must be at least some moderate

heating of the sample during puised laser annealing. Therefore, let us make calculation easy
by assuming kT, = 0.05 eV, T, = 307 C, where T! is the lattice temperature - as distinguished

from the temperature of the plasma, T, which would be much greater. It would be very

difficult to attain an accurate phonon spectrum for the material during pulsed laser annealling,
but we may assume that the lattice attempt frequency, v, is given by

hv = kT, n
which implies that

v = 1.2 x 10'3/sec. (2)
We also do not know empirical values for the enthalpies of migration of vacancies in amor-
phous Si, so we approximate them with values determined for crystalline Si. Thus, we use
Watkins’s measured?® values for the activation energy for single vacancy migration for the
aeutral, VX, and double acceptor, V-2, ionization states, which were noted before,
AH_(V?) = 0.18 eV, (3
nd

AH_ (V") = 033 eV, (4)

and the standard expression for vacancy diffusivity in the diamond lattice

D(T,) = 0.0625 a% v exp(aS,/k) exp(-AH_/kT)), (5)
where a is the lattice constant of Si, a = 0.543 nm, and the factor 0.0625 results from a
combination of geometrical and correlation of hoping direction considerations. ..\Sm is the

entropy of vacancy migration. This has been estimated from purely geometrical grounds by

T **——"i
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Swalin.3® That estimate has been checked against accurate data by Van Vechten and L3
Thurmond.? It is e

.
AS_ = 4.1k (6) I.

The result is .
; D(V2, T=307 C) = 3.7 x 103 cm?; sec., (7)
; and
D(VX, T=307 C) = 1.8 x 10 cm?/sec. (8)

Therefore, if the isolated vacancies migrate without trapping for r = 200 as.. there d =
[Dr]! 2 will be

d(v2, 307 C, 200 ns.) = 270 nm. (9)

and
d(V*, 307 C, 200 ns) = 60 nm. (10)
If the depth of damage is 50 to 100 am, the vacancies would have roughly sufficient time to

migrate all the way to the free surface. Note that a) as the V-*'s migrate out, more V*'s are

ionized to maintain the electronic equilibrium: and b) the vacancies need not migrate all the
way to the free surface - they can, and apparently do.}! collect in voids. which may take
longer, and more energy, to remove. Note that we have assumed that the untrapped migration
of the vacancies occurs only as long as the high reflectivity was observed'® at 630 nm at the

annealing threshold, which corresponds to an electron density of order 102! em?. It might

well be that it actually persists significantly longer.

Next, there is the question of the diffusivity of the impurities. Because we are assuming
there is no effective binding between the vacancies and impurities, we should expect, at least
in first approximation, that

D(D) = [V D(V2) + [V] D(V) + [VI] D(VF) + [V*ID(V* (1
i.e.. that the diffusivity of atoms that migrate by vacancy motion is just the vacancy diffusivity

times the probability of exchange with a vacancy, which in this case is taken to be just the

u
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atom fraction of vacancies. As the initial vacancy concentration, the excess volume is several
percent.32 the impurity diffusivity, D(I), will be several percent of the vacancy diffusivities just
calculated until the excess volume is expelled. Therefore, we should estimate

D, 307 C) = 2 x 10™* cm?/sec. (12)
as long as the vacancies are at this high concentration. Wang, et al.,>' who report some of the
largest impurity redistributions measured, fit their data by assuming D(I) = 2.4 x 10°*

cm?/sec. for 180 ns.
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Appendix E

On the Variation of Semiconductor Band Gaps with Lattice
Temperature and with Carrier Temperature

When These Are Not Equal’

by
J. A. Van Vechten and M. Waulelet“

I. B. M. Thomas J. Watson Research Center

Yorktown Heights, New York 10598
ABSTRACT

Under conditions of intense optical pumping or electrical injection it is possible to
establish a temperature of excited carriers, Tc, larger than the temperature of the lattice. TL.
for periods of time sufficient for many effects to be observed. [t is well known that semicon-
ductor band gaps are a function of temperature, but the variation with the two temperatures.
T, and T, when these are different seems not to have been discussed previously. Simple
thermodynamic arguments may be applied when it is recognized that a band gap is a chemical
potential. The simple formula. AE_(T,, T ) = SH (T ) - T AS_(T,). is deduced. Physical-
lv this formula states that the vibronic degeneracy of the electronic states (valence and
conduction band or bonding and anti bonding) among which the carriers are distributed with
characteristic temperature T is determined by the lattice temperature, T,. Thus when T. >>
T, . anomalously large variations in the gap will occur. [t is found that under certain condi-
tions loss of energy trom the carrier system to the lattice will cause the density of excited

carriers to increase, rather than decrease.

* Supported in part by the Air Force Office of Scaientific Research under contract No.

F49620-79-C-6077.

Permanent Address: Faculte des Sciences, Universite de I'Etat, B-"000 Mons, Beleium.
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On the Variation of Semiconductor Band Gaps with Lattice
Temperature and with Carrier Temperature
When These Are Not Equal®
by
J. A. Van Vechten and M. Wautelet™”
I. B. M. Thomas J. Watson Research Center

Yorktown Heights, New York 10598
I Introduction

The forbidden energy gap, _\Ecv. of a semiconductor is identically the chemical potential
for the formation of unbound electron-hole pairsl'z. Indeed. the normal formula for the
thermal equilibrium concentration (when non-degenerate),

lelh,] = N_(T) N (T) exp( -AE_(T)/kT), (1
is an example of the Law of Mauass Action> for the reaction

O@e»e +h . (2)

Then AE s, by definition, its standard chemical potential. (Here
N (T) = 2 (27m*_ kT/h%)%? (3)
are the clectronic degeneracies. i.e., the effective number of points in the Brillouin zone at
which carriers contribute to conduction. for the conduction and valence bands. e. and h
represent an electron and a hole excited to the conduction band and valence band edge
distribution of states respectively, and m*_ and m* are thewr density of states effective

massces.)

Consequently, the band 2ap is equal both to the increase in internal energy upon increase
of the carrier density by one electron and one hole under conditions of constant ¢ntropy and
volume and to the increase in free enerty upon increase of the carrier density by one electron

and one hole under conditions of constant temperature and pressure:
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AE, =4, , = OU/anc‘h lsv

44

= 9G/on,  lrp - (4)

(In a forthcoming book chapter®

there is given a quantum mechanical derivation of the
thermodynamic identity that the increment in free energy measured in thermal experiments is

equal to the "no phonon line" value of the internai energy increment measured in optical

experiments under normal conditions.)

It has previously been noted’”’ that there are great advantages when discussing the
temperature dependence of band gaps to treat the change in free energy rather than the
change in internal energy.

AE, =3aG,, = AH - T3S . (S)
The temperature dependence of a free energy is, of course, an entropy, in this case the

entropy of the band gap. AS_, or the standard entropy of excitation of an electron across

cv’

_\Ecv. _\HL_V is the enthalpy of the gap. which must. incidentally, increase with temperature if

AE, decreases=. The variation of these three thermadynamic variables from T = 0 to the

meiting point, 1685 K, for Si is shown in Fig. I, which is borrowed from Ref. 2.

To calculate the temperature dependence of a particular band gap from first principles,
one may coasider the effect of the excitation of the carriers upon the frequency of the phonon
modes rather than the effect of the phonons upon the electronic states’. The number of
phonon modes excited is always several orders of magnitude greater than the number of
carriers excited across the gap. At the melting point of a covalent semiconductor, typically
2.6 times the Debye temperature, all phonon modes are multiply excited whereas only 10°% of
the carriers are excited. Whereas simple, tractable and analytic bond charge model® formuiae
are available for the frequency of the various phonon branches in terms of the magnitude of
the bond charge and the wave vector, a proper cstimate of the effect o the phonons upon the

electronic states would have to treat three independent effects - reduction of direct interband

scattering (Debye-Waller or Brooks-Yu effect), increase ol indirect interband scattering, and
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increase of indirect intraband scattering (Fan effect) with increasing temperature - for every
one of the phonons in all branches’. (The (anharmonic) effect of the variation of lattice
parameter with temperature should also be treated, but it is smaller than these effects in the
common semiconductors.) [t is easier to treat the effect of the excited carriers on the phonon

modes.

Under normal conditions the temperature of the phonon distribution, the lattice tempera-
ture. T, . the temperatures which characterize the distribution of carriers within the valence
and conduction bands, Tc_v and Tc.c respectively, and the temperature characterizing the
excitation of carriers across the gap, the electron temperature, T, are all the same. For this
situation AE  can be measured by any of several independent methods from T = 0 K to the
melting point. and from these measurements AH_(T) and AS_ (T) can be deduced. Thur-

mond has reviewed this data and tabulated the parameters for several semiconductors in Ref.

£y

However, many semiconductor phenomena are observed unde- "hot electron’ conditions
for which. due to optical pumping or electrical injection, the three temperatures describing the

-2 . . . .
9-12  As the various direct. indirect

excited carriers are much greater than that of the lattice
and tundamental band gaps, as well as the ionization energies of defects. impurities etc., are
all functions of temperature, the condition

T,>>T, (6)

would seem to beg the question of the variation of these chemical potentials with T, and with

Tl: what is _\EL_V(T*, TL) 7 Is AE\:v a function of Tc_v and of Tc.c'.’

One approach to the description of nonequilibrium carrier distributions that is well
established in the literature is that of the introduction'? of "quasi-fermi levels'. Now, the real
fermi level is the chemical potential of electrons and of holes. (Of course. a hole is nothing
but the ubsence of an electron; as chemical potentials are defined by derivatives of total

svstem energies with respect to the number of particles of a given species, erectrons and holes




must always have the same chemical potential, or fermi level.) In the (normal, one fitted
parameter) "quasi-fermi level” approach, one seeks to describe a nonequilibrium, ie. T, # T,
concentration of electrons and, or holes by introducing separate values for the electron and
hole fermi levels that are adjusted so that the conventional formula gives the actual concentra-
tion when the ambient lattice temperature. T, . and the corresponding vaiue of AE_ (T, ) are
inserted. There is no evident thermodynamic significance to these "quasi-fermi levels”. The
approach is normally used to describe the action of injection lasers or transistors under

<T, . << T,

moderate conditions of injection or optical pumping for which T < T_, e ¢

because the excited carrier density is not so high that recombination is as fast as energy
transfer between carriers or to the lattice. It gives no accurate description of the distribution
of carriers within the bands.!? It could be improved by introducing Te‘c or T, as a second
fitted parameter in addition to the "quasi fermi level”, in which case the corresponding band
gap and exponential factors ought logically to be employed, so a different value of the "qausi
fermi level” would have to be used. [t seems quite artificial. but it may be useful when one
does not care to develop a thermodynamic description. When none of the four temperatures
in the problem are equal. or wien, due e.g. to strong electric fields, the distribution of carriers
is not accurately described by a thermal distribution with any choice of temperature and

chemical potential, this would seem prudent.

However, a proper thermodynamic description is tractable and desirable when the excited
carrier concentration is sufficiently high that for times relevant to the experiments of interest.
the carrier-carrier interaction is so much stronger than the carrier-phonon interaction that the
carrier and phonon systems can be considered to be weakly coupled. Then the camers will
thermalize among themselves before they thermalize with the lattice. Then, when T, = T
= TU. we could have T, >> TL for times long enough for many interesting effects to he
observed. [ndeed. Lo and Compaan have shown!* by direct Raman measure of the surface
lattice temperature that T, does not rise more than about 300 C for crystalline Si exposed to

faser pulses well above the threshold cenergy density for anncaling ion implantation
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damage.lS'Z: They also observed a background scattering characteristic of Raman scattering
from carriers with a T, >> 2000 K. Yoffa has shown?3 that, for the excited carrier concen-
trations that seem to persist during pulsed laser annealing experiments, the carriers would
thermalize among themselves much more rapidly than with the lattice, so that the condition
discussed here, Tc_C = Tc‘h = 'I'e >> TL, would obtain. It may also occur for intense electri-

cal injection.

II Derivation

For this case that the carriers may be considered strongly coupled to each other, (so that
T” B Tc'c) and sufficiently dense that the rates of Auger recombination and impact ioniza-
tion are rapid on the scale of the experiments of interest (so that 'I'e_c x Te). but weakly
coupied to the phonons (so that T, >> T,) for times of interest. a simple formula in terms cof
the values of AH_ (T) and ASCV(T) measured under the normal condition that Te = TL can be
deduced from simple consideration of the Law of Mass Action and the number of carriers

excited. This formula is

AE, (T, T) = 3H_(T) - T AS_(T)). (7)

To see that this is the correct formula we invite the reader to consider Fig. 2. For
simplicity the band structure of the semiconductor has been replaced by a single electronic
transition between two electronic states. When the effect of the lattice phonons are added.
these two levels become two paraboias (in the harmor:. approximation) of vibronic levels.
The lattice temperature. T, . determines the distributton of carmiers within whichever vibronic
parabola they may be found. At T, =0 K all carners must be 1n the lowest vibronic state
because there are no phonons excited. Then the vibromic degeneracy of both states would be
the same and the carriers would be distnbuted between these two paraboias according to the
normal Fermi-Dirac expression as a funcuon of the carner temperature T(. When TL #A (),

phonons are excited and carriers in either clectronic level are distrtbuted amony the corre-
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sponding vibronic levels according to the normal Bose-Einstein expression as a function of T,.
In general the lattice stiffness and the phonon energies will be different for the two electronic
states, i.e., there is an electron-phonon interaction. Exciting electrons from the valence to the
conduction band usually softens the lattice modes of a tetrahedral semiconductor, like Si or
GaAs. Cases, like HgTe, where the excitation stiffens the lattice are also known: in such
cases AE  should and does have the opposite temperature dependence. These cases are easily

understood in terms of the band structures of the various materials.’

Fig. 2 is drawn for the usual case that the excitation softens the lattice so the upper
parabola is broader than the lower. Consequently the vibronic degeneracy, i.e., the number of
states of the total system available to a carrier, is greater for the excited state than for the
ground state. By the Law of the Equipartition of States, this will increase the probability of

finding the carrier in the excited state for any positive value of T.

There are other consequences also. Because the vibronic levels are more closely spaced
in the excited electronic state. the excited vibronic levels will begin to be populated to a
significant extent at lower values of TL in the excited state. This means that the average
energy of the distribution of carriers in the excited electronic state increases relative to the
average distribution in the ground state when AE_ decreases with rising temperature, T, .
This difference between the mean energy of the two distnibutions is just the difference in
internal energy for excitation across the gap. which is effectively equal to AH  because
pressure times volume change terms are quite negligible in all ordinary circumstances. Indeed.
1 atmosphere is only 0.632 X 10™" eV /A3, (It was noted above that thermodynamics requires

. -
AH to increase when AG decreases. )

The standard cntropy. AS_, of the excitation reaction is defined in terms of the ratio of
the probable number of vibronic states in the two electronic states.  As the number of
electronic states does not change, this is a function onlv of the probable number of phonons

excited. Thercefore, the value of .\S“, and thus of AH\V. required for AE ,'(TL_. Tl) must he

Chate vl e
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functions of T,. They will be the same functions of T, as those measured under normal
furnace conditions provided that the number of excited carriers in excess of that which would
obtain if the two temperatures were equal is not so large that the effect on the phonons
becomes nonlinear in the number of carriers. (The intrinsic carrier concentration at the
melting point of Si. and most other common semiconductors, is about 2 X 10'? cm™3.) When
nonlinearity sets in one would expect the effect to be greater for the excited electronic states
because atoms whose bonding ¢lectrons have been excited to nonbonding or antibonding
electronic states will make larger excursions in their thermal motion than fully bonded atoms
and thus will sense the more anharmonic portions of the lattice potential. It follows that our
assumption of AS_ (T, ) will underestimate the correct value. This can be seen from Fig. |
and the fact that AS_  does not saturate above the Debye temperature, 9. as it would in the
harmonic approximation®, but continues to increase moderately all the way to the meiting
point. At this point it should be clear that the values of the enthalpy and entropy of the gap

in Eq. (7) are functions only of the excitation of phonons.

(We might note that, when viewed as a free energy, AE , decreases without limit as T,
increases because the entropy factor in the definition of a free energy, Eq. (7). is multiplied by
the temperature relevant to the species being excited, here Tc. When viewed as an enthalpy or
internal energy difference, as in optical excitation experiments, AE_, decreases because the
mean number of phonons excited increases and the optical band gap. when defined as the
entropy conserving no-phonon line, connects states with the same number of phonons excited.
but cach phonon excitation raises the level of the ground c¢lectronic state (valence band) more
than the excited electronic state {conduction band). The ecigenvalues of individual ground and
excited vibronic states do not in general approach each other as temperature varies. In the

harmonic approximation the cigenvatues do not vary at all.)

The carrier temperature T is defined by the distribution ol the carriers between the two

vibronic svstems. the two parabolas, for which the degencracy is different.  If one considers

-
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now just that distribution, as if there were only one temperature in the problem but levels of
degeneracy determined in the same way, then it is evident the temperature which multiplies the

entropy factor for the free energy, Eq. (7). must be exactly T,. Thus Eq. (1) becomes,

AT} o (22T (8)
k Pi=T, ‘

A
[e‘.][h‘,] = xVC(Te C)N‘,( T( l‘) exp (

{Note that we have here a product of electronic degeneracy factors, Nc and N, which are
determined by the intraband carrier temperatures, Te'C and TL_‘V, and the vibronic degeneracy
factor, exp(AS_ /K). which is determined by the lattice temperature T .) Again, at the very
high carrier densities. such as those achieved in laser annealing experiments.'®!® Yoffa has
shown>> that the three carrier temperatures should approach each other much more rapidly
than any of them approaches T the condition T, = T, . = T, >> T obtains for some '
time. Eqg. (8) simply states that the vibronic degeneracy of the ground and excited electronic P
states (i.e., the valence and conduction bands or the bonding and antibonding states) is a

function of TL. but the carriers are distributed between these electronic states according to T .

The ratio of the density of vibronic states available. exp( AS_ ‘k ), is a factor in the determi-

nation of the number of carriers excited. The ratio TL 'Tc does not appear.

III Discussion

One shouid note that, when T, # T . the optical no phonon line (“optical gap™). |

o, on, is not cqual to the thermal, or chemicai potential. band gap., G Jn‘hl rp

.h | S.ve
This may be seen in Fig. 2 from the fact that the optical no phonon line will depend only on
the excitation number of the phonons, and thus TL; the optical no phonon hine will nuot
decrease without limit as TL_ increases. However, as the chemical potential and the density ot

carriers determine diffusion and most other interesting properties, it s the thermal or chemeal

potenual band wap. deserihed by Eq. (7). that is refevant to our Jdiscussion.

) Y}
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Another interesting point is that, since AS - 0 as T - 0, as do all other entropies. no
major variation of the band gaps should be expected in low energy pulsed laser experiments
done with liquid He ambients. Picosecond pulse experiments have commonly been done with
samples cooled to liquid He temperatures. [f such experiments were repeated with T, a
substantial fraction of 8, a significant variation of band gaps. optical reflectivity and related

phenomena should be observed.

For the same reason, the threshoid laser intensity for pusle laser annealing should be
sensitive to the initial lattice temperature. [f one started from T, = 0 K and the laser pulsed
raised it to 300 K, rather than from 300 K to about 600 K. as measured'® by Compaan and
Lo. then from the relative values of AS_ (Fig. 1), we see we would need about twice as large

a value for T, to achieve the same band gap and carrier concentration.

When large densities of carriers are excited. the effects of the Exclusion Principle for
electrons and holes, i.e. of carrier degeneracy, must be considered. Egs. (2) and (8) must be
replaced with more complicated expressions involving the product of two Fermi-Dirac

. 24
functions=~,

kT, 3 3/2 .
[e.llh) = {—1 (mlm))” “2F | or=n)E| (=m0, %)
2nh
where. of course.
” 1.2
F, .,u,)gf dx—=x = (10)

v=() exXp (x=n)+ 1 '

Here we have o, = .\Eu(T‘_.TL)/ kT, and n" = E, ch. where E_. is, of course, the fermi
level meausred from the valence band edge. When the arguments of the Fermi-Dirac func-
tions are large and negative, these cxpressions reduce to the Boitzmann cxpressions 2iven
above. When the arcuments of these functions become positive (1.e., the band wap becomes

negative),  the etfects of deveneracy become unportant; for a4 2iven concentration of excited
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carriers, T, will actually be larger than the value obtained from Eq. (8). However, such
complication does not affect qualitatively the foregoing discussion, which would hold for a

system of discrete electronic levels as well as for bands.

One expedient would be to use the Ehrenberg approximation=*3
F,o(x) = 20! 2 exp(x)/(3 + exp(x)), (an
which is accurate when x < 2.5, or the approximation:f’
Fyo(0) = (%3237 3y 4+ w373 6x1 2, (12)

which is accurate when x > 1.5. The effect of degeneraéy could be accounted for in Egs. (1)
and (8) by simply dividing the classical result by the factor
y = (m/4) exp(-ny)/F ., (2'-n)F, S(-n"), (13)
which is plotted in Fig. 3. As long as -AE_ /kT, < 2.5, we may use the Ehrenberg approxi-
mation and have
y = (16 + 4 exp(n’-n,) + 4+ exp(-n") + exp(-n,)). 16exp(-n,) . (14
Reference to Fig. 1 shows that indeed x < 2.5 as fong as T, < 0.7 © and, or kT, < 1 eV.
Thercfore, the Ehrenberg approximation should be reasonably adequate for almost all

experimental circumstances.

Under pulsed laser annealing coaditions, one may contemplate'*'%

the situation where T,
= 10.000 K while T, = 500 K. Referring again to Fig. 1, we see that such values of T, and
T, would produce a decrease in AE_ of more than 3 ¢V from its normal room temperature
value of 1.1 ¢V, so that we would have x = 1.9 in the Fermi-Dirac function. (Note that
negative values of AE  have significance only in the way they affect the magnitude of the
exponentiaf in Egs. (1) and (8). They do not imply any crossing of cigenvalues.) Thus, pulsed
laser annealing conditions can produce anomalously large vanations of the thermodynamic
band zap. Duc to the enormous gradient in the plasma density resuling from the very short
absorpuon leneths of the intense laser puise, the gradient of the band zap may be very laree

mdeed, of order 10% ¢V ocm (3 eV over 300 nam).  As the band aap s smallest where the
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carriers are the densest and hottest, this field opposes the expansion of the plasma and may
even produce negative carrier diffusion, i.e., produce plasma self-confinement. This point will

be discussed further in a separate publication®”,

Another interesting point to consider is the variation of the carrier concentration with
time as the carriers do scatter emitting phonons and lose energy to the lattice. Of course, this

causes a decrease in T, and an increase in T,. The former tends to make [eC][h‘] decrease

through the density of states terms and the denominator of the exponential in Eq. (8). The
latter tends to make this product of excited carrier concentrations increase through the
AS_ (T /k) term in the argument of the exponential. Returning to Fig. 1, we see that,
particularly at temperatures below ©/2, AS_ varies rapidly with T . [If one considers

progressively lower values of T, the lattice specific heat becomes progressively less. Then a

given quantity of energy from the carrier system may produce a progressively larger increase in
T, with a relatively modest decrease in T,. Thus, we may reach the amusing conclusion that,
under certain conditions, a loss of cnergy from the carrier system will cause the concentration

of excited carriers to increase, rather than decrease.

Let us investigating this point more quaatitatively. For simplicity let us first treat the

non-degenerate expression for n® = [ec][th. We obtain (using TL__c = Tc‘v =T))

2 2 0AH |
on n Loy (15)

oT, ~ k or, ‘T, T

L4

and
‘3"{ = Ti[J + i’;; (16)
Therefore,
M) = “;';i_\r,_ + :';_-AI' = %‘[%\%(%-n_\r, + 13+ '”; War]

PLETIUS RS T LRI
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Using Varshni's equation=" and Thurmond's data*, we have .
dAH_, OT = 2ap’T /(T + B (%)
with @ = 373 X 10 eV, °K = 5.49 k and 8 = 636 K for Si. Moreover, [
C,
AT, = AT, x =%, (19)
CL’
i
where C, and C_ are the lattice and carrier specific heats. Around T = 100 C and at '

constant pressure, C| = 0.18 cai, gm = 2.55 R for Si.*?. For a free electron gas at constant
volume,

C, = L5 R(2°kT,/3p), (20)
where

B, = A°2m (3n7n) . (21)
Let us make the most conservative estimate for An® by choosing the maximum plausible value
of u,. which would obtain if all the 2 X 10°3/cm? valence electrons would be participating in
the gas, so u, = 12.5 ¢V and we find C, |y = 039 R. Then we would have C |, = 1.39 R,
the carrier specific heat at constant pressure, to be compare with the lattice specific hemt C| =
2.55 R. Then, evaluating Eq. (16) we find,

An® = 53 AT, n?/T,, (22)

i.e.. while these extreme conditions remain, the loss of energy from the carrier system to the
lattice causes the density of excited carriers to increase rather than decrease.  Again, this is
simply the result of increasing the vibronic degeneracy of the excited electronic states, which

increases the probability that they be occupied.

Of course. degeneracy will generally have significant effect under the conditions relevant
to this discussion.  Physically, it s clear that an effect of degeneracy is to increase the
magnitude of the phenomenon just discussed, whereby loss of energy from the carriers to the
lattice causes the concentration of excited carriers to increase.  This s simply hecause

. Al . N
degeneracy decreases the rate ot change of n~ with T, and thus lessens the etfect ot decreas-
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- 13-

ing T .. However, the effect of increasing T, with the transferred energy is to increase the
number of vibronic states available, and thus serves to releave the restriction of the Exclusion

Principle.

Let us denote the correct value of [e_l[h ], taking degeneracy into account. as n- v,
where y is defined in Eq. (13). [f we then use the Ehrenberg approximation, Eq. (11), for the
Fermi-Dirac function in order to take account of electronic degeneracy, then we find Eq. (16)

should be modified to,

A(n:/'y) =

n aAH""[ L_Lya+ fangny, maT, + n 3+ (1 + f(ng.")/ )'\H"“mr (23)
T, T e R S o RT, e

and

—

F(no.n') = [+ + exp (=7°) + 2 exp (—(no—n')]/-l. (24)
T

F(n,.n") is always positive and becomes large when n, becomes large and negative. i.e.. when

the band gap becomes large and negative, as will occur under intense excitation, as in pulsed

laser annealing. If the approximation of Eq. (12) were used. a much more complicated
expression would be obtained, but the qualitative effect would be the same. The whole of the
.\TL term, which causes an increase in carrier concentration would be multiplied by a factor
greater than unitiy, while only a portition of the AT, term, which causes a decrease in carrier
concentration, is multiplied by the same factor. Note that the portion of that term which is

multiplied by the factor is the smaller of the two under pulsed laser annealing conditions.

ol by AL
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Figure Captions

Fig. 1 Variation with temperature of the fundamental band gap, AE of Si. As AE_ is
the standard chemical potential for the creation of (unbound) electron-hole pairs, it is equal to
a free energy. The corresponding standard enthalpy and standard eatropy of this reaction,

AH_ and AS_ . are also shown. This figure is borrowed from Thurmond, Ref. 2.

Fig. 2 Conlfiguration coordinate diagram to illustrate how it is that when the entropy of
formation of electron-hole pairs is positive (as it is in Si and most other semiconductors), then.
in the harmonic approximation: the vibronic eigenvalues change not at all: the enthalpy
difference between the two electronic states must increase with carrier temperature, T, toa
saturation value: and the free energy difference between the two electronic levels will decrease
without {imit as the T, increases. T, and Th denote lattice temperatures which are respectively
low and high with respect to the Debve temperature. Also. the value of AS,.. and therefore of
AH_ . is entirely a function of the number of vibrational modes excited for each electronic
state. These entropies and enthalpies will always be functions of T, . and will. until the carrier
density becomes great enough to significantly alter phonon frequencies. be functions only of

T,.

-

Fig. 3 Variation of degeneracy correction lactor, y. from Eg. (13) with 3, =
AE (T..T,) kT, into the range of very high excitation, as dunng pulsed laser annealing,

where the band gap becomes neyative.
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Appendix F

Carrier Diffusion in Semiconductors Subject to
Large Gradients of Excited Carrier Density"
by
M. Wautelet'” and J. A. Van Vechten
1. B. M. Thomas J. Watson Research Center

Yorktown Heights, New York 10598
ABSTRACT

Under conditions of intense optical pumping or electrical injection it is possible to excite
such a dense plasma of eclectrons and holes that these carriers interact among themselves much
more rapidly than they interact with the lattice phonons. In this circumstance there will be
established a temperature of excited carriers, Te, much larger than than the temperature of the
lattice. T . for periods of time sufficient for many effects to be observed. In the accompaning
paper it is shown that the temperature dependence of the forbidden band gap is then described
by AE (T, T) = AH (T (T) - T,AS (T ). With T, >> T, this means that anomalously
large changes in the the band gap will occur and, if also there are large gradients of T, present
in the sample, there will be very large gradients in the band gap. This means there will be
very large gradients in the chemical potentials of the excited electrons and holes. As the band
gap tends to be least where the carriers are most dense and TL the greatest. these chemical
potential gradients oppose the normal outward diffusion of the excited carriers. We find that,
under certain conditions. this effect may be sufficient to produce "negative diffusivity” or

carrier self confinement.

* Suppored in part by project RIS of the Belgian Ministry of Science and in part by the Air

Force Office of Scientific Research under Contract No. F49620-79-C-0077.

** Permanent Address: Faculte des Sciences, University de i"Etat. B-7000 Mons, Belgium,




Carrier Diffusion in Semiconductors Subject to
Large Gradients of Excited Carrier Density’
by
M. Wautelet*” and J. A. Van Vechten
I. B. M. Thomas J. Watson Research Center

Yorktown Heights, New York 10598

I Introduction

The forbidden band gap, AE_,, of a semiconductor is identically the standard chemical
potential for the formation of unbound electron-hole pairs. l.2 (The standard chemical potential
is that part of the total chemical potential which does not depend explicitly on the concentra-
tion of the species.) It is also well known to be a function of temperature.:'3 Under "hot
electron” conditions of intense optical pumping, irradiation, or electrical injection, the
temperature. T, which characterizes the lattice phonons, will not be equal to the temperatures
which characterize the distribution of carriers excited within the valence and conduction
bands. T and T_ ., and the temperature which characterizes the excitation of carriers across
the gap. T,. Carrier - carrier interaction is generally so strong that we may assume

Tc.c = Tc.v' (1

When the excited carrier density is sufficiently high that the rates of Auger recombination and

impact ionization are rapid on the scale of the experiment of interest, while carrier lattice

interaction is slow on that scale, we reach an interesting regime in which the carrier system

may be considered to be in quasicquilibrium with itscif and weakly coupled to the lattice.
Thus.

T.=T, . =T, >>T. (2)

for times relevant to the experiment under consideration.
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It has been argued*™ for some time that pulsed laser annealing*-'* is a nonthermal
phenomenon. More recently it has been argued7'8 that iv primarily involves a plasma of
excited electrons and holes at a density of order 10~ ‘em” and T,>> T = 300 C. The
argument regarding the thermal or nonthermal nature of pulsed laser annealing was finaily
settled. when Lo and Compaan showed'* by direct Raman measure of surface lattice tempera- ‘
ture that T does not rise more than 300 C for at least 50 ns after the end of a laser pulse of
intensity just below the threshold for damage and more than twice the threshold for normal

annealing. Therefore, the electron-hole plasma created by the absorption of this light must

g A+

retain the energy of this pulse and is heated to several 1000 C. Indeed. Lo and Compaan

observed a background scattering characteristic of Raman scattering from carriers with T, >>

— ——— -

2000 K. Yoffa's calcutations'? show that when an excited plasma is this dense. the condition

of Eq. (2) should be expected to prevail. What is most remarkable about Lo and Compaan’s

experimental result!*, and indeed the whole pulsed laser annealing phenomena. is that it

e P
prevails for such a long time’*3,

When this is the case, we have shown in the accompanying paperl5 that the band gap is
described by the simple formula,
AE (T, T = AH (T ) - T AS (T)). (3)

where AH_ and AS_ are the enthalpy and standard entropy of the excitation of the carricr

i
[
i
i
i
h
1

across the gapl':. These thermodynamic parameters are functions of T, and should be
affected only moderately by T, until the carrier density becomes so high that nonlineantes
become important. They have been measured under normal furnace conditions, T =T, = T.
from T = 0 K to temperatures near the melting points of several semiconductors. This data
has heen reviewed and tabulated by Thurmond in Ref. 2. Experimental values for Si to its

melting point are shown in Fig. 1, which is borrowed from Ref. 2.

At the very high carrer densities refevant to pulsed laser annealing, the concentration of

excited clectrons, [¢ 7] = [h "] = n, the concentration of excuted holes. Theretore, we may
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consider only the ambipolar diffusion of the neutral plasma rather than the diffusion of
electrons and of holes separately. Gradients of T and of T wiil produce a gradient of AE_,
which is equivalent to an internal field tending to drive the plasma toward the regions where
AE , is minimal. As T, and T are greatest where n is greatest and AE | is least, the effect of
the internal field is to oppose the normal outward diffusion of the plasma from the region

where it was created.

We will here show that under the extreme conditions of pulsed laser annealing this
internal field due to VTL and VTe may be sufficient to completely overcome the outward
diffusion and cause it to contract. Although we have not soived the problem of the vanation
of the plasma density with time, it appears that this confinement phenomenon will persist
about as long as VT, remains large. That would be comparable to the time required for an

equivalent amount of heat to diffuse away, i.e., for times of order 100 ns.

II Derivation

The effect of gradients of the band gap. whether induced by thermal or by composition

gradients. has. of course. been treated previously in the literature.'®'® It is particularly
significant to the operation of doubie heterostructure lasers, where it causes both clectrons and

holes to be confined in the active layer.'$

To simplify the discussion. we shall take the ratio of the laser annealed spot diameter to
the depth of penetration of the heat and the carriers to be sufficiently large that the probiem
may be treated as one dimensional. Thus, we only consider diffusion perpendicular to ihe
surface. which dircction we denote z. Following the notation of Stratton!®. let us denote the
current of electron-hole pairs at a particular point. 2, near the surtace of the sample in the 2
direction as J. Further,

J=1. 4+ 4

0

R
.
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where JF is the contribution due to the gradient of the band gap. which drives pairs up

towards the surface where their density is greatest,

"F = nuF, (S) !

e ]

and where Jj is the contribution due to normal diffusion, which drives pairs down away from
the surface,
Jp = - Ddn/dz. (6)

(We negiect the fact that D may vary with z in this rather qualitative discussion.) Here, F is

the field acting on the pairs due to the variation of the band gap. 1
po JGME. _dSH AT, dT, L dAS,dT, - g
dz dT, d: v odz °dT, 4
D is the ambipolar diffusivity of the pairs, and g is their mobility. D and p are connected by :1
the Einstein relation, ‘ !
u = DF_,/,:(n'-nO)F_l/2(-q’)/kTL_FL A("-n)F ), () | 1
where F_l , and Fx,z are the Fermi-Dirac functions and Ty = - _\Ecv, ch and ' = E,:,‘ch.
with Fermi energy, E. measured from the valence band edge. For the present we approximate
Eq. (8) with the non-degenerate formula, >
uw=D,KT,. (9)
The error introduced thereby is only a factor of 2.6 even at y, = 2.5. ‘1
We use the Varshni equa(ions“’ and the data of Thurmond- for AH“(TL) and A5, (T, ). .
These give éj
dAH, /dT = 2a8°T (T + B (10) 1
and |
das, [ dT = 2ap° (T + DY (1)

witha = $.73 x 10% eV . °K = 549 k and 3 = 636 K for Si.

Thus. Eq. (4) becomes

o Bl AL T




i=_2_"i’£2__[1__r_é].‘ﬂ+f&dn_£'i
". D 3 T, d: kT, d: Az
F k(T +8)

The first term. which vanishes when T, = TL. comes from combining the contributions from
1 dAH_ /dT  and daAS, dT,. (Positive values of J/D imply the plasma is confined and driven

to higher densities.) Note that T, is a function of n because that is how it is defined.

II1 Discussion

Initially after a short laser pulse both dn/dz and dT_/dz would be given by the more-or-
less exponential distribution of pairs produced by the absorption of the light, but, if confine-
ment begins, they both will grow larger. The question of a proper determination of dT,, dz is
difficuit because of the open question of the variation with plasma density of the rate of
transfer of energy from the plasma to the lattice. Here we shall simply assume dTL dz is
proportional to dn/dz in the period immediately following the laser pulse. As no mechanism
for confining the flow of heat, i.e., the phonons, has been suggested. it seems clear that after

some time dT . dz will grow small.

Let us now evaluate Eq. (12) using parameters consistent with the measurements'? of Lo
and Cumpaan for the period ‘mmediately following the laser pulse. We take Tl_ = 573 K so
that A5, = 4.0 k. Then Eg. (12) becomes.

1 D=25x10"n[t-T TJ]dT, dz+ 40n T dT, dz - dn dz. (13)
We further assume imitial penetration to have a charactenstic depth of 100 nm. so that with n
= 10°" em?, dn. dz = 105" ¢m?, dT, dz = 3 x 107 K. em. T, = 10 K. and T d7 = 10’
K. em. With these values. Eq. (12) now becomes,

ID={07S+30-1]x10" cm' = + 378« 0" om? (14
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This positive value is large enough that the error due to the neglect of degeneracy in using
Eq. (9) instead of (8) couid not change the sign of the result. We further note that the
dominant positive term is that invoiving dT,/dz, which will grow larger with time if confine-
ment occurs, and not that involving dT, /dz. which will grow smaller after some time. Finally,
as was noted in the accompanying paper‘s, the effect of including the effect of degeneracy in
the relation between T, and n is to increase T, relative to n. so that dTC,’dz will also be

increased relative to dn, dz.

IV  Conclusions

We conclude that there is no doubt that tfor the extreme conditions achieved in some
pulsed laser annealing experiments there will be an initial period in which the laser generated
plasma of electron-hole pairs will not diffuse down its concentration gradient but will be
driven to higher Jdensities by the band bending induced by the gradient of the band gap. To
understand the time development of this confinement, we will have to develop an understand-
ing of the variation with plasma density of the rate of transfer of energy from the carrier

. . . . . . « . 30 h
system to the lattice. While progress is being made in this direction®: 132921

a full understand-
ing of this probiem, and of the long persistence of the laser induced ptasma. has not vet been

attained.
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Figure Captions
Fig. 1 Variation with temperature of the fundamental band gap. AE | of Si. As AE s

the standard chemical potential for the creation of (unbound) electron-hole pairs, it 1s equal to
a free energy. The corresponding standard enthalpy and standard entropy of this reaction,

AH“ and AS | are also shown. This figure is borrowed from Thurmond, Ref. 2.
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Dynamics of dense laser-induced plasmas

Ellen J. Yoffa
IBM Thomas J. Wartson Research Center, Yorktown Heights. New York 10598
{Received 17 August 1979)

Calculations have been made to determune the influence of a dense piasma of hot electrons and holes on
the pnimary channels of energy relaxation and redistribution of photoexcited carmers in Si, particularly
collisions between carriers, plasmon ¢mission, impact ionization, phonon emission. and carner Jdiffusion. At
high carner densities, Auger recombination is sufficiently fast to ensure that the electrons and holes rapidly
reach quasiequilibrium with a common quasi-Fermi level at a temperature which 1s lowered by the
partitiontng of energy into thermally excited plasmons. The appropnate dielectnic function has been
calculated. At sutficiently high temperatures and carmer densities, energy can diffuse at a rate that s
comparable to (and, in some cases, faster than) the rate at which the energy is transferred to the lattice
The steady-state carner density and temperature, and consequently the ultimate extent to which the lattice
1s heated. depend criticaily on the parameters of the exciting laser.

[. INTRODUCTION

It has recently been argued that simple-melting
or strictly thermal models for pulsed laser an-
nealing of ion-implanted and amorphous Si cannot
provide consistent explanations for a large body
of experimental evidence.'”® It has been suggested
as an alternative possibility that annealing is
achieved in the presence of an electron-hole
plasma.!*® In this paper we shall examine a
related topic: the dynamics of a dense laser-in-
duced plasma and, in particular, the influence
of high concentrations of hot carriers on the rate
at which energy is transferred from the laser to
the silicon lattice. Previous calculations'™ have
been performed which assume that the laser
energy is transferred to the lattice in the same
region in which it is initially absorbed. We shall
demonstrate that under certain conditions carrier
densities and temperatures are so high that during
the laser pulse energy can diffuse {rom the ir-
radiated volume faster than it heats the lattice,
In addition, we shall find that for sufficiently high
carrier densities, the phonon emission rate is
itself screened. Most theoretical and experimen-
tal investigations of energy relaxation on psec to
nsec time scales of hot, photoexcited carriers
have dealt with carrier densities in Ge (Refs. 9
and 10) and GaAs (Refs. 11-15) which are lower
+han those at which one would expect the above-
mentioned effect to occur.

In the following sections, we shall examine the
rate at which energy is given to the carriers by
the laser, the rates at which carrier collisions
redistribute this energy, and the rate at which
the energy is transferred to the lattice. In order
to compare the relative importance of competing
energy-transfer mechanisms, we shall refer nur
calculations to a typical laser annealing experi-

"

ment'® with laser wavelength V[ =0.53 «um, inci-
dent power density P=10° W cm*, and laser
pulse duration 7, =10 nsec. These parameters
correspond to an incident energy density of 1

J cm?. Although annealing is often pertformed in
the presence of high implanted donor or acceptor
concentrations, we shall assume that any extrin-
sic carrier densities introduced are <mall com-
pared with the photoexcited densities.

In Secs, U and I we shall discuss carrier
creation and the subsequent thermalization and
recombination. The interdependence of the re-
sulting carrier density and energy is examined in
Sec. IV. In Sec, V we calculate the effect of a hot,
dense plasma on the rate at which energy is trans-
ferred to the lattice by phonon emission. In Sec.
V1 we demonstrate the importance of carrier
diffusion in determining the ultimate extent to
which the lattice is heated. Finally, in Sec. VII
we discuss the implications of our analysis.

[I. CARRIER THERMALIZATION

The incident laser energy is absorbed either
by electron-hole pair creation or by free-carrier
excitation. Initially, with few carriers present,
the former process dominates, so that near the
silicon surface the photon absorption rate y
=P{1-R) 5thw,), where P is the incident laser
power per unit area, R is the reflectivity of the
sample (R=0.3), #w is the photon energy. and
5 1s the absorption length (5~107 em at hw,
= 2.3 eV). Electron-hole pairs are created via
indirect absorption processes wnvolving *he emis-
ston and absorption of phonons. Because phonon
energies are much smaller +han 'he hoton
energy, the amonnt of enervy transferred to the
lattice during absorption 1s negligible in compari-
son *o the *otal amount absorhed., The rise in
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carrier density leads, in turn, to increased free
carrier absorption. By the same argument as
above, we can neglect the energy transferred to
the lattice by this process also. The net result
is consequently the production of hot electrons
and holes which rhen thermalize with the rest of
the carriers and eventually with the lattice. For
the example we are considering, g~10° cm™sec™
so that carrier densities exceeding 10'° cm™ are
achieved in times much less than the laser pulse
duration. We shall therefore look at carrier
thermalization at concentrations greater than
10'° em™,

Primary channels for energy relaxation of the
hot carriers are collisions with the other car-
riers, plasmon production, and phonon emission.
Another important mechanism is electron-hole
pair production by impact ionization, (This pro-
cess is the inverse of Auger recombination, and
will be discussed in detail in Sec. II.) Of these
processes, all but phonon emission involve
primarily the redistribution of the carrier energy
among the electrons and holes with negligible
amounts of energy transferred to the lattice.

For an electron having an energy E above the
conduction-band minimum, the rate of energy loss
due to collisions with the .V, other electrons is
given by'’

’

3E _ _d4mNyeler )
=, Elhaln yreae e,
at ),.e €i(2mrE)'"

where e and m? are the electron charge and effec-
tive mass, and ¢, is the bulk dielectric constant.
The energy lost by the hot electron is then shared
oy all of the carriers. We shall demonstrate in
Sec. V that at very high carrier densities, the
detailed dependence of € on wave vector § and fre-
quency w becomes important, modifying the sim-
ple form of Eq. (1). For the purposes of com-
paring the relaxation rates, however, simple ex-
pressions containing €, are adequate. c is a
factor between 1 and 2 which accounts for the in-
fluence of spin and exchange on a scattering
event.'” fis of order 1, and depends on the dis-
tribution of electrons with which the hot electron
interacts. Clearly, the importance of the parti-
cular distribution diminishes as the energy of the
hot electron increases.'” An expression similar
to Eq. (1) applies to electron-hole collisions. As
we shall find in Sec, VII, N, for our example is
~10% ¢m™3, so that with E=1 eV, < =11.8, and
m? =0.33m, (3E, 3¢1),., for our example is roughly
-10" eV /sec.

Energy relaxation by plasmon emission is pos-
sible when E is greater than fiw,, where /T, is
the plasmon energy,

YOFFA .!_l
4.”.792 172
Rw,=R(—2t—) 12)
€,m¥

with m* =0.15m the reduced electron-hole eifec-

tive mass.'® The corresponding rate per carrier
£ 19,20
s’

3E\ _ Viw,) E A\t ‘
(at >¢-,— an(2m2E)'7 m(fw,) , i3)

where g, is the Bohr radius. Using the values
from above for the parameters. 3E 3t ,, is ap-
proximately -10'" eV /sec. Flasmons can subse-
quently decay via single-particle excitation (or,

if iw, is greater than the energy gap. E;, by elec~
tron-hole pair creation).

For the high carrier densities present .\
>10" cm™), the plasmon energy fiw,is muchgreater
than phononenergies /iw. Consequently, plasmon-
phonon coupling is weak and phonon production by
the plasmons is negligible., Since no energy
is transferred to the lattice by the creation
of plasmons and their decay, the energy lost by
the hot electron remains in the carrier system.
Near the start of the laser pulse, the plasma fre-
quency passes through resonance with the pnunons.
but the rise in .V {s so fast w:at the amount i
energy transferred to the phonons in this time is
a negligible fraction of the total pulse energy.
(With g~ 10" cm™' sec™, 4., is resvnant with pho-
non energies for ~107"! sec. so that the =nerzy
transferred during that time is 3+« 1) eV cm .

In addition, the carriers may reiax ny emitting
phonons. Again we emphasize thut .0 his procvess,
as opposed to those relaxation channeis scussed
above, the energy of the hot carrter s not merely
redistributed among the remaining carriers but
is transferred from the plasma 2 the lattice.
Under the same conditions for vhich ve have es-
timated the other rates, we shall lind 3F 34, .
~-10'' eV -'sec. This process will be examined
in detail in Sec. V.

Comparing the above results, we {ind that the
rates of energy relaxation by both intercarrier
collisions and plasmon production dominate energy
relaxation by phonon emission. The reason lor
this result is that -3 E,'3¢),., and = 3E 3¢}, -
crease with \V,, whereas, as we shall see in Sec.
V, =(3E,31),.,, does not. Clearly. for N, suffi-
ciently large, the former rates will dominate.
This criterion is met for N, ~ 10" cm™’, so will be
satisfied at densities attained in our system.

Arguments analogous to those relevant to elec-
tron energy loss rates lead to similar conclusions
about hot holes. Consequently, we expect that
collisions between carriers result in their rapid
thermalization. In times of nrder 107" sec. the
electrons and holes attain thermal distributions

P
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characterized by temperatures I, =7,. Carrier
thermalization is achieved without transferring
energy to the lattice, so that the carrier tempera-
ture is initially much higher than the temperature
of the lattice, T,.

ill. CARRIER RECOMBINATION

Because the carriers are thermalized, both
electrons and holes can be described by quasi-
Fermi levels and a single temperature 7, =17,.

In order to determine the relationship between
these two levels we must consider recombination.
Auger processes, with rates proportional to N,
will dominate recombination at high carrier den-
sities."! Specifically, an electron recombines with
a hole: the energy released is taken up by a third
carrier. This hot carrier will rapidly thermalize
with the rest of the carriers through collisions
and plasmon production as discussed in Sec. II.
The Auger rate is given by (3N, 3¢) g0 = —C, V1N,
- C\WNiN, = =(C,*C,)N ==CNJ. For crystalline
Si. C =4% 107" ¢cm" sec, where C increases only
weakly with temperature.::

A sufficiently dense plasma will partially screen
the Coulomb interaction between carriers, leading
to 2 modified Auger rate

N ~CNj
EDMS sy _CTINND.
( 3t >Au“r [14-('/\ (,G)s].. CHN)N,

where \is the screening wave vector, and &;
=(2m*Eg)'/* ‘h, with E; the energy gap. is the
approximate wave vector of the most likely re-
combination transition. As we shall see in Sec.
IV, the high carrier temperatures lead to nonde-
generacy even at high densities. so that ‘\"n\/,,
and the recombination time Ty, . =N, (3N, 30) 4 ¢
approaches a constant for very large .v,. This
screening becomes important at ¥, ~ 10" ¢m™
and as N, further increases, 7, ., decreases
asymptotically to approximately 6x 10" sec.
Carrier excitation occurs at the same time by the
inverse process, impact ionization, with (3N,,'36),,,,,
==C'(N,)NiN,, where N, is the equilibrium value
of N, at T,.

During the iaser pulse, the rate of change of
electron density in the irradiated voiume is there-
fore

AN, :[(——'—a‘\’ ) + (—'—a‘\ > ] OV N, (N =N
dt <ot A Jaune
14)

ry

where (3, 31),,, is the electron laser gzeneration
rate and (&N, 3t},,,, is the rate at which electrons
diffuse from this volume. When NV, =, =V, im-
pact ionization balances Auger recombination, so
that the electrons and holes are in equilibrium

with each uther and are described by a common
quasi-Ferm level. We want to find the condi-
tions for which departure {rom this equilibrium
is small. N, is a function of the carrier energy
density. and therefore varies with time as the
laser inputs energy. as energy diffuses away. and
as phonons are emitted. N, follows the changes
in .V, provided the net ionization-recombination
rate is faster than the remaining terms in Eq. :4).
If .V, =N, Eq. (4) becomes

ANy o\ ) v el ~

TR G+ 2C (NN = 2CWNONGN, \5)
where G =(8N,,'3f),,, + 2N, 3t)y,. For N, suffi-
clently large, 2C'(N,)N,’ -G, Because (&N, ),
~g(dueto freecarrierabsorption)and (AN, )4
~0, G<yg. Therefore, when 2C'(N,)N} ~ g, we can
certainly ignore the first term in Eq. (5). This
condition is satisfied for v, =10% ¢m™. In this
case, dN,, df = =2(N, = N.) Ty - ASaresult, if
v, does not vary appreciably in times of order
Taugers Vo Will be approximately equal to N,. Since
Y, is determined by the total energy contained in
the carriers, 4V, Jdf . g and variations in N, are
sufficiently slow to ensure that departures from
quasiequilibrium are small.

Because Auger recombination need involve no
energy loss from the carrier system. the exact
details of the absorption of the laser light—i.e..
the relative amounts of electron-hole pair excita-
tion and free carrier absorption—are unimportant.
The carrier density follows N, and is therefore
completely determined by the total energy £, , of
the carriers.

IV. ENERGY EQUIPARTITION

We can now calculate the dependence of the
carrier density and temperature on E,,. .\,

equals Vi, so that it obeys the usual expression

. - \E)dE
A,:I i—*"gef‘_‘;'s_"n?r'—' (6}
At the same time, the single-particle energy of the
electrons is
7 _Eg. EME -

E‘——_/: 1"'&’\5‘5’”‘.1.' B [y
In Eqs. ‘6) and .Ta). ;.. E) is the single-particle
density of states and £ 15 the Fermi eneryy.
Equations analogous to these apply to the holes.
In addition, eneruy is stored in thermally excited
collective ogcillations of the carriers:

b i
AR (.Y - U L.tV S -
E '""<6n> )e"“-*""v'-l ' !

fiw, is given by Eq. (2). We assume thal these
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plasmons have negligible k dispersion: &) 67" is

the number of allowed modes at 7.,. The cutoff

wave vector,” ™ &_, is taken to be approximately

the Debye wave vector,

( 4”[Vel Y]
b~ l— .

Assuming ellipsoidal constant energy surfaces
characterized by eifective masses w2 and mij.
Eqgs. {6} and (7a) become

N, =A,omeeL)RE () (8)
E.=A,»1::/:le,)i”ﬂ/_.tr7), (9)
where

M, (2\'/F
g (®)

with M, the number of equivalent conduction-band
minima,

E
£
(T
and
- T xdx
f"r])gf e+ 1

is the usual Fermi-Dirac integral. The total
energy of the carriers is given by E, , =N, E;
+E,+E,+E,,. The term N E; represents the
energy »f excitation across the gap. We have ne-
glected the dependence of E; on N, T,, and T;.
However, because the carrier temperature 7, is
very high, Eqgs. ‘8) and (9) depend only weakly on
E; and the error introduced is not large. In Fig.
1. we have plotted E, , and NV =\, + N, as functions
of carrier temperature k7, for Si with parameters
M, =6, M, =1, m$ =0.33m, m}=0.55m, and m?
=0.15m."" As expected, both number and energy
are monotonically increasing functions of tempera-
ture.

The importance of the plasmons is not readily
apparent from Fig. 1. To demonstrate their role
more clearly. we look at the dependence of 4T, on
(Eyge = N ,E;)'N, the excess energy per carrier.
Using Egs. {7)-19}, we find

Elnl-‘viEﬁ - F]I"“L) - ": . 172
N —leT,<F“:(n)> 3nlie (m*kT,)
2
)(—.I_Z 1' (10)

where 2 s lw,, kT,. *T,is plotted in Fig. 2as a func-
tionof the per carrier excess energy., Forsmall.\y,
BT, =3{1E,,, ~ N,E;) N|, as expected. The dashed
curve was derived by neglecting the plasmon con-
tribution. Note that the temperature falls below
this limit when an appreciable amount of energy
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FIG. 1. E,, and N as functions of carrier tempera~
ture kT, calculated for 3Si with M, =6, M, =1, m) ’
=20,33m, my=0.33m, and m, =0.15m.

is contained in the thermally excited plasma os-
cillations. This occurs when the carrier temp-
erature and plasmon energies are comparable. '[
In Fig. 3, we plot the fraction of the excess energy
contained in the plasmons as a function of carrier
temperature. At the peak of the curve. roughly !
ten per cent of the energy is partitioned into the
plasmons. This particular value should not be !
taken too seriously, however, because it depends '
critically on our estimate of »_.

For typical doped semiconductors .V, ~10*~10"

NG PLASMONS

o~

»Te fev)

N Ml S

I

fanr-Vefg

ev!
N

FIG. 2. kT, as a function of (Eye =N, E NV, The
dashed curve was lerived by neglecting the plasmon
contribution,
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em™)at room temperature, T, ~ 107102 eV - kT,

As a result. many collective modes may be oc-
cupied, but their energies are so small they con-
tain a very small fraction of the total energy. For
metals, on the other hand, Aw,~ 10 eV ~-4T, The
plasmon energies are very large, but so large
that a negligible number of them are thermally
excited. It is at just those temperatures (k7,
~0.1-1 eV) and densities (N~10"-10"' ¢cm™)
relevant to our discussion that a significant frac-
tion of the total energy is contained in thermally
excited plasma oscillations. The heat capacity
of the carrier system is increased as a result of
the additional degrees of freedom, into which a
significant fraction of the energy is partitioned.
In other words, if we try to heat up the carriers
by pumping energy into them, their temperature
will be lower than in the absence of plasmons,
because these modes are absorbing some of the
energy.

V. PHONON EMISSION

In this section, we shall first calculate the ex-
citation spectrum for the carrier system and then
relate the resuit to the phonon emission rate.

We shall examine this rate in detail, focusing on
emission at those §'s most relevant to silicon.
and paying particular attention to the effects of the
hot, dense carriers.

We begin by calculating the contribution to the
imaginary part of the dielectric function, €.3,»),
from electronic transitions within and between
conduction-band minima. We do not sum over
valence to conduction-band transitions. The w's
at which we uitimately evaluate the dielectric
function are far from resonance with interband
excitation energies so that these transitions do
not contribute significantly to ¢,. In the random-

~ 03¢
i

i a
‘ |

Q2+

2=

(L ASMON ENERGY/ TOTAL EXCESS ENERGY

301 o3} "0 10
uTy {av)

FIG. 3. Fraction of excess carrier energy contained
in the plasmons 18 a function of carrier-temperature
LT,
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phase approximation (RPA),”

e;(ﬁ,u)-“e ZZ/ 1-ri, W

if ko

x 5w - [AERDI],). (11)

where ! is the volume. The sum _/” ranges over
all pairs of valleys / and j (including / =j) where
the transitions are from valley / to valley ;. The
occupation probability of a state ke in the ith val-
ley is r- and [AEk.F ]‘, is the difference in energy
between electromc states (k +3, a), and ko) In
RPA, the electrons have free- electron like wave
functions and polarizabilities, but respondtoanet-
fective Coulomb potential which includes screening
self-consistently, 1n contrast to the Hartree-Fock
approximation, in which the electrons respond to
just the external field.?

We approximate each conduction-hand minimum
by a spherical constant-energy surface having
effective mass »3. The wave vector from a par-
ticular valley to its jth neighbor is denoted by
Q,,. In this case. we find the following equiva-
lence (see Fig. 4): For any intervalley transition
k-k+ 4, there is 2 correspondmg mtrazallm'
transition k - k+Q,. where Q =3-Q,,. such that
(a) 'i~3; "M’ and (b) E;,;7 -Eh. Within our
approximation for the energy surfaces, the resuits
ta) and ib) follow directly from the definition of
(5,.. (Actually, this equivalence holds exactly in Si
for those pairs of e/lipsoidal valleys aligned on a
common :1,0.0) axis.] Equation (11) therefore
becomes

€\q.w) =

fill-13) V6{fiw ~ E;,sl E;).

"12)

where we have included the intravalley transition
by defining @, 1uera =0 SO that Q, \pra=3. In

Eq. (12), Eqg - Eg=it ’Q, +2kQ, cosO) 2my, where
© is the angle between k and Q The important
simplification we have made is that we can now
include intervalley transitions by evaluating the
sums within any one valley.

The high temperatures ensure that the occupa-
tion probabilities are essentially Boltzmann. so
that r;~ e '£i"fF'*% and r11 - ) ~ 7. Making these
substitutions. we obtain

ALLEY

—— 3,

FIG. 4. Schematic of intervallev-intravatlev aquival-
ence.
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cos® +@Q; )) 13

where E_ is the energy of the conducnon-ba.nd minimum. When we let ._.‘-‘Q ‘81) fd“k, sum over ¢, and

integrate over the S function, Eq. /13) becomes

€(J,w) = ?
TR }ML
2m}
where
_|mi (e,
Rata ’i"Q, <fzw amr )|

Integrating Eq. (14), we find

klexp( __nikz__)dk
__l_(_e'__.e-(lc-lp)/uf' Z fn 2mekT,

. 14

hu..

172 372 SMw-EQ) /IR E
€,q,0) = ——-—L‘—a——’—(gﬂ) mgkle) M "3c'5ﬂ/"32 <§Le e ) (15)
s

where Eg, EﬁzQi/2m
normalized Gaussians weighted by Z,.

372
.V‘ = 2."1. (2—”’%‘:&‘) e"EC'EF’ /&Iy s
x

the imaginary part of the dielectric function becomes

- _41124V.e2 zle-(Hu-EQj)z/"TyEg/
@) == ); (4nkT,Eq )T

In Fig. 5, we sketch €,(§,») as a function of fiw
for an arbitrary fixed §. Note that there are
Gaussian peaks centered at fiw, = EQ’. These
peaks correspond to transitions originating from

the densely populated states near the band minima.

The widths of the peaks are (2kT,Eq, ), At
higher temperatures the peaks are broader be-
cause electrons occupy a larger volume in &

(4nk T,EQI)‘”

#. Z, is the number of valleys separated from valley ¢ by @,,, and the sum is over
Finally, using the relation

(16)

r
course, the peak heights are complementary to
their widths—those resonances that are more
spread out are less strong at any given w.

To put €.(q,») in a more workable form, we
approximate the normalized Gaussians by norma-
lized Lorentzians having the same peak locations
and widths. Then. using the Kramers-Kronig
relations we can obtain <,\d,.). the real part of

space, thereby increasing the likelihood of transi- the dielectric function, and, consequently. <{Q..!
tions originating from higher in the bands. Of = €,\§,w) +i€.(q,+). This function is
—
41N ¢? =2 iTw ) -
= +_._l__ — . . - - ~— 1
“@ul = €5(q) ZZ( > <w;—u')z+u‘r; (u;-;‘)‘*g'r; a7

where kT, =(8kTEy 41, ¢, J.») represents the
contnbutxon from mterba.nd transitions to <@, ).
As discussed earlier, Im < ,g,«) is negligible at
those frequencies with which we shall be con-
cerned. Because electron-electron collisions are
dominant, collisional broadening widths AL, can
be evaluated {rom Sec. II to be =0.05 eV. On the
other hand, AT, ranges from =0.2 eV for intraval-
ley transitions to =3 eV for transitions between
valleys, so that the collisional widths are very

—
small in comparison and we can iynure them.
Next. we calculate the excitation spectrum

<,

1
Im ———=
€(q.v)

—
£e e "

When we square < and * . we find that we can
iunore cross terms for differing ,. which are
negligtble ipeak times tail) compared to the terms
corresponding to the square of one peak. The
excitation spectrum s wiven by

3.
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(ﬁl’))(fiw)

1 1 ) Q,\°
- =" - Z <—L> S - ~r ]
RPTE I R [(rm,.) ; Nq / [Eg, = ha) T = i) i)

Eb, - (iw)’

: (7AN

T )‘222@1_‘* e (18)
w & i\q ) [Eq, - )T + o) @) |

where €, = €,(§,» =0) and

4"Av.e2 142
Y=l .
be €,ms

{2, is used for notational convenience and does
not correspond to the plasma frequency which is
given by Eq. (2).] Earlier, we saw that €,(q. »),
for fixed §, was peaked at several values of w.
We now look at Eq. (18) for fixed ». We find that
it is peaked at several g—those g such that Eg,
=fiw. (If we had chosen to include hole transitions,
the result would simply be the addition here of
another peak at #°Q}/2m# =fw. However, be-
cause all the hole transitions are intravalley,

@, =3. Since we shall be looking at small fiw.,
phonon emission by holes therefore occurs
primarily at small g. As we shull see, these
transitions are well screened even at moderate
carrier densities. This will also be the case for
intravalley electron transitions, which we can
take to be representative of both types of small-q
phonon emission.)

In general, each intervalley separation 60, will
have a corresponding J such that E°,=ﬁw. Im(l. <)
is peaked at these values of §, which we denote by
q,. Near these peaks,

tm o L s Z(Qy g Mo (BE )
<@, €, 8kT,w) +iw,) 2@, q)"
19)

The value of q, at each of the peaks corresponds
to a particular intervalley transition and, for
small w, ﬁ,’-én,. The widths of these peaks do
not vary with q,, since #l, = 18kT,Eq )'/*

2

= (8RT,iw)' " #s1q,) for fixed w.

[ T e T S
5 o= Nl
oy P
F 4 P
H o
z 28~ N\
/l \ ; \ N
; / K
\
I A} Fa ~
Ja ‘4 — e D PR
Es, Eay €3y

FIG. 5. €4/ (47°N 2% ¢%) a8 a function of i, for ar-
hitrary fixed §.

We now relate the excitation spectrum to the
phonon emission rate’

dNz 27 Veears |° .

AV oM 4 o

TR E:z :I < Fra =7
14 k, @

x 5(fiw = (E;,; - ED))., 120)

where Vi, ; is the unscreened matrix element for
the transition of an electron from state kK +3 to
state E. with the emission of a phonon of wave vec-
tor §. As is usual, we assume V is not a function
of the electronic state k. Evaluating Eq. (20 in
the same manner as we did Eq. (12}, we find

d——l‘-“- =2i.\' ‘Ll> (""U ‘aly Z Q-(AU-EQ’): "105-“‘“,
at il ~ T kT,Eq)

21

Comparing this result with Eq. :16) and using Eq.
(17}, we see that

dNi,u mEVE,, ( 1

dt — reh’ g,

)(,-nu, o, 22)

The factor ™ /"¢ gppears for phonon emission be-
cause carriers must be an energy /fiw higher in the
band than required for the absorption transition
that contributes to « . With the use ot Eq. :19).
the emission rate can be written as

AN7, » _ mays ‘
dt 7ol
s aty _ Nwpe) Z i) Bk TR
B 8kT, + hu ) Z hiw E, 1
’ b
23)

X e

Because /iw < E, for intervalley transitions.
§,=§1,. (For transitions within a valley. Q , =0
so we treat §, explicitly, with E, =fc.) Asare-
sult, phonon emission is peaked at those phonons
with wave vectors corresponding to the intervaliey

separations,

ANG, - SANa

dt (1[

= Rape Zml” o)ty Vb
BET L) L= B 7 SETACE, ,T'

24)

In Fig. 6. we sketch '1 N,)uiNg, . ). the rate
of phonon emission per electron, as a function of

)
i

— -

e P i, DR Sl
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(ﬁw,,)g, where we focus on phonons having wave
vector 60, and frequency w. Notice the abrupt
change in behavior at

. , iw)(Eqn) 8k T, \'/*
(ﬁw,,)'=(ﬁu,,);,“=( L) Z?[ ) BLT) . 125
’

Since fiw,,)’ is proportional to .N,, this means
that below a critical density of electrons, the per
electron emission rate is independent of N,. In

this regime
1 d‘vi,.u 2Z,Vighu/ T 26)
—_— = ” T. {
N, dt he [2kT,(lh')l‘/'

However, for suificiently large .V,, screening by
these carriers becomes important and the rate
falls rapidly with V,:

1— le‘..d
N, dt
_mViEY, [8RT, (Hu)]' Pehe /A% ’ﬁ)
- €,2,1e°h (Rwpy)”
(27
If N(T,) is much less than the critical value
given by Eq. (25), then
(_I_QN_‘;JL) (EL)”ZenuU/-r,.-t,'.m)
Ne dt Tez 1. (28)

(_l_dN;,,,) ‘1* (iwselTa[ Z]
Th

N, Ta BkT, (iw) (Eq, )’

We see that for T,, ~ T,;, screening by the large
number of excited carriers increases the phonon
emission time considerably from its unscreened
value.

Although the dominant energy loss mechanism
is phonon emission by electrons thole transitions
are effectively screened), rapid electron-hole
equilibration ensures that both species lose energy
at the same per carrier rate,

ING ;
(?_g_ =-&Z{_ih_°” w -_’L"’_. (29)
R N1 S S Ny 5 At T

In general, phonon absorption nccurs in addition
to phonon emission, The net rate of energy re-
laxation therefore depends on both carrier and
lattice temperatures, through terms such as”
e/ L oML [n our case. T, -> Ty. so that
there is no explicit dependence on lattice tempera-~
ture and only phonon emission is important.

We can now evaluate Eq. 125 to find the density
at which screening effects hecome important,
Assuming intervalley separations appropriate to
crystalline Si." " there are three classes of
transitions {or the electrons: ia) Intravalley
transitions are represented by @, =0 and Z =1.
We shall consider phonon emission at 0 =0.03

YOFFA 2l

eV, leading to a corresponding 4 =6.6< 10 ¢m™".
(b) All transitions from one valley to an.ther 1n
gxe same axis can be reduced to one 5‘. e.y..
Q. =27 a (0.4.0,0), where ¢ is the lattice para-
meter, with Z =1, and ¢=4.6< 10° cm™. .¢) Fin-
ally, there are four inequivalent transitions .Z = 4)
within the first zone from one valley to another on
a different axis, e.g., §n=t27r a) =.2.1,2.2) and
(27,/a) (=.2,£.2.1), so that g=1.2%x10" em™. For
€ (\§,») (implicit 1n v,,) we use the values cal-
culated by Walter and Cohen.”" [Although their
calculations were performed for J along the 1.0.0)
direction, and therefore apply strictly only to
scattering between valleys on the same axis, wve
use their results as an estimate of ¢, for off-axis
scattering also.]

As a result, Eq. :25) becomes

(@) (1w py)ipyy =003 T 7,
() Hiw ) ipy =0.85(LT,) 7,
(©) (wpg)apyy =0.33(ET)" °,

where the energies are in eV. Using the rela-
tionship between N, and 7T, found in Sec. IV, we
arrive at the critical densities at which screening
begins to become important for \a) intravalley,
(b) intervalley, on-axis, {c¢) intervalley, »ff-axis
scattering, respectively,

@ N, e *2.5%10% em™,

(b) N =1.9%x10% cm™,

“Tue.crit

(€) N, u®1.0x10% em™’ .

The rates in the strong-screening regime are
proportional to 1. 'N2, so that. e.g.. a factor of 5
increase in N, reduces the rates by 25. Un-
screened energy loss rates are reported to be"
~10'" eV ‘sec: from Eq. {24) we see that for .\,
=510 em™, the rate may be reduced to ~10"
eV sec. We shall demonstrate in the following
section, however, that carrier densities attained

FIG. v /N, dN At s tinction of i, :

. "j"l-w
ifi ~peicrr. The mset shows Jogil N, (AN, dly o5
I"t(l!fu,,'fv’!

“pelerit!.
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are unlikely to exceed the critical densities for
screening of intervalley transitions (although
screening of intravalley transitions will ocecur).

A reliable estimate of the phonon emission rate
depends critically on the electron band structure,
which is difficult to determine under extreme
conditions of high implantation dosages. amorphi-
zation, and rapid atomic rearrangement. Of
course, in all of the above calculations we have
assumed that the concept of ¢ space is valid and
we have evaluated the resulting expressions at
those particular values of q appropriate to crystal-
line Si. The strict applicability of this approach
depends on the degree »f amorphization which it-
self varies rapidly as a result of the annealing
process. As pointed out by Dumke, ' it may be
that transition rates in the noncrystalline state
are at least as fast as in the crystal, owing to par-
tial relaxation of selection rules.

V1. CARRIER DIFFUSION

Most of the laser energy is absorbed by the
carriers within an absorption depth 5. Eventually,
these carriers lose their energy to the lattice:
the rise in lattice temperature depends vn the dis-
tance they have diffused before substanual phonon
emission occurs, Now that we know how N,
varies with £, , and the dependence of the phonon
emission rate on ¥, and 7,, we can examine the
manner in which carrier diffusion redistributes
the energy. In particular, we shall calculate the
effect of diffusion on the rate of phonon emission
in a volume near the surface. It is important to
emphasize that this is not a simple diffusion pro-
cess. Although energy is a conserved quantity,
the number of carriers is not. When a particular
carrier diffuses, it takes its energy with it, there-
by reducing the total energy left behind and con-
sequently lowering the carrier temperature. As
we have shown in Sec. III, the rapid rate of re-
combination ensures that N, is completely deter-
mined as a function of time by this temperature.
Therefore. N, decreases not only as a direct re-
sult of carrier diffusion but also as an indirect
result of the accompanying energy diffusion.

Because of the strong coupling between the elec-
trons and the holes, they must diffuse at the same
rate, which is given by

3 3
(._N_> ;Da—-—-——a Y s 30)
KKT] Ax
where D, =2D,D, 'D,+ D,) is the ambipolar diffu-
sion coefficient. We can estimate D, using the
Einstein relation

il

o \“.o “N)

where u, (4,) 1S the electrun thole) mobility de-
termined by the carrier-phonon scattering time.
This approximation should yield a reasonable est-
mate even when carrier-carrier collisions are
the dominant interactiun, as these collisions do
not affect the net plasma momentum. . =e7 m*,
so that D, =2%T, 7,7, ompt, =my7,). D, 1s there-
fore ~10° cm’ sec. Because uf the exponential
dependence of v on T, diffusion terms involving
T,3N dx are larger than those involving V37, dx
by factors ~E; 2kT,, so that we are justified in
approximating the diffusion by the simple expres-
sion Eq. .30).

As a result of carrier diffusion. the carrier
energy changes at a rate Ziven by

2T (3_\) SEuby 2N 31)
N A e N B

PRIV VP

The equation governming the total carrier energy is
then given by

3—9—5;' R a—-'-;:: S gy

The last term represents the rate at which phonons
with energy ho are emitted. Because £, N
=\E,,, and 7 are both uniy weak functions >f N,
the steady-state value »f N, N, 5518 ]

.\;,' ssvXi

ha 7 3 5
:Ji_h___d_(_(“_‘ o= °>. 33)
fiw 1-3

where @ 51D 7 E,,, fie)’ °. To obtain this solu-
tion. we have used energy conservation via the
relation
- AP L
f gﬁ..:,_c"”srirzf S k. 34

At the surface,

ghw, T
\Y =) 2\ = ——————
Ne 2 =0) $BTha 5+1)

which we can rewrite in the form

"l
N la :m_.“ ) 35,
T a 5+1

Equation (35) directly reiates the rate of enerayv
loss by phonon emission o the rate »t energy in-
put by the laser. In the absence -t diffusiun

(2 =0), the two rates are equal. However, we
shall find fnr our examp.e that v and 5 are ¢ om-
parable, so that diffusion reduces the rate it
energy transfer to the lattice :n the rewion near
the surface.™

MIE DISCUSSION

We have evaluated AE 3¢}, numerically by
asing Eq. 28) along with a moderate-density
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phonon scattering time 7~10"'! sec which is con-
sistent with luminescence data for Si analyzed by
Folland*® and with those values inferred from
transport measurements.’® &7, and £,,, were cal-
culated self-consistently at each .V, as discussed
in Sec. IV. Screening does not affect the rate of
intervalley phonon emission until N,~10*' cm™,

at which point this rate begins to deviate from its
linear .V, dependence. Phonon emission for intra-
valley transitions falls off at smaller values of
~N,. Because screening increases the electron-
phonon scattering time, it not only decreases the
rate of phonon emission but in addition enhances
diffusion. Although for the specific example we
are discussing V) 55+ 10°' cm™ and therefore
screening effects do not play a major role in the
rate of energy transfer from the carriers to the
lattice. at higher excitation rates these effects
can be very important. In Fig. 7 we plot V) 4

as a function of ghw, !cf. Eq. (36)) for the exam~
ple described in Sec. I. In this case. ghw,
=P(1-R) 523410°' eV ‘cm’sec. so that Vg

= 2N, ;3~10°" cm™, which is the value we have
used for numerical estimates throughout this pa-
per. The fact that N} i has turned out to be
larger than 10"’ em™ justifies our original assump-
tion that the carrier densities are so high that
collisions between carriers are the dominant in-
teractions, that the plasma frequency is much
larger than phonon frequencies, and that Auger
recombination 13 most important. The dashed
line in the figure indicates values of .V, g 0b-
tained by neglecting carrier diffusion (a =0). By
comparing the two curves. we see that at a given
laser power. diffusion decreases the carrier den-
sity near the surface. The rate of energy trans-
fer to the lattice in that region 1s conseguently
reduced. Excited carriers may therefore diffuse
an appreciable distance from the surface before
they give their energy to the lattice, thereby in-

2 Bt s L
Fo ot ae

FIG. ™ M., 19 1 function ot gh ., The wshed
urve was derivead hy neglecting ~trrier diffusion.
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creasing the volume of the region in which this
energy transfer occurs.

AL high excitation rates. the laser energy is
Jiven to the lattice within a characteristic depth
determined primarily by carrier diffusion. Owing
to the extreme nonlinearity of the hut-carrier ef-
fects. the uncertainty in the parameters chosen for
our example along with the simplitying assump-
tions made in our calculations prevents us from
making an accurate estimate of the precise temp-
erature to which the lattice is heated or from de-
termining the laser power threshold above which
melting will occur. However, because the ulti-
mate temperature rise depends so strongly on the
extent of the region in which the energy transfer
takes place, carrier diffusion plays a significant
role in determining this final temperature.

In summary, we have f{ound that for a photon
absorption rate y~10°' cm™’ sec”' at laser wave-
length A; =0.53 um and pulse length 7, ~ 10 nsec,
plasmon emission by very hot carriers dominates
phonon emission, and collisions between these
carriers are so rapid that electrons and holes
thermalize in times ~10"'! sec. Auger recombina-
tion. in which the energy remains in the carrier
system, is the dominant recombination mechanism
at these densities. In times ~107" sec, the elec-
trons and holes recombine. reaching a concentra-
tion which then follows changes in the plasma
energy. A fraction of the carrier energy is par-
titioned into thermally excited plasmons, thereby
raising the heat capacity of the plasma and de-
creasing its temperature. By equating the rate
at which the energy is given to the plasma to the
rate at which energy leaves the carriers via diffu-
sion and phonon emission, we can f{ind the steady-
state electron density. For our example. .V,
~10' ecm™'. At this density. only intravalley tran-
sitions are effectively screened. Carrier diffu-
sion plays an important role in determining the
ultimate extent to which the lattice 1s heated.
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Role of carrier diffusion in lattice heating during pulsed laser annealing

Ellen J. Yoffa

IBM ThomasJ. Watson Research Center, Yorktown Heights, New York 10598

Appencix H

{Received 21 August 1979; accepted for publication 23 October 1979)

A calculation is presented which demonstrates that diffusion of the hot, dense carriers generated
in pulsed laser annealing of Si can substantially reduce the rate at which energy s transferred to
the semiconductor lattice near the surface. The extent of the region in which this energy transfer

occurs is consequently increased.
PACS numbers: 82.20.Rp, 72.20.Jv, 72.90. + y

Although pulsed laser annealing has been investigated
for over a decade as a method of recrystallizing amorphized
Si films,' the details of energy transfer from the laser to the
semiconductor lattice remain a subject of debate.*’ Previous
calculations* have relied on the important assumption that
the laser energy is delivered to the lattice in the same region
in which it is absorbed by the carriers, and that the resulting
heat subsequently diffuses by conventional lattice and elec-
tronic thermal processes. In this letter we demonstrate that
under conditions relevant to the laser annealing problem,
excited carriers may diffuse an appreciable distance from the
surface before they give their energy to the lattice.

The rate of change of the total carrier energy £ is given
by

aE ‘Veﬁa) DaE 32.’\/
— =gfiw - x/8) — Q1
ar L exp( = x/5) T, * N ox* )

The first term represents the rate of laser energy input,
where g is the photon absorption rate and d is the absorption
length at laser frequency @, . The second term takes into
account the rate at which energy is given to the lattice by
electrons having density .V, via emission of phonons with
energy fiw. Phonon emission by holes, which involves intra-
valley transitions only, is effectively screened at high carrier
densities. Although in general the emission frequency 1/,
depends on the relative carrier and lattice temperatures and
on the carrier density, for those densities pertinent to typical
pulsed annealing experiments, r, is only a weak function of
these quantities.'” [In addition, because Eq. (1) will be solved
for the steady-state condition of time-independent E (x), the
detailed dependence of 7, on the total carrier energy is of
minor importance.] Weassume r, ~ 10 ~ "’ sec, which is con-
sistent with luminescence data for crystalline Si analyzed by
Folland'* and with those values inferred from transport mea-
surements.’> Although the particular value of », will vary
under extreme conditions of implantation damage and/or
amorphization, the weakly .V-dependent nature of ~, will
most likely be preserved.

The final term in Eq. (1) represents diffusion of energy
by actual carrier diffusion. Although energy is a conserved
quantity, the number of carriers is not. When a particular
carrier diffuses, it takes its energy with it, thereby reducing
the total energy left behind and consequently lowering the
carrier temperature. The carrier density therefore decreases
not only as a direct result of carrier diffusion but also as an
indirect result of the accompanying energy diffusion. Be-
cause the carrier density .V varies strongly with carner tem-
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perature T,, T,dN /3x» NOT,/dx. We have therefore ne-
glected diffusion terms involving 4D, /dx, where the
ambipolar carrier diffusivity D, =2kT,r 7,/ (m?*7,

+ mp2r,), with m*(m2) the electron (hole) effective masses,
and 7,(r,) the carrier-phonon scattering times. The carriers
diffuse at a rate gV /dr = D,3°N /Jx*; the average energy per
carrier is £ /N.

Although the carrier distribution in the steady state
(JE /8t = 0) is time independent, the lattice temperature
continuously increases as a consequence of the nonzero
phonon emission term. “*Steady state” therefore refers to the
carrier system only. Using the energy conservation equation

(“ N (fw dx

-
'

and thefactthe E/Vand r are weak functions of .V, we find
the steady-state electron density

( ghw, exp( — x/8)dx = (2)

- PNl

Ny Sl
fiw (1 —6/a’)

X [exp( —x/a) — ie.‘(p( —x/8)|., (3)
a

where a= (D, r, E /N#w)'*. The effective diffusion length
@ has the form of a conventionai diffusion length (Dr ) =,
where here ¢ (instead of being a recombination time) is the
time during which a hot carrier can diffuse before it has
given up its energy by phonon emission. Such a process re-
quires (£ /N Y#iw) ~' collisions, so that ¢ = [(E/.V)
X (fiw) ~' ] .. The fact that this result has such a simple
interpretation suggests that it may be applicable in general
provided an appropriate diffusion coefficient can be
calculated.

The rate of energy loss by phonon emussion can then be
directly related to the rate of energy input by the laser. At the
surface,

N fw - ghw, 4

r. (@/8) + 1"

where N =V  (x =0). Thus we tind that the rate of
lattice heating at the surface 1s reduced from the laser energy
input rate by a factor of ta/8 ~ 1.

Numerical evaluation of Eq. (41 1s complicated by the
fact that @ depends on the interrelated quantiies V. T and
E. Collisions between carniers at densities exceeding 10
cm  ensure that electrons and holes rapidly estabhish amu-
tual temperature 77 which 1s initially much greater than the
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FIG. !. Rate of phonon emisston at the surface, .V ' A/~ | as a function of
the rate of laser energy input, gfiw, . The dashed line was derived by neglect-
ing carner diffusion.

lattice temperature. In addition, the dominant recombina-
tion mechanism is Auger, which greatly reduces the genera-
tion-induced splitting of the electron and hole quasi-Fermi
levels. Under these conditions, T, and E are easily calculated
for any .V,.

In Fig. | we plot Eq. (4) for fiw, =2.3eV (6=10"°
cm). When diffusion is neglected (indicated by the dashed
line) the rate at which energy is transferred to the lattice at
the surface equals the rate at which it (s absorbed by the
carriers. Under this condition, lattice heating occurs in a
depth 6. However, we see from Fig. 1 that diffusion substan-
tially reduces the rate at which energy is delivered to the
lattice near the surface. When diffusion is important, lattice
heating occurs in a depth whick depends on both a and S and
is comparable to or larger than §. For a typical annealing
laser pulse'’ of 10° W/cm?, gfiw, =3 x 10°' eV/cm" sec, so
that the steady-state electron density .V? . = 5% 10" cm ~*,
which corresponds to kT, = 0.16 eV and E = 8 X 10*° eV

8 Appl. Phys. Lett., Vol 36, No. 1, 1 January 1980

cm ~*. D, is therefore = 100 cm*/sec, so thata = 2.5 x 10
cm and the lattice heating rate is reduced by a factor of ap-
proximately 3.5.

In summary, at high excitation rates, the laser energy is
given to the lattice within a characteristic depth determined
primarily by carrier diffusion. The effective diffusion length
a, which is a function of the total carrier energy, increases
monotonically with photon absorption rate, so that increas-
ing g eventually leads to lattice heating over a larger region.
In addition, a reduction in § (e.g., by an increase in laser
frequency) will not necessarily reduce the size of the heated
volume, since for sufficiently small 8, carnier diffusion will
eventually limit the minimum depth of heating. Because the
ultimate temperature rise of the lattice depends so strongly
on the extent of the region in which the energy transfer takes
place, carrier diffusion plays a significant role in determining
this final temperature.

This work was supported in part by the Air Force Office
of Scientific Research under Coatract No. F49620-77-C-
0005. The author wishes to acknowledge J.A. Van Vechten
for recognizing the importance of carrier diffusion and is
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Contribution of Dipole Defects to DLTS Spectrum’
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Deep Level Transient Spectra (DLTS) have previousiy been anaiyzed assuming
that the only contributions to the variatons ia junction capacitance recorded
come from detrapping of carriers singly from monopolar defects. The concen-
tration of defects deduced in this wayv is too small to account for measured
carrier lifetimes. [t is aiso smaller than is deduced from theory and from TEM.
We argue that many deep level defects are clusters of point defects whose
electrical activity results in dipole, and higher multipole charge states. Trans-
itions among these states can also contribute to the DLTS signai but much more
weakly, Consegquently, conveational analysis grossly underestimates the number
of defects present.

[ Motivation

DLTS spectra have generally been analyzed {1] as if the deep level defects being observed were
simple point defects. althouuh it has been widely recognized that this is not true{2-4]. In sampies that
have seen room temperature or above, one may expect to find complexes of point Jdefects formed {rom
the supersaturations of defects introduced by high temperature processing, e.g., by crystal growth, or by
irradiation. This is because simple peoint defects are gencrally jonized and rather mobile at room
temperature and readily form coutombically or elastically bound clusters. Nevertheless, in DLTS analysis
it has been assumed that the observed variation in junction capacitance comes only from the trapping and
detrapping of single carriers at the various defect conters.  Some justification for the simple form of
analysis has come from the fact that experiments have been designed with the intent to trap only holes.
h:" or only electrons, ¢ . Experimentalists have assumed that by limiting minority carrier densities. they
succeeded in preventing possible contributions to the DLTS signal through recombination, reorientation.
or de-excitation of dipolar and higher mult.polar charge distributions at the Jdefects.

There is much reason to believe that the conventional analysis of DLTS spectra has SITMTCInGY
underestimated the concentrations of deep defects present. Although the analvsis supposedly gives defect
concentrations, cross sections and activation energies, attempts to calcutate carrier lifetimes from DLTS
measurements generally overestimate these lifetimes rather badly when proper account is taken of the
expected saturation of the traps [3.6]. A generally successful theory of the thermochemistry of semicon-
ductor defects{4] predicts substantially higher concentrations of defect clusters than have been inferred
from DLTS. For exampie. in compound semiconductors like GaP and GaAs, it is predicted that the
cluster consisting of one¢ antisite defect, e.g., a P on a Ga site, P, . bounded by two vacancies, e.g.. V.
to form a (110) oriented complex. c.g., ,E:IJPEEVE;J‘ one atom in diameter and 3 lattice sites long
should typically occur in mid 10" ¢m? concentrations even in the best qualitv material{7.8]). DLTS
workers have not reported anyv spectra they could associate with such a defect at anywhere near that high
a concentration. On the other hand, ultrahigh resolution, direct lattice imaging TEM doeys lind defect
clusters having tus size, shape, orientation and concentration in the best quality GaAs and 1t has been
shown that they are active in infrared absorption{9]. It can also be argued that such concentrations of
delects are necessary to account for the degradation of electrooptic devices| 8,10

Thus. the moUvation of this paper is to understand why DLTS studies have not renorted as mamy
deep level defects as have heen prodicted from theory or inferred trom clectrical medasurements, TEM.
and observations of deeradation pheaomena. In Sceo [ we make atroductory remarks aboat expuer:-
ments, defects, and defect mteractions. In Scee T we discuss what processes the defect slusters “har e
should expect to be present smght exinhit which wouid produce 4 DLTS signal much weaker than g
produced by simple detrapmng Tn See IV we expliun why the experimental deggan faded to count ail toe

defects that were there be detecung detrapping and tatded to present the operation of the veuner
h H i i {
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processes. Thus, one defect may produce more than one DLTS signature and the concentration deduced
from each may be much too small.

Il Distinctions among Experiments and among Detects: Interaction among Defect lonization Levels

There are two Kinds of donors and acceptors. There are those, which we call coulombic, which are
neutrai when filled by free carriers, jike S, and Zng,, in GaP, and there are those, which we cali
isociectronic, whicit are ionized when filled by free carriers, like Bi, and Np in GaP. Vacancies and
interstitiais are mmportant examples of isoelectronic defects. In recognition of this fact DLTS experimen-
talists report "hJ -traps” and "ei-traps”.  The defect clusters that form during cooling from crystal
growth/processing temperatures will probably contain combinations of both types. The V JPGJ\M.A
center is an example. Such combinations are likely because coulombic delects, like dopants, usually
migrate via vacancy or interstitial mechanisms.  Also the clusters can accumulate several point defects
during extended periods of atomic migration. Thus, the larger clusters are apt to be able to both trap and
emit carriers of both type in transitions between states which may or may not have the same net charze.

We distinguish two kinds of DLTS experiment: ACDLTS. in which the AC capacitance is
measured{!]. and DIDLTS, in which the total displacemen[ current integrated through the rate window
interval, RWI, is measured[!11]). Suppose that an ey “v pair is bound at a defect site giving it a dipoie
moment and contributing to its polarizapility. When the recombination of such a pair is thermuly
activated, as is usual for non-radiative deep levels, it wiil produce an ACDLTS signal due ‘o the chanze
in the polarizability of the center in the junction field and a DIDLTS signal due to the change in dmmc
moment. However. the magnitude of this signal per defect will be weaker by a factor of order 107 thun
that which wouid occur if there were simple detrapping of a carrier. Using the expression {or the Gipowe
contribution to the polarization of the dielectric, ¢/« = N 3KT and the refation AC C = de 2e. 1t s
possible to calculate that DI dipoles having unit efectron-charges separated by 0.3 nm will produce the
same magnitude DIDLTS signal as only 10t detrapping defects. The ACDLTS signal would depend
upon the spring constants at the dipole. The concentration of defects ascribed to this DLTS sigaature
would be underestimated by a factor of order 10%; the relative magnitude of the signal will be different
for ACDLTS and DIDLTS. If instead the pair dissociates releasing both carriers from the detfect ang
both are swept entirely out of the depietion region, DIDLTS will see a full detrapping signal from puir
cmission, but ACDLTS will record only the weak siznal because the net charze in the depletion region
does not change. For the case when both carriers are captured at other defect sites before they can he

swept out, DIDLTS will also record only a weak signal. If one carrier is swept out and one S tetrapped.
both methods will record a strong signature due to the one that got out and a weak signature due the
subsequent behavior of the one retrapped.

fonization levels of defects in close association are not independent of the proximity and ionization
state of other nearby defects. We denote a two defect complex in some semiconductor host AD, where
A and D are point defects which singly would have acreptor or donor ionization levels. (A and (lD. in
the gap respectively. (Of ~.ourse many defects. such as Vg, have both donor and acceptor levels.) The
proximity of a neutral donor, DY, generally lowers A and Vlce versa. The proximity of an ionized Jdonor.
D*. greatly lowers QA and vice versa. We denote the ionization levels A(D"Y and {A(D7) for the
acc»plor and 0 Db\ ) and g TD(A) in the accompanying figure. The magmtudc of this spread for tonized
point defects is ¢= '€R + L (D™), where ¢ is the effective Jdiclectric constant, R the spacing, and L, (D7)
is the lattice relaxation at the ionized acceptor in the presence of the ionized Jdonor. For nearest
neighbor pairs the coulombic, first term alone would be about 05 ¢\ [attice relaxation contributions
may sometimes be even iarger{12].

Il the isolated Jdelcects are shallow, ¢.g.. Zn - S pairs in GaP [123], close association drives the
tontzaton levels into the bhands, e, l*)_D( A7) touches the conduction band cdec, F , and ().-\(D ) touches
the valence band edze, B Then the neutral states of A and D become metastthle. For anv position of
E,. the equilibrium state of the center, ADT has a dipole, but no monopele, moment. {1 woulyg neser be
seen detreppiny i DTS clithoush o would seatter carriers. 1F the mm,'um\ fevels of thc 1solated pomt
defects are deeper, then the spread of individual worization levels, 1o, \‘D")». \(D and lll)l \ 0.
0 LD may not touch either £ ac B For Cd - 0O close panrs i G l’ the .nunmnr \PI’CJ\J touches i
hut the donor spread does not mum o (13} Thus, the comptex can stavlelv bind an cLoand muntain
neuvative state, A DY, when &, 18 \UHNICH[I}«’ high Otherwise, 101s neutrai with a4 dipole moment, A D7
[t widl scatter carriers and have <ome activity as a4 recombination center. [t would be seen detrapping
DLTS for n-type material, but not fur p-iype material.
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Suppose now that )\(D() lics above )D(A') as s common for puirs of .sm.lu.xromu pmm defect
(It is true for V i) Because the spread between 0'\ (D" and Oz\(D ) and between D( AT) and D( A
is so large for clos«, pairs, greater than 0.5 ¢V, they may overlap and together span a lorge trauuon of
the band gap. When this occurs, then there is a large range of E over which the clusters are stable eithe
as A"DY or as A'D*, but not as AD" or as A”D" The rel.mve proportion of these two ncutral states
(for larger clusters there would be several) depends upon E; as well degeneracy factors. In the accompa-
nying figure we show the case that the overlapping ionization levels touch both bund edges. Such a
defect could only be stable when neutral. binds carriers only in pairs. and mav or may not have a dipoie

moment. It could be a very active recombination center. o

| ) -
—= A7) AD'-aD"

DA

[I1  Alternative Mechanisms Changing Junction Capacitance a0

E
Y A

We discussed the recombination of ¢ h‘j' pairs above. Deep level defects are particularly important
precisely because many of these act as recombination centers. High recombination activity suggests that
both ¢ and h\*.' are trapped at the defect so that their wave functions overlap strongiv. This 1n itseif
impiies that the relevant defects have a dipole rather than a monopolar charge distribution. When it is
thermaily activated. internal rearrangement of ‘.harve wuhm a cluster will produce a DLTS signature
The three neutral states of Vo.PaaVor VGaPL:.x ‘Grar \/G'lPGa Ga- and \’&JP%J\/%J. cach have
different polarizabilities and ranges of E, for which they will be stable. Note the the first and last have
no dipole moment while the middie does and that all bind 2 e.’s: no trapping or detrapping of free
carriers is involved in these transitions. However, any of the neutral states would be an effective
nonradiative re: ombination center for h:"s.

Many deep levels exhibit recombination enhanced diffusion{15], RED. Recombination may alter
either the magnitude or the orientation of a cluster’s dipole moment. Even if it does not alter the field
free dipole moment, atomic reconfiguration of the cluster will likely change its polarizability. The parr
recombination event in RED is apt to leave the ciuster in a distorted. nonequilibrivin configuration. Then
thermally activated atomic migration would be expected to return the defect to its equiiibrium configura-
tion. Any such reconfiguration will change its polarizability and produce an ACDLTS signal. Reorienta-
ticn of a dipole would also produce an aaditional contribution to the DIDLTS signal}unless the dipole
moments were randomly oriented and their rate of reconfiguration were indepeadent of Sriqﬁalion.

Now we consider a mechanism which requires onlv majority cairiers and a change in charge state of
at least one member of the defect cluster, as would be caused by the [fow of current or the shift in E,
between the trap filling and measurement phases of the DLTS experiment. As many deep defects have
different equilibrium configurations in different charge states. a change in charge state can cause atomic
motion. When the original charge state is regained, atoms may go to different but formally equivalent
lattice locations. This is known as the Bourgoin-Corbett, B-C, mechanism and produces rapid. athermal
migration[16]. This, too, may reconfigure the defect cluster in a way that changes its dipole moment. As
it regains its equilibrium configuration by thermally activated atomic motion during the measurement
phase, a DLTS signal is preduced

If the junction field is strong =nough at the measurement temperature to align defects which
normally have a dipole moment, ther.  aermal migration caused either by the B-C mechanism or by RED
during the trap filling stare would randomize their orientation. One would see a DLTS signal due to the
thermally activated motion of reorientation. As the junction fields are of order 10% ¢V ¢m and dipole
iengths are of order 10°7 em. the relative fraction of such centers aligned would normaily be small, 2.g.,
4 % at room temperature.  Thus, the relative magnitude of this contnibution to that which would have
resulted from thermally acuvaied detrapping is even smaller by that factor.  The underestimate of the
number of such centers present would be correspondingly greater.

IV How might Monopolar Contributions be Missed; How Limited is Minority (;.nrxcr Concentration’

The existence of the mechanisms just deseribed is not in Joubt. On the other hand. in order to show
that they may have produced a significant error in the estimate of the number of deep level defects
present, we must show why an cxpeniment designed to atffect and detect the detrapping of carriers singiy
from the expected defect clusters should have failed to do so.  If the monopolar effect were seen, it
would be so much larger than the dipolar that we would merely have reported a few too many defects.
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Of course. we bear in mind that any athermal process, such as recombination by tunneiing, will go
undetected in DLTS.

As was noted above, if the level scheme indicated in the figure occurs, then the center will oniy bind
carriers in pairs, puiling an electron out of the valence band if necessary to fill the g A(D™) level after D
has attained the D¥ by either emitting an e, or trapping a h:’. Changes in net charge state would always
be over before the RWI opens and the center would be undercounted by the factor 1074,

For B-C migration we would need to suppose that the center has returned to its original charge state
before the rate window opens during the measurement phase. This would occur only if the carrier is
trapped in a state that is metastable and therefore likely to be occupied only when current is flowing
during the trap filling and transient stages or if the filled state is so shallow that it empties so soon after
E, passes through it that the detrapping is not recorded. If Cd exhibited B-C migration in GaP, the Cd-0O
pair in n-type GaP would be an example of this. Point defects known to exhibit B-C migration are rather
deep(16], but in {orming clusters their levels could spread to the band edge.

In addition to the minority carriers running free in their band. which the experimentalist controis
with bias voltage (or optical pumping), one must aisc consider those bound in the defect complexes.
When raising E, to inject e's to be trapped, one will also release some concentration of h.j"s. that may
be comparable with the total number of point defects present. These can bind at the same sites which
just trapped the e_’s to neutralize the center again. Recombination and all the effects associated with it
above may follow. Another important point is that some defects, in particular the single vacaney(17] in
Si, V,, exhibit a "negative U" for certain ionization states. That is \/”Sl and \/*:Si are stable, but V7
is not stable. This means that the trapping of a hole at a \r’”si will be followed by an athermal process in
which an el is emitted and V“s. results.  Thus, cone minority carrier is generated for each majority
carrier trapped in such "neuative U' defects. These effects would cause under counting by some
eratistical factor less severe than 107

Impact ionization at Jefect centers by carriers accelerated by the transient fields of the experiment is
possible. Since fields as high as 10 V. cm exist over regions as wide as | um, carriers may be excited to
energies reaching | eV. During injection a fast majority carrier might knock a minority carrier free. [t

also might knock a majority carrier out of a deep trap that would normaily be filled during e mcasure-

ment phase. This could shift the level of a minority trap to its band edge. Thus, impact iomzation could
provide minority carriers to be trapped in the region under test at concentrations a sigmficant {raction of
the total number of carriers swept through, which would be comparabie with the background doping level.
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Scattering-theoretic method for defects in semiconductors. II. Self-consistent formulation and
application to the vacancy in silicon

J. Bernhole, Nunzio O. Lipari, and Sokrates T. Pantelides
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A self-consistent-field method for calculation of the electronic structure of localized defects in
semiconductors 15 described. The method is based on Green's-function theory and follows the onginal idea
of Koster and Slater and its developments by Callaway and coworkers. The Wannier functions of the
original formulations are, however, replaced by a more flexible set of linzar combination of atomic orbitals.
This choice and an accurate ¢valuation of the perfect-crystal Green's function bnng this method to the level
of sophistication, accuracy, and rigor characteristic of state-of-the-art band-structure and surface
calculat-ons. The efficiency of the method stems largely from the fact that it explous both the translational
symmetry of the host crystal and the short range of the defect potential. Thus, all bulk properties (e.z.,
band gaps, bandwidths, etc.) are built in from the start via a band-structure calculauon and are preserved.
One then focuses on the changes produced by the defect potential. so that the interpretation of the results 1s
straightforward and unambiguous. [n this paper. we report an application of this method to an solated
vacancy in Si assuming no lattice relaxation. The unrelaxed vacancy introduces 2 bound state of T,
symmetry at 0.7 ¢V above the valence-band edge and a1 number of resonances and anuresonances within the
valence bands. A detailed analysis of these states in terms of ther ongin, orbital content. and of state and
charge densities is presented. We find that. while many of these states are individually quite extended. they
combine destructively to produce a very localized net change in the charge density. We also find that the
resulting localized potential can be well approximated by a negative of an atomic silicon potential extracted
from a self-consistent bulk calculation. Finally, we compare the relative ments of the three increasingly
more sophisticated. but also more costly, approaches to the defect problem. namely. (1) tight-binding, (2)
non-seif-consistent, and (3) self-consistent calculations.

1. INTRODUCTION

The calculation of the electronic structure and
properties of a perfect crystalline semiconductor
is at present routinely carried out by using band-
theoretic techniques, which exploit translational
periodicity (Bloch theorem). Defects, on the other
hand, break the translational symmetry of the
host crystal, and, as a result, the calculation of
their electronic properties is a considerably more
complicated problem,

One class of point defects is treated very suc-
cessfully by the well-known effective- mass theory
(EMT).! The theory works best for shallow donors
and acceptors whose perturbation potential is
dominated by the screened Coulombic tail re-
sponsible for the hydrogenic spectra near band
edges, The corresponding wave functions are very
extended in real space and hence highly localized
in k space. Recently, new developments in EMT
suggest that some moderately deep levels can also
be handled by similar techniques.’~* For many
deep levels, however, the EMT assumptions are
not suitable and alternative techniques are neces-
sary to describe wave functions which are highly
localized in real space,

Two distinct approaches have thus far been
pursued for the study of deep levels in semicon-
ductors’™

[ 2

!

One of them approximates a defect in a
perfect infinite solid with a finite cluster. The
Schr&dinger equation for the cluster s then solved
directly. A variety of techniques differing in the
way the cluster is terminated have evolved: free
clusters,’~? saturated clusters,™!" repeated
clusters,'"1? ete. Most of the work has bheen car-
ried out on clusters consisting of 4-70atoms. Clus-
ters of that size, however, do not contain the usually
quite extended defect wave function™!"!* and are
therefore only suitable for qualitative analvss.
Recently, techniques became available for calcu-
lating local densities of states of clusters of 2000
or more atoms.'™'! These techniques. however.
have thus far been used only with semiempirical
tight-binding Hamiltonians. Furthermore, none
of the cluster methods has proven to be particular-
ly efficient, The main shortcoming of al] these
methods 1s that they must produce not only the
defect-induced states, but also all the bulk states
of the hust, without exploiting the underlying trans-
lational periodicity.

In the second approach, the main shortcormng >f
the cluster methods 1s elinunated by first calcu-
lating the host-cryvstal properties using band theo-
ry and then focusing on the defect-induced
changes, i.e., bound states. resonances, anti-
resonances, etc. A variety of technigues have
evolved along these lines as well,'**"'7 With the

o
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exception of effective-mass theory, all other tech-
niques are variants of a method that is usually at-
tributed to Koster and Slater.!” These techniques are
in principle especially efficient when the perturba-
tion potential U is localized, even though the in-
dividual wave functions may be extended. They
therefore complement EMT-type theories, which
rely on U having a dominant Coulombic tail.

Since the time of the original papers, the Koster-
Slater method has been generalized in the language
of scattering theory and Green's functions by Cal-
laway.'* Both Koster and Slater!” and Callaway'?
developed the theory by introducing the host-
crystal Wannier functions to expand wave functions
and represent operators in matrix form. Callaway
and Hughes'? subsequently applied the method to the
single vacancy in Si, but the construction of the
Wanunier functions proved to be very tedious and
difficult, thus severely limiting the efficiency of
the method. For that reason only a few other ap-
plications®®~* have been made. A simplified tight-
binding description of the vacancy in diamond and
silicon was subsequently reported by Lannoo and
Lenglart’? and by Rouhani et al.,*! but the approach
was not pursued further.

More recently, a variant of the Koster-Slater
method introduced by Bassani, [adonisi, and
Preziosi (BIP) (Ref. 25) has been used extensively
by Jaros and Brand® and by Lindefelt.”” The rela-
tionship between the B[P method and the Koster-
Slater method is discussed in Refs. 3 and 28.

Even more recently, there has been renewed in-
terest in the original Koster-Slater method.
Bernholc and Pantelides®? (paper I) discussed the
use of an operator formulation which reveals
clearly that the role of the Wannier functions is
simply to represent operators in matrix form.
Thus, instead of the Wannier functions, other
more convenient sets can be used. A particularly
convenient choice is a set of linear combinations
of atomic orbitals (LCAQ) which are appropriate
to carry out a band-structure calculation for the
host material. Using the same LCAO set for the
point-defect problem is then equivalent to ex-
panding the perturbed-crystal wave functions in
terms of the host-crystal Bloch functions or
Wannier functions. In paper I,°* empirical tight-
binding Hamiltonians were used to study the ideal
vacancy (simple removal of an atom without lat-
tice reconstruction) in Si, Ge, GaAs. Since then,
we have extended the same basic idea to include
accurate self-consistent pseudopotential Hamil-
tonians for the host and to allow for electronic-
charge redistribution that accompanies the re-
moval of an atom, i.e., self-consistency for the
defect as well, The resulting self-consistent
Green’s-function method for point defects has
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been used to obtain a detailed description of the
unrelaxed vacancy in Si. The main results have
been reported in a Letter.?? The publication of
that Letter coincided with the publication of a
Letter by Baraff and Schluter® who reported the
development of a similar LCAQ self-consistent
Green’s-function method and an appiication to the
unrelaxed vacancy in Si.

In this paper we give a {ull account of our formu-
lation of the self-consistent Green’s-function
method and its application to the unrelaxed vacancy
in Si. This work brings the method to the same
level of sophistication, accuracy, and resolving
power as achieved by the most recent band-struc-
ture and surface calculations. In particular. the
iteration to self-consistency frees our results
from any dependence on the assumed similarity of
interactions in the perturbed system to those in the
unperturbed bulk crystal.’® In this work we prove
for the first time that the vacancy potential is very
localized, while the individual vacancy states are
quite extended, We also provide charge-density
maps of the various states and make a detailed
analysis of the electron distribution in the vicinity
of the vacancy. Finally, we examine the effects
of self-consistency and propose the bulk silicon
potential to be used in inexpensive semquantita-
tive studies of vacancy complexes in stlicon.

This paper i1s organized as follows. In Sec. II,
the general Green's-function formalism is de-
scribed. This section is based mainly on the
papers by Koster and Slater.’” Callaway.!® and on
general results of formal scattering theory. '™
The representation of operators 1s deait with in
Sec. III and the choice of basis functions is dis-
cussed in Sec. IV. Our computational procedures
are outlined in Sec. V. Section VI contains the re-
sults of the unreconstructed vacancy in silicon and
is followed by a brief summary and conclusions
(Sec. VII). In a series of appendices we give addi-
tional details of our calculations and compare our
formulation and results with those of Ref. 30.

1l. SELF-CONSISTENT GREEN'S-FUNCTION METHOD

The Green's-function method assumes the
knowledge of the solutions of the perfect-crystal
Hamiltonian #°":

H%WS=Fg.% . )

where £, and ., denote the band energies and
wave functions, respectively. The corresponding
Schridinger equation for the imperfect solid .s

Hi = HY 1IN0 =k 2)

We define the perfect- and perturbed-crystal
Green’'s operators by the relations
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CME Y =lim(E +ie = K" (3)

§en”
and

GIE")=1im(E +ie = H)™!, (4)
RN
Combining Eqgs. (2)-(4), one immediately gets
Dyson's equation, i.e.,

GEYV=GYE")+G ENUGE"). (8
The formal solution of Eq. (5) is
GEEN=[1~-GYUEU|"'GYE". {6)

Using the above definitions, one can immediately
obtain formal solutions of Eq. (2), For energies
within the band gaps, where G’(£) is real, the
solution is

1=GYEWY. M

Within the band continua, one must add a solution
of the homogeneous Eq. (1) to Eq. (7). We thus
obtain the Lippman-Schwinger equation®3

in T bk = GUE g (8

(n and k are not conserved in the perturbed crystal,
but are convenient labels for the scattering states),
The condition for the existence of bound states

is, from Eq. (7)

D(E) =detil - GHE)WN =0, 9)

when the operator 1 - G"(E)L is expanded in any
complete set of states, This condition determines
the energy of the bound state. The corresponding
wave function is then obtained as the nontrivial
solution to Eq. (7) ~t that energy. For states within
the band continua, we write Eq. (8) in the form

[1~CUEWTve =2k, 110)

The determinant of 1 - G"(E "){” is now nonzero be-
cause the imaginary part of G?(E ") is nonzero
within the band continua. As a result, the opera-
tor is always invertible and solutions exist at all
energies within the energy bands of the perfect
crystal, Band edges, therefore, are not shifted
by the perturbation, The wave function . corre-
sponding to a solution at E = E }z is not, of course,
equal to 1%,

The density operators for the perfect and per-
turbed crystal are related to the respective
Green's operators by %

AUEY= =2 1) ImG"(E) nmn
and
PIEY= - (2 T ImGE) . (12)

Using Eq. 6), we now »btain the following ex-
pressmn” for the change 1n the charge densitv Ap

induced by the defect

Ep |
Ap:f (P(EY=p"EN] dE

2 Ep . . a =t .
=2 Im 1=-{1-GYUBEW] 'Y CHEVIE.

(13)

This expression is of central importance for self-
consistent calculations. Similarly, the state
density V(E) is altered in the vicinity of the defect.
Using the relations®

AN(E) =Tr{ p(E) - pX(EV] . 14
[GUEY =~ (d dEYGE), (1

[91]

)

and Egs. (6), (11), and (12), one nbtains

ANE)=(2 " Tr | d dE G "1 - M EV} 1}
(16)

by cyclic properties of the trace. Since the deriva-
tive of the density of states is infinite at a critical
point, one should in general expect some structure
in AN(E) at those points .dependent on the strengtn
and details of the potential). The potential will
also introduce additional structure through the
factor [1 - GYEY] ~'. It can be shown'! that the
change in the state densitv 1s also given by
. 2 d5(F) -

A.\(E):;TE— . AT
(spin inciuded) where the phase shift 5(E) 1s de-
fined by

S(E)=-tan~"{ Im D(E) Re D(E] . i18)

It follows that 5(E) gnes through an odd multiple
of T 2 every time Re D(EY=0. An expansion
around such an energy £, gives

tand(E)= - [ [ 2{E- EM. 19
where
r=2lmD(E, ReD'E,) 20}

and the prime denotes differentiation with respect
to energy. In the region close to E,, AN(E) be-
comes
L "

AN(E) 27—1;—-_2775—? 2D
This characteristic Breit-Wigner form indicates
that for [© > 0 one hus a rP°sonance or a peak 1n
AN(E) with a half wadth ', For [ <0, one has
an antivesonance, 4 e,, 1 negative peiak with hall
width . This analvsis applies only tor :solated
resonances or antiresonances. If the spacing be-
tween a resonance and an antiresonance 1s smaller
than the width, 4 more comphicated spectrum oc

[]
¥
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curs.) The above considerations also assume that
the background state density (i.e., the state density
of the perfect crystal) is smooth. The resonances
and antiresonances associated with the critical
points, i.e., originating from the factor (@
dEYG(E) in (16), will be called quasiresonances
and quasiantiresonances, respectively.

According to Levinson’s theorem? the total
number of states remains unchanged in the pres-
ence of a perturbation, i.e.,

f AV(EVAE =0. 22
When the states in the gaps are counted separately
from the state density changes within the bands,
Eq. (22) becomes

f AN(E)DE = =~ N, (23)
basds

where V, is the total number of bound states in the
gaps.

Let us consider a continuous group of bands
separated by band gaps, e.g.. the valence bands
of a semiconductor. Denoting by E,,, and E.,, the
bottom and the top of this group of bands, one ob-
tains from (17)

£

f it .\.\'(E)dE:g[b(Em)- 6(Epee)] . (24)
Eror "

Since the Green's function and therefore also the

determinant D(E) are real at the band edges it

follows from (18) that

fz"’" AVIEVE = 2m 25)
Epat
where m is in integer, (including spin) indepen-
dently of either the strength or the details of the
potential,

11I. REPRESENTATION OF OPERATORS

For applications to particular problems, the
operators of the preceeding section must be repre-
sented in a basis set. The operator equations /7).
f9), and (13) then become matrix equations. In
order to exploit the limited range of the defect
potential, we will assume that the individual basts
functions are localized 1n space ‘for example,
wannier functions or LCAO’s centered at the
atomic positions). The subject of the spec:fic
choices of the basis sets will he discussed in the
next section. In such a representation . v,;, the
matrix elements of the potential 7°_, will be non-
zero only if both v, and v, are centered un atoms
close to the defect, so that they both overlap with
the potential. The space spanned by this basis set
can therefore be divided into two subspaces: sub-

ANVD PANTELIDES M)

space A which overlaps with the pntential and sub-
space B in which the potential is effectively zero.
The potential matrix may then be written sche-
matically as

v, 0
1% =( . ) 26)
0 0

(Note that the size of the subspace .1 depends also
on the range of energies one wishes to study. Fur
high-energy scattering, a larger subset would be
necessary.}) After writing the Green's-function
matrix as

GOE) :<uf’“(£) uA"B(E)\)‘ 2
CYAE) GhalE)

I4

the matrix of the operator 1 - G E)" becomes

o
1-G"(E)U=<1 CualBV4 °>. (28)
Gl B, 1

From (28) 1t is now evident that
dethl - GHE)W =dethl - G (YU, 1,  129)

so that the size of the determinant reduces to the
size of the nonzero part of the potential matrix.'” Let
us write the bound -state wave function: as{:,, . a,
where ., and ., are the components of :1n the
subspace .4 and subspace B, respectively. If E,

is the bound-state energy, ., is the nontrivial
solution to the matrix equation

(1= G ENU,l00=0: (30)
ig can then be obtained from ’ef. Eq. (7}]
iaT G B 4da- 3D
The correct normalization of J, can be obtained
without calculating 5 Refs, 34, 30) as follows:
From Eq. (7) we get
1=¢0 8y =LUGUEY [ GUENL)
= ULGYEN . 32)
Using the relation
RN 331
and Egs. (15) and ‘27), one obtains the normaliza-

tion condition

- :‘AII-VAAG‘ATA'F),'AA".A\ =1. 34
Since the self-consistent total change in the charge
density cannot extend turther thun the defect poten-
tial,™ it 1s sufficient to calculate ap 10 Eq. 13)
only in the subspace i, It tollows trom Egs, 26},
127, and 28)

S b AR N e
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2
AWM =Im= f
" “eal bamas

<G (E). 35)

dE{1-[1=- Gl BV, "}

The relations (29), (30), (34), and (35) show ex-
plicitly that the size of the problem in the Green’s-
function method is determined by the range of the
perturbation potential even for self-consistent
calculations.

In order to complete the operator formalism for
the present Green's-function method, we give some
general expressions for the evaluation of G°. By
introducing the Bloch functions 3= ,nﬁ) as a com-
plete set, & ” can be written in the form

;RE)" ’1E4

GHEN = : -
E'-Eg

(36)

Defining the spectral density operator A"(E) (Ref.
31) by

ANE) = k) nR,S(E - E ), 37)
and using the Dirac identity
() d ’ .
lim fL0A_p [ IO g, (38)
b ~1e t

)’

where P denotes the principal part of the integral.
we obtain

7y
(,‘rlz'):Pf?{f‘é,dE'—iﬂA(li). 39)

IV. THE CHOICE OF THE BASIS SET

The selection of the basis set for the expansion
of the operators in actual calculations 1s obviously
problem-dependent and must be guided by physical
consiwderations. It also constitutes one of the most
important choices that determine the efficiency of
the method.

The traditional basis set, i.e., the Wannier func-
tions, have proved very convement for the formal
development of the method.!™!? For actual calcula-
tions, on the other hand, they puse problems be-
cause their construction 1s quite laborious.'" #

In this work we chose to use 4 set of LCAQ's.
such sets have receantly proved to be quite power-
ful and efficient in hand-structure calculations *°°
and a great deal of experience for their use has
been amassed by atomic and molecular calcula-
tions,

The tirst step 18 to determine an LCAO set that
13 capable of yirelding an accurate charge Jdensity
and band structure for the perfect crvstal rsee
Sec, V for the actual basis set used). The same
set 18 then used to represent the operators ¢ [
and 77 for the description of an unrebiXxed viacancy.
This choice can be justified s adequate for de-

scribing the perturbed crystal by invoking the
usual quantum-chenucal practice of using LCAO's
characteristic of particular atoms cnly at the
atomic sites. It 1s also adequate to describe the
perturbation, because 7 1s expected to be essen-
tially the negative of an atomic-like potential, In
other words, since the LCAQ's at atomic sites
the perfect crystal are adequate for the description
of bond formation, the same orbitals at the vacant
site and the neighboring sites can be expected to
describe the breaking of the bonds.

Our choice of 2 common LCAQ set to describe
both the perfect and the perturbed crystal has a
number of useful consequences: in particular, by
using an orthonormal LCAQ set ‘see Sec. V {or
details), the operator equations of Secs. II and I
can be read directly as matrix equations. The
matrix elements between basis orbitals and Bloch
functions necessary to evaluate the Green's-func-
tion matrix [ ¢f. Eq. (36)] become verv simple.
Finally, because the perfect-crystal Hamiltoman
has a fimte spectrum, any ambiguities’ associated
wit's the termination of the energy integral of Eq.
{39) are completely removed.

In order to exploit the point-group svmmetry of
the vacancy, we form svmmetrized linear com-
binations of LCAQ’'s on each shell of atoms sur-
rounding the vacancy ishell arbitals). Finally,
since the LCAQO's, and therefore the shell orbitals
are not orthogonal, we orthognnalize each shell
orbital to all shell orbitals closer to the defect
site, forming a set of orthonormal shell orbitals
(0SO). This procedure, 1n contrast tu the sym-
metric Lowdin orthogonalization, has the advan-
tage of preserving the iocalization of the hasis
functions and allows an easy and svstematic study
of the contributions of various shells and of con-
vergence with respect to the number of shells.
Also, additional shells mav be added to the basis
without the need of recalculating anv of the matr:x
elements between existing orbitals. The urtho-
normalization process by itself avoids the need for
carrying the overlap matrix in Eqs. ‘30)-36),
leading to large savings in computer time, The
details of the symmetrization and orthogonalization
procedure are given n Appendix A,

VO CALCULATIONS

In this section we will deseribe the calculational
procedures used n applyving the Green's-function
method to study an deal undistortea vacancy :n
S1. The calculations consist Jf three major steps:
1. solution of the bulk preblem and the caleulatoon
ot the perfect-crvstal Green's tunetion o 20
solution Hf the Green's=function pquations Do
Ziven potential, and 3 constructon o the self
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consistent potential, The methods of calculation
employed at each step are described and tested
in Secs. V A-C below.

A. Perfect crystal

1. Energy bands

In the self-consistent pseudopotential formal-
ism, ¥ the interactionbetween the valence electrons
and the ionic core is modeled by a potential whose
short-range form is fitted to the bulk properties.*
atomic term values,” or atomic calculations.*
The valence charge density, and thereby the
valence crystalline potential, is then determined
self-consistently within the local-density theory. ™
Usually, such calculations are carried out using
a plane-wave basis set. One of the advantages of
this set is that convergence studies can be carried
out in a straightforward and systematic manner.
We have therefore used a plane-wave basis set to
calculate fully convergent energy bands for Si to
serve as standards against which to compare our
LCAOQO calculations, Such a calculation is neces-
sary because we wish to use a2 minimal LCAQO
basis. optimizing the orbital exponents to yield
bands that are in good agreement with known ac-
curate calculations, We have carried out plane-
wave calculations using the ionic potentials deter-
mined in Refs. 42 and 43. Both these potentials
are specified in terms of the same analytical ex-
pression, namely,

N 4
Viewld) = (@, gH) costag) ~a}e™ 140)

In Ref. 42, the coefficients in Eq. i40) were fitted
to experimental atomic term values, whereas in
Ref. 13 they were f{itted to atomic calculations.
Both sets of coefficients are given in Table I. The
charge density for each iteration was calculated
using ten special k¥ points of Chadi and Cohen,*’
We found 65 plane waves in the wave-function ex-
pansion to be sufficient to obtain a converged ex-
pansion of the crystalline charge densitv, The
crystalline potential was calculated using the
same exchange correlation as in the atomic cal-
culations used to fit Eq. '40), i.e., the A, ap-

FTABLE |. The values (in atomic units) »f parameters
{efining the fopic Si pseudopotential V', (Eq 1)} and
bulk pseudopotential V.., En. 43)]. The normaliza-
tion volume for V.., 18 1351 au.)-.

Y Ref. 12) VY (Ref. 43) SN
a4, -1.12507 -1.203 200
B 0,785 07370 0.4533
€, 0.25201 —).5969 -17.7
"ty -).01N07 - .177 1159

LIPARIE,
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proximation with o =0.3. The band-structure en-
ergies for the high-symmetry points are given n
the first two columns of Table II. In particular,
one should notice that the fundamental band gap 15
0.6 and 0.8 eV for the two potentials, The dis-
crepancy with the experimental value of 1.17 eV

is attributed to the failure of the local approxima-
tion in the Kohn-Sham® density-functional formal-
ism. In the following, we will use the 1onic poten-
tial from Ref, 43, which 1s derived fr. . atomic
caleulations, This choice makes our calculations
both free from any empirical adjustments, and
internally consistent, i.e., every quality has been
calculated entirely within the local-density theory
with the same exchange. In our defect calculations
we use the LCAO’'s of Chadi’” which consist of s,
P, andd orbitals, and onef orbitaltransforminy as the
potential (~vyz). We have carried out {ully self-con-
sistent calculations for silicon 1n this basis with-
out any shape approximation for the crystalline
potential.'® The band energies of the LCAO cai-
culation with an LCAQ self-consistent potential
are compared with the fuily converged plane-wave
calculations in Tuble [I. The largest discrepancy
between the two calculations is about 0.2 ¢V, in
the band-gap region, i,e., the same as obtained

by Chadi®’ using a different potential. In particu-
lar, the band gap 15 1.0 eV,

2. Green's function

Once the band-structure calculation is carried
out, the matrix elements of the Green's operator
G E) between any pair of basis orbitals ithe OSQ's)
can be evaluiated using Egs. (37) and 139, For a
point defect of T, symmetry. as is the case of the
unrelaxed vacancy, the §~space summation has to
be done onlv over one irreducible wedge W, with
the summand chosen by svmmetry considlerations
so that the result 1s equivalent to a full-zone sum-
mation. If we denote each QSO by | o/l), where .
15 the representation, { is a running :ndex for
0S0's, excluding partners, and [l 1s a partner in-
dex. 1t s straightforward to show that

arll (ALEY a1l
48 -
- il ks ok o'l
e 2k
A'QE-E"&))!,",’,,,.)_ A1

where «_1s the dimensionality of the ith repre-
sentation.  Itas 5 0 and °,,. 1in Fq. 41), which
arise from symmetrization of the basis rbitals,
that provide the savings in labor.  The evalualion
of the matrix elvments of 115 as given by Eq.

41 was carried sutusing the Gilat- Raubenheimer 7 ¥

Yo iepta:
T T el
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TABLE II. Band-structure enevgies for the high-symmetry points usicy potentials from Ref. 2 and R 4.0,
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The

puint alung the A uxis is k=10.35.4.9). The number »f plage waves corvesponds % a0 energy cutoff X - R Ry.
The Slater vrbitals are those of Chadi 'Ref. 37). The band energies for those orhitals have been shifted by .14 o\

with respect to the plane-wave results (see Ref. 37).

slater
Plane waves* Plune waves® orbitals? Deviation from plane-wuve® results

L -12.79 -12.39 ~12.52 -0.07
T 0.00 0.00 000

) P 2.388 2.98 3.1 —0.72
Te 3.49 2.72 2.92 -2
Xp -8.48 -3.63 -5.3% —-0.25
Xy =3.14 ~2.06 -2.95 ~0.11
X n.78 .95 1.11 -.1%
X, 11.33 11.87 11.93 -2
L, -10.39 =10.55 -19.25 -3
Ly, - 7.32 -~ 7.32 - 7.27 -3.25
Lo - 1.36 - 1.34 - 1.29 —-.21
Ly, 1.50 1.38 1.39 -0.21
L. 3.9 3.89 1.07 -0.10
Ay - 9.53 - 9.76 - 9.50 —0.26
M, - 7.2 - 7.38 - 112 =0.26
35, -~ 3.04 - 297 - 2.3 -1l
A, 0.62 0.7 v.97 -0.19
Q. 1.20 1.39 1.56 -0.17

* Potential from Ref, 42.
? Potential from Ref. 43.
rechmque. Convergence tests were carried out and [ANPRE 2 I R R L 4

it was found that 308 k points 1n the irreducible
wedge were adequate. Once the matrix elements
of A(£) were calculated. the matrix elements of
,''F) were obtained using Eq. (39). The large
number of Hilbert transforms of rather strongly
varving functions with sharp peaks has been
handled using a fast-Hilbert-transform (FHT)
algorithm developed by Cooley and Bernhole.!?
The use of the FHT resulted in a very accurate
determination of the Green’'s-function matrix ele-
ments on an energy mesh spaced by 0.07 eV. This
mesh was found dense enough to allow interpolation
for intermediate energy values when needed. The
Green’'s-function matrix elements were calculated
once and stored.

B Solutions fur a given defect potential
1the non-self-consistent vacancy)

For the purpose of testing our computational
scheme of determining the solution for a Ziven
defect potential, we first used the negative of a
Hulk seifl-consistent ~atomic” nseudopotential, ob
tained by dec.umposig the full crystalline pseudo-
potential :nto 1 sum of atom-centered spner:cil
aseudopotentials, neglecting nonspherical terms,
The resulting atomic pseudopotential was {itted
to an analvtical expression of the {orm

The «,'s are given in Table I. Superposition of
these atom-centered spherical potentials repro-
duces the total bulk pseudopotential quite :de-
quatety :Fig, 1), Thus, using the negitive of -ne

of these atom-centered potentials as a4 model defect
potential corresponds to an approximation lor the
vacancy that amounts tu removing an xtom {rom the

2 ‘ !
[ !
~ {
. o ,
: ’ { | |
g P ’
N t \ ’
= \ ! \ /
i t
L ‘ ! \ {
/ \ {
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crystal without allowing the remaining valence
electrons to redistrioute (absence of self-con-
sistency)., The calculations using the non-self-
consistent vacancy potential. as defined above,
serve two purposes. First, they allow us to test
the convergence properties of our computational
procedure for a given defect potential, and,
second, to assess the importance of self-con-
sistency and the resulting screening fields once
the fully self-consistent solutions are obtained
tSec. V C below).

Given the defect potential, 1ts matrix elements
between pairs of orthogonalized shell orbitals
(0SO's) were calculated numerically on a cubtc
mesh. Symmetry was agua(n used to reduce the
integration region by a f{actor of 24. We found
that 1000-2000 points per atom in the irreducible
part of the cube were sufficient for an accuracy
of 2-3 mRy in the potential matrix elements.?®
Having the matrix elements of both ¢'(E) and the
defect potential L'. the quantity D(F) ziven by Eq.
f9) is evaluated 1n 1 straightforward way. Making
use of symmetry once more, one sets'®!?

oEy= I (D, EN . (43)

where D_(E) is defined as :n Eq. (9}, but evaluated
in the subspace of OSQO's of the xth representation,
Accordingly, bound states ir the gap belonging to
the ath representation are obtained by locating the
zeros of D (E). Similarly, one can show that

AVE) =Y AN, (), (44)
a
where AN, (£) is again defined as AN(E), but with-
in the subspace of OSQ's of the ath representation
(AN, 1s defined so as to contain the degeneracy
factor d,).

The calculations were carried out using one,
two, and three shells of orbitals ‘one shell means
orbitals at the vacant site onlv), In all cases, we
find only one bound state of T, symmetry. Its en-
ergy level is at 0.73. 0.75. and 0.76 eV for one,
two, and three shells, respectively, indicating an
adequate convergence w:th respect to the number
of shells, The corresponding changes in state den-
sities within the band continua, shown as dashed
curves in Fig, 2, were also tound to be indis-
tinguishable for one, twn, and three shells on the
scale of the figure. Onlv changes in densities of
states of A, and T . symmetries are shown,
Changes in the densities of states f the other
symmetries are of order J.1 and thus insignificant
hy comparison, These results are :nterpreted in
Sec, V1, where compar:son 1s made with fully self-
consistent results.! Integrals of the state-densitv
rhanges provide 1n additional check of the calcula-
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FIG. 2. The :icnsity of states of silicon top panel)
and the change in the Jensity of states of A, and T
symmetries. The curves are broadened by .2 ¢V and
the reference energy is the top of the valence hands.

tions. It can easily be shown .hat Levinson's
theorem [ Egs. (22) and (23)] is valid for states of
each svmmetry separately. Thus, the state-den-
sity changes for each symmetry vught to integrite
to the number :integer) of bound states of the
same symmetry, Indeed, we found that the change
in the density of T, states integrates to - 6, com-
pensating the sixfold degenerate I', bound state in
the fundamental gap The changes :n the densities
of states of the remaining symmetries ntegrate
to zero, as they should. Thus, since the creation
of a neutral vacancy involves the removal ot {uur
electrons, we conclude that the /. bound state
contains two electrons,

C. Fully selt-consistent solutions

After the calculations have been nitiated with 1
starting potential ‘e.z.. the non-self-consistent
potential described ibove or sume other convement
form), the Green's-function equatijons have to he
iterated to self-consistency, At every teration the
construction of a4 new potential cons.sts of the
following steps: 1 calculation of the shange :n
charge density :n the vialence bands and of the
charge densitv issocated with the bound states,

2} solution of the Puisson ~quation, and 3 cal-
culation of the exchange-correlation term ~aithan
the local-density theorei,

The change in the charge densitv associated with
the valence bands was obtained by carrving out the
nmatrix integral 23), Since the inteerand 1s a
rather simgular function see below), the ntegrial
was calculated vy the adaptive variable-step sieee

N S
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trapezoidal rule, The average step length was

0.07 eV and was monitored by examining Trap(£),
which is equal to the change in the density of states
at that energy. The change in the charge density
in real space is now

3™ = LT L ), 45)
aa

The charge density associated with the two elec-
trong in the bound state was obtained {rom the
bound-state wave function within the region
spanned by Eq. (30), and the normalization con-
stant was calculated from relation (34). It will be
shown in the next section by explicit construction
that the rather extended tail of the bound-state
wave function is canceled by the charge redistribu-
tion within the valence bands localizing the total
change in the charge density almost entirely with-
in the cavity defined by the nearest neighbors.
This localization is important to the efficiency of
the method and has been exploited in the next
stages of the calculation,

The Hartree part of the defect potential 1", can
now be obtained by solving the Poisson equation

viv,=-873p, (46)
with the boundary condition, for larse r,
rr~-2zr, 47

where
:—f d3vap(r). 48)

In order to facilitate 2 numerical solution, it is
convenient to add and later subtract a neutralizing,
positive, and spherically symmetric charge den-
sity p*. The charge

pY=ap~p° 149)

is then neutral and the corresponding potential 1°¥
behaves as constx » ~''* ! at large distances where
! is the lowest multipole component of the defect
potential allowed by symmetry ( =3 for the T,
group). 1°¥ is determined by solving Poisson's
equation in a large cube (cube side =18 a,u.}
around the vacancy. Because of the smallness of
the r ' and higher-order terms on the surface of
the cube, the boundary condition 15 taken to be

i"Y =0. This geometry allows us tu use the verv
efficient fast- Fourter-transform’’ techniques in
order to solve the Poisson equation numerical-
ly.''*¥ 2 the only constraint being that the nu-
merical mesh must he equally spaced see Ap-
pendix B for the discuss:ion of the aluorithm).

This algorithm defines the cubic mesh tor the
cialculation of the potential matrix elements cf. sec.
V B nd Ref. 50), The Hartree potential s oh-

tained by subtracting the poteatial !"" corre-
sponding to the charge density p°, Inour calcula-
tions. we choose

o 4 s -
p(r):,—%-g—r-qexp(—r' ro). 50
T ;
whereby
o -
V'(?):ﬁ erf(—l:-—). S
r r,

Finally, the exchange-correlation potential :s
calculated in the local-density approximativn, Be-
cause of the p! * dependence of this potential sn the
chargedensity, itis necessarv to calculate both the
perfect-crystal charge density p°fv) as well as Apur)
ateachmeshpoint. Thedefectexchange-correlatcn
potential is then proporticnal to { p°)) + 303! 2
~[2p()i* . The calculation 15 done numericaily®®
on the same mesh points used for the Hartree part
of the potential.

V1. RESULTS AND DISCUSSION

In this section we present the results of our
self-consistent calculations for the unrelaxed
vacancy in Si. The calculations were brought to
self-consistency using one, two, and three shells
for the purpose of checking convergence 5 charce
densities and wave functions with respect to the
number of shells.

A. Energy levels and state densities

As with the non-self-consistent calculations de-
scribed in the previous section, we obtain one
bound state in the gap of 7, symmetry, [ts eneruay
level was found to be at 0.63, 0.66, and 0.93 eV
for one, two, and three shells, respectively, Con-
vergence is therefore somewhat slower, but stil}
quite adequate, We note that self-consistency has
lowered the position of the bound state by approxi-
mately 0.1 eV, This lowering is the result of
screening arising from the response of the valence
electrons to the removal of the atom, which re-
duces the strength of the defect potential. The
final self-consistent wacancy potential 1s shown in
Fig. 3 and compared with the non-self-consistent
vacancy potential defined 1n Sec. V. Note that the
effect of self-consistency 1s very small, as ro-
flected by the lowering f the bound- state energy
level by less than 0.1 oV,

The changes in the densities of states of 1 nd
T, svmmetries are shown as solid curves in Fug,
2. On the seale of the ticure, the curves cbtagprd
from the one-, two-. and three-shell calculat:ons
are tndistinguishable, Chances i the densities ot
states of the other svme
cant by comparison, The
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FIG. 3. Comparison of the fully self-consistent va-
cancy potential to the negative of the spherical atom-
centered potential extracted from bulk data. See text.

of T.states integrates to - 6, as required by
Levinson’s theorem, and the changes in the densi-
ties of states of the remaining symmetries inte-
grate to zero, The self-consistent state-density
changes are compared in Fig. 2 with the corre-
sponding changes obtained without self-consis-
tency, indicating once more that the effect of self-
consistency is small.

In Fig. 2 we have included a plot of the density
of states of the perfect crystal (top panel), against
which the calculated changes induced by the
vacancy can be compared. We note that a sharp
resonance of 4, symmetry appears at ~ 8 eV,
where the perfect-crystal state density has a mini-
mum, The antiresonances appear at or near maxi-
ma in the perfect-crystal state densities. These
results are consistent with the general analysis
given in Sec. II B, since extrema in the perfect-
crystal state density correspond to critical points
in the band structure. The A, rescnance at - 0.7
eV, on the other hand, is caused by the particular
nature of the vacancy potential and will be dis-
cussed further later on,

B. Wave functions and charge densities

For further analysis of the nature of the solutions
we examine wave functions and charge densities.
The most convenient and informative way to dis-
play these results is in the form of contour maps
in a (110) plane. All the results that will be pre-
sented were ubtained from three-shell calcula-
tions, The three-shell basis 1s sufficiently large
to allow plotting beyond the second neighbors of
the vacancy.

In Fig. 4 we show the charge density of the
perfect crystal, the charge density in a crystal
containing a single vacancy, and the change in the
charge densitv produced by the introduction of the

AND PANTELIDES 21
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FIG. 4. Contours of constant electron iensity (in
electrons per bulk Si unit cell) for 1a) charge density
of perfect silicon. by Charge density in the presence
of the vacancy. tc) The change in the charge density
i.e., the difference between tb) and (aj.

vacancy. As an internal check of the calculations,
the change in the charge density :s found to inte-
grate to — 4, corresponding to the net number of
electrons that have been removed from the crystal,
We note that the change in the charge densitv is
localized almost entirelv within the cavity defined
by the nearest neighbors. This charge produces a
potential that becomes equal to - 4€° r bevond the
nearest neighbors and cancels exactly the de* »
tail of the 1onic part of the vacancv potential. The
net vacancy potential 1s therefore almost com-
pletely localized within a distance of a bond length,
as we already saw :n Fig, 3. These resuits are
consistent with the fact that orbitals on the second
and the third shells of atoms 10 not contribute
significantlv,

We turn now to examine the wave functions of
individual states, In Fig. 5 we show a contour plot
of the square of the wave funct:on of the T . hound
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TABLE III. The integrated changes in the valence-
charge density for each representation.

Representation Charge(electroas)
A, -0.10
A, .00
£ —0.04
T, -0.03
T, -5.20

state. In contrast lo the lotal change in the charge
density |Fig. 4(c)|, we see that the charge density
associated with the bonnd state is quite extended.
In fact, the basis orbitals on the three shells of
atoms included in the plot of Fig. 5 contain only
approximately 70% of the total bound-state charge
(1.4 bound-st.ute electrons lie inside the three-
shell volume). Necte that this result does not imply
that additional sheils of orbitals ought to have been
included in the calculation, Recall that an im-
portant virtue of the Green's-function method is
that it does not require a basis set capable of ex-
panding individual wave functions. The role of the
basis set is to represent the defect potential and
change in the charge density. As we saw already.
both of these quantities are quite localized.”

The rather delocalized bound-state charge den-
sity might at first glance appear to be inconsistent
with the fact that the total change in the charge
density is highly localized. Note that previous
non-self-consistent calculations assumed a local-
1zed vacancy potential and obtained a delocalized
bound state. The present self-consistent calcula-
tions confirm this assumption and provide a justi-
fication: In addition to the T, bound state in the
gap, the defect potential induces a series of reso-
nances and antiresonances in the valence bands,
which we already saw in Fig. 2. Contour plots of
the charge density associated with some of the
resonances are shown in Figs. 6 and 7, revealing
that the corresponding charge density is quite de-

FIG. 5. Coatours of ~onstant olertron Jeasity for the
T. bound state. !'nits as in Fig. &.

localized. It is a subtle cancellation of the tails of
individual states that produces the strong localiza-
tion of the net charge disturbance, Another illus-
tration of this fact is provided by pluts of the total
change in the charge densitv for each type of sym-
metry separately (Fig. 3). Each of them 15 quite
delocalized [ the solid contours are the sum of all
positive changes ‘resonances), whereas the dashed
contours are the sum of all negative changes (anti-
resonances)] and not necessarily contained in the
volume defined by three shells of atoms. [n fact
their integrals within the three-shell basis are
given in Table IIl. All five together add up to
-5.4. Recall that the bound state contributes
only 1.4 electrons in the volume defined by three
shells of atoms. The net change within this volume
is therefore - 4, indicating that indeed the ne't
change outside the box 1s zero and providing an
additional internal check of the calculations.

The above results for the total charge densities.
the defect-induced change :n the total charge den-
sity and individual wave functions provide a clear
illustration of the advantages of the Green’'s-func-
tion method over cluster methods. Cluster meth-
ods attempt to describe the perturbed cryvstal di-
rectly [ Fig. 4b}] and terminate it as a matter of
necessity to make the calculation feasible. In con-
trast, the Green’s-function method descr:bes first
the infinite perfect crystal | Fig. 4ia)| and then
focuses on the change Fig. 4ic}] which :s naturai-
ly localized. Furthermore, whereas the Green's-
function method needs a basis set capable of de-
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FIG. 7. Contours of constant electron density for the
T, quasiresonances at (a) =3.4 and (b} =6.3 ¢V. Units
as in Fig. 4.

scribing accurately only the total change in the
charge density, which is highly localized { Fig. 4
(¢)], the cluster method needs a basis set capable
of describing accurately individual wave functions
(Fig. 5) which are considerably more extended.
Only when the size of the cluster is large enough
to contain individual wave functions would a cluster
calculation give reliable quantitative results,

C. LCAO analysis

The use of an LCAO basis for the calculations
provides a convenient {ramework for exploring
the structure and origins of the solutions. First,
we observe that the valence electrons tn the perfect
Si crystal have mainly s (4,) and p (T,) character
about each atom. This is a well-known result that
has often been exploited in constructing simple

TABLE V. The decomposition of the hound-state
wave fugetion o{ the undistorted vacaney into the bands

of pertect silieon ¢y = 3, (nic <.

Band no. Co
1 )yt
2 Lo~
3 207
$ Sl
3 0.9
B i1
T 2.2
b 1.t
9 0

n 0N,
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semiempiricdal ght- binding Hamiltomans, ¥ Qur
self-consistent calculations reveal that the valence
electrons also have a small 4 & - T, character.’
Since the creation ol 1 vacancy nounts to re-
moving four valence electrons ;rom the crvstal,
one can expect that the major crnanges in the charle
and state densitivs oscour n tne booana T orepre-
sentations, Our results. Fuis, 2oand 40 contirmed
this simple LCAQ sreawtion, Inpartieular, sote
in Fio, 4 that *he v ana 7 chanues 0 the charde
density are Jarce and coneentrated i the cavaey
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does not have a p-like shape because it is an
average of the «x*, «y*, and “z» components.)
Note also the small change in the E representation
(d-1like) in Fig. 8(c) in agreement with the LCAO
analysis given above. Figure 8(d) shows the change
of charge density in the T, states. This change,
which is also quite small compared with the
changes in the charge density of A, and T, states,
comes from linear combinations of orbitals on the
nearest neighbors and is therefore localized about
those sites. Finally, the change of charge density
of A, states is too small to be seen on the scale of
Fig. 8, because it arises from linear combinations
of orbitals on the second-nearest neighbors.

We now focus our attention oa the A, and T, re-
sults and show that they can be understood in terms
of some very elementary LCAO models. For the
perfect crystal, cne can use s and p orbitals on
every atom and combine them into tetrahedrally
directed sp® hybrid orbitals. These hybrids can
then be combined in pairs to form bonding and
antibonding orbitals, which in turn give rise to the
valence and conduction bands, respectively,* For
the crystal containing a single vacancy, one can
again use s and p orbitals on every atom and form
sp® hybrids. Bonding and antibonding orbitals can
again be formed by pairing hybrids, with the ex-
ception of the four hybrids on the nearest neighbors
pointing toward the vacaat site. We will refer to
these orbitals as «“dangling hybrids” (the charge
associated with such an orbital is often referred
to as a «“dangling bond”). As a first approxima-
tion, one would expect that the states associated
with the vacancy are linear combinations of these
four hybrids. This assumption forms the basis of
the “defect- molecule” model, originally proposed
by Coulson and Kearsley® for the vacancy in dia-
mond. Symmetry requires that the four hybrids
be combined into an A, singlet and a T, triplet. In
fact, our self-consistent pseudopotential calcula-
tions reveal that the T, bound state (Fig. 5) and
the A, resonance at - 0,7 eV [ Fig. 6(b)] are essen-
tially linear combinations of the dangling-hybrid-
like orbitals. The remaining resonances and anti-
resonances are mainly associated with critical
points in the band structure (cf, Secs. Il and VIA).
The A, resonance at about - 8 eV appears precise-
ly at the point where the density of states has a
cusp. (This cusp arises from the X, point in the
valence bands and is a peculiarity of the diamond
lattice. It may be viewed as a pseudogap, since it
is precisely at the point where a gap opens up in
the zinc-blende structure.) In fact, this resonance
is a band-structure effect and appears at the same
place for several substitutional acceptors.’” The
contour plot of the charge redistribution corre-
sponding to this resonance is shown in Fig. 6(a),

Note that it i3 quite localized since it is essentially
a bound state. It consists mainly of s-like orbitals
on the nearest neighbors.

In Fig. 7 we show the changes in the charge den-
sity corresponding to the two T, quasiresonances
at {a) -~ 8.4 eV and (b) - 6.8 eV, as obtained from
the self-consistent calculations, The quasireso-
nance at -~ 8.4 corresponds to a strengthening of
the back bonds [ recall however, that, overall, the
back bonds are not strengthened because the total
change is localized entirely within the cavity de-
fined by the nearest neighbors; cf Fig. 4(c).] The
quasiresonance at - 6.8 eV shifts some of the
charge into the antibonding direction in the nor-
mally empty interstitial regions.

D. The effective-mass nature of the bound state

In the self-consistent Green’s-function calcula-
tions, we obtain the bound-state wave functions in
terms of our LCAOQ basis set in the form

W= C,9,0, (52)

where ¢, is an OSO (for simplicity, we use n
={a@,i,l} as a composite index for an 0SO). A
common expansion of the i, e.g., in the case of
effective- mass theory, is in terms of Bloch func-
tions in the form

W@® =2, FoRwg®. (53)
nk
Combining (52) and (53), we immediately obtain
F,®)=(nkjyy =Y C,inkjs,). (54)

An alternative expression can be obtained by using
Eqgs. (7) and (36):

F,®) =) C(nk|Ulo,) (E-Eg). (55)

This expression shows that only those OSQO’s for
which the matrix elements of L' are nonzero need
be kept in calculating F,(k). We have calculated
these quantities and summed them over the Bril-
louin zone for each band in order to estabiish the
relative weight of each band in the expansion of ..
The results are given in Table [V. We note that
80% of the wave function comes from the top three
valence bands, with the remainder distributed over
a total of seven more bands. The lowest conduc-
tion band contributes 11, whereas the rest of the
conduction bands together contribute less than 9¢,
In Fig. 9 we give plots of the various F,,(l‘() func-
tions along two important symmetry directions in
Kk space. Omly the F,(k) for bands 2, 3, 4, and 5
can be plotted on the scale of Fig. 9. This {igure
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FIG. 9. The band structure of silicon of the vicinity
of the band gap and the envelope functions F, k) plot-
ted along the A and Q directions. See text.

illustrates clearly that . is composed mainly from
Bloch functions in the vicinity of the valence-band
maximum at k = 0, very much like effective- mass-
like bound states. We may recall at this stage that
effective-mass equations have recently been re-
derived®® for an arbitrary impurity potential by
making only two approximations: (1) restricting
the number of bands that participate in the expan-
sion of the bound-state wavefunction, and (2) evalu-
ating all matrix elements to order k* (thus in-
cluding the so-called umklapp terms®). The re-
sults shown in Fig. 9 for the vacancy bound- state
wave function indicate that the new generalized
effective- mass equations might be applicable even
for quite deep levels. Numerical work would have
to be carried out to establish their actual useful-
ness. It should be noted, in any case, that the
effective-mass equations would be useful only if
the defect or impurity potential were known (the
theory cannot determine the potential self-con-
sistently) and then only for the bound state(s) in
the gap. Further discussion of the connections
with EMT is given in Ref, 60.

E. Comparison with tight-binding models
So far, we have carried out Green’'s-function
calculations of three different degrees of com-

oy _A‘)L_ Lo
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plexity: (1) using a semiempirical tight-binding
Hamiltonian, reported in paper I,*® (2) using a
non-self-consistent vacancy pseudopotential taken
to be the negative of a bulk atomic pseudopotential,
and (3) using a fully self-consistent vacancy
pseudopotential. (In the last two cases, the under-
lying band structure is also based on self-con-
sistent pseudopotentials.) We have already seen
in Sec. V B that the results of calculations (2) and
(3) differ only in their details. We therefore turn
now to a comparison with the tight-binding results
of Ref. 28. In Fig. 10 we compare the tight-binding
results for the changes in the densities of 4; and
T, states with the results of the fully self-con-
sistent calculations described above, The two
curves in each case are remarkably similar, con-
firming the usefulness of the tight-binding calcula-
tions, We may recall that in the tight-binding
model?® all Hamiltonian matrix elements are as-
sumed to be identical to those of the unperturbed
bulk, even those corresponding to the backbonds.
The self-consistent results for the total change in
the charge density [ Fig. 4(c})] show that changes
are restricted within the vacancy cavity and provide
an explanation and justification for the validity of
the tight-binding model.

The bound-state energy, however, obtained by
the tight-binding calculations?® is far too low (0.3
eV compared with the present 0.7 eV), We specu-
late that this unsatisfactory result is a consequence
of the fact that the tight- binding conduction bands
are not very accurate. As discussed in Ref. 28,
the valence-band state-density changes are deter-
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FIG. 10. Comparison of the tight-binding and self-
consistent results for density of states (DOS) of per~
feet silicon and for the DOS changes of A, and T .
symmetries. The curves are broadened by 0.2 eV
and the reference coergy is the top of the valence
bands.
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mined primarily by the valence bands, whereas the
position of the level in the gap is determined by a
subtle balance between valence- and conduction-
band rontributions. Note that this observation
[Eq. (43) of Ref. 28] is not in contradiction with
the fact that the bound-state wave function is com-
posed mainly of valence-band Bloch functions
(Fig. 9). The tight-binding result comes about
because the bound-state wave function is expanded
in terms of s and » LCAQ’s which give rise to both
valence and conduction bands. Note that Eq. (43)
of Ref. 28 is only a condition that determines the
position of the bound- state energy level and con-
tains no information about the composition of the
bound- state wave function, On the other hand, this
relation suggests that the bound-state energy level
obtained by the tight-binding model is too low be-
cause the tight-binding conduction bands are too
narrow compared with the true sp conduction
bands, so that the integral on the right-hand side
of Eq. (43) of Ref. 28 is larger than it should be,

VII. SUMMARY AND CONCLUSIONS

In paper I, we have shown that the Koster-Slater
Green’s-function technique becomes very efficient
and accurate when the Wannier functions of the
original formulation are replaced by an LCAO
basis set. In that paper the method was applied to
tight-binding Hamiltonians and its advantages over
small- and large-cluster techniques were explicit-
ly illustrated.

In this paper we have demonstrated the feasibility
of the Green’s-function method in conjunction with
first-principles potentials and band structures and
we have extended it to fully include self- consis-
tency effects. The principal advantages of this
method are the exploitation of (1) the short-range
nature of the defect potential, (2) the translational
symmetry of the host crystal, and (3) the analytic
separation between the bulk and defect properties,
Qur first application of the method has been to the
vacancy in Si. We have found one bound threefold
degenerate state of T, symmetry at 0.7 eV, which
is occupied by only two electrons. There are also
several resonances and antiresonances within the
valence bands which are associated with the
vacancy, The wave functions associated with the
bound state, the resonances, and the antireso-
nances are individually quite extended, while the
vacancy potential is short ranged and extends only
up to the nearest neighbors of the vacancy. The
localization of the potential is caused by a detailed
cancellation of the bound- state charge density by a
corresponding charge redistribution within the
valence bands.
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APPENDIX A: SYMMETRIZATION AND
ORTHOGONALIZATION PROCEDURE
The symmetrized combinations of LCAQO’s on
each shell surrounding the vacancy can be gen-
erated by letting the projection operator

P =':f z: C PR, Py (AD)

for each representation j act on each of the basis
functions on that shell. [ R is a rotation belonging
to the point group, P, is the corresponding rotation
operator, I, is the dimension of the irreducible
representation, and [ ’(R) is the matrix of the
representation for that rotation. ]

The above procedure has been automated and
both the symmetrized shell orbitals and the OSO's
have been generated on a computer. The result
of applying P} on an LCAO function is

- - { - -
P o, (F-T) =k ; LR, Ls(F=T1,

(A2)

where a denotes the transformation property of
an LCAO (s, x, etc.), 7 is its position; 3= Py™'a
and 7’ = Pyr denote the transformation property
and the position of the rotated orbital., respective-
ly. After discarding the linearly dependent func-
tions, the partners to the symmetrized shell
orbitals are formed with the help of the transfer
operator P!’ Finally, the resulting basis func-
tions are orthonormalized by the Schmidt process.
The orthonormalized shell orbitals (OSQ) can then
be compactly expressed in terms of the LCAQ's
on the shell in question and the OSO's on the pre-
vious shells,

APPENDIX B

In this appendix we will soive the Poisson equa-
tion

Viv==-8m, Bl

subject to the boundary condition zero applied on
the surtface of a cube. Let us denote the cube side
by @, Since 1" vanishes on the surface of the cube,
V can be expanded in a three-dimensional sine
series, If the charge density p is given on a cubic
mesh of V points in each direction, the expansions

o oy
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are related by

8N a*
diky, by, ky) =~ TR AR SED ctky, kaky) . (BA)
The Fourier analysis to determine c(k,,k,, k,) and
the Fourier synthesis to obtain V(v x,,v,) are
carried out iteratively using the one-dimensional
sine-transform algorithm,

APPENDIX C

In this appendix we discuss the similarities and
differences between our implementation of the
Green’s-function formalism and that developed
independently by Baraff and Schliiter (BS) ¥ The
two formulations have thus far produced virtually
identical results for the unrelaxed vacancy in Si.

Our approach is based directly on operator equa-
tions which are general results of scattering
theory. The basic operators are ¢ %(E) and U. All
quantities of physical interest are given as traces
or determinants of operators that involve only
G(E) and U. (The trace and the determinant of an
operator are invariantinthe sense that they canbe
calculated by using any orthonormal complete set of
functions to represent the operator in matrix form.)
In our work, we chose a basis set which is physi-
cally transparent and, at the same time. practical
for accurate self-consistent calculations.

BS’s formulation, on the other hand, is based on
expansions of wave functions and the Green's func-
tion in two different basis sets. Expressions for
the quantities of interest are derired in terms of
the expansion coefficients. The same expressions
can, however, be obtained directly from the stan-
dard scattering-theoretic operator equations by
representing the operators in the two basis sets.
Differences arise in the {inal expressions of the
two approaches largely because of the two different
basis sets as opposed to our single set. In what
follows we compare our choices with those of BS
and identify advantages and disadvantages.

The central operator of our formulation 18
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For example, bound-state energies are given by
the zeros of the determinant of @,(E). In contrast,
the corresponding BS result is equivalent to using
the operator

Q(E)=U~UGEW. (C2)

We observe immediately that

Q(E) = UQ,(E), (€3

so that, as long as detli Ui £ 0, either @, or Q, will
in principle give identical results. In practice,
however, differences can in fact arise.

One of the appealing properties of @,(E) is that
it satisfies a variational principle, in the sense
that it yields energies that are accurate to second
order in the wave function.’® This property sug-
gests that a desired degree of accuracy can be
achieved with fewer basis orbitals. However, it
is straightforward to see that, as long as one uses
the same number of orbitals to represent ' and
G in matrix form, the factorization (C3) follows.
As a consequence, Q, and @, will have precisely
the same zeros even though one 1s variational and
one is not. In order to take advantage of the
variational nature of @, one must use twodifferent-
size basis sets for U’ and G°. The factorization
{C3) is then not possible and @, and @, would yield
different resuits. In particular, BS used a set of
LCAO’s at each atomic site, including the vacant
site, for G° (the “inner” set), and a smaller setthat
did not include orbitals at the vacant site for U (the
“outer” set). The variational principle was then
in effect. In contrast, we included orbitals at the
vacant site for both ¢° and U7, so that the use of
@ and Q. would yield identical results. We believe
that including orbitals at the vacant site for both
U and G° is mandated by physical considerations,
even though the size of the U matrix 1s increased.
As we saw in Sec. IV, the role of the basis set is
to represent U and the change in the charge den-
sity ap, both of which are highly localized in the
vacant atomic volume (Figs. 3 and 4). In fact, one
can argue® that orbitals at the vacant site alone
ought to be sufficient to expand Ap. We further
believe that the omission of orbitals at the vacant
site by BS has affected their resuits, albeit in a
minor way. The effect is noticeable for states of
A, symmetry which have nonzero amplitude at the
origin. In particular, we find an 4, resonance at
E,-0.7 eV, whereas BSfind it at £,- 1.1 eV, We
believe that the most liketv source of this discrep-
ancy 1s BS's omission of orbitals at the vacant site
in their outer set, i.e., the set that 1S used to ex-
pand the wave functions and hence o and I,

The use of ¢, with two different-size basis sets
has an additional disadvantage®* that must be dealt
with carefully: Note that det'¢. :8 n principle
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proportional to detiUll, Note also that the strength
of the method lies in the fact that the matrix of U
is nonzero in a small subset [cf. Eq. (26)]. Nor-
mally, one would like to increase this subset and
check the convergence of the results, As con-
vergence is reached. detn’i tends to zero and
hence detlQ, I tends to zero as well. Since @, is
inverted in the calculation of the change in the
charge density. one must exercise caution in
carrying out convergence tests (in the limit of full
convergence, when detil Uil =0, special procedures
mus{ be used {o ensure the inversion of @, is ef-
fected in the subspace in which det Uil is nonzero).
None of these complications arise when one works
with Q'.

Finally, one last technical difference between
our approach and that of BS is the {ollowing: As
stated earlier. we work with operator equations
and represent each operator in matrix form so
that the operator equations become matrix equa-
tions.*® Thus, we in fact calculate the Green's-
function matrix in the chosen basis set. BS, on

the other hand, as they point out. do not calculate
matrix elements of the Green's function in any
particular set of states. Instead, they expand the
Green's function in a set of states as follows:

GUE, 7, 7Y =D 401G (E)o,.(r") . (c4)
nm'

The G2 (E) are expansion coefficients which are
evaluated by expanding the Bloch functions in terms
of the orbitals ¢,(r). [ Note that the Bloch func-
tions are calculated in a plane-wave basis and

then fitted to an expansion in terms of the &,(r).]
In fact. one can show that the G 2. (E) would be
Green's-function matrix elements if the &, were
orthogonal, If not, and S,, is the overlap matrix
of the ¢, we have

Gl (E) = ); S2H Gl (EVSTe (C5)
where the G{;.(E) are true Green’s-function matrix

elements and can be evaluated in a straightforward
way as described in Sec. V.
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THE EFFECTIVE-MASS NATURE OF DEEP-LEVEL POINT-DEFECT STATES IN SEMICONDUCTORS
S. T. Pantelides, N. O. Lipari and J. Bemholc
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
(Received 17 December 1979 by J. Tauc)

The basic premise of Effective-Mass Theory (EMT) is that bound-state
wavefunctions are constructible from Bloch functions in a small region or
regions of k space. In contrast, deep-level wavefunctions are believed to involve
Bloch functions from the entire Brillouin zone and severa) bands. In this paper
we analyse the wavefunction of the deep vacancy level in Si obtained recently
by self-consistent Green’s-function calculations. We find that this wavefunction
has a strong EMT character in that it is composed primarily of Bloch functions
from the nearest bands and the corresponding coefficients, i.e. the eavelope
functions, are peaked about the band extrema. As a further check, we have
used a spherical average of the self-consistent vacancy potential in the acceptor
EMT equations. The resulting energy level is at E +0.9 eV, as compared with
the Green’s-function-theoretic value of E +0.8 eV. The resulting wavefunction,
on the other hand, does not have the correct form. A check of the correction
terms left out by the standard EMT equations reveals that their contributions to

the energy level are large and tend to cancel one another.

Impurities which introduce bound states in the
fundamental gap of a semiconductor with energy
levels very near the valence- or conduction-band
edge. known as shallow levels, are described very
well by effective-mass theory (EMT).! The basic
premise of that theory is that the bound-state wave-
functions can be constructed from Bloch functioas in
the vicinity of the nearest band edges. When first
introduced, the EMT made use of a screened Cou-
lomb potential of the form -e?/er, where € is the
dielectric constant, to describe the impurity potential.
Later, Pantelides and Sah? suggested that the EMT
could also be used with impurity potentials con-
structed from explicit pseudopotentials for individual
impurity and host atoms. Such potentials have a
Coulombic ¢ail of the form -¢2/er, but have distinctly
different behavior in the so-called central ceil. The
EMT was found to be quite successful even for some
deep levels, i.c., levels in the midgap region. Despite
this success, however, the theory lacked fundamental
justification because it was based on the assumption
that, even for deep levels, the wavefunctions are
constructible from Bloch functions in a smail region
or regions of the Brillouin zone at the absolute extre-
mum of the nearest band (or few degenerate baads).
This assumption was contrary to the belief that an
expansion of deep-level wavefunctions in terms of
Bloch functions is likely to require s large section of
the Brillouin zone and several bands.’ A few years
ago. Saros and Ross* adopted the latter point of view
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and carried out deep-level calculations by directly
expanding the bound-state wavefunction in terms of
Bloch functions of many bands, choosing a uniform
grid of k points in the Brillouin zone. These calcula-
tions, as well as subsequent ones by Jaros® using the
method of Bassani er al.,' yielded wavefunctions
which, in general, were not consistent with the EMT
assumption.® It is important to note. however, that
the results obtained by Jaros and coworkers do not
provide conclusive resolution of the fundamental
quandary, because a low density of k points was
used and the calculations were not carried to full
convergence.’

We have recently developed® a computational
procedure which permits the unambiguous resolution

of this question. The procedure, based on a2 Green's-
function formalism, produces self-consistent and
convergent solutions and thus yields accurate wave-
functions as well as bound-state energies. We have
so far reported results on the electronic structure of
the vacancy in Si.*! (Virtually identical results ob-
tained by a similar method have beea reported inde-
pendently by Baraff and Schitter®). In these calcu-
lations, the wavefunctions are determined in terms of
a linear-combination-of-atomic-orbitals (LCAOQ)
basis set. In Ref. 8, we displayed the bound-state
wavefunction of the vacancy in Si in terms of a coa-
tour plot in real space. Once the wavefunction is
known, however, it is straightforward to project it on
Bloch functions and calculate the corresponding ex-
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pansion coefficients. We have therefore calculated
the quantities F (k) defined by

¥(e) = 3 F (k) () )]
ak

by expressing them as
Fok) = <y lv> . )

Using standard Green's-function expressions for ¢
(see, e.g.. the review article by Pantelides, Ref. 1),
we get the simple result

Fok) = <y (UIY>/(Eg=Ey)  (3)

where E o are the band energies, Ep is the bound-
state energy, and U is the perturbation potential of
the impurity or defect.

The results of this calculation are shown in
Fig. 1. We plot | F (k) |2 for the bands correspond-
ington = 2,3, 4,5, and 6. The contributions of
the other bands are several orders of magnitude
smaller. It is clear that, even though the uarelaxed
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Fig. 1. (a) The energy bands of Si along two symme-
try directions and the vacancy levei in the gap.
(b) The k-space decomposition of the bound-state
wavefunction of the vacancy in Si, calculated by the
Green's-function method (Ref. 8).

vacancy corresponds to one of the strongest possible
point-defect perturbations and results in one of the
most tightly-bound states in the gap,'® the bound-

state wavefunction has a strong EMT character in
k-space.!! Since the vacancy introduces a perturba-
tion which is repulsive to electrons, it behaves like an
acceptor impurity with Az=d4 (the neutral vacancy
may be thought of as binding four holes). The enve-
lope functions F (k) are thus peaked at k = 0 for
the three degenerate valence bands. Note also the
small contribution from the lowest two conduction
bands in the vicinity of the X point and, in particu-

lar, the peaking of F¢(k) at the minimum of the low-

est conduction band.
As we remarked earlier, the unrelaxed vacan-

cy corresponds to one of the strongest point pertur- .
bations. Perhaps the strongest point perturbation is .

one that couples each Bloch function in a set of
bands with all other Bloch functions in that set by
the same matrix element V. In that case, Eq. (3)
reduces to the simple result'é

Fy(k) = C/(Eg=E ) )

where C is a constant independent of n and k. We
have plotted these quantities in Fig. 2 and observed
that the overall EMT character remains unchanged.

1 i i R ! I 1

2

2
{Entil] = |<anfy|

Fig. 2. The k-space decomposition of the bound-state
wavefunction arising from a model perturbation that
couples all Bloch states in a set of bands by the same
matrix element (see text).

The plots shown in Figs. 1 and 2 should be
interpreted with caution, because they show the
F,(k) only along two symmetry lines. For an assess-

ment of the total contribution of each band, sums

over the Brillouin zone were carried out. The results
are shown in Table I. These resuits confirm the con-
clusion that a state arising from a repulsive potential
is constructed primarily from the top valeance bands.
The strong EMT character of the bound-state
wavefunction suggests that one might. in fact, be
able to use the EMT equations to determine the
bound-state energy. In order to check this possibili-
ty, we have used a spherical vacancy potential taken
to be the negative of a bulk seif-consistent atomic
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TABLE |

The per-cent contribution of each Si band to
the vacancy bound-state wawiefunction. The quantity
¢, is defined by ;.: JF 1

n ¢, (%]
1 0.4
2 4.8
3 23.7
4 51.1
5 10.9
6 4.1
7 2.2
8 1.4
9 0.0
10 0.3

pseudopotential (Fig. 3). This potential, when used
in the Green’s-function equations yields a bound
state at 0.8 eV, compared with the fully self-
consistent value of 0.7 eV (we avoided using the
fully seif-consistent vacancy potential because it has
nonspherical terms that would unnecessarily compli-
cate the EMT calculation). We have used the ac-
ceptor EMT scheme developed by Lipari and
Baldereschi,!? incorporating the full anisotropy at the
valence-band top and allowing complete variational
freedom for the envelope functions Fn(r) [which are
Fourier transforms of the Fn(k)]. (Note that the

AE=Y Y'F

ok o'k’

POTENTIAL lev)

]
n
o

8

1

!

|

—

|

)

-

i

===~ YNON-sC J
4

.4°
e<iit> (R)
Fig. 3. The spherical vacancy potential used in the

EMT calculations compared with the full seif-
consistent poteatial along the (111) axis.
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vacancy potential we used has no Coulomb tail. It is
a totally central-cell potential.) The result for the
bound-state energy was astonishingly good. We ob-
tained a level at 0.9 eV above the valence band
edge, which is to be compared with the correspond-
ing Green’s-function-theoretic value of 0.8 eV. The
corresponding wavefunction, however, did not have
the correct structure. [t is compared with the wave-
function obtained from the Green’s-function calcula-
tion in Fig. 4. In the top panel, we show the Bloch
functions at the top of the valence bands in order to
illustrate that the EMT bound-state wavefunction
retains the overall Bloch-function structure (simce it
is in fact a product of envelope functions and Bloch
functions).

The above results led us to investigate the size
of the terms that are left out by the standard accep-
tor EMT."!'* These terms are: (i) the so-called
Umklapp terms in the potential matrix elements;!*-!3
(ii) the k* and higher-order terms in the expansion
of the valence bands around k=0 which eanter the
EMT kinetic-energy matrix elements; and (iii) the
conduction-band contributions.

The Umklapp terms arise in the potential ma-
trix elements when one does not make a pilane-wave
approximation to the Bloch functions, but, instead,
keeps all the terms in the expansion of reciprocal-
lattice-vector piane waves. We have estimated the
Umklapp contributions by perturbation theory by
evaluating the cxpression

A<y 1UT ¥ > —<k)UIK'>8 JF (k) (5)

where |k> stands for a plane wave. The sum over
n is over the top three valence bands and F (k) are
the envelope functions obtained from the EMT cal-
culation described above. We found that the Umk-
lapp correction is very large, of order 2 eV. This
result indicates that the success of the EMT calicula-
tion described above for the bound-state energy is a
consequence of approximate cancellations of large
correction terms. Since the k* kinetic-energy correc-
tions would, like the Umklapp terms, make the level
deeper, it appears that the conduction-band contrib-
utions are the oanes that would compensate the large
Umklapp terms. The conduction-band contributions,
which in this case make up about 20% of the wave-
function (Table 1), can in principle be incorporated
in an EMT calculation (see, e.g.. the multiband and
multivalley formulation of Ref. 15), but the task is
tedious and beyond the scope of the present paper.
Some insight into their importance can be gained,
however, by comparing the bound-state wavefunction
obtained by the EMT calculation with that obtained
by the Green’s-function calculation (Fig. 4). It is
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Fig. 4. Coatour plots on the (110) plane of (a) i
Bloch functions at the top of the valence bands (sum .
of the three degenerate Bloch functions at k = 0); !
(b) the EMT bound-state wavefunction: and (c) the | ]
Green’s-function-theoretic bound-state wavefunction ;1
(from Ref. 8). The units are electrons per primitive f
unit cell. [Note that in (a) the triply degenerate state i
contains six electrons, whereas the triply degenerate l
state in (b) and in (c¢) contains only two electrons]. ,
slear that, although the Green’s-function-theoretic strongly peaked at the nearest band extrema. ;
wavefunction has a dangling-hybrid-like character, (b) For deep levels, the EMT equations without !
the EMT wavefunction does not. Instead, it looks Umklapp terms can provide energy levels that com- ¥
like a bonding function with maximum amplitude in pare well with more sophisticated calculations, even
the region where the vacancy potential (Fig. 3) is though the corresponding wavefunctions disagree !
large. Admixture of conduction-band Bloch func- substantially. The good energy levels result from {
tions, which are antibonding in character, will, how- cancellations of large corrections. The surprising ¥
ever, shift the amplitude toward the nearest effectiveness of these cancellations in the case of the
neighbors.!” Such a shift can be expected to reduce vacancy is not, however, completeiv understood at 1
the potential matrix element substantially. These present and cannot, therefore, be generalized. (<) ii
qualitative arguments, however, do not explain why EMT equations with Umklapp terms may yet prove 4
the conduction-band contributions cancel the Umk- to be quantitative even for very deep levels. but both ;
lapp terms of the valence.band contributions so ef- valence and conduction bands would have to be in-
fectively. corporated in the calculation.
In conclusion, the studies reported in the pres-
ent paper have established that: (a) The wavefunc- Acknowledgement: This work was supported in part
tions of deep point-defect levels are strongly by the Air Force Office of Scientific Research under
effective-mass-like in that the k-space envelopes are Contract No. F49620-79-C-0077.
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Electronic Structure of the Jahn-Teller Distorted Vacancy in Silicon

N. O. Lipari, J. Bernholc, and S. T. Pantelides
IBM Thomas J. Watson Research Center, Yovktown Heights, New York 10598

(Received 20 July 1979)

This Letter reports self-consistent~field calculations of the electroaic structure of the
Jahn-Teller distorted vacancy in Si, With use of the tetragonal atomic displacements es-
timated by Watkins, it is found that the Jahn~Teller splitting of the sixfold-degenerate
bound state in the gap is of the order of 0.5 eV, This, together with small breathing-mode
displacements, results in a fully occupied doublet in the lower part of the band gap, in

agreement with experimental observations.

The introduction of point defects such as vacan-
cies and many chemical impurities in semicon-
ductors gives rise to substantial rearrangements
of the electron density and the atomic positions
which are not well described by effective-mass
and linear-response theories. The resulting lo-
calized states possess energy levels that lie deep
in the forbidden energy gap and play an important
role in determining many device properties through
their influence on carrier lifetimes and impurity
diffusion. Recently, the authors® and Baraff and
Schluter? independently reported the development
of self-consistent Green’s-function techniques
which, for the first time, gave a detailed descrip-
tion of the electronic structure of the unrelaxed
vacancy in Si at the same level of sophistication
and accuracy characteristic of state-of-the-art
electronic-structure calculations for bulk semi-
conductors. surfaces, and interfaces. However,
that work did not take into account lattice distor-
tions in the immediate vicinity of the vacancy.
Such distortions, which are a manifestation of
the Jahn-Teller effect, are known experimental-
ly® to have a significant effect on the properties
of the vacancy. The purpose of this paper is to
provide a detailed theoretical picture of the con-
sequences of Jahn-Teller distortions in terms of
calculations which retain the level of accuracy
achieved in the case of the undistorted vacancy.'
We show that small, symmetry-breaking displace-
ments of the nearest neighbors (of order a few
tenths of an angstrom, as estimated by simple
force models) have large effects on the electron-
ic structure cf the vacancy. In particular, they
split the sixfold-degenerate bound state in the gap
into a f{ully occupied doublet and an empty quad-
ruplet. The splitting is large (of the order of
half the band gap). so that the energy level of the
occupied doublet is in the lower part of the band
gap, in agreement with experimental cbserva-
tions.

From an analysis of electren-spin-rescnance
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(ESR) data, Watkins® has concluded that the pre-
ferred distortion is tetragonal in nature, lower-
ing the point symmetry from T, to D,,. Watkins
also estimated the magnitudes of the displace-
ments of the nearest neighbors with use of a sim-
ple force model. In addition to the symmetry-
breaking displacements. the nearest neighbors
can also move toward or away from the vacant
site in the symmetric, so-called breathing mode.
but no estimates of the corresponding displace-
ments have been made.

Our calculations permit us to study the effects
of symmetry-lowering and breathing distortions,
independently, as well as simultaneously. The
calculations were carried out using the method
of Ref. 1. the only difference being that the ionic
contribution to the perturbation pseudopotential
is now given by

(_'i("f)=—ri(?)—Zz‘,{?—ﬁ)-Zz‘,i’?—ﬁ’). (N
B R

Here ¢;(F) is a Si*~ ionic pseudopotential. R are
the undistorted-lattice nearest-neighbor positicns,
and R’ are the new nearest-neighbor positions.
[In the case of the unrelaxed vacancy.' I, () con-
tained only the first term in Eq. (1).] For each
choice of the R’. the potential arising f{rom the
change in the valence charge density is calculat-
ed self-consistantly.

“We find that a tetragonal distortion of the mag-
nitude estimated by Watkins splits the sixfold-
degenerate T, level, which in the undistorted case
lies at £,+0.7 eV (where E, is the valence~band
edge), into a doublet B, at £,+0.3 eV and a quad-
ruplet £ at E,+~ 0.8 eV. The doublet contains two
electrons which maintain the neutralitv -+f the de-
fect and the quadruplet is empty. This vesult
demonstrates explicitly that smail symnietry-
breaking displacements of (he aearest neighbors
of the vace.ucy can preduce large level splittings.®
Indeed. %2 calculated splitting. 0.3 eV. is of the
order of half the band gap. Allowing {or the pos-

© 1979 The American Physical Society
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FIG. 1. (a) Jahn-Teller splitting of the T, vacancy level in the gap for various values of tetragonal displacements
of the nearest neighbors. 6 is equal to the value estimated by Watkins (Ref. 3). (b) The effect of breathing-mode
displacements of the vacancy nearest neighbors on the T, vacancy level in the gap. Negative values correspond to
inward displacements. {(c) The combined effect of tetragonal displacements (as estimated by Watkins, Ref. 3) and
various breathing~mode displacements of the vacancy nearest neighbors on the T, vacancy level in the gap. Negative

values correspond to inward displacements.

sibility that Watkins’s values of the displacements
represent underestimates,’ we repeated the cal-
culation with larger displacements. The results
are shown in Fig. 1(a).

In addition to symmetric-breaking displace-
ments, we have investigated the effect of breath-
ing-mode displacements of the nearest neighbors.
The results, for several values of the atomic dis-
placements, are shown in Fig. 1(b). As expected,
no splitting occurs. The T, level simply moves
up or down depending on whether the atoms move
away from or toward the vacant site. We have al-
so carried out calculations in which tetragonal
distortions are combined with breathing-mode
displacements. One set of results is shown in
Fig. 1(c). In all cases, we find that inward breath-
ing displacements lower the energies of both the
doublet and the quadruplet, whereas outward
breathing displacements raise both levels. Over-
all, the calculations indicate that a combination
of tetragonal and breathing displacements can in-
deed place the energy level of the fully occupied
doublet in the lower part of the gap, as found ex-
perimentally.® As Fig. 1(c) shows, this can be
accomplished by combining Watkin's estimates for
the tetragonal displacements with small inward
breathing- mode displacements. or by combining
larger tetragonal displacements with small out-
ward breathing-mode displacements. The latter
possibility is consistent with arguments suggest-
ing that outward displacements. which strengthen
the backbonds. are most likely to occur.” If that
is indeed the case, our calculations indicate that
the preferred breathing-mode displacements ac-
tually raise the energy level of the fully occupied
doublet. This rather surprising behavior is ac-

tually consistent with the fact that the bound states
in the gap have a predominantly dangling-bond
character (Fig. 2). Detailed understanding of this

(oin
. .
Pnoy
. .
FIG. 2. The wave function of the B. bound state of the

tertagonally distorted vacancy in Si in two inequivalent
(110) planes.
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behavior can be obtained in terms of a simple
tight-binding model,® according to which both the
T, bound state and the A, resonance at approxi-
mately E,-0.7 eV (Ref. 1) are basically linear
combinations of the sp® dangling hybrids on the
nearest neighbors, and the T,-A, splitting is de-
termined by the interaction V between dangling
hybrids. When the atoms move in or out, two
changes occur: First, the hybrid energy changes
because its composition is no longer pure sp.?
This dehybridization energy E, can be estimated,’
and. in fact, is found to lower the dangling-hybrid
energy when the nearest neighbors move toward
the vacancy. The second change occurs in the
value of V. When the atoms move toward the va-
cancy, V is enhanced and the T,-A | splitting in-
creases. Thus, we conclude'® that inward motion
would result in a lowering of the A, resonance
and an increase in the T,-A, splitting. The T,
level could move either way depending on the ra-
tio of E, and V. The opposite effects would be
produced by outward motion. These simple pre-
dictions are confirmed by our self-consistent re-
sults (Fig. 3).

The present calculations also yield detailed in-
formation about individual wave functions and
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FIG. 3. The changes in the density of A, states within
the baand continua and the position of the T- bound state
in the gap for the unrelaxed vacancy in Si, and for in-
ward and outward breathing-mode displacement of the
nearest neighbors.
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charge-density changes. In Figs. 2 and 4 we show
some results in the case of a pure tetragonal dis-
tortion with use of Watkin's estimates of the atom-
ic displacements. In Fig. 2 we show contour plots
of the wave function of the occupied B, bound state
in the gap. The two plots correspond to two in-
equivalent (110) planes, demonstrating a strong
anisotropy of the wave function induced by the dis-
tortion. In Fig. 4 we show the total change in the
charge density. The two plots correspond to the
same two inequivalent (110) planes used in Fig. 2.
We again observe a substantial amount of anisot-
ropy caused by the tetragonal distortion. We al-
so note that the change now extends beyond the
cavity defined by the nearest neighbors. The na-
ture of these charge-density changes depends on
the type of assumed reconstruction and, in gen-
eral, can be understood in terms of simple phys-
ical pictures. A detailed discussion will be given

(o1

[ (10)

FIG. 4. The total change in the charge density in the
case of the tetragonally distorted vacancy in 3i {n the
same two inequivalent (110) planes as in Fig. 2. Solid
lines correspond to removal of charge and Jashed lines
to addition of charge.
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elsewhere.

In conclusion, we have used self-consistent-
field calculations to study the effect of both sym-
metry-lowering and symmetry-preserving lattice
distortions on the electronic structure of an iso-
lated neutral vacancy in Si. We find that distor-
tions of reasonable magnitude are very important
and bring the bound-state energy to within the
range of experimental measurements.
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Appendix M

THE ELECTRONIC STRUCTURE OF DEEP SP-BONDED IMPURITIES
IN SEMICONDUCTORS

J. Bernholc, S. T. Pantelides, N. O. Lipari, and A. Baldereschi*

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598

This Letter reports self-consistent calculations of the electronic struc-
ture of a series of deep impurities in Si. For the first time, these calculations
provide a detailed description of gap states as well as the resonances and
antiresonances within the band continua with the same accuracy as that of
bulk-crystal calculations. The analysis of charge densities and wavefunctions
in terms of simple models provides an understanding of the chemical bonding,
the degree of localization, and the relevance of ideas based on effective-mass

theory.
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Impurities in semiconductors usually introduce bound states in the
fundamental gap and through them control transport and other properties
important to the fabrication and performance of electronic devices. Effective-
mass theory (EMT)!-3 has been quite successful in describing such states if
the impurity potential is dominated by a screened Coulombic tail. Most such
impurities have energy levels very near a band edge and are thus known as
shallow. Many other impurities, however, introduce strong central-cell
potentials which result in bound states in the midgap region, and are thus
referred to as deep. The EMT has offered some insight into some of these
states,2-3 but, usually, alternative techniques are found to be more
appropriate.> Until now, however, all such techniques have had to make
compromising approximations and hence resulted in incomplete or quasiquan-
titative descriptions.* For example, electronic redistribution in the vicinity of
the impurity is often either neglected or treated by linear-response theory.

In this Letter we report detailed calculations of the electronic structure
of a series of deep impurities, carried out with the same rigor and accuracy
that is currently possible for perfect crystals. The complete spectrum of
localized states is calculated, including gap states as well as resonances and
antiresonances within the valence-band continuum. The results are analysed
in terms of simple physical models which allow us to draw conclusions about
chemical bonding, localization, and the applicability of effective-mass ideas.

The series of impurities we study in this Letter are nominal acceptors in
the sense that they are substitutional and have a smaller chemical vaience than

the host. If we define Az = z,,, - 2,.,. Where z is the chemical vaience

p
(e.g., 4 for Si). Az=—1 corresponds to the shallow acceptors (e.g., Si:Al).

Impurities with Jz=<2 are often referred to as double acceptors since they

+ ————— e —
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may have two ionization states (He analog). One can then proceed to
Az=~3, the nominal triple acceptors, and, finally, to Mz=~4, which is the
vacancy. In this paper, we will describe substitutional’ H and Zn in Si

(dz= -3 and -2, respectively), which will allow us to connect with the

vacancy results® (1z=—-4) and also with the shallow, EMT limit (Azm—1).
: Since these impurities, like Si, have no d valence electrons, we will be able to

investigate and elucidate the restructuring of host sp bonds by sp-bonded

impurities. Transition-metal impurities with d valence electrons constitute a

special class and must be treated separately.

- TR

The calculations were carried out using the Green's-function method

-

reported in Ref. 6. The only difference is that the bare defect potential is

now the difference between the impurity-ion and the host-ion
pseudopotentials,’ instead of just the negative of a host-ion pseudopotential

used 1n the case of the vacancy.® The valence charge density is calculated

self-consistently within the Kohn-Sham local-density one-electron scheme.

The results reveal that the important changes occur for states of A, }
(s-like) and T, (p-like) symmetry. In particular, as in the case of the vacancy
(Si:V),6 Si:H and Si:Zn have a T, bound state in the gap.3 Their energy levels
and wavefunctions are shown in Fig. 1. This figure indicates that the wave-

function has a canonical shape for the entire series,? getting only slightly more

compact as the level moves deeper in the gap. In all three cases, it consists
mainly of the p-like combination of the neighbor sp> hybrids. The origin of
this effect can be traced to the fact that H and Zn atoms. just like the vacan-

cy. cannot support p-like valence electrons in the atomic cell. (The basis for

this conclusion will become clearer beiow).




In addition to the bound state in the gap, the impurity potential also
modifies the band continua. Consistent with the discussion above, we find
that the changes in the density of T, states induced by H and Zn are virtually
identical with those induced by the isolated vacancy.® The changes in the
density of A, states induced by H and Zn, on the other hand, differ dramati-
cally from those induced by the vacancy in that the prominent A, vacancy
resonance at E -0.7 eV becomes very broad and diffuse (Fig. 2). This
contrasting behavior arises because the vacancy resonance lies at an energy
where the crystal has virtually no Bloch states with s-like amplitude in the
atomic cell, whereas the impurity resonance is pulled at lower energies where
such states ‘exist. The charge densities of these resonances, shown in Fig. 3,
clarify the picture further. Whereas the vacancy r>sonance is the s-like combi-
nation of the dangling hybrids,® just like the T, bound state is the p-like
combination of the same hybrids, the impurity resonance has a nearly spheri-
cal s-like charge around the nucleus. Thus, when an H or Zn atom is inserted
in a vacancy, its s orbital bonds with the s-like combination of the dangling
hybrids, allowing the s-like propagating states to exist almost undisturbed.
Equivalently, our resuits show that when H or Zn replace a Si atom, the
crystalline s-like charge in the atomic cell is only slightly disturbed. The
origin of this behavior can again be traced to the fact that H and Za atoms,
this time unlike the vacancy, do support s-like charge in the atomic cell.

The overall conclusion of the above analysis is that the s-like parts of
the bonds broken by the removal of a Si atom are reestablished when a
group-I or group-II impurity is substituted. In contrast, the p-like parts of the

broken bonds remain unsaturated even as additional electrons are put into the




p-like state in the gap. This result reflects the fundamental ability of H and
Zn atoms to support s-like but not p-like valence electrons in the atomic cell.

It would be desirable to compare our theoretical results with experi-
mental data. Unfortunately, no unambiguous data are available. Experimental
evidence has been mounting lately that many centers which were thought to
be simple substitutional impurities are in fact complexes. The case of Au in Si,
which, if substitutional, would be a Az=-3 impurity, is the most striking
example.? The data on Zn-doped Si, however, may correspond to substitution-
al Zn. Two charge states have been observed with ionization energies of 0.3
and 0.6 eV, respectively.!® We have, therefore, repeated our calculations for
Zn- and Zn. We also determined the first and second ionization energies
using the transition-state approximation.!! Our results are 0.14 and 0.28 eV.
For a more precise determination of these ionmization energies, other effects
which were left out for the purposes of the present study would have to be
included. Such effects include lattice relaxation,!? a self-consistent account
of the Zn d electrons, spin-orbit coupling, and a more accurate treatment!3 of
the Coulombic tail of the potential for charged states. None of these effects
would change the general results discussed in this paper, but each could
contribute corrections to the ionization energies of order 0.1 eV.

Finally, we compare the present analysis with alternative theoretical
approaches. One such approach is to use a tight-binding Hamiltonian as done
for the vacancy by Bernholc and Pantelides!* and for deep impurities by
Hjalmarson et al.* We have carried out such calculations (Hjalmarson et al.*
reported calculations only for A gap states) and find that they reproduce the
state-density changes in the valence-band continuum remarkably well, as is

true for Si:V.% but the bound-state energy level is quite sensitive to the choice




of tight-binding matrix elements for both the crystal Hamiltonian and the
impurity potential. The tight-binding method, on the other hand, does not

yield unambiguous information on charge-density changes.!’

L

Hjalmarson et al.* also suggested that the important physics of deep-
impurity states can be understood in terms of a "defect-molecule’ model that
focuses on the impurity atom and its four neighbors, neglecting the coupling
with the rest of the lattice. Applying those ideas to the impurities at hand, we
find that the defect molecule merely suggests that both the s-like and p-like
crystal charge will be displaced toward the neighbors, as indeed is the case. It
fails, however, to recognize that the effect is almost negligible for the s-like
charge, but constitutes almost total exclusion for the p-like charge, as dis-
cussed above. The defect-molecule model also misses entirely the resonances

at -8 eV, which are band-structure effects.b
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FIGURE CAPTIONS

1. The wavefunction amplitude of the T, bound state of Si:V (from Ref. 6).
Si:H, and Si:Zn in the (100) plane. The atomic positions are marked by dots. i
Eg denotes the position of the energy level in the gap.

2. The change in the density of A, states for Si:V (solid, from Ref. 6) and
Si:H (dashed). Only the solid curve is shown where they can hardly be

¥
4

distinguished.

3. The charge-density change associated with the A, resonance of Si:V (from
Ref. 6) and Si:H.
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FINAL-STATE EFFECTS IN THE EXCITATION SPECTRA OF DEEP IMPURITIES IN
SEMICONDUCTORS

Sokrates T. Pantelides

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

and
Hermann G. Grimmeiss

Department of Solid State Physics
Lund Institute of Technology, Lund, Sweden

Typed by Linda P. Rubin (SP.2487)

Abstract: The excitation spectra of deep impurities have usually been interpreted in terms of
transitions to continuum states having the same energy distribution and Bloch-like character as
the perfect-crystal band states. Here we provide theoretical analysis and experimental
evidence showing that deep-level spectra are in fact dominated by bound and quasibound final

states induced by the strong short-range impurity potentials.
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The excitation spectra of shallow impurities in semiconductors are known to consist of a
series of Rydberg-like peaks followed by a continuum!. These spectra are well understood in
terms of effective-mass theory (EMT).2 The discrete states below the band edge are the bound
excited states of the electron or hole bound to a Coulombic impurity potential. In the EMT
treatment, the energies of the band states are assumed to have the same distribution as in the
perfect crystal, approximated by an effective-mass parabolic dispersion, whereas the corre-
sponding wavefunctions have been taken to be either perfect-crystal Bloch functions or

continuum solutions of the hydrogenic EMT Schrodinger equation3.

The excitation spectra of deep impurities, on the other hand, are not as well understood.
Usually, they exhibit no Rydberg-like discrete states, but consist of a rather structureless curve
which rises smoothly and then gradually turns over?. Simple models have been developedS-!2
for the continuum part of the spectrum which use different forms of a bound-state wavefunc-
tion (e.g., hydrogenic, or, as first proposed by Lucovsky,’ the bound-state wavefunction of a
s-function impurity potential, or as calculated by a numerical solution of the impurity
problem’:10). In all these models,5-!2 the final states in the band continuum are approximated
as in the case of shallow impurities i.e., the distribution of the final-state energies is taken to
be that of the perfect-crystal energy bands (usually effective-mass parabolic dispersions) and
the corresponding wavefunctions are taken to be perfect-crystal Bloch functions or, for
charged centers, Coulombic continuum solutions. Applications of these models have proved
useful in fitting the data and extracting binding energies, but their inability to account for all
the data, especially when the observed spectra exhibit any kind of structure, has been noted

several times.3.4.8

In this paper we focus our attention on the validity of the usual assumption that the final
continuum states in deep-level excitation spectra are well approximated by perfect-crystal
Bloch functions and energy band dispersions. We will present theoretical and experimental

evidence that in many cases this assumption is invalid and that, on the contrary, the dominant
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final states are localized or quasilocalized states induced by the strong short-range impurity

potential.

We start by addressing the general question of the nature of final states available to a
carrier (electron or hole) which, before the excitation takes place, is in a defect-introduced!?
bound state in the gap. We will pursue this analysis in a quasiparticle picture which is capable
of taking into account all the essential many-body effects (polarization, electron-hole attrac-
tion, etc.) The nature of the available final states depends crucially on the nature of the defect

potential. We immediately identify two distinct cases:

(a) If, upon removal of the bound carrier to a propagating continuum state (ionization),
the center remains charged, then the defect potential has a screened Coulombic tail and is,

therefore, of the form!4

Ulr). = Usr + ne?/er, (1)

where Ugy is a short-range potential, ¢ is the dielectric constant, and n is the net charge at

the center upon removal of the bound carrier.

(b) If, upon removal of the carrier, the center is neutral, then the defect potential has no

Coulombic tail and consists of only a short-range potential Ugy.

We are now in position to distinguish between shallow and deep defects by the strength
of Ugy. Shallow defects are characterized by a weak Ugp. In the absence of a Coulombic tail,
as in the case of isovalent impurities, a weak Ugp may not even have any bound states. For
Coulombic centers, e.g., substitutional group-III and group-V impurities in Si and Ge, a weak
Ugp represents only a small correction to the Coulombic solutions (chemical shifts). The final
states available to a bound carrier are thus Rydberg-like series below band edges and subsidi-

ary minima'$ and continuum states that are slightly modified Bloch functions.
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Deep defects, on the other hand, are characterized by strong Ugp’s. In some cases, Ugy
is moderately strong so that Ugg and the Coulombic tail are of equal importance. We will not
discuss these cases further in this paper. In other cases, however, Ugy may be so strong that
the Coulombic tail, even if it exists in principle, is only a minor perturbation. One such case is
the vacancy in Si, which has recently been investigated by self-consistent calculations.!6-18
These calculations indicate that the vacancy is characterized by a strong, short-range defect
potential, which, in addition to producing a deep bound state, causes dramatic changes in the
continuum states, e.g., ;n the form of resonances and antiresonances. It may aiso introduce
additional bound states in the gap!®. Similar results have since been obtained for deep
impurities20, Thus, we conclude that, in the case of a deep defect, there exist four types of

final states available to a2 bound carrier:

4
E
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(i) Rydberg-like series below band edges, when they exist in principle, as discussed above.

(ii) Propagating states which for symmetry or other reasons are unperturbed or slightly-

perturbed Biloch states.

(iii) Other, non-Rydberg-like bound states in the gap (such states may or may not exist).

(iv) Strongly modified continuum states such as resonances, which have localized

wavefunctions.

Thus, in contrast to shallow impurities whose spectra arise from transitions to Rydberg-

and Bloch-like final states, deep-defect spectra may in fact be dominated by transitions to
localized states both below and above the band edge, depending on the nature of the process.
Yet, such final states have largely been ignored in the analysis of deep-level spectra. For a
correct analysis, one must identify the excitation mechanism and corresponding selection rules
that will determine the dominant final states. For example, the photoabsorption process would
favor transitions to localized states, because optical matrix elements are larger for such states,

unless they are forbidden by symmetry2!. On the other hand, a photoconductivity measure-
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ment might fail altogether to detect bound final states unless a secondary process causes
carriers in such states to scatter into propagating states. For example, carriers in bound final
states may be thermally excited to propagating continuum states (a process known as two-step
photothermal ionmization?2). Photoconductivity experiments can also detect quasibound
carriers in a resonance because resonances have an intrinsic finite lifetime. The process will
depend on the detailed properties of the resonances, the available continuum states (symmetry,
wavefunction localization, density of continuum states, strength of coupling to the lattice,
etc.), and the availability of other localized states (e.g., hydrogenic shallow states) into which

the excited carrier might prefer to decay.

In the remainder of this paper, we will discuss a series of experimental data which
illustrate that bound and quasibound final states may indeed play an important role in

deep-level spectra.

In Fig. 1 we show the photoionization cross-section for hole emission of the dominant
center in Cu-doped ZnSe reported previously by Grimmeiss et al23. This spectrum has been
measured by a photocapacitance experiment and also by luminescence quenching. In the latter
experiment, luminescence is initially obtained from electrons dropping from the conduction
bands into the empty trap. This luminescence is then quenched by optically induced hole

emission from the trap independent of whether the hole final state is propagating or bound. In

Fig. 1(a), the spectrum is plotted on a logarithmic scale over a narrow energy range. The
curve looks like a typical deep-impurity spectrum that might lead one to interpret it in terms of
the usual simpie models that assume transitions to propagating continuum states. In Fig. 1(b)
we plot the same spectrum on a linear scale and over a wider energy range, which is possible
because ZnSe has a wider gap than Si and most ITII-V compounds. The presence of a peak? is
then unmistakable. In order to explore the nature of this peak, photoconductivity measure-
ments have been carried out25 and the results are shown in Fig. 2. The peak is now absent.

indicating that its presence in the photoionization data of Fig. 1 is probably due to transitions




to a bound or quasi-bound state.26 Even though the photoconductivity spectrum begins at
about 0.7 eV and the peak is above 0.8 eV, it is not possible to infer whether the peak is in
fact a true bound state or a quasi-resonance within the band continuum because secondary

processes can result in an effective photoconductivity threshold below the true band edge.

Such striking experiments are not usually available, but strong evidence can be accumulat- vy
ed that deep-level spectra are often dominated by transitions to bound and quasibound final

states induced by the strong short-range potentials. For example, a peak near threshold is also

(]

|

{

present in the electron-emission photoionization spectrum of the Cu-related center23 discussed i

above. The spectrum of Cr-doped GaAs?7 is similar, with a dominant peak near threshold. In “
f

that case, virtually identical spectra are obtained by photoabsorption and photoconductivity.

It has previously been suggested that the peak is due to a bound state below the band edge Y
and is detected by photoconductivity via a two-step photothermal process (See Ref. 27). Such

an interpretation is not consistent with the experimental observation2” that the peak’s height is
not strongly reduced at low temperatures. The present analysis suggests that the peak may in

fact be a resonance overlapping the continuum which decays into propagating states because

|

l

\
of a short intrinsic lifetime. %
!

‘.

Another example that may exhibit the effects discussed in this paper is GaP:O. Recently, !
Samuelson and Monemar!! showed that the observed hole-emission cross section of GaP:O. '
which appears to be a broad featureless hump, actually exhibits two distinct peaks when
phonon broadening is removed by a deconvolution procedure. The temperature dependence of
the two peaks was found to be markedly different. It was experimentally determined that the '
two peaks are due to the same center and the authors speculated that isolated O in GaP may I(

have two deep levels in the gap separated by about 80 meV. The present analysis opens up

the possibility that the temperature-dependent peak is a final-state resonance, but further work

is necessary to elucidate the structure of this center.
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Finally, we mention the case of a phosphorus impurity occupying an oxygen site in SiO,.
This system has been previously analysed?® and the peak just above the photoionization
threshold was identified to be a quasi-bound resonance similar in character to the excitonic

resonance that dominates the optical spectrum of the pure material.

In summary, we have presented theoretical and experimental evidence that deep-level
excitation spectra are likely to be dominated by transitions to bound and quasibound states
both below and above the continuum threshold. These results call for a reexamination of
deep-level spectra that have thus far been interpreted in terms of transitions to propagating

continuum states.
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Fig. 1. The photoionization spectrum of ZnSe:Cu as measured by photocapacitance (this
work, Ref. 25) and also by luminescence quenching (Ref. 23). In (a), a logarithmic scale is

used in the ordinate, whereas in (b) a linear scale is used. The two plots are over different

energy ranges. See text.
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Fig. 2. The photoionization spectrum of ZnSe:Cu as measured by luminescence quenching

(dashed line, Ref. 23) and by photoconductivity (solid line, this work, Ref. 25). The ordinate
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is a linear scale. !




