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1. Introduction. The stochastic convergence of I n X orn k 1lk
ankXk has been extensively studied where {Y I are

random elements, usually independent, in a Banach space and

{ankI are Toeplitz weights satisfying lim ank= 0 for each

k and k 1  ank1 s 1 for each n. In this paper convergence in

probability of X~lainkXk is obtained for random elements

satisfying various distributional conditions, including indepen-

dence, conditional independence, and unconditional semi-basic,

and weights {ank) such that for each n and

max lankl +0 as n =. As in the results of Wei and Taylor
1-k -n
(1978), Woyczynski (1978), Marcus and Woyczynski (1979), and

Howell, Taylor, and Woyczynski (preprint) the constant p,

1:5p< 2, is related to a geometric property of the Banach space

and to moment conditions. The results in Section 3 relax the

usual hypothesis of identical distributions to tightness. In

addition, results are exhibited for conditionally independent

and unconditionally semi-basic random elements which are more

general than independent mean zero random elements (as is shown

in Section 2). Finally, where previous results require that the

Banach space be of type p+6 it is shown, in Theorem 3.3, that

type p is sufficient. Section 2 provides a brief but detailed

development of the concept of unconditional semi-basic sequences

thof random elements. In particular, the critical p . moment

inequality for type p Banach spaces is obtained

0
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In this paper E will denote a real separable Banach space

and E* will denote the dual space of E. The usual Banach space

definitions for random elements, moments and distributional con-

ditions are assumed. Finally, a family of random elements

{X0: OEA) is said to be tight if for each c>O there exists a

compact K. such that P[XCK1>1-c for all acA.

2. Dependent Random Elements. In this section we examine several

classes of dependent random elements. Recall that a sequence

{x n  of E-valued random elements is conditionally independent

if for every permutation of the Xn's the resulting partial sums

form a martingale. Furthermore, {X n  is orthogonal in LP(E),n nm

lp<-, if Eli-i* ao(M)XU(i) IP sE 11 EJ? ao(i)XO(i) lip

for all n and m, all numbers ao(1) ,... ao(n+m), and all pernmuations

a of]N. Next, we introduce the following definition.

Definition 2.1 A sequence of random elements {X n,

Xn LP(E), is unconditional semi-basic in LP(E) (ucsb in LP(E)),

15p<-, if there exists a constant M, 15M<- such that

E11iilao()X0(i) p M111 l a"(i)X u(i) lip for all n and m,

all numbers a(1) ,..., ac(n+m), and all permutation a ofN. Also,

{Xn} is weakly unconditional semi-basic in LP(E)(wuscb)if

XneLP(E) and for each fee {f(X n) is ucsb in LP.
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If in Definition 2.1 we stipulated that Xn+OcLP(E), then

the sequence would be unconditional basic. We use the phrase

'semi-basic' to indicate that while the non-zero elements of the

sequence are basic, not all of the elements need be non-zero.

It is easily seen that if a sequence is independent mean

zero then it is conditionally independent. Since martingale

differences form a monotone basis in LP(E)[assuming Xn LP(E))

conditional independence implies orthogonality. Finally a com-

parison of the definitions shows that orthogonality implies

unconditional semi-basic. Easy examples show that none of the

converse implications hold. Also, ucsb neither implies nor

is implied by wucsb. Example 2.1 will illustrate some of

these concepts.

Example 2.1 Let E=0, l<p<2, and let ek= {6ktt=1 be

the standard vector basis of 1P. Let Y be any non-trivial

random variable with ElYi p < - and define Xk (w)=Y(w)ek-

First, {Xk) is ucsb in LP(E) since

Ell J a X lip - EllI.a Ye lipi=l api pi , 1~ api epi

• p . .(i.lpY p

a E(I, 1 la YI)

s ( In 1 lapiYIP +I , -la Yi p

-Ell .".na X + mlaq xqipEl li Pi Pi n1 qli

The XIs are neither independent, weakly orthogonal, or wucab

(although they are orthogonal) and need not have zero means.
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The following fundamental inequality which is needed to

obtain laws of large numbers in Banach spaces for ucsb sequences

is strictly tied to the geometry of the Banach space.

Proposition 2.1 The following conditions are equivalent

(i) E is of R-type p,
(ii) for each {Xn ) ucsb in LP(E) there exists ana

constant C such that, for all n,

Ell 1 x cnii 1Ell XillP

Proof:. It is well known that if E c R-type p then LP(E) eR-typep.

So, assuming (i) holds and denoting the LP(E) norm by II lip,

we have

n pEll In= 'rixi  11 P < A Xi- i 11 x lP

-for all XI,... ,XncLP(E) where O<A<- is the R-type constant of

LP(E) and {r i } denote the Rademacher random variables. If
1

{X ) is ucsb in LP'.(E), then there exists a constant 1 s P <n

such that

I Jai lXi l
P < M 11 n~laixi liP

P p

for all n and all numbers a.,...,a n. Since Irl = 1, we have

p P

which is

Eli X jIp% Cin Ell XiiiP

--- - . **** -
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where O < C=MA < c. Thus (i) implies (ii).

Conversely, suppose (ii) holds. Then (ii) must hold for each

sequence of independent mean zero random elements in LP(E).

Thus, by a theorem of Hoffmann - Jjrgensen and Pisier (1976),

E is of R-type p. //

The following lemmas will be used in Section 3. In these

lemmas we assume that E has a Schauder basis {bJ with coefficient

functionals {f}. U and Q are the continuous linear operators

on E defined by Ut(x) = f(x)b. and 0 (x)=_t f (x)b..
t i=t+l i

Lemma 2.2 If {Xn ) is wucsb in LP(E), then {Ut (X n ) } is

wucsb in LP(Ut (E)) and {Qt(X) is wucsb in LP(Qt(E)) for

each t.

Proof: For each fc(U t(E)), (fU t )cE . Thus the result

follows for {Ut(X n ) )l. Similarly, {Qt (Xn)} is wucsb. //

Lemma 2.3 If {X n  is ucsb and wucsb in LP(E), then

{Q (X )) is ucsb in LP(Q (E)).
t n t

Proof: Without loss of generality assume, for all n,

Xn4OcLP(E). Then {Xn  is a basis for [Xn] and it follows

that {Q t(xn)) is a semi-basis for [Q t(X n. Since {X n  is

wucsb, by Lemma 2.2 {Q t(X n is wucsb. Since each fcE may

be regarded as a continuous linear mapping of LP(E) into LP ,

and since unconditionality is preserved under isomorphism, it

suffices to show that there exists an feE which is 1-1 on

L t(Xn)]. Assuming, without loss of generality, that, for all n,Ii_
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Qt(Xn)j 04ELP(Qt(E)), it suffices to show that there is an f such

that, for all n, f(Qt (Xn)) OcL p . Suppose that this is not the

case and let Sn={fc(Qt(*))*: f(Qt(Xn))=0 a.s}. Each Sn is a

linear subspace of (Qt(E))*. If Sn= (Qt(E)) , then it follows

that Qt(Xn) =0 a.s., a contradiction. Thus, Sn  is a proper

linear subspace of (Qt(E)) . It follows that for each n there

exists a hyperplane through the origin, Hn, such that Sn- n

Since (Qt(E)) is not the union of a countable number of hyper-

planes, we have that (Qt(E))*+ u S , i.e.,. there exists an
* = n=l

fe(Qt (E)) such that fU u Sn , which completes the proof. //n=ln

Remark: Since conditional independence implies ucsb and wuscb,

conditional independence is sufficient for {Q t(Xn )} to be uscb

when the appropiate moments hold.

3. Marcinkiewicz - Zygmund's Type Weak Laws of Large Numbers.

Weak laws of large numbers for Banach space-valued random vari-

ables are obtained in this section using the various concepts of

independence, conditional independence, unconditional semi-basic

(ucsb), and weak unconditional semi-basic (wucsb). First, a

family {X.: acA} of random elements in a Banach space E is said

to have uniformly bounded tail probabilities by tail probabilities

of a real-valued random variable X, denoted by {Xc x)emX, if

P 1X t] _5PC X > ti

for each aeA and for each t z0 . Next, recall that {ank
nk

denotes an array of real numbers such that

InllankIPIs 1 for each n (3.1)
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where l5p< 2  (and p will relate to a geometric condition on the

space) and

max lank i - 0 as n 4 -. (3.2)
1:5k -n

Theorem 3.1 If {X n  are random elements in a separable

Banach space of R-type q, lq_2, which are ucsb in Lq(E) and if

Xn=lIakI Eli Xllq -0 as n-, (3.3)

then

II n 1lnkXk II 0 in probability.

Proof: Let C > 0 be given. For each n

P 1In=l anqiki > E]!a E k I E X k Iq

from Proposition 2.1. Thus, the result follows from (ii). /

The major -use of Theorem 3.1 will be for the real line which

is of R-type 2. In particular, in relating the geometry condition

to the constant p in condition (3.1) (see Theorems 3.2 and 3.3),

Theorem 3.1 can be used to show that the weak law of large numbers

holds for each feE

Condition (3.3) is easily satisfied when sup Eli XkllqFr<c
k

where q>p since

=l la I q Eli Xllq : ( max lank)" -P I 1 lankI
Ik nk k ~1 5k: nkk n

F, ql~- n



goes to 0 by (3.1) and (3.2). In general, results using the con-

cept of ucsb or wucsb will require a slightly higher moment

condition than results using independence. This fact is illus-

trated in the following theorem which is patterned after Theorem 2

oil Wei and Taylor (1978) and Theorem 3.1 of Marcus and Woyczynski

(1979).

Theorem 3.2 Let {X nk) be random elements in a separable

Banach space of type p+6 , 1<p<2 , for some 6>0. If

Mi Ix nk: k=1,2, ... are independent for each n,

(ii) EX k =0 for each n and k, and

(iii) {X nk}jX with nP PE!X>n -~ 0 as n--,

then

n~=~ afl XkI- 0 in probability.

Proof: Let

n= lk=1 ank nkII 11XI 1 sIaflkl -

(let Ia nk Il=o when a nk=O0). For each n

P[k X) flk + n] Ik 1 PrHl X nk 1>1a nkiJ

which goes toO by (iii) since lanK F'5 max laflIlw

p+ 6  
ii

~0 dpI nkI x
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= Tp+ 6 P[ II XnkII - T] -(p+6) fT xp + 6- 1 [ I X nkl -x'dx

(p.(06) 11 x PFH XnklI > x]dx. (3.5)

Given T1 > 0, by (iii) choose B > 0 such that

prX > x1 - n x - p  (3.6)

for all x_>B. Then,

T-6 T P+ 6-1 PX >xldx

-6 (B xp - 1 P[X xldx + n T 6-1
!5 T 0'lx+nB X dx)

s T- 6 (BP+ i T 6) 2n (3.7)

for T sufficiently large. If I E S n 40, then from (ii)

Ii n=l afk E(Xk 'Eli Xnkll _ank- j

k= nk l a 1nklE [l X nkl i Xnk ) > l k IJ

= Xk=iIaslkI (fIank' -I P[IIXkI >lakl-ldt

lafkl II XII t idt)

Iak nn

n 11 l-Xnk -nk/

Ik=l ank lank ( pank I-P 1 nt )

= n(lk+) (3.8)

for sufficiently large n from (3.6) and (3.3). Thus, for

sufficiently large n

51

.. .. ...... ....... (3.8... ... .), IlI
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pr s n > 2 ~J~P n- ESI!l > el

-E (a nk X nkI In 1-1a nkl1- 1P

5 C_ (p )C2(P )i= 1 lafk 6o la l x +6 dP[J XnkIS.

5 (C/2) - l k(P+6) Jp6)Ian0 1 xP"4611 , 11 >xidx

(P+ S) C I 6) In la(I nk -1 -rx>x-,dx)

< (C/2) C (2I n) lafk (a3.9)1al~

from (3.5) and (3.7)./1

If EXP<CO or if the truncated means are zero, (for example,

if the random elements are symmetric), then it easy to see that

p=l holds in Theorem 3.2. For p<l, existing real-valued results

suffice since

P4 knkx > F_)S5PXjn=l lan >E]~~1

and zero means for {f XkIl )are not required since the cancella-

tion is acheived by the strong restriction of sup kmla nkIp'g.
n

The condition {X }kX is easily satisfied by moment conditions,

nk

elements. An important special set of weights satisfying V3.2)

and (3.3) are the uniform weights defined by



n'P if l-k~-n
a1

ank =
0 if k>n.

Thus, the condition of symmetry in Theorem 3.1 of Marcus and

Woyczynski (1979) and identical distributions has been replaced

by the uniform boundedness of the tail probabilities. Also, since

the conditions of Section V.9.1 of Woyczynski (1978) are satisfied,

the geometric condition of type p+6 is also necessary in Theorem

3.2. The geometric condition p+6 is relaxed to p in Theorem

3.3 by assuming tightness and EXP<0.

Basis techniques will be used in the next two theorems and

their proof. In particular, for Theorem 3.3 the Banach space E

will be assumed to have a Schauder basis {bi,f i} and Ut and

Ot will denote the linear operators defined on E by

Ut(x) =tif(x)bi  and Qt(x) =x-Ut(x).

Finally, let m denote the basic constant such that

I 11 :-m and II Qt11 -m for all t.

Theorem 3.3 Let {X nk be tight random elements in a

separable Banach space which is of R-type p, 1:5p<2 and which

has a Schauder basis. If

i) {Qt(Xnk): k=l,2,...) are ucsb in LP(E) (with the

same constant M) for all n and t, and

(ii) {X nk} X with EXp <-a, then

IIk ank Xnk 0 in probability

J0,k I,
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if and only if for each fcE

k= 1 a nk f (X nk) - 0 in probability.

Proof: For each T and each compact set K,

E0 nklp[X nk iK)

:glop r ltXI ?tdt+TPEYX K
O nk ip I1Xnl P ' tT3 Z~nk

:TP EXPZT I+Jf'P r XP2t dt + TP FX 1K IT nk

which can be made arbitrarily small by first choosing T fromj

EXP f 'P [XP t -]dt < and then choos ing the compact s et K by

tightness. Fix e>0 and 6>0. Choose a compact set K so that

EKl X kIIp: < (3.10)
nk K]-mC2 p+

2

for all n and k. Since supli Qt W) lip 0 as t*, to0 can

be chosen so that xcK

EIIQ (X )lip < 6P(3.11)
to nk C ~

for all n and k. For each n

P[ 11 In=1a lQ (Xk lI >

k 1 n to nk" 3.2

Cp k nafklpE llQ (Xk 2(.2

rfrom Proposition 2.4 and (3.11). Next,

P[ In. >k~ afEU Xn)I

-0 as n- (3.13)
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since for each i=l,...,t o

Ik nk (Xnk) j" 0

in probability. From (3.12) and (3.13)

p[ 11 In. la lX > cE] 6kt 1t [_nk Xnk • •

for all n-5 N (c,6).

In Theorem 3.3 the space is of R-type p instead of p+6 as

in Theorem 3.2. If the random elements are assumed to be row-wise

independent with zero means, then {Qt(X)nk)) are row-wise in-

dependent and hence row-wise ucsb in LP(E) with the common con-

stant being the R-type p constant. Since an isomorphic embedding

preserves R-type p and independence, the assumption that the space

has a Schauder basis is not needed. Moreover, {f(Xnk) are

row-wise independent, zero means, random variables for each feE ,

and there exists 6>0 such that p+6s2 since p<2. Hence,

Theorem 3.2 provides that

I n~=
k 1 ank f(Xnk) I * 0 in probability

and hence

IIk=l ank Xnlj -'0 in probability.

Thus, Theorem 3.3 achieved a reduction of p+6 to p in the

geometric condition at the expense of the moment condition

nP[X P >n]0 to EXp < .

Theorem 3.3 has wider application than row-wise independence

. ,. = , , ,, , . . . . .... . . .. .. .... . .... ... ... .... ... ......... - .. .. . .. . " Ill I 
' ' -

.. . . .. .
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since in Section 2 it was shown that either condition independence

or wucsb & ucsb for {Xn( LP(E) would imply {Q t(X) is ucsb.

It is not clear at this time what is the best possible formulation

of Condition (i) in Theorem 3.3. However, Theorem 3.3 has the

appealing feature of relating the weak laws of large numbers in

R-type p spaces to orthogonality (similar to the real-valued case)

instead of independence.

To illustrate the necessity of tightness in Theorem 3.3 and

R-type p+6 in Theorem 3.2, let el=(l,0,0,...) , e2=(0,1,0,...),...denotr the

standard basis in LP, 15p<2, and let {X n  be independent randomn1
elements in LP defined by Xn=-en with probability Yeach.

Then taking the special case of Theorems 3.2 and 3.3 where each

row of the array is the same sequence, {X n}X-1 and EXn=O for
-1

all n. However, II n P(X +...+X) II -1 for all n, and the weak

law of large numbers fails.

The case p-l is interesting since it includes all separable

Banach spaces. In this case Condition (i) of Theorem 3.3 is not

needed.

Theorem 3.4 Let IX nk) be tight random elements in a

separable Banach space E such that {Xnk )X and EX<-. For

each fEE

I Eki ankf (Xnk) 1.0 in probability

if and only if

II £nkn in probability.k-1 ank Xnk1
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Proof: First, wlog E can be assumed to have a Schauder

basis. For C-1 and p=l, Inequalities (3.10) and (3.11) of the

proof of Theorem 3.3 follow in a similar manner. Inequality

(3.12) can be accomplished by the n!arkov inequality and the triangle

inequality of the norm, and the remainder of the proof is iden-

tical to the proof of Theorem 3.3. /

Theorem 3.4 contains the previous results of Wei and Taylor

(1978b) for Toeplitz weights. In addition to being applicable

for arrays, Theorem 3.4 has a weaker moment condition. Previous

weak laws of large numbers for weakly uncorrelated random elements

are contained in these results since weakly uncorrelated random

elements are wucsb and for feE

1 in EIf X)q 0nq k-l~lI

for some q, isq52, is sufficient for the weak law of large numbers

by Theorem 3.1.

For independent, identically distributed random elements

{XN 1, R-type p+6 was reduced to R-type p by assumingn
Eli XIIP <- instead of nPP[11 X111 >n] -0. The question of the

necessity of type p in Theorem 3.3 is interesting since if

nPPrlXlill>n340 (or nPPUX>n'- 0 in the general case) sufficed then

E must be of R-type p+6 for some 6>0.

4. Acknowledgements. The authors are grateful to G. Pisier and

W. Woyczynski for helpful discussions on these results.
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