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l. Introduction. The stochastic convergence of % Eslxk or

n . .
k=1 2nk%x has been extensively studied where {xk} are

random elements, usually independent, in a Banach space and

{ank} are Toeplitz weights satisfying lim ank==0 for each

3 n-+c
 § k and Z£=1 Iankl < 1 for each n. 1In this paper convergence in
Ei probability of 2£=lankxk is obtained for random elements

i satisfying various distributional conditions, including indepen-
k 1 dence, conditional independence, and unconditional semi-basic,

. n p
% and weights {a ,} such that 2k=l lankl <1 for each n and

max |a kL*O as n-+ . As in the results of Wei and Taylor
l<k<sn O

(1978) , Woyczynski (1978) , Marcus and Woyczynski (1979), and

Howell, Taylor, and Woyczynski (preprint) the constant p,
l<p<2, is related to a geometric property of the Banach space
and to moment conditions. The results in Section 3 relax the
usual hypothesis of identical distributions to tightness. 1In
addition, results are exhibited for conditionally independent
and unconditionally semi-basic random elements which are more
general than independent mean zero random elements (as is shown
in Section 2). Finally, where previous results reguire that the
Banach space be of type p+¢§ it is shown, in Theorem 3.3, that
type p is sufficient. Section 2 provides a brief but detailed
development of the concept of unconditional semi-basic sequences

of random elements. 1In particular, the critical pth - moment

inequality for type p Banach spaces is obtained,
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In this paper E will denote a real separable Banach space
and E* will denote the dual space of E. The usual Banach space
definitions for random elements, moments and distributional con-
ditions are assumed. Finally, a family of random elements
{Xa: aeA} is said to be tight if for each €>0 there exists a

compact K_ such that P[X eK ]>1-€ for all aeA,

2. Dependent Random Elements. 1In this section we examine several

classes of dependent random elements. Recall that a sequence

{Xx } of E-valued random elements is conditionally independent

if for every permutation of the xn's the resulting partial sums

form a martingale. Furthermore, {xn} is orthogonal in LP(g),
. +
l<p<w, if E” 22_?1 ao(i)xo(i) ”p SE” 22;;_‘ aO(i)xo(i) “p

for all n and m, all numbers ’o(l)""'ao(n+m)' and a2ll permutations

0 of N. Next, we introduce the following definition.

Definition 2.1 A sequence of random elements {Xn},

xneLp(E), is unconditional semi-basic in LP(E) (ucsb in tP(E)Y,
l<p<w, if there exists a constant M, lsM<» such that

E"ingl a5(1) %0 (4) \® SM”Z?:?%(i)xo(i) IIP  for all n and m,

all numbers ag(1) e 35 (n+m) ’ and all permutation 0 of N. Also,

(xn} is weakly unconditional semi-basic in LP(E) (wuschb) if

xnenp(n) and for each feE* {f(xn)} is ucsh in LP.
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If in Definition 2.1 we stipulated that xn+oeLP(z), then

F the sequence would be unconditional basic. We use the phrase
'semi-basic' to indicate that while the non-zero elements of the

F sequence are basic, not all of the elements need be non-zero.
i It is easily seen that if a sequence is independent mean
. zero then it is conditionally independent. Since martingale
differences form a monotone basis in Lp(E)(assuming xneLp(E)]
conditional independence implies orthogonality. Finally a com-
parison of the definitions shows that orthogonality implies
unconditional semi-basic. Easy examples show that none of the
converse implications hold. Also, ucsb neither implies nor
is implied by wucsb. Example 2.1 will illustrate some of

these concepts.

xelp=1 be i

the standard vector basis of fP. Let Y be any non-trivial

Example 2.1 Let E=P, 1<p<2, and let e,= {8

random variable with E|Y|P < » and define X (W)=Y (w) e, . 4

First, {xk} is ucsb in IP(E) since

P . n P
ll Ell 1529 *p, Yepill

EI|21=1 P; p

E(E?sllapiy|9)

W

E(]fa1 lapiylp +z';_11aqiy|9)

e .

m
El| Zi-l B, pi + i'laqixqi

The xk's are neither independent, weakly orthogonal, or wucsb

(although they are orthogonal) and need not have zero means.
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The following fundamental inegquality which is needed to
obtain laws of large numbers in Banach spaces for ucsb sequences

is strictly tied to the geometry of the Banach space.

Proposition 2.1 The following conditions are equivalent

(i) E is of R-type p,
(ii) for each {Xn} ucsb in LP(E) there exists a

constant C such that, for all n,
n P n P
E|| 2'=1Xi” s CZi=1EH Xi” .

Proof:. It is-well known that if E ¢ R-type p then Lp(E) ¢ R-type p.
So, assuming (i) hﬂlds and denoting the LP(E) norm by Hellp,

1
we have

I n
Ell I3ayms®; WD a 150, x; 112

- for all Xl,...,XneLp(E) where Q<A<x is the R-type constant of

Lp(E) and {ri} denote the Rademacher random variables. 1If

{xn} is ucsb in kaE), then there exists a constant 1 s M <

such that
n P n P
Il Ei=1|ailxi||p <M ”21=1aixi”p
for all n and all numbers al,...,an. Since |ri|='1, we have

N

P n P
i=1 XpllpsMaly [ %, 110

which is

n n
2l 1y HP s clfugEll % IP

-




where O0<C=MA< », Thus (i) implies (ii).

Conversely, suppose (ii) holds. Then (ii) must hold for each

B,

sequence of independent mean zero random elements in LP(E).

Thus, by a theorem of Hoffmann - Jgrgensen ané Pisier (1976),

s Sa g

E is of R-type p. ///

The following lemmas will be used in Section 3. 1In these
lemmas we assume that E has a Schauder basis {bi} with coefficient
functionals {fi}. U, and Q, are the continuous linear operators

. _rtt _r®
on E defined by U (x) = Zi=l.fi(x)bi and Qt(X)'zi £, (x)b,.

=t+1

Lemma 2.2 If {Xn] is wuesb in LF(E), then {Ut(xn)} is

wucsb in Lp(Ut(E)) and {Qt(xn)} is wucsdb in Lp(Qt(E)) for 4

each ¢t.

*
Proof: For each fe(Ut(E))t (f-Ut)eE . Thus the result

follows for {Ut(xn)}‘ Similarly, {Qt(xn)} is wucsb. 77/

Lemma 2.3 If {Xn} is ucsb and wucsb in LP(E), then

{Qt(xn)} is uecsb in Lp(Qt(E)).

Proof: Without loss of generality assume, for all n,

e

3 Xn#OeLp(E). Then {X } is a basis for [X_ ] and it follows

that {Qt(xn)} is a semi-basis for [Qt(xn)]' Since {xn} is

*
wucsb, by Lemma 2.2 {Qt(xn)} is wucsb. Since each f¢E may
be regarded as a continuous linear mapping of LP(E) into Lp,
and since unconditionality is preserved under isomorphism, it

suffices to show that there exists an feE* which is 1-1 on

1 ¢ ' {Qu(X,)]. Assuming, without loss of generality, that, for all n,

R 27— et —




Qt(xn)4=0eLp(Qt(E)), it suffices to show that there is an f such

that, for all n, £(Q (X)) 4 0eLP. Suppose that this is not the
case and let Sn={fe(Qt(E))*: f(Qt(Xn))==0 a.s}. Each S, is a
linear subspace of (Qt(E))*‘ If Sn==(Qt(E))*’ then it follows
that Qt(Xn)==0 a.s., a contradiction. Thus, Sn is a proper
linear subspace of (Qt(E))*. It follows that for each n there
exists a hyperplane through the origin, Hn' sucn that sn [ Hn.
Since (Qt(E))* is not the union of a countable number of.hyper-
planes, we have that (Qt(E))*=# §1s“' i.e., there exists an
fe(Qt(E))* such that f(nzlsn, nv-vhich completes the proof. /777
Remark: Since conditional independence implies ucsb and wuscb,
conditional independence is sufficient for {Qt(xn)} to be uscb

when the appropiate moments hold.

3. Marcinkiewicz - Zygmund's Type Weak Laws of Large Numbers.

Weak laws of large numbers for Banach space-valued random vari-
ables are obtained in this section using the various concepts of
independence, conditional independence, unconditional semi-basic
(ucsb), and weak unconditional semi-basic (wucsb). First, a
family {XQ: aeA} of random elements in a Banach space E is said

to have uniformly bounded tail probabilities by tail probabilities

of a real-valued random variable X, denoted by {xa}-cx, if
PO XM > ¢ sPlx > ¢]
for each ae¢2 and for each t2 0. Next, recall that {ank}

denotes an array of real numbers such that

kw1l |Ps 1 for each n (3.1)

i




where 1ls<p<2 (and p will relate to a geometric condition on the

space) and

max |a,| + 0 as n =+ o, (3.2)
l1<ksn nk

Theorem 3.1 If {Xn} are random elements in a separable

Banach space of R-type q, 1lsqs<2, which are ucsb in LZ(E) and if
k=1lan T BN X190 as na+ =, (3.3)

then

IIE§=1 3 k*k || + 0 in probability.

Proof: Let €> 0 be given. For each n t

1

PO Bpny apeXll > €3 < =q ECl Tee1 2Kl
=12 la_ |9 E] % ||®
* qk=1'2nk Xy

from Proposition 2.1. Thus, the result follows from (ii). ///

The major use of Theorem 3.1 will be for the real line which

i i it art b ac

is of R-type 2. In particular, in relating the geometry condition
to the constant p in condition (3.1) (see Theorems 3.2 and 3.3),
Theorem 3.1 can be used to show that the weak law of large numbers

holds for each feE*.

Condition (3.3) is easily satisfied when sup E|| kaq==r<w
k

where g>p since

Io_ila J9E|l % 1|? s ( max |a_ NI PP |a |P
k=1""nk k l1sksn X k=1 '"nk
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goes to 0 by (3.1) and (3.2). In general, results using the con-
cept of ucsb or wucsb will require a slightly higher moment
condition than results using independence. This fact is illus-
trated in the following theorem which is patterned after Theorem 2

of Wei and Taylor (1978) and Theorem 3.1 of Marcus and Woyczynski

(1979).

Theorem 3.2 Let {xnk} be random elements in a separable -

Banach space of type p+6, l<p<2, for some ¢6>0. If

(i) {xnk: k=1,2,...} are independent for each n,
(ii) EX =0 for each n and k, and

(iii) {Xnk}xx with nP PrX>nl+ 0 as n+o,

then
n . -
“2k=1 ark Xnk“ + 0 in probability.
Proof: Let
n
S_ = X, I -1
n 2k=1 qnk “nk [||Xnk||s|ank| ]
(let Iankl-l=<» when a_,=0). For each n

n n -1
PLI 1 anmc¥nk ¥ Sp3 ¢ Loy PO X0l >lap, 1702

n P ~P -1, ;

<oy lage P tla ITPpIx>a 177 (3.4) %

which goes to 0 by (iii) since |a kl-ls ( max |a k|)'1-»w, f
n l<ksn D |

Hence, for £>0 it suffices to show that |lSn||+ 0. For each {

n and k and for each T>0,

(T
Jo

xp+6dp[H xnk” < x]




= oP*d py || x < T] -(p+9d) ]g xP+6-1 PL| xnkll sx1dx

k|

< (p+9) fg xP+é-1 Pl x Il > xlax. (3.5)

Given n> 0, by (iii) choose B> 0 such that
PrX>x)snx P (3.6)
for all x2B. Then,

'r'djg xPt=Lopry s xax

< T-é(fg xP~1 pry > x3ax + n [g xLax)
c 1 8@P+n 18 <an (3.7)
for T sufficiently large. 1If || Esnl{#o, then from (ii)

n
P heey 2o Bk T x )l <fa, )20

A

n
nk nk

-1
-1
noalag U2 el x 1l 21, 1 6t

+ [ _lPrlank|[>t]dt)
Iankl
<0 Ja_ltla |"tnla, |TY P4 [ nt "Pat)
k=1'"nk nk nk -1
qnk
_ 1
-n(l+p—_—I) (3.8)

for sufficiently large n from (3.6) and (3.3). Thus, for

sufficiently large n
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Pr|| Sn” >2¢€l<pr|| S - Esn|| > €]

-(p+8) L ¢n
€ Clx=y Ellap, ¥y T

IA

-1
(%, Il <la, 17

_ p+6
E(ankxnkl[” v |l <|a |__1]) I
nk! 7' nk

A

)

-1
~(p+8) .. (p+8) on +6 12k | 6
em (PO p (POl gh ya  |PFO [ TRRT xPYOqpr || x| <x3

A

] 2|
(e/2)" PO ¢ 3P ja [P peey PR R S er x| sxdax

A

-1
- lapy |
(e/2)" P ¢ (pee) 1D la [PCla 187, ™ & Tprxenian

(P9 o (2m (3.9)

A

(e/2)

from (3.5) and (3.7). ///

If EXP«’° or if the truncated means are zero, {(for example,
if the random elements are symmetric), then it easy to see that
p=1 holds in Theorem 3.2. For p<l, existing real-valued results

suffice since
RS n
pL|| 2k=1 ank Xk” >€e]) sP[ 2k=l|ankl ! xk” >€]
and zero means for {IleII} are not required since the cancella-

tion is acheived by the strong restriction of supf;:gllanklp <1.

The conéition {xnk}‘x is easily satisfied by moment conditions,
and in particular, {Xn}dllxlu for identically distributed random

elements. An important special set of weights satisfying (3.2)

and (3.3) are the uniform weights defined by .




n P if l<ksn

. nk 0 if k>n. ]

Thus, the condition of symmetry in Theorem 3.1 of Marcus and
Woyczynski (1279) and identical distributions has been replaced
by the uniform boundedness of the tail probabilities. Also, since
: the conditions of Section V.9.1 of Woyczynski (1978) are satisfied,
the geometric condition of type p+é is also necessary in Theorem
é 3.2. The geometric condition p+6 is relaxed to p in Theorem
? 3.3 by assuming tightness and ExP<o,

Basis techniques will be used in the next two theorems and
their proof. 1In particular, for Theorem 3.3 the Banach space E B
will be assumed to have a Schauder basis {bi’fi}, and U_ and

Qt will denote the linear operators defined on E by

=7t =y o
Ut(x)--ii=lfi(x)bi and 0 (x) =x-U,_(x).
Finally, let m denote the basic constant such that
1 Utll <m and || Qt” <m for all t.

Theorem 3.3 Let {xnk} be tight random elements in a

separable Banach space which is of R-type p, 1lsp<2 and which

has a Schauder basis. 1If

(1) {Q (X ,): k=1,2,...} are ucsb in LP(E) (with the
same constant M) for all n and t, and

(ii) {xnk}«x with Exp<°°, then

NI® . a.x . ||+0 in probability
k=1 "nk “nk

RETREPIP ST PP RN I 1
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*
if and only if for each f¢E

| 2§=1.ank f(Xnk)l'*O in probability.

Proof: For each T and each compact set K,

E(]l x  JIP1 )
nk [Xnle'J

A

® P
foBrilx , IIF 1

A

r x

2t]dt4-TP[Xnk¢K]

p
nk” 2T]

TPIXP2T]+ [ PI xP2tlat + TP[X , ¢K]

which can be made arbitrarily small by first choosing T from

ExP = f:P[ xP > tlat <= and then choosing the compact set K by

tightness. Fix ¢€>0 and ¢6>0.

seP
Ell x, |IP1 <
nk [Xnk(K] mC2p+§

Choose a compact set K so that

(3.10)

for all n and k. Since supl| Qt(x)Hp-*O as t-+®, t_ can

be chosen so that XeK

seP

Ell o, (x )P <
t, nk C2p+I

for all n and k. For each n

n €
PL|| 2k=1 a x Qto(xnk) Il > 2—]

2c
€

<

from Proposition 2.4 and (3.11).

n €
Ll Zk=1 3nk Uto(xnk) > 31
t

)

-+ 0 as n-+ «

(o]

(3.11)

Pc on P p_3¢
5 k=1lonklT Bl Fp 117 <7 (3.12)

Next,

n € ]
sm1 POL By apy £5 (X0 | > 2t Tb |l

(3.13)

NPT APy

i e o el Acan L




since for each i=1,...,to
n
| Tge1 2nk £5Xnid 10
in probability. From (3.12) and (3.13)
n
PUH yag @k Xpill > €1 < 8
for all n< N (g, 96). /7/

In Theorem 3.3 the space is of R-type p instead of p+§ as
in Theorem 3.2. 1If the random elements are assumed to be row-wise
independent with zero means, then {Qt(xnk)} are row-wise in-
dependent and hence row-wise ucsb in LP(E) with the common con-
stant being the R-type p constant. Since an isomorphic embedding
preserves R-type p and independence, the assumption that the space
has a Schauder basis is not needed. Moreover, {f(xnk)} are
row-wise independent, zero means, random variables for each ch‘,
and there exists 6>0 such that p+68<2 since p<2. Hence,

Theorem 3.2 provides that

I22=lankf(xnk)| + 0 in probability
and hence

Il iﬁsl a xnk” +0 in probability.

Thus, Theorem 3.3 achieved a reduction of p+§ to p in the
geometric condition at the expense of the moment condition
nP(xP>n1+0 to ExPcw,

Theorem 3.3 has wider application than row-wise independence
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since in Section 2 it was shown that either condition independence
or wucsb & ucsb for (Xn]ch(E) would imply {Qt(xn)} is ucsb.
It is not clear at this time what is the best possible formulation
of Condition (i) in Theorem 3.3. However, Theorem 3.3 has the
appealing feature of relating the weak laws of large numbers in
R-type p spaces to orthogonality (similar to the real-valued case)
instead of independence.

To illustrate the necessity of tightness in Theorem 3.3 and
R-type p+¢ in Theorem 3.2, let e,=(1,0,0,...), e2==(0,1,0,...),...denoté the
standard basis in &P, 1<p<2, and let {xn} be independent random
elements in P defined by xnsiien with probability % each.

Then taking the special case of Theorems 3.2 and 3.3 where each

row of the array is the same sequence, {X Xl and EX =0 for
1

all n. However, | n §(x1+...+xn)H £1 for all n, and the weak
law of large numbers fails.

The case p=1 is interesting since it includes all separable
Banach spaces. In this case Condition (i) of Theorem 3.3 is not

needed.

Theorem 3.4 Let {xnk} be tight random elements in a

separable Banach space E such that {xnk)qx and EX<w, For

*
each f¢E
|i£,1ankf(xnk)|-’o in probability
if and only if

I Tpay @nx Xnx !l =0 in probability.

- <1-i-u-u--unﬂllli....ﬁi.l""




Proof: First, wlog E can be assumed to have a Schauder
basis. For C=1 and p=1, Inequalities (3.10) and (3.11) of the
proof of Theorem 3.3 follow in a similar manner. Inequality
(3.12) can be accomplished by the MarkoVv inequality and the triangle

inequality of the norm, and the remainder of the proof is iden-

///

tical to the proof of Theorem 3.3.

Theorem 3.4 contains the previous results of Wei and Taylor

(1978b) for Toeplitz weights. 1In addition to being applicable

for arrays, Theorem 3.4 has a weaker moment condition. Previous
weak laws of large numbers for weakly uncorrelated random elements
are contained in these results since weakly uncorrelated random

*
elements are wucsb and for fe¢E
Loy Blemx)]9+0
ng k=1 xk

for some g, 1lsgs2, is sufficient for the weak law of large numbers
by Theorem 3.1.
For independent, identically distributed random elements
{xn}, R-type p+§ was reduced to R-type p by assuming

E|l x1||p<°° instead of nPp[|| xl” >n]+ 0. The question of the
necessity of type p in Theorem 3.3 is interesting since if

"ppr||X1||>n]-+O (or nPPIX>n1+0 in the general case) sufficed then
E must be of R-type p+§ for some §6>0.
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