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ABSTRACT

1§ : The problem of predicting, on the basis of an observed sample |,
‘ from an inverse Gaussian distribution, the mean of a future random
sample (or a single future observation) from the same distribution is
considered. Approximate prediction intervals are proposed, and their
accuracy is investigated via extensive Monte Carlo simulations. The
results are useful for predicting the next first passage time for a
Brownian motion with positive drift or the failure time of an item

having inverse Gaussian life distribution.
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1, INTRODUCTION

The inverse Gaussian distribution arises as the first passage time
distribution of a Brownian motion process with drift (Cox and Miller, 1965).
Tweedie (1957a, 1957b) discussed the statistical properties of this distri-
bution and noted the similarities between the sampling distribution theory
of the maximum likelihood ‘estimators of the inverse Gaussian parameters and
those of the mean and variance of the normal distribution. Recently, Chhikara
and Folks (1977) proposed the inverse Gaussian distribution as a lifetime
model in reliability studies which has several advantages over the lognormal
model when there is a8 high occurrence of early failures. Further distribution
theory for the inverse Gaussian was given by Chhikara and Folks (1974, 1975),
and its use in tests for positive drift in Brownian motion was discussed by
Seshadri and Shuster (1974) and Chhikara and Folks (1976), among others.

The form of the probability density function of the two-parameter inverse

Gaussian distribution generally used is
3,k 2,,,..2 .
£(x;u,A) = [A/(27x7)]° expl-A(x-w)“/{2xu") ], x>0,(A,u>0) . (1.1)

Other parametric forms are summarized by Johnson and Kotz(1970). In (1.1),
U is the mean and A is a shape parameter. The variance is u3/k, s0 that y
is not a location parameter in the usual sense.

For the inverse Gaussian lifetime model, Padgett (1979) obtained
approximate confidence bounds for the reliability function, and Padgett and
Wei (1979) added a threshold parameter or "guarantee time" and studied the
estimation problem for the resulting three-parameter model.

In this paper a prediction interval is proposed for the mean of m

independent future observations from (1.1), Yl,....Y‘. on the basis of a past




ML b S b 3R Bl B MLl N S0 . G NS 500 .5 s <3300 e

Tandom sample of size n, 1,...,xh, from the same distribution. That is, it
is desired to obtain functions of xl”"’xn' L(xl,...,xn) and u(xl,...,xn).

so that for a specified value v,
PILOX,.enX ) S ¥ S U(K),e0 00X )] = 1-y, (1.2)

where im = 121 Yilm. 1f m=1, (1.2) provides a prediction interval for a
single future observation Y. Note that the correct interpretation of the
probability statement (1.2) is that if repeated past samples are taken and
used to predict the mean of the future samples by the intervals from
L(xl....,xn) to U(Xl,...,xn), then im will be contained in the intervals for
a proportion 1-Y of such pairs of samples. The intervals defined dy (1.2)
will be useful in predicting the next first passage time of a Brownian motion
with positive drift or the future failure time of an item having inverse
Gaussian life distribution based on a past sample, for example.

Prediction intervals for the normal and exponential distributions have
been studied extensively. For example, among others, Hewett (1968) and
Lawless (1970, 1972) considered prediction intervals for the exponential dis-
tridbution, and Chew (1968), Hahn (1969, 1970), Hall and Prairie (1973), and
Mann and Fertig (1977) studied prediction intervals for normal distributioms.

It is very difficult, if not impossible, to obtain exact prediction
intervals of the form (1.2) for the inverse Gaussian distribution (1.1) when
both parameters are unknown. In Section 2, approximate prediction intervals
for 7_ are proposed based on estimates of U. The performance of the intervals
in terms of coverage probabilities is investigated via extensive Monte Carlo
simulations, snd the results are reported in Section 3. The proposed approxi-

mate prediction intervals seem to perform very well. An example is given

in Section 4.




2. THE PROPOSED PREDICTION INTERVALS

Let xl,....xn be a random sample of size n from the inverse Gaussian

distribution (1.1) and let Y ,Ym be a future random sample of size m

10"
from the same distribution, independent of the first sample. The maxiwmum

e A I A ) i

likelihood estimators of u and A are given by u = x = 2 x /n and
~ 1.1

k A 1. Z (1/x -1/x }/n, respectively (Tweedie, 1957a, 1957b). Also, Tweedie
. i=}

(1957a) showed that x and A are stochastically independent, x has inverse

e v

Gaussian distribution with parameters ¥ and n), and nl/k has chi-square
distribution with n-1 degrees of freedom. Also, fﬂ has inverse Gaussian

distribution with parameters Yy and mA, and by a result of Shuster (1968),

nA(?n-u)zluzfm has chi-square distribution with one degree of freedom and
is independent of nk/i. Thus, the random variable (n-l)mi(?n-u)zl(nuzfm)
has F distribution with (1,n-1) degrees of freedom.

Let Fy(l,n-l) denote the value such that an F random variable with f

(1,n-1) degrees of freedom satisfies P[FSFY(I,n-l)] = 1-Y. Then from above

G -w?  aF (1,n-1)
Pl ‘; s L ——— 3 = 1-y. (2.1)

"] §n m(n=-1)A
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I1f the parameter u is known, then (2.1) can be solved for an exact (1-Y)
prediction interval for ?n' However, if u is unknown, then an exact prediction *
interval cannot be obtained from (2.1). An approximate l-y prediction

interval may be obtained as follows. Since we have the random sample
2

xl....,xn at hand, suppose that 4° in the denominator in (2.1) is approxi-
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mated by i:. so that

i -u) a%? F_(1,n-1)
Pl s 22X 1% 1.y, (2.2)

Y. l(n-l)l




Also, since U can be estimated by the future sample mean, the unknown value

nX_+mY
of ¥ in (2.2) can be approximated bdy -—%;;J!. Then
- 2 =2
(Y -u) X
m n .2,z n -
n ]

¥

Hence, (2.2) becowmes
iz

2=2
(n+m)“X" F_(1,n-1)
LY + < n_Yy

— + 2% 1 ™ 1-y. (2.3)
am(n-1))

The inequality in (2.3) can be solved for in by finding the roots of the
quadratic equation

32 s .32
Y -cDY +X =0 (2.4)

2=2
(n+m) Xn FY(I,nfl)

vhere c(X) = + Zin. It is easy to show that both roots

nm(n-l)x

of (2.4) are always real and positive and that the quantity ?‘ 4-:5-

satisfies the inequality in (2.3) when ?n is between these two roots. Denote
the smaller root of (2.4) by Ll(g) and the larger root by Ul(z) vhere
X=- (xl....,xn). Then the interval (Ll(g). ul(g)) provides an approximate
(1-Y) prediction interval for ?‘. The closeness of the approximation will
be investigsted in Section 3 by Monte Carlo simulations. For large n, since
in is very near u with probability one by the strong law of large numbers,
the prediction probadility will be close to the nominal value (1-Y).

A second approximate prediction interval for fﬂ may be obtained by using
the first few terms of the Taylor series expansion of g(u) = (?l—u)zl(uzfn)

sbout in. In the Monte Carlo study reported in Section 3, the approximation
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using only one or two terms in the series was not very good. However, the
approximation using three terms performs fairly well when the variance u3/A
of the inverse Gaussian distribution is small and n is relatively large.

The three terms are

] 2 = = .2 -
(Y _-u) (Y -X ) .
S el ey
Y X Y % X
3¥
m 2 T 2
-3 YR
X X
n n

<=2 < 2,225 .32, 3
X [(6-8u/xn + 3y /xn) Ym + X / Y
- 2 .-
- 6xn + 6y - 2u /an. (2.5)
From (2.1) and (2.5),

< 2,225 . =2,
PL (6-811/){n + 3y /)(n)!r'Il + xnhrm

of (1,0-DX2 ).
s —L —— + 6X ~6u + 2u°/X ]
m(n-1)A
x 1=y, (2.6)

The probability (2.6) still depends upon M, and as before, an approximation
must be used. A lower confidence bound on u was stated in Padgett (1979). Using
in for u on the left side of the inequality in (2.6) and the lower confidence

bound [llin + (F§(1.n-l)/((n-1)ini))J-l on the right-hand side gives a rough

approximation
=2
xn
P+ s (0] = 1-y, 2.7)
Y
m




where
nFY(l,n-l))-(2

e, (X) = + 2XQ(X),

m(n-1)3
with

- 3K % N+ (X %
Q) = 3K F (1,0-1)IY@-1I? + (X F (1,0-1))"]

+ (-DMIC-DN® + &F (1,007,

As before, (2.7) has a unique solution of the form
P[Lz(l) s ?m < uz(g)] = 1-y, where L,(X)and U,(X)are the real positive roots
of the equation Y: - cz(x)*?m + i: = 0.

Other approximations for prediction intervals for ?m are possible, but
the two given here seem to behave better than any of the many others tried
in the Monte Carlo study. The Monte Carlo simulation study is described and

some of the results are reported in the next section.
3. MONTE CARLO SIMULATIONS

Before describing the Monte Carlo simulation results, a brief description
of the procedure for generating a random number from the inverse Gaussian
distribution is given. Let X denote a random variable with inverse Gaussian
distribution (1.1). Then as before Y = A(x-u)zl(xuz) has chi-square dis-
tribution with one degree of freedom. Hence, s value y of Y is generated,

and the solution for x in terms of y from above is
x = [H(2A + yu) + ulyn(yu + 4)5/22, (3.1)

1t is obvious that both solutions given by (3.1) are positive and that the

plus sign gives x>y and the minus sign gives x<y, with x=u only if y=0.




Therefore, a value u of a uniform random variable U on (0,1) is generated.

Let 3 denote the solution from (3.1) given by

X, = w22 + yu) + ulyuiyu + 4x))k]/2A

and let
x, = [u(22 + yu) - ulyuyu + ax))*J/zA.

Let p(y) = " : e Then choose the value of the inverse Gaussian random
1

variable X to be x) if u < p(y) and X, otherwise, since the pdf of X is given
by the mixture fl(x)p(y) + fz(x)[l—p(y)J for a given y, where fl(xl) denotes
the ﬁdf of X, and fz(xz)is the pdf of X,. Repeating this procedure for n
independent values of Y and U yields a (pseudo) random sample of size n

from (1.1).

In order to investigate the behavior of the approximate prediction
intervals proposed in Section 2, extensive Monte Carlo simulations were
performed. TFor various fixed values of Y, n, m, 4, and A, estimates of the
coverage probabilities and mean widths of the prediction intervals for ?m
discussed in Section 2 were computed based on 1000 pairs of samples xl,...,xn
and Yl,...,Ym. The results were essentially the same when 2000 pairs of
samples were used, so most of the simulations were performed with 1000 samples
in order to reduce computing time. For each fixed set of values Y, n, m, A,
and y, 1000 pairs of samples xl,...,x“ and yl,...,ym vere generated from the
inverse Gaussian distribution (1.1). For each such pair, the approximate
(1-Y) prediction interval, say Ll(z) to Ul(g), was computed and checked to

see whether or not ;ﬂ was contained in the computed interval. The width of

the interval was also computed and stored. Then the proportion of the 1000
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such pairs of samples which gave prediction intervals containing the
corresponding ;m was used as the estimate of the actual coverage probability.
Also the average interval width was computed for the 1000 pairs of samples.
Tables 1-3 give some of the Monte Carlo results for l1-y = 0.99, 0.95,
and 0.90 and various sample sizes n and m and values of 4 and A. The symbol
I, refers to the prediction interval (thg), Ul(g)) in Section 2 and 1

2
refers to (Lz(g), Uz(g)). Based on the simulation results, 1. has a better

1
overall performance as an approximate (1l-Y) prediction interval for im than
any other approximation which was tried. The prediction interval 12 is
somewhat conservative when the variance of the underlying inverse Gaussian
distribution, 02 = u3/A, is small and does not give a good approximation when
the variance is large and n is small, for example u=3, A=}, and n=5, As
expected, the approximation becomes closer and the average interval width
decreases as n increases. Also, as the variance 02 = u3/1 decreases, the

prediction improves and the prediction intervals tend to be conservative,

Both I1 and 12 perform better for m=1 than for other values of m.
4, EXAMPLE

Chhikara and Folks (1977) showed that the maintenance data reported
by Von Alven (1964) on active repair times (hours) for an airborne commu-
nications transceiver fit an inverse Gaussian distribution. The n=46 observed
repair times were:
22,.3,.5,.5,.5,.5,.6,.6,.7,.7,.7,.8,.8,1.0,1.0,1.0,1.0,1.1,
1.3,1.5,1.5,1.5,1.5,2,0,2.0,2.2,2.5,2.2,3.0,3.0,3.3,3.3,
4,0,4.0,4.5,4.7,5.0,5.4,5.4,7.0,7.5,8.8,9.0,10.3,22.0,24.5.

The respective maximum likelihood estimates of u and 2"1 were iae = 3.61 and
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Table 1. Simulation Results for l-y = 0.99

1 1
1
U A n m Ave.Width Cov.Prob. Ave.Width 2 Cov.Prob.
5 1 208. 308 0.983 148.0918 0.980
1 0.25 5 5 118.512 0.995 33.834 0.967
‘ 5 10 135,319 0.990 19.600 0.940
) 0.25 30 1 38.365 0.989 37.566 0.989
' 30 15 6.640 0.996 5.313 0.995
5 1 3430.014 0.977 2393. 380 0.967
3 0.25 5 5 1629.692 0.967 420.363 0.920
5 10 2285.851 0.962 268.782 0.891
3 0.25 30 1 368.060 0.990 351.081 0.990
. 30 15 61.311 0.981 36.551 0.968
15 1 12.354 0.993 12. 304 0.994
1 1 15 10 4.114 0.994 3.641 0.994
15 20 3.976 0.999 3.063 1.000
1 . 5 1 9.157 0.988 8.266 0.995
5 5 5.886 0.997 3.993 1.000
; N . 15 1 4.084 0.994 4.520 0.998
! ' 15 10 1.671 0.998 2.114 1.000
" L . 30 1 3.531 0.991 3.933 0.996
30 15 1.120 0.998 1.690 1.000
5 L 15 1 332.821 0.990 303. 860 0.988
15 20 94.316 0.992 34.503 0.970
s ‘ 5 1 220.023 0.989 166.451 0.987
5 5 138. 620 0.996 52.584 0.990
5 . 30 1 62.778 0.992 64.342 0.994
30 15 14,571 0.994 15.493 1.000




Table 2. Simulation Results for l-Y = 0.95

1 1
1
Ave.Width Cov.Prob. Ave.Width 2 Cov.Prob.

73.393 0.942 53,844 0.933
39.481 0.952 13.439 0.921
21.850 0.962 21.815 0.963
4.421 0.974 4,053 0.976
1441.764 0.948 1012.451 0.935
503.665 0.925 137.920 0.858
226.021 0.957 217.445 0.956
7.161 0.956 7.466 0.966
2.653 0.983 2,787 0.989
1 1 50 1 5.964 0.960 6.359 0.966
50 40 1.194 0.990 1.724 1.000
1 4 5 1 4.420 0.959 4.564 0.981
5 5 2.888 0.974 2.704 0.997
1
1 4 30 1 2.387 0.944 2.757 0.964 ;
30 15 0.810 0.983 1.388 1.000 :
5 N 15 1 198.000 0.973 184,395 0.966
15 10 48.958 0.965 31.178 0.953
5 1 30 1 138.490 0.948 136.992 0.950
30 15 24.509 0.969 21.461 0.967
5 4 5 1 100.599 0.956 81.492 0.959
5 5 56.788 0.973 28.971 0.974 1
5 4 30 1 37.529 0.942 39.581 0.955
30 15 9.941 0.980 12.077 0.997
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Table 3. Simulation Results for 1-y = 0.90

1 1
A n m Ave.Width 1 Cov.Prob. Ave.Width 2 Cov.Prob.
5 1 46.122 0.897 34,753 0.888
0.25 5 5 26.807 0.931 10.095 0.894
5 10 30.468 0.921 7.079 0.868
5 1l 739.880 0.895 523.699 0.875
0.25 5 5 353.523 0.880 99.665 0.815
5 10 494,554 0.885 67.965 0.789
4 15 1l 2.027 0.893 2.461 0.949
15 10 0.948 0.966 1.518 0.999
4 15 1 31.853 0.887 33.583 0.905
15 10 12.130 0.950 13.221 0.975
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x-l

= 0.587 (or i = 1.70). For this data and m=l, a 95% prediction interval
for the next repair time is obtained from (Ll(g), Ul(g)) in Section 2 as
(0.3185, 40.8393). Similarly, (Lz(g), Uz(l)) yields a 95% prediction interval
of (0.3074, 42.3139), slightly wider than (L,(X), ul(g)). For m=10, a 95%

prediction interval for the mean of the next ten repair times is found from

(Ll(g), Ul(g)) to be (1.2009, 10.8311) and (Lz(g), Uz(g)) yields (1.0575,12.2997).
5. CONCLUSION

Prediction intervals for the mean ?m of m future observations (or a
single future observation)based on a current independent random sample of
size n from the same inverse Gaussian distribution (1.1) have been investigated.
When the mean U of the inverse Gaussian distribution is known, exact (1-Y)
prediction intervals are easily obtained. I1f yu is unknown, some approximate
(1-Y) prediction intervals for fm have been proposed., Based on the results
of Monte Carlo simulations, the approximate prediction interval 11 given by

(Ll(g), Ul(g)) in Section 2 is relatively simple to compute and performs

best overall of those considered in the study.
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