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ABSTRACT

The problem of predicting, on the basis of an observed sample

from an inverse Gaussian distribution, the mean of a future random

sample (or a single future observation) from the same distribution is

considered. Approximate prediction intervals are proposed, and their

accuracy is investigated via extensive Monte Carlo simulations. The

results are useful for predicting the next first passage time for a

Brownian motion with positive drift or the failure time of an Item

having inverse Gaussian life distribution.

i

1,7~o' 7 :3

~Ke y V*Tds: Prediction; First passage tiae distribution; Life testingB;
kRliability; Monte Carlo simulations.



* 1. INTRODUCTION

The inverse Gaussian distribution arises as the first passage time

distribution of a Brownian motion process with drift (Cox and Miller, 1965).

Tweedie (1957a, 1957b) discussed the statistical properties of this distri-

bution and noted the similarities between the sampling distribution theory

of the maximum likelihood estimators of the inverse Gaussian parameters and

those of the mean and variance of the normal distribution. Recently, Chhikara

and Folks (1977) proposed the inverse Gaussian distribution as a lifetime

model in reliability studies which has several advantages over the lognormal

model when there is a high occurrence of early failures. Further distribution

theory for the inverse Gaussian was given by Chhikara and Folks (1974, 1975),

and its use in tests for positive drift in Brownian motion was discussed by

Seshadri and Shuster (1974) and Chhikara and Folks (1976), among others.

The form of the probability density function of the two-parameter inverse

Gaussian distribution generally used is

f(x;PX) - [X/(2Ix3 ) exp -X(x-0)2/(2xU2)), x>O,(X,1>O) . (1.1)

Other parametric forms are summarized by Johnson and Kotz(1970). In (1.1),

U is the mean and X is a shape parameter. The variance is 13/X, so that p

is not a location parameter in the usual sense.

For the inverse Gaussian lifetime model, Padgett (1979) obtained

approximate confidence bounds for the reliability function, and Padgett and

Wei (1979) added a threshold parameter or "guarantee time" and studied the

estimation problem for the resulting three-parameter model.

In this paper a prediction interval is proposed for the mean of m

independent future observations from (1.1), Yl,...,Ym, on the basis of a past
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random sample of size nX 1,...,X , from the same distribution. That is, it

is desired to obtain functions of XI,...,Xn, L(XI,...,Xn) and U(XI,...,Xn) ,

so that for a specified value y,

eL i V(X ,..,X ) - -y9 (1.2)

where m I Y I/m. If m-1, (1.2) provides a prediction interval for a
mi

single future observation Y. Note that the correct interpretation of the

probability statement (1.2) is that if repeated past samples are taken and

used to predict the mean of the future samples by the intervals from

L(XI,...,Xn) to U(XI,...,Xn), then q will be contained in the intervals for

a proportion 1-Y of such pairs of samples. The intervals defined by (1.2)

will be useful in predicting the next first passage time of a Brownian motion

with positive drift or the future failure time of an item having inverse

Gaussian life distribution based on a past sample, for example.

Prediction intervals for the normal and exponential distributions have

been studied extensively. For example, among others, Hewett (1968) and

Lawless (1970, 1972) considered prediction intervals for the exponential dis-

tribution, and Chew (1968), Hahn (1969, 1970), Hall and Prairie (1973), and

Mann and Fertig (1977) studied prediction intervals for normal distributions.

It is very difficult, if not impossible, to obtain exact prediction

intervals of the form (1.2) for the inverse Gaussian distribution (1.1) when

both parameters are unknown. In Section 2, approximate prediction intervals

for V are proposed based on estimates of U. The performance of the intervalsm

in terms of coverage probabilities is investigated via extensive Monte Carlo

simulations, and the results are reported in Section 3. The proposed approxi-

mate prediction intervals seem to perform very well. An example is given

in Section 4.
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2. THE PROPOSED PREDICTION INTERVALS

Let X....X be a random sample of size n from the inverse Gaussian

distribution (1.1) and let Y1 .... ,Y be a future random sample of size m

from the same distribution, independent of the first sample. The maximum

likelihood estimators of p and A are given by pi- - A and
n I^-1 n ni

X a I (1/Xi-I/Xn/n, respectively (Tweedie. 1957a, 1957b). Also, Tweedle
jai

(1957a) showed that X and X are stochastically independent, X has inverse
1n n

Gaussian distribution with parameters p and nX, and nX/X has chi-square

distribution with n-1 degrees of freedom. Also, Y has inverse GaussianU

distribution with parameters p and mA, and by a result of Shuster (1968),

(_1) 2 /)- mhas chi-square distribution with one degree of freedom and
A ~- 2 2-

is independent of n)/). Thus, the random variable (n-1)=(Ym-ii) /(np Ym)

has F distribution with (1,n-l) degrees of freedom.

Let F (1,n-1) denote the value such that an F random variable with

(1,n-1) degrees of freedom satisfies PCFSF (1,n-1)] = 1-Y. Then from above

2(Y _0) AF (1,n-I)

e 2- m S Y I - 1-y. (2.1)Ij2i m(n-l)X
m

If the parameter v is known, then (2.1) can be solved for an exact (l-Y)

prediction interval for V . However, if p is unknown, then an exact prediction

interval cannot be obtained from (2.1). An approximate l-y prediction

interval my be obtained as follows. Since we have the random sample

at hand, suppose that v2 in the denominator In (2.1) is approxi-
X-2

mated by X so that

PC%, 2 n! 2 7 (1,n-)
__ Z Y (2.2)

M

U°
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Also, since u can be estimated by the future sample mean, the unknown value

n 41Y
of P in (2.2) can be approximated by n m Then

am1j 2 n 2 - i 2 i)
~ (Y + 1 )

m m

Hence, (2.2) becomes

22 (2- n-)
P[q n S; + 2XV s 1-. (2.3)

y nm(n-l)n
m

The inequality in (2.3) can be solved for Y by finding the roots of the

! m

quadratic equation

f2 - c(X)q + 12 . O. (2.4)
a -

(n+%) 2  F (ln-1)
where c(X) - - - + 21 n . It is easy to show that both roots

nm(n-1)A -2

of (2.4) are always real and positive and that the quantity Y+ --
¥m

satisfies the inequality in (2.3) when % is between these two roots. Denote

the smaller root of (2.4) by L,(X) and the larger root by Ul(X) where

X - (X1, ...,Xn). Then the interval (Ll (X). UI (X)) provides an approximate

(1-y) prediction interval for . The closeness of the approximation will

be investigated in Section 3 by Monte Carlo simulations. For large n, since

Xnis very near V with probability one by the strong law of large numbers,n

the prediction probability will be close to the nominal value (l-Y).

A second approximate prediction interval for Ym may be obtained by using

the first few terms of the Taylor series expansion of g().) -i(11)j 2 /U2

about In. In the Monte Carlo study reported in Section 3, the approximation

-_ -.-- --- -
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using only one or two terms in the series was not very good. However, the

approximation using three terms performs fairly well when the variance 3/A

of the inverse Gaussian distribution is small and n is relatively large.

The three terms are

( Y - 1j) (a _ 1 )2 + 2

U2i R2 v i2 -

m n X n n

43 1+ ( - (- X)

Kn n

n n n a n m

- 6Xn + 6V - 2112/ nJ. (2.5)

From (2.1) and (2.5),

Pi(6-S/Xn + 3V 2/ 2)Y + -2/

uP (1,n-1)-2  6 6i 2iIX
u2
+ 6%-6u + 2va/X D

m(n-l)x

z l-y. (2.6)

The probability (2.6) still depends upon 1j, and as before, an approximation

must be used. A lower confidence bound on Vi was stated in PAdgett (1979). Using

in for u on the left side of the inequality in (2.6) and the lower confidence

bound [1/1 n + Q Y (,n-l)/((n-l)n))
"  on the right-hand side gives a rough

approximation

PE + e 2(X) 3 W 1-f (2.7)
Sm 2
i:U
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wbere
nF -,n~~2n(l ,n-l)X

c2(X) ( + 2XQ(X),- m(n-l)

with

Q(X) 3[I (l,n-l)) / ((n-l))) +(n F(l,n-1)))

(n-l)x/:((n-1)),) + (X F-fY (l,n-1))I 2

As before, (2.7) has a unique solution of the form

P[L 2 (-X) S S U2 (K)) = 1-y, where L2 (X)and U2 (X)are the real positive roots

of the equation -2 _ c (X)j + 2 0.a 2 m n

Other approximations for prediction intervals for Y are possible, but3

the two given here seem to behave better than any of the many others tried

in the Monte Carlo study. The Monte Carlo simulation study is described and

some of the results are reported in the next section.

3. MONTE CARLO SIMULATIONS

Before describing the Monte Carlo simulation results, a brief description

of the procedure for generating a random number from the inverse Gaussian

distribution is given. Let X denote a random variable with inverse Gaussian

distribution (1.1). Then as before Y - X(X-) 2/(X 2 ) has chi-square dis-

tribution with one degree of freedom. Hence, a value y of Y is generated,

and the solution for x in terms of y from above is

x - [V(2A + y)i) ± i(yip(y + 4X)) J]/2). (3.1)

It is obvious that both solutions given by (3.1) are positive and that the

plus sign gives x>v and the minus sign gives x<., with x-i only If y-O.
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Therefore, a value u of a uniform random variable U on (0,1) is generated.

Let x1 denote the solution from (3.1) given by

x = [v(2X + yv) + v(yp(yv + 4X))k]/2X

and let

x2  [lj(2X + yp) - i(yl'(yu +

Let p(y) V Then choose the value of the inverse Gaussian random

variable X to be x, if u S p(y) and x2 otherwise, since the pdf of X is given

by the mixture f1(x)p(y) + f2 (x)[1-p(y)) for a given y, where fI(X1 ) denotes

the pdf of X1 and f2 (x2)is the pdf of X2. Repeating this procedure for n

independent values of Y and U yields a (pseudo) random sample of size n

from (1.1).

In order to investigate the behavior of the approximate prediction

intervals proposed in Section 2, extensive Monte Carlo simulations were

performed. For various fixed values of Y, n, m, V, and A, estimates of the

coverage probabilities and mean widths of the prediction intervals for Ym

discussed in Section 2 were computed based on 1000 pairs of samples Xl,...,Xn

and Y1 ,...,Ym. The results were essentially the same when 2000 pairs of

samples were used, so most of the simulations were performed with 1000 samples

in order to reduce computing time. For each fixed set of values f, n, m, x,

and V, 1000 pairs of samples x1 ,...,x and y1 ,...,y were generated from the

inverse Gaussian distribution (1.1). For each such pair, the approximate

(l-y) prediction interval, say L1 W) to Ul(x), was computed and checked to

see whether or not Yvas contained in the computed interval. The width of

the interval was also computed and stored. Then the proportion of the 1000

* 1_ _
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such pairs of samples which gave prediction intervals containing the

corresponding ym was used as the estimate of the actual coverage probability.

Also the average interval width was computed for the 1000 pairs of samples.

Tables 1-3 give some of the Monte Carlo results for l-y - 0.99, 0.95,

and 0.90 and various sample sizes n and m and values of ji and X. The symbol

11 refers to the prediction interval (L,(X), U1 (X)) in Section 2 and 12

refers to (L2 (X), U2 (0)). Based on the simulation results, II has a better

overall performance as an approximate (l-y) prediction interval for q than
U

any other approximation which was tried. The prediction interval 12 is

somewhat conservative when the variance of the underlying inverse Gaussian

distribution, a2 a .3 /X, is small and does not give a good approximation when

the variance is large and n is small, for example U-3, X=k, and n-5. As

expected, the approximation becomes closer and the average interval width

decreases as n increases. Also, as the variance a2 - 3/ decreases, the

prediction improves and the prediction intervals tend to be conservative.

Both I and 12 perform better for m-l than for other values of m.

4. EXAMPLE

Chhikara and Folks (1977) showed that the maintenance data reported

by Von Alven (1964) on active repair times (hours) for an airborne commu-

nications transceiver fit an inverse Gaussian distribution. The n-46 observed

repair times were:

.2,.3,.5,.5,.5,.5,.6,.6,.7,.7,.7,.8,.8,1.0,1.0,1.0,1.0,1.1,

1.3,1.5,1.5,1.5,1.5,2.0,2.0,2.2,2.5,2.73.0,3.0,3.3,3.3,

4.0,4.0,4.5,4.7,5.0,5.4,5.4,7.0,7.5,8.8,9.0,10.3,22.0,24.5.

The respective maximum likelihood estimates of jj and X-1 were 146 3.61 and

' o~~ ~~ ~ ~ ~~ ~ ~ ~ .- ..... .. .. . . . ... . --; -- -. . - " ' - . ' ; x i



9

Table 1. Simulation Results for 1-y - 0.99

I1  12

1 n m Ave.Width Cov.Prob. Ave.Width Cov.Prob.

5 1 208.308 0.983 148.0918 0.980
1 0.25 5 5 118.512 0.995 33.834 0.967

5 10 135.319 0.990 19.600 0.940

30 1 38.365 0.989 37.566 0.989
30 15 6.640 0.996 5.313 0.995

5 1 3430.014 0.977 2393.380 0.967
3 0.25 5 5 1629.692 0.967 420.363 0.920

5 10 2285.851 0.962 268.782 0.891

30 1 368.060 0.990 351.081 0.990
30 15 61.311 0.981 36.551 0.968

15 1 12.354 0.993 12.304 0.994
1 1 15 10 4.114 0.994 3.641 0.994

15 20 3.976 0.999 3.063 1.000

5 1 9.157 0.988 8.266 0.995
5 5 5.886 0.997 3.993 1.000

15 1 4.084 0.994 4.520 0.998
15 10 1.671 0.998 2.114 1.000

30 1 3.531 0.991 3.933 0.996
30 15 1.120 0.998 1.690 1.000

15 1 332.821 0.990 303.860 0.988
15 20 94.316 0.992 34.503 0.970

5 1 220.023 0.989 166.451 0.987
5 5 138.620 0.996 52.584 0.990

30 1 62.778 0.992 64.342 0.994

30 15 14.571 0.994 15.493 1.000
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Table 2. Simulation Results for l-Y 0.95

x n mAve.Width ICov.Prob. Ave.Width Cov.Prob.

0.5 5 1 73.393 0.942 53.844 0.933
15.2 5 39.481 0.952 13.439 0.921

0.5 30 1 21.850 0.962 21.815 0.963
1 .5 30 15 4.421 0.974 4.053 0.976

3 .5 5 1 1441.764 0.948 1012.451 0.935

35.2 5 503.665 0.925 137.920 0.858

3 0.25 30 1 226.021 0.957 217.445 0.956

15 1 7.161 0.956 7.466 0.966

11 15 10 2.653 0.983 2.787 0.989

50 1 5.964 0.960 6.359 0.966

1 1 50 40 1.194 0.990 1.724 1.000

4 5 1 4.420 0.959 4.564 0.981

15 5 2.888 0.974 2.704 0.997

14 30 1 2.387 0.944 2.757 0.964

130 15 0.810 0.983 1.388 1.000

51 15 1 198.000 0.973 184.395 0.966

51 15 10 48.958 0.965 31.178 0.953

51 30 1 138.490 0.948 136.992 0.950

51 30 15 24.509 0.969 21.461 0.967

5 1 100.599 0.956 81.492 0.959
5 4 5 5 56.788 0.973 28.971 0.974

54 30 1 37.529 0.942 39.581 0.955
30 15 9.941 0.980 12.077 0.997



Table 3. Simulation Results for 1-y -0.90

A. n m Ave.Width Cov.Prob. Ave.Width 2Cov.Prob.

5 1 46.122 0.897 34.753 0.888
1 0.25 5 5 26.807 0.931 10.095 0.894

5 10 30.468 0.921 7.079 0.868

5 1 739.880 0.895 523.699 0.875
3 0.25 5 5 353.523 0.880 99.665 0.815

5 10 494.554 0.885 67.965 0.789

14 15 1 2.027 0.893 2.461 0.949
115 10 0.948 0.966 1.518 0.999

54 15 1 31.853 0.887 33.583 0.905
'I 15 10 12.130 0.950 13.221 0.975
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A- 0.587 (or I - 1.70). For this data and m-1, a 95% prediction interval

for the next repair time is obtained from (LI(X), UI(X)) in Section 2 as

(0.3185, 40.8393). Similarly, (L2(X), U2(X)) yields a 95% prediction interval

of (0.3074, 42.3139), slightly wider than (LI(X), UI(X)). For m-lO, a 95%

prediction interval for the mean of the next ten repair times is found from

(Lz(X), UI(X)) to be (1.2009, 10.8311) and (L 2 (X), U2 (X)) yields (1.0575,12.2997).

5. CONCLUSION

Prediction intervals for the mean 1 of m future observations (or a
m

single future observation)based on a current independent random sample of

size n from the same inverse Gaussian distribution (1.1) have been investigated.

When the mean u of the inverse Gaussian distribution is known, exact (l-y)

prediction intervals are easily obtained. If U is unknown, some approximate

(1-T) prediction intervals for Y have been proposed. Based on the resultsm

of Monte Carlo simulations, the approximate prediction interval I1 given by

(L1(X), UI(X)) in Section 2 is relatively simple to compute and performs

best overall of those considered in the study.
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