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ABSTRACT

The Birnbaum-Saunders fatigue life distribution with shape para-

meter a and scale parameter B is considered. The scale paraeter is

also the median lifetime, and assuming that(B is known, Bayes estimators

of the reliability function are obtained for a family of proper conjugate

priors as well as for Jeffreys' vague prior for(j. When both@gandK'

are unknown, a modified Bayes estimator of the reliability I.7

proposed using a moment estimator of In addition to being comp-

utationally simpler than the maximum likelihood estimator (ie) of

reliability, Monte Carlo simulations for small samples show that R*(tj

is better than the method of moments estimator for all( and as good

as the ile for small a in the sense of mean squared errors.

Key Words: Fatigue life data; Bayes estimation; Method of moments;

Maximum likelihood.
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1. INTRODUCTION

With the relatively small amounts of fatigue life data that can be

obtained for a specific type of structure, many of the two parameter

lifetime models such as the gamma, lognormal, or Weibull distribution can

be fitted reasonably well with respect to mean and variance. However,

there is a wide discrepancy among the models for predicting the higher

percentiles of the fatigue lifetime variable. Birnbaum and Saunders

(1969a, 1969b) proposed a two parameter life distribution for material

failure due to fatigue crack extension under cyclic loading.

The Birnbaum - Saunders fatigue life distribution has probability

density function

f(t; a,B) - (22s a 0 t 2 ) 1 (t 2 - 82)/E(t/B); - (0/t) 5

x exp E-(t/ + 0/t - 2)/2m 2 , t > 0 , (1.1)

with a,B > 0 and reliability function

R(t;a,B) r * E-((t/B)9 - (0/t))/s, t • 0 , (1.2)

where 9(.) denotes the standard normal cumulative distribution

function. The parameters a and 0 can be interpreted as shape and

scale parameters, respectively. Also, B is the median life (Saunders,

1974) and the mean and variance are, respectively, v = B(- + a 2/2)
and a2 a (00)2(l + 5m2 A) . Other properties of the distribution are

described by Birnbaum and Saunders (1969a, 1969b) or Mann, Schafer,

and Slngpurvalla (1974). Saunders (1974) studied a E-normal family of
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random variables closed under reciprocation, of which the density (1.1)

is a member. He discussed moment estimation as well as other estimators

of 0 , since the maximum likelihood estimator (mle) of B cannot

be found in closed form.

In this paper we consider estimation of the reliability function

(1.2) by Bayesian and "modified Bayesian" techniques. Bayes estimators

for a proper conjugate family of priors on a and vague priors on a will

be given in Section 3, assuming B is known. This is reasonable since B

is. the median or "characteristic life," and information concerning B

may be known. In Section 4 a modified Bayes estimator of (1.2) is proposed

and compared with the mle and method of moments estimator (me) of

(1.2) for small samples. Monte Carlo simulation results indicate that

the modified Bayes estimator is better than the sme but not uniformly

as good as the mle . However, the mle must be computed by Newton's

or other numerical iteration procedures, whereas the modified Bayes and

me are easily computed in closed form. An example is given in Section 5.

2. ESTIMATION OF a AND B

Point estimation of a and B has been investigated by Birnbaum

and Saunders (1969b) and, for the more general E-normal family, by

Saunders (1974). Their main results will be stated briefly in this

section for completeness.

Let X1 , *.., Xn denote a random sample from the pdf (1.1). Birn-

baum and Saunders (1969b) showed that the maximum likelihood estimate 0

of B is the unique positive solution of g(x) - x2 _ x[2r + K(x)J +

r[s + K(x) = 0 , where
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z-( E a- in L 1 - n

and

K(x) n (x+ x- -1

n ±

are the harmonic mean, arithmetic mean, and harmonic mean function,

respectively. In addition, r < 8 < s . The mle of a is then

= (s/ + B/r - 2) and the mle of reliability (1.2) is given by

R(t ; a, ) - OE((t/8) - (;/t) )/ aJ

Saunders (1974) discussed several other estimators of 8 . First,

the method of moments estimator 0* - (rs) was shown to be a consistent

estimator of .. The corresponding ime of a was a* - (8/8* + B*/r -2)

In addition, the geometric mean Xn - -(i X i)1/n was shown to a consistent

estimator of 8 as well as the median estimator defined by

n - (k + 1) if n - 2k + 1
(X(k)X(k+l)) 

if n - 2k

where X(k) denotes the kth order statistic of the sample. Thus,

the corresponding estimators of (1.2), R(t ; a*, 8*) , etc., are con-

sistent.

It is known (Birnbaum and Saunders, 1969b and Saunders, 1974) that

t
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for small a (at < 1) the ale B and the ime 0* virtually agree.

However, as a result of the simulation in Section 4 of this paper (see

Table 2), for a k 1 the mean squared error of 0* is auch larger than

that of 0 for small samples.

3. BAYES ESTIMATION OF RELIABILITY FOR KNOWN MEDIAN LIFE

Assuming that the scale parameter and median 0 is known, Bayes

estimators of the reliability function R(t ; a,) are obtained in

this section with respect to squared error loss. First, a proper

conjugate family of priors is used, and then a vague prior of Jeffreys

is considered. A Bayesian analysis with both parameters a and 0 un-

known seems to be mathematically intractable. Thus, a modified Bayes

estimator of R(t ; c,B) is proposed for the vague priors, where B is

estimated by the moment estimators in Section 2, and is compared with the

ale by Monte Carlo simulations in Section 4.

The likelihood of the random sample ml, ...% Xn for known B is

L(alx, ..., xn) x K I n exp(-K/a 2) , (3.1)

where

n 2 2
KI a (2/2w )-n w xi -

x E(x/ /)' - (B/xi)19

and

n
K -z (xt/B + S/x1  2)/2
2 i-l
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As a prior distribution, let a2 have an inverted gamma distribution

with parameters (v,S) , denoted IC(v,S) , and pdf

g(a2 c 6 r (v)]'(6/a2)V + I exp(_6/a 2) a 2 > 0 , (v, > 0)

where r(-) denotes the usual gamma function. That is, a- I is the

square-root of a gamma distributed random variable. After straightforward

integration of (3.1) multiplied by g(a2) , the posterior distribution of

2 -1a , given the data, is IG(v + n/2 , 6 + K 2 Therefore, a

given X1, ... , xn , is distributed as the square-root of a game random

variable with parameters (v + n/2 , (6 + K 2)- ) . Thus, Lemma I of

Padgett and Wei (1977) may be applied to obtain the Bayes estimate of

R(t ; a,) with respect to a squared error loss function as

RPB(t) - Ea - 1 x ..- , x(t) - (0/t))1

- PCT 2 + - c ((v + n/2)/(6 + K (3.2)

where Tk is a random variable having student's t distribution with k

degrees of freedom.

If there is very little information available concerning a , a

vague or noninformative prior may be used to obtain a (proper) posterior

distribution for a . Since the transformed random variable

Zi a (X1/0)' - (R/Xi) for known 8 has a normal distribution with

2mean zero and variance a for each i-i, ... , n , the Fisher's infor-

mation I n(a) can be found to be -n/a2 . Thus, Jeffrey's noninformative

(improper) prior p(a) a -1 , a > 0 ,is used for a (Box and Tiao,
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1973). It should be noted that for the case that both a and B are

unknown Box and Tiao's (1973) vague prior idea of taking the prior as

p(8a)- constant and p(a) a-I apparently does not result in a

mathematically tractable posterior distribution.
-1

For the improper prior p(a)- a , the (proper) posterior pdf of

a, given xl, ..., xn , is

x ) 2 exp(-K 2/a2)
f(I1 .,Xn 2 2+ 1>

r(n12) n +

where K2 is defined as before. Therefore, the Bayes estimator of

R(t ; a,B) with respect to a squared-error loss function is given by the

expectation

R(t) - foo(-c/ct) 1, ... , xn) d

= EG [$(-c0-1 ) (3.3)

where c=(t/B) - (Bit) and 0 has a gamma distribution with

parameters (n/2 , K2 -) . Applying Lema 1 of Padgett and Wei (1977)

to the expectation in (3.3) gives the Bayes estimator as

RB(t) - PET < - c (n/2K) 1 t > , (3.4)
n 2

where T has student's t distribution with n degrees of freedom.
n

In the case that the median lifetime B is also unknown, but some

prior information about a is known, a "modified Bayes" estimator may

be obtained from (3.2) by choosing appropriate inverted ga prior
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parameters and using one of the estimators of B given in Section 2.

Also, in the case of unknown B with vague prior information about a

a modified Bayes estimator may be obtained from (3.4) by replacing 8

with a , * , or another estimator from Section 2. In the next

section, the behavior of this second modified Bayes estimator is indicated

by Monte Carlo simulation results when 8* is used for 8 in (3.4). De-

note this estimator by R(t) . The simulations indiqate that R*(t) is

generally better than the mme R*(t) = R(t ; a* , 8*) for all a and

A

as good as the mle R(t) = R(t ; a , ) only when a S I . However,

the drawback of the mle is that B must be approximated iteratively as

discussed in Section 2.

4. SMALL SAMPLE COMPARISONS OF ESTIMATORS OF RELIABILITY

For small samples direct analytical comparisons of the mle R(t)

R*(t), and modified Bayes estimator R(t) given in Sections 2 and 3 are not

feasible due to the mathematical complexity of these estimators. Hence,

Monte Carlo simulations were performed to compare the biases and mean squared

errors of the estimators. For several values of the parameters a and 8,

1000 random samples of size n(- 10, 30) were generated from (1.1). For

each sample the mle a, , and R(t) , the mme a* , 8* , and

R*(t) , and the modified Bayes estimate R(t) were computed for several

values of time t . The average squared error (ASE) and average estimated

reliability (AER) for each of the three estimates of R(t) were

computed over the 1000 samples. Table I shows some of the simulation

results. Since B is a scale parameter the results in Table 1 do not

depend on the specific value of 8 . Time t was chosen as multiples

of B . The same results were obtained when 2000 samples were used to

Senerate the ASE and AER instead of 1000.
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• ASE~xl-2)
TABLE 1. Averages and ASE(21- of Estimators of R(t; a, B)

(times ti M i/2, i - 1, 2, 3, 4)

(a) n - 10

True MLE R(t) HME R*(t) Mod. Bayes Ri(t)

a Time R(t;a,B ) AER ASE AER ASE AER ASE

0.10 t 1.000 1.000 0.000 1.000 0.000 1.000 0.000

t2  0.500 0.488 2.011 0.488 2.011 0.489 1.893

t 0.998 0.995 0.008 0.995 0.008 0.990 0.022

0.25 t2  0.500 0.488 2.001 0.488 2.000 0.489 1.883

t3  0.051 0.051 0.209 0.051 0.209 0.063 0.234

t1  0.921 0.924 0.382 0.924 0.385 0.911 0.391

0.50 t2  0.500 0.488 1.964 0.488 1.964 0.488 1.845

t3  0.207 0.198 1.032 0.198 1.032 0.208 0.949

t 0.760 0.776 1.140 0.776 1.172 0.767 1.071

t2  0.500 0.488 1.820 0.489 1.841 0.489 1.733
t3  0.342 0.335 1.437 0.334 1.456 0.339 1.355

t 0.240 0.221 1.190 0.220 1.212 0.229 1.104

t 0.556 0.566 0.542 0.569 0.776 0.567 0.727

5.00 0.500 0.493 0.649 0.493 0.869 0.493 0.823

t3  0.467 0.466 0.505 0.465 0.711 0.466 0.670

t4  0.444 0.431 0.588 0.423 0.849 0.430 0.795

* * * Mk
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TABLE 1. (cont'd)

(b) n - 30

True MLE i(t) MME R* (t) Mod. Bayes R*(t)

Time R(t; a, 3) AER ASE AER ASE AER ASE

t 0.998 0.997 0.002 0.997 0.002 0.995 0.003

0.25 t 0.500 0.501 0.533 0.501 0.532 0.501 0.523

t 0.051 0.052 0.081 0.052 0.081 0.057 0.086

t1  0.921 0.923 0.136 0.923 0.136 0.918 0.136

0.50 t 2  0.500 0.501 0.514 0.501 0.514 0.501 0.505

t 0.207 0.204 0.348 0.205 0.350 0.208 0.339

t 0.760 0.765 0.366 0.765 0.377 0.762 0.364

t2  0.500 0.501 0.444 0.501 0.455 0.501 0.447

t 0.342 0.339 0.418 0.339 0.440 0.340 0.429

t 0.240 0.236 0.376 0.237 0.392 0.240 0.380

t 0.593 0.597 0.185 0.597 0.258 0.596 0.253

t 2  0.500 0.501 0.160 0.501 0.226 0.501 0.222
3.00 2

t3  0.446 0.444 0.163 0.444 0.245 0.444 0.241

t4  0.407 0.403 0.186 0.404 0.271 0.405 0.265

t1  0.556 0.559 0.078 0.559 0.140 0.558 0.138

5.00 t 2  0.500 0.501 0.065 0.501 0.119 0.501 0.117

t3  0.467 0.466 0.068 0.466 0.132 0.466 0.130

gqe mlll.,,.,,.3
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TABLE 2. ASE of Estimators of a and B for n - 30.

(0.1, 30) 0.01631 0.290 0.01631 0.290

(0.25, 50) 0.1018 4.968 0.1018 4.972

(0.50, 50) 0.4381 19.517 0.4382 19.536

(1.0, 200) 1.6420 1033.9 1.6444 1086.3

(3.0, 200) 15-262 3106.3 15.257 5143.3

(5.0, 100) 45.897 1013.7 45.973 2315.4

1 ASE x 10 - 2 for a

I
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Table 2 shows some of the ASE's for the mle and me of a and

8 . As indicated in Section 2, the estimator 0* is in agreement

with 8 for a < 1 , but differs from 8 considerably in mean

squared error for a > 1.

As the simulation results of Table 1 indicate, the modified Bayes

estimator R (t) is better in mean squared error than the moment

estimator R*(t) for all values of a . It also is no worse than the

mle for a 5 1 , although the performance of the mle is better than that

of R*(t) for a > 1 . The biases of all three estimators are similar

for all values of a

In addition to using the moment estimator 0* to modify the Bayes

estimator (3.4), the other consistent closed form estimators of B

n n -
8 - (11 X I and the median 8 , stated in Section 2 were used.n i-I n

These produced slightly larger ASE than R(t) did. Also, if it is

known that a is near a specific value, one of the proper inverted

gamm-a priors of Section 3 could be used to produce a modified Bayes

estimator from (3.2). This would generally be a better estimator than

Rj*(t).

5. EXAMPLE

As an example, some of the fatigue failure data of Birnbaum and

Saunders (1958) will be used. Specifically, the failure times for 101

strips of 6061-T6 aluminum sheeting which were recorded under testing

with periodic loading at 18 cycles per second and maximum stress of

31,000 psi will be used to estimate the reliability by i(t) , R*(t)

and R*(t) . This data is known to follow approximately the distribution

(1.1).
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Newton's method yielded the mle of B as B - 1336.37 , and the

mle of a was a 0.31032. The moment estimator of B was

8* - 1340.86 , and a* f 0.31034. Table 3 gives the estimates of

reliability R(t ; a, B) for several values of t

TABLE 3. RELIABILITY ESTIMATION FOR ALUMINUM SHEETING

t 600 800 1000 1200 1400 1600 1800 2000

R(t) 0.9960 0.9527 0.8258 0.6357 0.4404 0.2806 0.1677 0.0954

R*(t) 0.9961 0.9538 0.8286 0.6398 0.4447 0.2843 0.1705 0.0973

Rt(t) 0.9955 0.9522 0.8274 0.6394 0.4448 0.2849 0.1716 0.0988

6. SUMMARY AND CONCLUSIONS

For the case that the median life (or scale parameter) B is known,

Bayes estimators of the reliability function for the Birnbaum-Saunders

model have been presented with respect to squared error loss functions and

a proper conjugate family of priors (square root of gamma) or a vague

prior. If both parameters a and B are unknown, Bayes solutions for

reliability in a compact form seem to be extremely difficult. Hence,

an appealing modified Bayes estimator R*(t) is proposed in which the

value of 8 Is replaced by te moment estimate 0* in the Bayes solution

(3.4). This modified Bayes estimator is easily computed from Student's

t distribution whereas the maximum likelihood estimator of reliability

must be computed by an iteration procedure for the ale B of B . The

modified Bayes estimator has been shown by computer simulation results in

Section 4 to be preferable in the sense of mean squared error to the

&Mm



.f 13

method of moments estimator R*(t) for all values of a . In addition

to being computationally simpler than the mle, the simulations indicate

that R*(t) is as good as the mle in mean squared error for a < 1

The biases of all three of the estimators of reliability are approximately

the same.

It should also be remarked that minimum variance unbiased estimators

of a , B , or R(t ; a, 8) are not available due to the difficulty in

obtaining jointly sufficient complete statistics for a and 0 . The

pdf (1.1) is not of the exponential form.
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