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The present work extends boundary integral equation

techniques, developed in an earlier paper for the Dirichlet

and Neumann problems (6 ], to the boundary value problem of the

third kind (also referred to as the Robin problem) associated

with the Helmholtz equation in exterior domains. While the

existence and uniqueness of solutions of the exterior Robin

problem have been established previously (see e.g. Leis (9 ];

Danilova [2 1), the application of the Helmholtz representation

and the subsequent derivation of boundary integral equations does

not appear to have been studied until now.

-The considerations below will show that the familiar diffi-

culties at interior eigenvalues arise in the case of the Robin

boundary conditions. The non-uniqueness of solutions of the

boundary integral equation at interior eigenvalues is, of course,

an artifact of the method chosen to solve the original boundary

value problem. As explained in [6 1, supplementary conditions

of some form are needed. Either the fundamental solution may be

modified, as was done by Danilova [2 1 in her layer theoretic

treatment of the third boundary value problem with an oblique

derivative, or an additional equation is needed if the funda-

mental solution is unaltered. In the present work we employ the

Green's theorem approach to boundary integral equations with

an unmodified fundamental solution and show that, unlike the

situation for the exterior Dirichlet and Neumann problems, the

supplementary condition appears as an operator equation of the

second kind rather than one of the first kind..
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Rather than repeat the bibliographic details reviewed by

Kleinman and Roach (6 ], we refer the reader to the introduction

of that paper. Moreover, we will adopt the notational conventions

of that paper. Section 2, below, briefly reviews those conventions

as they are appropriate to the present considerations. However,

the boundary value problem discussed here, in contrast to those

in (6 1 and, in the papers of Leis [I] and Danilova [21, is

generalized so that the data and the multiplier which appears in

the boundary condition may be specified in L.(aD) rather than

C(3D) where 3D is the boundary of the exterior domain.

This more general setting requires some extensions of

theorems which appear in the literature, in particular extensions

of a regularity theorem appearing in Mikhlin (10 1 and of a

uniqueness theorem due to Leis ( 9 1. More significantly, it

requires a careful formulation of a trace theorem suitable for

functions described by single and double layer potentials. Standard

trace theorems, e.g. Miranda (11] were not sufficient to ensure

existence of the normal derivatives of double layer potentials

required for application in the present setting. These matters are

discussed carefully in section 3 and in the appendix which contains

some computational details collected there so as not to interrupt

the flow of the main argument.

Having discussed these background matters, the main results

concerning the boundary integral equation formulation of the Robin

problem are presented in section 4 and the equivalence of this

formulation with the original boundary value problem is proven.

Section 4 concludes with a result pertaining to the scattering

problem for imperfectly reflecting surfaces.
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2. Formulation of boundary integral equations.

Let D_ denote a bounded domain in 13 with boundary 3D which

is a closed Lyapunov surface with index 1. We denote the exterior

of 3D (i.e. the complement of D-i3D in 1 3) by D+.

Let RR(P,Q) denote the distance between two typical points

3P and Q in R . A fundamental solution of the Helmholtz equation

(A+k2)u=O, Imk>O, is a two-point function of position, y(P,Q),

which for convenience we write in the form

(2.1) Y(P,Q):= -e ikR R.

Complex conjugates will be denoted by a bar, thus

(2.2) P,Q) := -e-i 2wR.

We denote by a/3np differentiation in the direction of the unit

vector np normal to 3D at the point peaD. A point PeD+ is assumed

to have spherical polar coordinates (rp, (p, p ) relative to a

Cartesian coordinate system erected with origin in D_. We

emphasize that throughout w shall assume that np is the outward

drawn normal with respect to D_, that is np is directed from 3D

into D+. Further, we shall write a/anp and 3/Bn+ to denote the normal
p p

derivative when P-peaD from D_ and D+ respectively.

Let (SM)(P) and (Du) (P) denote the effect at the point

Pet 3 of single layer and double laye distributions respectively

on 3D of density u as follows: i .

14 l 1

,., ,.., , ;c. . .. .
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(2.3) (SU)(p):= 3D u(q)Y(P,q)'dSq, PeR3

and

DY 3
(2.4) (DII) (P) := I u(q) hq (Pq)dS , PeRD n~q (P qq

Further, for peaD we define

(2.5) (KU) (p):-- u(q) ay (pq) dS
3D p

Notice that K is a completely continous operator on L2 (3D)

(Mikhlin [10]). Jump conditions for the single and double layer

potentials on 3D can be expressed in terms of K and its L2 0(D)

adjoint K* which is given by

(2.6) (K*u)(p) - f (q) (p,q) dS
D q

These jump conditions as well as continuity properties of the

single and double layers depend on the smoothness of the density

U and will be discussed in Section 3.

Finally, we remark that the single and double layer operators

with PeD_, can be considered as operators with range in L2 (D_ )

and, as such, are continuous operators from L2 (aD) to L2 (D_)

(see e.g. Miranda [11]).

.1



With this notation, representations of solutions of the

Helmholtz equation obtained by applying Green's Theorem or the

Helmholtz representation have the following forms. For radiating

wave functions 0+ satisfying

(2.7) (A+k 2 )0+(P) =0, PDJ

lim {r [+( P)-iko (P)} 0 ,I p

we obtain

(2.8) (q)y(P,q) -0 (q) aj - (P,q)} dS
faD f nq q q

(P) -(D~4 = 2I (P) , PED+I

S +) P) (o+) () -0 (p) , peaD,

0, Pe,.

whilst for any solution 0_ of the Hel~mholtz equation in D ,we

have

( (q)~ ay q -~ (q)Y(Pq dS

3Dq qj

(2.9) [0 e~

=(Do_ (p) -(~)P) j (p) , pc

20_(P) , PeD-
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We will be concerned with the following boundary value

problem:

Exterior Robin Problem:

(2.10) (V 2+k 2 ) u+(P) = 0, PeD+

au+
(2.11) + 0(P) u+ (P) = g+(P), peaD

p

(2.12) lim rp ('u0 ( P )  iku+(P) 0

pp 4

where g+ £L (aD) and aL.(aD). In the exterior scattering problem,

au I. 1is replaced by - - au where u is the known incident field.
Proceeding formally to obtain boundary integral equations

whose solutions will subsequently be used to construct solutions

to the boundary value problem we apply the Robin condition to

the representation formula (2.8) which we write as{22u+ (P) , PED,
Sau++

(2.13) (sn-- (p) - (Du+) P= +(p), POD,

, PED_.

to obtain

(2.14) (I+K*+Sa) U +(P) = (Sg+)(P) , peOD

where we have also used the fact that on aD

Du+ *



If this boundary integral equation has a solution u +L 2( D), then

equation (2.13) may be employed to define u+ in the exterior

domain D+ as

(2.15) u+P) s(g + -au+) (P) - (Du+) (P), PeD+.

This function is clearly a solution of the Helmholtz equation in

D+. To insure that this solution in fact satisfies the boundary

conditions, we require that the function u+ satisfy an additional

relation which we derive from the Helmholtz representation by

computing normal derivatives as follows:

(2.16) lir S(na-n+ -
S )- -D(u)](P) = 0

p q p

or, using the relation (3.16) below,

au + au +a
(2.17) -n (p) + K (n-)(p) - lim n D(U+) (P) - 0.

p q P-*P p

By utilizing the boundary condition we have

(2.18) (-g+ + au+ + K(g+ - au+) - Dn u+) (p) = 0, pc9D,

or, rearranging terms,

(2.19) (-a + Ka + Dn) U+ = (K-I)g+,

-o..
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where

(2.20) (D u+) (p) a= np (Du+) (P)
nP-).p p

Care must be exercised to ensure existence of this limit. We deal

with this question (wiich depends on both the smoothness of the

density and the degree of regularity of 3D) in Lemma 4.1.

As with the integral equations derived in [6 ], we will see

that the representation (2.15) affords a solution of the exterior

boundary value problem (the Robin problem in the present case)

provided u+eL 2 (DD) satisfies the pair of boundary integral

equations. In fact, as we shall see below, solutions of the system

(2.14) and (2.19) will necessarily be more regular than merely

square-integrable.

Moreover we will see that, as in [6 1, this pair of boundary

integral equations is redundant unless the homogeneous adjoint of

equation (2.14) has non-trivial solutions. In such a case, how-

ever, the pair of integral equations will have a unique solution;

it is this result we wish to establish in the following pages.

Note, however, that unlike the cases discussed in [6 ],,the second

of these equations is an operator equation of the second kind.

The spectrum of K is clearly of vital importance in discussing

the solutions of these equations and, since K may be considered as

an operator-valued function of the parameter k, it is convenient

to treat separately the operators (-K) and (+K) rather than intro-

duce another parameter, X, in order to obtain the standard form

(I-AK). To this end, we adopt the following definition. Those
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real values of k for which the equation w-Kw =0 has nontrivial
0

solutions, w, will be called characterisitc values of K.
o 0

Similarly, those real values of k for which w + Kw = 0 has non-

0
trivial solutions, w, will be called characteristic values of

(-K). We note that if k is a characteristic value of K, then it

is also a characteristic value of K* [E51Chap. XIII, §1.31, and

trivially it is also a characteristic value of R and K*. Similarly,

(-K), (-K*), (-K),(-K*) have the same characteristic values, which

0may differ from the preceding. Further, if w is a nontrivial
0 0 0 0

solution of w + Kw = 0, then w is a nontrivial solution of w + Kw=O,

and i*+K*e* = 0 implies i*+R*w* = 0. hereafter, an

0
elevated index zero, for example w, will indicate that the function

concerned is a solution of a homogeneous equation.

The values of k for which there exist nontrivial solutions

of the homogeneous Helmholtz equation in D with vanishing normal

derivative on aD will be called eigenvalues of the interior

Neumann problem. Similarly, eigenvalues of the exterior Neumann

and exterior and interior Dirichlet problems are those values of

k for which there exist nontrivial solutions of the corresponding

boundary value problems.

It is well known [114] vol. IV, §229] that there are no

eigenvalues of the exterior problems, but there are eigenvalues

of the interior problems, and furthermore, these eigenvalues are

real (Stakgold[[15]vol. II, p. 137]).. The relationship between

characteristic values of K and eigenvalues of the interior problems

is clarified in the following theorem, which appears in this form

in [5, p. 222].
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Theorem 2.1:

(A) k is a characteristic value of K if and only if k is

an eigenvalue of the interior Neumann problem.

(B) k is a characteristic value of (-K) if and only if k

is an eigenvalue of the interior Dirichlet problem.

The interested reader is referred to [6 1 for the proof of

this result. We remark only that an immediate consequence is

that if k is an eigenvalue of the interior Dirichlet problem,

then k is a characteristic value of (-K) and hence (-K*).

To conclude this section, we wish to point out that the

analysis presented here is applicable to the scattering problem

for imperfectly reflecting surfaces. Under appropriate hypotheses,

among which is one requiring the radius of curvature to be large

relative to the penetration depth, the exact transmission condi-

tions may be approximated by a boundary condition of the third

kind with purely imaginary a which may interpreted as an acoustic

impedance [13]. The analogous problem in electromagnetics

is discussed by Senior [12]. It is possible, then, to reduce

the scattering problem to an equivalent pair of boundary integral

equations. These equations differ from equations (2.14) and (2.19)

only in their right hand members and, as we shall see, for

sufficiently smooth incident fields the analysis of Section 4 will

be valid for the scattering problem.

Specifically, we may proceed as follows. Denoting the incident

and scattered fields, respectively by ui and us and recognizing

that the incident field must be a solution of the Helmholtz equation

on the interior domain, we may use the Helmholtz representations

(2.8) and (2.9) to show that, on the boundary 3D



(2.21) us = S(aua/an) -~u

(2.22) ul - R~u -(u/a

Consequently,

u u 4- u1  2u~ + S(3u/an) -~u

Invoking the boundary condition au/an +- au = 0, this last relation

may be rewritten as

(2.23) (1 + Sa +- R*)u = 2u1

where, we emphasize, ui is the known incident field.

Likewise, since

(2.24) u5 (P) =(1/2)(S(au5/an) -Dus](P), PSD -,

and

i(2.25) u (P) =(1/2)[Du -S(au /an)](p), PED,

we have, taking normal derivatives and taking account of the

jump conditions, that for pe3D,

aus =n (1/2) (3us/an + K aus/9n I-(1/2) D u5D
p p p .

and

Si i iaui/an = (1/2)[ a u /an p-K au /an 1 +- (1/2)Dnu
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It is easy to check, from these last two relations, that since

au/3np = -a u on 3D, the total field u must satisfy the equation

(2.26) (-a + K a + Dn)U = 2 (u i/n p)

Equations (2.23) and (2.26) are thus the particular forms of

(2.14) and (2.19) applicable to the scattering problem.

3. AuxilZary Results

In this section we collect some known results and their

extensions as well as some new results which will be used in the

subsequent discussion. For more details, the interested reader

should consult the cited references; we have attempted to select

not original references to these particular theorems but rather

those which are readily accessible.

We begin with the result alluded to above which we will

refer to, in the sequel, as the regularity theorem. The particular

version of the results presented here is, on the one hand, a

specialization to weakly singular surface integrals of a theorem

of Mikhlin [10] for closed, bounded sets in In which, on the

other hand, is a minor generalization of Mikhlin's theorem

because of the occurrence of the factor p which lies in L,( D).

Theorem 3.1:

Let 3D be a Lyapunov surface (or a finite number of dis-

joint Lyapunov surfaces). If A: 3DxD- and f: aD-t are continuous,

4UL.(D) and a<2, then any solution of
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(3. 1) u (p ) A.(p u(p) dSp- f)

which belongs to L 2 (MD) is also continuous on 3D.

Proof. For any e>O, choose q1(t) to be a continuous, real-
valued, non-increasing function of t>0, with the property that

n(t)-1, 0<t< C/2, and n(t)=0, t>E. Then, setting

(3.2 K1  p~p0 : =A(P,p 0 ) n (R(p,p0 ))
( 3 .2 ) K I ( 'p )R a ( p p 0 )

and

(3.2 K2(~p 0): =A(p,p 0 ) (1-n (R(p,p 0 ))]
(3.2)R' (p ,p0)o): -

where K (p,po) is continuous on aDx3D, the integral equation (3.1)
may be written as

(3.4) u(p 0) (Klyu) (p0) - F(P0 )

where

(3.5) (Kiiuu) (p0): = D K1 (p,p0)u(p) u(p) dS P.

and

(3.6) F(p0 ) -f(p0 ) + fa K 2(p'p0 )(p)U(p) dsP

-C I--
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[ The function F is continous since f is continuous and

(3.7) 1 3D 2 0PO-2 1PP (P 1P)d

1K 2(p,p0)-K2 (p,p1 ) 12 d I1/21 DI) D d~} Ipkul '2(

where K2is continuous in both variables. Note that UiuE L 2 (3D)

since ue L (3OD) and peL.. (MD).

Now observe that, with the Schwartz inequality and the fact

that n'zl, and writing R for Rpp)

(3.8) IIK VuI 12L 13) A (p, po)n (R) 11(p). .T) 2
1L D D " 36 DR a / Z R / a p 0 S P

F IA(p,p0 ) 122 (R) Ii.(p)1 2~q f ju(p)1 2ds*
fa~ 3' D RLp aD Ra dS)

< 2 J 3 ~p '3 u(p)I 2 dS} dS

where c2 - I *11112LOD and B C (p0 ) is a ball of
0

radius e centered at p., outside of which n(R(p,p )-0.

0s
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If d is the radius of the Lyapunov sphere associated with aD

and e<d, we have the following estimates:

-dS (Cc'2-

(3.9) . < ' C1-a'd -
)aDnB C(po) RO 2-a

for some c' independent of p0 and e and

(31)dS~ dSp dS d 2'd2  S(3 1 J c + +x -

aD Rn aDnBd(PO) R ID\aDfnBd(PO) R d

where S is the surface area of DD.

Employing these estimates in (3.8) we find that

(3.11) ItKlu 2  D2 C 2-a c'd 2 - M + HUI!L
(31)"K~l L2(D o -- c c' T- T(-3 d L 2(;D).

Thus for e sufficiently small

(3.12) Ii iII L2 (OD) <1

and the solution of (3.4) in L2 (OD) is given by

2

(3.13) u(p)= Z ([KlwnF)(Po).
n=O

*. ... .. ..---- - -..--- /---**- r -- ; "
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In fact, this series is uniformly convergent hence u(p0 ) is

continuous. This follows because F is continuous, hence bounded

on 3D, and, using arguments similar to the preceeding (in

particular using (3.9)) we may establish

SA(p,p0)

(3.14) I (KIyF) (P0 ) 1 '3D ROp n(R)u(p) F(p) dS p

dS
R < CC ' I I

_ C %IFIIcD) JDnBC(P0 ) O 2-D).

Thus we have the estimate

(3.15) I1 (Kl~)nFI I C(aD) _ 3 C 2-a 11(K1,)n-I FIIC(DD )

0

< (cc' 2-a n,
- IFI COD)

0

which, for E sufficiently small, establishes the uniform conver-

gence of (3.13) and hence the continuity of u.

The next three results may be found in the book of Gnter [4 1

and relate to the behavior of single and double layer potentials.

The results on potentials with integrable densities, due originally

to Fichera (31, are proven in [4] for the case k-0 but remain valid

for k#O since the singular part of the kernels concerned remains

unaltered. The first of these results establishes continuity

properties of single and double layer potentials.
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Theorem 3.2:

If 3D is a Lyapunov surface (or a finite number of disjoint

Lyapunov surfaces) and if ueLM(3D) then the single layer potential

with density U is H81der continuous in the entire space, while

the double layer potential with the same density is H61der con-

tinuous on 'D. Moreover, both are infinitely differentiable off

the boundary.

Remarks: The statement of this theorem may be summarized

by the assertion: VEL.(aD) implies (a) Sue C0 ,(3) MC(2 3 \3D) and

(b) K*u E C0 ,(OD), Due C(1 3 \D). The statement here differs

from that appearing in Ginter in that the assumption that ucL.(aD)

replaces the assumption that u is bounded on aD. The estimates

necessary for the proof are identical in the present case to those

appearing in Ginter.

Turning our attention to the jump relation, we may state the

the following result. Recall that if u is integrable, then

almost every point of its domain is a Lebesgue point.

Theorem 3.3:

If 3D is a surface as described above, ueL1(;D) and if p3D-

is a Lebesgue point of u, then

(3.16) lim - (Su) (P) = (-u+Ku) (p),
P P p

(3.17) lim. -(Su)(P) = (u+Ku)(p)
., hp(S)() "X1(2
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and, for the double layer,

(3.18) lim (Du) (P) = (U+K*)(p),

and

(3.19) lim (Du) (P) = ( (p)

Moreover, the limits in each of the four cases is integrable.

We complete our discussion of the properties of single and

double layer potnetials with the following:

Theorem 3.4:

Let 3D be a Lyapunov surface (or a finite number of disjoint

Lyapunov surfaces) with index 1 (i.e. npl- nP2 < ER(p,p2 ) where

npi, i=1,2, is the exterior unit normal to 3D at the point pi and

E is a constant independent of PlP 2 and let W be continuous on

3D. If the double layer potential (2.4) possesses one of the

derivatives

- 3 +
(3.20) Dj(p): D p(p) or n Du(p): =Dnp

p p

then both derivatives exist and are equal at the point p0D.

Their cormmon value will be denoted by Dnli(p).
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Next, we present a version of the divergence theorem which is

essential to what follows. This treatment allows the development

of an L2 theory of surface potentials which is of interest for its

own sake as well as the present application. It is closely allied

to the treatment of the volume integral as an improper integral

presented in Smirnov [14]. We remark that an alternative generalized

divergence theorem involving potentials with continuous rather than

square integrable densities and based on the interpretation of the

normal derivative as a distribution or "boundary flow" is available

[I], [8) and has been used in an integral equation approach to the

Neumann problem for the Helmholtz equation [7]. That treatment does

not address the non-uniqueness problem at characteristic values of

the integral operator in contrast to the present approach.

Theorem 3.5:

Let aD be a Lyapunov surface of index 1 and let (S - be a

family of "parallel" surfaces in D_ such that (i) for fixed S,

Sa- is the image of BD under a continuously differentiable trans-

formation Fa-: DDSS-; (ii) F(p):= PS= p O(S) and if P(u,v) is
ap ap

a parameterization of 3D, ; = u + 0(6) and a-

F a + 0(); (iii) dSp = { dSp + 0(4) for every ZcaD where
Z -- F-(M .

Now, if EC1 (D) is a vector-valued function with limiting

values in L2 (D) by which is meant

(3.21) f I0(F (p))-D(p) 2 dSP=()

then

(3.22) fD p " (P)dSp D(P)dTp.

-)D_
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Remark: The order symbol 0(6) denotes a vector whose magni-

tude decreases uniformly with respect to 6. While it is not

necessary to require that IP,-pI be independent of P for fixed 6,

we do require that the surface S6 not coincide with aD at any

point, i.e.,

(3.23) inf IF6 (p)-q > 9 6
p,q aD

for some 8>0, independent of 6.

Proof: Since teC1 (D_ ) and S6c D_, the divergence theorem

in its classical form yields

(3.24) n " P) dS I V-D(P)dT.
f P6 dp= D_

where D6 denotes the interior of S6 . Consider, first, the

integral on the left hand side. The surface 3D may be decomposed
N

into a finite number of patches, aD= U E. where each Ei' i=l,...,n,
i=l

lies in a Lyapunov sphere. Let Ei6= F-(Z i )  Then

(lp D(P6 )dSp6 E Z t (P6 )dS
S 6  6i

Points on Z. may be represented in local coordinates (

where Zi is the image of some domain Di ,n in the (E,n)-plane.

Similarly, (i,n) may be chosen to parameterize Z i6* An element of

area on Zi is dSp = "l+; 4 d~dn whereas an element of area on
2 -

Zi is, using condition (ii), dSp =[l++ 2 + 0(6)]d~dn or
p6 +6

dSpdS +0(6).
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Similarly, on Ei. ̂ p , while on Ziv nP =n +0(6).

Hence, with D(P) and O(F,(p))EL 2 (OD), we have

(3.26) JE6 np (P6 )dS = J n p .(F (p))dSp+0(6)

Also, in light of formula (3.21), we have the estimate

(3.27) 1 n -(P)dSp_

( 3 2 )1 1 .
JEi P P JEi  p

{ z f D(F (p))-t(P) 2d }12+0(6) <0(6).

Therefore

(3.28) lim n 4 ((P 6 )dS = J np-t(p)dSp.

6-0 fi6 P6 6 i

Thus the limit on the left hand side of (3.24) exists as 6-)0,

is equal to the left hand member of the relation (3.22) and hence

the limit of the right hand side in relation (3.24) exists and

equals 3D rp l(P)dSp. Thus the integral D V'(DP)dSp has a

meaning as an improper integral and, in this sense, we have

established the equality (3.22).

i
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Remark: The parallel surfaces used here are similar to,

but more restrictive than those discussed by Burago, Maz'ja and

Sapozhnikova in [1]. The differentiability of the transforma-

tion ensures the convergence of normals and surface elements

and, while the assumption of such convergence may, in fact,

insure differentiability of the transformation, we have not

established this assertion. We also wish to point out that the

construction of parallel surfaces given by Smirnov in [14] does

not guarantee that the normals converge unless the surface 3D is

in fact C2, i.e. the normal is differentiable rather than merely

Lipschitz continuous.

Theorem 3.5 has two immediate consequences which we state

here.

CoroZlary 1: If we C2 (D_ ) and if w and have limits in

L2(OD) from D_ in the sense of Theorem 3.5, then

(3.29) = D(IV(P' 12+w(P)A w(P))dtP(3.9) 3Dp (p) dSp

________ CD if nd w have limits in L2 (3D)

Corollary 2: If we C2 (D), if w and 2-i

from D+ in the sense of Theorem 3.5, and if BR is a ball of

radius R containing D in its interior, then

(3.30) w(p)-(p)dSp= - ((w(P))d + w(p) -(p)dS
3D Fn D +nBR P J3BR 7n

The first of these corollaries follows immediately from

Theorem 3.5 by identifying D in that theorem with the function wVw.

The second follows from the first by applying the statement to the
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interior domain bounded by aD and DBR.

We conclude this section with a uniqueness theorem for the

exterior Robin problem for the Helmholtz equation. The proof

is based on Rellich's lemma and was given by Leis [9 ] in the

classical case for real, continuous a. The extension presented

here takes into account complex-valued a in L (3D) and considers

a more general class of solutions. Specifically, we consider

solutions of the Helmholtz equation in D+ which, together with

their normal derivatives take on boundary values, square-

integrable on 3D, in the sense of Theorem 3.5. This notion is

precisely the notion of generalized boundary conditions described

by Miranda [9; §29]. We refer the reader to that work for

a discussion of the history of this interpretation of boundary

conditions for elliptic equations. It is however vital to the

results of section IV to know that single and double layer

distributions assume their boundary values in this generalized

sense which we state in the following:

Theorem 3.6: If DD is a Lyapunov surface (or a finite number of

disjoint Lyapunov surfaces) and peL 2 (;D) then Si, Dii, and as_

3n.
assume boundary values in L2 ( D) in the sense of Theorem 3.5.

The proof of this theorem is deferred to the appendix. Through-

out the remainder of this paper, the boundary value problem will

be understood in this generalized sense and the statement of

the boundary value problem (2.10)-(2.12) should be so interpreted.

With this understanding we state
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Theorem 3.7:

Let aD be a Lyapunov surface of index 1, let kct with

O<arg k<r (Imk>0) and let aeL.(OD) with arg k< arg a<arg k+7.

If weC 2(D+ ) is such that

(3.31) (A +k2 )w(P)=0 , PeD+

aw(3.32) - - ikw = o(l/r), r=IPI,

and

(3.33) L-(p) + ow(p)= 0, peD ,
np

then w=0 almost everywhere in D + u3D.

Remark: We repeat for emphasis that the boundary condition

(3.33) is to be interpreted in the generalized sense and the

equality, consequently, holds only almost everywhere on D.

Proof: Let BR be a ball with boundary aBR, center in D- and

radius R sufficiently large so that D-cBR . Assuming that w

satisfies the hypothesis of the theorem, we may apply Green's

theorem to the function w and its complex conjugate w in the

region D+nBR obtaining, using Theorem 3.5 and the relation (3.30)

the integral identity

-- r w -3w
(3.34) (wA w-wA w)dT=J (S - w )dS

D+nBR fBR

-- aW) dS.

...................
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The radiation condition (3.32) shows that

(335) 1) = ( 2
(3.35) (a- - ikw)

r

from which we may deduce that, on aBR,

a -aw 1 {11w 2+ 2-w a, 1.

(3.36) wj--w -.-r -ReK T j kwl2+(Imk) (wtn+w-) }n)+o(-2).
R

Substituting this result in the identity (3.34) and making use of

the fact that both w and w are solutions of the Helmholtz equation

and satisfy homogeneous boundary conditions (equations (3.31 and

(3.33) and their conjugates) we obtain

(3.37) (k2-k 2 y f I-i waw 2 ( w aw
(k ~ dT-I fB{Ir +JkwJ +(Imk)(wt* wj~)}dS

D+ nBR BR

+ f D - w) I2 dS + o(1).

However, Theorem 3.5 may be applied to wA w+wA w and, again using

the boundary conditions, we obtain

(3.38) f (w4w!+w #) dS-= (217w 2(.kw)dT - [co jJdS.
faBR ID +nB R  J 'D

Substituting this result in (3.37) and making use of the facts

(3.39) i(Rek) (k2 -k2 )-(Imk) (k2+k2)=21kl 2 (Imk)

and
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(3.40) (Rek) (Ima)-(Imk) (Rea)- Im(ka)

we obtain

(3.41) f(1-1l IkwI2)dS+2(Imk) J(IkwI2+ VwI2)dT
B R  D +B R

+ 2 (Imkiu) lw dS -- o(1)
3BD

All the terms on the left are easily seen to be non-negative if

(Imk)>0 and (Imko)>0, this last condition being equivalent to the

condition arg k<arg a<arg k+7. It follows, then, from Rellich's

Lemma that w=O.

Note that the space in which w lies allows us to conclude

that w=0 in D+ whereas we can assert only that w=0 almost every-

where on 3D. It should also be noted that the classical solution

space, C2 (D +)nC1 (D+u;D) is a subspace of the space of functions

specified in the statement of the theorem hence in the classical

case w=0 everywhere in D+ uaD.

4. Existence and Uniqueness of Solutions

The formal calculations of section 2 have given us a pair of

boundary integral equations for a function uEL 2( D), namely the

equations

(4.1) (I + K* + Sa)u = Sg+

(4.2) (-a + Ka + Dn) u =Kg+ -g+.
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Our object in this section is to demonstrate the existence of a

unique solution of this pair of equations and to establish the

equivalence of this problem to the original boundary value problem.

The proof will proceed by means of a series of lemmas. Through-

out this section, unless explicitly mentioned to the contrary,

(e.g. Lemma 4.3) the functions g+ and a will be assumed to lie

in the space L (9D). Furthermore, the boundary aD will be assumed

to satisfy the hypothesis of theorem 3.5.

We remark, first, that by applying the regularity theorem

(Theorem 3.1) to any solution of equation (4.1), we may conclude

that any L2-solution of equation (4.1) must, in fact, be continuous.

Note that the regularity theorem is applicable here since, under

the hypotheses on g+, the function Sg+ is continuous everywhere.

(Theorem 3.2), and the kernels of the integral operators R* and Sa

are products of weakly singular, essentially bounded and continuous

functions. In fact it is to ensure the continuity of Sg+ and the

subsequent applicability of the regularity theorem that we restrict

g+ to lie in L rather than L2 . As we shall see below the fact

that L2 solutions of (4.1) must also be continuous will be of

crucial importance in ensuring that certain functions used in the

construction of the required solution of the system (4.1)-(4.2)

will lie in the domain of the operator Dn. Indeed, we will begin

with the following basic result relating the set of solutions of

equation (4.1) and the domain of this operator.

Lemma 4.1: Suppose that the wave number k is not an eigen-

value of the interior Dirichlet problem for the Helmholtz

equation. Then, for any solution u of equation (4.1) in L2(OD)
+ +

Dnu, and hence DnU, exists and, moreover, Dn = D U:=D nU.nn, nu n



28

Proof: Let u be any solution of the equation (4.1). In

light of the theorem of Gnter (Theorem 3.4 above) it will be

sufficient to show that DnU exists, at least almost everywheren

on 3D.

To this end, define the function v on D by the equation

(4.3) v(P) := (Du + Sau) (p) - Sg+(P), PcD_

Then v takes on boundary values in the sense of Theorem 3.5.

Since the function u is a solution of the integral equation

(4.1), the regularity theorem, 3.1, assures that u is continuous

on 3D. Therefore u is bounded on 3D and hence the function au

is essentially bounded, measurable, and so integrable on D.

Likewise, the function au - g+ is essentially bounded and

integrable on 3D, and so the single layer with density au - g

is continuous everywhere by Theorem 3.2. Recalling the form of

the jump conditions for double layer with continuous density

(theorem 3.5), we have for all pe3D,

(4.4) lim v(P) = (u + K*u + Sa u)(p) - (Sg+) (p).
p.p"

Since, by assumption, the function u is a solution of the equation

(4.1) we may conclude that lim v(P) = 0 for all points peaD.
P.p-

The function v, therefore, is a solution of the interior homogeneous

Dirichlet problem with zero boundary data. Since k is not an

eigenvalue of this problem, the function v must vanish identically

L -M
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in D and so av/3n- = 0 on aD.
P

We now rewrite the relation defining v in D- as follows:

(4.5) (Du) (P) = v(P) + S(g+ - au] (P), PCD

Again, since density of the single layer operator in this last

relation is integrable, we may use Theorem 3.3 to conclude that

(4.6) lim Sg+ -a u] (P) = [-g+ + Kg+ +au -KOu] (p)p-p- Tn-p

almost everywhere on 3D. Since we have just shown that
3v/3np = 0 for all peaD, we may conclude that D-u exists for

p n
almost all peaD which is what we wished to demonstrate. Moreover

at such points p,

(4.7) DnU(p) = (-g+ + Kg+ + au - Kau) (p),

which relates the solutions of equation (4.1) to those of equation

(4.2). More precisely, we have established the following result.

Lemma 4.2: If k is not an eigenvalue of the interior homogeneous

Dirichlet problem and if the function u is a solution of equation

(4.1) in L2 (D), then the function u is likewise a solution of

equation (4.2).

We may now turn to a discussion of the existence and unique-

ness of solutions.

5, -.

. ...... . . - . .. ,' .- i: ~ ' - ' '
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Lemma 4.3: For all choices of g+EL 2(0D), the equation (4.1)

has a solution in L2(OD).

Proof: The integral operators in (4.1), K* and So, are
completely continuous on L2 (D) (Mikhlin 110]) hence Fredholm's

Alternative applies to (4.1). Observe that the operator So should

be viewed as a composition of multiplication by the essentially

bounded function a which maps T.2 (D) into itself and the single

layer which is weakly singular. Fredholm's Alternative implies

that for any g+ either equation (4.1) has a solution or the homo-

geneous problem has non-trivial solutions, in which case, equation

(4.1) has a solution if and only if the function Sg+ is orthogonal

to all solutions of the homogeneous adjoint equation which may

be written (I+K+a-S*) = Oor, equivalantly, (I+K-+a) = 0. In fact,

we will show that, for all such w, (Sg+,wO) = 0 for any choice of

g+L 2(D).

To this end note that (Sg+,w) = (g+,Sw) and define a function

v in D+ by

(4.8) v(P) := (S1) (P), PED+.

Then, since cC(oD), the jump relations yield, for almost all

peaD,

(4.9) av/an4 (p) = (' + Row) (p).
p

00

But the function w satisfies the equation (I+R+§) = 0 and so

we may writeLuL
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(4.10) 3v/an+ (p) = -oSw (p) - -5v(p), for almost all peOD.
p

Hence, the function v is a solution of the exterior homogeneous

Robin problem which assumes boundary values in the sense of

Theorem 3.5 and so vanishes identically according to the unique-

ness theorem discussed above. We may conclude = 0 and this

establishes the lemma.

This last result, together with the preceeding lemma, shows

that if k is not an eigenvalue of the interior homogeneous

Dirichlet problem, then the pair of integral equations (4.1) -

(4.2) has a simultaneous solution. Moreover, there can be at

most one such solution as we now show.

Lemma 4.4: If u L2 (aD) is a solution of the homogeneous

system of boundary integral equations

(4.11) (I+R*+Sa)u = 0

(4.12) (-a+Ko+D )U = 0.

then u = 0, pe3D

Note that since the function u is assumed to satisfy

the equation (4.11), we may again invoke the regularity theorem

to establish the continuity of u. Indeed, it may well be smoother

since we assume as an hypothesis that it lies in the domain of

the operator Dn.

Prf: Again, define the function v on D_ by the relation

v(P) :- (D + So)u(P), PeD
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where u is a solution of the homogeneous system (4.1l)-(4.12).

Then, as before, v takes on boundary values in the sense of

Theorem 3.5 and, since u is an L2-solution of equation (4.11)

which has a continuous right hand member, it is also continuous.

Taking limits as the point PeD_ approaches the boundary of D,

and using the jump conditions for the double layer operator with

continuous density, we have

(4.13) v(p) = u(p) + K*u(p) + (Sa)u(p)

and so v(p) = 0 for all pcD since u is a solution of equation

(4.11). Hence the function v is a solution of the homogeneous

Dirichlet problem in D_. There are, then, two possibilities:

either (i) v vanishes identically in D_, or (ii) v is a non-

trivial eigenfunction of the interior homogeneous Dirichlet

porblem for the Helmholtz equation. In case (ii) the function

v has regular normal derivative in the sense of Lyapunov (see

Smirnov 114] p. 586 and p. 675).

In the first case, we must have that (Du + Sou)(P) = 0

for all PeD_. Now define the function v+ in D+ by

(4.14) v+(P) := (Du + Sau) (P), PED+,

which, like v_, takes boundary values in the sense of Theorem 3.5.

Using the jump relations for the double layer operator as the

point P approaches 3D from D+, we may write
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(4.15) v+ (p) =-u(p) + K*u(p) + S(au) (p), pc3D.

Since, for merely bounded and measurable densities, the jump

relations for the normal derivative of the single layer operator

hold only almost everywhere on DD, we may argue in a manner

similar to the proof of Lemma 4.1 and conclude that, for almost

all peDD,

(4.16) av+/an + = (au)(p) + (Kau)(p) + DnU(P).

Note that since k is not an eigenvalue of the interior Dirichlet

problem, Lemma 4.1 assures the existence of Dnu(p). But, from

equation (4.11), we have K*u+Sau = -u and so, with (4.15),

v+(p) = -2u(p), pFaD, while from equation (4.12) we have that,

with (4.16), av /an + (p) = 2(au)(p) almost everywhere on aD.
+ p

Comparing these last two results, we see that the relation

(4.17) av + /an;(p) + (av + ) (p) = 0

holds almost everywhere on aD and we may invoke the uniqueness

theorem to conclude that v+ vanishes identically in D+ and

that v+ (p) = 0 almost everywhere on aD. It follows since

= -2u that u(p) = 0 almost everywhere on aD. But the function

u is continuous on aD and consequently vanishes on 3D, which

establishes the result in case (i).
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If the second possibility obtains, then the function v is

not identically zero. But, as before,

(4.18) 3v/3n (p) = (DnU - au + Kau) (p)
pn

for almost all peaD, and so, since the function u satisfies

equation (4.12), av/an (p) = 0 almost everywhere on DD. But

then the function v is a solution to the interior Helmholtz

problem which vanishes on the boundary and whose normal deriva-

tive vanishes almost everywhere on aD. This leads to a contra-

diction and completes the proof.

It remains for us to establish that, if k is an eigenvalue

of the interior homogeneous Dirichlet problem, then the system

(4.1)-(4.2) of boundary integral equations admits a simultaneous

solution.

We recall the following result from [6, p. 224 and p. 277).

0
Lemma 4.5: There exists a non-trivial function w such that

(4.19) 1 + K'=0

if and only if (Sa) (p) = 0, peaD. Moreover such a function exists

if and only if k is an eigenvalue of the interior Dirichlet problem.

0
Finally, v is an eigenfunction if and only if it may be represented

0
~in the form vO(P)=-1/2(Sw) (P) , PCD_ where 4+Kw=0.

Clearly such a function w satisfies the boundary integral

equation
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(4.20) + K + aS= 0,

and having made this observation, we may prove the following result

which is analogous to Theorem 4.3 of (6 ].

0Lemma 4.6: The function v is an eigenfunction of the interior

Dirichlet problem if and only if v can be represented in the form

0 0

(4.21) v Dw* + Saw*, PCD

0
where w* satisfies the homogeneous boundary integral equation

0
(4.22) (I + K* + Sa) w* = 0.

0
Proof: Assume, first, that w* is a non-trivial solution of

the given boundary integral equation and hence with the regularity

0
Theorem 3.1, is continuous. Define a function v in D_ by

0 0

(4.23) V'(P) := (Dw* + Sow*)(P), PED_,

which takes boundary values in the sense of Theorem 3.5. Then,

0
as in the proof of Lemma 4.1, the function v vanishes on aD and

hence either vanishes identically in D_ or is a non-trivial eigen-

function of the interior Dirichlet problem. To see that v is

not identically zero, notice that if this were the case then its

normal derivative would vanish on 3D. But, then, for almost all

pE9D, we would have, using the jump conditions as in previous

proofs,
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- 0 0 0
(4.24) 3v/3np (p) =(D *+Kaw* a a_*) (p) 

0 0

-- a,where D w* exists since - and -- Saw* exist and with
nn dn-o o

Theorem 3.4, which applies because w* is continuous, D w*
n

exists. Thus the function w is a solution of the homogeneous

boundary intergral equation

0
(4.25) (D + Ka-a) w* = 0

n

Now define a function a on D+ by

0 0

(4.26) u(P) := (Dw* + Saw*), PD+,

which, again, takes on boundary values in the sense of Theorem 3.5.
+

Again, using the jump conditions, we have for P1p ,

o o0
(4.27) u(p) (-W* + K*W* + Saw*) (p), peaD,

and

0 0 0
(4.28) aa/Dn+ (p) = ( * Kaw* + D w*) (p), a.e. on 3D.

p n

But since (I+K*Sa)w*=0 we have with (4.27) that d(p) = -2w*(p) for

all pE3D, while from (4.25) and (4.28)we conclude that ad/anp(p)
0 p0

2(aW*) (p) almost everywhere on 3D. The function a is thus a

solution to the exterior homogeneous Robin problem and, by the
0

uniqueness theorem, must vanish everywhere. Thus w*(p) = 0
0

for all pe3D which contradicts the choice of w*. Hence must

be a non-trivial eigenfunction.
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Conversely, assume that v is an eigenfunction of the interior
0

Dirichiet problem and let v1, i=l,2, ...,n, be a basis of eigen-

functions. Thus there exists scalars, alf ... Aa . such that

ctE av. By lemma 4.5,to each v. there corresponds a function
i=l i. V1
o 0

w. such that w. satisfies
1 1

(4.29) (I+K+aS) '.(p) =0 peaD
1

0 10
(4.30) v~ (P) =(w.) (P) , PED.

00
Let W=span{w.}. Note that the w~ il,,.,n are linearly independent

since the v(p),, i=l,2,...,nare chosen as a basis for the

eigenspace. Hence dim< >=dimW=n and Wcker(I+K+aS). But,

(4.31) dim ker (I+K+aS) = dim ker (I+K+aS)*

= dim ker (I+K*+Sa)

=dim ker (I+R*+Sc).

0
Let {w~}, i=1,2,. .... 4 be a basis for ker(I+K*+Sa) and define for

each i=l, ...,fn

22

Since wl are non-trivial solutions of (I+K*+Sc)w*0O, the first

part of the proof shows that the functions u. ~.., r

eigenfunctions of the interior Dirichlet problem. moreover,

they are linearly independent for if 3i, i~1,...,n, are scalars

such that Z$ u 0=O then
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0

(4.33) (D+So) (Z$ .w*) = 0

which implies, as in the first part of the proof, that

(4.34) Ziw = 0

and hence 8=0 for all i=l,...,n.

Thus every eigenfunction of the interior Dirichlet problem

can be written in the form

n 0 o 0
(4.35) a = i(D--Sa)w- = (D+Sa) Z aiw = (D+Sa)w*

i=l 11i=l

for ail i=l,...,n, appropriately chosen scalars, which completes

the proof.

Finally, we may establish the following existence theorem

for solutions of the system of boundary integral equations

(4.1)-(4.2).

Theorem 4.1

Let aeL (D). Then there exists a unique solution of the

system of boundary integral equations

(4.1) (I + R* + Sa)u = Sg+

(4.2) (-a + Ka + Dn)u = Kg+ -g+

for each choice of g eL (aD).

+k0
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Proof: If k is not an eigenvalue of the interior Dirichlet

problem for the Helmholtz equation, then Lemmas 4.3, 4.2, and

4.4 ensure that a unique solution of the system exists since
g+eL (aD) implies that g+eL 2(aD).

If k is an eigenvalue, then while Lemma 4.3 still guarantees

the existence of at least one solution of equation (4.1), we

cannot show immediately that such a solution will satisfy the

second equation. Nor can we make any statement concerning

uniqueness since solutions to equation (4.1) in this case are

not unique.

Suppose, then, that wI is a solution of equation (4.1)

and define a function v on D by

(4.36) v(P) := (Dw 1 + Saw 1 - Sg+)(P), PeD.

Then, as in the proof of Lemma 4.1, v is either identically zero

or is a non-trivial solution of the interior homogeneous Dirichlet

problem. In either case, according to Lemma 4.6, we may represent
0 0

the function v in the form v = (D+Sa)w* for some solution w* of
0

the homogeneous boundary integral equation (I+K*+Sa)w*=O. Hence,

for PED_,

(4.37) (D+Sa)w*(P) = (DwI)(P) + (Sa) l(P) - (Sg+)(P).

Now, define a function w on DD by

2
(4.38) w wI -w*.

'"~~~~~~~~~ .. . .......... . . . . . . .., ".
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Then

(4.39) w+K*w+Saw w --w*+K* -1-K*w*+S w1 -Saw*

IV w+K*ISO

Sg+

and so the function w satisfies the equation (4.1). Moreover,

for all PeD, with (4.37),

0 o(4.40) (Dw + Saw)(P) = (D, ,1 - Dw* + s0 1  Sow*)(P)

= Sg+(P)

or equivalantly,

(4.41) (Dw) (P) - S(g+-ow) (P) , for all PD_.

0

The function W, and w* are not only L2-solutions of the non-

homogeneous and homogeneous integral equations, respectively,

but are also, according to the regularity theorem, continuous

functions on 9D. Hence they are both bounded there and, conse-

quently, the functions w and g+ -aw are essentially bounded and

integrable on 3D. So again, we may use Theorem 3.4 to conclude

that
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(4.42) lir a/an S(g+ -aw)(P) = (-g+ + Kg+ + aw - Kaw)(p)
p*p -

almost everywhere on aD. And so we have that DnW(p) exists

almost everywhere on aD and (Dn w - aw + Kow)(p) = (-g+ + Kg+)(p),

almost everywhere on aD. Consequently, the function weL 2(D)

satisfies the system of boundary integral equations. To finish

the proof, we appeal to Lemma 4.4 for the uniqueness statement.

Next we establish the equivalence of the Robin Problem and

its bound,:;y integral equation formulation.

Theorem 4.2:

Let g+ and a be in L.(aD),Im k>O, and Im ka>O. Then u+ is

a solution of the Exterior Robin Problem,

1. u C(D) U+ +(L 2 () D ) in the sense of theorem 3.5i u+ C2(D+) n+,

2. (A + k2 ) u+ = 0, PeD+
u+

au4
3. - -iku+ = o(l/r)

u+

a u
4. -W+ au+=g+ almost everywhere on aD,

if and only if

= 1 1

(4.43) u+ - S(g+-au) - Du, PeD+

where

(4.1) (I + K* + Sa) U = Sg+

(4.2) (-a + Ka+ D U = Kg+-g+.
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Proof: First assume u+ is a solution of the Robin problem

1-4. Then Theorem 3.5 may be employed to obtain the Representa-

tion Theorem (2.13) which is the same as (4.43) above with u

replacing u. Then the formal calculations by which (2.14) and

(2.19) which are identical with(4.1) and(4. were obtained may be

repeated. Note that (4.1) follows from the continuity of Sg+ and

Sau+ (Theorem 3.2) and the jump relation for Du+ which holds

for u+EL 2(OD) (Theorem 3.3). Then the regularity Theorem 3.1

ensures that u+C 0 (D). Hence with Theorem 3.4 and the fact

that u+ and S L have normal derivativesin L2(OD) the represen-

tation (2.13) may be differentiated and Dn u+ must exist. Thus

u+ is a simultaneous solution of(4.1)and(4.2)hence by Theorem 4.1

is the unique solution.

Conversely assume u is the unique solution of(4.1) and(4.2)

and u+ is defined by(4.43).. Clearly u+ satifies the Helmholtz

equation and the radiation condition in D+.

The regularity Theorem 3.1 ensures that u is continuous on

aD, hence Sau is continuous and has a normal derivative in L2 (DD)

(Theorems 3.2, 3.3, and 3.6). Moreover u must be in the domain of
au + +

Dn . Hence U+ and - are in L (D). Then taking limits as P-p

we find that on 9D

1

(4.44) u+ = . S(g+ -au) + 22*u

and with (4.1)

(4.45) u+ = u on D.

Also

.......
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au+ 1 a

(4.46) Tn ++2 g+-- a 4Dn U

and with (4.2)

au +
(4.47) n= g+ a- u on aD

hence

(4.48) a- + au+ =g+ on DD.

and u+ satisfies the Robin problem.

In conclusion, we remind the reader of the closing remarks

of Section 2. There we derived, formally, boundary integral

equations, of the same form as equations (4.1) and (4.2), but

with different right hand members which were suitable for describing

the total field for the scattering problem. In that derivation,

the right hand sides represent, up to a constant factor, the

incident field. and its normal derivative respectively. As the

results of this section do not depend on the particular form of

the function appearing on the right hand side, we see that for

sufficiently smooth incident fields the analysis of this section

is valid and we may state the following theorem.

Theorem 4.3:

Let ui denote an incident field and u=u i+uS the total field

when us denoted the field scattered by the obstacle D_. Then, for

any aeL.(DD), there exists a unique solution of the system of

boundary integral equations

E I____________



44

(4.49) (I+Sa+iR*)u =2u '

(4.50) (-a4-Ka.D )u-2( au/DR )

The equivalence of solutions of this pair of boundary

integral equations and the scattering problem follows, mutatis

mutandis, from Theorem 4.2.
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APPENDIX - On the generaZized boundary values
of single and double layers.

In Theorem 3.5 the notion of a family of parallel surfaces

{S} contained in D was introduced. We may define another

family {S+} contained in D+ which converges to DD in the same

sense as {S-} . With the understanding that the layers may

approach their boundary values from D+ or D we state and prove

Theorem 3.6.

Theorem:

If aD is a Lyapunov surface (or a finite number of disjoint

Lyapunov surfaces) and ueL 2 (aD) then SU, DU and Tn Sp assume

boundary values in the sense of Theorem 3.5, namely;

A-I I J(S) (F'(p))-(Sw) (p) 12dS =o (60)
'aD

6 p

A-2 I (DP)(F+.(p))-(D1)(p)1 2dS =o (6 ),
faD

aD6 p
and

A3 - a (p o2dSp 0
A j n± (SU) (F-6 (p)) , (SU) (P)

p p

Proof:

Considering equation A-1 first, we denote by P6 the image

on S of a point p on DD, i.e., P6 =F 6 (p). Recall that

A-4 1PS-pI := R(P6 ,p) - 0(6) uniformly in p.

..........
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With (2.3) the integrand in A-1. becomes

A-5 I (S1i) (P)-(Sji)(p)1 2= 1 f Li(q) (y(P6,q)-y(p,q)Jd 1I2

aD

ikR(6,q) ikR(p,q)-
-1 (q)eik(6 e dS q12

47 R(P6 ,q) R(p,q) -

It may be shown that for Imk>O,

ikR(P6,q) ikR(p,q) (lkD)P 6 p

A-6 ___e __ e < ________

R (P 6 Iq) R(p,q) R R(Pa,q) R(p,q)

where D is the diameter of aD. From the definition of S6it

follows that there is a constant c such that,

A-7 R(P6 1p) < c6

Thus there is a constant c, independent of 6, such that A-5

gives rise to

A-! (S)( 'P'-(SU)(p)1 2 <___2____________2

aDR(P6 ,q)Rpq

<C6 2  faD Sf M lu(q)l2  dS
R(P 6 eq) R(p,q) aDR(P 6 ,q) R(p,q) q

Li
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where Schwartz' inequality has been used. It also may be

established that for R(PS,p)<d/2 where d is sufficiently

small (depending on the Lyapunov constants of the surface)

A-9 1 2A- R(pa,q) < IT(p,q} ) pq

and

Ab 1 2
A0q) ,p) < Vp,qE3D

Employing these relations selectively we find, for any

a (0,1) ,

A-lI (Su)(P 6 )-(SU)()2 < C60 f L (q) dSq'

R (p,q) 
q

[ S

The term f D +a is an integral with a weak singularity

R (p,q)

and differentiable density (=1) hence is a continuous function of

p on D while the term -f-Iu(q) 12 dS is a single layer with

J D R(p,q) q

integrable density hence is integrable ((41, p. 110) and the

validity of A-1 follows.

Next consider A-2 which involves somewhat different estimates.

With (2.4), (2.5), (3.18) and (3.19) we have

iM
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A-12 I(DOi (P 6 )-(-Qt) (p) 2

f (q y6q -y (p,g)]IdS +11 (p)I E

Introducing Gauss' integral which has the form

A-13 =n- Y 0 (P6 ,q) dSq 1 9

where

A-14 Y0(P 6 ,q) =- 1 irfR(P 1q)

equation A-l2 may be written

A-15 (Dvi) (P 6 ) -(Dt i) (p) 12 (q =3 y(p6, q) - y(p, q)

qUP a =n (o( 6 ,q)-y 0 (p,q)]ldSq2

q

3 2

f3D iiq-'p]- y(

+~~~~~ 21 [q)pp] Y( 6 ,q)-Y 0 (p,q)]dS12

The triangle inequality was employed in obtaining the last

inequality.
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It may be shown that for Imk>O

A-16 (Yq[ (P 6,q) -Y°0(P 6q) +Y°(p,'q) -Y'(pq)]

q

ikR(P6 -q) ikR(pq)
e - e -1 c 6

3q R(P6,q) R(p,q) j-R(P6,q)R(pq

where c is a constant which depends on k and the diameter of aD

but is independent of p and 6. Hence the first term on the right

hand side of A-15 may be estimated as

A-17 21 ii (q) ny(pq)-Y (P2,q)+yo(p,q)-Y(p,q)dSq 2

c c 6 2( f UD q 2
aD R(P61,q) R(p,q)q

which is exactly the same as the estimate A-7 hence the subsequent

analysis applies here as well. The second term on the right of

A-15 is analysed with the help of the following estimate which

may be shown to hold on a Lyapunov of order a:

ayo(P ,q) aY (p,q) c1R(P6 'P) c2R(P6 ,P)

q q R (P6 ,q) R(p6 ,q)R (p,q)

where c1 and c2 are constants. Then
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A-19 if [v(q)- .'(p)] L- [y (P6,q)-Y (p,q)] dsqI2

< 2f I i q - ()I T;7c ; + c 2 ] dSq]

< a 1 F f 3DI L4R 3 ±E2. dS qj +

(P2(q -,q( ) dS

2 JD R(P 6 ,q)R 2-a(p, q) dq]

for modified constants a1 and a 2. The first integral on the

right of A-19, with Schwartz' inequality, becomes

A-20 ()-11 (D )2 f JdS'Pp~3 (q- f 2 d
faD R(p6,q aD (P6,~faDR (P6 ,q) q

Defining Zd(p), a patch on '3D as,

qF 3D
A-21 Z =~p {q I R(p,q)<dfl

where d is sufficiently smaller than the Lyapunov radius associated

with DD so that A-9 and A-10 may be used, it follows that

dS FdS dS
A-22 na +J

faD R3(P 5 ,q) aD\Zd(p) R (P6 ,q) fZ ( F (P6 ,q)

8A ~ d ~2 Tr
dy + c do Jd 2 3/2.
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The constants A and c are of no particular importance for our

present purpose but we note that A is the surface area of 3D.

In the second integral in A-22 we have introduced polar coordinates

(p,O) on the disk tangent to 3D at p and used the inequalities

(e.q. Giinter(41)

A-23 dS q< 2pdpdo ,qEZd(p)

and

A-24 R(Pq) > 1 /R2(p 2 >_ 2 0
- 2 -- 2

The integral in A-22 is easily evaluated and we have

A dSq 8A 1 1 c 1

A-25 +2c- ___ _

fD R (P6 ,q) - d 6 , (R2(P 6 ,p)+d2)l/2J< -

for some constant cI. Similarly the second integral in (A-20)

may be written

I u (q) -i (p) 12 lucq 12 1l ()1 -p ds
-26 dS <16 dSq

fD R3 (P 1q) q - KD\7d(P) d

+ 8! [q-(P) dS4 2 /
Z(1) (2 2+R (p,q)) 3 / 2 dSqz d(p)

I, 2 2 2 jd 12,r ol Iu(p+ql 1)-P(p) 2

< c 1  I 21iip + C 0d d
2 (1262+02) 3/2
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where again we use polar coordinates on the plane targent top to

paramneterize Z d(p) and employ (A-23), (A-24) and (3.21). The

vector qin local rectangular coordinates centered at p is

A-2? q,~ n,(,)),~ pcoso . rn= psinO

where ; is a local representation of the surface, hence depends

on p, but also satisfies, since d is smaller than the Lvapunov

radiu-S

A-28 J ~a a = Lyapunov index.

Hence for d sufficiently small

A-29 1qll <2p.

Substituting these results in A-20 we have

A -. 30 f dS']2 (3D)1,11 +c 14(P)12

3D R (P "q) 2

J d QrPI u(p+ql) -v (p) 1 2

The second integral on the right in A-19 is treated similarly yielding
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A-31 (2) -U (P)o dSq 22  1 i (b IiL 2 ( D+b Ii(P)12DD R(P q)R2- (p q2 P P

rd r2 II U(P+ l) -u(p) 12+ b Jd ,d •
3 I0 0

Incorporating A-30 and A-31 into A-19 we have, for appropriately

redefined constants,

A-32 W uq)-u(P) ] [YolP6,q)-Yo(p,q) ]dSq1 2<Cle l 2(D

+ c 2 6Ji(P)1
2

d 2 7r Iu(P+ql ) - (p ) 12 1+t d 2T I(P+q ) (p ) 12

0o (6 62+P2 0 0 P 8 26 +p

Integrating over aD and employing Fubini's theorem, which applies1

since jiiL 2 (aD) and both 
P  and - are

integrable in the p,o variables for 6>0, we obtain I

A-33 J [f (q) -U (P) ]-- (P6q) y °(p ]dSq I 2dSp

aDD aD q

2
S(Cl+C 2)61111I1 (aD)

+ c36 fdo 2 2 F/2 u(p+ql)-u(p) dSP)
"(e 6 aD
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+ad)f21T 1 1Iu(p+q)-I' (p) 12 dSd 4 d Id0 - _( fao 1P

o oP

The integral I P U(p+q I) -,(p) 2dSp is the L2 modulus of continuity

of p which is 0((q 1 2) (Stein (161) although for present purposes

it is sufficient to have 0(jq 18) , 8>0. Then with (A-29)

A-34 f 3D j(P+ql) -(P) 1 dSp < c p'

and (A-33) becomes

A-35 '3[D(q)-p(p)j' [yo(P,q)-yo(p,q)jdS [2dSfaD aD rnq q P

2

< '"IIL2 (D)

d d

c 2  d l+8 dp + c3  f _ _2

2 + 2 Jo 9

_ s 6 s +c36  d.6 c 1P1l l L2(aD)+4 "e - ?)- 3/2 3 0,.-a-

o ~ 6 p

s 1+ 2x c+
6u8/02+s2

When $<1, both integrals are bounded and the right hand side is 0(68).

If 8>1 even more rapid decay of (A-34) with 6 is easily shown. In

all cases the validity of (A-2) is thus ensured.
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The proof of A-3 involves an argument similar to that used in

establishing A-2 which we merely suggest. With (2.3) (3.16), (3.17)

and (A-13) we obtain

A-36 n--(SIP n (S--)(P) 2 n( [y (P q ).- y'° (P 'q )

p p

+Y 0 (p,q) -y(p,q)] 
dSq)2

+4(ID(q)I f =n(yo(P6 ,q)-yo(p,q)]+ a qy(P 6 ,q)
(fDp 0 nq0

The first integral on the right may be estimated in the same way

as (A-17) since (A-16) remains valid when is replaced by a

q p
The third integral is precisely the same as (A-19) and is treated

identically. The second integral is estimated using the following

inequality

A-37 13._ [yO (p6 ,q).Yo (p,q) ] +nq a[o (p6 ,q)_yo (p,q) ]i

a a
an 07n

< q

c R(P,1p)

R(P6q)R2-a (t q
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which enables us to write

A-38 f hu(q) I [y (P ,q)-Y (p,q)]+ Y0 (P,,q)-Y (piq] dSq!
DD ~ pq

< c 2 (q-() dS 2
-- JD R(P 6, q)R (p,q) 

as it was 2 The the integralq)2
c 1 p)2 D D R(P 'q ) R2 - (p 'q )  .

The first term in the right also appears in A-19 and is treated

may be shown to be 0 This completes the proof o Theorem 3.6

ofrfam es of partalwle we have nloyassent h the exrtedn

of families of parallel surfaces, which we have only asserted

for index 1. This is sufficient for our use of the theorem in

Section IV, however should the families exist under the weaker

hypothesis (see Burago, Maz'ja and Sapoznnikova [1)) then Theorem 3.6

will hold in that case as well.
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