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ABSTRACT
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EXPLORING THE USE OF DOMAIN KNOWLEDGE FOR QUERY PROCESSING EFFICIENCY

Jonathen J. King
Computer Science Deperiment
Stanford University
Stanford, Californis 94305

Abstract

An approach to query optimization is described that draws on two sources of knowledge: real world
constraints on the values for the application domain served by the database; and knowledge about the
current structure of the database and the cost of available retrieval processes. Real world knowledge is
embodied in rules that are much like semantic inlegrity rules. The approach, called "query rephrasing”, is
to generate semantic equivalents of user queries thet cost less to process than the original queries. The
operation of a prototype system based on this approach is discussed in the context of simple queries
which restrict a single file. The need for heuristics to limit the generation of equivalent queries is also
discussed, and a method using "constraint thresholds™ derived from s model of the retrieval process is

proposed.

1. introduction

An important line of research on databases concerns the use of general statements about a domain, as
opposed to the elementary facts usually regarded as the contents of a database. Such general
statements (semantic rules; intensional information) can be looked at as conditions that must be true of
the facts in the database. Several uses of general statements have been proposed:

-~ Inlegrity constraints. Methods are set up to check that changes to the database involving elementary
'f:acts ](inserlions, deletions, changes in values) do not falsify any of the general statements. ([Mc76],
St75)).

-~ Views. General statemenis are used to define new entities in terms of existing ones in the database.
in principle, every database user can have a different "view™ of the database consisting of different
entities and relationships. ([Ch78], [NG78], [St75)).

-- Deduction. General statements are used during retrieval to provide answers that are not explicitly
stored in the detabase. A single genersl statement may in effect replace many elementary facts in the
database, saving much space. ((MM77], [NG78)).

This paper examines yet another use of general domain statements -- to improve the efficiency of query
processing for relstional detabsse systems where the query need not specify how the desired data is to
be accessed. The general statements are used to produce semantically equivaient descriptions of the set
to be retrieved.” One of the equiveient descriptions may permit a lower cost of processing than the

originel.




Exploring the Use of Domain Xnowledge for Query Processing Efficiency

This paper describes sn implemented prototype system that produces the set of equivalent queries
permitted by a body of general statements about a domain (also called domain rules). This
system, together with a suitable cost estimator incorporating models of the database structure
and processing methods, would yield a low cost equivalent query. The paper also considers how
such modeis might be used to focus the process of selecting transformations on just those
general statements that could possibly support transformations to less costly queries.

2. The Guery Optimization Problem -~ Standard Approaches

The database query optimization problem is to find a low cost sequence of processing
operations needed to retrieve those items meeting the query constraints. In nonprocedural
query languages, it is up to the system to perform optimization sutomatically. (The use of the
term “optimization® is Inaccurate though historically established; there is no guaranteed
procedure for finding the lowest cost processing sequence for arbitrary queries.)

Optimization is needed because retrieval can be unacceptably slow from a very large database,
too slow to permit interactive querying in general. Consequently, reasonably involved planning
steps can be tolerated if they resuit in significant reductions in the actual retrieval cost.

The state of research in query optimization has recently been reviewed in [Ki79]. The
standard approach to optimization includes (1) producing a set of expressions that are
algebraically equivalent to a given query expression; and (2) for each such expression,
determining the lowest cost access paths and processing methods for performing the retricval.
Implemented and proposed optimizers employ various search strategies and heuristics to
suggest which rearrangements in the sequence of processing query terms are most likely to
produce a low cost sequence of retrieval statements.

This approach to optimization is valuable; virtually every functioning relational database system
uses some of these optimization techniques. However, there is a class of situations where
these techniques cannot be of sufficient assistance. The following example, based on the
experience of a functioning commercial database user, illustrates such a situation.

3. Why Domain Semantics is Needed -- A Motivating Example

A major shipping organization monitors the movements of about 30,000 cargo ships. A maritime
insurance associlation sends it a monthiy data tape Usting the ports visited by each ship. There
are about forty visits per ship per year, or about 1.2 miliion total visits per year. The
organization uses a hierarchical database system. The database contains a file of relatively
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permanent ship characteristics such as physical dimensions and cargo capacity. Linked below
each ship is a list of its visits; this structure corresponds to the way the data is recei: 2d an«
is convenient for processing many common queries. The database also contains a file with data
on about 2,000 ports.

The shipping organization supports diverse information needs with this database. Some classes
of questions can be answered quickly, such as listing the ports visited by vessels owned by a
particular firm. Rapid response for these questions is arranged by setting up structures such
as links to speed access to selected items. However, the database structure is poorly suited
to process other important questions. For example, to determine the ship name and date of all
visits to a port X during a particular year, it is necessary to access each of 30,000 ship
records and, for each, to check roughly forty visits to find the visits to port X recorded among
them. Such "asymmetrical® access is typical of many databases.

Suppose, however, that there is some characteristic of port X that restricts which ships can
visit it. In particular, suppose that port X has a channe! depth of only 20 feet, which is quite
shallow, A user who knows about X's shallow channel and who knows how the database is
organized can transform the gquery to exploit this knowledge and avold inspecting every visit
record. Rather than ask merely for all visits to port X, the user can ask instead for all visits to
X by ships whose draft is less than 20 feet.

Adding the extra constraint as described above replaces a scan of 30,000 ships plus 1.2
million visits with a scan of 30,000 ships plus a number of visits far less than 1.2 million. If
only five percent of the ships have drafts of less than 20 feet, then only about 50,000 visits
need to be checked. An order-of-magnitude reduction in retrieval effort is obtained by means
outside the range of standard optimization techniques.

in our example company, direct usage of the database is confined to a small staff of experts.
They routinely use their special knowledge of shipping and of the database structure to
perform such "augmentations™ of questions from users throughout the company. This kind of
knowledge-based optimization can apply to any situation where the person seeking information
poses his question in a way that is natural to him without considering how the question can be
answered. it may be an essential support for interactive access to very large databases by
casual users.

4, The Use of Domain Semantics for Query Optimization

This motivating example suggests the kind of "optimization® that might be developed, one
based on knowledge of domain semantics with knowledge of database structure. The domain
semantics -- general statements holding for the application domain -~ could be embodied in a
set of rules expressing relationships among values in the database. For instance, the domain
knowledge used in our example would be that a ship can visit a port only if it is shallower than
the port's channel depth.

gl DT 3ataliard Gl
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Such rules are famillar to database researchers. They form a subset of what are commonly
called “semantic integrity constraints.* The “semantics® they express relate the values of
different database attributes to each other. This paper will not be concerned with other kinds
of domain semantics discussed in the database literature such as functional dependencies,
existence dependencies (insert/delete constraints), and cardinality of relationships among
entities.

Conceptually, the strategy of semantic query optimization is the following: use the general
semantic rules to infer retrieval set descriptions each of which is “semantically equivalent"” to
the query description in that it is met by precisely the same set of database items. From the
original and the alternative descriptions, select the one which has the lowest estimated
processing cost based on a model of the database structure and of the cost of operations
given an appropriate cost metric such as the number of page fetches from secondary storage.

The actual operation of a semantic optimization component of a query processing system may
have to differ from the conceptual strategy in the interests of overall efficiency. For instance,
it may be necessary to generate only those semantically equivalent descriptions that seem
most likely to contain a lower cost aiternative to the original query. In that event, it would
probably be desirable to develop specialized strategies for focussing the attention of the
inference mechanism. The following are two examples of such specialized strategies for simple
queries:

4.1 Examples of specialized semantic optimization strategies
a. Substitution of indexed for sequential scan

Suppose a query involves retrieval of items from a single relation stored alone on a single file,
and the constraints on the query are only on unindexed attributes. If the file has a clustering
index on another attribute, try to derive constraints on it and substitute an indexed scan for a
sequential scan of the file.

For example, consider a database with information on merchant ships. One of the rules or
general statements assoclated with the database might be that only ships of shiptype
ngupertanker” are longer than 500 feet. Suppose that a relation with information on SHIPS is
stored in a single file which is indexed on the Shiptype attribute, but is not indexed on the
Length attribute. Now assume that a user asks for the names of all ships which are longer than
500 feet; that is, for which the Length attribute is greater than 5600. Then, using the rule
about supertankers, a new constraint in terms of the Shiptype attribute can be added to the
original constraint on Length. Instead of a sequential scan, it is now possible to use the index
on Shiptype to retrieve all supertankars, and then to check just those ships for their length. If
there are 30,000 ships but only 1,000 supertankers, then only 1/30 as many ship records

need be examined for the proper length. :

b. Elimination of a join

Suppose a query involves an equijoin of two relations, each stored on its own file (set of data
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pages). Both relations have constraints on some attributes, but information is to be listed for
the user from only one of them (the “retrievai® file) and not the other (the "constraining® file).
Try to derive the constraints on the constraining file from those on the retrieval file. If this can
be done, the constraints on the constraining file are redundant and can be dropped. and the
Join can be replaced by a simple restriction on the retrieval file.

For example, suppose there Is a database with information about naval ships containing (among
other things) the relations SHIPS and OFFICERS, each stored on its own file. One of the rules
with this database might be one that states that all carriers are commanded by admirals.
Assume the SHIPS relation includes the attributes "Commander" and "Shiptype", and the
OFFICERS relation includes the attributes "Officer-Name" and "Rank®. Suppose the user asks
for the names of all ships with Shiptype "carrier" that are commanded by officers with the Rank
of "admiral®. This requires an equijoin between SHIPS and OFFICERS on the values of
Commander/Officer-Name. However, using the rule mentioned above, it is only necessary to
retrieve all ships with a Shiptype of "carrier”. (it would also be advisable to inform the user
that a rule had been applied of which he was possibly ignorant.) In this example, a constraint
(on Rank) was shown to be unnecessary, as it was derivable from another given constraint (on
Shiptype).

5. An Exploratory System for Semantic Query Optimization

A simple exploratory system has been implemented to investigate some aspects of query
optimization using domain semantics. It is confined to a much more limited context than the one
suggested by the ships/ports/visits example. This section describes the context and
operation of this system.

Simply stated, the system starts with a query consisting of a conjunction of constraints on
attributes. It systematically derives all possible additional constraints on those or other
attributes using domain rules stated In terms of such constraints. Finally, it determines which
of the constraints are necessary to insure that precisely the right items will be retrieved, and
which of the constraints are derivable from the others and can therefore be included or
excluded from the query depending upon whether or not they make more efficient retrieval
possible. The list of equivalent queries is generated from these sets of necessary and optional
constraints.

The unguided derivation of all possible additional constraints followed by the selection of the
lowest cost equivalent query is a reasonable strategy only if the original query involves a small
number of constraints and there are only a few rules in the system, leading to a manageable
number of additional constraints. If, as will often be the case, these conditions are not met,
then it is necessary to guide the derivation process toward constraints that are promising with
respect to reducing retrieval cost. Experience with the exploratory system has suggested
heuristics for guiding the derivation in some simple situations; these will be discussed in

section 6.
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5.1 Overview -- what the system accomplishes

The exploratory system operates on a small subset of the SODA relational query language
[Mo79] developed at SRI International as part of the LADDER system for natural language
retrieval from distributed databases [HS78]. In LADDER, the output of the natural language
front end is a SODA query in "joinless" format [Sa77]; that is, the database is treated as if it
contained just a single relation with all the attributes. This allows the front end to formulate
queries without regard for the actual placement of fields on files and therefore without regard
for setting up the proper joins between files. This job is left for another LADDER module.

Thus, a joinless query consisting of a conjunction of constraints on different attributes is in
fact translatable into a relational query with selections and joins. The exploratory semantic
optimizer uses the joinless format. Besides simplifying the queries, the single relation view
simplifies the expression of the semantic rules. It also makes the rules independent of
structural reorganizations which shift fields to different files. Of course, it is necessary to
take the actual placement of fields into account ir; selecting inexpensive retrieval operations.
Even so, derivations can be carried out as if there were a single relation, relying on a
component such as the one in LADDER tn translate the single relation form of queries into the
form reflecting the actual database structure.

The current system can take a simple SODA query in joinless form, can infer additional
constraints from the query constraints, and can produce a set of joinless form queries which
are equivalent to the input query in the sense that the very same database items will qualify
against any of the queries. The set of queries is formed by separating the constrained
attributes into two groups: those whose constraints are entirely derivable from other
constraints (called the "optional" attributes) and those for which some part of the constraints
comes only from the original query (these are called the "necessary” attributes). One of the
queries contains only the constraints on the necessary attributes; the rest of the queries are
formed by creating all possible subsets of the optional attributes and adding the corresponding
constraints to the ficst query one subset at a time.

The subject of precisély what queries are semantically equivalent to a given query in a given
database is actually more subtie than suggested by the above description. For example,
suppose that the query contains the constraint

(LENGTH € 200)

and that it is possible to infer the stronger constraint

(LENGTH < 100).

The current system assumes that the strongest derivable constraint should be the one included
among the final set of equivalent queries. Nevertheless, any constraint of the form

(LENGTH < X), X >= 100
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could be used instead. The best choice for X would depend on the database siructure. For
instance, LENGTH might be indexed on ranges of values such as 0 to 150, 150 to 300, and so
forth, in which case the constraint

(LENGTH < 150)

might result in a low retrieval cost. Another factor affecting the determination of equivalent
queries is the possible existence of more than one derivation for a derived constraint. A
thorough examination of semantic equivalence is beyond the scope of this paper.

5.2 Attributes and constraints

There are two kinds of attributes handled by the system, string and integer numeric. 1he
constraints on a numeric attribute designate intervals on the number line which are possiblc
vaiues for the attribute. For exampie, a valid numerical constraint wouid be

(100 < LENGTH < 200).

A string constraint either states that a string attribute is equal to some string constant, or
gives a list of string constants which the string attribute does not equal. A valid string
constraint would be

(TYPE = "Fishing").

5.3 Queries

The system accepts joinless form SODA queries that contain no disjunctions, quantifiers, or
computation operators. In other words, an acceptable query consists of a tuple variable
binding expression, selector (output) expressions, and restriction expressions involvinsg

constants, all of which refer to a single variable ranging over a single relation. For exampic,
the query "What ships longer than 450 feet are carrying 0il?" could be rendered as

((IN S SHIP) ({(S CARGO) = "0il") ((S LENGTH) > 450) (? (S NAME))).

6.4 Rules

Two kinds of rules are used by the system. The first kind is called a "bounding rule". This
constrains two attributes with respect to each other. An example of this is a rule stating that

"the quantity of carge carried by a ship cannot exceed the ship's cargo capacity" might be
rendered as

(QTY <= CAPAC).

The second kind of rule is called a "production”. A production signifies that if somec sect of
constraints (the "antecedents”) is satisfied, then another set (the "consequents") is implicd.
The two sides of a production are called the left hand side (or antecedent) and the right hand
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side (or consequent). In the prototype system, the antecedent can be a conjunction of
constraints on attributes, and the consequent can be a constraint on another attribute. Thus, a
rule stating that "all ships with a capacity of over 150 units (e.g. thousands of barrels) and
that are carrying oll will only be sent on voyages of over 4000 miles" could be rendered as

(CARGO = "0il") & (CAPAC > 150) --> (VL > 4000).

Note that the productions deal only with constants and not with variables. This vaslly
simplifies and speeds up the matching and application of rules.

6.5 Deriving constraints and formulating equivalent queries -- an example

The derivation process is illustrated with a query on a merchant shipping database: "List the
names of tankers that are between 200 and 400 feet long and are carrying over 150 units of
cargo on voyages over 2000 miles long." Taken as a conjunction of constrained attributes on
a single relation and ignoring tuple variables, the query might be viewed schematically as:
(TYPE = "Tanker") & (QTY > 150) & (200 < LENGTH < 400) & (VL > 2000).

The example database is assumed to have the following semantic rules:

Rule 1: "A ship can carry no more cargo than its capacity."

(QTY <= CAPAC)

Rule 2: "All tankers with capacity over 100 units are only used in voyages of over 3000 milcs."
(TYPE = "Tanker") & (CAPAC > 100) --> (VL > 3000)

Rule 3: "All tankers are longer than 350 feet in length."

(TYPE = "Tanker") --> (LENGTH > 350)

The retrieval planning process consists of inferring additional constraints using the rules,
determining which constraints are necessary and which are derivable, and generating the sct
of semantically equivalent descriptions which can be formed into queries.

6.5.1 Make forward inferences

The system starts with the constraints given in the query. It performs all possible forward
inferences using domain rules. If there is a finite set of rules and care is taken to insure that
no rule is ever executed twice (a production's antecedent may be tested more than once but
its consequent can only be asserted once), then this step will terminate.

in the example, the following inferences can be made:

Using rule 1 and the query constraint (QTY > 1560), infer (CAPAC > 150).

8
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Using rule 2, the query constraint (TYPE = "Tanker"), and the inferred constraint (CAPAC >
1560), infer (VL > 3000)

Using rule 3 and the query constraints (TYPE = *Tanker") and (200 ¢ LENGTH < 400), infer
(350 < LENGTH <€ 400).

5.5.2 identify derivable constraints

The system now considers every constrained attribute. If any part of the constraints on an
attribute comes only from the query constraints given by the user, then it places that
constrained attribute in the set of "necessary attributes®. If not (meaning that the constraints
are entirely derivable from other given or derived constraints), then it places the attribute in
the set of "optional attributes”.

In the example, the final constraints on TYPE and QTY are taken directly from the query. The
constraints on LENGTH have been modified by a rule, but the upper bound is due to the query.
The constraint on CAPAC came only from using a rule, and the tightened constraint on VL is aiso
from a rule. Therefore, the set of "necessary" attributes is TYPE, QTY, and LENGTH; while the
“optional" attributes are CAPAC and VL. (Recall that this division of attributes into necessary
and optional classes is a simplification of the actual task of finding the set of equivalent
queries; see section 5.1 above.)

5.6.3 Generate candidate queries

The final set of queries which are candidates for evaluation consists of one query containing
Just the necessary constrained attributes, plus other queries which add to this every possible
subset of the optional attributes. Note that in some cases, the system will not include the
original query in the set of candidates. This will occur when some constraint in the original
query can be replaced by a stronger constraint on the same attribute.

For our example, the set of candidate queries in schematic form is:

QO -- (TYPE = "Tanker") & (QTY > 150) & (360 < LENGTH < 400).

Q1 -- Q0 & (CAPAC > 150).

Q2 -- Q0 & (VL > 3000).

Q3 -- Q0 & (CAPAC > 150) & (VL > 3000).

5.5.4 Select and carry out the lowest cost candidate query

The final steps are to add the required joins to the joinless candidates, to estimate the cost of
carrying out each of the candidate queries, and to evaluate the one with the lowest estimated

cost. Aithough the current system does not perform these steps. components that perform
these functions exist in other systems and could presumably be adapted to this system.




it

Exploring the Use of Domain Knowledge for Query Processing Efficiency

6. The Rule Selection Problem

in principle, the process of choosing a low cost query equivalent could be carried out as
described above. The method is acceptable if it can be assumed that the problem is usually
"small enocugh": a small number of constraints per query and a small number of rules per
attribute. If the assumption is not valid, then the number of constraints and rules will be large
enough to lead to the generation of an unacceptably large set of aiternative queries. The
generation and evaluation steps will both be costly.

To avoid this, an efficlent planner should seek to apply only those rules which lead to
constraints that can be exploited by retrieval methods that will cost less than the methods
that would be used If semantic rephrasing had not been done. The prablem can be viewed as a
an instance of "heuristic search” through a “problem space" whose “nodes" are sets of
constraints on. database attributes and whose “operators" are derivation rules embodying
domain semantics. The "heuristic evaluation® of the best oparator to apply is based on a model
of the cost of retrieving data obeying various constraints. A general discussion of heuristic
search methods is contained in [Ni71].

We have studied this approach for the simple case of restricting a single relation, where the
method of storing the relation is chosen from a small set of alternatives, and there are just a
few possibie retrieval methods. The storage structures and retrieval methods are patterned on
those set forth by Yao and DeJong and are fully described in Appendix A. The set of methods
studied includes sequential scan, which requires no auxiliary structures (hence is always
applicable), and several methods using an index. Not all the rival methods are always
applicable. For example, a clustering indexed scan requires that the file have a clustering
index on one of its fields.

6.1 Target attributes

Our method of limiting deductions is to pick the smallest possible set of attributes (or tields, as
we assume they are In one-to-one correspondence) as the only worthwhile “targets" for
additional constraints. Only rules that can lead to constraints on the target attributes will be
used in deductions.

The first heuristic limiting deductions is to include initially in the set of target attributes just
those that correspond to an indexed field. That is because, for the limited problem we are
studying, the task of the planner is to find a less expensive alternative to sequential scan, and
this means a method using an indexed field. (We will ignore the case where a less expensive
method than sequential scan is supported in the query constraints; we will assume that this
case can be detected and that no deductions will be carried out when it arises.) The target
set is further limited to just those attributes for which it appears possible to derive sufficiently
strong constraints to make the method they support be less expensive than sequential scan.

We now discuss the necessary supports for the target attribute pruning strategy: a simple

10
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test telling when an indexed method is less expensive than sequential scan; and a check for
whether a rute can jead to constraints on a target attribute.

6.2 Cost of rival methods -- the "constraint threshold"

For each method using an index, there is a tradeoff between extra costs incurred retrieving
the index, and the reduced costs obtained by going directly to qualifying records in the file.
Consequently, sequential scan is the cheapest method when no constraints on indexed
attributes can be found, and the cost of each of the rivals to sequential scan directly depends
upon how strongly the indexed attribute can be constrained.

The most important observation for our analysis Is that for every rival method, there is some
value for the strength of the constraint on the indexed attribute at which the rival method
becomes less expensive than sequential scan. (Throughout the rest of the paper, the strength
of a constraint will sometimes be referred to in terms of its “selectivity.® This is a standard
term; see [Ya79], for example. The selectivity of a constraint is a number between 0 and 1
giving the fraction of items expected to meet the constraint. Thus, a constraint with selectivity
close to 1 is a "weak" constraint, and a constraint with selectivity close to 0 is a “strong"

constraint.)

The "constraint threshold” is a simple function of storage parameters. Appendix C lists the
expressions giving the constraint thresholds in terms of selectivity for various methods under
different storage regimes. The constraint threshold is the basis for a quick test to determine
which rival methods could conceivably cost less than sequential scan. An example illustrates

the key idea.
6.3 The use of the constraint threshold for selecting rules =~ an example

Suppose a query requests all tuples in a relation that meet given constraints on several
attributes. Assume the relation is stored as a single file, that none of the fields corresponding
to the constrained attributes is indexed, but that the file does have a clustering index on
another field F1 and a nonclustering index on yet a different field F2. (See Appendix A for
definitions of these index types.)

Because these indices exist, it is possible to retrieve the desired records using clustering
indexed retrieval via F1 or nonclustering indexed retrieval via F2, As there are no constraints
given on F1 or F2, either method is at this point more expensive than sequential scan. One or
both methods will only be less expensive than sequential scan if strong enough constraints can
be found on the relevant field or fields. The question is, how strong must such constraints be,
and can sufficiently strong constraints possibly be derived from the query constraints?

The answer to the first part of the question is simply that the constraint on F1 must be
stronger (have a smaller selectivity value) than the constraint threshold for clustering indexed
retrieval, and the constraint on F2 must be stronger than the constraint threshold for
nonclustering indexed retrieval. The values of these constraint threshoids (cail them T1 and
T2 respectively) can be found for the file in question by evaluating simple functions of the
tile's storage parameters, as given in Appendix C.

1
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Can stong enough constraints be derived on F1 or F27 Suppose that an cstimated fraction
RSEL of records will pass the given query constraints. The only way to derive new constraints
on F1 or F2 is from the existing query constraints. But there is no way to derive a stronger

constraint from a weaker one because every item meeting the derived constraints must mcet
the deriving constraints,

Therefore, if RSEL Is greater than T1 then it is impossible to derive a strong enough constraint
on F1, and similarly for T2 and F2. (It should be noted that RSEL is an estimate, so this
comparison may give us the wrong answer; still, it appears to be a reasonably good heuristic.)

How can this information be used to prune the derivation process? When the planner gets the
query, both F1 and F2 are potential "targets” for additional constraints. Suppose the example
file has the "typical” storage parameters given in appendix C. This gives a value of .G7 for T1
and a value of .01 for T2. If an estimated one-fourth of the file's records will pass the query
constraints, giving an RSEL value of .25, then it may still prove worthwhile to seek constraints

on F1, but it will be useless to constrain F2 further (unless of course such constraints arc
needed to constrain F1 further).

At this stage, then, the only target for further constraints is F1. The planner should only usc
those rules that can possibly lead to constraints on F1. Any other rultes which might be uscd
with the current constraints should nevertheless be left out.

Various methods can be used to determine which rules might lead to constraints on each
particular attribute. One straightforward technique, somewhat similar to that employed by the
DADM system [KK78], works as follows: Define an “inference path" betwecn attribute A and
attribute B as a sequence of rules R1,.,Rm such that given the appropriate constraint on
attribute A (and possibly constraints on additional attributes other than 8), and applying the R's
in sequence, it is possible to derive some constraint on attribute B. Then, for each rule Ri and
each attribute Aj, it is possible to determine (for example, when a new rule is added to the
system) whether rule Ri is part of some inference path to Aj.

If at some stage of the inference process rule Rx can be applied to the current constraints, it
should also be tested to see if any of the attributes to which it is on an inference path is onc
of the "target" attributes for which further constraints are sought. 1If the rule fails that test, it
should not be used to perform an inference. '

In our example, imagine that some production P mentions just a subset of the query constraints
in its antecedent. If it lies on an inference path to F1, then the antecedent conditions should
be tested and if they are met, the consequent constraints should be asserted. Those
constraints can be used for further derivations. if P does not lie on an inference path to F1,
then no testing should be performed.

7. Summary and Directions for Further Research

A method has been described for using domain semantic rules to find less expensive qucrics
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equivalent to those posed by users who do not take the cost of retrieval into account vhen
posing their queries. The planner using these rules will itseilf be efficient if querics usually do
not involve a large number of attributes, and if only & smali number of rules constrains the
typical attribute. A prototype planner that uses all applicable domain rules has been
implemented.

If the number of candidate transformations threatens to be large because of the complexity of
the query or the size of the rule base, then the generation of transformations must bc
constrained. An approach to guiding the pianner has been identified. It makes use of a model
of the structure of the database and the operation of alternative retrioval mcthods. The
central idea is to estimate which attributes could possibly support a less expensive retrieval
method if strong enough constraints on them could be derived. The analysis is carried out for
the simple case of restricting a single file.

Work is planned along several dimensions to extend the approach introduced in this paper:
1. Completing and testing the current system.

A simple cost evaluator will be used along with existing modules to exercise the system
against a functioning database system. The behavior of the planner will be tested as more
domain rules are added.

2. Coverage of query types

New strategies are being formulated to handie queries that include joins. This may be
extended to other query types that have compiex logical structure, such as those that involve
computation operators or quantification.

3. Employment of other kinds of domain semantics

The current approach only uses relationships between the values of individual attributes.
Semantic optimization strategies based on concept taxonomies and on constraints among the
arguments of rolationships are being investigated. For instance, a widely applicable class of
optimizations would be attempting to "push constraints® higher up a concept hicrarchy.

4. Dynamic retrieval planning

The current approach is to perform a single analysis and choose a candidate query before any
part of the retrieval is performed. Methods are being developed to use intermediate retrieval
resuits to reduce further processing costs.

6. Representation and use of knowledge about the completeness of the database

The information in a database often gives only incomplete coverage of the application domain it
serves. It is then possible for a user to pose a query about a set of items whose spccification
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is valid (recognized by the query processor) but about which no data has been stored. It is
desirable in such cases to inform the user that the query is well formed but that there is
insufficient data to answer it. An approach to this problem is being explored that uses thc
techniques of rule-based transiarmations described here.

Appendix A. Storage Organization and Processing Operations

A.1 Basic and suxiliery structures

The basic structure of the database is a data page on which are stored records corresponding
to tuples from one or more relations. In this paper, we consider just two kinds of basic storaae
organization. The simpler case, which will be called the "standard” case, has data paqes
containing records from only one relation. A more complicated case, the “embedded" case,
arises when two relations are reiated hierarchically in a 1 to N relationship, and the relations
are stored to reflect that relationship: one record of the "parent® relation is stored, foliowcd in
sequence by the N corresponding records of the “child” relation. Depending upon the page
size, the size of the records, and the “fanout” (the number of child records per parent), a
single page can contain more or less than a single parent-children grouping. In fact, there can
even be pages containing data from only the child relation.

The basic structures described above contain the “actual data® of the database, and are
therefore the only structures needed to carry out any retrieval operations. For the sake of
efficiency, however, certain "auxilary structures” can be created.

Here we consider only one kind of auxiliary structure, the “index®. An index is @ set of pages
containing pointers to the records of a file containing particular values for some attribute. An
index is usually implemented hierarchically with some aumber of pointers in each page at any
index level. The pointers at higher levels point to index pages at lower levels. The pointers at
the lsaf nodes of the index tree point to actual data pages. If an index to a relation exists,
we can think of the relation as being implemented with two sets of pages: the "basic” pages
that contain the actual data, and the "auxiliary® index pages.

A.2 Processing operations

We consider only a small set of processing operations for extracting qualifying records from a
particular file. The methods are:

a. Sequentiai scan (SS): A complete scen of every page in the "file cluster", the set of pages
known to contain every record of the file. This method needs no auxiliary structures so it
works in every situation.

b. Nonciustering index scan (NCI): An indax exists on an attribute but the order of items in the
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index does not correspond to the order in the data pages; hence, it is not a "clustering” index.
To perform this method, the index is retrieved, the pointers to records with appropriate values
are found, and then the pointers are used to fetch the records from appropriate data pages.

c. Clustering index-scan (Cl): Same as NC! except that the order of items in the index is the
same as the order in the data pages.

d. Linked index scan (LI): The constrained relation is the child in a parent-child relationship. It
is assumed that (1) the parent relation is stored separately on its own set of pages; (2) there
is a clustering index on the child file; and (3) the parent file provides index values for the
clustering index in the same sequence as they appear in the index and the child file. In other
words, each child record contains an attribute naming its parent, and this attribute is indexed
by a clustering index. The method first performs a sequential scan of the parent file. This
yields a set of parent identifiers which are used as keys to the child file index, and a
clustering index scan (Cl) is then performed on the child file.

Appendix B. The Costs of Rival Retrieval Methods

B.1 Sequential scan

First, the cost of a sequential scan must be computed. Following Yao and Dedong [YD78) we
take the number of pages in the file cluster containing file F to be SCLUS(F). We know that

S(F)/PR(F) <= SCLUS(F) <= S(F)
where S(F) = # of records in F
PR(F) = # of records of F per page

We have aiready made the simplifying assumption that relations are either stored alone on
pages (the “standard” case) or are "embedded” as the parent or child relation in a 1 to N
relationship. A sequential scan will fetch every page in the file cluster. The number of pages

fetched from secondary storage is the cost metric, so the total cost depends upon how the file
is stored. There are three cases:

Case 1. F is stored by itseif on all its pages. in this case,
[S1] SCLUS(F) = S(F)/PR(F)

Case 2. F is invoived in a parent-child relationship and is interleaved with F'. Let f be the
parent-child fanout, and assume that thers are no “childiess” parents, no “orphan® children,
and that every parent had exactly f children. Now,

.SCLUS(F) = SCLUS(F') = (S(F) + S(F*))/PR
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assuming PR(F) = PR(F') = PR. Now suppose F is the parent and F' is the child. Then,
S(F') = t * S(F)

Therefore,

[S2] SCLUS(F) = ((f+1) * S(F))/PR

Case 3. Now considering the chiid file F', we find

[S3]  SCLUS(F') = ((1 + 1/1) * S(F))/PR

Because the sequential scan fetches every page of the file cluster, the cost of the method is
just the value of SCLUS in the appropriate case.

8.2 indexed scans

The cost of a scan using an index is made up of two components: the cost of retrieving the
index, and the cost of retrieving the data records using the index pointers.

a. Retrieving the index.
Let NLEV = # of levels in the index.

Pl = # of index pointers per page (assumed to be a system constant).
RSEL = restriction selectivity (see section 8.2).

Then this cost is
[11] NLEV + (S(F)*RSEL)/PI

because we need NLEV pages to get to the terminal level of the index, plus we will need
pointers to S(F)*RSEL records, and there are Pl of those per page.

b. Retrieve the records using the pointers.

Again following Yao and DeJdong, the key parameter determining this cost is the average number
of pages that must be retrieved to get from one record of a file to the next, denoted by
PGS(F,F); PGS(F,G) is used in general when two different files are considered.

The cost of retrieving K records is K*PGS(FF), and K = §S(F)*RSEL. Therefore, the cost of
record retrieval using index pointers is

[12]) S(F) * RSEL * PGS(F.F).

Expressions [I11] and [12] can now be used to give the total cost of indexed retrieval in various
cases of clustering/nonclustering indexess, standard/embedded storage, parent/child role, and
size of fanout.

10
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The axpression giving the cost of indexed retrieval in any of these cases is
[13] NLEV ¢ ((S(F)*RSEL)/Pi) + (S(F) * RSEL * PGS(F,F))

The parameter PGS(F,F) will be affected by thres conditions: whether or not the index is a
clustering index, whether the relation is stored in the standard way or is embedded with
another, and if it is embedded, the size of the fanout.

if the index is not a clustering index, then the pointers obtained from the index point to
records throughout the file cluster in any order. This means that nearly every record requires
fetching & new page independently of whether the data pages are stored in a "standard" or
"embedded” way (see Appendix A). Therefore, we must assume

[14] PGS(FF) = 1 if the index is not a clustering index

it the index is a clustering index, then pointers are obtained in the same sequence that the
data records are stored, so the cost of retrieval depends upon whether or not the file is
"embedded”. Iin any case, PGS(F.F) is inversely proportional to the number of records per
page, PR(F). An exampie illustrates this. If there are 20 records per page and we want 200
records, then we must access approximately 10 pages; if there are 40 records per page, then
about 5 pages are needed. (This could be slightly off because of straying over page
boundaries.)

Now we consider different storage situations. First, suppose the standard case where F is
alone in SCLUS(F). Then, as suggested above,

[16]) PGS(F,F) = 1/PR(F) (approximately) for a clustering index and "standard” storage

Next, suppose that F is a parent relation and F' i3 a child relation in a 1 to N relationship, and
they are stored together (the "embedded” case). If the fanout f (= number of children, N) is
greater than PR (again assuming PR(F) = PR(F') = PR) then no more than one of the parent
records of F can be stored on a single page. Therefore,

[16] it t >= PR then PGS(FF) = 1 for parent file F

it the fenout is less than PR, we must have space for f+1 records to get from one parent
record to the next. Therefore

[17] it £ < PR then PGS(F,F) = (f+1)/PR (approximately) for parent file F

At the same time, any K consecutive records of the child relation F' require space for those K
plus the sppropriate number of parent records. Space is therefore needed for K * (1 + (1/1))
records. This means that

[18) PGS(F'.F') s (1 « (1/1))/PR (approximately) for child tile F*
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' Now that we have the formulas for the key parameter PGS(F,F) for various database

structures, we can now give the corresponding complete cost formulas for indexed retrieval. R
Method Cost Formula
NCI NLEV + {{1/P1) + 1) x (S(F) x RSEL)
Cl, standard storage NLEV + ((1/P1) + (1/PR)) x (S(F) x RSEL)

Cl, embedded parent, f >= PR NLEV + ((1/P]) + 1) x (S(F) x RSEL)
Cl, embedded parent, f < PR NLEV + ((1/PI) + ((£+41)/PR)) x (S{F) x RSEL)
Cl, embedded child NLEV + ((1/PI) « ((1+4¢17¢))/PR)) x (S(F) *» RSEL)

e v v e e

B.3 Cost Formulas for Rival Methods

: Using the expressions derived above for different components of the retrieval cost, we obtain the
f following formulas for the costs of different methods. These will be the basis for computing constraint

thresholds.

(C1] Cost(SS) = S(F)/PR(F) where F is stored alone.
{C2] Cost(SS) = ((f+1) * S(F))/PR where F is an embedded parent and it is assumed that PR(F) = PR(F’) =
PR.

; . [C3] Cost(SS) = ((1 + 1/f) = S(F))/PR where F is an embedded child

[C4] Cost(NCI) = NLEV + ((1/P1) + 1) # (S(F) * RSEL)

3 [C5] Cost(Cl) = NLEV + ((1/Pi) + (1/PR))  (S(F) # RSEL) where F is stored in the "standard” way.

[ (C6] Cost(CI) = NLEV + (( l/P‘l) + 1) # (S(F) & RSEL) where F is sn embedded parent and f >= PR.

[C7] Cost(Cl) = NLEV + ((1/P1) + ((1+1)/PR)) # (S(F) s RSEL) where F is an embedded parent and f < PR.
[C8) Cost(Cl) = NLEV + ((1/P1) + ((14(1/£))/PR)) ¢ (S(F) s RSEL) where F is an embedded child.

{C9] Cost(Ll) = Cost(SS’) + Cosl(Cl), or Cost(SS’) + Cost(NCI). [Here, S$' refers to the cost of a sequential
scan of the separate file)

) Appendix C. Constraint Thresholds for Rival Methods

.
e

Given the cost formulas calculated above, it is easy fo compule the value for constraint selectivity, RSEL,
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al which a scan that uses an index costs less than a sequential scan. The constraint threshoid
expressions will be given here for a comparison of sequenlial scan against each of the three rivals:
clustering index scan (Cl); nonclustering index scan (NCI); and linked index scan (LI). The comparisons will
be made for three types of storage: ftile F is stored alone on its data pages; F is an embedded parent; and

F is an embedded child.

In all the calculations, it is assumed that NLEV, the cost of descending the index tree once, is negligible. It
is also assumed that the first relation searched by the LI method is stored alone on its data pagzes, and

that it gives values into a clustering index.
We will also give typical values for the constraint threshold, using the following parameter values:

Pl = » of index pointers per page = 200 PR = » of data records per page = 100 q =Pi/PR =2 f = {* =
fanout = 10 (except in embedded cases where f >= PR)

Two further parameters will be used to simplify the constraint threshold expressions:
weqs(fel)veqs(l +(1/0))

Here are the constraint threshold figures. Numerals in brackets, such as [2], refer to notes at the end ot
:?’}ev;alb'net;athod Constraint threshold expression Typical value

1. F is stored alone.

Cl q/({1 + q) .67
NCI q/(1 + Pl) .81 (1]
L1 (1 -1Q/¢)) x {q/ (1 +4q})) .68

2. F is an embedded parent.

Cl (f >= PR) v/{1 + PD) 1 (2]
Cl (f < PR) v/(l + v) .96 (3]
NCI (f >= PR) v/l + PI) 1 (4)
NCI (f < PR) v/{1 + P .11 [4)
L1 (f >« PR) (u-(gq/ €11/ (14P1) 1 (5]
L1 (f < PR) {u-(q/¢°1)/ (14v) .95

3. F is an embedded child.
Cl w/ {1su) .69 (6]
19
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NCI w/ (14P1) .01
LI q/ (141) .63 (7]

Note 1. A nonclustering index turns out not to be very useful for the kind of subset extraction we
discuss in this paper. Its benefits become apparent only when a very small fraction of the items in the
set are to be extracted.

Note 2. It is not surprising that CI should always be favored here. When the fanout exceeds the number
of records per page, SS will always look at pages that contain only child records, no parent records, while
Cl will never look at those pages. For the typical value shown, recall that in this case, f >= PR, so it is
roughly 100, not 10.

Note 3. Again, Ci is almost always favored. As the fanout approaches 1 (one child per parent), the lower
limit of the threshold is about .8, meaning that the work to retrieve the index begins to be penalized.

Note 4. When f is greater than PR, the adventage of a clustering index over a nonclustering index
disappears, because every new record will require felching a new page no matter in what order the
pointers are obtained. When f is less than PR, the advantage of clustering reasserts itself.

Note 5. We are dealing here with a two-level hierarchy; the fanout from one file to the other is f* and
the fanout within the second file is f. When { is close to PR, the threshold is actually slightly lower than
1, reflecting the added cost of the first scan,

Note 6. We are aimost back to the case where F is stored slone, as we have assumed that f = 10.
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