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RESUME

Dens ce rapport nous dvaluons I'efficacit6 de 6 aigorithues

spdciaisds dens Is segmentation de cibles sur images IR. Ces

aigorithmes de segmentation, ou segmenteurs, reposent tous sur lie

principe voulant que is signature thermique d'une cible soit supdrieure

6 celie de tout objet de l'arribre-plan. Les 3 premiers segmenteurs

abordent l1imaqe de front, en son entier, tandis que les 3 derniers

incorporent is technique de redressement de l'arribre-plan (TRAP),

visant b dliminer l'arribre-plan en tout au en partie en le nivelant.

Les divers algorithmes sont jugds d'aprbs a) leur taux d'extraction, b)

is fid6litd du processus de segmentation en ce qui concerne lee

propridtds gdom6triques des cibies cibies et,finalement, d'aprbs 0) le

degr6 d'individualisation imprimd aux cibles extraites par rapport aux

pseudo-cibies. Les 3 segmenteurs centres sur TRAP ont une meilleure

probabilitd d'extraction que lea trois autres qui essayent d'Idiminer

I'arribre-pian simpiement en morcelant l'image. Par uilleurs, is

plupart des segmenteurs considdrds dons ce rapport althrent d'uno fagon

ou d'une autre is fors des cibles. Les deux exceptions b cette rbgle

sont lea segmenteurs No. 1 (gdnerateur de silhouettes 6 seuil

d'intensit6 unique) et No. 6 (Lie pr~c6dent segmenteur alid 6 une

version particulibre de TRAP). Les rdsultats expdrimentaux montrent que

i'intensit4, LIe contraste et is variance sont lea traits qui perwuettent

Ie sioux de d~partager lea cibles et lea pseudo-cibles. Des exp6riences

de classification rdaiis6es 6 i'aide du segmenteur No. 6, lequel s'uvbre

le meilleur, en fonction de ces traits caract6ristiques indiquent quo

I'on pout espdrer obtenir un taux do d~tection qui excbde 90% avec un

taux do fausses alarmes infdriour 6 3%. (NC)
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ABSTRACT&
This report presents an evaluation of the performance of 6

algorithms dedicated to segmentation of targets in IR imaqery. These

segmentation algorithms or segmenters are based on the single assumption

that the targets display a larger thermal signature than the background.

The first 3 segmenters deal with an imaae in its entirety, whereas the

last 3 incorporate the Background Elimination Technique (BET), which

aims at eliminating wholly or partly the background by levellinq it.

The segmenters are judged according to a) their extraction rate; b) the

fidelity of the segmentation with respect to the geometrical properties

of the extracted targets; and c) the degree of distinctiveness imparted

to the extracted targets as ooposed to the nontarqets. The 3 seqmenters

relying on BET have a better extraction rate than the other 3 that try

to cope with the background simply by partitioning the image. Most

segmenters here distort in one way or another the shape of the targets.

The two exceptions are segmenter No. 1 (Single Intensity Threshold

Silhouette Generator or SIT Generator) and No. 6 (SIT Generator in

conjunction with a particular version of BET). The exoerimental results

show that the intensity, contrast and variance features are the most

effective in discriminating the targets from the nontarqets. f,--_.-.he

classification results one can expect from these features together with

the segmenter that proves to be the best (segmenter No. 6) amount to a

detection rate in excess of 90% with a false alarm rate not greater than

3%. (U)
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1.0 IlTRODCT-ION

A previous report (Ref. 1) describes various seqmentation

algorithms developed at DREV in relation to target acauisition in IR

imagery. The present proqress reoort evaluates the performance of these

segmentation algorithms.

A total of 6 seqmentation algorithms or selmenters are

investigated. First, there is the Single Intensity Threshold

Silhouette Generator. It is an early algorithm (Refs. 2 and 3) that has

been successful in detecting targets in IR BOFORS imagery. In Ref. 1,

we demonstrate that one can use a thresholdinq intensity function in

lieu of a fixed and global threshold thus giving, among other

possibilities, the Staircase Intensity Threshold Silhouette Generator

and the Interpolated Staircase Intensity Threshold Silhouette Generator.

These constitute the first 3 segmentation algorithms. The last 3

algorithms, unlike the aforementioned ones, do not deal with an imaqe in

its entirety. Instead, they try first to eliminate the background or,

at the very least, to uniformize it. To this end, they incorporate the

Background Elimination Technique (3ET) expounded in Ref. 1, a technioue

which operates on a line-by-line basis and uses a narrow bandwidth

low-pass filter to assess the general tendency of the background in

order to subtract it from the signal corresponding to a line of the

image. Because of its real-time implementation potential, we opted for

a recursive filter and, more explicitly, for a 4-pole Butterworth filter

(Ref. 1). Since BET can be applied either to the set of lines or

columns of an image, it generates 2 images referred to as the Horizontal

Fine Structure image and the Vertical Fine 3tructure image resoectivelv.
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One can then attempt to extract targets by segmentinq one of the fine

structure images, or a conbination of both, with the aid of, say, the

jingle Intensity Threshold Silhouette Generator. The options retained

are explained in Sec. 2.0.

As the evaluation process is necessarily based on some sort of

imagery its scope is somewhat limited. The imagery we used is known as

the Alabama Data Base and consists of 43 thermoscooic images. These

contain tanks, armoured personnel carriers, jeeps and, in one instance,

a bus. Although they represent iround scenes, we would term their

background as moderately cluttered. On the other hand, the images are

relatively clean and, for all practical purposes, can probably be

considered as noise free. Hence, this imagery constitutes a good test

_f the segmentation algorithms although it might net be representative

of real-life battlefield situations.

The effectiveness of a particular segmenter is generally

characterized:

a) first, by its extraction rate, that is, its ability to

segment all the targets present in the imaqerv;

b) by the fidelity of the segmentation process as regards the

geometrical properties of the targets, this aspect is

important to further discriminate the targets into classes;

c) and, finally, by what we would call the degree of

distinctiveness introduced among the segmented objects and,

in particular, between tarqet3 and nontarqets.
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The first two noints are auite eawv to evaluiate 3ince we know heforehanl

the exact numiber of tartets as well as their resoective location. The

last point is a bit more tricky for the 3elmented obiects cannot

dissimilar in every way. So the oroblem is really twofold: determine

the most discriminatory feature or set of features anti measure how well

it separates the seqmented objects corresrnondinq to targets from those

correspondinq to nontarqets. Section 4 lists and defines all the

features that were extracted. We limited ourselves to those that can be

extracted secruentiallv in the soace of a sinile nass over the iT'1e.

The sequential extractor used is based on the Labellini-bv-Trackim

Algorithm a short description of which is iiven in 3ec. 5. more

information about this extractor can be found in Ref. 4. The ability of

a given feature to discriminate between target and nontarqet s-enteO

objects is judied according to the histogrems of that feature

respectively for the targets as a whole and the nontarqets as a whole.

If both histograms i eak at the same feature value, the feature in

question is useless. On the contrary, if the 2 histoirams do not

overlap at all, that feature alone is sufficient to isolate the tarlets.

Hence, the amount of overlapninq is a measure of the discrinination

tower. We have qathered together in 3ec. 6.1 all the histoqrams that

were determined for 2 seqmenters out of 6, and in 3ec. 6.2 some scatter

plots of the most useful features. Section 6.3 discusses the oros and

cons of the various segmentation algorithms to finally conclude that the

best seqmenter here is the Sinqle Intensity Threshold Silhouette

Generator in conjunction with the arithmetic mean of the 2 fine

structure inmaes.
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2.0 SEGCITrION A.GORITMc To 3E EVALUATE3D

The segmentation algorithms investigated are:

1) The Single Intensity Threshold Silhouette Generator,

hereafter designated a'; SIT Generator.

2) The Staircase Intensity Threshold Silhouette Generator,

hereafter designated as SCIT Generator.

3) The Interpolated Staircase Intensity Threshold Silhouette

Generator, hereafter designated as ISCIT Generator.

4) The SIT Generator together with the Horizontal Fine Structure

image, hereafter designated as SIT Generator with BET(HFS);

BET stands for Backqround Elimination Techniaue.

5) The SIT Generator together with the Maximal Fine Structure

image, hereafter designated as SIT Generator with 3ET(Max).

6) The SIT Generator together with the Mean Fine Structure

image, hereafter designated as SIT Generator with I3ET(Mean).

we will also sometimes refer to these segmentation allorithms as

segmenter No. followed by the appropriate number.

The SIT Generator is an early aliorithm that was used to detect

targets in IR BOFORS imagerv (Refs. 2 and 3). The definin orocedure of

this segmenter as applied to the iagerv used for evaluation is:
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a) Divide the image into 16 sub-images by cruarterinq both axes.

b) Determine the histogram of each sub-image.

C) Find out the cutoff gray level of each partial histogram.

Scanning the histogram from the highest bin down, the cutoff

gray level is defined as the gray level of the first bin

occupied by at least 3 pixels.

d) Discard the cutoff gray levels less than the 80th percentile

of the histogram of the whole imaqe and then choose as a

global intensity threshold the smallest of the remaininq

cutoff gray levels.

e) In extremis, if it ever happens that all the cutoff qray

levels are equal, use the 80th percentile as a threshold.

The SCIT and ISCIT generators are variants of the SIT Generator.

Formally, the defining procedure of the SCIT generator is:

a) Partition the image horizontally into 4 indeoendant sections.

b) Divide each section into 4 sub-images.

c) Determine the histoqram of each sub-imaqe within each

section.
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d) For each section, find out the cutoff qrav level of all the

histoqrams.

e) For each section, discard the cutoff qrav levels less than

the 80th oercentile of the sectional histoqram and choose as

a global intensity threshold for that section the smallest of

the remaining cutoff qrav levels.

This procedure generates 4 discrete intensity thresholds or, if we olot

the threshold for each line of the image against the line number, a

staircase-like discontinuous thresholding intensity function. ks

explained in Ref. 1 and evidenced in Fiq. 1, the SCIT Generator is bound

to create artifacts whenever the thresholds of two adjacent sections

differ widely. A manifest way to eliminate these artifacts consists in

smoothing the transition between two sections bv linearly interoolatinq

the relevant thresholds. The continuous thresholdinq intensity function

that results thereof defines the ISCIT Generator. This generator as

well as the SIT and SCIT Generators are depicted in Fig. 1. Although we

did not imolement it, it might be worthwhile to add to the SCIT and

ISCIT Generators a last-resort alternative, similar to e) above, for the

case where all the cutoff gray levels of a particular section are eaual.

The 3 segmenters we will now outline, unlike the previous one,,

do not deal with the image in its entirety. In fact, they all include a

common techniciue which aims to supress all or part of the backqround.

This technique, referred to as BET and described in detail in Ref. 1,

operates on a one-dimensional signal (a liven line or column of an

imaqe) and uses a narrow bandwidth low-pass filter to assess the general
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FIGURE 1 - Segmenters No. 1, 2 and 3

A) Image ALA 6 3 from the Alabama Data Base
(1: raw; 2: histogram equalized;

3: sub-images delineated)
B) Thresholding Intensity Functions
C) Segmented Images
1) Single Intensity Threshold

2) Staircase Intensity Threshold
3) Interpolated Staircase Intensity Threshold



UNCLASSIFIlED
9

A BC



UNCLASSIFIED

tendency of the backqround and then subtract it from the signal itself.

Because of its real-time implementation notential, we opted for a

recursive infinite impulse response filter and, to be more specific, for

a 4-pole Butterworth filter (FPBF). Such a filter can be realized (Ref.

1) as a cascade of 2 second-order system. The resultinq set of linear

difference equations is:

f 1(nT) = x [(n-2)T]

f 2(nT) = f 1(nT) - Y~ 21 (n-l)T] - b 2f 2 [(n-2)TI

f 3 (nT) = f 2(nT) - b 3f 3[(n-l)T] - b 4 f3[(n-2)T],

y (nT) = b 0f 3(nT)

with b0= (1 + b 1 +b 2 (1 + b3 + b4)

1 , 2  Z 1 Z1  [2]

b= -(Z + Z) b 4 Z Z2

where Z exp[-2wf~ (cos 67.50 -jsin 67.50)/f

r 31
Z 2  exp[-2irf C(cos 22.50 -j sin 22.5 0)/f S]

MINA
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In these equations, x designates the input signal, v the filtered outout

signal, T the sampling interval, f the 3-dB cutoff freauencv of thec

filter and fs the sampling freauency of the signal. The asterisk in [2)

denotes the complex conjugate. frequency of the signal. The asterisk

in [21 denotes the complex conjugate.

To illustrate BET we will use the signal of Fig. 2, which

corresponds to line 175 of image 6 from the Alabama Data Base, and

assume that the 3-dB normalized cutoff frequency (fc/fs) of the low-Dass

FPBF digital filter is equal to 0.01 (to process the evaluation imagery

we used a cutoff frequency of 0.05; see Ref. 1). The filtered signal

generated by such a filter is shown in Fig. 2a alonq with the input

signal. Two points are worth mentioning about the filtered signal:

a) There is a droop in the filtered signal at its origin.

b) The filtered signal is shifted to the right.

The first anomaly can be easily corrected by selecting the initial

conditions so that there is no transient at the origin. It can be shown

(Ref. 1) that the required initial conditions are:

f 3 (nT) = H / b0

and [41

f 2 (nT) = H / (1 + + b2 )
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FIGURE 2 - Background Elimination Technique (BET)
The illustrative signal is line 175 of
image 6 from the Alabama Data Base.
The 3 peaks correspond respectively
(from left to right) to a tank, an APC
and a jeep. The cutoff frequency of
the filter is 0,01.

A) FPBF filter initially at rest
B) FPBF filter with nonzero initial

conditions; the solid line is the

left filtered signal while the
dashed line is the right filtered
signal.

C) Arithmetic mean of the 2 filtered
signals

D) Fine structure or fluctuating
component of the input signal

L _ __ _ __ _ __ _ _
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for n<O; A1 is the value of the input signal at t=O+. Fig. 2b shows the

filtered signal (solid line) that results when we use these new initial

conditions. The second anomaly can be as easily corrected by shiftinq

the filtered signal to the left. However, rather than rectifying this

anomaly we will take advantage of it to clip the peaks. Let us consider

Fig. 2b. The signal is fed to the filter from left to right. Normally,

we would expect the filtered signal to peak at, or close to, the

position of the main spike in the input signal. Instead, it overshoots

to the right. Therefore, had the signal been fed from right to left,

the overshoot would have occurred to the left (dashed line in Fig. 2b).

By combining both filtered signals in some fashion, we can expect to end

"p with a curve that will bypass entirely the peaks to follow only the

broad characteristics of the input signal. Various combinations were

tried (Ref. 1). All things considered, the arithmetic mean (Fig. 2c)

was judged most satisfactory. Fig. 2d exhibits the fine structure

(fluctuating component) of the illustrative signal, that is, what is

left of the signal once the estimated trend of the background is

removed.

The Background Elimination Techniue can be applied either to the

set of lines or columns of an image thus producing 2 distinct images

(Fig. 3) referred to as the Horizontal Fine Structure (HFS) image and

the Vertical Fine Structure (VFS) image respectively. Although these

images turn out to be highly textured, they do not exhibit, unlike the

parent image, large-scale fluctuations. This is important for

large-scale fluctuations may easily fool a seimenter like the SIT

Generator based on the single assumption that the targets present a

larger thermal signature than the background. The 3CIT and ISCIT
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generators do try to circumvent the problem by slicing the imaqe into

sections whose backqround may be considered as "uniform", but then the

crux centers on the manner in which the sections are defined. With the

2 fine structure images, this crucial question does not arise because

their background, on a large-scale basis, is inherently uniform. In

consequence, the SIT Generator should be well suited for thresholdinq

the fine structure images. The veracity of this affirmation is

confirmed by the results of Figs. 3d and 3e. The procedure leading to

Fig. 3d defines segmenter No. 4: SIT Generator with BET (HFS).

The segmentation of both the HFS image (Fig. 3d) and the VFS

image (Fig. 3e) results in targets whose shape is slightly distorted.

However, since the distortion is more outstanding in one direction than

in the other, and since the dimension affected is different whether HFS

or VES is involved, it should be possible to maintain intact the shape

of the targets by thresholding a joined image resulting from some

coatination of HFS and VFS. The following sensible combinations were

formed:

a) Maximal Fine Structure image, where the value at any given

location corresponds to the maximum of HFS and VFS for that

location.

b) Mean Fine Structure image, where the value at any qiven

location corresponds to the arithmetic mean of HFS and VFS

for that location.
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FIGURE 3 - Thresholding of the fine structure

images derived from image 6 3 of
the Alabama Data Base:

a) Original histogram - egualized
image

b) Horizontal Fine Structure (HFS) image
c) Vertical Fine Structure (VFS) image

d) Segmented image generated by
thresholding HFS with the SIT
Generator; this defines segmenter
No. 4: SIT Generator with BET (HFS).

e) Segmented image generated by
thresholding VFS with the SIT
Generator

The images b and c were postprocessed,
for display purpose, first by adding
a constant bias, so as to remove

negative gray levels, and then by
stretching the gray levels bounded
by the 5th and 95th Percentiles
linearly over the display range.
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The first combination defines segmenter No. 5 (SIT Generator with

BET(Max)) and the second one segmenter No. 6 (SIT Generator with

BET(Mean)).

3.0 IMAGERY USED FOR EVALUATION

To reliably evaluate the performance of a particular seqmenter,

we need some sort of imagery to start with. However, this very fact

somewhat limits the scope of the evaluation to a certain type of

background, noise, image quality etc. The imagery used here for

evaluation is known as the Alabama Data Base and consists of 43

thermoscopic images. The spectral region of the majority of them (30

out of 43) corresponds to the 8-14um band, and that of the remaining

ones to the 3-5pm band. Altogether the images contain 85 targets, some

of them so close to each other as to form a distinct entity, distributed

as follows: 40 tanks, 29 armoured personnel carriers (APC), 15 jeeps

and, finally, a bus. The number of targets in a single image never

exceeds 3 and no image contains 2 targets of the same type. Although

the images represent ground scenes, we would term their background as

moderately cluttered. On the other hand, the images are relatively

clean and, for all practical purposes, can probably be considered as

noise free. The size of the images is 420 x 335 pixels and they are

digitized according to a 256-level grayscale. The images were in no way

preprocessed prior to segmentation but, for display purpose (e.g. Fiqs.

1 and 3), they were postprocessed by histogram equalization, which

almost consistently yields "good-looking" images.
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4.0 FOUNDATIONS OF THE EVALUATION PROCESS

An overview of the scientific literature devoted to automatic

target acquisition would reveal that the effectiveness of a particular

segmenter is generally characterized

a) first, by its extraction rate, that is, its ability to

segment all the targets present in the imagery;

b) by the fidelity of the segmentation as regards the

geometrical properties of the targets; this aspect is

important to further discriminate the targets into classes;

c) and, finally, by what we would call the degree of

distinctiveness introduced among the segmented objects and,

in particular, between targets and nontarqets.

The first two ooints are quite easy to evaluate since we know beforehand

the exact number of targets as well as their respective location. The

last point is a bit more tricky for the segmented objects cannot be

dissimilar in every way. So the oroblem is really twofold: determine

the most discriminatory feature or set of features and measure how well

it separates the segmented objects corresoonding to targets from those

corresonding to nontargets. In this section, we list and define all

the candidate features. We limited ourselves to those that can be

extracted sequentially in the space of a sinile pass over the imaqe.
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le will first define a miantitv that aonears in -ianv cxoressions

below. Given an arbitrary seimented obiect 3, the (n,a) th moment m

of 3 is defined as

m - xp yq n(xy) p,q = 0,1,2 ...ppq N

where denotes the nuij-.er of ooints in summation, x and v the soatial

coordinates, and where the value of n at any ooint (x,v) is oronortional

to the briihtness (or qray level) of 3 at that ooint. lie can no

oroceed with the definition of the featurcs involved in the evaluation

process.

1) .Area(A) - The area of 3 is just the number of ooints in 3:

= N 161

2) Pwrjimeter (P)- - Rosenfeld and Kak (Ref.- 5) iive 4 nossible

definitions of the nerimeter:

a) The numrber of pairs of noints (u,v) with u in 3 ana v not

in 3.

b) The nurber of steos taken bv a border-followini aliorithn

in following all the borders of 3.

c) The same, but with diaional stons countin ;2each,

while horizontal ind vertical steos count only 1 each.
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d) Tho nm'- 'r of border ooints of 3.

We have adooted the first definition for it can be easily comouted

sequentially and also because it yields the right answer for a square.

It should be emphasized here that not only the perimeter of the outside

border but that of all the borders of the segmented object are computed.

3) Thinness Ratio(T) - The thinness ratio of a segmented object

uf area A and perimeter P is defined (Ref. 6) by

T =4Tr(A 2) (71

It can be shown that T has a maximum value of 1, which it achieves if

the segmented object in question is circular. Loosely speakinq, the

fatter a segmented object is the greater will be the associated thinness

ratio; conversely, line-like or largely perforated objects will have a

thinness ratio close to zero. Moreover, the thinness ratio is

dimensionless and hence depends only on the shape (but not the scale) of

the segmented object.

4) Average Intensity(B) - The average intensity or brightness is

a function of the average temperature of the underlying object and is

defined as

B = 0, 0 [81
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5) Average Contrast(C) - Contrast has many definitions. The one

used here is

C (Bt - Bb)/Bb [9]

where Bt refers to the brightness of the secimented object and Bb to

that of the background immediately surrounding the object. we already

know how to compute B t . We can compute Bb in the same way but, then, we

have to specify what the background S of S is. Obviously, 7: should

not include S or another segmented object. Moreover, it should not

stretch out too far away from S in order that C be a local measure of

contrast. These reciuirements are easily met by-extendinq (Fiq. 4) in

both directions independently all the runs of segmented pixels present

on any given scan line. The extension of one end of a run proceeds

until another run of segmented pixels is hit, or until the run has been

extended by half its length. In this way, the area of S is about the

same as that of S. Although this scheme may distort the measurement of

C by introducing a certain degree of directionality, this is not a major

drawback for the segmented objects more often resemble objects 1 and 2

in Fig. 4 than objects 3, 4 or 5 where the effect of directionality is

most damaging. On the other hand, an important asset of this scheme is

its ease of implementation.

6) Relative Intensity(B') - The relative intensity is obtained

by mapping the average intensity of a segmented object within a qiven

frame into a scale from 0 to 1, that is, a scale independent of the
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DIRECTION OF S"'AV

FIGURE 4 -The pixels used to compute the brightness of B of the
background of the 5 numbered objects are marked wiNh O's.
The pixels marked with Bl's enter into the computation of 2
different B 'ls.
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overall characteristics of the imaqery. We used to define the relative

intensity as

B' = (Bi - B min )/(Bmax - B. n ) i = 1,2 ... M [10]

where M is the number of segmented objects within the frame in question

and Bmi and B are respectively the largest and the smallest of alln max
the Bi's. However, this expression is not flawless. For example, if

M = 2, the relative intensity of one segmented object will be 1 and that

of the other 0 regardless of their respective brightness. From the

standpoint of discrimination, this is not desirable for it might well

occur that both segmented objects are targets. In fact, the same

situation is bound to happen each time the number of segmented objects

is equal to or less than the nuner of expected targets. So, when the

number of segmented objects is small, in our case small means less than

6 (this number is greater than the maximum number of targets one can

find in any image of the Alabama Data Base in order to account for

multiply segmented t.irgets), we use the following expression instead of

[91:

B' = B/Bmax i = 1,2,... M<6. [i1

One may wonder why [111 alone is not used. It is simply because

experimentation shows that in most cases [10] better discriminates the

targets from the nontargets.

7) Relative Contrast(C') - The relative contrast is defined as

the relative intensity.
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8) Centroid(x,y) - The centroid of a blob (segmented object) is

the point (x,y) whose coordinates are given by

x= ml 0 / r0,0 , [12
and x ' O O[121

v = m0 ,1 / m0 0

9) Principal Axis(0) - The principal axis 0 is the angle for

which the moment of inertia of a blob about a line through its centroid

is as small as possible. It can be shown that

arctan (2MI, / (M2 0 - M0 2)
0=

[13]

where Mp,q =m -/ M 0  _ xp q
q pq 0

The M is are nothing but central moments, that is, the above momentsP,q

evaluated around (x,y) as the origin.

10) Overall Width(_) - The overall width of a blob is defined

as

j= X - XL [141

where xR is the abscissa of the lower right corner of the smallest

rectangle circumscribed around the blob and xL that of the upper left

corner of the same rectangle.
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11) Overall Height(h) - The overall heiqht is simply the

difference between the ordinates corresponding to x R and x L

h = yR - L *[15]

12) f/h Ratio

13) Bulkiness(e) - The bulkiness is the oroportion of the

circumscribed rectangle occupied by the blob:

e = A/( Ph) . (161

14) ~jradMinorDiameters(d ,,d 2 The eiqenvalues of the

mnatr ix
(42,0 M 1:i)

of second central moments are

1 0,2 1,1 /tn

[171

r 2  M 2  + M /tanlO2 2,0 1,1

These eigenvalues are the principal moments of inertia of the blob and

it can be shown that the larqer eigenvalue corresponds to the principal

axis. The major and minor diameters are then defined as

d 1  +12r1  and d =1 2r (8
112 2 [8
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15) Aspect Ratio(a) - The aspect ratio is liven by

a = d /d 2  [191

where dI denotes the major diameter. This quantity is then always

greater than (or possibly equal to) 1.

The last 8 features aim at characterizing the statistics of S (seqmented

object) and S (background of S). A complete specification of the

statistics of say S is possible if one knows its moments mk (there

should be no confusion between mp,q and mk since the latter has only one

index) defined by

mk = E {n(x,y) N n(x,y)k [201

S

Clearly,

m= B

the brightness or the averaqe intensity of S. The corresponding central

moments are given by

k 1 E' nxy-Bk

Mk = E {(n(x,y) - B) } (n(xy)-B) [21]

S

These can be expressed in terms of ink:

k
k 'B

Mk = r'(k-r)' (-) k-r [221
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In particular

m 2 = m2 - B2  [23]

3M3 = m 3 - 3 m2 + 2 B [24]

2 4
M14 = n4 - 4 Bm3 +6B -3 B . [251

Given these expressions we readily obtain:

2
2 M2 . [26]

22

16) Blob Variance (a
2

17) Blob Relative Variance - Th.is cuantity is defined as the

relative intensity.

18) Blob Skewness

M / [271

19) Blob Kurtosis

4
M /4  -3 [281

and their counterpart as regards S.
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20) 3ackqround Variance

21) EBackground Relative Variance

22 '3acKiro'jnc Skewness

23 , u crts
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5.0 SEQUENTIAL FEATURE EXTRACTOR

In this section we briefly describe (more information can be

found in Ref. 4) the sequential algorithm used to extract from a

segmented imaqe the various features listed in the orecedinq section.

-ich an aioorithm is called a teeature extractor and I can b- - eg ara

r. eniator t 7 2 F , lt e n ardwa n sa~e reame -

'], :ear inq 1' ,en.: ce : th'- :T~~n ,' . <. -: c t

sc.',e- .- er'" tr int a-> s±entifi i ieratjre as t e

Labellinq-by-Trackinq (LT) Algorithm (Ref. 5). References 4 and 8

describe a more complex extractor, the Boundary Continuation Algorithm,

that can also fulfill the same task. Given a thresholding intensity

function of the kind defined in Sec. 2, both extractors can seiment the

image, identify the objects generated, and extract the relevant features

in a single image scan.

The memory of the LT-extractor consists of a scan line array plus

a feature array. The first array contains the current scan line of the

image being processed as well as the immediately preceding the scan

line. It is initially set to zero and afterwards updated by replacing

the precedent scan line by the current one and readinq in the subsequent

one. The scan line array is equivalent to viewing the image through a

downward moving slit whose width matches that of the image, but ha3 only

2 pixels in height. The feature array has an arbitrary number of lines

whereas the number of columns is a function of the number of features to

be extracted. The number of columns is not exactly equal to the number

of features because some of these are nothing but a combination of other

9.
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features (e.g. the aspect ratio), while, on the contrary, it is

necessary to accumulate more than one quantity to determine other

features (e.q. the orincipal axis). On the other hand, there are no

fixed rules as regards the number of lines. We can say, for sure, that

it should at least be equal to the maximum number of exoected tarqets

and nontarqets in a single frame but, in oractice, it should be chosen

-rger than that for tcoe oint in tr- axtractien orocess an object

-. ,P< : ,- • i.-.i.----- ~- P . ...... 2u. arv]D:in P& -t: fj~t.r ,

&<q trx, t& 'ztonDr c 7-n .4

'-'essal - K-,It it miqht 'e soed iowf arcrciabiv -ca' cz

oC freaucnt ,odatr- (beE. 4). One col.mn of t-he feature array is set

apart for a substitution table that keeos track of all the comonents of

the various objects. This table is the key for uodating the feature

array (Ref. 4).

We detail hereafter the procedure used by the LT-extractor to

identify the objects generated by the seqmentation orocess. The

identification is done by labelling the various objects, that is,

assigning a specific nurrber to each of them. It should be obvious from

this orocedure that the oixels belonqina to an object are assumed to be

8-connected (Refs. 4 and 5). Let n. (j) be tie label assimned to the1

jth pixel (Fig. 5) of scan line i (even thouqh both use the same letter

it is unlikely to confuse the qrav level n(x,v) with the label n.(j))
a

and n the last nurrber utilized to label a new object. Furthermore, let
0

• _'-t . ._,v. m~ DV. "
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FIGURE 5 -a) Fraction of the scan line array with the current
pixel (i,j) marked with an asterik
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us assume that all the oixels belonging to the background are set to

zero. Then,

1) if ni_(j-1) x ni1 (j+l) # 0

and

nil(j-l) $ n (j+l)
i-i

we conclude that the relevant pixels are connected through the diagonal,

and consequently that they belong to the same object. We determine

which label has the greatest value, say nil (j-l), and replace in the

substitution table all the nil (j-l)'s by ni-l(j+l)

2) Next, we put

ni(j) = nil (j-1) if ni(j-1) 0; otherwise

n(j) = ni (j) if ni1 (j) $ 0; otherwise

ni(j) = n il(j+l) if nil(j+l) # 0; otherwise

n.(j) = ni(J-l) if ni(j-l) # 0; otherwise

we conclude that the pixel (i,j) is not the continuation of an existing

object but the beginning of a new one. We can then set

3) n.(j) = n +1
1 0

but in this way all the objects, whatever their size, will be labelled,

that is, even 1-pixel and 2-pixel objects. However, these objects are
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obviously (here) nontarqets and labelling them unnecessarily overloads

the feature array and, in some instances, can Possibly saturate it. It

is then preferable to eliminate them at once. To this end, it suffices

to replace the preceding step 3) by

3')

ni (j) = 0 if ni (j+l) = 0; otherwise

ni(j) = ni(j+l) = ni-l(j+2) if ni-l(j+2) X 0; otherwise

ni(j) = ni(j+l) = 0 if ni(j+2) = 0; otherwise

we conclude that the pixels (i,j) and (i,j+l) belong to a new object and

we set

n i(J) =ni (J+l) = no0+1

It is worth noting that this step also eliminates slanted lines

(lines parallel to the scan direction remain but they are eliminated

later when the feature array is updated) whose width is less than 3

pixels as well as line-like object protuberences jutting out counter to

the scan direction. This might be a source of distortion of the object

shape, but Probably not a serious one considering that the boundary of

the targets is in general relatively smooth (this is true mainly because

the targets are small and line-like features such as a tank's gun are

unresolved).

4) If ni (j-l) $ 0

and
n.(j-l) $ ni (j)

we are faced with 2 object segments connected by one end. This oiece of

information is entered into the substitution table as described in 1).
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Given that the number of lines of the feature array is fixed, it

might well happen that the extraction process will have to be halted

despite repeated updating operations because the feature array is full.

To reduce the number of updates and to prevent the feature array from

saturating, the above procedure can be modified so as to utilize the

smallest number of labels to identify the objects. Let J = j-1 and L.

be the number of pixels labelled ni(j). Then 4) is replaced by:
i1

4') If ni(J) # 0 and n. (J) $ ni(j) set

L(j) = L(j) + 1,

L(J) - L(J) - 1,

ni(J) =ni(j),

and we repeat for J = J-1 if ni (J-1) # 0; otherwise we out

n = n -1 if L(J) = 0; otherwise0 0

we conclude that there exists on scan line i-l an object seqment

labelled n (J) that belongs to the same object as the segment n (J). We1 1

then modify the substitution table accordinqly. This simple step

frequently allows.us to save a label (Ref. 4).

5) Repeat from 1) with the next pixel different from 0.

* - I;



UNCLASSIFIED

36

6.0 EXPERIMENTAL RESULTS

We mentioned in Sec. 4 that one valuable attribute of any

segmenter is the degree of distinctiveness it introduces among the

segmented objects and, in particular, between targets and nontargets.

We also pointed out that we cannot expect the objects to be dissimilar

in every way and, consequently, that the problem is really twofold:

a) Determine the most discriminatory feature or set of features.

b) Measure how well this feature or set of features separates the

objects corresponding to targets from those corresponding to

nontargets.

We have defined in Sec. 4 the complete set of features we intend to

consider for this purpose. The means to be used to assess the

discriminatory power of a given feature will consist in a comparison of

the histograms of that feature both for targets and nontarqets, and this

for each one of the 6 segmenters described in See. 2. The total system

of operations, illustrated in Fig. 6, is:

1) The 43 raw images of the Alabama Data Base are orocessed in

turn by all 6 segmenters.

2) The segmented images are passed on to the LT-extractor and

the ohject features extracted according to the orocedure

outlined in Sec. 5.

eaI
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* Segmenter #1 *

* Segmenter #2 *

Alabama *Segmenter #3 *

Data LT-Extractor
Base * Segmenter #4 *

* Segmenter #5*

*Segznenter #6*

Ifeature ieature Feature

Arrays Arrays Arrays

Segmenter Segmenter Segmenter

*1 *~46

F IGURE 6 -)vritpm of Onrrat ton- Iladinq t o t he determination of the
t;4rrjet and nont arrjet ffature histonrams



UNCLASSIFIED
38

3) The resulting feature arrays (each segmenter gives rise to 43

feature arrays), duly updated, are stored in APL files (the

number of lines of whatever feature array is equal to the

number of objects in the corresondinq segmented image and

he line numbers are the labels associated to those objects

as a result of the last update).

4) A target identification array is assigned to each APL file.

This 43-line array contains the labels of the objects

corresponding to targets. It is defined according to target

location data collected beforehand.

5) An APL program automatically determines and plots the various

target and nontarget feature histograms.

Being stored in APL files, the feature arrays can be analyzed

interactively, and thus the above systems of operations offers a qreat

flexibility.

6.1 Object Feature Histograms

All the histograms presented in this report have the same number

of bins, namely, 20. The target and nontarqet histograms of a

particular feature are plotted side by side and both the horizontal and

the vertical scales are the same for ease of comparison. The range

(horizontal scale) of a histogram is generally that of the feature

itself with the exception of the area (limited to 400) and the perimeter

(limited to 200). The number of elements in a bin (vertical axis) is

. . . . .. .. .. . . .
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expressed as a percentage of the total number of targets or nontargets

as the case may be. In all instances where the numerical value of a

feature (e.g. thinness ratio), as defined in Sec. 4, is always less than

1, this value is multiplied by 100 in order to get rid of fractional

numbers.

6.1.1 SIT Generator

The SIT Generator manages to extract (segment from the

background) 73 targets out of 85. Most missed targets are APC's. The

number of nontargets generated by this seqmenter, on the other hand, is

rather high, that is 1011. It was included in the present study mostly

for historical reasons (Refs. 2 and 3) but also as a standard by which

the results of more sophisticated segmenters are evaluated. The

histograms arising from this segmenter made up Fiq. 7. There are 13

histogram pairs corresponding to as many features. Certain features

listed in Sec. 4 were excluded whether because they turn out to be

useless (e.g. skewness) or because they are not distinctive

characteristics in themselves (e.g. centroid). These results (as well

as those of the next 2 sections) will be commented further in a

subsequent section.

6.1.2 SIT Generator with BET (Mean)

This segmenter is better suited for the task at hand since it

extracts 83 targets out of 85 while producing only half as many

nontargets (5B4) as the precedent seqmenter. The 13 histogram pairs



UNCLASSIFIED
40

that sum up the results obtained with this segmenter are given in Fig.

8, which is the counterpart of Fig. -7.

6.2 Scatter Plots

Figures 9 and 10 show scatter plots of the following features:

a) Relative intensity

b) Relative contrast

c) Relative blob variance

that happen to be the most useful as far as discrimination between

targets and nontargets is concerned. These scatter plots might be

somewhat misleading, however, for a plotted point often corresponds to

more than one datum. In other words, 2 pairs of features from 2

segmented objects may well match each other and, consequentlv, the

relevant objects may be represented by a single point in the scatter

plots (for example, there are l011 nontargets associated with segmenter

No. 1 but only 232 plotted points in Fig. 10a). So one should not

attempt to draw conclusions based on the density of the points plotted

in these figures. It is also worth mentioning that it is not the

variance (a 2) which is actually plotted in Figs. 9 and 10 but a, the

positive square root (standard deviation) of the variance. This is

equally true of Figs. 7 and 8.
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FIGURE 7 - The 13 histogram pairs derived

from seqmenter No. 1.
The associated features are:

a) Area

b) Perimeter

c) Thinness Ratio

d) Relative Intensity
e) Relative Contrast

f) Overall Width

g) Overall Height
h) Width/Height Ratio

i) Bulkiness

j) Minor Diameter
k) Major Diameter

1) Aspect Ratio

m) Blob Relative Variance
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FIGURE 8 -The 13 histogram pair derived
From segmenter No. 6.
The associated features are the same

as in Fig. 7.
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FIGURE 9 - This figure, derived from segmenter
No. 1, shows scatter plots of the
following features:

a) Relative Intensity versus Relative
Contrast

b) Relative Intensity versus Relative
Blob Variance

c) Relative Contrast versus Relative
Blob Variance
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FIGURE 10 - This figure, derived from seqmenter No. 6,

is the equivalent of Fig. 9.
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6.3 Cormments

We will often refer, in the remainder of this section, to

specific images of the Alabama Data Base. Readers interested in viewing

these images are directed to Ref. 1 where histogram-equalized Pictures

of the 43 images that made up the database are given along with the

relevant ground truth.

We mentionned in Sec. 4 that a qiven seqmenter is first valued

according to its ability to segment just about all the tarqets liable to

be perceived in the pictured scene. In Table I, the objects generated

by all 6 seqmenters, in relation to the Alabama Data Base, are sorted by

object tvoe through the agency of the provided ground truth. As

mentioned before, the SIT Generator produces the largest number of

nontargets. This might be an indication that this segmenter is more

prone to false alarms than the others. However, there are really no

grounds for believing that the number of false alarms is qenerally

directly proportional to the number of nontarqets. The only thing we

know for sure is that the number of false alarms will be equal to 0 if

the number of nontargets is equal to 0. On the other hand, a small

number of nontargets is no guarantee of efficiency as one can see from

the figures for the SCIT Generator. Of the first 3 segenters, the

isCr Generator is the best at extracting tarqets. Nevertheless, its

extraction rate is not as good as the one of a segmentation alqorithm

incororating, in one way or another, the Background Elimination

Technique described in detail in Ref. 1, and outlined in Sec. 2 of this

report. This is then a good Point for this technique. On the sole

LI



UNCLASSIFIED

60

basis of their extraction rate, 2 seqmenters, seqmenters No. 4 and No.

6, surpass tie rest. The 2 tarjets missed by both these seqmenters are

APC's: one in imaqe 13 and one in imaqe 41. Interestinqlv enouqh the

first 3 segmenters do extract the APC in imaqe 13. However, the APC in

image 41 eludes all 6 extraction schemes. Finally, Table I shows that

the tank is probably the easiest tarqet to extract.

TABLE I

NUMBER OF SEGMENTED OBJETS PER CLASS

2222222 2= 22222222222 222222222 22222222 222222222 23222322 2222225

II I I I I
I SEGMENTATION ALGORITHM I TANK I APC I JEP I TARGETS I NONTARGETS II I I I I I I

11. SIT GENERATOR 1 40 1 19 1 14 1 73 1 1011

12. SCIT GENERATOR 1 32 1 18 1 10 1 60 1 318

13. ISCIT GENERATOR 1 39 1 24 1 14 1 77 I 404

4. SIT GENERATOR WITH BET(HFS) 1 40 1 27 1 16 1 83 1 581

IS. SIT GENERATOR WITH BET(MAX) 1 39 1 25 1 16 80 638

16. SIT GENERATOR WITH BET(MEAN) 1 40 1 27 1 16 1 83 584

GROUND TRUTH DATA 40 29 16 85

I ..........

52 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 Z 2 2 S 3 U 3 2 2
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Table I does not give a complete picture of the seqmentation

results. It leaves out the problem of repeated detections, that is, of

targets split up into several blobs and hence likely to be construed as

forming a qroup of distinct targets. This oroblem is not too imoortant

as far as seqmenter No. 6 is concerned for the only multiblob targets

(in Table I a multiblob target is classified as I target of the

appropriate type) are the tank in image - and the bus in image 33, 2

relatively large-size targets. Segmenter No. 4, however, is much more

affected with nearly 10 multiblob targets. As this serious flaw miqht

greatly reduce the usefulness of this segmenter, seamenter No. 6 emerges

here as the best. No multiblob target arises from the SIT Generator

whereas segmenters 2, 3 and 5 produce only one such tarqet.

Another useful criterion to assess the practicality of a

segmenter is the fidelity of the segmentation process with regard to the

geometrical properties of the targets. From this point of view,

segmenter No. 1 and No. 6 may be rated as the best. Seqmenter No. 4

exhibits a marked tendency to narrow the targets (Fig. 3d) but this is

to be expected since it is based on the HFS images. The other 3

segmenters (2, 3 and 5) generally exaggerate the size of the targets

even to the ooint of, sometimes, merginq 2 neighboring targets into a

single blob (in Table I such a blob was classified as a nontarqet).

Also, in a few instances, although the target was not connected to

another target blob its shape was so distorted as to be unrecognizable.

This is the case, for example, in relation to seqmenter No. 5, of the

tank in image 17 and of the APC's in imaqes 9 and 17. These distorted

targets were classified as nontarnets, in Table I. The last 3

segmenters in this table would otherwise have the same extraction rate.
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It should be obvious from the orecedinq Daragraohs that the

seqgnenters 1 and 6 are the most interesting ories. This ex-olains wilv,

not to mention more prosaic reasons, the or 1.: feature histograMS

a;eea rinq in this re-rart Pertain to thes- _ 2 senrmnters. Hw'

enera1 conclisions drawn from Figs, to 10 ano: uoa111 well to 6>

segmenters.

T3v examining Figs. 7 and 3, we r,-adilv coanal that oni'

orf the 13 Plotted featw es are real 1-,7 necul iar t a arqjet h.loK,

are:

a) Relative Intensity

b) Relative Contrast

.elativ7e Ri]h

toisisthe on', .~a to ±iira tiaer

ex~yrimental condi.tions -;nd also cv tne fact that we, 3re dealinq witr. a

discontinuous sequence of pictures. -'1thouqh the other features are no

good at discriminating targets from nontargets,. thiev might well be very

useful to classify th- tarqets thems!el ves -- c. this i s somet:-;'

r, wi] ]. not att'n t' in th Ie .arosm r! n Ti rot surmI'

that intensity and contrast leaturec are dis3t~niluishina t-±

characteristics since we are dealing with IR imagery. Nevertheless, it

is amazing to observe that so is doing the variance. Given the size of

the targets, we would rather intuitively exoect the variance to be
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insignificant, but the experimental results show that this is not the

case. Another important aspect should be emohasized here. In Fig. -,

the numerical values assigned to the various features were derived from

the original raw images, whereas in Fig. 8 these numerical values

originate from the Mean Fine Structure images, that is, images that bear

little resemblance to the original ones. So one may wonder, in the case

of segmenter No. 6, what the feature values would have been had their

evaluation been based on the original images. It makes no difference

for shape features (e.g. area, oerimeter, overall width, etc.) but this

should normaly affect moment features such as the intensity, ccntrast,

minor diamer:er etc. that depend on the gray level of the oixels

involved. Fig. 11 is meant to elucidate the question. ns we can see,

the moment features in Figs. 8 and 11 exhibit the same trends except for

the relative intensity that is obviously not a distinctive tarqet

feature when evaluated from the original images. There is then no ooint

in going back to the original imaqes insofar as seqmenter No. 6 is

concerned. This, in fact, confirms that BET saves all the useful

information about the targets.

Once features peculiarly belonging to the targets have been

identified, one can assess the deqree of distinctiveness imparted to the

targets as opposed to the nontarqets. That cuantity is oroportional to

the extent of overlap of the relevant pair of histograms (Figs. - and

8), and then can be determined accordingly. However, it serves our

* purpose better to give here some examples of the classification results

one can expect from the aforementioned subset of 3 features. To this

end, the confusion matrix:
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( target miss )
false alarm nontarqet

has been determined for various combinations of the 3 features. The

decision rule for each feature (the t's in Fig. 12) is simply a fixed

threshold whose level corresponds to the 5th percentile of the feature's

target histogram. Hence, all the objects associated with a feature

whose value is greater than the specified threshold are discarded as

nontargets (Fig. 12). The classification results that ensue for each

feature alone, for a combination of 2 out of the 3 features, and for all

3 features together are shown in Table II. In this table, these

features are identified as follows (Sec. 4): 6: Relative Intensity; 7:

Relative Contrast; and 17: Relative Blob Variance. It is important to

note that the order of the features in a combination is not immiaterial

for, given the structure of the decision tree (Fig. 12), the results are

not necessarily the same if the features undergo a permutation. Also,

for the same reason, the probability of detection (number of targets

classified as such) of any combination of features cannot exceed that of

its least effective member. However, by combining features one can

]reatly reduce the number of false alarms. To convince oneself that

thi is indeed the case it suffices to compare the confusion matrix for

feature ' (Pable I!) to that for features - and 17. Clearly, a

trade-off has to be made between the detection rate one would like to

obtain and the false alarm rate that can be tolerated. In any way,

Table II shows that it should be oossible to obtain with segmenter No. 6

a detection rate in excess of 90% with a false alarm rate not qreater

than 3%.

- - M
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A classification experiment using the Fisher linear discriminant

(Ref. 5) was attempted on the scatter plots (Figs. 9 and 10) but the

results merely point out that one is entitled to use the features

independently. The Fisher linear discriminant attempts to find the

optimum linear projection of the feature vectors onto a line, and the

optimum partitici of this line, such that the ratio of between-class

scatter to within-class scatter is maximized (Ref. 6).

t.4
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FIGURE 11 - The 6 histogram pairs derived from
segmenter No. 6. The
associated features listed below
were evaluated from the original

raw images instead of the Mean
Fine Structure images:

a) Relative Intensity
b) Relative Contrast
c) Minor Diameter
d) Major Diameter
e) Aspect Ratio
f) Blob Relative Variance

SIT GENERATOR WITH BET(ORICINAL)

HISTOGRAMS: 0 100 20

TARGETS NONTARGETS

30- 30

20 20-

10P

0 20 40 60 80 100 0 20 40 60 80 100
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7.0 CONCLUSION

The purpose of the present report was to evaluate the performance

of 6 different segmentation algorithms or seqmenters based on the single

assumption that the targets present a larger thermal image than the

background. The first 3 segmenters considered deal with an image in its

entirety, whereas the last 3 incorporate a technique, the Background

Elimination Technique or BET, which aims at eliminating wholly or partly

the background. The segmenters are judged according to:

a) their extraction rate;

b) the fidelity of the segmentation with respect to the

geometrical properties of the extracted targets;

c) the degree of distinctiveness imparted to the

extracted targets as opposed to the nontargets.

The 3 segmenters relying on BET have a better extraction rate than the

other 3 that try to cope with the background simply by partitioning the

image. Most segmenters here distort in one way or another the shape of

the tarqets. The 2 exceptions are segmenters No. 1 (Single Intensity

Threshold Generator or SIT Generator) and No. 6 (SIT Generator in

conjunction with BET through the Mean Fine Structure imaqe). To

determine the degree of distinctiveness, one must first single out the

feature or set of features that most characterizes the targets. The

experimental results show that the following relative features are the

best for this purpose:
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a) Relative Intensity

b) Relative Contrast

c) Relative Blob Variance

It is not surprising to note that intensity and contrast features are

distinquishinq tartet characteristics since we are dealing with IR

imagery. It is amazinq, however, to observe that so is doin- the

variance feature. The classification results one can expect from Whese

features together with the segmenter that proves to be the oest

(segmenter No. 6) amount to a detection rate in excess of 90% with a

false alarm rate not greater than 3%. On the other hand, it should be

possible to refine further that segmenter to bring the extraction rate

up to 100%, although 97% is a percentage already quite acceptable.

However, the next thing to do would rather be to test segmenter No. 6 on

more complex imagery.

• ' " .
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