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one-dimensional heat transfer equation.
the case of laser-metals interaction and used to show the importance of

thermophysical properties variation on the temperature distribution
within a slab. __(U)
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RESUME

Dans ce rapport on développe un schéma numérique de solution de
1'équation unidimensionnelle non lindaire de conduction de la chaleur.
On applique ensuite ce schéma 3 1'interaction laser-métaux et on montre
1'importance de la variation des propriétés thermophysiques sur la
distribution de la température dans une plaque métallique. (NC)

\Y ABSTRACT

This report establishes a numerical scheme to solve the nonlinear

The scheme is then applied to
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1.0 INTRODUCTION

. The development of the CO2 laser with its high efficiency and
3 . high output power has made possible a variety of laser-target inter-
action experiments. However, as the cost of performing exhaustive
parametric studies to establish potential applications is prohibitive,
. computer simulations were developed which can predict laser effects with
- sufficient accuracy to reduce the number of required experiments to an
acceptable level.

Although Hanley (Ref. 1) has developed an operational finite
difference code to solve the three-dimensional heat flow equation, his
solution does not conserve energy and leads to inaccurate results. For

";implicity, in this report, we solve the one-dimensional problem
by properly treating the boundary conditions to conserve energy.

Exploitation of the Kirchhoff transformation of the temperature scale
allows temperature-dependent physical properties to be included relati-
vely simply. Furthermore, by reducing the truncation error to terms of
second order in time and fourth order in space, we obtain significantly
more accurate results for a specific time or, conversely, we reduce the
computation time for a given accuracy. The extension of this numerical
scheme to three-dimensional problems is straightforward.

Section 2 deals with the mathematical formulation of the problem, §

and Section 3 develops the finite-difference approach used to solve the é

one-dimensional heat diffusion equation. In Section 4, we present some 3

numerical results and compare them with the few existing analytical .

. solutions. In Section 5, we discuss our results and their limitations.

This work was performed at DREV between May 1978 and February
1979 under PCN 33B06, Effects of Laser Beams on Materials. 1
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2.0 FORMULATION OF THE PROBLEM

The mathematical treatment of laser-target interaction involves
the solution of the differential equation of heat conduction in bounded
media under appropriate initial and boundary conditions. For a sta-
tionary, homogeneous, isotropic solid with internal heat generation
the differential equation in a Cartesian coordinate is (Refs. 2, 3)

p C,(M T,y =2 Jkm T @0y +glz.t] 1]

ot 0z 3z

In this equation, p is the density, Cp’ the specific heat at
constant pressure, T, the temperature, z, the spatial coordinate, t, the
time, K, the thermal conductivity and g[z,t], the internal heat source

or sink.

This differential equation of heat conduction has numerous
solutions, unless a set of suitable boundary and initial conditions
are prescribed. In this study, we consider linear and nonlinear bound-
ary conditions of the first and second kind. Mathematically, they have
the following forms:

T=To or 0 [2a]
and/or
k] &L - F (2b]
an.

1
where To is a constant temperature, 8/ani denotes differentiations
along the outward-drawn normal at the boundary surface, S.,, and F can

i
be arbitrary functions of time and surfaces.

When the thermal properties of the solid vary with temperature,

the partial differential equation is nonlinear. If it is assumed




temperature, then, changing the dependent variable using the Kirchhoff
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that p, C_ and K are dependent on temperature but independent of position
and time, and that the heat-generation term g = g(z,t) is independent of

transformation (Refs. 2,4,5) will remove the thermal conductivity from

the differential operator.

This transformation is accomplished by defining a new dependent

variable, U, as
T

o- f KD g (3 .
Ko 3

where U = U (T), T = T (2,t) and Ko is the value of thermal conductivity
for T = 0. Since K is a function of T only eq. 1 can be written in the

following form

2
aT T ) T

pCy, — = K== + — . — + g [4]
P at 8z dz 9z

Expressing 25-in the form

9z
3z dT 3z |
and substituting this into eq. 4 gives ! i

2 2 "
o C _3_'1_: = K a_; + dK aT + g [6] “'!
P at oz ar  \oz 1
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From eq. 3 we find
gg = g.g. . a_T. = E.— 2'.1‘_ [7a]
at dT at Ko at
-a!. = d_U . _a_T- = ——K -a_'[ [7b]
9z dT 9z Ko 232
220 _ a3k T 3 & T Xa
7 - = —. =+ K= [7c]
9z 9z Ko 9z Ko 23z 9z 9z
Substituting eq. 7 in eq. 6 gives
1 _ 2%
— — = _2. + _.L [8]
[+ ot 9z Ka

Since the thermal diffusivity a = K/pCp in eq. 8, is a function
of temperature, the equation is still nonlinear, but simpler in form.
Through this transformation, the boundary conditions become

U = Uo [Qa]
and/or
Ko E-g— = F [gb]
ani

Even with these simplifications, the solution of the differen-

tial equation is very complex and analytical results can only be obtained

for a restricted number of particular or specific cases, which we will
use without derivation to check the valicity of our numerical model.
Following Hanley (Ref. 1), we use a standard finite-difference approxi-
mation to solve this one-dimensional heat conduction equation. One of
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our aims is to obtain a good compromise between computer time and
accuracy of the results, particularly those related to a comparison

with experimental ones.

3.0 FINITE-DIFFERENCE MODEL

3.1 Finite-Difference Approximation

We use an explicit, central difference scheme to solve the

following differential equation:

2
Ly = 22 o+ % [10]
at 9z Ko

We consider only materials opaque to the incident laser beam
(i.e. materials such as metals for which the absorption depth is much
less than the wavelength of the laser radiation) and chemically as well
as nuclearly stable. Under such circumstances, there is no internal
heat source or sink and, therefore, g (z,t) = 0.

The boundary-value problem under consideration is that of a slab
of finite thickness whose front surface has a uniform and constant
thermal load (i.e. 3U/3z = Cte at z = 0), whereas the back surface is

U

either insulated (i.e. 37 - 0 at z = L) or held at the ambient temper-

ature (i.e. U = U, at z = L).

We use a Taylor series expansion of the function as our basic
concept in the finite-difference approximation of the differential
equation and the related boundary conditions. Since the procedure is

=
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quite straightforward, we will give only the main results here. When
a function U(z,t) and its derivatives are finite, continuous, and have
a single value, this function can be expanded .in the form of the Taylor

series about the point 2 as

2 2 3. 3
U(z+Az,t) = U(z,t) + Az, ég-(z,t) » o2 2—%—(z,t) + é-E—-g—-l:,%-(z,t)t..
92 21 YA 3! 23z
f11]
or
2 .2 3.3
U(z-8z,t) =U(z,t) - bz, 2 (z,1) + 28 (o,1) - 223 (5,0) ..
9z 2! 3z 31 oz
[12]

The first-order central-difference approximation is obtained by

subtracting eq. 12 from eq. 11

3!-(z,t) U(z+Az,t) - U(z-Az,t)
3z 2Az

+ 0(azd) [13]

The term O(Azz) on the right-hand side indicates that the error
jnvolved in cutting off the infinite series is of the order of (Azz).
Similarly, the addition of eqs. 11 and 12 gives the second derivative
of the function as

2
2—%-(z,t) U(z+Az,t) + U(;-Az,t) - 2U(z,t) . O(Azz). [14]
9z Az

where the truncation error is of the order of (Azz).

We also have for the time variable the following finite-difference

approximation 4
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[ 29—(z,t) . U(z,t+At) - U(z,t)

3 ‘ at At

+ 0(At) [15]

We then find, for the finite-difference approximation, the
following relation

UR,L+1) = UR,2) + 288 ) uw+1,8) + u@r-1,0) | -

[az]?

2aAt
[az]

U(R,L) + 0(At) + 0(Az2) [16]

.

where Az is the spatial increment and At, the temporal one; R refers to

lattice points along the z axis and £, to the integral multiple of the
step At along the time axis. The coefficient a is the temperature-
dependent thermal diffusivity and can be expressed as

K(T) [17]

a(T) = ;
o (T) . Cp(T) i

3.2 Boundary Conditions

Using the central-difference approximation, the boundary condi- P
tions become

1. Back surface

a) Held to ambient

U(Rmax, £) = U, [18a) f

b) Insulated (i.e., no heat flow)

U(Rmax. + 1, £) = U(Rmax. -1, &) [18b]

T Mo = & AT S 13 E e e A T M R N e SOANE g H K e hae e e
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and

2. Front surface

2Az
Ko

U(Rmin, - 1,£) = U(Rmin. + 1,£) + e (T) . ¢ . COS 0[19]
where Rmax. and Rmin. indicate respectively the maximum and the minimum
values on the z axis, K, is the ambient temperature thermal conductivity,
e(T) the temperature-dependent absorption or coupling coefficient, ¢,

the incident flux or power density on the material and 6, the angle of
incidence of the laser beam with respect to the normal to the front

surface.

3.3 Errors Involved in Finite Differences

Since in the process of the numerical solution of differential
equations the derivatives are approximated with finite-difference
expressions at each nodal point, an analysis of the possible errors
involved and of the way to reduce them is paramount. There are two
main types of errors: round-off and truncation errors. Furthermore,
because of the explicit numerical scheme used, a specific relation
between the spatial and the temporal variables must be satisfied. This
relation is called the stability criterion. A detailed derivation of
the results given below is beyond the scope of the present work.,
However, interested readers can consult, for more information, anyone

of the following publications (Refs. 6-9).

3.3.1 Round-Off Errors

Numerical calculations are carried out only to a finite number
of significant figures. At each step, the error introduced by rounding

off the numerical calculations is called the round-off error. In linear

problems, the effects of these errors superimpose themselves in the
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solution. The use of small mesh size, although desirable for a better
approximation of the differential equation, increases the cumulative
effect of round-off errors. Therefore, one cannot always say that de-
creasing the mesh size necessarily increases the accuracy in finite-
difference calculations. On the other hand, carrying out the numerical

calculations at the intermediate stages to two or more additional signi-

ficant figures will reduce the cumulative effect of round-off errors at
the expense of increasing the computation time. However, since the
distribution of these errors has many of the features of a random process,
it is likely that the effects of these errors will generally cancel each
other in part. Therefore, it is very difficult to determine exactly

the order of magnitude of the cumulative departure of the solution due

to round-off errors.

3.3.2 Stability of Finite-Difference Solutions

At each stage of the calculations, some round-off errors will be
present. The solution of finite-difference equations is called stable £
if the difference between the exact and the numerical solutions tends
to zero as At and Az tend to zero and does not increase exponentially.

e o

Specifically, the solution will be stable if the following condition is
satisfied:

P

1
(8z)?

e

2 a.At

<1 [20]

It should be noted that the form of the difference equations
depends on the type of the differentiation scheme used, that of
differential equations and the boundary conditions. Therefore, the
stability criteria given above cannot be generalized for other systems.
In fact, each system must be examined individually for stability.
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Unfortunately, there is no general method, for nonlinear problems, that
can be used effectively to determine the stability of the resulting

finite-difference equation.

3.3.3 Truncation Error

The Taylor series expansion, used in expressing a partial differ-
ential equation in finite differences, is truncated after a prescribed
number of terms. The error involved in each step of calculation result-
ing from the truncation of the series is called the truncation error.

In our case, that error involves terms of order At and (Az)z. As the
mesh size is reduced, and accordingly the time step to satisfy the
stability criteria, the truncation error is expected to become smaller
so that the numerical solution converges faster to the true solution.

Of course, this increases the number of nodal points and the computation
time. It is interesting to note that the truncation error is reduced

to terms of order (At)2 and (Az)4 by satisfying the following relation:

a.At —-1—2- = L1 [21]
(az) 6

Under this condition, the finite-difference solution approaches,
within a determined residual error, the true solution of the differential
equation at a faster rate and it will be used in our numerical scheme.
This value is called the "stability constant” and it will be referred to
under this name later on.

3.4 Program Summary

A computer program has been written in FORTRAN IV to evaluate
the finite-difference approximation described in the previous section.

A listing appears in Appendix A along with detailed running instructioms.
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The program can deal with different types of opaque materials as
long as their thermophysical properties and their temperature variation
are known. The number of points in the lattice along the z axis is

variable to permit the user to satisfy specific needs.

In addition, an analytical solution calculation for constant
thermophysical properties has been introduced into the program to check
the numerical results. Finally, the user can obtain the temperature
distribution as a function of time in tabular and graphical forms.

4.0 RESULTS

4.1 Analytical Solutions

Schriempf (Ref. 10) gives analytical solutions to the heat
diffusion equation in the one-dimensional situation. He assumes the
laser beam is constant and uniform, the material parameters are tem-
perature independent, the solid is uniform and isotropic. Furthermore,
there are no internal heat sources or sinks, and no phase change in the

materials is considered. N

The solution for the semi-infinite solid is

2. €. ¢. COS o . z
T (z,t) = ," at . ierf¢] ——— [22]
K [ 24/at ]
and
T (0,t) = Lﬂ_EQS_QF [22a]
K s

Similarly, the solution for a slab of finite thickness is
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2

12 6L

2 -n" —an?ne/12 nw (L-2)
- % D [fcos nmll=z)
L n=1 n L

T 0 I 2
(z,t) = €.¢. (COS 0).L. {a.t 3z -1
[23]

and

- 22,2
T(0,t) = Sxb: (COS 0). L. {u.t *[i RN S I S J}

K -
) n=1

[23a]

where L is the slab thickness, and the condition for an insulated back
surface is

T
9z

= 0 [24]

Equation 23 has been included into the program appearing in
Appendix A, such that the reliability of the numerical results, for
similar conditions, can be assessed.

4.2 Numerical Solutions

The numerical results obtained in calculating the function U are
identical to those of the temperature T, if we assume that the thermo-
physical properties are temperature independent. Otherwise, we have to
solve the following equation

T
um = L / K(T') dT"* [25]
Ko ’

!
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to find the temperature distribution through the slab considered. For
metals studied here, the thermal conductivity of the solid phase is

K(T') = Ko (1 + BT') [26]
Substituting eq. 26 into eq. 25 gives
uU=T+8& 12 [27]
2
and finally,
[28]

1
T= = 1+ 2,8.0(z,t) -1
Ly ]

Furthermore, we assume that the thermal diffusivity is as

follows:
Ko(l + BT') [29]

K(T')
pon° (1 +vT")

Po CP(T')

a(T') =

where Ko is the thermal conductivity, po, the density (assumed constant
in the temperature range considered) and Cp , the specific heat at the
o

initial temperature (i.e. room temperature in our case).

4.2.1 Numerical vs Analytical Solutions

This section compares the numerical and the analytical solutions

for similar conditions; it also gives an assessment of the accuracy

and reliability of our numerical model.

L]
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Figure 1 shows the analytical solution (alternating lines) and
the numerical results (continuous lines), with temperat.re independent
thermophysical properties, for a 6-node case (i.e. 4z = 0.2 cm) along
the z axis. Each curve represents the temperature distribution at 5
time step increments (i.e. 54t). Both models predict the same front
surface temperature, within 1%, after only 25 time steps (25 At) or
about 0.2 s in the present case. Furthermore, if we calculate, for a
specific time, the area under each curve we obtain the same result, which
demonstrates that we satisfy the energy conservation principle.

The same results appear in Fig. 2, but for a 2l1-node case (i.e.
Az = 0.05 cm) along the z axis. Each curve corresponds to 16 time steps.
Except for the first few curves, it is very difficult to differentiate
between the results. As a matter of fact, we have, within 0.5%, simi-
lar results on the front surface after only 16 time steps or about 0.006
s in this case. However, this accuracy was obtained at the expense of
increasing the computation time by a factor of 64. This is because Az
is 4 times smaller and At is 16 times smaller since At « (Az)z.

This demonstrates that the numerical solution can give, with
some compromise, results comparable to those of the analytical one. In
the next section, the numerical solution is applied to cases where no
analytical solutions exist, but where there are a few approximate ones.
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FIGURE 1 - Temperature distribution within 3 1 cm-thick Cu target for an
incident intensity of 2,000 W/cm® and a coupling coefficient
of 0.02. Each curve corresponds to 5 time increments (S At)
of the numerical solution. The continuous lines represent
the temperature independent thermophysical properties numeri-
cal case (6 nodes along z axis) whereas the alternating lines
show the analytical solution.
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FIGURE 2 - Similar to Fig. 1 but for 21 node numerical case. Each curve
corresponds to 16 time increments (16 At).
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4.2.2 Temperature-Dependent Thermophysical Properties

The temperature dependence of thermophysical properties is an
important factor in dealing with laser-matter interactions. Figure 3
shows some results for copper with 6 nodes along the z axis. We have
assumed that the thermophysical properties vary linearly with tempera-
ture. The continuous curves represent the temperature-dependent
results while the alternating curves are the results for the constant
room-temperature case. The time interval between curves is 0.25 s.
Both temperature distributions are similar at 0.25 s but quite differ-
ent after 4.5 s. We calculate an error of 10% or about 0.5 s of the
total time to reach melting on the front surface between the two models.
In other words, it takes 0.5 s longer to reach melting on the front
surface, for the specified conditions, if you consider temperature-
dependent properties as in the physical world.

Figure 4 shows the absolute error in temperature for the prece-
ding conditions. The error increases from the front to the back
surface. These results indicate a decrease in the thermal diffusivity
of copper with temperature as expected (Ref. 11). Figure 5 presents
the relative error in percentage for the same conditions.

Figure 6 illustrates the results obtained for stainless steel
# 304. This case demonstrates the drastic influence of the temperature-
dependent thermophysical properties. Under the present conditions,
there is a twofold increase in the time required to reach melting on
the front surface between the two models. In the variable model,
melting on the front surface can be reached in 3 s, whereas in the
constant model, this can be achieved within 1.5 s.
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FIGURE 3 - Temperature distribution within a 1 cm-thick Cu target (6 2
nodes along z axis) for an incident intensity of 20,000 W/cm
and a coupling coefficient of 0.04. The time interval
between each curve is 0.25 s for the temperature-dependent
case (continuous lines) and for the constant room-temperature
case (alternating lines).
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Furthermore, the curves cross one another and we find a higher value of
the temperature on the back surface in the variable case. Figure 7
shows the absolute error in temperature along the z axis for the same

time interval.

4.2.3 Averaging of the Thermophysical Properties

We define the average value of the thermophysical properties in
the following way:

K(Ti) + K(Tm)

K = [30]
av. 2

and
i Ep('ri) + CP(T)m [31]
2

pav.

where Ti is the initial temperature and Tm the melting temperature. If
we use these values in the constant properties model instead of those of
the room temperature, we obtain the results shown in Fig. 8 for copper
and those in Fig. 9 for stainless steel #304. We expect similar results
because the thermophysical properties of these two materials vary linear-
ly with temperature so that these properties are overestimated at low
temperature and underestimated at high temperature by the average pro-
perties values. However, although the discrepancy in time to reach
melting on the front surface is removed, the temperature distribution
through the slab, specially in stainless steel #304 is quite different.
The distribution behaves as if the coupling coefficient was varying with

temperature and, depending on the position selected along the z axis,

it seems to increase or to decrease with time.
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POSITION ALoONC 2 AXTS TUTMY

-100

FIGURE 7 - Absolute error in temperature distribution for conditions of
Fig. 6.
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FIGURE 9 - Temperature distribution within a 1 cm-thick stainless steel
#304 target (2& nodes along z axis) for an incident intensity
of 20,000 W/cm® and a coupling coefficient of 0.04. The time
interval between each curve is 0.25 s for the temperature-
dependent case (continuous lines) and the average-value case
(alternating lines).
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FIGURE 10 - Temperature distribution within a 0.1 cm-thick Al target 6
(21 nodes along z axis) for an incident intensity of 2 x 10
W/cm? and a coupling coefficieng of 0.02. The time interval
between each curve is 134 x 10~ s for the numerical case
(continuous lines) and the analytical average value case
{alternating lines).
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Finally, Fig. 10 presents some results for aluminum, using the
average properties values as defined previously. We used 21 nodes for

6

i
i
i
this 0.1 cm-thick slab because we were interested in a high-input !
intensity (¢ = 2 x 10 W/cmz) for a short time duration, as would be i

encountered with pulsed lasers. The time to reach melting on the front

surface is within 1% of the one obtained by Gautier (Ref. 12).

il

S.0 DISCUSSION ;

Our aim of developing a reliable numerical procedure for the non- j
linear one-dimensional heat conduction equation has been achieved. The
boundary conditions are calculated through a numerical procedure differ-
ent from the one used by Hanley (Ref. 1); therefore, we satisfy the !
energy conservation law whereas his scheme does not. Furthermore, our
scheme is simpler, easier to understand and to work with, and through
proper selection of the '"stability constant", converges more rapidly to ]
the true solution for an optimal number of steps. The time-independent
or continuous-intensity laser beam has been considered in the present

work. ]

Our present solution is applicable to cases where lateral conduc-
tion of heat is negligible. These situations correspond to short inter-

Ao adeaae e

action time consideration or to experiments in which the laser beam

PO,

dimensions are similar or larger than those of the target. However,
extension of our numerical model to 3 dimensions is easy and straight-

forward. l

Similarly, the model does not include any explicit terms for
radiative and convective heat losses but these could be considered by

de it m M e a AAS e

modifying the appropriate boundary conditions.

A A LA T AT AR S W I T
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6.0 CONCLUSIONS

A numerical method of solving the nonlinear partial differential
equations of heat conduction with a computer has been developed. The
reliability of the pgumerical results has been demonstrated by compari-
son with the analytical solution in one dimension. By proper selection
of the ''stability constant" the numerical procedure converges more
rapidly to the results of the analytical solution by minimizing the
truncation error. Agreement is within 1% after only 25 time steps
(25 At).

We have shown the importance of taking into account the effect
of temperature-dependent thermophysical properties when dealing with
laser-matter interactions. For example, in the case of stainless steel
#304, the calculated time required to reach melting on the front sur-
face in the case of variable properties is twice the time necessary
when room-temperature values are used. Although this discrepancy
disappears when average-temperature values are used, the calculated
temperature distributions through the material are significantly dif-
ferent.

7.0 ACKNOWLEDGMENTS

The author wishes to thank Drs. M. Gravel and R.W. MacPherson
for their valuable suggestions and discussions. He also recognizes
the valuable participation of Mr. J.C. Anctil in the preliminary
stage of posing the problem. The full collaboration of Mr. A. Blanchard,
R. Gouge and R. Tremblay from Data Systems was a great asset in the use

of the computer.

L b




10.

11.

12,

UNCLASSIFIED
29

8.0 REFERENCES

Hanley, S.T., "Heat Conduction in Three Dimensions'', NRL Report .
8066, December 1976. 4

Carslaw, H.S., and Jaeger, J.C., "Conduction of Heat in Solids",
2nd ed., Oxford University Press, Oxford 1959.

Ozisik, M.N., '"Boundary Value Problems of Heat Conduction",
International Textbook Co., Scranton, Pens., 1968.

Ames, W.F., "Nonlinear Partial Differential Equations in Engineering"
Academic Press, New York, 1965.

Cobble, H.H., "Nonlinear Heat Transfer in Solids'", Technical Report
No. 8, January 1963. Mechanical Engineering Department, Eng. Expt.
Station, New Mexico State University, University Park, N.M.

Fox, L., "Numerical Solution of Ordinary and Partial Differential
Equations'", Addison-Wesley Publishing Company Inc., Reading,
Mass. 1962.

Smith, G.D., "Numerical Solution of Partial Differential Equations
with Exercises and Worked Solutions", Oxford University Press,
London 1965.

Richtmeyer, R.D., '"Difference Methods for Initial Value Problems",
Interscience Publishers, Inc., New York, 1957.

Price, P.H. and Slack, M.R., "Stability and Accuracy of Numerical
Solutions of the Heat Flow Equation', Br. J. Appl. Ph. Vol. 3,
pp. 379-384, December 1952,

Schriempf, J.T., '"Response of Materials to Laser Radiation: A Short
Course", NRL Report 7728, July 1974.

Touloukian, Y.S., Powell, R.W., Ho, C.Y., Nicolaou, M.C.,
"Thermophysical Properties of Matter”, IFI/Plenum, N.Y., 1973,
Vol. 10, p. 51.

Gautier, B., '"Conduction de 1la chaleur dans un solide en ablation
sous 1l'action d'un rayonnement laser intense", Rapport R 122/76
Institut Saint-Louis, France, Juin 1976.

N m AT W;}!’ﬂl’%‘



UNCLASSIFIED
30

APPENDIX A

A.1 Program Description and Listing

The program written in Fortran IV may be used under the CP-V
Version EOl operating system on DREV Xerox 560 MP computer. The listing
shows the materials, with their corresponding thermophysical properties,
available to the user. Having selected the material, the user inputs
the thickness of his target, the number of nodes through it, the ambient
temperature, the incident flux, its angle of incidence from normal, the
coupling coefficient, the total time of run, the print out interval and
the type of boundary conditions. From there on, the program starts its
calculation by establishing the initial conditions throughout the slab.
Then, it determines the temperature for the next time increment and
checks if it has to print out those results. In the event it has, we
obtain tables of values for the front and back surface temperature and
its distribution through the slab. Furthermore, it calculates, for this
time, the corresponding analytical solution and outputs it. Then, the
program checks if the total run time is exhausted and if not, it goes
back through the loop and calculates the temperature distribution for
the next time step. Once the alloted time is passed the program calls
subroutines to create APL files with the complete set of data. These
files are used to produce graphical representations similar to the ones

appearing in this report.

—
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°JOB 66043,JPBMORENCY, 7. (
oLIMIT (T'IME,20),(CORE,48)

TERMINAL JOB BFALACOCA).

°©ASSIGN F:105,(FILE ,HTINPUT1),(IN)
°©ASSIGN M:SI,(FILE,FALACOCA1),(IN)

oFORTRAN [S5,5I,G0,BC

°LOAD (GO),(LMN,FALACOCALM) ,(PERM),(EF,(APLFNS,LPR))

oRUN

PAPS £ LN TR R S T e, T AT ¢
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ONE-DIMENSION HEAT CONDUCTION LISTING

DIMENSION LOI0221,2),T0(21,2),T3RA(21,1501,T0(211,TM(21,100!
DOUBLE PRECISION F8
FORMAT('1")
FORMATL' 3 oo s ALUMINUMY 2 ++eCOPPERs 3 0 eMOLYBDENUMY ')
FORMATI' @ ¢ceIRONI? 5 seoNICKELY 6 sooTITANIUM) 7 sssall2024)')
FORMAT(' 8 ++oSTAINLESS STEEL{304)")
FORMAT(' INPUT ® FOR TARGET MATERIAL'Y
FORMAT(l®)
FORMAT(' MATERIAL THICKNESS (Cv)!')
FORMAT( 'NUMBER OF NODES ALONG Z=~axIs')
FORMAT(215,F20+5)
FORMAT(FR20¢5)
FORMAT(' AMBIENT TEMPERATJRE (Z211')
FORMAT(' INCIDENT INTENSITY (WATTS/CMacM) ')
FORMAT (' ANGLE OF INCIDENCE (DE3) FROM NORMAL')
FORMAT(' PREMELT ABSORPTION COEFFICIENT')
FORMAT(' TIME OF RUN (SEC)*)
FORMAT(' PRINT OUT INTERVAL (SETH ')
FORMAT(' 1 eesBACK SURFACE INSJLATED ")
FORMAT(' 2 ¢ssBACK SURFACE HEAT SINKED TO AMBIENT ')
FORMAT('FRONT SURFACE STARTS TO MELT AT POSITION (1)
1AND AT TIME Tm  1,F10.5,! SEZJNDSY)
FORMAT('ITIME IN SECONDS'4Fils70// '
FORMAT( 'OFRONT SURFACE')
FORMAT(6F15.8)
FORMAT( 'OBACK SURFACE')
FORMAT('OTEMPERATURE ALONG Z=aXxISg!)
FORMAT(' RUN COMPLETED')
FORMAT( 'OANALYTICAL SOLUTION aLON3 Z=ax1S")
WRITE (108,1)
SELECTeeves MATERIAL CODE
WRITE (108,400
WRITE (108,20}
WRITE (108.,25)
wRITE 1108,30!
READ (105,40) Il
QuUTPUT 111
B0 TO t1200,210,220,230,240,2612242,245),5111
CONTINUE
Ti1ial secaAlLUMINUM
AOD®§60.
FOme25
Fa2me87361
A3®2.7




T

e eman

M-
wbe
47
8
49
S0
51
52
53
LX)
55
56
7.
58
59
60
el
62
63
6%
65
66¢
67
68
69
70
71
720
73
Tée
75
76+
77
78
79
80
sl
Y-
83
[ LA
850
8be
870
bl

210

220

230

Aem9&s
FimsQ.

F3=0,

FamDo
F5s30.
F9m2.43

G0 TO 300
CONTINUE
I1ie2 ++sCOPPER
AO=1083.
FO0=+091
F2=+95¢
A3=i B89
Absgd.
Fle2.456E=5
FImel s867Ems
FemQo
FS=0.0
F9=8.217

80 TO 300
CONTINUE
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11193 4+ eMOLYBDENUM

AQ=2610°
FO®m.06162
F2ue3460
A3=10.2
Ab=131,
Fie2.2e=5
F3se3e46E=5
Faole.
F5=m30e
F9e8.1

G0 TO 300
CONT INUE
11134 4o [RON
AQm1%838.
FOms 1040
F2=.1080
A3=7.88
AbmES .
Fim9.6E=%
F3aa]l.08E=%
FamQe
FEmiBe

P p—————— N R P e
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89
"9Q

Sl.

92

93

Qb

95

96

$7

48

$9.
100
iCi.
1¢2»
103
106
1¢S5
106
107
108
109
140
1il»
1i2
113
1ié
115
116
317
1.8
119.
120,
121
122.
123,
1240
125
126
127
128+
129
130
131,
132
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F9m6.88

80 TO 300
CONTINUE
111m5 sesICKEL
AD=16530
FO=4¢1095
F2mela2d
A3=8.75
Awm73e
Fim5.43E=5
F3snie856E=S
FemQo.
F5mQ.
Fo9m?7,.,9

G0 To 300
CONTINUE
Ii1mg oo o TITANIUM
AO=18690
FO=:139
F2®.0372
A3m4 150
A4m10349
Fl=Q.,
F3maysg=b
FemQo
FS=2is
FSmee09

G0 TO 3uo
CONTINUE
I11@7 oAl (2024)
AQ®630,
FOmes215
Fame33e
A3m2.77
Aem95ep
Fi87:7E=5
F3m9.0E=e
FemQo
FS=0.
FO9m2¢43

G0 To 300
CONTINUE

111=8 +eeaACIER(304)

AQ®1 450
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133
130
135
136
137
138
139
1«00
16l
YL
1e3>»
lads
leSe
labe
147
la8»
149
150
1561
152+
153
1540
155,
156+
157|
198
159
160
iele
162
163,
164
165
166
167
168
169
170+
171,
172
173.
174
175
176

(9]

(8]

300
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FOmesl11712
F2®.03615
A3m7 49
AumgS5,
Fim3.74E«5
FIm3.32E=5
FemQ.
FSm2Q
[ L ¥
CONTINUE
INPUTere e MATERIAL THICKNESS (£w)
WRITE (108,50)
READ (105,60) A6
OUTPUT A6
INPUTees e s NUMBER OF NODES ALONG 2aax!ls
WRITE(108,51)
READ(105+60) KK
OUTPUT KK
NKeKK=1
INPUTeecoe AMBIENT TEMPERATURE (2)
WRITE (108,90)
READ (105,60) A9
QUTPUT A9
INPUTessoe INCIDENT INTENSITY (WATTS/CMaCM)
WRITE (1085100)
READ (10%5,60) BO
ouTPyUY 80
BOmB0/4¢184
INPUTessee aNGLE OF INCIDENCE (DEQ) FROM NORMAL
WRITE (108,5120)
READ (105,60) B2
ouUTRUT B2
INPUTs00es PREMELT ABSORPTION COERFIZTENT
WRITE (108,1239)
READ (105.,60) AS
OUTPUT AS
INPUTsseer TIME OF RUN (SEC)
WRITE (108,130)
READ (105,60) B3
ouTPUT B3
INPUTesses PRINT QUT INTERVaAL (SEC)
WRITE (108,13%)
READ (10%,60) DO
oOuUTPUY DO

Ll
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177
178
179
180
lile
lp2e
1830
Y- L X!
185
186
187
lpYe
189
150
191.
192.
153
194,
195
196
197
198
199
2G0e
201
2ude
203
204
eC5.
206«
2C7.
208
2C9
210
2l
2120
213
2lée
215
216
217
218
219
220+

I LT
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[of-1 1+

C SELECTe» e+ «BOUNDARY CONDITIONS: 185
WRITE (108,150)
WRITE (108,160)

CeevceesIBSml +) BACK SURFACE INSULATED

CesveesIB5m2 o) BACK SURFACE HMEAT=SINKED TO aMBIENT
READ (105s40) 185
QUTPUT 1IBS

c FRONT SURFACEsv e e e INCIDENT FLUX
Pmg0
D1=D0
INDI=O.

C INITIaL CONDITIONS
DO 346 Kel,kKK
TO(Ks1l1mA9
IF(F3¢g@s0e) GO TO 345
UOI(K,)1)8A0aFSaF38F58A9/F2+¢54FA8FSaFS5/F2+e54F38A98A9/F2
GO0 TO 34+

345 UO(K,1)®A9

34e CONTINUE
CTE®le/69
C2uCTE»(FO+F15A9)5A38A6%A6/(F2¢F38(AT=F5) 1 /NK/NK
COmC28NKANK/AG/AG
Com2.uC2oNKaNK/AE/A6
THET=3.,141592#82/180,
BI3nCOS(THET ) #AS5#A682¢ /NK

00 IF(TO(1a1)eLEAD) GO0 To S05
WRITE(108,185),C9
GO TO 1000

505 CONTINUE
F8wa3

DO 560 Xmi,KK
UOI(0,1)mU0(2,1)+Q3%P/F2
Q0 TO (530,535),185

530 UOIKK+121)2y0(KK=1,1)
GO0 TOo 550

538 UOIKK+1211m2:8Y0(KKs1)=U0(KK=1,1)

550 CONTINUE
ALln{F2+FI(TO(KILIWFE))/FB/IFQeF1uTO(Ks1))
EimAl8COs{UOIKels1ioUD(Ke1,1))
UO(Ks2)mEle(1emalala)eylixKsl)
IF(F3:EQ+0e0) GO TO 555
BETAuF3/F2
TO(K,s21{ L {1e¢2e8BETA*UOIXs2))*5:8)/RETA)+FE=1+/BETA)

- ——— - . - P




221,
2ed.
223,
2240
2e5.
226
227
228
2E9e
230
231,
232
233
23% 0
235
2356
237
238
239
2400
2al.
2420
243
2hbo
245
2460
247
€48
2690
250
251 .
252
253
254
255
256+
257
258
259
€60
261
262
263
264
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GO To 560
5585 TO(K,2)8Y0(Ks2)
560 CONTINUE
Co=C9+C2
580 IFI{C9+LT«D1) QO TO 900
Di=D1+DO
INDIsINDI*l
DO 600 K®lskK
TGRA(K,INDI)=TO(K,Y)
6Q0 CONT INUE
TDOIMeC9=C2
WRITE(108,190) TDIn
WRITE(108,191)
WRITE(108,192) (TQ(1,1))
WRITE(108,193)
WRITE(108,192) (TO(KK,1))
WRITE(108,19¢«)
WRITE(108,192) (TO(Lsal)slL®lsKK)
Ceovees ANALYTICAL SOLUTION
LL®IND?
PIm3.:14159265
DIFFm{FE+FI»{A0=F5)/2¢)/A3/7(FO+F18(A0nF5)/20)
700 2=0¢0
Jel
725 WismEXP(=DIFFaPIsPIsTDIM/AE/A6)
Nl
C=0.:0
750 We (=] )n8N/N/N*EXP(DIFFENSNSPISPISTDIN/AG/46)
W2eWaCOSIN*PI®(A6=2)/4A6)
VimaABS(w/wl)
IF(VvI« E*0+000002) GO TO 775
CoCe+w2
NsNei
@0 To 750
775 CeC+w2

TOLJ)maD*PATDIMMDIFF/(F24F 3% (AD®F5)/24)/A6+A52P A6/ (FReF Il

1A0oF5) /20 )% 1 (32 (A622)882uab2A6)/60/746/7462:4L/P1/P])eAS
ZwZ+46/7200
Je el
IF(2.GTeA6) GO TO 800
GO To 725
800 WRITE(108s196)
WRITE(108,492) (TolJ),Jmi,21)
DO 850 I=i,21

Y e LW~
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266
g7
cule
£e9e
c7Cs
7l
c7¢ce
c73s
274
€75
2760
c77
278
279

550
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Ta(l,LL)=T0(])
CONTINUE

CoeevsaEND OF ANALYTICAL SOLJTION

Sv0

%10

980
1000

IFIC9eaT B3 s ResLCeEQeR3)
DO 910 K®1,KK
UOIK,112u0(K,2)
TO(K,11®TO(KsR)

CONTINUE

GO To s00

WRITE(1v8,195)

CONTINUE

CaLl GrAPH{TMAINDIs2i,1)

30 TO 380

CALL GRAPHITGRAZINDISKKSS)

catlk ExIT
END

s
pEFT Vit
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2
kX
LX)
Se
6
7
Be
Se
10
11
i
13
i,
15
16
17
18
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SUBROUTINE GRAPH(TEMP,INDIIKKsIAN)
DIMENSION TEMP(KK,INDI)

DIMENSION ITYPE(2)s1SIZE(3)
ISIZ2E(1)w2

IS1ZE(2)m28

1SIZE(3)s]INDI

ITYPE(1)=3

ITYPE(2)m4

CALL FTIE(1,'JCAOUT!)

CALL FREPLACE(1,IANSTEMPLISIZE,ITYPE)
ITYPE(1)m2

ITYPE(2)=2

ISIZE(1)=)

CalLlL FREPLACE(1,100sK<sISIZESITYPE)
CALL FREPLACE!(1,101,INDISISIZESITYPE)
CaLL FUNTIE(1)

RETURN

END
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A.2 Input and Output Examples

The program is run from a terminal in two possible modes. 1In
the ON-LINE interactive mode the program asks for the specific input
file considered and then starts the calculation. The output is dis-
played on the terminal used and is similar to that obtained in the
BATCH mode. In the BATCH mode, a job file, which contains a set of
controls, the program and data input and output files, are run. The
output is printed on the computer line printer as shown in the typical

example shown hereafter.
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INPUT DATA FILE

1 oo e ALUMINUMS 2 +0+COPRERS 3 oo oMOLYBDENUMY
4 +0oIRONs 5 seoNICKELs 6 *0eTITANIUMs 7 sseAL(2024) i
B +oeSTAINLESS STEEL(304)
INPUT # FOR TARGET MATERIAL
111 = 8
MATERIAL THICKNESS (C™) :
A6 = 1400000
NUMKEK OF NODES ALONG Z=aXIS
KKk = 21
AMBIENT TEMPERATURE (C) 1
A9 = 200000 ,
INCILENT INTENSITY (wATTS/CMeCM) 1
80 = 200000 ;
ANaLe OF INCIDENCE (DEG) FROM NORMAL
82 = «00000¢
PREMELT ABSORPTION COEFFICIENT
AS = 4s000000E=02
TImME OF RUN (SEC)
g3 = 300000
PRINT OUT INTERVAL (SEC)
DO = +250003
1 se+BACK SURFACE INSULATED
2 +ooBACK SURFACE WEAT SINKED TO AMBIENT
igs = 1

bt i

ik
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OUTPUT DATA FILE

> ian

TImE In SECCNDS

FRaonT SURFACE

s2v68083

537917797852
BACK SURFACE
€C+00C00VGC
TEMPERATURE ALONG Ze=aAXlS
817:17797852 30960815430 2174496387308 1258517878} 7003804594 41405175741
27:8764648~ 22:6230%068y 20077685547 20,20263672 20e 04687503 20400952144
eC+00322:70 20+0000V000 20400000000 2000000000 2Je 30900000 2000000000
€L *0U000u00 20+0000V0G0 20+00000000
ANSLYTICAL SOLUTION ALONG Z=aXIS
#3Ce80012695 290.82983398 18816064024 117.a73382%7 73+20011902 4609075317«
Je02438968 25+48023947 22+19616699 20.8109283¢ 20027543640 20.08587129
2CeC2u2610? 2C0.00599670 20400085449 19199990845 193999088 19099990805
19095971008 19499990845 20400009158
TImE IN SECONDS 14936965
FRONT SURFACE
69362304083
BACK SURFACE
£L*0J000v00
TEMPERATURE ALONG 2~=aAXxls
£93+6230008a 837438012695 399.227%5390¢ 283.40118160 19¢+53002383 12616528320
81.33735s20 533081087 37.02905273 28420971680 2373613086 2106032710y
2U64916992 20424731405 2009337891 20.0290%273 2Us00952148 20.00289727
eLed0000L 00 20+000wv000 2000000000
ANALYTICAL SOLUTION ALONG Zeaxls
601+07C06836  #55.33862305 336176167461 203.463%6201 172.60575918 12073976135
80215859314 59.44902039 #3:348315892 33.29827881 27+28207397 23+83001382
2193049402 20493702692 20+03501282 20419314578 20408219913 20403311187
20401274309 20+00474503 200003023682
L. 1) opinbi
RuRe [ RAcblwf




TImE IN SECCNDS e 7605647

FRONT SURFACE
820+00000v00

BACK SURFACE
2001562500

TEMPLRATURE ALONG Z=aAXls
A20+00000.00 672+271¢%023
159+805891602 110.8425¢930
254623040688 22086001367

gL 05517578 20402490234

UNCLASSIFIED
43

536435839804
76+50537109
21+40307617
20+015625%500

ANALYTICAL SOLUTION ALONG Z=AXIS

731+66186523
145+8097967%
3ie100p2952
2CGe3218179«

S83:39404297
109+70n41980
26+03887939
20419039917

TImE IN SECONDS 9981282

FRANT SURFACE
92562231945

BACK SURFACE
2C+258%50492

TEMPERATURE ALONG Z=AX]S
962231468 78407021 0g00
247:17163086 182.849306523

3p+947021 08 3123779297
&LeS56298828 203271485

ANALYTICAL SOLUTION ALONG 2=AXIS

sepe21060522
21lpebonngSe?
0c 006951477
2189921570

696:37353816
168.0729%227
37:39402061
21:34771729

457+50317383
80.96261597
23.51322937
20015176392

652:32104492
132490091797
2604745093
20025634492

565+90307617
128447384600
31+00200479
24+17568970

WA W e et e

©1%8.26316406
53.70288086
204566162109

352+9443359%
60.01801125
21098908669

530.60988328
95.,79077148
23.62622070

454412353516
98.06254578
27+33912659

31139135742
39+3V004283
200239307227

26805398438
«6+13006592
2140977700

421+55359378
69:24682617
2le97729492

35996093780
75+16055078
242635085627

226+2580%60¢
30462207031
2013085938

20008437347«
3604631805
20+59326172

326476611320
5101342773
21.0539350%

282.01391602
58:2665710%
22493748311




Ty TR

UNCLASSIFIED
44
TIME IN SECUNDS 1s2469541
FRONT SURFACE
1015034603555
BACK SURFACE
2130019922
TEPLRATURE ALONG Z=AXIS
101134643555 875.65283203 74664135742 62%5.93310547
32e 59887695 254+60p089¢5 19366650391 148,122558859
59.89379083 «5.90425688 36:02260742 30.1796R750
cl+27929068 21453271484 21+30419922
"ANALYTICAL SOLUTION ALONG Z=AXIS
342+7306037% 791.37182617 658+00135%47 Sh1.03129883
2840470645398 22544110107« §97¢37393188 138.89701843
6703033447 . §3:53417969 ‘0305!168030 36.386825%¢
25+63603210 24440707397 T4201371765
TIME IN SECONDS 1+6917431
FROKT SURFACE
10b6+60424808
VALK SURFACE
~e  ag6e01265117
TEMPERATURE ALONG Zeaxls !
1086+66424205 955.2607+219 82937280273 710.,21801758
wbt69165239 3254272392578 256037207031 190.9155273»
87+65380:5%9 66¢8085337% 51073193359 41.12133789
26912451172 24451928711 264001265117
ANALYTICAL SOLUTION ALONG Z=AXIS
1030e006884766 878.45361328 . 742¢75244l0} 627259082031
245+329101%56 282 negeu633 R27+64p12122 182,106¢73632
9c+12615907 73.83950378 59¢76214600 49.16986084
32¢22420316 3014958191 29087726440
e . VM}LLAFMgAvaD“L
THIS PAGS L - o

FROM CO2Y & Chilidolasas

10 Lwl i

51512182617
107+7490234%
eoein798828

491037695313
108+535567932
3131039429

59909204102
132035008766
33ene914063

51736499023
145+20967102
«l+35488770

©18.641864570
79.93212891
2372268625

356.00170898
85.,00825500
27.8%91501%6

”

©97.2268066%
11%.69091797
29+09033203

426026879884
11543851400
35.87284851




OO oage i o

45
TIME IN SECCNDS 1793439
FRNANT SURFACE
1156+86865¢34
cACK SURFACE
29e54296875
TEMPERATURE ALONG 2=AXIS
1150806865234 1029.38769%5312 906+46044922
«8i09497070 396+23071289 321+40991211
182417993164 9442930859 7307543945
3325630706 0. eu855664 29+5429687%
ANALYTICAL SOLUTION ALONG 2=AXIS
1113+7958904% 96156435937 824405737308
812463110382 340.91357422 279.840357617
121052125549 92.+7670086 8026164246
weee567871% 39.42846680 38443872070
TImE IN SECUNDS 1+9961729
FRONT SuRFACE
121806229588
BACK SURFACE
3uel14111328
TEMPERATURE aLONG Zeaxls
1215.06225586 1093.79028320 973443701172
Sepe73120117 #61.06028320 382417993164
155.09350586 126495554297 9802758789
43.65087891 39+49096080 38103131328
ANALYTICAL SOLUTION ALONG Z=aAXIS
liypes22u515p 1035.7238769% 896+81689453
#72+06201172 395466967773 329467211910
15398117068 12476715088 102.828681168
5551107061 51457177730 50.27758789

UNCLASSIFIED

789.120605%7
254+8881183%9
57¢3693R477

730.96704102
228.39118958
66013015527

857.86254883
312,5585937s
77+3022051¢

77145874023
273.1970214p
83.4m120117

678222895508
20253200195
“6+0859375%)

S»i+81460332
105+52926636
2043605069

J«To3011816
252432128906
61294262695

65925537109
225+34900083
7212719727

578,43090820
157:91894531
38+29370117

©9%+9677734~
150.23272705
©7.701174 86

640062866211
20131842969
5095010156

559:6735839s
185.2333831s
62+2683105%




e B S AN e L S

UNCLASSIFIED
46

TImE IN SECONDS 2.2430019

FrahT SUKRFACE
1279023061992

calK SUnFalt
aUee0Y991e11

TEMPERATURE ALONG Z=AXIS
1274043061992 1152.99023438 1034+98266602
al2e2353%5156 $22.5679687% “40¢508%0727
19850584766 15888574219 126067724609
©7+8E83691% 52423754883 5060991213

ANALYTICAL SOLUTION ALONG Z=arlS
1758057446289 1105.48559570 965:420836%0
n2vew31e5508 ©e9,12158203 378489770508
1neel5600586 153+16754872a 127.82523908
71+61254283 66+8056640¢ 65022119161

TI»E IN SECCNDS 2.4398310

FROT SURFACE
1320+81562969

bACK SURFACE
6650507227

TEMPERATURE ALONG Z=aXxls
1326081542969 1207.905517%8 1092.04345703
672003344727 Sul.25219727 €97:42944330
239+732621 08y 19542697753y 15836065234
75:86476609 68850245085 66454907227

ANSLYTICAL SOLUTION ALONG Z=aXis
13c~+98828125 1371.57031250 1330452929688
5ps 09603558 501 ¢30410%5«7 427.43017878
217.68812561 183.3157806% 15409918+570
YCeSeploe2sy 8693452300 8308276307

921.135258392
36700061RQ453
1014221867969

83R.,1774q022
310.06787109
107,49442891

979.A87e21 88
421.073730«7
128.5680101¢

901.6924269%
362.0100885%59
131058702189

81c°21193408
JUErS5635648
sle7eel4043

7232424850585
269°32«00391
91264184820

87200585937
3Idcene225886
105+23315430

75477856448
306+709823125
113+7189561¢

708+,9904785¢
2e6:32324219
67:49609375

620071313477
221+472930y2
79.803222606

769.1706863V
292.1069335y
B7+84887635

679:.4035¢005
258062133789
1004035981405




TImE IN SECONDS

FRAMNT SURFACZE
1377+90%9423583

ALK SymFaCt
87+5.660156

TEMPERATURE ALCNG Z=axls

1377490942383
230294 772«61
28348210328

5669506238

UNCLASSIFIED

ANALYTICAL SOLUTION ALDWGE &=AX1S

139095770 %a
6%i+3IT70L1709
2530g8en7u8340
113+05249023

TIwE IM SECCNDS

FRELWT SURFACZE
iec3+%0828.72

oarKk SuRFaCE
150060527 34n

TERPLRATIYE ALIONG Zeaxls

iecdevenies?2
Y60 +36791592
3cee676757h4%
1ewe 1923868

ANALYTIZAL BULUTICN ALSAO Z=AXIS

ief3ie33932c27

693+8Le390uvd

Po9re313g9sep

136+9%21875C
Run CCMPUETED
sExITa

47

2+72739i7
1261438085938 11#7:57592773
6393793953 354¢08367656
235416987773 194406153516
9802935703 87451660156
1237.2C581055 1709529736328
S5«45039v6E5 *774323128906
216433913133 185+:00762702
106468237308 1064¢57397461

249942207
130¢+505vi3d320 1197.52655820
L9 w9375V oCoelgnglaze
27247592773 230.285918202
Lises9sun789 21100352730
429737308281 1150475633183
eCe 38208008 S2eree5l68136
29426229793 216+531388e2
1289+968¢0l72 127+663138672

£23%7.34199219
©7%5,08242183
160422431838

96500200047
»09.25701250
159.7878977

i0BR.03033789
526+37397%61
$97.:1711252

1523.3332%19%
«53.83170898
187.8007812%

93ve333271n8
o 02550230
133053372272

k~o*ec117188
3+3+7233s807
135419287109

98c¢3353:273
encensuQeggd
le3ecoo8e570

glés3Ll8/8918
39isJ32588K67
levse7797452

82m.31351372
3023 le99023
112.9329082°

73Reve531250
298+118a0820
12381689433

881 13760bedn
38%:99«1e063
140435009750

793.1760253>
334+52001953
124,83054p00

I PR
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