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RESUME

Dans ce rapport on d6veloppe un sch6ma num6rique de solution de
l'quation unidimensionnelle non lingaire de conduction de la chaleur.
On applique ensuite ce schema A l'interaction laser-m6taux et on montre
l'importance de la variation des propri~tgs thermophysiques sur la

distribution de la temperature dans une plaque m6tallique. (NC)

ABSTRACT

This report establishes a numerical scheme to solve the nonlinear
one-dimensional heat transfer equation. The scheme is then applied to

the case of laser-metals interaction and used to show the importance of
thermophysical properties variation on the temperature distribution
within a slab. U)
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1.0 INTRODUCTION

The development of the CO2 laser with its high efficiency and

high output power has made possible a variety of laser-target inter-

action experiments. However, as the cost of performing exhaustive

parametric studies to establish potential applications is prohibitive,

computer simulations were developed which can predict laser effects with

sufficient accuracy to reduce the number of required experiments to an

acceptable level.

Although Hanley (Ref. 1) has developed an operational finite

difference code to solve the three-dimensional heat flow equation, his

solution does not conserve energy and leads to inaccurate results. For

"simplicity, in this report, we solve the one-dimensional problem

by properly treating the boundary conditions to conserve energy.

Exploitation of the Kirchhoff transformation of the temperature scale

allows temperature-dependent physical properties to be included relati-

vely simply. Furthermore, by reducing the truncation error to terms of

second order in time and fourth order in space, we obtain significantly

more accurate results for a specific time or, conversely, we reduce the

computation time for a given accuracy. The extension of this numerical

scheme to three-dimensional problems is straightforward.

Section 2 deals with the mathematical formulation of the problem,

and Section 3 develops the finite-difference approach used to solve the

one-dimensional heat diffusion equation. In Section 4, we present some

numerical results and compare them with the few existing analytical

solutions. In Section 5, we discuss our results and their limitations.

This work was performed at DREV between May 1978 and February

1979 under PCN 33B06, Effects of Laser Beams on Materials.
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2.0 FORMULATION OF THE PROBLEM

The mathematical treatment of laser-target interaction involves

the solution of the differential equation of heat conduction in bounded

media under appropriate initial and boundary conditions. For a sta-

tionary, homogeneous, isotropic solid with internal heat generation

the differential equation in a Cartesian coordinate is (Refs. 2, 3)

P C p(T) 3T (zt) = K(T) (z,t) + g[z,t] [1]
at az I z J

In this equation, p is the density, C p, the specific heat at

constant pressure, T, the temperature, z, the spatial coordinate, t, the

time, K, the thermal conductivity and g[z,t], the internal heat source

or sink.

This differential equation of heat conduction has numerous

solutions, unless a set of suitable boundary and initial conditions

are prescribed. In this study, we consider linear and nonlinear bound-

ary conditions of the first and second kind. Mathematically, they have

the following forms:

T = To or 0 [2a]

and/or

KIT]- =F [2b]

where To is a constant temperature, a/an i denotes differentiations

along the outward-drawn normal at the boundary surface, Si, and F can

be arbitrary functions of time and surfaces.

When the thermal properties of the solid vary with temperature,

the partial differential equation is nonlinear. If it is assumed
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that p, Cp and K are dependent on temperature but independent of position

and time, and that the heat-generation term g Z g(z,t) is independent of

temperature, then, changing the dependent variable using the Kirchhoff

transformation (Refs. 2,4,5) will remove the thermal conductivity from

the differential operator.

This transformation is accomplished by defining a new dependent

variable, U, as

T
Urn] K(T') dT' [3]

0 Ke

where U E U (T), T = T (z,t) and K. is the value of thermal conductivity

for T = 0. Since K is a function of T only eq. 1 can be written in the

following form

p Cp Lt- -"a +  !K -- +  g [4]
at aZ z z

Expressing 3K in the form

az

aK dK aT

3z dT az

and substituting this into eq. 4 gives

0 Cp T  K 2T dK  (,T )2
P-C alIK2-( + g [6]

t z2 dT \z



UNCLASSIFIED
4

From eq. 3 we find

au du 8T _ K 3T [7a]

at dT at KO at

DU dU 3T K 3T [7b]

az dT az K. 3z

32U a 2T ... T. K T+KL 2  [7c]

az2  az K Kz K az az2

Substituting eq. 7 in eq. 6 gives

1 au a U [8]

a at az2  Ko

Since the thermal diffusivity a = K/pCp in eq. 8, is a function

of temperature, the equation is still nonlinear, but simpler in form.

Through this transformation, the boundary conditions become

U = Uo [9a]

and/or

Ko LU_ = [9b]

Even with these simplifications, the solution of the differen-

tial equation is very complex and analytical results can only be obtained

for a restricted number of particular or specific cases, which we will

use without derivation to check the valicity of our numerical model.

Following Hanley (Ref. 1), we use a standard finite-difference approxi-

mation to solve this one-dimensional heat conduction equation. One of

--i ... .. . ..A )-
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our aims is to obtain a good compromise between computer time and

accuracy of the results, particularly those related to a comparison

with experimental ones.

3.0 FINITE-DIFFERENCE MODEL

3.1 Finite-Difference Approximation

We use an explicit, central difference scheme to solve the

following differential equation:

- (z,t) = 0'2U  (zt) + 21 [10]at az 2  Ko

We consider only materials opaque to the incident laser beam

(i.e. materials such as metals for which the absorption depth is much

less than the wavelength of the laser radiation) and chemically as well

as nuclearly stable. Under such circumstances, there is no internal

heat source or sink and, therefore, g (z,t) = 0.

The boundary-value problem under consideration is that of a slab

of finite thickness whose front surface has a uniform and constant

thermal load (i.e. aU/az = Cte at z = 0), whereas the back surface is
3U

either insulated (i.e. L-= 0 at z = L) or held at the ambient temper-
az

ature (i.e. U = U. at z = L).

We use a Taylor series expansion of the function as our basic

concept in the finite-difference approximation of the differential

equation and the related boundary conditions. Since the procedure is
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quite straightforward, we will give only the main results here. When

a function U(z,t) and its derivatives are finite, continuous, and have

a single value, this function can be expanded in the form of the Taylor

series about the point z as

z_ U Az 3a 3U(z+Az,t) = U(z,t) + Az. 2- (z,t) + 2 
-2U (z,t) + - z  (z,t)+.az 21 az 3! z3 ""

[11]

or 2 2 3 3
or(z-Az,t) =U(z,t) - az. _U (ztt) + AL L2U Cz't)' Az L u Cz't) +...

9z 21 az2  31 9z3

[121

The first-order central-difference approximation is obtained by

subtracting eq. 12 from eq. 11

au (z,t) - U(z+Az,t) - U(z-Az,t) + O(Az2) [13]

3z z 2Az

The term O(Az 2) on the right-hand side indicates that the error

involved in cutting off the infinite series is of the order of (Az2).

Similarly, the addition of eqs. 11 and 12 gives the second derivative

of the function as

a (zt)1 U(z+Az,t) + U(z-Az,t) - 2U(z,t) O(Az 2) [14]
az 2 J ( z' Az 2+ [4

where the truncation error is of the order of (Az 2).

We also have for the time variable the following finite-difference

approximation

. . . . . . . .. . . .. . . . . .. . . . . . . .. .... .. . .. - f
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(z,t) ] = U(z,t+At) - U(z,t) + 0(At) [15]

at Jt At

We then find, for the finite-difference approximation, the

following relation

U(R,t+l) = U(R,t) + At2 [ U(R+l,e) + U(R-l,Z)

2aAt U(R,t) + O(At) + O(Az2) [16]

[Az]
2  

t

where Az is the spatial increment and At, the temporal one; R refers to

lattice points along the z axis and Z, to the integral multiple of the

step At along the time axis. The coefficient a is the temperature-

dependent thermal diffusivity and can be expressed as

aC(T) - KCT) [17]
p(T) . C (T)

p

3.2 Boundary Conditions

Using the central-difference approximation, the boundary condi-
tions become

1. Back surface

a) Held to ambient

U(Rmax, t) = U, [18a]

b) Insulated (i.e., no heat flow)

U(Rmax. + 1, t) = U(Rmax. -1, t) [18b]

'A
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and

2. Front surface

U(Rmin. - 1,Z) = U(Rmin. + lj) + Az (T) . COS 0[19]
K,

where Rmax. and Rmin. indicate respectively the maximum and the minimum

values on the z axis, K0 is the ambient temperature thermal conductivity,

c(T) the temperature-dependent absorption or coupling coefficient, @,

the incident flux or power density on the material and 0, the angle of

incidence of the laser beam with respect to the normal to the front

surface.

3.3 Errors Involved in Finite Differences

Since in the process of the numerical solution of differential

equations the derivatives are approximated with finite-difference

expressions at each nodal point, an analysis of the possible errors

involved and of the way to reduce them is paramount. There are two

main types of errors: round-off and truncation errors. Furthermore,

because of the explicit numerical scheme used, a specific relation

between the spatial and the temporal variables must be satisfied. This

relation is called the stability criterion. A detailed derivation of

the results given below is beyond the scope of the present work.

However, interested readers can consult, for more information, anyone

of the following publications (Refs. 6-9).

3.3.1 Round-Off Errors

Numerical calculations are carried out only to a finite number

of significant figures. At each step, the error introduced by rounding

off the numerical calculations is called the round-off error. In linear

problems, the effects of these errors superimpose themselves in the
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solution. The use of small mesh size, although desirable for a better

approximation of the differential equation, increases the cumulative

effect of round-off errors. Therefore, one cannot always say that de-

creasing the mesh size necessarily increases the accuracy in finite-

difference calculations. On the other hand, carrying out the numerical

calculations at the intermediate stages to two or more additional signi-

ficant figures will reduce the cumulative effect of round-off errors at

the expense of increasing the computation time. However, since the

distribution of these errors has many of the features of a random process,

it is likely that the effects of these errors will generally cancel each

other in part. Therefore, it is very difficult to determine exactly

the order of magnitude of the cumulative departure of the solution due

to round-off errors.

3.3.2 Stability of Finite-Difference Solutions

At each stage of the calculations, some round-off errors will be

present. The solution of finite-difference equations is called stable

if the difference between the exact and the numerical solutions tends

to zero as At and Az tend to zero and does not increase exponentially.

Specifically, the solution will be stable if the following condition is

satisfied:

2 a.1t 2 < 1 [20]
(Az)2

It should be noted that the form of the difference equations

depends on the type of the differentiation scheme used, that of

differential equations and the boundary conditions. Therefore, the

stability criteria given above cannot be generalized for other systems.

In fact, each system must be examined individually for stability.

-' -- "- ... . ..-- ,s W...-,, ...... S -' ol ....... L' ' '= , ' ' , , ,
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Unfortunately, there is no general method, for nonlinear problems, that

can be used effectively to determine the stability of the resulting

finite-difference equation.

3.3.3 Truncation Error

The Taylor series expansion, used in expressing a partial differ-

ential equation in finite differences, is truncated after a prescribed

number of terms. The error involved in each step of calculation result-

ing from the truncation of the series is called the truncation error.
2In our case, that error involves terms of order At and (Az) . As the

mesh size is reduced, and accordingly the time step to satisfy the

stability criteria, the truncation error is expected to become smaller

so that the numerical solution converges faster to the true solution.

Of course, this increases the number of nodal points and the computation

time. It is interesting to note that the truncation error is reduced

to terms of order (At)2 and (Az)4 by satisfying the following relation:

a.A 1 1 2 [21]
(Az)2  6

Under this condition, the finite-difference solution approaches,

within a determined residual error, the true solution of the differential

equation at a faster rate and it will be used in our numerical scheme.

This value is called the "stability constant" and it will be referred to

under this name later on.

3.4 Program Summary

A computer program has been written in FORTRAN IV to evaluate

the finite-difference approximation described in the previous section.

A listing appears in Appendix A along with detailed running instructions.

. : .. '...... ....... ..
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The program can deal with different types of opaque materials as

long as their thermophysical properties and their temperature variation

are known. The number of points in the lattice along the z axis is

variable to permit the user to satisfy specific needs.

In addition, an analytical solution calculation for constant

thermophysical properties has been introduced into the program to check

the numerical results. Finally, the user can obtain the temperature

distribution as a function of time in tabular and graphical forms.

4.0 RESULTS

4.1 Analytical Solutions

Schriempf (Ref. 10) gives analytical solutions to the heat

diffusion equation in the one-dimensional situation. He assumes the

laser beam is constant and uniform, the material parameters are tem-

perature independent, the solid is uniform and isotropic. Furthermore,

there are no internal heat sources or sinks, and no phase change in the

materials is considered.

The solution for the semi-infinite solid is

T (z,t) = 2. e" *. COSe .4t'.ierfc rz1 [22]

and

T (0,t) = 2... CSe. 1  -'t [22a]

Similarly, the solution for a slab of finite thickness is
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T(z,t) = (COS 0).L. La .t +[3 (L6 - L22

2 2 2-
e --- e t/L .(COS nw(Lz))]I

n=l

and

K IL 3 w2 n'l n 2

[23a]

where L is the slab thickness, and the condition for an insulated back

surface is

ar) -0 [24]

z=L

Equation 23 has been included into the program appearing in

Appendix A, such that the reliability of the numerical results, for

similar conditions, can be assessed.

4.2 Numerical Solutions

The numerical results obtained in calculating the function U are

identical to those of the temperature T, if we assume that the thermo-

physical properties are temperature independent. Otherwise, we have to

solve the following equation

T

U(T) = L f K(T') dT' [25]

0

V..,.-.-
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to find the temperature distribution through the slab considered. For

metals studied here, the thermal conductivity of the solid phase is

K(T') - K. ( + Br') [261

Substituting eq. 26 into eq. 25 gives

U - T + 0 T2  [27]
2

and finally,

T - I + 2..U(zt) - 1 [28]

Furthermore, we assume that the thermal diffusivity is as

follows:

a(T') K(T') * Ko(l + BT') [29]
pO C p(T') POCp (1 + yT')

where Ko is the thermal conductivity, Po, the density (assumed constant

in the temperature range considered) and Cp, the specific heat at the

initial temperature (i.e. room temperature in our case).

4.2.1 Numerical vs Analytical Solutions

This section compares the numerical and the analytical solutions

for similar conditions; it also gives an assessment of the accuracy

and reliability of our numerical model.
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Figure 1 shows the analytical solution (alternating lines) and

the numerical results (continuous lines), with temperat.-re independent

thermophysical properties, for a 6-node case (i.e. Az = 0.2 cm) along

the z axis. Each curve represents the temperature distribution at 5

time step increments (i.e. SAt). Both models predict the same front

surface temperature, within 1%, after only 25 time steps (25 At) or

about 0.2 s in the present case. Furthermore, if we calculate, for a

specific time, the area under each curve we obtain the same result, which

demonstrates that we satisfy the energy conservation principle.

The same results appear in Fig. 2, but for a 21-node case (i.e.

Az = 0.05 cm) along the z axis. Each curve corresponds to 16 time steps.

Except for the first few curves, it is very difficult to differentiate

between the results. As a matter of fact, we have, within 0.5%, simi-

lar results on the front surface after only 16 time steps or about 0.006

s in this case. However, this accuracy was obtained at the expense of

increasing the computation time by a factor of 64. This is because Az
2

is 4 times smaller and At is 16 times smaller since At - (Az)

This demonstrates that the numerical solution can give, with

some compromise, results comparable to those of the analytical one. In

the next section, the numerical solution is applied to cases where no

analytical solutions exist, but where there are a few approximate ones.

IL ______
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FIGURE 1I Temperature distribution within 11 cm-thick Cu target for an
incident intensity of 2,000 W/cm and a coupling coefficient
of 0.02. Each curve corresponds to 5 time increments (S At)
of the numerical solution. The continuous lines represent
the temperature independent thermophysical properties numeri-
cal case (6 nodes along z axis) whereas the alternating lines
show the analytical solution.
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4.2.2 Temperature-Dependent Thermophysical Properties

The temperature dependence of thermophysical properties is an

important factor in dealing with laser-matter interactions. Figure 3

shows some results for copper with 6 nodes along the z axis. We have

assumed that the thermophysical properties vary linearly with tempera-

ture. The continuous curves represent the temperature-dependent

results while the alternating curves are the results for the constant

room-temperature case. The time interval between curves is 0.25 s.

Both temperature distributions are similar at 0.25 s but quite differ-

ent after 4.5 s. We calculate an error of 10% or about 0.5 s of the

total time to reach melting on the front surface between the two models.

In other words, it takes 0.5 s longer to reach melting on the front

surface, for the specified conditions, if you consider temperature-

dependent properties as in the physical world.

Figure 4 shows the absolute error in temperature for the prece-

ding conditions. The error increases from the front to the back

surface. These results indicate a decrease in the thermal diffusivity

of copper with temperature as expected (Ref. 11). Figure 5 presents

the relative error in percentage for the same conditions.

Figure 6 illustrates the results obtained for stainless steel

# 304. This case demonstrates the drastic influence of the temperature-

dependent theruophysical properties. Under the present conditions,

there is a twofold increase in the time required to reach melting on

the front surface between the two models. In the variable model,

melting on the front surface can be reached in 3 s, whereas in the

constant model, this can be achieved within 1.5 s.

I. I
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FIGURE 3 - Temperature distribution within a I cm-thick Cu target (6 2
nodes along z axis) for an incident intensity of 20,000 W/cm
and a coupling coefficient of 0.04. The time interval
between each curve is 0.25 s for the temperature-dependent
case (continuous lines) and for the constant room-temperature
case (alternating lines).
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FIGURE 6 -Temperature distribution within a 1 cm-thick stainless steel
#304 target (21 nodes along z axis) for an incident intensity
of 20,000 W/cm2 and a coupling coefficient of 0.04. The time
interval between each curve is 0.25 s for the temperature-
dependent case (continous lines) and for the constant room-
temperature case (alternating lines).
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Furthermore, the curves cross one another and we find a higher value of

the temperature on the back surface in the variable case. Figure 7

shows the absolute error in temperature along the z axis for the same

time interval.

4.2.3 Averaging of the Thermophysical Properties

We define the average value of the thermophysical properties in

the following way:

K(T.) + K(T M)K - [30]
av. 2

and
C (Ti) + Cp(T)

Spi pm [31]
pay. 2

where T i is the initial temperature and T the melting temperature. If

we use these values in the constant properties model instead of those of

the room temperature, we obtain the results shown in Fig. 8 for copper

and those in Fig. 9 for stainless steel #304. We expect similar results

because the thermophysical properties of these two materials vary linear-

ly with temperature so that these properties are overestimated at low

temperature and underestimated at high temperature by the average pro-

perties values. However, although the discrepancy in time to reach

melting on the front surface is removed, the temperature distribution

through the slab, specially in stainless steel #304 is quite different.

The distribution behaves as if the coupling coefficient was varying with

temperature and, depending on the position selected along the z axis,

it seems to increase or to decrease with time.
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FIGURE 8 -Temperature distribution within a 1 cm-thick Cu target (6 2
nodes along z axis) for an incident intensity of 20,000 Wfcm
and a coupling coefficient of 0.04. The time interval between
each curve is 0.25 s for the temperature-dependent case
(continuous lines) and the average-value case (alternating
lines).
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FIGURE 9 - Temperature distribution within a I cm-thick stainless steel

#304 target (2 nodes along z axis) for an incident intensity

of 20,000 W/cm and a coupling coefficient of 0.04. The time

interval between each curve is 0.2S s for the temperature-

dependent case (continuous lines) and the average-value case

(alternating lines).
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Finally, Fig. 10 presents some results for aluminum, using the

average properties values as defined previously. We used 21 nodes for

this 0.1 cm-thick slab because we were interested in a high-input

intensity ( 2 = 2 x W/cm 2) for a short time duration, as would be

encountered with pulsed lasers. The time to reach melting on the front

surface is within 1% of the one obtained by Gautier (Ref. 12).

S.0 DISCUSSION

Our aim of developing a reliable numerical procedure for the non-

linear one-dimensional heat conduction equation has been achieved. The

boundary conditions are calculated through a numerical procedure differ-

ent from the one used by Hanley (Ref. 1); therefore, we satisfy the

energy conservation law whereas his scheme does not. Furthermore, our

scheme is simpler, easier to understand and to work with, and through

proper selection of the "stability constant", converges more rapidly to

the true solution for an optimal number of steps. The time-independent

or continuous-intensity laser beam has been considered in the present

work.

Our present solution is applicable to cases where lateral conduc-

tion of heat is negligible. These situations correspond to short inter-

action time consideration or to experiments in which the laser beam

dimensions are similar or larger than those of the target. However,

extension of our numerical model to 3 dimensions is easy and straight-

forward.

Similarly, the model does not include any explicit terms for

radiative and convective heat losses but these could be considered by

modifying the appropriate boundary conditions.

I1|
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6.0 CONCLUSIONS

A numerical method of solving the nonlinear partial differential

equations of heat conduction with a computer has been developed. The

reliability of the kumerical results has been demonstrated by compari-

son with the analytical solution in one dimension. By proper selection

of the "stability constant" the numerical procedure converges more

rapidly to the results of the analytical solution by minimizing the

truncation error. Agreement is within 1% after only 25 time steps

(2S At).

We have shown the importance of taking into account the effect

of temperature-dependent thermophysical properties when dealing with

laser-matter interactions. For example, in the case of stainless steel

#304, the calculated time required to reach melting on the front sur-

face in the case of variable properties is twice the time necessary

when room-temperature values are used. Although this discrepancy

disappears when average-temperature values are used, the calculated

temperature distributions through the material are significantly dif-

ferent.
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APPENDIX A

A.1 Program Description and Listing

The program written in Fortran IV may be used under the CP-V

Version E01 operating system on DREV Xerox 560 MP computer. The listing

S.shows the materials, with their corresponding thermophysical properties,

available to the user. Having selected the material, the user inputs

the thickness of his target, the number of nodes through it, the ambient

temperature, the incident flux, its angle of incidence from normal, the

coupling coefficient, the total time of run, the print out interval and

the type of boundary conditions. From there on, the program starts its

calculation by establishing the initial conditions throughout the slab.

Then, it determines the temperature for the next time increment and

checks if it has to print out those results. In the event it has, we

obtain tables of values for the front and back surface temperature and

its distribution through the slab. Furthermore, it calculates, for this

time, the corresponding analytical solution and outputs it. Then, the

program checks if the total run time is exhausted and if not, it goes

back through the loop and calculates the temperature distribution for

the next time step. Once the alloted time is passed the program calls

subroutines to create APL files with the complete set of data. These

files are used to produce graphical representations similar to the ones

appearing in this report.

I-
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1.000 oJOB 66043.JPBMORENCY,7. (TERMINAL JOB BFALACOCA).
2.000 oLIMIT (TINE,20),(CORE,48)
3.000 OASSIGN F:105,(FILE,HTINPUT1),(IN)
5.500 *ASSIGN M:SI,(F LuE,FAluACOCAl),(1N)
6.000 oFORTRAN LS,SIIIGO.BC

L00 eOAD (GO).(LMNFALACOCALNJ),(PERP4),(EF,(A PLFNS.LPR))
8.000 oRUN
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ONE-DIMENSION HEAT CONDUCTION LISTING

1. DIMENSION UO(0:21,2),TOIe1,2),T3qA~:at1O~,TO(21 I.TM(21.100)
R. DOUBLE PRtECISION FS
3o I FORmAT('l')

40 10 FORMATIO I *.'AI.UMINiJMi 2 seeCOPPE~s 3 *..MOLYBOENUMJ'I
5. 20 FORMAT(' * ''IRON. 5 -'NICI(EL & *..TITANIU4, 7 *'.AL02024)II
69 25 FORMAT(' 8 ...STA14LESS STEEUSD'.)II
7. 30 FORMAT(' INPUT 0 FOR TARGET MATERIAL')
as '.0 FORMATCZ'.)
9. s0 FORMAT(' MATERIAL THICK(NESS ICM1)I

10. 51 FORMAT11NUMDER OF NODES AL.ONG ZOAXISI)
its 55 FORMATI2ISaF2O.5l
122 60 FORMAT(F20o.5
2.30 90 FORMAT(' AMBIENT TEMPERAThJRE (CI)
2.'. 100 FORMAT(' INCIDENT IN4TENSITY (WATTS/CM*CM) 1)
15' 120 FOR"ATCl ANGLE OF INCIDENCE IDE3) FROM~ NORMAL#)
16' 123 FORMATi' PREMELT ABSORPTION COECVIC!ENT'l
17. 130 FORMATI' TIME OF RUN (SEC))
lug 135 FORMAT(' PRINT OUT INTERVAL (SEC),
2.9. I50 FORMAT(' I *.'BAC( SURFACE INSJLATEri '2
20. 160 FORMAT(' 2 somBACK SURFACE MEAT 91!4En TO AMBIENT ')

22. 185 FORMAT(fFRONT SURFACE STARTS TO '(EL? AT POSITION 11)
~2. LAND AT TIME To 'sF10.5' SECOYDRv)
23. 190 FORMAT'1TIME IN SECDDS'F11.7#//)
8'.* 191 FORMAT(OOFRONT SURFACE*)
kso 192 FORMAT(6FS)
26o 193 FORMATh'OBACK SURFACE')
27. 2.9' FORMAT('OTEMP[RATURE ALONG ZOAXZSI)
26. 195 FORMAT(' RuN COMPLETED')
29, 196 FORMATI#OANALYTICA6 SOLU.TON AiODN3 Z-AXIS11
30o WRITE (106011
31- C SELECTo-' MATERIAL CODE
320 WRITE 4108,lO)
33a WRITE (108020)
3'.. WRITE (108025)
35* WRITE lIOS,3OJ
36' READ (105.'.O) III
37a OUTPUT IIl
3as GO To t2QOO21~,22O230,92'.O2'.,2'2,2'.5),lI1
399 200 COP4TINUE
moos C 11181 o.'ALUMZNLIM
41' A0311600
'.2' FOw*25
'.3a F241157361

"'p. A30207
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'.5. A'.U94

50. F902043
big 00 TO 300
52. 210 CONTINuE
b3o C 11162 ... COPPER
6'.' AO=0u3s
550 FON#091
56 F2-956

58. A4r-*2t
59. FI=2.456E-5
606 F3wo1.567E-4

63' F9m8.217
640 00 TO 300
65' 220 CONTINUE
66. C I11.3 *..PIOLYBDENUiM
670 AO=2610*
b5' FOo.06i62
69, F20*3460
70. A3*10.2
71a A40131.
72o Po2oze-5
73o F3o-3946E-5
7'.. Ppo.0
750 P5010.
76. FPsu3.
77a 00 TO 300
75. 230 CONTINUE
796 C Ills* 6001f40N
600 AOMIS350
ale FOm.1O&U

83. *3w7.85
JA4. A4065 o
1150 Flm9.6r-5

jJ60 F3ft-1.ooE-5
67. oo
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89. P9n6e88
90. 00 To 300
910 2*0 CONTINUE
92. C I11*5 seeNICKEL

93 9AO*1I.53e
94- FO-.1095
95. F2=61425
960 A3=8975
g70 A*.73o
i80 FloS.49E-b
996 F3nm4o56E-5

F4&O.

103a 00 TO 300
10'*6 241 CONTINUE
1lt50 C Illw6 eseTITAbiIUM
1060 AOM16900
1070 FONG139
106. F2090372
1(;90 A3n*s5*
1106 A*ml03*9
111, F1.0.
112' F30n*oEO6
113o' ~ O
1140 P50210
1150 Pgm...09
1266 GO TO 300O
1170 242 CONTINUE
1180 C 11167 es*AL(20241
1190 A0w630*
1rt0. FOUS215

1220 43N2977
123. A409506
124. P1.7o7E-5
125. P3n9oOE-*
126. r~o
1276 1:500.
lase P9w2*43
129f, GO To 300
130. 245 CONTINUE
131. C 11108 *OOACIER(3041
132. O1*0

.Wg-
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133o FOs11712
1340 F2w.03615
135. A3m7.9
136. A4*65.
137. Flm3.74E&5
138o F3*3.32E-5
139. F4mo.
1400 F5m20,
141. F9.7.
1*2. 300 CONTINuE
1-t3" C INPUT.''.' MATERIAL THIC<NESS (C )
1*4 wRITE (108.5O)
1'?5. READ (105,b0) A6
146. OUTPUT A6
147. C INPUT.''''NuMBER OF NODES ALON3 ZmAXIS
148' WRITE(1OS.51)
149' READ(05460) KK
150. OUTPUT KK
151. NKmKK-1
152' C INPUT..... AMBIENT TEMPERATURE (C
153. WRITE (108,90)
1540 READ (105.60) A9
155. OUTPUT A9
156' C INPUT... INCIDENT INTENSITY (wATTS/CM*C4)
157- wRITE (1080100)
lb8, READ (105j60) 80
159. OUTPUT 80
160. BOUBO/4184
le1 C INPuTo.oo* ANGLE OF ICIDENCE (DE3) PROM NORMAL
162' WRITE (lQb0l20)
163. READ (105.60) 82
1640 OUTPUT 82
165s C INPUT.O'.O PREMELT ABSORPTION COEFFICTENT
166' WRITE (10S.123)
167- READ (105j603 A5
1689 OUTPUT A5
169' C INPUT.... TIME O RJN (SEC)
170% WRITE (1051130)
171. READ (105*60) 83
172. OUTPUT 83
173. C INPUT.'' PRINT OUT INTERVAL (REC)
174. WRITE (108P135)
175. READ (10.bO) DO
176' OUTPUT DO

4*if
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177o C9-00
178o C SELECT.**'.BOLJNDARY CONDITIONS: 135
1798 WRITE ilOS*1501
1boo WRITE (108#160)
1ble Coo....IB501 -) 8ACI( SURFACE INSULATED
1b2a C6.69..I35S2 *) BACKC SURFACE H~ETSINKED TO AMBIENT
lb3o READ (105P*OJ 185
lb~o OUTPUT 165
1658 C FRONT SURFACE.....INCIDENT FLUXK
11566 P-80
10-. 01=00
1059 INDIwO.
1bgs C INITIAL CONDITIONS
190. 00 3*4 Km1.KK
191. T0I(CjlluA9
192. rF(F3*EG*Ool 00 TO 345
193o UOKIS9F-3F*9F+5F*SF/2**3A*9F
194. 00 TO 344
195. 345 UO(K~,UaA9
196a 344 CONTINUE
197o CTE=1./6*

199. CONC2*N'(*NK/Ab/A6
200. C*02-*C2*NK*NK/A6/A6
201. THETm3.*15g2.B2/18sO

ZU2003=COS(THET)*A5*A6*2*/N(
203, 500 IF(TO(lal1.LE&AO) 00 TO 505

204a wRITE(1Q8,15)C9
2C5@ 0O To 1000
206. 505 CONTINUE
2C7- FBNA3
208. DO 560 K*1,e(K
209. UO(Op1)nUO12ol)+33P/F2
210. 00 To (530#535)P1B5
211' 530 UO(IK,1)U0(K~o,1)
212. 00 TO 550
213. 535 U0(,cK1,1 ~u2.*UO(I((,1)=UO(KKg-1,1)
214s 550 CONTINUE

218' IF(F3.EQ*O.O) 00 TO 555
2190 BETAuF3/F2



UNCLASSIFIED
37

221' 00 To 560
*222o 555 TO('C,2)BUOIK,21

223' 560 CONTINuE
224o C9oC9+C2
225. 580 IF(C9*LT*O1) 0O TO 900
226' DlnOl.DO
227o INDIMINDI*1
228' 0O 600 KE1AKK
2290 TGPA(KjINDI~inTOf(,13
230. 600 CONTINuE
231a TDIMwC9-C2
232' WRITE(lOSPI90) TDIM
233. WRITE1O.,1911
2340 WRITE(1OBP192 1 (TO(1apl
235o WRITE(i08,193)
2 :060 WRITE(IOSP192) (TO(KK,1fl
2379 wRITE(lOva194)
236' WRITE( iOM,1921 (TO(Lp1 'LoloKK)
239o C4.'''.ANALTICAL SOLUJTION

2*00 LLmINDT
e41 0 Pl.3o14159265
242. DIFFm(F2.F3.(AO-F5I/2. )/A3/IF0,F1*(AOnP5)/2.)
243 700 ZwOeO
244' -inl
245' 725 W1.EXPI-DIFF*PIPPI$TDIM/Ab/A6)
246' Nal
247' COOSO
248' 750 Wa-)*//OX~DF***IP*DMA/6
249' w2rnwCD8INPI4(A6-Z)/A6)
250o VINABS(W'/Wi)
251' IF(VZ'LEs0'0000021 GO TO 775
252o CwC~w2
263' NuN.1
254' 00 To 750
255' 775 CnC~w2

258' zsZ+A6/20.
259o j*j.1
260' IF(Z.GI'A6) 00 TO 100
261' 00 To 725
2620 800 WRTE(1(JS,1g6)
263' WRITEI 1CbU#92) ITOW~i).*1 1 2)
264' DO a50 1.1,21
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266. a50 CUNTINuE
at7* C'.'*..END OF ANALYTICAL s6~jT!o
_;vs 9v IF(CsG.T@83sbR@C9sQ@3)30 To 953

Et9* 00 910 Kf1tAKK

-7* 110 CoisTINuE
473s Go To 0
274as 950 WRITE(jij8,195)
c7 5 9 1000 CONTINA~
ie7fa* CALL GRAPM(TMaINDI*21j1)
j:77. CALL. GRA~m(T0,RAAINDIaPiKa5)

i!7fs@CALL ExIT
END
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1. SUBROUTINE GkAPH(TEMP#INDljK(IAN)
20 DIMENSION TEMPUK~INOI)

3. D'IMENSION ITYPE(2),I9IZE(3)

40 ISIZE(1)62

6. ISIZE(3)sINDI
7. ITYPE(1103

he ITYPE(2)84
9' CALL FTIE(1,'4CAOUTI)

10. CALL FREPLAcE(1.IA4,TEMPISIZEITYPE)
11. ITYPE(I)OZ
!20 ITYPE(a2)0
13. ISIZE(L)WO

148CALL FREIPLACE(IPIOOPs((,I9IZEPITYPE)
150 CALL FREPLACE(I10O1IN4OIISIZElTYPE)

16. CALL FUNTIE(l)
17' RETURN
Is* END
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A.2 Input and Output Examples

The program is run from a terminal in two possible modes. In

the ON-LINE interactive mode the program asks for the specific input

file considered and then starts the calculation. The output is dis-

played on the terminal used and is similar to that obtained in the

BATCH mode. In the BATCH mode, a job file, which contains a set of

controls, the program and data input and output files, are run. The

output is printed on the computer line printer as shown in the typical

example shown hereafter.
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INPUT DATA FILE

I *..ALMINUMi 2 ooeCDPPE~j 3 oooMO6YBDENUM#

14 6*641ON, 5 *..NICKELs 6 ...TITANIJMP 7 essAL(2024)

8 o..STAINLESS STEEL(304I
INPUT 0 FOR TARGET MATERIALI Ill a 8

MATERIAL TmICKNEbS lCM)
A6 a 1,OOOO
NUmFEk OF NODES ALONG Z-aXIS
KK - 21
AMRALNT TEMPERATURE IC)
A9 0 20o0000
INCIUENT INTENSITY (WATTS/CM4CM)
80 a 20000.0
ANnL. OF INCIDENCE (DEG) FROM NOMA6
82 0 ,00OOu
PREMELT ABSORPTION COEFFICIENT
AS I s*O00000OE-02
TIME OF RUN (SEC)
83 a 3#GOOOZ
PRINT OUT INTERVAL (SEC)
DO a o250000
1 s.-BACK SURFACE INSULATED
2 @.BACK SURFACE mEAN SINKED TO AMBIENT

le5 g 1

II
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OUTPUT DATA FILE

T~IME IN SECCNDaS .2'.aS4a3

FfteN SURFACE
W-7.17797852

bACK( SURFACE
ac-orcoo~ooc

TEMPERATURE ALONG Z-AXIS
517-17797.52 349-60615430 217049467305 115999170811 7Q.Cj~is94 41.0517$781
27.d7646,g.. 22.s23O'4&S. 20-7755547 20.20263672 ao.a4As7ba3 a0.0g211#d
ccol.OG12..4 20-CO0GJ0O0 20O0000002OO300oO ao-oDooLo*~oQOo ao-00oooooQ
if.,GodooC00 20C.O0oouoO 20000000000

ANALYTICAL SOLUTION ALONG ZIAXIS
43c.soO12695 agO.S2963396 18861NOS6.026 117.07330257 73.2001 1902 46.90753174
3i-bk4369S5 25.-.8023967 22619616699 2o.sl0gpa3* 200256364 a0.08g57129
aC.02N26147 20.00599670 2O.OOOS55449 19099990845 19-V9990245 19-999906'.5
19-99971QOB 19-99990945 20000009155

TIME :N SECONOS .4936965

FfNT SURFtACE
693. 52304.58s

OACK SURFACE

TEmPEPATURE ALONG 2-AXIS
A5ta.b230*bao 537080O126V5 399.22753906 a$30465118,64 IX9.534.2383 126.16528320
al.33715v2O 53*30&5*57 37.02905273 28020971680 tJ3.7a*13086 21.50327140
ko-j6'91fit9a 20.24731*5 20#08837591 20.0*905273 2V.009521*5 20.00219727
ic .0u00060C 2O.O0,.,wJ0O0 20600000000

ANAL'rTZCAL SOLUTION ALONG Z-AXIS
601.07CU6636 455.33R62305 336.76147461 143..A3S62O1 17d-6057891I 120.73976135
h&.29s5931. 59.44902039 43.34881592 33629827SS1 e7.2b207297 2308304134d
21,$3'.49402 20.9370269a 20o.35012a 2O.1g21.575 20-05219913 2O.03311157
2C0.O127d.109 2C.O00.745*8 20.00303650

-TiT ra
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TImE IN~ SECCNOS .7d.354*7

FRMNT SwRFACE

bACK( SUI4FACE
20-.01562500

TEMPLRATWRE ALONG Z-AXIS
4 2(.0.jooO0 672.271e.023 536.356398*4 4IS.24316406 311-3913b742 226-258096o*
16-691602 110-8425.1930 76.50537109 53.70288086 Jz.3004283 30.62207031

Llb-d3O4688 22.864.01367 21.40307617 Z0.66162109 20-2"07227 20.130559I6
Ef'.05517b7d 2O.02090234. 20.01562500

ANALVyICAL SOLUTION ALONU Z-AXIS
7jlb6186523 5b3.39.U4297 457.50317383 352.9442259* 261*0o39s43fi 200.8437247*
14a-86979675 109-708*1980 80#96261597 60041841125 46.1IJ00659 36o46318054
J -10462952 26.03407939 23.51322937 21.98948669 21-0!0774780 20.59326172
20-3215179* 20.190JI917 20.15l76392

TImE ZN4 SECOPjOS .9981252

FPnNT SUJRFACE
q2s.6223 1.45

isACi SUJ9FAC
20.2585*492

TEmPERATURE ALONG Z-AXIS
gkb.62231445 784.7021-0644 652.32104492 330.609@632a 421.55e59375 326*766113as
P47.17163006 1&2.84936523 132.94091797 95.79077148 69-24662617 51.01342773
3&.9*702145 31.23773297 26o47460938 23.6262P070 21.9/729.92 21-05395506
k2L.56298*28 20.321.8.4* 20.2565*492

ANALYTICAL SOLUTION A60O Z-AXIS
846.21044982 696.37353516 565.9030761 454.1235'4516 35399093750 232.0139160a
216.64.48547 168.0729b227 128.473846.4 96.06254578 75.16455076 58.26657104
4&-04951477 37.39862061 31.40240479 27*3391P659 24-65455617 22.93768311
21.69921570 21.34771729 21.17568970
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T~mE IN SECO~NDS x1a2'399'

~FtnrT SURF~ACE

OACK SURFAC.

TEm.PLRATLUkE ALONG Z-AXIS
1o11.'~'365 S,.662i~O3 71060641357'34 5q3o475211217 'i.1~'

3kt-59667695 254.&O&.a9.b 193.66650391 1*S.1225sS59 1O7.Th9O23*4 79.93212g,1

5t,.s9379ba3 45-9042968a 3602'07*2 3o.i?96*750 46-15796828 23.722650b

ANALYTICAL SOLUTION ALONG Z-AXIS
942.730*687S 721.87102617 658.40185547 3414A2129883 44,1.37695313 356-0017089d
ag-..,70*5*9jj 225.4P110174 At~f3 ?393l85 138.4970164 3 105u.0667932 85.00825500
67.0JP0334*7. S366347969 4-3*5868030 36.38682556 al.310394.29 27.691501*6
Zb.65603ZI0 ld,.*0707397 041O1371765

TImE IN SECONDS 1-4917831

FRO14T SURFACE
106.*60424805

t$&CK SURFACE

lEmPERATLJRE ALONG Z-AXIS
10Ut.60424605 955.2607*219 629.37280273 710.21801758 599.0V2O*102 497.22680664
-6--9165Z39 325.27392576 256.37207031 I98.91552734 t .35U0)(J97(6 116.69091797

87.65390059 66.80*59375 51-73193359 41.i212271g 3j0ae611*O63 29.09033203

k6.124SI172 2*.51g28711 24001245117

ANALYTICAL SOLUTION ALONG Z-AXIS
103C.Oe688766 o7s.4526132a 742.752**1*1l 62P.!90AP031 517.36*9vO23 42602687988J

9e.12615967 73.lSSO5
3
7& 59076214600 49.16986084 'pl.3a..g770 35.87254851

32.22*2*4i16 30-14958191 29.*7726*'40

'JA~i PA'
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TImE IN SECONDS 1-749339

FRnr4T SJRFACE

rACK SURP'ACL

TEmP.ERATURE ALONG Z-AXIS
11.bs~s523* 1029-38769531 9O&.N.D,..922 729.12060547 A7o..dag95OU 575.4309O62J
4b!O0sgq~7O 396-23071269 321.0.0991211 P5&.ssAam3bg 209J*L,2OcQ15 157-913,94g31
1.i1799316* .4428hods*9 73*075.39'.5 57.3693m'.77 4A.I0ub3753 34..1370117
j.5is-2bb34766 30O.'.b664 29-54a96875

ANALYTICAL SOLUTION ALONG Z-AXIS
111.3-715690*4 961.aJS3937 82**05737305 00.970i.102 56.16g035 499*.96773*
42-63110452 340O.913b7422 279-54057617 228.3911M958 lsti.5d92AA36 150-23272705

-vE-*67s7ll 39.*2u'66SO 36043872070

TIfME IN SECUNDS 1.9961729

FRaNT SURFACE
1pao.0b1255a6

OACK SURFACL

TEMPLRATUME ALONGI Z-AXIS
1218-06225586 1093-790a#320 973#43701172 s57.*625*o83 7*7.,.11i1l6* &Nd.6286211
5*b.

7
312O1l7 461O'Oai3zO 382*17993164, 312.g55375 2nd.U128gOI 201-31542969

1bS.O93O0jC& 124-95654297 98.02753789 77.3422NS6 61-94262695 50-95410156
43-65087891 39.*909668O 38e14111328

ANALYTICAL SOLUTION ALONGQ Z-AXIS
llab.422&5156 1035.7230769b $9I.SlI6g9.53 771.45g76023 6b9.ib371O3 559-6735839o
47k-06201172 395-66967773 329o67211914 273.197021.i U5i39N480 18641233316
lbl.96117065 %2d*.76?lbQ68 1O2@82gse11~ *5.'.m10117 72-1,2719727 62*26831055
bb.511.7'*1 51.57177130 5O.27758?ag



UNC LASS I FIED
46

!T~m IN SECONDS 2-2430019

Fknt.T %WkFACE
1??4-34vo

ZAC9 SIftFACi

TEMPkJRATUO4E ALONG Z-AXIS
127*4.#3O.199 1152.99U234s. 1034@98266602 921.132mF391 az4e.a11g1iob 7D.907

hl- 5:5b 522.b6796a? *40O.90.*727 367*~44189*53 304.s 3964I 2o...3232%219
It5660476& IsbosS7T219 126.A77Z.,AO9 10I.P2I&7969 atJ?**1*063 67-09609376

b7.e5.36S1' 52.237D*aa3 50e',0,91212

h.NAL'rTICAL SOLUTION ALONW.L Z-AXIS
1?5*.5T44699 ~15.&ASb5~70 965.4236gb.4 834.177440OE3 72~3.qd56055 620.71313477
Nab-g1Sbob .. qg.12Ibv2O3 378.6,770509 318.067m7109 pb -**00391 221.*7?930v,1
1*-15600'.56 i53.Z6?om72gj 127-8232d90 107069OP&P89I vl.8570 79.803226
71-61254e63 66-9056*06 65*221191'1

T!,E IN SECONDS 2.489310

Fni.T SJRFACE

LSACK SUR4FACE
66.5'.90

7
227

TEmPLRATURE ALONG Z-AXIS
1326.81542969 1207.905bl7ba 1.Qg2oO4345703 971.487..2168 672.Q0586293 769-2706943J
67&.0331#*727 Sal.25219727 4.9704294~*336 d21.07373047 3*9.56225sm6 a92.1069335so
i-35-7324.2106 195026977539 l5a.366623 128.54541016 105-23315i.20 *7-8488765
75-86*~74609 6585*2*605 66*54907227

ANALYTICAL SOLUTION ALONG ZOAXIS
lae..98.EslES 1171.57331210 1030*529296a8 901.6922695 754-77u6645 679.4035644b
%btO06435bS 501.30u,10547 *27.43017578 a6P.mi~o%s9 306-76BS3125 254*6212337u
217.6oa12561 183.31978064 15..ap18a*57 131.4974p158 113-71499414 100.OSg9ld.4b
!00-54614256 84-936b23* 8348276367



UNCLASSIFIED
47

TIm.E IN SECCNOS 2-7-73917

1 i77-90523I

6AC SWj.FACL

"E-ERARE A.ON5Z-AXI
177.991a3 1261-38085936 1147-57592773j 1:37.O .1qq219 93-3-3271%6 S2m.2.11O7.e
7 .!0172 61 b39.379J&9 3 o54#O&347656 67S.4~AZ*21I6 -.d 3.11.993,2
pba-5103: 235.ibgb77 7 3 194-0O6IC3516 163.P?621836 j3-337j!:7: 12.g3O9382
96-69606a3& 9C.293*5703 A?*51b6%56~

ANALYTICAL OLu.TION A60,3 Z-AXIS
13!L.g. 771*a 1237.20seLO55 IJ95-29736326 qfg3,24* fs-o.: 117188 734-5312o;
6.!.37Cj1V7!9 55-.50jspvk5 -,77.321289.16 -. q.?5,a:j2SO 3-,.?7J33.s7 294.1I§'S&02
?b3.6~7640 216-33911133 185.O.7b3742 54..7874077 23v .267I39 1?3.Ss694: 3
113-.:49:23 106-68237305 104-57397461

Cf..,' SNRAZE

TEPQ%# AL.ONG Z-AXIS
S13:)q.5O9.wJ32 197-524b5623 !3bR.*qb33769 gee*9jb3.273 581.37e6.g..-

39t-7675761 2
7
-.75gd

7
73- 230o2ol9d242 :91.171,251 iti.eO87O, 1*C.

3
500976&

l-El.J3J32ie7 129'.374aada2 1154-7565918 1:23-333P9195 9:d-v,j1SS91 793-17602531
&! ~ 8;39~ 52*.%453683b ..53.13170698 311O3086667 336.5,2001953
pasl,".J1396*8~ 'e~7Y 215-531a2-2a 1s7.4307RI25 16D-07797652 l*q.B

3
056b-:

i2m-9trala'5O 199689017k 127.b4O^13A72
46N CCMPEEO
-ExI 4

A,, 1-
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