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The strictly mathematical ocean tide model developed in Part I

of this paper is modified in order to include realistic hydrody-
namical barrier effects of narrow ocean ridges and other large
bottom irregularitics. This modification begins with a hydro-
dynamical redefinition of the ocean bathymetry at over 3,000
grid points, increasing simultaneously the depth data range to:
lOm-»7000m.Inasecondstepaumquehydrodynam|calm-
terpolation technique is developed that incorporates into the
model over 2,000 empirical tide data collected around the
world at continental and island stations. This interpolation ‘is
accomplished by a controlled cell-wise adjustment of the bottom
friction coeflicient and by allowing a monitored in- or out-flow
across the mathematical ocean boundary and so, redefining a
more physical shoreline. Extensive computer experiments were
conducted to study the characteristics of the novel friction laws
and hydrodynamical interpolation methods. The computed M,-
tide data along with all (specially labeled) empirical constants
are tabulated in map form for four typical 30° by 50° ocean
areas. It is estimated that the tabulated tidal charts permit a
prediction of the My-tide elevation of the ocean surface over
the geoidal level with an accuracy of better than § cm anywhere
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220 Ernst W. Schwiderski

in the open ocean and with somewhat less accuracy near rough
shorelines. With the forthcoming construction of the lesser S.,
N,, and K;; K;, O,, Py, and Q,; and Mf, Mm, and Ssa tidal con-
stituents, the total tide-prediction error can be kept below the
10-cm bound posed by applied researchers of today.

In Part I of this paper (Schwiderski, 1979) a purely hydrody-
namical ocean tide model has been developed and tested. This
model has been applied to compute a preliminary M; ocean tidal
chart (Schwiderski, 1976, I). (References listed in Part I are indi-
cated by the added, I, after the year specification.) The results
were found encouraging and satisfactory for some applications.
However, significant shortcomings still persisted, especially over
narrow ocean ridges. The remaining deficiencies were attributed to
local distortions and retardations of the tidal waves due to hydro-
dynamical barrier effects of ocean ridges and other bottom ir-
regularities.

In the following Part II of the paper, an attempt will be made to
eliminate the shortcomings of the purely theoretical model by using
a hydrodynamically defined bathymetry of the oceans and by in-
corporating directly empirically known tide data into the discrete
tide model described in Part I. The latter modification will be ac-
complished by a controlled local adjustment of the bottom friction
coefficient and by allowing a monitored in- or out-flow across the
mathematical ocean boundary, and thus redefining implicitly a
more physical shoreline. A detailed discussion of the quality of the
new M: ocean tidal charts will be given in the sections, “Quality of
the Ocean-Tide Model” and “Conclusions.”

The complete M: ocean tide is published in tabulated map form
in Schwiderski (1979c¢ I). Similar charts for the Sz, N3, K, Oy, Py,
Q:, Mf, Mm, and Ssa ocean tides (see Part I, Table 1) are under
construction and will be published in additional papers. A separate
tabulation of the new hydrodynamically defined ocean bathymetry
may be found in Schwiderski (1978a I). All tidal and bathymetry
data will be available in tape form at the Naval Surface Weapons
Center, Dahlgren, Virginia 22448.
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Ocean Tides, Part I1: A Hydrodynamical Interpolation Model 21

Hydrodynamically Defined Ocean Bathymetry
A reinspection of the bathymetric data revealed clearly that even a
1° by 1° grid scheme falls far short in representing a narrow ocean
ridge in a hydrodynamically proper fashion. The defect is partic-
ularly compounded when the narrow ridge parallels a deep trench.
The reason for this deficiency is obviously the purely hydrostatic
character of the averaging principles employed by Smith er al.
(1966 I) in order to assign a depth value at the center of a mesh
cell that is supposed to be representative for the entire cell. For
instance, if the area of a mesh cell is (by subjective sight) more
than half land, then it is called a “land cell,” and the cell is given
(for the present purpose) the depth value “zero.” In the alterna-
tive case, the cell is declared “oceanic,” and a depth value is
assigned that conserves the estimated actual water mass. Because
of those hydrostatic principles, cells were found that contained
clongated islands crossing even several cells, but every cell was
declared oceanic. Moreover, an oceanic trench portion of the cell
with some 7,000-m true depth produced an average depth of more
than 3,500 m. Clearly, for ocean current models the entire cell rep-
fesents an impassable wall, and the depth value should be “zero”
instead of 3,500 m. '

In order to eliminate the shortcomings of the bathymetric data
compiled by Smith ef al. (1966 I), the depth values were revised
by using the following “hydrodynamical” principles:

(a) Boundary cells at or near continental shorelines con-
sisting of more than half oceanic areas of depths larger than
3 m were designated ocean cells, and the average oceanic
depth values were assigned as the “hydrodynamically” aver-
aged depths to the entire cells. The new depth value is pref-
erable to the “hydrostatically” sveraged depth, which pre-
serves the actual water mass but ascribes artificially a shallow
shelf character to the cell.

(b) Isiand celis were declared terrestrial cells with depths
20r0 if either the isiand areas were larger than half the mesh
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areas or the (elongated) island lengths exceeded the mesh
diameters.
(c) Island cells that remained oceanic cells were assigned
depth values less than the hydrostatically averaged values. In
this case and in situations of submerged seamounts or narrow
ocean ridges (e.g., Aleutian, Marianas, and Caribbean), the
hydrodynamical depths depended on the assessed “barrier”
effects of the obstacles: the longer and/or higher the barrier,
- the lesser the depth. In general, the average “ridge depth” was

assigned to the entire cell. o
(d) The assigned minimum depth (Part I, Equation 50) was
lowered to _

Hn = min H(A,6) =20 m, (1)

which is further lowered to 10 m by the averaging Equations
65 in Part 1. (All notations of Part I are used unchanged in
the present paper.) ]

The hydrodynamically justified principles (a) to (c) are, natu-
rally, quite subjective and by no means free of any error. Never-
theless, some computational experiments indicated only very minor
effects of isolated depth data changes. More than 3,000 depth
values were changed, but only very few of those required addi-
tional readjustments in order to keep some limitation on the first
and second derivatives of H(A,8); i.e., on the relative differences
given by Equation 65 in Part I. Furthermore, the hydrodynamical
interpolation of empirical tidal data (section, “Hydrodynamical
Interpolation of Empirical Tide Data”) known at continental and
island stations greatly diminishes the need for precise boundary-
depth data. The revised depth data bank used in the new tidal
computations are published in Schwiderski (1978a I).

Empirical Tide Data
The new tide model incorporates, by a unique hydrodynamical in-
terpolation procedure (next section), empirical tidal data observed
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and harmonically analyzed at numerous continental and island
stations. These data were taken from publications by the National
Ocean Survey (1942), the International Hydrographic Bureau
(1966), the British Admiralty (1977 1), and by Pekeris and Accad
(1969 1), Zahel (19701, 1973 1), Cartwright (1971), and Luther
and Wunsch (1975 I). Unfortunately, the most recent publication
by the British Admiralty lists harmonic constants only for the four

major tide components M, S, K,, and O, and excludes the Euro-

pean waters completely.

The voluminous data banks had to be screened in order to elimi-

nate observations that are meaningless or unreliable for the present

ocean-tide investigations. For example, tidal constants were ex-
cluded that were listed for stations deep inside estuaries or natrow
bays (e.g., Hudson River, Bay of Fundy), at the mouths of large
rivers (e.g., Amazon), between sheltering islands (e .8, Alexander
Archipelago, Solomon Islands), and inside sheltering reefs (e g
Great Barrier Reef).

About 2,500 stations were selected for further examination of their
data concerning locally restricted distortions. For instance, some data
taken over ghort distances along a coastline displayed rather drasti-
cally alternating times of high water, which are obviously meaning-
less for oceanic tidal studies. At many stations, different tables give
different tidal constants. Some of those discrepancies at island sta-
tions are shown for the Ms-tide in Table 1. Similarly, for some mesh
cells, several different station data were available, and only one
representative average had to be chosen. This situation is illustrated
in Table 2 for the Ms-tide around Bermuda. Many of those differ-
encescanprobablybeexplnnedasumgleerroninpmﬂngqr
computing. For instance, the phase difference of about 1 hr at
Port Galets on La Reunion Island (Table 1) seems to be due to
some error in observing the correct reference time, which varies
from listing to listing. Most differences, such as those shown for
Bermuda stations in Table 2, are definitely trus local variations. Jn

- this conmection, the important tidal measurements by Gallagher et

d (19'71)::Funin;Atollmthecentannciﬂcmybcm-




- Table 1
Empirical M,-tide differences.

Station B.A.T(77) N.O.S.(42)¢ Others Initisled
Latitude, Longitude &(m) {°) dm) ¥°) &m) ¥°)
Tenerife, Canary island (A) 067 0.68 r
28°2'N 16°14'W 18 30
Port Praia, Cape Verde|. (A) 0.42 0.43 y A
14°55’'N  23°31'W 244 220
Ascension Island (A) 0.33 0.51 PJZ
7°55'S 14°25'W 177 174
8t. Helena Island (A) 032 0.34 PZ
15°56’S 5°42°W 81 a7
Tristan da Cunha island (A) 0.23 0.34 PZ
37°02'S 12°18'W 12 354
Agalega Island (h 0.29 0.29 b 4
10°26’'S 56°40'E 350 290
Port Galets, La Reunion I. () 0.16 0.14 0.14 b 4
20°55'S 556°17E 302 328 328
Mawson, Antarctica () 0.04 0.04 Z
67°38’S 82°5%E 232 155
Wilkes Station, Antarctica (I) 0.28 0.38 Y 4
08°15'S 110°31’E 162 140
Welles Harbor, Midway |. (P) 0.11 0.11 ¥ 4
28°12N  117°2W 82 91
Eniwetok Atoll, Marshall I. (P) 0.36 0.38
©11°21'N 162°21E 127 137
Nes Wallis, Fiji Island (P) 053 0.52
13°22'S 176°11'W 178 154
Suva Harbor, Viti Levu,
Fiji lsland P) ose 0.50
18°00'S 178°2¢’E 186 212

8B.A.T.(77) = British Admiraity Tables (1977 1).

¢ = tidl
cfaﬂ“mhm

6N.0.8. (48) = Nationg! Ossan Survey (1942).

«Z = Zahel (1970 ).
1P = Pokerie and Accad (1009 I).

tloned. Tides outside and inside the small atoll's lagoon differed by
about 50% (20 cm) in amplitude snd by a phase lag of abost 50°

(1 hr, 40 min.).
In general, the most recent

listings in the British Admiralty Tide
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Tables (1977 1) were chosen over older tabulations as the most
reliable. The selection of the data was further aided by earlier and
subsequent tidal computations. Altogether, some 1,700 Ma-tide
data were selected and assigned to the centers of their respective
mesh cells. Using linear interpolation and tidal computations, the
total aumber of prescribed tide data used in the Ms-tide construc-
tion was increased to more than 2,000. Essentially all continental
boundary cells carry empirically supported tide data. The empirical
coverage is only marginal at arctic and antarctic shorelines. Most
empirical tide data known at island stations are also included in the
tide model.

Naturally, it must be remembered that the selection of represen-
tative, empirical tidal data (compare depth data, section before
“Hydrodynamically Defined Ocean Bathymetry”) is not at all free
of subjective judgment and may be somewhat erratic. Obviously,
oaly future additional tidal measurements can improve this model

Table 2
Bermuda M,-tide cbeervations.
Station

Latitude, Longitude &{cm) 8%°) Reference
8t. George's lsland 3
32.50N, 04.70W 350  British Admiraity (1977 1)
8t. David’s lsland 7
32.37N, 64.65W 355 British Admiralty (1977 1)
Great Sound %
S2.32N, 04.83W 6  British Admiralty (1877 )
8t George’s lsland 3
S2.I7N, 84.TOW 0 National Ocean Survey (1942)
8t. George's leland 7
m 04.70W 0  Pekeris and Accad (1900 1)

8L George’s leland %
$2.37N, 64.70W 3650 Zahel (1970 1)
St. George’s leland %
SR.40N, 04.70W 358  Zettier of &l. (1078)
Deep Sea (QOBI V) »
$2.20N, 94.60W 1 J. T. Kuo Letter (1977)

= Nen

ompiiude.
. = Sdal phase relstive 1o Gresnwich.




226 Ernst W. Schwiderski

in this respect. Nevertheless, according to the instruction notes ac-
companying the British Admiralty Tide Tables (1977 I), it can
probably be assumed that almost all important tide data selected
carry an accuracy that is at least as high as the desired 10 cm. In
any casé, computational experiments showed that isolated reason-
able variations of the boundary-tide data do not affect significantly
the adjacent oceanic tides. It was also found insignificant to the
overall quality of the tide model whether the empiricai data were
assigned to the centers or to the shore boundaries of the respective
cells.

Attempts were made to incorporate also recent deep-sea tidal
measurements into the present model. Since the hydrodynamical
interpolation of empirical data is essentially based on bottom and
boundary irregularities (see next section (a)-(d)), no physically
valid justification was found to include distant offshore deep-sea
measurements into the model. However, some deep-sea measure-
- ments near rough shore and bottom areas were included. Fortu-
nately, without exception, all excluded offshore deep-sea measure-
ments known to the author agree very well with the computed M2-
tide data (see Table 3).

Table 3a
Deep-ssa M,-tide data for the Guif of Mexico and Ceribbean Sea.
Station Observed Model Error
Latitude, Longitude &#fcm) ¥(°) ¢cem) ¥°) Agem) A¥°)
W. Florida Shelf St. 7 7 0
26.71N, 84.25W 97 22 -5
Deep Guif St. 1.3 1.8 +0.3
24.7T7N, 89.65W 228 225 -1
Misteriosa Bank 8 9 +1 .
18.88N, 83.81W 84 89 +5
Rosalind Bank 7 8 +1
16.61N, 80.34W 107 102 -85
East Carib. St. (6-month) 0.5 16 +1
16.54N, 64.88W 156 1514 -5
East Carib. St. (1-month) 0.6 15 09
16.52N, 64.91W 153 148 -5

o ¢ = tidel amplitude.
¥ § = tidel phase relative to Greenwich.

. .
. P
P d
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Error

Table 3b
Deep-sea M,-tide data for the Pacific and Atiantic oceans.
Station Observed Model
Latitude, Longitude &{cm) 8(°) Hem) ¥°) Aicm) a¥°)
Pacific St. 1 (Middleton) 110 included
58.76N, 145.71W 284
Pacific St. 3 (Tofino) 99 included
48.97N, 127.20W 239
Pagcific St. (San Francisco) 54 included
38.16N, 124.91W 227
Pacific St. (Josie i) 27 27
34.00N, 144 99W 287 273
Pacific St. {Flicki) 43 included
32.24N, 120.86W 149
Pacific St. (Josie ) 43 included
31.03N, 119.80W 142
Pacific St. (Kathy) 29 27
27.75N, 124.37TW 128 130
Pacitic St. (Filloux) 19 18
24.78N, 129.02W 107 105
Atlantic St. 1 (N.Y. Bight) 44 included
39.32N, 64.38W 350
Atlantic St. (N.C. St. 1) 48 46
32.69N, 75.62W 356 358
Atlantic St. (Savannah B) 88 included
31.95N, 80.68W 15
Atlantic St. (Scope) 45 46
30.43N, 76.42W 358 3
Atlantic St. (AOML 1) 34 35
28.14N, 89.7SW 1 6
Atlantic St. (AOML 3) 34 M4
28.24N, 67.54W 359 4
Atlantic St. (MERT) 34 M4
27.99N, 69.67TW 360 (]
Atlantic St. (REIKO) 35 M
27.97N, 69.67W 1 6
Atlantic St. (EDIE-May) 32 32
20.48N, 69.33W 3 7
Atlantic St. (EDIE-March) 31 32
26.45N, 69.32W 1 7

+2

+1

+1

+6

+2

+2

+5
+5
+5

+6

$ &

¢ ¢ = tidal amplitude.
$ § = tidal phase relative 10 Greenwich.

el TN
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Of course, the continuity gap (Equation 4) can be attributed to
the following major causes which are physically plausible:

(a) The bottom-friction coefficient, b (in A* and B* of Equa-
tions 62 in Part I), which is most effective in boundary cells,
depends on local shore features such as true cell size and bot-
tom slope and roughness.

(b) The boundary cells are idealized by definition of strictly
mathematical boundaries (see Figure 1).

‘(¢) The depth data of boundary cells are subjectively de-
fined and, hence, faulty (section, “Hydrodynamically Defined
Ocean Bathymetry”).

(d) The empirical tidal constants in Equation 3 are also
faulty to some degree because of inaccurate measurements,
harmonic analyses, and subjective selections and assignments
to the centers of the boundary cells (preceding section).

(e) The discrete ocean-tide model is certainly not an exact
description of the true oceanic tide; e.g., at boundaries, non-
linear inertial terms assume significance.

Obviously, the last two (hopefully minor) faults can be reduced
only through continued future observations and modeling. How-
ever, the first two faults, (a) and (b), can be weakened by “hydro-
dynamically interpolating” the empirical tidal elevations (Equation
3) into the tidal model and narrowing the continuity gap (Equa-
tion 4) to an acceptable level as follows:

(A) Adjusting the velocity field by a locally controlled im-
plicit variation of the bottom-friction coefficient, b, in Equa-
tions 62 Part 1.

(B) Lifting the strict condition of no-flow across the mathe-
matical ocean boundary and allowing for a monitored in- or
out-flow by implicitly defining a more physical ocean boun-
dary (Figure 1).

"AlwupohmdoutianI.ncdon."rheDisétmOcan-'l‘ide
Equations (DOTEs),” due to the choice of the finite-difference

P St O = - G- 10 =, e =

&

F

P

SIP e &

A

A B 2 et

%
¥
-
|
3
&
ki
z
3
.
3
i




230 Emst W. Schwiderski
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Figwre 1. Boundary cell in- and out-flow illustration: (a) and (2), also (b)
and (b) are half-periods apart. (Shaded region is land area.)

parameter « = 1, the bottom friction coefficient, b, in A* and B* of
the momentum equations (Part I, Equations 60) can be considered
implicitly varied in the mesh cell Sa. by directly replacing the
velocity components in Equation 2 as follows:
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UL = ULL + (UL (wun + wm),
USL  — USL, + [USL | (wus + WE3),

mipn wipn

mipn

Vit— Vi + VB (wvi + W), (5)

and

V:::-: i V::—l + lV-{'.':-l I (wvs + WVa),

provided éaa * 0; i.e., provided an empirical tidal amplitude is
available for the considered mesh cell. In Equation S, the consis-
tency and scale parameters (u,1) and (v,v) are defined by

wm=1,m=0
m=0mh=A%4.
m=0,m=0

u=1,n=0
Us = 0, 1/ =A‘-+p,n
{V1= 1,vi=0

= 0, = Ba,n

va=1,%=0
V= 0, \/ R B‘.'.-l

va=0,%=0

for ALLL - URL <0,
otherwise, but

e (6a)
ifémpa™0; -

for ALY UL >0,

. (6b)

otherwise; S

for At yi1 <0,
s (6¢c)

otherwise;

for aZp%: V,'t.:_, >0,

otherwise, but

6d
ifeu,o—l"o- ( )

The continuity gap (Equation 4) will be narrowed when the “con-
trol parameters” w and W are determined successively by:

{ Azt
w=

0
with the first “control limit”

for{# 0,
(7a)
for{=0

oy
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(w| < ks (7b)
and
(At —we] /T for{ =0,
w ={ (8a)
0 for{=0
with the second control limit
[w| < ks (8b)
where (see Equation 3)
{=Cilu UG + uz IU::;‘,,',I] +wiC Vi + vaColVE
and 9)
{=C, [m UL} +3 UL 1) +WCHVEL + GV, |

It is important to note that w; * Wi =Oandvi - Vi=O0fori =1, 2.
Accordingly, both control limits, k; and k2, which are at one’s dis-
posal, regulate the allowed decrease or, respectively, increase of the
velocity components in Equations 5; i.e., the implicitly permitted cor-
responding increase or decrease of the local bottom-friction coeffi-
cients. Since the integration sweeps across the ocean from m = u to
360 and n = 4 to 168, the special choiceof uy =T =0 and v: =W
= ( in Equations 6a and 6d excludes possible double adjustments
of the velocity components. Also, if u; »* W, and/or v: »* V;, back-
ward adjustments of the tidal elevations via the corresponding
Equation 2 must be made. This requires the replacements

0t = 8z CHUL O + )

m-g,n
and (10)
$H_ > LT CVEL, | (wvs + %),

Analogous substitutions in the forward directions of m and n fol-
low automatically in the integration process.
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.The velocity replacements in Equations 5 may be illustrated by
the example

C IV

ULLi> 0, Ui, >0, VEL>0, Vi, B0, } |
(11)

Acl+1>e o =0, § *o.

) nn—l
One finds w > 0,w 2 0, and
Uit = UL (1 +WA* ),

Vil VELA(1+WBL), Y (12

and
U2 e 0~ CULIWAL,

(o’ R
At this point, it must be mentioned that attempts were explored
to lift the conrol limits prescribed by ki and ks in Equations 7b and
- 8b in an effort to close the continuity gap completely. However,
since the bottom-friction coefficient, b, is rather small the control
limits, k, and ks, had to be kept small to achieve best results. Com-
putations conducted with large control limits k, (excessive bottom
friction) seemed to close the continuity gap, but the tidal and ve-
locity fields in the open oceans assumed unrealistically small values.
Large control limits ks (insufficient bottom friction) produced
strong instabilities as anticipated from the analysis in the section,
“Stability Analysis,” of Part 1. To safely check the possible insta-
bility, the second control parameter W (Equations 5, 6, and 12)
was defined in units of U = A* and v = B*, in contrast tou = 1 and
v = 1, used for the first control parameter w.
After some trial-and-etror computations, the following control
limits were chosen for the my-tide model

ki =0.03,k:=0.06. (13)

S L A N Iy e o

R s atim
At ik % ﬂ

AL Gl iR R IR LR N g e P

i BB

T TR




24 Emst W. Schwiderski

These moderate values reflect the well-known fact that the magni-
tude of bottom friction has a strong effect on the motions consid-
ered. Indeed, with some minor improvements of the tidal field,
significant improvements of the continuity gap, velocity field, and
convergence of the integration were achieved. This procedure was
applied to all oceanic cells with known empirical tide data (Equa-
tion 3), provided these cells bordered terrestrial cells or contained
small islands or other bottom irregularities. No meaningful reason
was seen to apply the same bottom-friction adjustment procedure
to distant offshore oceanic cells with available deep-sea tide mea-
surements.

In order to implement the second step (B) of the hydrodynami-
cal interpolation procedure, the following velocity replacements in
oceanic mesh cells bordering terrestrial cells were defined:

Uiy — winULL .,
1 Ay Ay
ULt . = witULL,

v ot
Vs —wwVi,

(14)

and

Vi = wvaVi,

provided £+0 in Equation 3. The parameters (V) are mutually
consistent by definition:
th = 1if ULL = 0, otherwise it = 0,
it = 1if UL, . = 0, otherwise ifs = 0, 15)
% =1if Vi1 =0, otherwise V, = 0,
and
Vi=1if V41, =0, otherwise Vs = 0.
The remaining continuity gap will be further narrowed when the

control parameter W is determined to be in agreement with Equa-
tions 2, 4, 7, 8, and 9 by
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[ati-wt~WE)/t  for{=0
w= - (16a)
0 fort=0
with the third control limit
W] S ks, (16b)

where
U= CLTaULL . — WULL] + HCWEL, —HOWEHL.  (17)

Obviously, the substitutions (Equations 14) specify consistent
in- or out-flows across the mathematical boundaries of oceanic

coastal cells, as illustrated in Figure 1, without explicitly fixing the.

physical boundary line. Again, no complete removal of the con-
tinuity gap was possible. The most satisfactory results for the M.-

tide were achieved by setting the third control limit (Equauon
16b) at

ks =0.5. (18)

While the improvement of the tidal field was again moderate, the

remaining continuity gaps and nearshore velocity distortions as-

sumed uniformly satisfactory levels. The remaining small short-
comings of the model can easily be attributed to the boundary
inaccuracies (c), (d), and (e) listed above, but for which no
simple remedies were found.
ltmaybeemphmzedthattheratherngmﬁcantchmgemthe
nearshore velocity field permitted by the in- and out-flow specifica-
tions (Equations 14) affected the tidal field only in a minor fashion.
This important phenomenon is in agreement with the well-known
fact that the pressure distribution in a fluid motion is very insensi-
tive to large but local velocity variations. For instance, it is perhaps
the most important postulate in Prandil’s boundary-layer theory
(see, e.g., Schlichting, 1968 I), and it is the basis of the hydro-
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static-pressure assumption invoked here and in the section, “The
Continuous Ocean-Tide Equations (COTEs),” of Part 1 for the
present tidal model.

The hydrodynamical interpolation technique considerably ac-
celerated the convergence of the integration procedure toward the
steady state amplitudes and phases. In fact, the computation of the
new M:-tide model (sections, “Quality of the Ocean-Tide Model”
and “Conclusions”) was terminated when the amplitudes and
phases over all open ocean areas differed by less than 1 cm and 1°,
respectively. Obviously, this improved convergence feature goes
significantly beyond the same property described in Part I, section,
“Lateral-Boundary, Initial and Final Data,” for the purely mathe-
matical model.

Quality of the Ocean-Tide Model

Since the present tide model incorporates essentially all known
empirical data by hydrodynamical interpolation (preceding sec-
tion), no direct comparison of observed and computed data is
feasible. Nevertheless, a comprehensive appraisal of the reality of
the present tide model is possible by inspecting the quality of
hydrodynamical interpolation; i.e., by evaluating the “smoothness”
with which the computed tide “accepts or rejects” the empirical
tidal data. In fact, the smoothness characteristics of the novel
hydrodynamical interpolation technique are distinctly different
from those of other direct interpolation procedures using power or
trigonometric polynomials. In the latter case, smoothness of the
interpolation can be carried up to any desired degree by simple
design. The adjustment of hydrodynamical parameters (preceding
section) in the former method does not imply any smoothness of
the interpolation, unless both the empirical input data and the
hydrodynamical tide model are compatible with each other.

As is well known, local tidal distortions, caused by an isolated
roughness (seamount or small island) in the bottom relief, affect
the surrounding ocean tide very little. The major level of ocean
tides is shaped by continental shorelines and large (in area and/or
length) istands and ridges. In contrast to ordinary polynomial in-
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terpolations, an important feature of the new hydrodynamical
interpolation method is that it preserves those significant properties
of ocean tidal currents without any essential alterations.

Extensive computer experiments were conducted to test the im-
portant smoothness characteristics of the hydrodynamical interpo-
lation procedure. Faulty input data were deliberately inserted and
quickly recognized as rejected by the computed surrounding tide.
Indeed, the first computations, which included empirical tidal data,
revealed immediately several input errors in the data. Vice versa,
smoothly accepted empirical tidal data were randomly deleted to
test their backlash reaction on the computed tide. As anticipated,
no significant modifications were detected. Consequently, the hy-
drodynamical interpolation technique permits a check of the reality
of both the tide model and the empirical tidal input data. If an
input value is rejected by the computed tide, then one or the other
or both are defective. Fortunately, only very few discrepancies be-
tween the different sources of observed Ms-tide data (see section,
“Empirical Tide Data”) have been discovered that way.

The new discrete tide-model has been applied to compute the
global Ms ocean tide. A complete discussion and tabulation of all
amplitudes and phases is presented in Schwiderski (1979¢ I). In
order to display the quality of the tidal model, the computed am-
plitudes (in cm) and phases (in degrees) along with their adjacent
empirical values have been tabulated in “30° by 50° map form”
for four typical ocean areas (Tables 4-7). All empirically sup-
ported input data along continental shores and at island stations
are underlined in the tables. All nearshore deep-sea measurements
included in the model are labeled by subbrackets. As was explained
in the preceding section, all distant offshore deep-sca measurements
are not included in the tide model. However, their approximete
locations are marked by wavy underlines, and their corresponding
observed data are listed in Tabie 3. Land points are left blank.

In the evaluation of the tidal accuracy, one must remember that
the ocean tide at any fixed location is determined by two harmonic
constants. If (&%) and (¢{3) denote the respective Jocal ampli-
tudes and phases of the “true” and “computed™ tides

i - . b b A
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& = & c08(ot — &), £ = € cos(ot — 3),
then their time-dependent error is
§=to— t="Ecos(or —7)
with the standard deviation -
rms(?) = 14v24,

B =6~ 2tcon(bo— ) + ¢

fosind — ¢sin 8
fecogd — €cosd’

tand =

Some maximum errors are

= o+ & for o — 3= 180°,
b —Eford—8=0°,
=2¢sin V2 (3 —3) for & = &,

e
oo
[

Bu =& = £ for ¢ = §oand & — 8 = 60°.

(19)

(20)

(21)

(22)

(23)

(24)
(25)
(26)

(27)

Equation 27 expresses the important fact that a 60° phase error
results in an amplitude error equal to the tidal amplitude and,
hence, renders the computed tidal prediction completely useless. Of
course, in regions of sufficiently small amplitudes, any phase ecror

is acceptable.

Tables 4A and 4B depict the tidal amplitudes and phases, re-
spectively, of the northwestern Atlantic Ocean including 'the east-
em Caribbean Sea. As can be verified by earlier tide models, this
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entire area was very difficult to model, because its rough bottom
topography has a strong effect on the tidal currents that sweep over
or across various barriers with rapidly changing water levels. There
is the broad and shallow continental shelf along the whole North
American shoreline, with Cape Hatteras, Long Island, Cape Cod,
Nova Scotia, and Newfoundland all protruding into the ocean
basin. Furthermore, there are the Grand Banks, the Bahama
Banks, and the long and narrow Caribbean Ridge. Obviously, all
of the corresponding local tidal features could not be realistically
captured by the tide model without a proper representation of the
bathymetry (section, “Hydrodynamically Defined Ocean Bathym-
etry”) and without the hydrodynamical interpolation (preceding
section) of the locally collected tidal observations.

Now, if one scans the tidal amplitudes and phases (Tables 4A
and 4B) from the north to the south, one gathers the impression
that the whole computed ocean tide is completely locked into the
array of empirical (underlined) tidal data everywhere along the
continental coast and along the many aligned islands separating
the Atlantic Ocean from the Gulf of Mexico and the Caribbean
Sea. It is particularly impressive to see the observed tide data at
the offshore islands (Sable—SI, Barbados—BB, and even as far as
Bermuda-—BI) and at the included nearshore (subbrackets), deep-
sea stations all realistically well-accepted by the computed sur-
rounding tide. Moreover, one finds the excluded offshore deep-sca
measurements (locations marked by wavy underlines) in the At-
lantic and Caribbean Sea fully verified by the independent tide
model.

As can be seen in the special listing of Table 3, the measured
and computed amplitudes and phases at the Atantic stations agree
within 2 cm and 6°, respectively. The remaining discrepancy is
probably within the experimental error due to short observation
times and the use of the distant reference station Bermuda (Zettler
et al., 1975), which exhibits even larger gaps between the various

- tidal observations listed in Table 2.

Attention may be drawn to the existence of considerable slopes
between the empirical boundary data and the computed ocean-tide

e,
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values in the high-amplitude ranges from Nova Scotia to Cape Cod
and from Cape Hatteras to Florida’s coast. Yet, these rapid tidal
variations can be considered as realistic because throughout the
same sections the empirical data, among themselves, display ex-
actly the same roughness. This only substantiates clearly the fun-
damental difference between polynomial and hydrodynamical in-
terpolation techniques pointed out above.

In the complete report (Schwiderski, 1979c I), the same tidal
roughness will be recognized in several similar coastal places around
the world. From this typical phenomenon, one can draw the fortunate
conclusion that, while some empirical data may be lacking high
accuracy (see Table 1 and the British Admiralty Tide Tables,
1977 1), the computed adjacent ocean tide may retain its high
quality.

In order to gain a deeper insight into the detailed tidal phenom-
ena from the enclosed table charts (e.g., Tables 4A and 4B), it is
helpful to recall the physical meaning of the tabulated tidal con-
stants. The local tidal amplitude, ¢, is defined as half the tidal
“range,” which measures the total variation of the water level from
high to low. Lines of constant amplitudes are called “corange
lines.” The local phase, 3, specifies the tidal cresting time (in de-
grees) after the moon’s (or sun’s) passage over the Greenwich
meridian. For the present Ms-tide one has the following time
coaversions:

360° = 12.421 hr (period),
30°= 1.035hr, (28)
1°= 2.070 min.

Lines of constant phases (simultaneous cresting times) are called
“cotidal lines.” In particular, at the 0° = 360° cotidal lines, which
are comspicuously visible in the phase charts (Tables 4B to 7B),
the tide crests simultaneously with the moon's passage over the
Greeawich meridian. The tidal crest advances with time normal to
the cotidal lines toward larger phases. A point of zero amplitude
(¢ = 0) around which the tidal crest rotates from 0° to 360° is
called an “amphidromic point”; it is marked in the tables by a
circledstar @ .

o
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In the area of Tables 4A and 4B, a major amphidromic point is
visible in the Caribbean Sea southeast of the island of Puerto Rico
(PRI) near the marked deep-sea gauge station. The loosely con-
nected Caribbean and Atlantic tides rotate counterclockwise
around this point with the 0° = 360° cotidal line running north-
eastward. As a result of this rotation, the whole Caribbean Sea
appears to be trapped and unable to develop any significant M-
tide. In agreement with the observations, the M, tidal crest sweeps
across the Caribbean Sea essentially from north to south with very
little variation in water level.

If one follows the tidal crest around the amphidromic point
from the Atlantic Ocean to the Caribbean Sea and back to the
Atlantic, one recognizes a major tidal distortion caused by ocean
ridges, which has long been discovered by practical tidalists (see,
e.g., Harris, 1904 1; Bogdanov, 1961 I; Defant, 1961 I; and Luther
and Wunsch, 1974 I). As the tide crosses the ridge between the
islands, it suffers a distinct amplitude jump and a significant phase
shift. For example, north of Puerto Rico (PRI) and Hispaniola
and in the southeast around Barbados (BB), the computed and
empirical Atlantic tide data display a higher water level and an
carlier or, respectively, a delayed cresting time than the adjacent
tide data on the Caribbean side. In particular, in full agreement
with the observations, the tidal retardation time can easily exceed
30° (~1 hour). The distortion seems to depend on the angle with
which the tidal crest spills over the ridge. Maximum distortion ap-
pears to be associated with a normal crossing. It may be pointed
out diat the realistic resolution of tidal disiortions by ocean ridges
(see below) constitutes probably the most significant improve-
ment of the new model over all earlier hydrodynamical models.

The Atlantic portion of the Caribbean-Atlantic amphidromic
rotation is opposed by a southward advancing tide from about
Newfoundland in the north and by an eastward progressing tide
from about Cape Cod to Cape Hatteras in the west. As a result of
this interaction of three opposing tidal waves, the middle latitudes
(around n = 60°) of the Atlantic display very small variations in
tidal amplitudes and phases. In the high-amplitude sections be-
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250 Ernst W. Schwiderski

tween Nova Scotia and Cape Cod and between Cape Hatteras and
Florida’s coast, the Caribbean-Atlantic rotation wave seems to be
less affected by the opposing tidal waves and progresses frontally
against the corresponding shallow coastal corners.

Since the tide-generating M:-potential is a single progressing
wave from east to west, the ocean responds with amphidromic tidal
waves that cannot reverse their directions. Thus, at shore points
tidal waves are either incoming or outgoing without reversals. In
the first case tidal crests always move from sea to shore. In the sec-
ond case tides always swell to their crests at the shore first and then
move out to sea. The incoming tide between Nova Scotia and Cape
Cod seems to produce high and rough waters. The outgoing tide
between Cape Cod and Cape Hatteras is distinctly lower.

Although the computed tide in the Gulif of St. Lawrence displays
the well-known amphidromic point (Defant, 1961 I), the grid sys-
tem is much too crude to attach a high accuracy to the tidal con-
stants in this border sea. For the same reason, the tidal data listed
between Florida, Cuba, and the Bahamas are naturally less accu-
rate than those in the open oceans.

Tables SA and 5B illustrate the smoothness with which the com-
puted tide of the northeastern Pacific Ocean attaches itself to the
empirical tide data along the North American west coast. The tidal
constants observed at the islands of Guadalupe (GI) and Farallon
(FI), at the Cobb Seamount (CS), and at the included nearshore
deep-sea stations fit realistically well into the computed surround-
ing tide. The amplitudes and phases of the excluded offshore deep-
sea measurements in the Pacific agree within 2 ¢m and 6°, respec-
tively, with the computed data (Table 3), which is just the same
accuracy as in the Atlantic.

Perhaps the most prominent feature of this area is the amphi-
dromic point &, around which the Ms-tide rotates counterclock-
wise. This amphidromic system was predicted by Munk ez al.
(1970) and Irish er al. (1971) in almost identical geographical
position. Earlier hydrodynamical tide models failed to resolve this
system on proper location, although several models matched the
empirical data along the coast quite well. Since the northeastern
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Pacific falls short in major bottom and coastal irregularities when
compared to the northwestern Atlantic, the indicated rapid loss of
quality in westerly direction seemed disappointing. Yet, as will be
demonstrated below, this shortcoming could have been concluded
from the obvious failure of those models to reasonably reproduce
the tide over most of the north and central Pacific Ocean.

As was mentioned before, the author’s preliminary tide model
(Schwiderski, 1976 1) used a bathymetry that failed to represent
the hydrodynamical barrier effects of the Marianas, Nampo, Kuril,
Aleutian, and Hawaiian ridges, as well as of other seamount chains.
Consequently, the Ms-tide of almost the whole central, western,
and northern Pacific area was modeled as a single huge amphidro-
mic system, as pictured by the similar maps of other numerical
tidalists such as Zahel (1971 I) and Estes (1975 I, 1977 I). The
clockwise-rotating Pacific tide was free to sweep undisturbed into
the Philippine, Okhotsk, and Bering seas. By the time the computed
tidal crest reached the Aleutian Islands, it was just about 180° out
of phase. When the original bathymetry was replaced by hydrody-
namically defined depth data (section, “Hydrodynamically Defined
Ocean Bathymetry”), the entire Pacific Ocean resembled a whirl-
pool after some continued computations over several quarter pe-
riods. The amphidromic system weakened, and its center slipped
slowly southward, but drastically improved phases appeared grad-
ually along the Aleutian Ridge, confirming the anticipated effect of
ocean ridges.

The complete turnaround of the Pacific M; tide near the Aleu-
tian Islands was speeded up when the empirical tidal constants were
introduced into the model. In fact, a repeat of the same computa-
tions settled the Pacific Ocean tide into its final position in a rather
dramatic fashion. Striking improvements were registered over the
whole Pacific and, of course, also over the Atlantic and Indian
oceans.

As is depicted in Tables 6A and 6B for the north-central Pacific,
the amphidromic system is replaced by a low-amplitude tide. It
sppears to be locked in between the Aleutian and Hawaiian ridges
in the north and south and also between the Emperor Seamount
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282 Ernst W. Schwiderski

chain in the west and the high-amplitude tide in the east, which
progresses in a westerly direction from the west coast of North
America (Tables SA and 5B). The amplitude topography of this
area resembles the low-amplitude tide in the Caribbean Sea (Table
4A). When the westward-advancing tidal wave enters the region
between the Aleutian and Hawaiian ridges, it suffers a remarkable,
almost symmetric retardation at both ridges. In fact, as the visible
(0° = 360°) cotidal line in Table 6B reveals, the crest front of the
tidal wave assumes the shape of an almost symmetric wedge. If one
traces the 0° phase line westward beginning at both ridges, one can
infer a definite idea about the realistic reproduction of the tide in
this region. At both ends, the 0° phase is in full agreement with the
empirical data. As the observed phases grow westward along both
ridges, so grow proportionally the distances of the 0° phase line
from the ridges.

The new computed M:-tide model no longer indicates any symp-
toms of the original phase problems at the Aleutian and Hawaiian
ridges. The computed amplitudes and phases approach the empiri-
ca: tidal constants from both sides of the ridges as smoothly as
could be desired. As the tidal wave spills over both ridges in north-
westward or southwestward directions, respectively, it suffers a
tidal distortion similar to that found before at the Caribbean Ridge.
Amplitude jumps and major phase shifts are again in complete
agreement with observations (see the remarks of Luther and
Wunsch, 1974 I). It is particularly gratifying to find the phase shift
well developed along the whole length of the Hawaiian Ridge from
the island of Hawaii to Midway, even though only few stations of
data were used at both ends. Also, it may be noticed that the ob-
served tidal constants at the distant and isolated island stations of
Pribilof (PF), Midway (MW), and Johnston (JI) are all realisti-
cally well integrated by the surrounding computed tide.

Ironically, the old and new M:-tide maps constructed by Bog-
danov (1961 I) and Luther and Wunsch (1974 I) by pure intui-
tion and simple rules of thumb from empirical data came closest to
the present charts. Indeed, their maps display no amphidromic
system in the north-central Pacific. As is verified in Schwiderski
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(1979¢ I), the computed amphidromic points between the Cook
and Society islands and near the southern edge of the Solomon
Islands are both in almost identical positions with those charted by
the same authors. Nevertheless, their detailed distribution of ampli-
tudes and phases is still significantly different from the present one.

Perhaps the most spectacular display of the high quality of both
the computed and the observed tidal data is brought out by Tables
7A and 7B depicting the high-amplitude tide of the central Pacific.
Indeed, unlike any other open ocean area, the tabulated region is
dotted with numerous tide-gauge stations at island groups and at
scattered isolated islands. In addition to the fully listed island
chains, there are the isolated islands: Johnston (JI), Wake (WI),
Kudaie (KI), Ocean (OI), Funafuti (FI), Wallis (WI), Niue
(NI), and Norfolk (NF). The corresponding observed tidal con-
stants listed in nongeographical arrangement appeared incoherent
and, hence, uncorrelated, giving rise to doubt their true value. Yet,
the computed tidal wave sweeps across the whole area in a south-
westerly direction with little variation of its high amplitude. As the
wave crest passes through the many checkpoints with correct height
and in right time, it integrates and correlates without a single ex-
ception all the empirical data into one coherent unity.

Conclusions ‘
The quality evaluation of the constructed Ms ocean tide model
described in Parts I and II of this paper leads to the conclusion that
it is now possible to compute detailed and accurate global ocean
tides which fulfill the application requirements of contemporary
researchers. In fact, it is estimated that the computed M:-tide charts
permit an M.-tide prediction anywhere in the open oceans with
an accuracy of better than 5 cm. This accuracy leaves ample room
for superposable errors due to the additional smaller tidal constitu-
ents listed in Table 1 of Part I, which are presently under construc-
tion with equivalent relative accuracy. When all those partial tides
become available, the total tide-prediction error is expected to fall
well below the 10-cm limit needed in many applications.
Naturally, the achieved high accuracy of the Ms-tide in the open
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oceans drops somewhat near continental or island stations where
empirical data are missing or are less accurate themselves (see the
introduction to the British Admiralty Tide Tables, 1977 I). This
is particularly true near Antarctica and in the Arctic Ocean, where
reliable measurements of ocean tides and depths are sparse. Also,
less accurate predictions must be anticipated in small border seas,
bays, estuaries, and channels where the 1° by 1° grid system pre-
cludes a sufficient resolution. To improve the present tide model in
those areas, significantly improved observations will be needed
along with a locally refined network and corresponding bathy-
metric data.
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