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0')A detailed derivationi of improved ocean tidal equations in
continuous (COTEs) and discrete (DOTEs) forms is pre-
sented. These equations feature the Boussinesq linea eddy
dissipation law with a novel eddy viscosity that depends on the
lateral meshi area, ie., on mesh size and ocean depth. Analo-
gously, the linear law of bottomn fiction is used with a new
bottom friction coeffcient depending on the bettom mesh ame.

O ~The primary asrnmcltide~uaerating potential is modified
by secondary effects due to the oceanic and terrestrial tides. The

Myil linearized equations are defined in a singe-ayer ocean
basin of realistic bathyinetry varying from 50 mn to 7,000 m.
The DOTM are set up on a 1V by 10 spherically graded grid
system, using central finte differences in connection with Rich-
ardson's staggered computation scheme. Mixed single-step finite
differences in time are introduced, which enhance decay, disper-
sio, and stability properties of the DOTEs and facilitate-in
Parn nIof this paper--a unique hydrodynainical interpolation
of empirical tide data. The purely hydrodynamical modeling is
completed by imposing boundary conditions consisting of no-
Rlow across and free-slip along the mathematical ocean shore-
lines. Shrm ng of t constructed preliminary M2 ocean
tide charts are briefly discussed. Needed improvements of the

~ )..model am left to Pantl.
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Up to recent years practical interest in ocean tides was essentially
confined to coastal waters. With the advancement of science and
technology, the need for extremely accurate tide predictions in all
the world oceans has become an urgent problem in applications to
geophysics, geodesy, oceanography, meteorology, astronomy, and
space technology. In the past two decades considerable progress in
the qualitative mapping of global ocean tides has been made by
hydrodynamical and empirical methods. Yet, the construct6d tidal
charts vary considerably over large ocean areas from investigator
to investigator, and tide pred ,.,, fl! considerably short of the
desired accuracy. A review of the numerical work was recently
published by Hendefshott (1977). A ,inprehesive feview V- 1hw
major highlights in ocean tidal research from the beginning to the
latest results is in preparation by the author (Schwiderski, 1980a).

In the present paper the well-known hydrodynamical-numeri-
cal method developed by Hansen (1966) and analyzed and tested
by Zahel (1970, 1973, 1975) and Estes (1975, 1977) will be
improved with respect to eddy dissipation, bottom friction, grid
system, and finite differencing technique. The newly derived dis-
crete ocean tidal equations (DOTEs) will be analyzed and applied
to construct a preliminary Mg-tide model, using the ocean bathyme-
try data collected by Smith et at. (1966). The results of this purely
hydrodynamical technique will be critically evaluated and needed
improvements indicated. In a subsequent paper (Part 11, Schwider-
ski, 1979b) the shortcomings of the present theoretical model will
be eliminated by using.a hydrodynamically defined bathymetry and
a novel hydrodynamical interpolation of empirical tidal constants
collected around the world.

Derivation of Continuous Ocean Tide Equations
The Navier-Stoke Equations of Averaged Turbulent Flow
Because of the enormous dimensions of the world oceans, their
hydrodynamical tidal motion, generated by the attraction of the
moon and/or sun, must be considered entirely turbulent. Accord-
ingly, any comprehensive modeling of oceanic tidal currents should
begin with the complete Navier-Stokes equations of averaged tur-
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bulht moom o a VOu inm ibl uid including all
unknown Reynolds Mems (sme, e.g., Schlichting, 1968), which
must pvide the major friction stm to keep the intrinsic super-
critical instability of the flow under control. In rotating shecal
polar coordinats (A., , r), these equations may be writen in the
form (see, e.g., Whitaker, 1968):
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In these equations, all subscripts denote 'indicated partial' deriva-
tives, while all superscripts denote indicated components of the
turbulent dissipation vector i or the Reynolds stress tensor v. Fur-
thermore, the following notations are used:

I = universal time in sec
> = east longitude
*- 

= north latitude (0 colatitude)
r = polar radius in m
(u, V, W) = ,.da, ,-d radial velocities, rspectiveiy, in

m/sec (averaged)
p = pressure t averaged)
q = total tide-generating potential
f = dissipation vector

= Reynolds stress tensor (to be specified)
C = 0.72722 x 10-4 sec- = earth angular velocity
p 101 kg/ma = density of sea water
G = 9.81 m/sec2 = gravity acceleration

The equations of turbulent "mean" motion are obtained by a
formal time-averaging procedure applied to the Navier-Stokes
equations of viscous laminar flow that leads to the concepts of
"averaged" velocities and pressure, as well as to the unknown
Reynolds stress tensor, r, containing the filtered out, fluctuating
velocity residuals in quadratic form (see, e.g., Schlichting, 1968).
A discussion of the physical meaning of these and following turbu-
lence motions may be postponed to the section, "Discrete Versus
Continuous Ocean-Tide Equations." The momentum equations
(Equations 1) maintain the momentum balance between tfie famil-
iar kinetic forces on the left side and the forces of potential (tide,
gravity, and pressure), Coriolis, centrifugal acceleration, and dis-
sipation on the right side. The continuity equation (Equation 2)
expresses the condition of conservation of incompressible mass.
The Reynolds stress tensor, ., and the total tide-generating poten-
tial, q, will be specified in the next two sections. The global oceans
at hydrostatic rest may be described by the following surface and
tnonm boundary conditions:
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(1) r R .637 x 107mspherical (eoidal rest) sea sur-
face (all geoidal undulations are
neglected without any significant
loss of accuracy),

(2) r = R - H(, * sea-bottom relief, where
(3) H =H(,*)=realistic ocean depth in mH(A, 0O

for land points, swe section "Thel " by 1 0
Graded Grid System and Bathymetry,"
and

(4) p =P - Gpz =hydrostatic sea-presure distribution with
constant (arbitrary) sea-surface pressure
P, where

(5) z=r -R new depth variable, so that z = 0 denotes
r=R (see Figure I).

Due to the lime-dependent, tide-generating potential, q, acting
on the ocean and solid earth, the. hydrostatic conditions (1l)-( 5)
are altered to the following hydrodynamical boundary values (see
Figure 1):

C ~~EN TDE zs TIDAL SURFACE

Z a a GEOUDAL SURFACE

Z No BH*OTTOM TIDAL RELIEF

BOTOM 106Z N -i BOTTM REST RELIEF

V*A i.afh-odeam ti htearsedan r W, 000". tde, to easrth tide, r
moutde. = boom W Id = - 0eerthp.repam o 00m
Wie, and N = ocean depth.
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(a) z,=' (Xt) total sea-surface tidal elevation
over geoid z = 0;

(b) zb = V (1, 0, t) - H(. 4) = sea-bottom tidal relief, where
(C) Cb = Cb (A, 0, t) = total bottom tidal elevation over rest

relief z = -H(, 4);
(d) C (, 0, t) = C - t= ocean tidal elevation (measured

by bottom tidal pressure gauges) to be modeled;
(e) i' = ir 0, t) = earth tidal elevation to be specified

(Equations 9);
(f) C" = C (X,,t)=Vt- h= earhdip-response tooceanic

tidal load, C (Equation 10);
(g) pP = P = constant surface pressure (no atmospheric pres-

sure considered);
(h) w. = , = surface radial velocity;
(i) 0' = o = no surface suess (free-slip, no wind force con-

sidered);
(j) (u, Vb, wb) • V(H + z)-Ct = no flow across ocean bot-

tom (V = gradient vector);
(k) ,b=pB(ub, vb) = bottom stress vector specified by invok-

ing the linear law of bottom friction with the coefficient
B = bpos 0 = FL 2#os (4a)

depending on the cell bottom area Lw'os 0, where
(1) L = chosen equatorial mesh size (section "The 1 x 1

Graded Grid System and Bathymetry"),
(m) pt = mesh "grading" parameter (section "'e 1P x 1

Graded Grid System and Bathymetry"), and
(n) b = SL2 = uniform bottom friction parameter, which

must be determined by trial-and-error computations for
best results. The final M2 tide (Schwiderski, 1979b) was
computed with b = 0.01 m/sec. (4b)

(o) Lateral boundary data will be specified in the section,
"Lateral-Boundary, Initial, and Final Data."

In contrast to Zahel (1970, 1973, 1975) and Es (1973,
1977), who used the nonlinear law of bottom fictin the 1ww
law is bee Preferred m it is more Consistent with te overa St=s

0)
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dow-motion assumptions (see, e.g., Schlichting, 1968) character-
izing the present tide model (section, "The Continuous Ocean-Tide
Equations (COTEs)." Especially the computations by Estes (1975,
Figre 6) indicate no need for any nonlinear friction terms, at least
not in deep ocean areas. Pekeris and Accad (1969) used the same
linear law of bottom friction and called attention to earlier work
by Grace (1931) in the Gulf of Suez. Grace applied both laws and
experienced a lit preference for the linear law.

In deviation from Pekeris and Accad, the present bottom fric-
tin coefficient is assumed independent of ocean depth. Since those
authors placed their artificial boundaries of the world oceans at
the 1,000-m depth level, it was plausible to restrict any significant
bottom friction to those boundaries. This was accomplished by
simply assuming a bottom friction coefficient B that depended in-
versely on the ocean depth. In the present tide model, which uses
(section, "The Ix1 Graded Grid System and Bathymetry"), a
bathymetry that varies from 50 m to 7,000 m (or 10 m to 7,000 m
in Schwiderski, 1979b), this assumption was found unjustified.
Bottom fricti coefficients of the form B -H have been tested for
e = -I (Pekeris and Accad assumption), e = -A, and e = o. The
latter appeared to yield best results.

The assumed dependence of the bottom fction coefficient B on
the bottom mesh-cell area (Equation 4&) is in agreexmt with the
novel law of eddy viscosity, which is introduced below in the next
section and which is frher discussed in the section, "Discrete
Versus Continnou Ocean-Tde Equations." In fact, as can be seen
from Equaboms 28, the bottom friction coefficient is essentially de-
gummed by the vertical eddy viscosity. It may be noted that the
inrkel values of the bottom friction coefficient (Equations 4a
and b) ued in the prent model fall considerably below those used
by Pebk and Acced in their cm'or j-Ini- donmains, where fric-

tim is m tidally resricad to the boundary line.

Tim fafMy deriied unknown Reynolds sftess tesor, ? (preced-
bng scion), my be specified by the oriinal Boussinesq (1877)

A
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substitution (see section, "The 1 X 1 Graded Grid System and
Bathymetry"); that is, by the laminar, viscous stress tensor (see,
e.g., Schlichting, 1968; Whitaker, 1968):

rcs 2A - tan# + E (5a)

10 =2pA • + , (5b)

7 = 2pAw,, (5c)

p Cos # J ! , + (5d)

r =' A r 'N+r1c w.] (5e)

,r*" =-' rF pA Dr lw]
r "(Sf)

In this substitution, the ordinary kinetic molecular viscosity is re-
placed by the so-called "eddy viscosity" A (momentum austausch,
exchange, or mixing coefficient), which remains to be modeled to
represent the true turbulent flow characteristics at hand as closely
as possible.

In order to achieve a greater modeling flexibility, it is customary
to divide the eddy viscosity into a "vertical" eddy viscosity associ-
ated with vertical shear and into a "horizontal" (lateral) eddy
viscosity associated with horizontal shear. Since east and north
dimensions are usually nearly equal, no need for two lateral eddy
viscosities has ever been encountered. In single-layer ocean mod-
els like the present one (section, The Continuous Ocean-Tide
Equations (COTEs)," the separate treatment of the vertical eddy
viscosity needs no explicit specification, because (Equations 28)
the viscosity becomes an important part of the bottom-friction co-
efficient, B, defined by Equations 4a and 4b.

Based on the author's extensive computer experiments and on
the physical arguments elabotted on in the sections, "Stability
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Analysis" and "Discrete Versus Continuous Ocean-Tide Equa-
tions," the (horizontal) eddy viscosity, A, may now be specified by

A = -2LH(A, -) (1 +pcos0). (6a)2

In this definition, L and IL denote the mesh size and grading param-
eters introduced in the preceding section (1,m). Accordingly, the
new eddy viscosity depends on the mean lateral cross-section area
H x L( + i cos )/2 of the flow cell of depth H and average
north-east mesh size L( I + /A cos #)/2. The remaining reduced
eddy-dissipation coefficient, a (in sec), must be subjected to trial-
and-error computations in order to achieve best results uniformly
over all oceans. (Different a-values for the Pacific, North and South
Atlantic, and Indian oceans were also tested without significant
effects.)

At this point, it may be mentioned that, following Zahel (1970,
1973), the author used in an exploratory tide model a constant
eddy viscosity uniformly over all oceans. The results were rather
disappointing, especially for shallow ocean-shelf areas, where in-
tolerably low tidal amplitudes were computed. Subsequent com-
puter experiments with eddy viscosities of the form A -He with
e = o, 1/2, 1, and 3/2 indicated best results for e = 1, as in Equa-
tion (6a). Some dependence of the eddy viscosity on the mesh size
considered was earlier noticed by Cox (1970), Friedrich (1970),
Holland and Hirschman (1972), and Zahel (1975). Indeed, eddy
viscosities ranging from A = 10 to 101 1cm 2/sec have been reported
as required by many researchers investigating different problems.
Obviously, those huge variations of the eddy viscosity can be ex-
plained by Equation (6a) by the strong variations of the mesh size
L and the depth H considered by different analysts. In the present
case with H varying from 10 m to 7,000 m (section, "The 1 x 1
Graded Grid System and Bathymetry") the eddy viscosity was
found to vary between (section, "Stability Analysis")

•1.3.-108 mu < A < 1.3.-10ura -  (6b)
sec sec
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which fits the customary range very well. It is perhaps fortuitous,
yet interesting, to note that for a cubic cell of about l-in. mesh size
the eddy viscosity, A (Equations 6a, b), reduces to the value of the
molecular viscosity of water.

The Total Tide-Generating Potential
The total tide-producing potential, q (section, "The Navier-Stokes
Equations of Averaged Turbulent Flow"), may be expressed in the
form

q = G(, + ''), (7)

where Gil is the "primary" astronomical potential directly propor-
tional to Newton's equilibrium tide 1. The remaining "secondary"
potential G9' can be expanded into its three major parts

Gi' = G(,W + 9" - v), (8)

which reveal their corresponding origins (Figure 1, section, "The
Navier-Stokes Equations of Averaged Turbulent Flow" (d), (e),
(f)), respectively:

G,? = gravity potential perturbation due to the ocean tide C,
Gq* = gravity potential perturbation due to the earth, tide 4r,
Gift = gravity potential perturbation due to the earth dip-response
C" caused by the ocean load (C-tide).

Attention to the significance of the earth-ocean tidal interac-
tions manifested in the five quantities C. ,1, 0, ,*, and ,* was
culed for by Farrell (1972a, b; 1973). In ocean-tide models, it is
sufficient to use the following approximate relations:

Ce ,- 0.61%: 1 0.30% (9a)

16-, - 0.3,ip, (9b)
and

C" - ," + ,"0.0 (10)

m m .,.,...,,ne
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The first relations (Equations 9) used by Hendershott (1972,
1975), Zahel (1975), Estes (1977), and others, can be justified
by second-order Love number approximations. The second relation
(Equation 10) has been suggested by Pekeris (presentation'given
in 1977 at the U.S. Office of Naval Research), who also recom-
mended the factor 0.10 after evaluating the Green's function repre-
sentation of the three oceanic tidal load effects (Z", it- ,?q) derived
by Farrell. Apparently, the suggestion by Pekeris (Equation 10) is
physically just as plausible as the accepted approximation (Equa-
tions 9). In Equations 9a and b, it is assumed that the solid-earth
tide, C, and its subsequent gravity perturbation, Gie, are essentially
instantaneous responses to the tide-generating potential, q. Analo-
gously, in Equation 10, it is assumed that the solid-earth dip, Z-,
and the gravity perturbations, 9- and e, are almost instantaneous
responses to the ocean's tidal load, C. It may be mentioned that the
author conducted extensive computer experiments using the factors
0.00, 0.08, and 0.12 instead of 0.10 in Equation 10. The last two
factors produced no noteworthy alterations of the results. The first
factor (0.00) obviously deletes all oceanic tidal-load effects to
which critically large significance has been attached by Hender-
shott (1972, 1975). The author's computations supported the
marginal effects of oceanic tidal loading found by Estes (1977).

Following Thomson (1868), Darwin (1883), Doodson (1921),
and Cartwright and Taylor (1971), the primary astronomical tide-
generating potential, Gi, or, equivalently, the equilibrium tide, ,

may be expanded into a series (see, e.g., Dietrich, 1963) of "har-
monic components" (constituents), ?, with a nonharmonic fre-
quency spectrum

v=0 ,V(#.

In the final analysis of ocean tides, the following three major spe
cies will have to be considered:

(a) Semidiurnal Equilibrium Tides

v = 2:11 = Kcos2 cos(t -4-2, + x) (12)

_ __ _

_ _ _ _ _ _ - -B-
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(b) Diurnal Equilibrium Tides

V = Li Ksin 2cos (at +k+X) (13)

(c) Long-Period Equilibrium Tides

v =O:vo =KOCOS2 .0- 2) cos(rt + x) (14)

In Equations 12-14, the constants (K, '-, X) denote K = amplitude
of equilibrium tide (in in), a = frequency of equilibrium tide
(in sec'), x =astronomical argument of equilibrium tide (in rad).

In Table 1, these constants are listed for the major tidal modes

Table I
Constants of major tidal modes.

Tidal Mode K(~m) ryb(1O-/sec) xeqdeg)
Semidiurnal Species

M2 =Principal Lunar 0.242 334 1.405 19 2h0 ' - 2s,
S2 =Principal Solar 0.112 841 1.454 44 0
N2 =Elliptical Lunar 0.046 398 1.378 80 2h0 - 3s, + p0
K2 =Declination Luni-Solar 0.030 704 1.458 42 2h0

Diurnal Species
K, = Declination Luni-Solar 0.141 565 0.729 21 ho + 90

0,= Principal Lunar 0.100 514 0.675 98 ho - 2s0 - 90
P,= Principal Solar 0.046 843 0.725 23 -ho - 90
01= Elliptical Lunar 0.019 256 0.649 59 ho - 2so + p0 - 90

Long-Period Species
Mf = Fortnightly Lunar 0.041 742 0.053 234 2s0
Mm = Monthly Lunar 0.022 026 0.026 392 so - p0
Ssa = Semiannual Solar 0.019 446 0.003 982 2h0

aK=amplitude of the partial tide.
b g = frequency of the partial tide.
c = astronomical argument of the partial tide.
d (ho, so, po) = mean longitudes of sun, moon, and lunar perigee at Greenwich midnight:

ho0 = 279.696 68 + 36 000. 766 930 485 T + 3.03 * 10-911,
so=270.434 3586+481 267.863 141 37T -0.001 133T2 +1.9 *10-M.,

po=334.329 653 + 4 099.034 032 957 5T - 0.010 251- 1.2 *10-S,
whome
T = 127 392.50 526 + 1.000 000 035 601/36 525.
D = d + 365 (y - 1975) + mnt ((y - 1915)/4).
d = day number of year (d = 1 for January 1),
y .4 1975 = year number,
and
mnt (XI= integral pert of X.



OM liri.. Pwt 1: Gla Ocean T Eqoadm 173

with amplitudes larger than 4% of the leading semidiurnal moon
(M) tide. The daily astronomical argument, x, can be neglected
in the following construction of the oceanic tidal modes

C = 0(,, 0) cos(at + x - 30%, 0) ) (15a)

corresponding to the considered mode of the equilibrium tide,, =
,,. According to Equation 15a, only the "harmonic constants"

= f(A, 4) = tidal amplitude (in m)and (15b)
8 = (A, #) = Greenwich phase (in rad) (

need to be found, provided the tide model is linear or almost linear.

The Continuous Ocean-Tde Equations (COTEs)
In addition to the simplifying assumptions made in the three pre-
ceding sections concerning bottom friction ((k)-(n)), eddy dissi-
pation, and total tide-generating potential, the following simplifica-
tions may be invoked:

(a) Hydrostatic pressure assumption in Equations 1; i.e.,
(1) Neglect all quadratic inertial accelerations (Stokes'

slow-motion assumption consistent with linear eddy
dissipation and bottom friction; see, e.g., Schlich-
ting, 1968)

(2) Neglect all centrifugal accelerations
(3) Neglect vertical Coriolis force
(4) Neglect vertical dissipation
(5) Neglect vertical motion

(b) Single-layer ocean assumption in Equations I and 2; i.e..
(1) r=R+z-R, butDr= z
(2) C (A, #, t) CH(X, 0).( V, (A',, 0) ,H( ,, 0)
(3) u (A, 0; z, t) --u(,, t)

: v~x O, Z, 0)- v(, , t)I
.........f ...Il-. .'"'....... ... .. .2 -: ....... .......
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It may be pointed out that all assumptions of (a) and (b) are
well justified over most flow areas. In particular, the strong assump-
tions (b, 3) are realistic because the fide-generating potential is a
body force. Moreover, the motion is fully turbulent and, hence, the
averaged velocity profile exhibits only a very thin boundary layer
and laminar sublayer (see, e.g., Schlichting, 1968). It may be
mentioned that for the same reason the condition of free-slip at a
boundary wall (section, "Lateral-Boundary, Initial, and Final Data")
seems more appropriate than the no-slip condition used in laminar-
flow situations. The assumption (b, 3) is, of course, much less
realistic in general ocean currents, which are driven by surface
pressure and wind forces and/or by density variations confined to
the upper ocean layers.

By applying assumption (a) to Equation Ic, one finds the hydro-
static pressure

p, = -GP,

i.e.,

C.
p-p=f Gpdz = Gp(C- z),

or, with (section, "The Navier-Stokes Equations of Averaged Tur-
bulent Flow" (a)-(g))

P, =P,

.r =C +Cb=C +V -M

(16)
p=GP (C + to- C- z) +P.

With Equations 7-10 and 16, one has

q -- = N[ - W - to) - C + W- V" + *I)) -P/,
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q -P=(wq - PC,) -P/p. (17a)
p

where

a = 0.69,
0 I(17b)

=0.90.

In the following equations, it is convenient to introduce the
notations

H/ = H)/I, H) = XI1, (18)

go = H/1H, g1 = H,#IH (19)

and

l,= H Asino/(1 + ,COS) (20)

so that (Equation 6a)

A =AH, A =AH. (21)

Using the simplifications (a) and (b) and Equations 17-21 in
Equations 1 and 2, one arrives at the reduced equations of motion:

- A i(a-)G + '2n v sin # +,

G

vt 2 (u-),- 2 usin 0 + f, (22a)

and

U + (vos ), +RCos0w"=0. (23)

I-
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where (Equations 3a, b: 5a-f; and 21)

A
Ag A R c [u., + 29, u) - u] + A u.

A
"R " ,0[0 + (H# - tan 0)u# +HO u tan 0a

A+ R cos b [v(0 -2ta v -2A v t ,

A
+ [v., + (2/Io - tan #)v* ]

" A [(2u. + HXu ) tan + HXu0]. (24b)

Under the single-layer ocean assumption (b), the reduced Equa-
tions 22 and 23 may be integrated over the instantaneous ocean
depth (z - zb= H + C) while observing the surface and bottom
boundary data specified in the section, "The Navier-Stokes Equa-
tions of Averaged Turbulent Flow." For that purpose, it is useful
to introduce the "integrated" velocity components:

U (, ,t) =f udz- uf -- (integrated) east velocity
(25a)

and

V (Q.,O,t)= f vdz-vH= (integrated) north velocity,
(25b)

where the term "integrated" may be omitted when no confusion
appears possible.

Using the amlfctosand notations made, one finds the help-
ful ations with the cmrm in rt pia - -- s (u-*v,U-*V, x-.
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fz utdz = VtU - e t + ee. (26)

f jz=v.-se+we-u -H jzu. (26b)

and

f5 ,dz - u - )A, UX + 17kh,- n)V - H,,, .
(26)

The bottom-boundary conditions imposed in the section, -"Te
Navier-Stokes Equations of Averaged Turbulent Flow." (j) and
(k) assume the following approximate forms:

_ HO.
C RcosU"+I- - w", (27)

1O = E-A 4  At +&H#4+uP coH R3C020 t (28a)

and
-1 B (Hx A Yt- +2b
1_ 7 =VF- A R2cos2+ + (28b)

With Equations 25-28 and the surface-boundary conditions
in the section, "nUe Navier-Stokes Equation of Averaged Turbu-
lent Flow" (h) and (i), the proposed integration of Equatioms 22
and 23 is easily carried out Md yid& the foowing "continuous
ocean tidal equations" (COTEs with 6 = w/2 - 0 = colatitude):

• U,=R sin 0 (.(-) R2+

A+ &k)- F ! + U. +(coIO-t 4+H.)U] (29a)

A
+jj ia ... [WW * I - + 2 co--,

I 0
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+ A[V~ + Vv + (Co 6-9. +2 )] (29b)

+ A
+R2 SW a[ 2 cotU 1,XUO - (cot 6-H.,0)R 3XU) - 20U ca ,

ad

R sin 0 ts+ 4- (V n9)S 0, (30)

whee= 0.69,. 0.9, and

mk~fxh+1+1f'

(31a)

WR8+IF(ct-f+ ) (31b)

He =Hme/H.Rg Hot/H. (-#A)
.W (32)

He =1,0+ itCot0/ (1 +psin 0),J

-nd

It way be mnioned tafor=p = Im nA = B=O0te ocma
tide equatlans (Equations 29 and 30) reduce to the conidrbly
simpler classical Laplace t6da equations. Evidently, the comnplete
COTE require second derivatives (IlH2 H ) of the bt oa too-
raplay, which can be assumed to exist without placing major re-
asrictiom on the realislic features of the bathymet. It Ii terest
to nobet duvhe scond uvds in and H Oct as modyint
bottow-Motion tim A ridpUelk ocea ftoo (say, H u> 0)
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always adds to the boat!tom-friction terms (U. V) -B/H, while a
valley (H M < 0) always diminishes bottom friction.

Seoond~rder Anctic Tidles
The COTM (Equations 29 and 30) become singular at the North
Pole. For the intended numerical pocedure, it is therefore advan-
tageous to seek an ap-o-m- analytic solution around this uin-
gularity that can be matched together with the numerical solution
at some appropriate colatitude. In fact, a unique "second-order
arctic tide" solution can be determined for all three species of tide-
generating potentials listed as Equation 12, 13, and 14, provided
the ocean depth around the North Pole is assumed constant.

For constant depth, H = H6, constant eddy viscosity, A = A.,
and constant bottom-friction coefficient, B = B., the COTM
(Equations 29 and 30) assume the simpler form:

GH.= G,L R sie (aP)h + 20Vcos - HOOU

+R2A sW (Um - U + sin 6 (sine6 U* )* - o ,1

(34a)

VtEf0(C-a~ - 2OUcos -BOV

Ao+ Ra2,, V.V+ sn(san6V, ).+ 2 cosOUx],

(34b)
and

Ct + U) -U (V sin e) I =0. (35)

Te forcing equilibrium tides, 9 (Equations 12, 13, and 14),

may be written in the unified complex form

yy(k, 0) e'', (36)phe_
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/K sin 0 Osx, (=_- 2) (37a)
Ksin26e', (,= 1) (37b)
K(3 sinO 6 - 2) (37c)

With the substitution

( ,U, V) = (,ftU. IF)e (38)

one arrives at the following three complex differential equations in

iGH.e .
,,U-=RWHO (Of- a), + 20Tcos 6 + i-U u

IA.S fsin e fUm-'U+ sine (sine u, ), -2icos0Vxj]

(39a)

=W'V G~o (v4- #Z)v + 2OUcos + i -1 V

Ri 2  .Vn _V+ sin 0 (sin 6 V ) _ 2i cos e U)]
(39b)

and

f= -+ (Vsin 0)*.
(40)

The reduced Equations 39 and 40 may be solved for regular
solutions by power series in sin 0 (essentially polar distance) of the
form: -

For v 2 andv wO,

e|
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'C#(A) + C (A) sin + C(A) sin +...,
= U(A) + U,{A) in 0 = U(A) si 2 +...,

sad (41)

and a 1,
r=cos + [ ((A)+ () sin + ,() sin+ .... +

=cos (U.(h) + U(k) n+)sin+U2(A) si 2  +

and 42)

r= V,(A) + VI(A) sin0+ V2(A) sin2 9 + ....

By truncating the series expmnsioas (Equations 41 and 42) after
the secod order in sin 6 and substituting these truncations into the
Equatious 39 and 40 up to the same quadratic power, one arrives
after some lengthy but simple algebra at the following unique
"second-order arctic tidal approximations." For semidiumal tides
(v 2),

C = 6rSin6 O,,(x+.,
U =-" R sin 0 014=+0)9,

43)

and

V = -he-R inO e'' ",

where

I aGHK/[6PGHe + oR2 (2t - v) + i,(6A. + BhR 2/H) ];
(43a)

aadfor diumal fides (V I),

0
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C =31r, sin 28 (44)

U:P ( 2 + 6R'a sin," 8) cos 6el)-+*),

and

V =i tX2 + 2(Ka +±K, oR) Sin2 91j eilX' t ,

where

KsiKas(K22 - K12)
K=MKi - KuKsz) - Kva(KnKga - KaiK8.)' (44a)

I~ W33Ks - Irs(Kis - Kil KnIK8OJ,

and

Kit = (6,OGHo - axRs) + i.,(6Av + Da&W/HO),
Ka2 = -R

Kis R (6a - a7) +j( 2A,6 + B.R 2/Ho),

Kit =6WfH, + 4io,

K =R(2a) -j(a + BR2/Ho), (44b)

Ku = MAW/R,
Kai =2vDRP

K = R (2a -3a) + 3j(1 2A + BOR/HO),

Ku. = 2aGH.oK.

For longperiod tides (iv=0),

v = -2K1 2 - 3 sin6)e,
t = -2L ( sin 26 e e

Un } ssn ~l (45)
M d V = - i~ i R s i n 2 0 e t #
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where

K, = 4 _.O /IrR' - i(2A + .R/H,) 1.
K 2 = -KKj,

and (45a)

K, = -3aGHT [(6PGHo - a
2R 2 + aRL,)

+ ,(6Ao + BoR'/Ho)].

It is important to note that the surprising uniqueness is achieved
by requiring a regular integral at the North Pole (Equations 41 or
42) and by truncating the series of the solution and the differential
equations after the second power of sin 6. Of course, without the
second-order truncation, uniqueness can no longer exist. Undeter-
mined coefficients become available to satisfy prescribed boundary
data, say, at distant continental shorelines.

In the present global tide model, the arctic tides (Equations 43,
44, and 45) will be considered valid up to 1° colatitude (the first
land occurs at colatitu&- 70; see Bathymetric Tables in Schwiderski,
1978a). For colatitudes 2° and 30, a linear interpolation will be
used to match the polar solution with the numerical solution com-
puted south of 3° colatitude.

It is interesting to observe that if the Coriolis force and eddy
dissipation are neglected (0 = 0, Ao = 0), then the second-order
arctic tides (Equations 43, 44, and 45) become exact global tides
with the constants

]r = GfHf*K/[ (6#GHO - u'R') + i,,BR'/Ho],
X= 2X,'K =-2&Rlr,L, = 0,
k1 = -3 , = 0, f. = 0.

From Equations 43, 44, and 45, one concludes that all second-
order arctic tides, C, vanish at the North Pole with the same order
as their coSg driving equilibrium tides ,. Hence, only
loag-period tides exist at the North Pole.

£
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Derivation of Discrete Ocean Tide Equations
The IQ by 1* Graded Grid System and Bathymetry
With the exception of Antarctica (south of colatitude e = 168'),
the entire (ocean and land) area of the globe is covered by a 1 by
to grid system that is "graded" toward the poles. Each spherically
rectangular mesh cell Sm.n is bounded on the east and west by longi-
tudes x. = m' and k. - = (m - .)°, respectively, and to the south
and north by colatitudes 0. = n0 and 0. = (n - 10, respectively,
so that

Sf"= (m-) o ( In°)mn, (46)

where

m =A, 21A,. .. ,(360-)0)

and (47)

n =1,2,...,168. J
The "grading" parameter & = L is defined by:

,= forn = 30to 150
= 2forn= 15 to29andn = 151 to 168 (48)

p=4forn-- 8 to 14
j,= 8 forn = Ito7 I

The grading of the network toward the poles js necessary in order
to maintain a more uniform mesh area for higher accuracy and
stability (section, "Stability Analysis") of the discrete tide model.
In fact, the grading equations (Equations 48) have been chosen in
such a way that

ain n* 1/2 for n = 4, 8, 15, 30, 150, 165; (49)

i.e., the southern mesh size remains larger than half the equator
mesh size. This important condition is violated for n -1, 20, 3
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and n = 1660, 167% 1680. However, in the preceding section it
was pointed out that the numerically -discrete tide model begins at
colatitude 0 = 4". For colatitudes 0 3° and 20, the numerical so-
lution will be matched by linear interpolation to the second-order
arctic-tide approximations derived in the preceding section, which
are assumed to be useful up to colatitude e = 1 . As will be shown
in the section, "Stability Analysis," the slight violation of the con-
dition in Equation 49 at the three southern colatitudes is not so
severe as to affect the stability characteristics of the model. In any
case, no need was apparent to justify an additional grading step,
which is accompanied by an unnecessary, extra computational ef-
fort (next section).

In the global network defined above, land and ocean mesh cells
are distinguished, respectively, by zero or nonzero depth data H,.
which will be assigned to each cell below. The "mathematical"
boundaries of the oceans follow in an obviously zigzagging fashion
the mesh lines of boundary cells.

The ocean-depth data collected by Smith et al. (1966) were
rearranged and linearly interpolated to fit the new 1* by 1 0 graded
grid system described above. The original data bank had to be
corrected for obvious errors in continental and oceanic labeling,
ocean and land signs, shorelines, and some exponents. All land
elevations were set to zero, including all depth data less than 50"m.
Furthermore, the following meshwise-disconnected border seas
were excluded from consideration by assigning zero-depth values to
their corresponding mesh cells: the Baltic, Kattegat, Irish, Mediter-
ranean, Red, Japan, Sulu, and Ceram seas; the Hudson and Korean
bays; and the Chihliah, Persian, and Californiangulfs.

All depth data H,.. are considered representative for the center
of the cell ,..,; i.e., for m = IL, 2j,. . ,360 and n = 1,2,....168,

H... =

where I, (m - */2)0 and . = (n- ')

The assigned minimbm and maximum depth :valuel were, re-

spectively,

.11 . .. m .,m d 
- - ' "

" ' " . , n
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H= = minH(G.e) 50m, (51)

Hu - max H(X,e) =7,000 m. (52)

The averaged North Pole de?,th was found to be

Ho = 3,600 m, (53)

which is needed to compute second-order arctic tides (section,
"Second-Order Arctic Tides") for colatitude line n = 1.

The Discrete Ocean Tide Equations (DOTEs)
Following essentially the hydrodynamical numerical method of
Hansen (1966) and Zahel (1970), the COTEs (Equations 29 and
30) may now be converted to an explicit finite-difference analog
called "discrete ocean tide equations" (DOTEs). In agreement
with the graded grid system defined in the preceding section, it is
convenient to introduce the following notations:

&0 ,r/360 = ' * mesh size. (54)

L 2RA&G,

t time step to be specified. (55)

In a first step, all spacial derivatives of Equations 29 and 30 are
replaced by divided central finite differences, using a Richardson
(1922) staggered scheme. Accordingly, for a fixed oceanic mesh
cell S... (Equation 46; j = 1, 2, 3...

U'+ ' = U(A.(U), 0.(u ) jAt)

VJ+, = V( .(v), G.(v), jat),

(56)
and

a _re ' = c u (A (C)t, jot)

are computed, respectively, at the u-point of S..,
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Am(u) -- 2(m - PO&A, M.u) = (2n - 1)46, (57a)

v-point of S...

-. (v) = (2m - I-)&A, e.(v) = 2nAO, (57b)

and C-point of S...

A-(=) =.(v), 0. () = e.(u), (57c)

Undefined data are specified by arithmetic means of defined values.
For example, needed U-data at v-points are defined by averages of
U-values at adjacent u-points.

In the second part of the differencing process the resulting equa-
tions are integrated in time over a single time step, At, by using the
following average integration rule (U-*V-*C)

f5 '+1 U(t)dt = At [KUj+' + (I-)UJ], (58)

where

U= U(t), b = (i-l),At,= 1,2,...,

and x = some differencing parameters, which usually satisfy the
restriction

0 1. (59)

As will be seen, the resulting discrete ocean tide equations (DOTEs)
are very sensitive to the choice of the differencing parameters, ,

and the time step, At. In fact, depending on the chosen values of
and At, the DOTEs may be stable or unstable (section, "Stability
Analysis") for any specified values of eddy viscosity, A, and bot-
tom-friction coefficient, B. Moreover, different values of r for
Equations 29 and 30 and for the various point values of U, V, and
C can be chosen so that the resulting DOTEs may become explicit
or implicit. Considering the complexity of the ocean basin and the

A

- a -.--
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large number of oceanic mesh cells, an expliclt form foi the DOM
is here preferred.

After carryihg out the described integration with the three (ob-
vious) differencing parameters , = 0, and, ;, one arrives at the
following explicit DOTEs. (For a more detailed derivation see:
Schwiderski, 1978b.)

[I + KA ,,,] = ,' sin 2 (2j - 1)

+- A,2,, cos at (2j - 1) + 3, -

2 +2
+ [I - (1 - K)AA,,1] U., + + U

M,, .n + U , + A, AA 6 i n m~ m ~ l M n + !n

+ A. [(w. m + Vj,... 1)- (Vj_1,n + v .,)]

A A.,, [(Vim.n + . + V ,. + V . a)
[1 J,] v,,+: = .cosr-(-

cAt (2- - 1)
+ B,, s in 0&t(i-1

+ [.,,+, -, + - (1 - K)B .. ] V,,

+ B,;-,, V'" L I.-A n + B,,., V.n + I

B,,,, [Uj+M~fl + U,,,] + ,, + u~,+,] (60b)

and
. [C u - U,,.,) + C 2 V IC

+ 0- K) [C,(U+.U, +-. ..

+ ) J C3$Ix(1B .R , ,,,+u, ,,,.,+v,,,. (b
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The coefficients of the DOTEs (Equations 60 and 61) are

AM.= A.,. cos 2v(in - jz) AG,

A2,= AM. n 2v(n - p.) AG,

A ..= (3AtGH(u)F.(u)IL,

A 4  = 2 a Al qs,(u) [&,(u)H(u) - fl(u)]
116nM L m.R in.M

+ bAtI1'.(u)H(u),
m .n

A5= aA Ii,(),(u)H(u) [I + fl(u)],

mn L *,, Mrnn

A 6  = tA 1 u)r,(u m [ 1 - 11(u)]
Lm~n M~n

A7~ = H1(u) [AIN(u) + /AAO (2 + 1,(u))(6a

.cos(2n - 1) AG],

AL - Hu [*t'(4) - MSA" (2 + rN(u))

* zos(2n - 1) AG],

A'. = A (u)If(u) [*.(u)i4 (u) - 'A (3 +21,(u))

.o~s(2n - 1) AG]

and
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cos(2n 1 ).18] + 2 (cos(2n -1).

where

fsin (2n -)A9.,

4,, a G jHu snrt cos (2n 1),v=I

and

=,(" l/Is sin k.(u);, tpu(u) 1k + 1/IJ,() (6-3a)

B .. I,,Ancos P(2m - js) An,.

B,, -B,..,,, sin v,(2m - IA) A0,

B,:, 3 4 tGH(v)/L.

B'A 2a 1 xv[&)Hv

b b4t/r,(v)H(v). 6b

L ,,,., (1

k H~v) [j'if(I

6L
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+ AO (3 + 2r1(v)) Cos 2nAO],
4

B? a A- 11(v) [q,(v) (I + 11(v))
L ,a.a mn

ALA (3 + 2[,(v)) cos 2nA&O]

B"" a A 1 r1(v).(v)H(v')
L n

[Zji91(v cos 2nAO - iv]

(62b)
aALI'r(v)4hu(V)H(v)
aL " ~

[21Aet9r,(v) cos 2nAO + 11(v)],

and

B -Ol a A-1 r(v),, (v) H(v)h(v)
L Mjmi

[,AAOr.(v) cos 2n 40 + Ht(v)] t cos 2nAO,

(2 sin 4nAO, v =2
8

Ai.i .~aG 2~ cos 4nAOW. ,'

6 sin4n AO, v"=0

and;
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jr=() 1/Msin 4v). tPu,(v) 0 ( + l/1.(v)). (63b)

0)" ,(V) =I+ 1 2 (V);

C", t
L

C2  L (64)

and

C. L t r(E) sin 2 (nl - 1)40.

In thes coefficients, the folowing depth functions wer used at
u-points:

H(u) = 4 [H. +

Ii(U) =H [(U) - H (U)

f)u)= ~u -212(,I) [F12(,O) + (A4)21 (65a)

+ ,sA09(u) cos (2n - t)A40 [(3 + 21,(u))I?(u)

- 40Aef(u) cos (2n - 1)40J

+ (H (U) + Hu ]
M.N~ .3,3-1
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and at v-points

H(v) [ H., + H.+,].

(v)-= -V [H(v),- H(v) ],
m, ~~I InIkI

,.= I [(H(v) - H ,
mA

[fl2V) (j,&0)r IV)](65b)
fl(v) = H(v) W. (v) - 2[HI(v) + (,AO)hI,2(v)]

M." INm! MAm

+ taM(v)aYv)[3 + r(v)]cos 2nAo

r,2(v) (H(v) + 11(v))

+ (H (v) + H(v))].
rn+.- mA-I

Obviously, due to the introduction of the novel depth-dependent
eddy viscosity (Equation 6) the -COT and the DOTEs (Equa-
tions 29, 30 and 60, 61) are considerably more involved than the
corresponding equations used by Zahel (1970, 1973, 1975) and
Estes (1975). This results in drastically increased computer time,
memory, and cost.

Forx = OandW = 1, the finite-difference scheme coincides with
the technique used, e.g., by Hansen (1966), Zahel (1970, 1973,
1975), and Estes (1975, 1977). Extensive exploratoy computa-
tions were carried out by the idthr with numerous K and ; values
within the rangesO <r < 1.5 and 0.5 4 x'4 1. The -bmputtim
produced no drastic diferencbs, provided the eddy an bottom-
friction coefficients a and b and'the time sep At were shiaby
chosen within their respective itability ionstrants (seco, "SaN-
ity Analysis"). Finally, it was decided to use the values

... . _.. ..
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(66)

because they yielded a preferable stability and seemingly best re-
sults. Moreover, this deviation from the Hansen-Zahel method
became most significant for the hydrodynamical interpolation of
empirical tidal data described in Part II (Schwiderski, 1979b).
Indeed, this novel technique uses the special property that for 7 = 1
the bottom-friction coefficient, b, which enters only in A' and B'
(Equations 62) becomes essentially a scaling multiplier of U111 and
VJ+1 in Equations 60a and 60b. Thus, together with - = 1 in Equa-=.a

tion 61, the bottom-friction coefficient can easily be adjusted locally
to match more closely prescribed tidal data.

With , and 7 specified by Equation 66, the DOTEs (Equations
60 and 61) still contain the parameters a, b, and At, which remain
at one's disposal within their respective stability ranges (section,
"Stability Analysis"). They will be utilized to achieve best results
by trial-and-error computations. The DOTEs (Equations 60 and
61) can be applied to all oceanic mesh cells Sm. with m = 1,, 21,.
.... 360 and n = 4,5,. _168 sweeping across the globe from n =
4 to n = 168. This procedure can be executed, provided suitable
initial and lateral boundary data (next section) are prescribed. At
colatitude line n = 4, the numerical solution is matched to the
second-order arctic solution (section, "Second-Order Arctic Tides")
by the linear interpolation (m = P, 2,,...,360).

[J+( = I2U+1 V" (67)
=A 3 m.4 W,1

3 2 3 4 3.4

where U3+1 VJ++ and C1.. are computed by Equations 43, 44, or0.1 INA -m1

45. For colatitude lines n = 7, 14, 29, 150, spacially corresponding
data (U, V, ) on n = 8, 15, 30, 151 (see Equation 49) are de-
fined by linear interpolation. Vice versa, for n = 8, 15, 30, 151,
spacially corresponding values (U, V, +) on n = 7, 14, 29, 150 are
also defined by linear interpolation.

t9

S0
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Lael.Bowmdary, luidul mwi Findl DOM
In order to complete the ocean-tide model, the DOTEs (Equations
60 and 61) must be supplemented by suitable lateral-boundary and
initial values. In turbulent flow situations, the mathematical boun-
dary conditions usually preferred are (a) no-flow across the ocean
shorelines and (b) free-slip along the ocean shorelines. It is clearly
at this point that the great attractiveness of Richardson's (1922)
staggered, finite-difference scheme (preceding section) manifests
itself in the practical simplicity with which the no-flow and free-
slip (or no-slip) boundary conditions can be worked into the
model. In fact, if SI,. is an oceanic boundary cell, then, by defini-
tion (section, "The -X 1° Graded Grid System and Bathymetry"),
the zig-zagging mathematical boundary lines follow only mesh lines
and pass only through velocity (u and/or v) points. The no-flow
condition (a) is implemented by declaring at those points

U1+1 = 0 and/or V + I = 0, (68)

respectively. If, say, the v-point of S... is oceanic and the v-points
of S,_,.. and/or S are terrestrial, then the free-slip condition
(b) is satisfied by reflectively setting

V1+  =+V J+1 and/or VJ+1  = +V+ 1, (69)

respectively. (If the no-slip condition is imposed, then the (+)
signs in Equation 69 must be changed to (-) signs.)

The mathematical boundary conditions (a) and (b) were ap-
plied by Hansen (1966), Zahel (1970, 1973, 1975), Estes (1975,
1977), and others. In the present model, both the free-slip and no-
slip conditions were tested. The computer experiments indicated
slightly better results for the free-slip condition, which was then
adopted. Physically, this condition is more plausible in turbulent
flows which have only very thin boundary layers (see, e.g., Schlioh-
ting, 1968). Furthermoe, the free-slip condition is consistent with
the bottom boundary assumption specified in the section, "The
Continuous Ocean Tide Equations (COTEs)" (b,3).

I
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The construction of the M2tide was started at j = I (t , = 0) with
an ocean completely at rest; i.e., with the initial values (m = p,

2;,,. 360; n = 1,2,...168)

U V = 0. (70)

The computations were carried over a prescribed number of time
steps, j = J (mostly a quarter period), and then printed for inspec-
tion of the results. With or without program and/or parameter
changes, the computations were restarted, using the latest or any
earlier taped output instead of the initial values (Equation 70).
Occasionally, it was beneficial to speed up an unwanted slow decay
of transient eigenmodes by "negatively" averaging the output data
of half a period time difference; i.e., by setting

U' = V Uj  -U'-' ,U-*V-*C, 71)

where uvtJ = r. This simple procedure diminishes all undesirable
eigenmodes of lower frequency than the forced frequency, a, and,
similarly, also most higher frequency modes. The negatively aver-
aged data (Equation 71 ) represent obviously improved initial data.

Two output tidal elevations 2J-time steps apart (mostly a quarter-
period apart),

'.. = ... cos [AtJ - 8...]

and (72)

V'-2. = I... COS [aA,(J - 27) S.,

were used to compute the tidal "amplitudes"

f... = [e + ] (73)

ad "phas"

=arc ta yx (= Ofarx = y =0), (74)
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where

6, = ( + e.,)/2 cos ,At,
(75)

= - .)/2 in wAi

y = sinAt(-7) - 6 coo rA(J -7),
and

x = 6 C0 At(J-7) +f sin cAt(j-7).

In the finished product, i.e., when all (unforced) transient cigen-
modes have satisfactorily decayed, the amplitudes (Equation 73)
and phases (Equation 74) become essentially independent of time
and undergo no further variation of significance after continued
computations.

In the M6-tide model, the computed convergence toward the
steady state of the amplitudes and phases was found to be gener-
ally oscillating. So the integration process could safely be termi-
nated when the amplitudes and phases over most ocean areas
varied by less than 2 cm and 30, respectively. The convergence was
slightly less complete in coastal ceils where the tidal elevations are
extremely large and vary rapidly from degree to degree.

In order to follow the convergence of the computer program
more closely, the squared tidal-amplitude sum

360
1= 4 .,, . (77)

was computed and printed for each fixed colatitude line n
4,5,... ,168. To compute the amplitudes f... in Equation 77, Equa-
tions 73 and 75 were used for 2T= 1 and I=j + 1; i.e., for two
consecutive time steps in connection with Equation 61. In this
measure (Equation 77), the convergence was carried to almost
three significsit figures for all n..

B9
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Stabilty Anal *i
A rigorous stability analysis of the homogeneous DOTEs (Equa-
tions 60 and 61) is, of course, not possible. However, under the
assumption of constant coefficients A, B, and C, the simplified
DOTEs possess Fourier-type eigensolutions (Equation 88) that
permit a local stability analysis of the difference system. As is well
known (see, e.g., Richtmyer, 1957), such a local stability analysis
produces stability limits that are usually sufficient for computational
purposes. Indeed, computer experiments showed that the stability
limits so derived below were scrupulously binding for the success
of the integration. The following analysis is an expanded version
of the investigation presented by Zahel (1970).

In detail, the following simplifications may be assumed:

(a) b = 0; i.e., no bottom friction
(b) a = 0; i.e., no Coriolis force
(c) For an arbitrary but fixed mesh cell (see Equations

62-65),

r = ,(u) = r,(v) 1/psin 0 = locally constant,

M=.(U) = ,#.(v) = h( + 1/r), (78)
o= ()= () = 1+I;

and
H=H(u) H(v) = locally constant,

0,0 W. (79)

H(U) =H(U) = H(u) = 0, (u.--v).

It may be mentioned that the assumptions (a) and (b) have been
made in order to display more clearly the most important stability
characteristics of the DOTEs that are due to eddy dissipation and
to the difierencing parameters, , and t It is relatively easy to show
that the bottom friction is always stabilizing, while the Coriolis
force (in the present differencing scheme) is slightly detabilizing.

For the following derivations, it is helpful to introduce some
specified reference values e,, H., (consistent with Equations 78 and
79) f,, eand
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r = -- Gt )=1/2 L/((orHG) . (80)

Finally, the following relative quantities may be introduced:

0/0,W = A/ , h = H/Hr,

7 = At/Art, C = aiia. (81)

For example, in this notation the eddy viscosity, A (Equation 6).

assumes the form

A = evr*HL, (82)

where a is the "dimensionless eddy coefficient."
The MW-tide is computed with the reference values

e 300, H = 7259.84 m., (83)

so that

, 3/4, ar = 0.021919 2 sec-1,

w,-= 5,At, = 186.309 sec,J (84)

180oAt 7 # = 1.50, JP = 360°/1.5* = 240,

where J, is the number of time steps required to integrate through
one tidal period with At = At. Due to the grading of the grid sys-
tem (Equation 49), one has almost everywhere (n - 1, 2, 3, and
166, 167, 168)

3 2
<'T'<- , I ,a> (85)

Similarly, due to the cutoff depth data (Equations 50. 51), one has
the limits

0.0065 < h < 1. (86)

a,

, m a I
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Several other reference values within the stability limits have been
explored. Particularly extensive computations were carried out with
At, = 248.412 sec (so that J. = 180), but the above reference
values appeared to yield the best results.

With the simplifications and notations above, the coefficients
(Equations 62-65) of the homogeneous DOTEs (Equations 60
and 61 ) become:

A1 =A 2 = B1 = B2 = 0,

As = rB = l3GHrAt/L,

A4 = B4 = 2ht /&,

A 5= 6 = B5 = B 6 = he/lw,, (87)

A7 = As = B = I 2"A3,

As = A 10 = Bs B9 = B10 = 0,

C= rAt/L, C2= C = AtlL.

The reduced DOTEs (with constant coefficients) yield the Fourier-
type eigensolutions

U. = Uodle ' [,Yi(2m - 2/)A, + -y2(2n - 1)Ae],

V.I. = Vodle' [yi(2m -a),AA + y2(2n - 1)46],

and Vt., = Codle' [ ji(2m - ,)AA + -n(2n - O1. )(88)

with an arbitrary wave vector (,1, -r2) and some nonzero amplitude
vectors (Uo, Vo, Co), provided the eigenvalue d satisfies the cubic
characteristic equation

(A - dAiao) 0 An

0 (A22- dAlo) As =,

(1 -'K+ d)A, (1 - i + wd)A- (1 -d) (89)



I

cm 11es, Part 1: Globl Ocea Tidal EquMom 21

where (after some algebra)

Aio = 1 + A 1 +2 hCv.i,

A n =  A o - 2A4"s,

and (90)

AimAai + AAn = -4OhMhvs

with

"2 sin3 lyAe + sin272Ae . (91)

The cubic characteristic Equation 89 yields the three eigenvalues
(do, d= di, d2)

do = 1 - 4& /Aio (92)

and

dA1o = A1o - 2hrrsAo • - 2irs [hW(#Ao - hsA 2 0o1)]1/2,

(93)

where

Am1 =E + er. (94)

The DOTEs will be stable, provided

Idk < I fork = 0, 1, 2. (95)

Under the strict inequality of Equation 95, the three eigenvalues
do, d2, and d2 define three decaying eigenwaves represented by
Equations 88. Since d is real, the corresponding eigenwave is a
standing wave with no phase shift if do > 0. The other two eigen-
values d, and d6 define a pair of eigenwaves progressing in opposite
directions with the same decay and dispersion rates, provided

_-. oo .. .. . i
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#A h i s 2 01. (96)

This condition holds true for all 0 < s < 1 (Equation 91); i.e., for
all wave vectors (71, y2) if and only if

#A Mo _ h@A201. (97)

If this condition fails, then there exist some short waves with large
wave numbers, v' and 72, which become standing waves of different
decay rates. However, all sufficiently long waves remain dispersively
progressing and decaying at the same rates.

It seems physically plausible to treat all long and short waves
equally and, hence, to impose the conditions of Equations 95 and
97 on the free parameters, t, T, x, and -r. Using Equations 93, 94,
95, and 97, one finds

id -12 =d 212  1 - 4hira 2 [-- (1 -w)gI/Alo (98)

with

Id,12 = Id212 = do forw = 1. (99)

For < 1, the stability condition requires

S >- (I -,-) PT; (100)

i.e., a minimum of eddy viscosity is necessary for stability. How-
ever, for t = 1, no minimum eddy viscosity is required, which ex-
plains the choice made here (Equation 66) and by Zahel (1970,
1973, 1975) and Estes (1975, 1977).

For the chosen value K = 1, the stability condition is satisfied for
all, s, and all eigenvalues do, di, and d2, when

OarM 4h C A A; (101)

i.e., when

Im
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C %t (2 -(102)Afr

provided (Equation 97 in explicit form) also

-)-t #22 + 2#VT -(1 - K) + #2. (103)

The obviously increased stability limits imposed by both conditions
explain the choice of c = 1 made here for the present tide model
(Equation 66) in deviation from the value x = 0 used by Zahel
and Estes.

With A = 0.90 (Equation 17) and the possible values of h = 1
and, simultaneously, T = Z =.1 (Equations 85, 86), one finds from
Equations 102 and 103 for, = 1 and = 1 the allowable range
for the dimensionless eddy coefficient, E:

0 <e < 0.3 (At =At). (104)

The same range holds also for the southern three colatitude lines
n = 166, 167, 168, which violate the condition of Equation 49, but
for which the relative depth, h, fails sufficiently below unity. The
upper limit on E could be raised somewhat by considering the
simultaneous values of , @, and h on each colatitude n = 4, 5,...,
168 separately. In order to obtain the best possible tidal field, ex-
tensive trial-and-error computations led to the choice

At = At, = 186.309 sec and e = 0.075. (105)

This final choice completes the detailed parameter specifications of
the M2 tide model.

At this point, it may be noticed that the stability requirement for
the DOTEs restricts the possible amount of eddy dissipation. As
is physically plausible, the finite-differencing parameters, , and
w, the mesh size, L, and depth, H, the time step, At, and the dimen-
sionless eddy coefficient, t, are intimately related to each other.
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Trial-and-error computations are needed to select those parameters
for best results. It is particularly important to observe that (espe-
cially for r = 1 ) the rates of decay (Equations 92, 98, and 99) of
all eigenwaves depend directly on the product he. Acordingly, for
fixed e, waves in deep (h- 1) ocean basins decay faster than in
shallow (h<< 1) regions if bottom friction is negligible.

It is obviously this physically realistic phenomenon that led to
the introduction of the novel depth-dependent eddy viscosity, A,
defined by Equations 6 or 82. For a depth-independent eddy vis-
cosity, one has he = constant, in which case waves would decay at
the same rate in deep or shallow (see next section) oceans, even
though no bottom friction is present. Following Zahel ( 1970, 1973,
1975) and Estes (1975, 1977), the present tide model also used at
first a constant eddy viscosity with rather disappointing results
caused by the strongly varying bathymetry.

It is interesting to note that for the limiting case of Equation 97;

i.e., for

#Ao -hMA "a, (106)

Equation 93 assumes the simple form

dAoi = Am - 2#P2 ±t 2T6s(l -. 0)1/2. (107)

Hence, for the north-east waves under 45 with wave numbers
(Equation 91),

, = -,2 = ", 3 = SiWe ,AO, (108)

and (x =7= 1)

d + Pre±"I -

+ = d. + due u. (109)

Honce, in this case, the eigenvalues di and d lie on the circle
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!d-dt =d,,d+d,= 1 (110)

a illustrated in Figue 2.

D son f the Tide Model
Discrete Venan Continuous Ocms-Tide Equations
In the following discussion it may be contended that discrete ocean
tide equations (DOTEs, Equations 60 and 61) reflect the physical
reality of ocean tidal currents more perfectly and perceptibly than
the corresponding continuous equations (COTEs, Equations 29
and 30). Although the latter follow from the former by a "formal"
limit process, it is neither technically feasible nor theoretically de-
sirable to seek convergence of the discrete solution to the continu-

Id- d.I,14

tI
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ous integral. In fact, in fluid-flw problems of global dimensions, it
is not possible to approximate the conditions of the continuous case
to any reasonable degree. Even with future computer technology,
it will not be meaningful to refine significantly, for instance, the
1 by 1° grid system defined in the section, "The l*xl* Graded
Grid System and Bathymetry," which, with its 100-km mesh size,
s far from being anywhere near a continuous description. Any at-

tempt to refine the grid system would have to be matched by an
improved bathymetry which requires worldwide in siau measure-
mnts.

From the theoretical point of view, it is equally superfluous to
seek an - ximiation of the continuous situation, which in fact
is only vaguely defined (section, "Te Navier-Stokes Equations of
Averaged Turbulent Flow.") In laminar viscous flow theory, such
notions as particle (point) velocity and pressure, as well as the
Navier-Stokes equations, are all derived from physically sound dis-
crete (finite-difference) definitions by a formal limit procedure; i.e.,
by simply assuming the existence of the limit values (see, e.g.,
Schlichting, 1968; Whitaker, 1968). While this assumption is well
justified in most laminar flow problems, it is well known today (see,
e.g., Ladyzhenskaya, 1969) that, in general, even laminar motions
must be sought in the class of generalized (distribution) functions.
Hence, velocities, pressure, and their derivatives do not exist in the
ordinary sense (pointwise); only their "functionals" (effects such
as mass fluxes, forces, mmnenta) are physically defined.

The ambiguity of continuous flow models becomes much more
apparent in the critical laminar regime. Experiments (e.g., Busse
and Whitehead, 1971) and theory (e.g., Schwiderski, 1972) have
clearly established that, when given characteristic flow parameters
(dimensions, velocities, etc.) exceed certain critical values, the
corespo ng, uniquely existent laminar motions become unstable
and bifurcate into laminar flows in infinitely many different shapes.
The classical laminar boundary and initial conditiom are no longer
sufficient to specify a unique motion. The situation seems to be

overned by hystmesis and pure chance rather than by rigors

pPhysical seection prnciples.
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Critical lammar motions become still more microscopically un-
definable when the corresponding characteristic flow parameters
(as the global dimensions of ocean currents) exceed further super-
critical points and the motions go turbulent. The statistical ap-
proach underlying the "time-averaging" process to derive the so-
called Navier-Stokes equations of mean turbulent flow (Equations
1 and 2) is entirely formal and vague (see, e.g., Schlichting, 1968).
For example, what velocity (particle, point, etc.) is averaged over
what time interval? In this respect, the present periodic tidal mo-
tions are clearly the most illuminating of the problems at hand. If
one averages (as usually meaningful) over a "sufficiently" long
time span (say, longer than the tidal periods), then the averaged
velocity should approach zero, which is obviously not of interest.

Evidently, turbulent particle velocities manifest themselves sta-
tistically through their integrated (macroscopic) physical effects,
such as mass fluxes. Hence, the proper mathematical representation
of turbulent motions should be sought in the class of generalized
functions. Since the product of generalized functions has no mathe-
matical meaning (see, e.g., Shilov, 1968), it appears understand-
able that there is no way to define the Reynolds stress tensor of
turbulent motion (section, "Reynolds Stresses and Eddy Dissipa-
tion") by a meaningful ordinary or generalized function, because
it contains quadratic products of the so-called fluctuating velocity
residuals (see, e.g., Schlichting, 1968). However, its energy-dissi-
pating (stresslike) effect is physically quite apparent and must be
modeled in some macroscopic sense.

To avoid all conceptual difficulties of microscopic turbulent mo-
tions,, it seem natural to fall back to the discrete (macroscopic)
description of laminar flows that leads formally to the Navier-
Stokes equations. In fact, by proper "generalized" interpretation,
most motions used in the laminar tem retain their physical mean-
ing in the discrete turbulent domain. For example, the "mean"
x-velocity, u, of a "flow parcel" contained in a rectangular test
(grid) cell of mesh lengths Al, Ay, and AZ (Figure 3a) at some
time, t. of a time interval, At, is defined as the mass flux (AM,)
croasing My the central (1 = x) surface element (Ay, AZ) of the
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x
AM upAyhzht

/ UAt

Ay Az\

AX12 X Ax/2

Fiume 3s. Illustration of average velocity: AM = mass flux in x-direction,
u = mean velocity in x-direction, and P = fluid density.

cell during the time span At divided by the fluid density, p, the area,
Ay .AZ, and the time, At, so that

u = AM'/pAyAxAt. (111)

This (generalized) definition of the mean-flow velocity, u, is
uniformly valid for laminar and turbulent motions, since AM: is a
physically realistic (measurable) quantiy for any p > 0, Ax > 0,
Ay > 0, Az > 0, and At > 0. If u exists in the limit Ax--O, Ay-O,
Az-+O, and At-"O, then u becomes the ordinary particle (or point)
velocity. This assumption is well justined i most (see above)
laminar motions, where neighboring particles flow on smooth

p ighboring pathlines. In contrast to lamimr flow, the limit assump-
ion is certainly not justified in turbulent flow, wher the fluid past-
cle move in an indem islly turbulent, "fluctuating" or

I.
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"eddying" way. In the sense of generalized functions, u could be
defined in the limit by prescribing its mass flux (AM") for every
nonvanishing p, Ax, Ay, AZ, and At.

Using similarly generalized definitions of all mean velocity com-
ponents and pressure, and retaining their finite differences in place
of (generally non-existent) ordinary derivatives, one arrives as
usual at the discrete Navier-Stokes equations (analog of Equations
1 and 2) without requiring the existence of any limit values (see,
e.g., Schlichting, 1968; Whitaker, 1968). They express simply the
physical laws of conservation of momentum and mass for every test
(mesh) cell. This is particularly tangible for the DOTE (Equation
61), which conserves mass by balancing the excess of mass flux
into a mesh cell with a corresponding increment in tidal height.

In the discrete form, the Navier-Stokes equations look formally
the same for laminar and turbulent motions. Yet, when in the lam-
inar case velocity and pressure exist pointwise in the limit, one has
a unique microscopic (continuous) description of the flow subject
only to specified boundary and initial conditions. Hence, the qual-
ity of a solution of the discrete model can be measured against the
so-called exact integral of the continuous equations. In sharp con-
trast to the laminar case, no unique microscopic description of tur-
bulent flow exists against which the quality of the discrete model
could be measured. Therefore, the numerical analyst must seek an
optimum size of the mesh cell (Ax, Ay, Az) and the time span (At)
in order to model the undetermined microscopic turbulent motion
so that their macroscopic effects match the expected or observed
features.

The strong dependence of a discrete turbulent-flow model on
the size of the mesh cell (Ax, Ay, Az) and the time span (At) can
be assessed, for instance, from the definition of the average ve-
locity, u, by Equation 111. With increasing mesh area (Ay • Az),
more and more as well as larger and larger fluctuating or eddying
motions are filtered out and remain unaccounted for in the average
value of u. Hence, the maximum mesh lengths Ax, Ay, and Az must
be sufficiently smaller than the smallest wave length one wishes to
resolve. On the other side, if the area (Ay" Az) in Equation 111 is

I,

i l i I i imimi nmnd JI" l I II-
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chosen smaller and smaller, then u becomes more and more unde-
termined (fluctuating).

Similar arguments determine an optimum time step, At. In the
present discrete tide model, the cell size was reasonably limited by
the available bathymetric tables. The time step -at (Equation 105)
was determined by trial-and-error computations, so that 60 time
points represent one-quarter of the M-tide period.

Another significant distinction between the discrete Navier-
Stokes equations of laminar and turbulent flow becomes apparent
in the average stress tensor. As is well known, the turbulent fluctu-
ations neglected in the mean velocity and pressure manifest them-
selves as stresslike (energy-dissipating) forces that affect the mean
motion. Unfortunately, no exact and unique constitutive equation
is known today that relates those turbulent Reynolds stresses to the
mean rate of strain (deformation of the flow parcel) determined
by the average velocity (see, e.g., Schlichting, 1968; Whitaker,
1968). In the Boussinesq (1877) substitution used in the present
tide model, the mean-turbulent-stress tensor is directly related to
the average rate of strain (analog of Equations 5). Hence, the
macroscopic stress effects of the turbulent fluctuations on the mean
velocity are assumed to follow a similar simple law as the viscous
laminar stresses in Newtonian fluids. Only the coefficient of vis-
cosity is replaced by the so-called eddy viscosity, which remains to
be modeled to account for the otherwise neglected eddying motions
in some best sense.

In the absence of better approximations, it seems idle to argue
about the physical justification of the Boussinesq substitution; the
fact remains that it represents the simplest possible constitutive
equation, including zero used by some researchers. Moreover, it
provides for considerable flexibility to model the microscopically
undetermined but macroscopically apparent eddy dissipation by
choosing suitable velocity-dependent or velocity-independent eddy
viscosities either uniformly or separately for all three stress direc-
tions. Evidently, if the velocity field were known, a priori, then one
could determine exact eddy viscosities, a posteriori, in many ways.
In this connection, it is of interest to know that the mean flow is
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quite itndstive to fairly larg variations (say 25%) of the eddy
viscosity. This observation by Munk and Palm&n (1951) was con-
firmed for oceanic tial motions by the author's extensive com-
pute experiments. It is probably related to the well-known fact
that potential motions satisfy the complete Navier-Stokes equations
of laminarflow with any constant viscosity. Above all, as with any
other physical law, the Boussinesq substitution has successfully
passed its crucial test in many practical applications in hydrody-
namics, oengah, and meteorology. The present ocean-tide
model is no exception (see Schwiderski, 1979b, 1979c).

In order to illustrate the Boussinesq substitution in the discrete
case, one my consider, for example, the average normal stress r'
produced by the filtered out (see the remarks to Equation I101
fluctuating motions on the surface (Ay, Az) at x = x, shown in
Figure 3b. Following Boussinesq, one has (see the analogous
Equation 5c)

7== 2p U2 UO(012a)
1 2AX

AY

it0 A X Xf AX NAP

FWS 3b. ILOUStrtion of mean normal stres: NO, W2 =averag i-Velocit
at z =x&, x2, mnd ?I" =average normal stress
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where Uo and u2 are the corresponding mean velocities at x = Xo =
x, - Ax and x = x2 = x, + Ax. Hence, the turbulent stress ,

grows linearly with the rate of change of average velocity. Analo-
gous to the corresponding laminar stress, this linear law appears
physically acceptable. since the expected mean tidal velocities are
small. One concludes from Equation 112a that a large change of
mean flow produces a large turbulent stress, which plausibly must
be due to strong fluctuating motions.

If one assumes a constant eddy viscosity. A, in Equation 112a,
then the analogy between turbulent and laminar stress becomes
complete. However, as was pointed out above, the strength of the
fluctuating motions under consideration depends on the size of the
surface area (Ay. Az), which justifies the assumption

A = ayAz (1 12b)

in Equation 112a, where a may be held constant or used for
further modeling. Similar arguments can be developed for all six
turbulent stress components (see Equations 5) with eddy viscosi-
ties equivalent to Equation 11 2b.

The novel eddy-viscosity law expressed by Equation 112b is
obviously equivalent to the eddy viscosity introduced in the present
tide model by Equation 6a. It also explains Equation 4a. which
specifies the bottom-friction coefficient, B, of the discrete tide
model. The need for a mesh-area-dependent eddy viscosity became
apparent when initial tidal computations with a constant value
failed to yield realistic results. It must be emphasized that the mi-
croscopically indeterministic nature of turbulent motions is not
completely removed in the discrete flow model. Its specific macro-
scopic effects on the mean flow are apparent in the required opti-
mum choice of the grid system, time step, differencing parameters.
and most of all, the eddy-viscosity law and scaling coefficient. No
information on the fine structure of the turbulence can be expected
from such a model.

0t
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Preiminry M2.Tid Renlts
The fully specified tidal equations (DOTEs 60, 61) have been
applied to construct the principal semidiurnal lunar ocean tide
(M2). The results (Schwiderski, 1976) represented a considerable
improvement over earlier models. Indeed, they demonstrated the
feasibility to achieve the extraordinary accuracy of 10 cm required
in many applications. For example, Goad and Douglas (1977a, b),
who used the preliminary model to determine the M2-tide effects on
the moon's orbital parameters, found satisfactory agreement with
other theories and observations.

Due to the absence of an exact continuous ocean-tide model
(preceding section), the degree of reality achieved by any approxi-
mate discrete model must be measured against empirically known
features of ocean tides. Fortunately, for the M 2 ocean tide a large
number (e.g., BritishAdmiralty Tide Tables, 1977) of tidal ob-
servations around the world oceans are available for comparison.
Table 2 gives a statistical evaluation of the computed preliminary
M2-tide in comparison to observations made at 20 island tide-gauge
stations in each of the Atlantic, Indian, and Pacific oceans. The
agreements found are encouraging.

Table 2
Comparison of preliminary U2 ocean Ude model with empirical data.

Amplitude Phase
Number of Differences Differences

Ocean Islands Mean RMS Mean RMS
Atlantic 20 -0.6 cm 10.9 cm 8.80 14.40
Indian 20 +1.9 cm 15.1 cm 5.50 19.70
Pacific 20 +7.4 cm 12.9 cm 2.80 17.40

While the preliminary NU ocean tide model displayed good agree-
ment with most tidal observations over large ocean areas, signifi-
cant shirtcomings still persisted, especially over narrow ocean
ridges such as the Aleutian, Hawaiian, Marianas, and Caribbean
ridges. By comparing tidal observations on both sides of such ridges

... . . .. . . . .. ,J.. . ., .g34|



214 Ernst W. Schwiderski

experimental tidalists (see, e.g., Harris, 1904; Bogdanov, 1961;
Defant, 1961; Luther and Wunsch, 1975) very early discovered
drastic distortion and retardation effects of those bottom barriers on
ocean tides (see the tables in Part II of this paper, Schwiderski,
1979b).

In order to model local tide distortions, the described tide pro-
gram will be modified in Part II by using a new "hydrodynamically
defined ocean bathymetry" that reflects the barrier effects of narrow
ridges and other large irregularities of the ocean basin (Schwider-
ski, 1978a). Moreover, a novel "hydrodynamical interpolation
technique" will be introduced to incorporate directly over 2,000
empirical tide data into the construction of the tidal charts. The
high numerical quality of the final M2 ocean tide model will be
displayed by maplike tables.

A risume of this paper was presented at the International Sym-
posium on Interaction of Marine Geodesy and Ocean Dynamics.
held from October 10 to 13, 1978, at the Rosenstiel School of Ma-
rine and Atmospheric Science, Miami, Florida.
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