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In a recent series of papers ([2], (3], [4]) the author

has investigated the low fregquency inverse scattering problem
for "hard" and "soft" infinite cylinders and "soft" obstacles
in space. It is the purpose of this paper to complete the
story and consider the inverse scattering problem in space
where the obstacle is "hard", i.e. the boundary condition is
of Neumann type. A basic result of the analysis to date is
that the low frequency inverse scattering problem can be
stabilized. In the case of domains in the plane this is
accomplished by transmitting two plane waves from different
directions, where the second plane wave is used to determine
the transfinite diameter of the obstacles ([2], [3]). Due to
the lack of the availability of conforﬁéé\mapping technicues,
this approach does not extend to the three dimensional inverse
scattering problem and alternate methods must be developed.
In the case of a "soft” obstacle (i.e. Dirichlet boundary data)
stability was obtained by assuming an "a priori" knowledge of
the radius of a ball containing the unknown scattering obstacle
in its interior and using the fact that the boundary of the
scattering obstacle is a level surface of the limiting static
potential problem ((4]). Since the static solution is simply
the conductor potential of the obstacle irregardless of which
irection the incoming wave :impinces uron the obstacle, nc new
informaticn is gathered by sending in plane waves frcom different
directicns {(however see Section IV of this paper). In the

rresent caper we shall be cons:idering the inverse scattering
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problem for a "hard" obstacle in space and as will be seen the
situation is considerably altered. 1In particular, in order to
achieve stability it is necessary to not only assume an "a
priori" knowledge of the radius of a ball containing the
scattering obstacle in its interior, but also an "a priori"

bound on the gradient of the velocity potential of the total
field for small values of the wave number. Further complications

arise from the facts that the boundary of the obstacle is no

longer a level surface of an appropirate potential problem and

the solution of the limiting static potential oreoblem is simply !

g~ -

uo(g)il which gives no information on the shape of the obstacle.
These problems will be circumvented by identifying the second
term in the low freguency expansion of the total field as the
velocity potential of an incompressible, irrotational fluid

flow past the scattering obstacle and using this £unction to
determine the streamlines of the flow outside the given ball
containing the obstacle in its interior. In this case sending
in plane waves from different directions is equivalent to fluid
flowing past the obstacle in different directions, and knowledge
of the resulting streamlines then gives more information on the
shape of the obstacle. 1In order to estimate the actual shape

of the obstacle an important role is played bv the fact that
from the far field data it is possible to deduce the volume of
the obstacle. Hence from a knowledge of the streamlines and

the volume of the obstacle, accurate estimates can be made on

its shape.
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Reduction of the Inverse Scattering Problem
to a Nonlinear Moment Problem

The aim of this section is to reduce the inverse scattering
problem for a "hard" obstacle to a nonlinear moment problem
involving the velocity potential of an incompressible, irrota-
tional fluid flow past the unknown scattering obstacle. We
shall assume that the scattering obstacle D is a bounded simply
connected domain containing the origin wiﬁh smooth boundary 3D.
In order to achieve our aim it is necessary to first consider

the direct scattering problem, i.e. to find a solution

uec? R3\D) nct (RP\D) such that
u(x) = ul(x) + uS(x) in R3\D (2.1a)
a" N N
2 . 3 =
A3 u+ ku=0 in R™\D (2.1b)
%%-(x) =0 for xe3D (2.1c)
N n,
aus i, .S

lim r ( 57— - iku )=0 (2.14)

r > @©

where the "incoming wave" ut is a solution of (2.1b) in all of
R3, v is the unit outward normal to 3D, the wave number k is
positive, and the radiation condition (2.1d) for the "scattered

s . . : : .
wave" u- is assumed to hold uniformly in all direction as r = ! «x!
v

tends to infinity. The existence of a solution ta_(2.la) - (2.14)
M
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is well known (c.f. {9]) and our first aim is to find a low
frequency approximation to u evaluated on 3D. To this end we
note that from {l] and (7] we can reformulate (2.la) - (2.14d)

as the integral equation.

ut(x) + %F ’.[u(y) - u(x)] %g ,xi — ds(y)

~ o N ~ x,“‘ zu
3D
. l | . (2.2)
exp [ik -yl -1

+ %F u(v) %; t A ! ds(y) = u(x)
v x -yl 4 v
3D V) 4"
for x ¢ R3\D, or in obvious operator notation
ut + L, [u] = u. (2.3)
N

N

The important point here is that the spectral radius of L° is
N
less than one and that

L, -L || =02
'\Jk '\ao

where || 'l denotes the maximum operator norm ({7}). Hence

for k sufficiently small, (2.3) can be solved by successive

o . |
apprcximations and || (I - L) (I - L)

L) 7h i = ok (e,

2’ x3),

p. 164). In particular for ul(x) = eikxl,x = (Xy, X
N~ N

and k sufficiently small, we have for xc3D +that
")




u(x) = L2 1+ 4 kxy] o+ 00k ;
" n=0 3
- LD (1 + i kxg] + 0(k?) (2.5) ?
A"
n=0 '

= 1+ ik u_(x) + 0(k%) ;
o'\a

3
4
.
i

where u, can be identified as the unique harmonic function

defined in the exterior of D such that

- s . 3,
uo(z) X, + ug (:) in R7\D (2.6a)
| Ay u_ =0 in R3\D (2.6b)
‘ 3 Yo ‘
| 3u (2.6¢)
- (x) =0 for xe3dD
i v ~ A
j . s
* lim u” (x) =0, (2.64)
° N\
r-—-®
! 'A i.e. u, is the velocity potential for an incompressible, irrota-

'} tional fluid flow past D having constant velocity in the X,y

N direction at infinity.

{

' s We now proceed to the reduction of the inverse scattering
. ' problem to a nonlinear moment problem. From (2.2) we have that
' ({51, 2. 316)
e Texp [ik Xx-y'l

- 3 a¥(x) = %: Jﬂ u(y) & S 1 ds (v)

1 SR ¥ A VI ._,l
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ikr X
= £ F(n;k) + 0 (%-2): n = 2%
v v x|
AVEEMY)
where
Finik) = i uly) 2 exp [-ikn‘y] ds(y)
u" ' ~ v NN
& aD
S
i
‘ The inverse scattering problem we are considering is to determine 1
D from a knowledge of the far field pattern F for all directions J
n and low values of the wave number k. To this end we write n
3 v ~
! and y in spherical coordinates as
; "
)
|
n = (sin 9 cos 9, sin 3 sin 2, cos3)
~ (2.9)
y = p(sin 8' cos %', sin 8' sin ¢', cos §')
N
' and expand F in a series of spherical harmonics
i = &
. - m ime T
F(z,k) 22 amn(k) P, (cos 3) e . (2.10)

n=0 m=-n

i Then we can easily deduce from (2.8), (2.10) and the relation

(c.£. [6])
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-ikn-y _ /_®_ Z R
e ~ A _/ka (-1) (2n+1)Jn+_;_ (ko) Pn(cosY)

n=o0
(2.11)
n-.y = p cos Y
4" 4"
that
1
_ T .=n 3 1 .
a (k) = /5 i fu(y) =~ ‘-—— Jper (k)
3D ~ 7?0‘ 2
p‘r‘:<coss')e‘m¢] ds(v) . (2.12)

where we have used the standard notation for associated Legendre
polynomials, Legendre polvnomials, and Bessel functions. Since

n
1 (ko)

5 _ n+2
;EE Jn+ % (xe) = 2n+% T + 0 (kp) (2.13)
2

we have from (2.12) and (2.13) that for n>1

a__ (k) (cose’)e-im¢:] ds(y)

J

- i-nﬂn .r‘ 3— i m
! n

27 r(nedy

(2.14)

and since the quantity in brackets is harmonic, (2.3) and (2.14)

imply that




o, a1 -rsiar e, o
-8~
.-n+1f— n+l ~ i - '.l
a (k) = ln+1 Tk u, (v) %; " Pg (cosg')e™1m? “ds(y)
n 2 T(n+y) 3D ~ =
h (2.15)
+ 0 (k"2
for n>1. In the case n=0 a similiar analysis shows that
\
o /7 k2 3 2 3
, aoo(k) = - - 35 9 ds + 0(k7). (2.16)
| 8T (3) 3D
L If we now define
o 3
' . 2% (na)
u = 1lim (k) ; n>l
om0 [i—n+l/?kn+l nm -
j (2.17)
l 47 (L)
o i = - lim =— a (k)
{ eTo) k>0 3k 2 00
i then we can rewrite (2.15) in the form
1 ; . - 3 n m ' -im¢' -
) “om J. uo(z) x5 (o P, (cos@fe '}ds(y), n>1 (2.18)
' aD
’ { ‘ and note that (2.16) yields
1)
!
L \ 21 3 2
s o 'JOO = 5_ f TV] n°ds
o 3D
[]
i 2
I A30 dv (2.19)
= s
D
) = ):rdv
.l‘ D

= volume of D.
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Hence we have reduced our inverse scattering problem to
that of determining D from the nonlinear moment problem (2.18) |
along with the fact that we now know the volume of D from the

far field data Hoo® Note that although the u,4 are explicitly

computable from the far field pattern F, small errors in

measuring the coefficients anm(k) will result in large errors
in the numbers up, if n is large. Hence in practice we must
assume that only a finite number c¢f the p,, are known and for

the sake of simplicity we shall assume that these are known

exactly. Observe that the "moment" problem (2.18) is nonlinear

since both U, and the region of integration depend on D.

III. Analvsis of the Nonlinear Moment Prcblem

i We shall now show how information on the shape of D can

j be extracted from the nonlinear moment problem (2.18). First
i suppose that the moments Hom are known for n =1, 2...N,

-n<m<n, and that constants a and M are known such that

o (1) DB = {x : | x |< a}
’ Y v

(2) max : grad u fikM for Oikiko

R3\ B

-———

? where ko is a fixed constant and M is independent oZ k. ©Note
' that from (2.5) we have from the second condition that

max |grad ul < M. (3.1)
3 © =
R7\B




-10~-

For x<3B we have that u_ has an ex—ansion of the form

o)
® n
-n-l.m imé
u_(x) = x +2 Zb o T pM (coso)et™C. (3.2)
o< 1 n=0 m=-pn "0 n

Furthermore from Green's formula, (2.6c) and (2.18) we have that

for n21

(3.3)

- 1
—==[:"P] (cose')e ™™ Iids
and from (3.2), (3.3) and the orthogonality cf the associated

Legendre polynomials we can conclude that

. (n+m)
am bnm T=m T n>1 . (3.4)

For n=0 we have from Green's formula that

3u
0=-| —2as
ap

27T T
boo f f sinedadoe (3.

0 ¢

oc’

o

wm
-~

47 b

[}

i.e., boo = 0. Hence since the “om are assumed known for

a=1,2,...,N,-n<m<n, we Xnow
N n
N, -y - +
ug () = xg + Z 2 b_o " teT (cost) e ™ (3.6)
n=0 m=-n ° -
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and from assumptions l) and 2) above we can easily obtain explicit

error estimates for grad (uo-ug) in terms of the constants a,

T (900! ¢ 171,23,

x L

2
' : M and N. In particular if x=(x;,X,,X3) then

is harmonic and has an expansion of the fcrm

=2 (ug-u ) = 22 ES (l) ~n= le(cosa)e mo, (3.7

IR n=N+1 m=-n

HYence we can conclude by a short calcuation (c.f. [4]) that

-]

J. |grad(u_-ul) | %ds < 6vM z (2n+1) (1272 (3.9)
x[=p n=N+1

and thus we can determine how many Fourier coefficients of the far

. Ty a

field pattern are needed in order to approximate grad u, for

3{1§°>a to obtain a given degree of accuracy in the L2 sense.

Identifying u_  as the velocity potential of an incompressible,

[e]

irrotational £fluid flow past D, we now note that the unknown

obstacle D is a surface containing streamlines of the fluid flow

! past D. Hence if we can determine streamlines lving in the exterior

of D this will give us inJormation on the shape of D. To this end

let x_ be a point in 13\8. Then the streamline passing through x

-0 o]

- kg

can be determlnea by solving the system of crdinary differsntial

equations
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©  where x=x(t) is a parametric representation of the given stream-
line. Since grad u is only known to a given degree of accuracy
for x in 23\B, (3.9) will only allow us to construct the stream-

lines lying in the exterior of B. However, we do know the

volume of D from (2.19), and hence by extrapolation'we can deter-

mine an approximation to the shape of D. Note that by sending in
plane waves from different directions we can also determine the

streamlin.s corresponding to a fluid flowing past D from different
directions and this can be used to refine the initial estimate for

the shape of D.

IV. Passing Remarks on the Dirichle% Problem

We noted in the Introduction that for the Dirichlet problem

the solution of the static potential problem corresponding to a

single incoming plane wave is the conductor potential ané hence,

o e ——— e e~

in contrast to the Neumann problem, no new information is gained
by sending in plane waves from different directions. This parti-

cular problem can be overcome if two plane waves are transmitted

- —

from opposite directions, e.g. elkxl and e'l‘xl, and the corre-

sponding solutions of the scattering problems added together in

—— g,

such a way that the combined incident £field is %sin kx;. The
analysis of (4] can then be used to show that the corresponding

: static potential problem cn this case is

3

Stx) in 23D (4.1a)

3
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The boundary of the obstacle is again a level surface and except

for this boundary the level surfaces change if the plane waves

are sent in from different directions than along the Xy axis.

Hence 1if this is done more informaticn can be obtained on the

shape of D.

Acknowledament: The author would like to thank Professor R.J.

Weinacht for helpful discussions in the course of preparing this

paper.
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