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Introduction

In a recent series of papers ([2], (31, [41) the author

has investigated the low frequency inverse scattering problem

for "hard" and "soft" infinite cylinders and "soft" obstacles

in space. It is the purpose of this paper to complete the

story and consider the inverse scattering problem in space

where the obstacle is "hard", i.e. the boundary condition is

of Neumann type. A basic result of the analysis to date is

that the low frequency inverse scattering problem can be

stabilized. In the case of domains in the plane this is

accomplished by transmitting two plane waves from different

directions, where the second plane wave is used to determine

the transfinite diameter of the obstaclee ([2], (3]). Due to

the lack of the availability of conformal mapping techniques,

this approach does not extend to the three dimensional inverse

scattering problem and alternate methods must be developed.

In the case of a "soft" obstacle (i.e. Dirichlet boundary data)

stability was obtained by assuming an "a priori" knowledge of

the radius of a ball containing the unknown scattering obstacle

in its interior and using the fact that the boundary of the

scattering obstacle is a level surface of the limiting static

potential problem ((4]). Since the static solution is simply

the conductor potential of the obstacle irregardless of which

direction the incoming wave impinges upon the obstacle, nc new

informaticn is gathered by sending in plane waves from different

directions (however see Section IV of this paper). In the

;resent paper we shall be considering the inverse scattering
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problem for a "hard" obstacle in space and as will be seen the

situation is considerably altered. In particular, in order to

achieve stability it is necessary to not only assume an "a

priori" knowledge of the radius of a ball containing the

scattering obstacle in its interior, but also xn "a priori"

bound on the gradient of the velocity potential of the total

field for small values of the wave number. Further complications

arise from the facts that the boundary of the obstacle is no

longer a level surface of an appropirate potential problem and

the solution of the limiting static potential problem is simply

uo( C) l which gives no information on the shape of the obstacle.

These problems will be circumvented by identifying the second

term in the low frequency expansion of the total field as the

velocity potential of an incompressible, irrotational fluid

flow past the scattering obstacle and using this lunction to

determine the streamlines of the flow outside the given ball

containing the obstacle in its interior. In this case sending

in plane waves from different directions is equivalent to fluid

flowing past the obstacle in different directions, and knowledge

of the resulting streamlines then gives more information on the

shape of the obstacle. In order to estimate the actual shape

of the obstacle an important role is played by the fact that

from the far field data it is possible to deduce the volume of

the obstacle. Hence from a knowledge of the streamlines and

the volume of the obstacle, accurate estimates can be made on

its shape.
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II. Reduction of the Inverse Scattering Problem
to a Nonlinear Moment Problem

The aim of this section is to reduce the inverse scattering

problem for a "hard" obstacle to a nonlinear moment problem

involving the velocity potential of an incompressible, irrota-

tional fluid flow past the unknown scattering obstacle. We

shall assume that the scattering obstacle D is a bounded simply

connected domain containing the origin with smooth boundary SD.

In order to achieve our aim it is necessary to first consider

the direct scattering problem, i.e. to find a solution

2 3- 1 3,U £ C (R \D) n C (R ,\D) such that

U(X) ui (x) + u S(x) in R 3\D (2.1a)

23 u + k2u = 0 in R-3, (2.1b)

'- (x) = 0 for xcaD (2.1c)

li r (ua -s - iku s )  0 (2.1d)
r -w

where the "incoming wave" ui is a solution of (2.1b) in all of

R 3 is the unit outward normal to 3D, the wave number k is

positive, and the radiation condition (2.1d) for the "scattered

iS wave" u is assumed to hold uniformly in all direction as r = !x!

tends to infinity. The existence of a solutlon -t .. la) - (2.1d)

t4 t, 1~s
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is well known (c.f. [91) and our first aim is to find a low

frequency approximation to u evaluated on aD. To this end we

note that from (11 and [71 we can reformulate (2.1a) - (2.1d)

as the integral equation.

u (x) + 1 [u(y) - u(x)] , ds(y)

aD

(2.2)1 a exo [ik 1 ! -1I
+ u(v) ds(y) u(x)

for x E R3 ,D, or in obvious operator notation

U + L' fu] = u. (2.3)

The important point here is that the spectral radius of L is

less than one and that

!I Lk - L I = 0(k 2) (2.4)

where H denotes the maximum operator norm ([7]). Hence

for k sufficiently small, (2.3) can be solved by successive

approximations and I (1 - k- 1 - (I - Lo)- 1 '' (k2)(U8],i ik'ck ) ( s ]

p. 164). In particular for ui (x) e ikxl, x = (x 1 , x 2 , x 3 ),

and k sufficiently small, we have for xc^o that

H%
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u~x)=k [I. + ikx I ] + 0(k 2 )
U( -- L n [1 + ikx l  + O(k 2 )2

=O 
"

Lnf+ x +Ok2 )(2.5)

n=0

I + ik uo0(x) + 2(k2

a where u can be identified as the unique harmonic function

defined in the exterior of D such that

u (x) x+ U5 (x) in R 3\D (2.6a)

a 3 Uo = 0 in R3 D (2.6b)

au (2.6c)
(x) - 0 for xeaD

rlim u0 (x) - 0, (2.6d)

4 i.e. u0 is the velocity potential for an incompressible, irrota-

tional fluid flow past D having constant velocity in the x

direction at infinity.

We now proceed to the reduction of the inverse scattering

problem to a nonlinear moment problem. From (2.2) we have that

([51, p. 316)

u ( - uy exp (ik ds(Y)
--

,. ' _ ,... . . .. . .. x



-6-

-ik F (n; k) + 0 ) (2.7)
r r2)x

where

F(ni-k) = u(y) a-exo [--4iry] ds(y) (2.8)

3D

The inverse scattering problem we are considering is to deternline

D from a knowledge of the far field pattern F for all directions

ni and low values of the wave number k. To this end we write n

and y in spherical coordinates as

j = (sin e cos D, sin 3 sin o, cosi)(29

y = (sin el' cos t', sin e'' sin ys', cos e"')

and expand F in a series of spherical harmonics

F~~n~~k) a Wk) rn (Cos 9) eio(.0
Z0 m= nn

Then we can easily deduce from (2.8) , (2.10) and the relation
(c.f. [61)

iq
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e'ik = 2r (-j) (2n+1) J, (kp) (cosy)
n=o2

(2.11)

n y = QCos 'Y

that

2 r (Y
nm D L 2-

Prn(cos6,)e d sv) (2.12)

where we have used the standard notation for associated Legendre

polynomials, Legendre polynomials, and Bessel functions. Since

1 J=k, (ko)n + 0 (kp )n'2  (2.13)

2

we have from (2.12) and (2.13) that for n>l

a (k) = ~ u (y) - lo P n (cose )e d y
nm 2n r (n+.L)z ~L

3D

n +2(2.14)

+ 0 (k')

* T and since the quantity in brackets is harmonic, (2.5) and (2.14)

imply that



a (k) U l- [ P (cose ')e ds(y)

(2.15)

+ 0(k n + 2 )

for n>l. In the case n=0 a sirniliar analysis shows that

2
a -k) D - o ds + 0(k). (2.16)

if we now define

1m 2n+ .9( n + ) (k) ] n>
'nm i _In-- kn- 1 a nm _nk-~o Li vr

(2.17)

=-'limi a (k)]

then we can rewrite (2.15) in the form

n = Uo(Y) n m (cos I)eimo ds(v); n>1 (2.18)nm 0 V

and note that (2.16) yields

+, =& fL o 2ds

tI2. (2.19)

D
If fdv

00

= volume of D.

I. .
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Hence we have reduced our inverse scattering problem to

that of determining D from the nonlinear moment problem (2.18)

along with the fact that we now know the volume of D from the

far field data '4., Note that although the "nm are explicitly

computable from the far field pattern F, small errors in

measuring the coefficients a nm(k) will result in large errors

in the numbers ,mn if n is large. Hence in practice we must

assume that only a finite number of the 1nm are known and for

the sake of simplicity we shall assume that these are known

exactly. Observe that the "moment" problem (2.18) is nonlinear

since both uo and the region of integration depend on D.

III. Analysis of the Nonlinear Moment Problem

We shall now show how information on the shape of D can

be extracted from the nonlinear moment problem (2.18). First

suppose that the moments 14 nm are known for n = 1, 2...,

-n<m<n, and that constants a and M are known such that

(1) D c B = {x x I< a}

(2) max i grad u !<kM for O<k<k
3 - 0

R \B

where k is a fixed constant and M is independent of k. Note

that from (2.5) we have from the second condition that

max grad u o!< M. (3.1)
3
R \B
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For xe3B we have that u has an ey-ansion of the form
00

S(X) = x + :: _Eb. nlpm(coso)e im - (3.2)0 n=0 m=-n m

Furthermore from Green's formula, (2.6c) and (2.18) we have that

for nZ 1
C npm -imc '

= {u, ; n r l (cose')e ]
(3.3)B - Uo n m 'em 'ds

- -- ' n (c s e ' ) e] a

and from (3.2), (3.3) and the orthogonality of the associated

Legendre polynomials we can conclude that

(n+m)ni 4 . b n (n m '. ; n l .(3 4

For n=0 we have from Green's formula that

0 uo s

;B 
2

=boo ,f f sineded(D (3.5)

S= 4 -. boo,

i.e., boo 0. Hence since the 4nm are assumed known for

n=l,2,.....N,-n<m<n, we know

N

ao (x = 1 b nmp -  n  ( Cos d ) e' n  (3.6)
n=0 m=-n
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and from assumptions 1) and 2) above we can easily obtain explicit

error estimates for grad (uo-u N ) in terms of the constants a,L2 0ro a,

M and N. In particular if x=(xl,x 2 ,x 3 ) then -i(uo-uo)' i-1,2,3,

is harmonic and has an expansion of the fcrm

n
a o(u -N) C n=l -(i)nPM (cos)e imo. (3.7)

x 0 0 n=N+! --n nm

Hence we can conclude by a short calcuation (c.f. [4]) that

1grad(u -uN ) 2ds < 6nM i (2n+l)a(-) (3.8)
4 0 0 1N4-P4.p2 1-,' =P ' - n=N+l

and thus we can decermine how many Fourier coefficients of the far

field pattern are needed in order to approximate grad uO for

fx>ao>a to obtain a given degree of accuracy in the L sense.

Identifying uo as the velocity potential of an incompressible,

irrotational fluid flow past D, we now note that the unknown

obstacle D is a surface containing streamlines of the fluid flow

past D. Hence if we can determine streamlines lying in the exterior

of D this will give us iniormation oIL the shape of D. To this end

3let xo be a point in 3\B. Then the streamline passing through xa

can be determined by solving the system of crdinary differential

equations
d

= grad u

(3.9)
x(O) xo

.I
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where x=x(t) is a parametric representation of the given stream-

line. Since grad u is only known to a given degree of accuracy

for x in 13 \B, (3.9) will only allow us to construct the stream-

lines lying in the exterior of B. However, we do know the

volume of D from (2.19), and hence by extrapolation we can deter-

mine an approximation to the shape of D. Note that by sending in

plane waves from different directions we can also determine the

streamlines corresponding to a fluid flowing past D from different

directions and this can be used to refine the initial estimate for

the shape of D.

IV. Passing Remarks on the Dirichlet Problem

We noted in the Introduction that for the Dirichlet problem

the solution of the static potential problem corresponding to a

single incoming plane wave is the conductor potential and hence,

in contrast to the Neumann problem, no new information is gained

by sending in plane waves from different directions. This parti-

cular problem can be overcome if two plane waves are transmitted

from opposite directions, e.g. eikxl and eikxl, and the corre-

sponding solutions of the scattering problems added together in

such a way that the combined incident field is !sin kxl. The

analysis of C4] can then be used to show that the corresponding

static potential problem cn this case is

Uo(x) = x1 + uS(x) in R3 (4.la)

o3UO  0 in 23,5 (4.1b)

U(x) 0 for xD (4.1c)
= 0 (4.1d)

Pira
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The boundary of the obstacle is again a level surface and except

for this boundary the level surfaces change if the plane waves

are sent in from different directions than along the x1 axis.

Hence if this is done more information can be obtained on the

shape of D.

Acknowledgment: The author would like to thank Professor R.J.

Weinacht for helpful discussions in the course of preparing this

paper.
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