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ABSTRACT

We consider the problem of determining the shape of the

cross section of a simply connected perfectly conducting infinite

cylinder from a knowledge of the far field pattern for all angles

of observation and small values of the wave number. The method

we propose relies heavily on conformal mapping techniques. In

particular we show that module the transfinite diameter each

Fourier coefficient of the far field pattern of the electric

field determines a Laurent coefficient of the conformal mapping

taking the exterior of the unit disk onto the exterior of the

unknown cross section. The transfinite diameter is determined

by changing the polarization of the incoming wave and measuring

the far field pattern of the resulting magnetic field. Of par-

ticular interest is the case when only a finite number of the

Fourier coefficients of the far field pattern are known, and in

this situation we obtain error estimates by using results on

coefficient estimates for univalent functions.
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I. Introduction.

In this paper we shall survey and extend some recent

results we have obtained on the two dimensional low frequency

inverse scattering problem for electromagnetic waves which we

feel offers a considerable improvement over previous work in

the area. In particular we are able to (1) circumvent the need

for numerical analytic continuation, (2) show how elementary

polarization effects can be utilized, (3) reduce the original

infinite dimensional problem to one of finite dimension with

explicit estimates given on the error resulting from such a

reduction, and finally (4) show how a priori geometric knowledge

on the shape of the scattering obstacle can be used to improve

these error estimates. These results are obtained by a heavy

reliance on the use of conformal mapping methods and the theory

of univalent functions and hence are basically restricted to the

* A two dimensional inverse scattering problem. However it is hoped

; that the insight thus gained in the two dimensional case can

show the way to further progress in the case of three dimensions

~ (For the case of acoustic waves in three dimensions some stepsI in this direction can be found in [2J and [4]). our basic result
can be described as follows. Consider the problem of the
scattering of a plane time harmonic electromagnetic wave by an

infinite perfectly conducting cylinder. Then from a knowledge

of the low frequency limit of the first N Fourier coefficients

of the electric far field pattern polarized parallel to the
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generator of the cylinder, together with a single Fourier co-

efficient of the magnetic far field pattern of a field polarized

perpendicular to the one originally considered, it is possible

to determine the first 14+1 Laurent coefficients of the con-

exterior of the cross section of the unknown cylinder. Hence an

approximation to the shape of the cylinder can be obtained, and

since the mapping function is univalent error estimates can be

obtained by using the Area Theorem together with special results

in the geometric theory of functions (c.f. C8]). We do not

discuss the error due to the (finite dimensional) problem of

computing the 14+1 Fourier coefficients. Such errors are

basically due to the problem of accurately measuring the phase

and amplitude of the far field pattern along with the problem of

determining the Fourier coefficients of the far field pattern

when only part of the far field is known. For a discussion of

certain aspects of these last two problems we refer the reader

to [71 and [5] respectively.

II. Reduction of the Inverse Scattering Problem to a Nonlinear

Moment Problem.

Let D be the (bounded) cross section of a simply connected

perfectly conducting infinite cylinder with generator parallel to

the z axis such that D contains the origin and the boundary 3D

of D is smooth. Let EZbe the z component of the total
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electric field due to the scattering by the cylinder of an

incident time harmonic plane wave with electric vector given by

9i . eikx az where the time dependence factor e-i~t has been

factored out, (x,y,z) are Cartesian coordinates, k is the wave

number, and 8 is the unit vector in the z direction. Thenz

Ez will be a solution of the scalar Helmholtz equation

2A2 ]+ k E = 0 (1)

in R2\D, vanishes on D, and has the asymptotic behaviour

Ez(r,e) = eikr cose + 1 ei(kr+r/4 ) E(e;k) + 0(r"3/2) (2)

where (r,8) are polar coordinates. E(e;k) is known as the far

field pattern and our aim is to determine the shape of D from a

knowledge of E(e;k) for small values of the wave number k and

0 < e 5 27. In particular it follows from Green's formula and

the asymptotic behaviour of Hankel's function (c.f. [3]) that

r z (p, *)
E(3;k) - I- exp[-ik p cos(e-)) ds (3)

aD

where v denotes the unit outward normal to 3D and to,#) are

the polar coordinates of a point on 3D. If we now expand E(8;k)

in a Fourier series we have

E~e~) - " ank) in e

ECOlk) aW e (4)
n V.

77
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where

an(k) = By exp[-in0-ikp co(e-0)] dsd6
7ID

(5)
aE (p,O). i n  Ez(P e-ino
i - J (kp) e ds

D

and Jn denotes Besel's function of order n.

In order to proceed further we need to determine the low

frequency behaviour of aEz/8v on aD. Using the method of

integral equations this was rigorously determined in [3) (see

also [6]) with the result that for (r,e) e 3D

-Ez 9) a (ro ) + 0 (6)TV-(r) 1= -E TV-r + (logk)

where Eo(r,e) is the solution of the following exterior

Dirichlet problem for Laplace's equation:

J2

(r,1) - log + E;(r,e) in R2\D

0 2

2 E o in R2 \D

(7)

E o on 8D

Es is bounded as r tends to infinity.0
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It is possible to express B (r,6) in terms of the (unique)

conformal mapping w=f(z) which maps the exterior of the domain

D onto the exterior of the unit disk n such that at infinity

f(z) has the expansion

df(z) = a z + b + + + ... a > o. (8)z Z

Indeed it can be inediately verified that if f(z) is as defined

above, then

ieEo(r,e) = -loglf(z)I , z = rei . (9)

Hence from (5), (6), (9) and the Taylor series expansion of

Bessel's function we have that for n=0, 1, 2,...

.-n n r
anIk a loglf(pe(i))ipn e-in ds + 0( k). (10)an n f -V2 n'logk aD (logk)

Since Jn (kp) = (-1)n Jn (kp) the same expression (up to con-

jugation and a factor of plus or minus one) holds for n T -1 and

thus no new information can be gathered from the negatively in-

dexed Fourier coefficients. It can furthermore be easily verified
that the n=o term gives no information on the shape of D. Thus

if we define (for n z 1)

-' n n. lm ank logkl
n. k-o k n
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we arrive at the relation

P I - log I f(pe i ) n n  ds. (12)
aD

We note that in practice only a small number of the ncan be

computed with any degree of accuracy since for large n small

errors in the measurement of the an (k) will cause large errors

in the 1n due to the factor of 2nn. in (11) (However see

Section III). Hence we shall assume that the un are known only

for n=l,2,...,N+l where N is a (small) positive integer;

however as discussed in the Introduction we shall assume for the

purposes of exposition that these N+1 numbers are known exactly.

As it stands, (12) is not too much help, since what is

needed is a relationship between Un and f-l(w) since then by

determining f-l(w) and evaluating it on the unit circle IwI=l

we can determine points on 3D. However from the Cauchy-Riemann

equations we have

log I f(Pe i ) arg f(pe i O)  (13)

and hence from (12) we have

-- -- - A A.- -- 6
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Un  -f arg f(pe i O) Pne in  ds
n as

@D

- arw C f - l(w))n dw
f w

IwI=1
(14)

Si w cf-l(w)n dw
I w

for n=1,2,...,N+l. (14) is the nonlinear "moment" problem of

the title of this section.

The relationship (14) is unfortunately not sufficient to

determine an approximation to f-l(w) for jwi-i. Indeed, as

will be seen on the sequel, (14) only allows us to compute the

first N+l Laurent coefficients of f-l(w) module the co-I efficient a appearing in (8). The number a has geometric

significance in that it can be shown (c.f. C8]) that a-1  is

the transfinite diameter of the domain D. In order to determine

this quantity we need to augment the relation (14) and this is

accomplished by transmitting a second plane wave that is polarized

perpendicular to the one originally sent. In particular let Hz

be the z component of the total magnetic field due to the

scattering by the cylinder of an incident time harmonic plane

wave with magnetic vector given by ei e ikx a z where we are

- E
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using our previously defined notation and the time dependent

factor has been suppressed. Then H will be a solution of the
z

scalar Helmholtz equation in R2 \D with vanishing normal

derivative on 3D and having the asymptotic behaviour

Hz(r,e ) = eikrcose + 1 ei(kr+7r/4) / H(6;k) + O(r- 3/2) (15)

As is the case of the electric far field pattern we assume that

the far field pattern H(e;k) is known for small values of the

wave number k and 0 5 e 5 21r. We can then write (Ell)

H(8;k) J H Z(p,O) y- exp [-ikpcos(O-0)] ds (16)

3D

and if we expand H(e;k) in a Fourier series

H(e;k) L bn(k) ein (17)

I
we find that (El])

_in eino
bn (k) Hi-n Hz(PO) i EJn (kp) ein] ds. (18)

3D

We now note that (Ell) for (r,e) e 3D

Hz (r,e) - l+ik H (r,6) + O(k 2 logk) (19)

I
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where H (r,e) is the solution of

o2
H (r,B) = rcose + HS(r,) in R2\D

0 0

A2 H° = 0 in R 2\D (20)

= 0 on DDav

s

H is regular at infinity,
0

i.e. in terms of the conformal mapping (8) we can write

1 _1

_-(r,) 1 Re Cf(z) + 1 ] (21)o a f(' Z)

We can now proceed exactly as we did in the case when the electric

vector was parallel to the generator of the cylinder. In

particular if we define y and y1 by

-lim b (k)
Y k-o k27

k (22)

i Y 7 lim bM

, k-o k

we find from (18), (19), (21) that

Yo Area of D (23)

1 11- fI - (w) dw. (24)

w1u w

1w~

.- -. 4 , . ' . .
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We now want to use the relations (14), (23), (24) to determine

an approximation to fl(w) on lwl=l (and hence an approximation

to 8D) together with error estimates under the assumption that the

numbers i, ',..,N+iT oy are known. This will be the topic of

the following section.

III. Determination of an Approximation to aD and Error Estimates.

We now consider the nonlinear moment problem (14) and the

relations (23), (24), and note that there are two main sources of

error in trying to use these relations to determine f-l(w) on

lwj=l. The first is that the pn are determined by means of the

limiting relation (11) and since the an (k) are only known

approximately this can lead to severe computational difficulties.

The second source of error is more basic in that in practice it is

only possible to compute a finite number of the pi ,n=l,2,...,N+l,

where in general N is small, and from these N+1 numbers

together with y and y we want to determine the function0 1

f-(w), i.e. we clearly have insufficient information to determine

f-l(w) exactly. Although we shall primarily be concerned with

this second source of error, we pause briefly to offer a few

comments on how to reduce the error in computing the Un" TO

this end suppose it is known "a priori" that D is contained in

a ball of radius rO  and that E (r,e) can be measured for
0 z
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r r , 0 0 < 2w. Then expanding E z(r,8)-eikrose in a

Fourier series we have that for r ? r0 , 0 5 8 5 21,

gI{( I ) (kr)
E z(r,8) = eico8 + n(k )  e (25)

H 1n (kro)

where H (1n (kr) denotes a Hankel function of the first kind. If we

n

now make use of the asymptotic behaviour of Hankel's function we

ikr cose
find that the Fourier coefficients an(k) of Ez(r o,)-e 0

are related to the Fourier coefficients a (k) of E(e;k) by

n+l an (k)a (k). (26)

H(1 ) (kr 0 ) n

Therefore from (11) and (26) we have that for n k 1

i 2n+ 2 n' 37F) logk
Un lim n

k-O k n H (2) (kr
n o

(27)

47rn r lim a- logk
0 n

where H 2 ) (kr) denotes Hankel's function of the second kind, i.e.n

1  n = 2n ron lim logc 2wEz____r-ir'ose i
E (r 08) -e ] e de (28)

~0

for n z 1. In particular since

-. -- - - - -.- - -

i - K -



12

21 exp C-ikrcose+ine) de - 2i n Jn (kr) (29a)

0
1 1

Ez(re) - og E (re) + 0( 1 (29b)
Zo 0 (logk)

where E (r,O) is the solution of (7), we have that
0

21

n = 2n ron j E 0 (ro,e) ein O de ; n 2 1 (30)
0

and (29b), (30) provide a more practical method than (11) for

computing the numbers p

We now turn to the problem of determining an approximation

to f-l(w) on IwI=1 from the relations (14), (23), (24) under

the assumption that y0, Yl and the Un are known exactly for

n=l,2,...,N+l. From (8) we have that f-1 (w) has a Laurent

expansion of the form

w c l c2

f-(w) +c o + +-+ ... (31)
w

and since 3D is assumed to be smooth the series (31) is

uniformly convergent on IwIl. Hence from (14), (31) we have

(computing the residue) that
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1.1 - -2rCo

(32)

2 2c1112 ,-2n (co2 + a

and in general

= -ffn a-n+l cnl + lower order coefficients. (33)

Hence, module the transfinite diameter a-1, we can determine the

Laurent coefficients cn recursively in terms of the numbers

Pn' n-1,2,.... To determine the transfinite diamete- we use

(24) and compute the residue to obtain

a [c i ] (34)

and thus from (32), (34) we can determine a. Hence if we know

V U 4I2,...,UN+l and y1 we can now determine c0 ,cl,...Cn i.e.

the function

w c I  c N
~~(w) -, + Co + '- + " + - (35)

N a o w V

An approximation to 3D can be obtained if we evaluate

Nf f(w) on Iwi-i and the mean square exror in this approximation

is given by

'I . -
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2w

E(fl - f 1  2 r f i) fel(ie )1 2

0
(36)

I -n 14 2.

We now want to obtain an estimate for the magnitude of this error.

From the Area Theorem in univalent function theory ([8]) we have,

using (23), that

Hence

E(f 
1  - fN 1  S 1 I nic n1

N N+1 4 n'n-Wl

(38)

1 1 o
N+T a-7--r

An improvement on this error estimate can. be obtained if it is

known "a priori" that D is convex since in this situation we

have ([8], p.50) that

Icn I :S~ z 2 (39)
.. n... an(n+.)
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Hence in this case

E(f- 1  f- 1 ) 4 4

N -72a ~ n (~)

4 N+2 2 17,-rz / __
a (n+l)

(40)

4 N+2 2  dx

a N+1

=4 (N+2!Y2

3a2 (N+l) 5

which is a considerable improvement on (38) except in the case

-2 -1when D is a small perturbation of a disk and we have a z If

i

I Acknowledgement:

I would like to thank Professors A. E. Livingston and Richard
A Libera for helpful discussions on geometric function theory.I



References

1. D. Colton, The inverse scattering problem for a cylinder,
Proc. Royal Soc. Edinburgh, 84A (1979), 135-143.

2. D. Colton, Remarks on the inverse scattering problem for low
frequency acoustic waves, J. Diff. Eqns., to appear.

* 3. D. Colton and R. E. Kleinman, The direct and inverse scattering
* problems for an arbitrary cylinder: Dirichlet boundary

conditions, Proc. Royal Soc. Edinburgh, to appear.

4. D. Colton and R. Kress, Iterative methods for solving the
exterior Dirichlet problem for the Helmholtz equation with
applications to the inverse scattering problem for low
frequency acoustic waves, J. Math. Anal. Appl., to appear.

5. W. A. Imbriale and R. Mittra, The two-dimensional inverse
scattering problem, IEEE Trans. Antennas and Propagation
A P-18 (1970), 633-642.

6. R. C. MacCamy, Low frequency acoustic oscillations, Quart.
Appl. Math. 23 (1965), 247-256.

7. R. B. Mack, A. W. WoJcicki, and J. J. Andriotakis, An
implementation of conventional methods of measuring the
amplitude and phase of backscatter fields, Air Force Cambridge
Research Laboratory Technical Report 73-0418, 1973.

8. C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht,
G~ttingen, 1975.

I,



L UNCL.,S: ,, iD ,

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enitered) A
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REORENMBRRE 
INSTRUTINGSOR

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFOSR-TR -  8 0-0638 _ _ _ _ _ _

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

THE INVERSE ELECTROMAGNETIC SCATTERTNG PROBLEM Interim

FOR A PERFECTLY CONDUCTING CYLINDER 6. PERFORMING O O. REPORT NUMBER

7. AUTHOR(&) S. CONTRACT OR GRANT NUMSER()

David Colton
AFOSR 76-2879

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASKUniversity of Delaware AREA I WORK UNIT NUMBERS

Applied Mathematics Institute
Newark, DE 19711 61102F 2304/Al
II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/NM v 15, 1980
Bolling AFB, Washington, DC 20332 13. NUMBER OF PAGES

14. MONITORING AGENCY NAME A ADDRESS(if different from Control ling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
ISa. DECLASSIFICATION/DOWNGRAOING

SCHEDULE

16. DISTRIBUTION STATEMENT (ol this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Slock 20, It different frnt Report)

18. SUPPLEMENTARY NOTES

I. KEY WORDS (Continue on reverse side it necessary and Identity by block number)

; 1 ,lectromagnetic scattering•

Conformal mapping

Inverse scattering

20. ABSTRACT (Continue an reverae side if neceeary and Identity by block number)

The low frequency inverse electromagnetic scattering proble for a cylinder is
solved using conformal mapping methods.

FORM

D3 EDITION OF I NOV 65 IS OSOLET UNCLASSIFIED
~~SECUOIITY CL ASIICATION OF T"IS PAGII f o 11 IlI~i

" II 
' ' '

n ,', - L, 111111"16




