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ABSTRACT

It is known that the stable GI/FH/l queue has an embedded Marko chain

whose invariant probability vector is matrix-geometric with a rate

matrix R. In terms of the matrix R, the stationary waiting time distribu-

tions at arrivals, at an arbitrary time point and until the customer's

departure may be evaluated by solving finite, highly structured systems of

linear differential equations with constant coefficients. Asymptotic results,

useful in truncating the computations, are also obtained. The queue is

assumed to follow the first- come, first-served discipline.

KEY WORDS

Matrix-geometric solutions, GI/PH/Il queue, waiting time distributions,
Lindley's equation, computational probability.
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1. The Algorithmic Procedure

This paper is a sequel to [2). All notations and definitions, which

were introduced there, will also be used here and have the same meaning.

The purpose of the present paper is to show that, for the GI/PH/l queue,

the stationary probability distributions of the waiting time of an arriving

customer and of the virtual waiting time, as well as that of the time-in-

system may be computed by the numerical integration of highly structured,

finite systems of differential equations with constant coefficients.

Only waiting times under the first-come, first-served discipline are considered.

These systems of differential equations require prior evaluation of the

matrix R, which is shown in [2) to be the minimal, nonnegative solution to

a nonlinear matrix equation of the form

(1) R- jRkA
kRO k

In the stable GI/PH/l queue, the matrix R is positive and its Perron eigenvalue

Sn satisfies 0 < n < 1. The probabilistic significance of the matrix R is

f discussed in [3] and a detailed, general treatment of matrix-geometric

solutions in stochastic models may be found in [NJ.

A. The Waiting Time at Arrivals

In Theorem 7 of [2], it is shown that the Laplace-Stieltjes transform

W*(s) of the stationary waiting time distribution W(.) of an arriving customer

3
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is given by

(2) W*(s) - C 1 Rn [(sI-T) -OA° ]e, for Re a > 0
n-0

From Formula (2), the mean waiting time W may be computed by routine

differentiations. One obtains

(3) 2 - ,

where L2 is the mean queue length at an arbitrary time. The quantity L2 is

explicitly given as a function of R and the parameters of the queue by

Formula (92) of [2]. Upon rewriting (3) as L2 - ) - (i-I 1 ), we recognize

the classical relation, known as Little's Formula.

We now consider the matrix

(4) **(a) - ) Rn [(sI-T)-lToAo] n

n-0

whose entries are Laplace-Stieltjes transforms of mass-functions on [0,-). The

matrix f*(s) clearly satisfies

"t (5) #*(a) - I + R 0* (o) (s-T)-lT°A°

()In order to obtain the equation (5) in a more transparent form, we consider

the vector (s), obtained by forming the direct sum of the rows of *(s). The

vector v is similarly obtained from the identity matrix I.

Equation (5) may then be equivalently written as

(6) 0*(s) - v + 0*(s)[(Rs ( s IT ) °TTOAO ] ,

IAlms
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where 4 denotes the Kronecker product of matrices and 9T is the transpose of K.

The latter equation may now be transformed, by using classical properties

of the Kronecker product, into the following successive forms:

i e(s) -v+ J*(s) [Iz® (sI-T)-1] (RT (V°ToA ) ,

*(s) [1 () uI-T)J-[sI 1-1 4T - RT@ TOAOJ] v

and finally

(7) 4*(s) -v + v[sI Q I @TRT - T @)TOAO -(RK TOAO)

The existence of the matrix inverse in (7) will be proved below.

_2Let ±(.) be the m2-vector of mass-functions, corresponding to the vector

of Laplace-Stieltjes transforms 0 (s). It then readily follows from (7) that

(8) K{x) "y +v J exp [(I (g) T + RT OD TOAO) u]du(RT V TOA)

1T 0

" - Z{I®I (R T TA)

for x > 0.

If we introduce the m2-vectors v° and 0(x) by setting

(9) vo- _v(I @ T + RT ® TOAO) -1,

and

4

-0

(10)~~~~~ ~ ~~ e~)- x ((T RT&-Px o
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then Formula (8) leads to

(11) t(x) - v + vo(R_?)T*AO) - e(x)(RT &TOAo) , for x > 0.

Let now #(.), 0(.) and V0 be the m matrices of which the direct sums of

the rows are respectively the m2-vectors (.), e) and'v_. Formulas

(11) and (9) may then be rewritten as

(12) #(x) - +RVTA°-RO(x) TA , for x 0

and
(13) VOT + RVOTOAo - - I

From Equation (10). it is clear that the vector 6(,) satisfies the

matrix-differential equation

_'(z) - t(x) (I ® T + RT WToAo), &(0) - _v

or equivalently

(14) e'(x) - G(x)T + RO(z) T°A 0 , 6(0) - V°.

The matrix VO may be explicitly expressed in terms of R. To see this,

we postaultiply in (13) by the column vector e and recall that Te - -TO . We

then obtain

'V°T° - (I-R)-le

so that V°T°A° may be replaced by (I-R)- 1e • - (I-R) -A. Doing so, readily

yields
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(15) Vo - (IR)-I(RI-RAoo)T-l

Equation (13) corresponds to an inhomogeneous system of m2 linear equations

in m2 unknowns. The coefficient matrix I 4V T + RT O TOAO of the latter is

now clearly nonsingular. A more detailed result is proved in Lemma 2 below.

From Formulas (2) and (12), we now obtain that

W(x)-C+caRVOTOCa R O(x)T • forx>0.

Since however, a RV°T °- - a R(I-R)-le , and C - [a(-R)-le]l

this expression may be further simplified to

(16) W(x) - 1- C a Re(410  for x > 0.I
The results of this derivation may be summarized as follows.

Theorem 1

If for the stable GI/PH/l queue, the matrix R is known, then the stationary

waiting time distribution W(.) is given by Formula (16). The matrix O(x) is

obtained by numerical integration of the matrix-differential equation (14).

Remark

We note that Formula (16) provides a transparent solution to Lindley's

equation for a wide subclass of GI/G/l queues. For this subclass, the solution

is more elementary and appropriate for numerical implementation than the

classical approach, which is based on Wiener-Hopf techniques.
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The stationary distribution W1 (*) of the time-in-system of an arriving

customer may be easily computed along with the probability distribution

W(e). One appropriate computational organization is discussed in Section 4.1

of [5]; we present a somewhat different one here.

The distribution W1(1) is the convolution of W(O) and the service time

distribution H(O). Since the latter is of phase type with irreducible

representation (0,T), we have

(17) WI(x) - fW(u)a exp[T(x-u)]Tdu , for x > 0

If we set

(18) 2(x) - a Lo W(u)exp [T(x-u)] du , for x > 0

then elementary calculations show that

(19) p'(x) - p(x)T + W(x)a , for x > 0

with p(O) = 0. In order to compute W 1(0), it therefore, suffices to integrate

the system of differential equations (19) and to evaluate W1(x) p(x)T° , for

x > 0. We note that this is a general procedure for the numerical convolution

of two distributions on [0,"), when one of them is of phase type.

B. The Virtual Waiting Time

In Theorem 8 of [2), the Laplace-Stieltjes transform W*(s) of the virtual

waiting time distribution W(.) is given by

(20) W*(s) " 1 - p + CRi' l T R][(sI-T)-lTOA°]ie, for Rea > 0 .

'A m - --

- ,
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The matrix T[R] is defined in Formula (74) of [2] and satisfies the

equation

(21) R -1.r+ 11 T[]+ X [R] ,

proved in Lmma 9 of the same paper. The matrix Y[R] may be explicitly obtained

in terms of R. This was overlooked in [2] and the following lemma indeed

yields the result of Theorem 6 more directly.

Lema 1

The matrix Y[R] is given by

(22) y[R] - A' -!(R-I-R A°°)T-1 .1

Proof

Postmultiplication by e in (21) yields

Re 1 e - A1' Y[R]T ° + Xl'R #[R] To.

Since I-R is nonsingular, it follows that X1 'VR) T - e, and hence

* AI' T [R] T°A° - A° ° . Upon substitution into (21), we readily obtain Formula (22).

The transformation of Formula (20), required to obtain a convenient

algorithm for the computation of the probability distribution 0(.), is entirely

*analogous to that given above. We shall only show the most important steps.

We may write (20) as

* -5 (23) W*(s) = 1-p + C a *(a)(sI-T)-'To

where *(s) is an a x a matrix of Laplace-StieltJes transforms, satisfying
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(24) *()-(R-I-RAPO)T-l + R #^*(s)(I..T)-lToAO

Performing the same manipulations as those following Equation (5), we

obtain

(25) i(x) - (R-I-RAP0 ) T' + RVoT 0 AO - Re9 (x) TOA0

f or x > 0. This equation corresponds to (12) above.

The matrix VO, which now satisfies the equation

(26) V0T + R VOT0 AO - -(R-I-RAOO)T-

is explicitly given by

(27) V-O - (R-I-RAOO)T-2 _ R(I-R)-l(R-I-RAOO)T-lAOOT-1

- VOT.'l+ RVO(I-AOO)Tl1

where Vois given in Formula (15).

The matrix 5 (-) is obtained by solving the matrix-differential equation

(28) 0'(x) - 6(x)T+ R O(x)TAP , 0(0) -V 0 .

As we compute the matrix i(-. by use of (28) and (25), we simultaneously

integrate the differential equation

(29 '1x '(x)T + ;(x), 01(0) - 0.

This yields the inverse of the Laplace-Stieltjes transform §*(s)(sI-T)-l.

*The probability distribution W(.) is then finally given by
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Wl--1p+ 1  Ca$(x)T°  , forx>O
(30) W(x) -1-p + X1 C a _,xT fo.

The algorithm for W(.) is now clear. We evaluate the matrix Vo and inte-

grate the differential equations (28) and (29) by classical methods. These

will usually give the computed value of 41(x) at values of x, which are the

successive multiples of an appropriately chosen step h. We note that it is

not necessary to store all the preceding values of 0(o) and lo but

only those few that are needed by the integration procedure. For each computed

value of *'(.), the corresponding value of W(o) is evaluated and stored

for printout.

The mean of W(.) is obtained by a routine differentiation in Formula (20)

and is given by

^1

(31) - +-Y X1I2

where p is the second moment of the service time. The quantity W is the

stationary mean waiting time at arrivals.

2. Asymptotic Results for the Waiting Time Distributions

The preceding derivations also readily yield precise asymptotic results

for the probability distributions W(s), Wi() and W(). We first discuss

some preliminary matters.

i The positive matrix R has the maximal eigenvalue n, satisfying 0 < n 1 .

Let the vectors u and u be left and right eigenvectors, corresponding to n.

Both vectors may be chosen to be positive and to satisfy u e - u u - 1.

The matrix T + n T°A0 is clearly an irreducible, stable matrix. It

therefore has an eigenvalue - C 0, which is simple and for which the
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corresponding left and right eigenvectors z and z° may be chosen to be positive

and to satisfy z e - z - 1. Any other eigenvalue C' satisfies Re(&') < -

The eigenvalue -& will be called the eigenvalue with maximum real part of

T + l T°A.

Lemma 2

a. The vectors u and z are identical.

b. The matrix I <T + RT( T°A° has nonnegative off-diagonal elements.

Its eigenvalues &'' satisfy Re(Q'') < -&, and the quantity -& is its

eigenvalue of maximum real part. The left and right eigenvectors

corresponding to-E are given by uOT gu and uT zo, respectively. The

inner product of these two positive vectors is equal to one.

Proof

We recall from [2] that, in the case of the GI/PH/l queue, the matrix

A*(z) AzV, 0 < z < 1, is given by
V=0

(32) A*(z) " f exp[ (T+zTOAO)t] dF(t).

Horeover, n is also the maximal eigenvalue of the positive matrix A*(r,) and

the vector u is the corresponding left eigenvector, whose components sum

to one.

On the other hand, it readily follows from (32) that z A*(n) - f*(C)S,

where f*(.) denotes the Laplace-Stieltjes transform of F(.). The uniqueness

of the Perron eigenvalue and of the (normalized) corresponding left

eigenvectors now readily imply that u - z, and n (

-- AWNS""
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It is clear, from the definition of the matrix I®VT + RT WITOAP, that

its off -diagonal elements are nonnegative. Moreover, the positivity of R

and the irreducibility of T+TOAO imply that this matrix is also irreducible.

We have

TT

SO 0UT + nuo 0 uTOAP - uO 4&u(T + nT0 A0 ) - -E U

A similar calculation holds for the vector RTWz Sic thOecos s

anda (&.EO a- positive, they are respectively the left and right eigenvectors

c orresponding to the eigenvalue -& of maximum real part of the matrix

I®Q)T + RT ( ToAO. Finally (uO Q)U) (UTJzo) - (U UO) (g C 5-.
It now follows from Formula (10) that

(33) 6e(x) - -v (I Q T + RT 0Too)-1 [uT@.) (-UOo ))Je-x + 0 etx)

as x *The coefficient of e-E may be simplified as follows

-v(I PT + RT (Toeo) -1 [(uT SO) (-U®)

* v(-UT~gz.O) -(UO(-)J

U Eo) (-UO1 ) -UT Y u1)

The m -vector !I Wu is the direct sum of the rows of the mumatrix u~u. so

that Formula (33) may be equivalently written as

(34) OWx -Ex X+ o (e-4X) as xin

-- 16
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T heorem 2

The probability distribution W(-) satisfies

(35) 1-W x) - k e-t1 + 0o(e--C), as z -

The constant k is given by

(36) k -Cii(l-nfl(C& u0).

Proof

Upon substitution of (34) into (16), we obtain

1-W(x) - a RQuou)TO e- + o(e-") , as x

However, Ru0 - nku0 , and VT + ri(uT0)ai-u Upon postuultiplication by_et

in the latter equation, we obtain that u To ~-i 1  The stated result

is now immediate.

It is also clear from the last two equations in the preceding proof

that u - -&i(-n)a(QI+T)-l. Upon postaultiplication by r0, we obta4.n the

useful formula

(37) -cz(QI+TY 1l To

Since W,(-) satisfies the equation (17), one readily obtains that

(38) 1-W1 (z) - -a(QI+T)T0  ket + o(e-tX)

Mnlk e-Ex + o(e-Ex), as k -
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An entirely similar argument holds for the distribution W(.). One

obtains after some calculations that

(39) l-W(x) - e -  + o(e-&x)

where k is given by

(40) k. -Xi Cl(ln)a(+T)lTo . k

M Xj-1  E-1 C(c u)

Remarks

a. The asymptotic results in Formulas (35), (38) and (39) correspond to

the exact results for the GI/M/I queue. For that simple case, the

term o(e- X) may be omitted; the resulting formulas then hold for

all x > 0.

b. We shall show below how the quantities n and C may be computed by an

elementary and efficient algorithm. We then see from the proof of

Theorem 2 that

](41) u - n(l-.) -1 ( I+T) -1

t(41
This formula provides us with a powerful accuracy check in the computation

of the matrix R. The latter is obtained by iterative solution of

Equation (1). The quality of the computed value for R may be assessed

by seeing how closely the equation uR - , is satisfied. The amount of

computation required to obtain C,n and u is small, compared to that

needed to get t.

I'

- ~ - - -- ~ ' - - - - - - " -
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c. It Is Impossible, in general, to compute the vector u° without

evaluating the matrix R. The coefficients k, k1 and k, therefore,

require a fair amount of computation. Even without precise knowledge

of these coefficients, the asymptotic results have a number of practical

uses. We propose to discuss chese in a forthcoming paper, which deals

with similar asymptotic results of much greater generality.

The following result provides us with an elementary numerical procedure,

which simultaneously yields the values of n and C. We note that the Laplace-

Stieltjes transform of the service time distribution is liven by

h(s) - s(sI-T)-lTo. This transform is a rational function in s and has an

abscissa of convergence --5 < 0. The function h(s) is strictly decreasing

on the interval (-i*,-) and satisfies h(O) - 1.

We define #(z) to be the unique real solution of the equation

(42> _[,(~x_ - o . 1
(42) aE#(z)I-T]AT -

-z

where 0 < z < 1. We see that #(z) increases from -ir* to zero, as z varies

from 0 to 1.

Theorem 3

For the stable GI/PH/l queue, the quantity n is the unique solution in

(0,1) to the equations

(43) z - f*[-(z) -h((z)

and

(44) C -

'if

| . .. i _ .. . .t .. ... . i. ... - . . .. . . .. -- .. .. " . . .-m , . ., _ _ . o , . . . . .,
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P roof

The quantity #(a) is the sigenvalue of maximum real port of the marrix

T+sTOAo . To see this, we write

U(s) [T+ z TA °  -(z)u(s) . 0 < z c 1

and normalize u(z) by u(z)e - 1.

We then readily obtain

u(z)T0 - T #(a)

and also

U(S) - *(z)a [*(z)I-T]-.

Potmltiplication by T yields (42). It is also elementary to verify that

the vector u(z) is positive. The quantity #(z) Is therefore the algenvalue

of mazmum real part of the stable matrix T+zT°A°, for 0 < a 1.

It is now Imediate that

u(z)A*(z) - u(s) T exp[(T+gT0 A)u) dF(u) - f*[-#(z)J R(z)

so that f*[-*(z)] is the Perron eigenvalue of the positive matrix A*(z) for

0 < <1.

t* We know however from [2] that, provided the queue is stable, n is

the unique solution in (0,1) of the equation z - fC[- 1 (a)J. Finally, from

the definition of -C, it is clear that C - -1(n).

0
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To compute q and C, we may either solve the equation f*(-s)h(s) = 1,

for its unique solution so in (-r*,O) and set C - , and n - f*(C) - or

we may compute *(z) for successive values of z by using (42) and select the

latter to approximate the solution to z - f*C-*(z)] In (0,1). Any of the

classical methods, such as the bisection, secant, or Newton's method may

be Implemented. Convergence is rapid and the required computation time is

very small.

3. Asymptotic Behavior of the Quene Length Densities

The powers of the matrix R have the well-know asymptotic behavior

(45) Rk. ,lk uo .u + o(nk), as k .

Furthermore, it follows from (22) that

#[R] - . - 1 [(-l)u_ - r_] T- 1

Using the expression for u obtained in (41), we may routinely simplify the

preceding formula to

(46) u I[R] - _- vS(wI')_.

I The following results are now Immediate.

Theorem 4

' In the stable GI/PH/1 queue, the stationary queue length densities satisfy

.e.4
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(47) x C -_ al u )  ku + o(nk)

- C(a u0)nk + olnk),

i 2s - C(a u ) (1-0)-i nk + o(nk )

v k

(48) - C Rk- y[R]" - C(_ u°) nk. a (I+T)- 1 + o(nk)

k I . _.- C(Q U_) nk (EI+T)_e + o(nk)

v'k- 1 C(mg u0)(1ir)l fk .* E(I4T)-' + o(n k

v k ___

(49) Z [vv T] +l TO w CaRke = C(uO) nk + o(nk)
Vanl

z V - C(C UO)(1-0)- 1k 40 (n k)
v'k

t # a . -.

Formulas 4749 give asymptotic expressions for the stationary densities

and distributions of the queue length, respectively at arrival epochs, at an

arbitrary time and immediately after departure epochs.

Remarks and Acknowledgments

In Section 5 of [2], we described a recursive procedure to compute the

matrices Ak, k _ 0, for the PF/P/ quene. This procedure is particularly

appealing as it completely avoids the use of numerical integration. We did
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express concern, however, over the possible singularity of the matrix

I( S + T ®)I, which appears in it. This concern is without foundation.

As the Kronecker sum of the nonsingular matrices S and T, the matrix I(ZS +

T (jI is nonsingular [1]. The recursive procedure for the computation of the

matrices Ak has now been implemented and performs very well [4].

The author is indebted to Professors Y. Takahashi and V. Ramaswami

for helpful coments on the derivations in this paper.
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