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ABSTRACT

AN

"It 1s known that the stable GI/PH/1 queue has an embedded Markov chain

whose invariant probability vector is matrix-geometric with a rate

matrix R.

In terms of the matrix R, the stationary waiting time distribu-

tions at arrivals, at an arbitrary time point and until the custoumer's

departure may be evaluated by solving finite, highly structured systems of

linear differential equations with constant coefficients.

useful in truncating the computations, are also obtained.

The queue is

assumed to follow the first-come, first-served discipline.

KEY WORDS
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Matrix-geometric solutions, GI/PH/1 queue, waiting time distributions,

Lindley's equation, computational probability.
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1. The Algorithmic Procedure

This paper is a sequel to [2]. All notations and definitions, which
were introduced there, will also be used here and have the same meaning.
The purpose of the present paper 1s to show that, for the GI/PH/1 queue,
the stationary probability distributions of the waiting time of an arriving
customer and of the virtual waiting time, as well as that of the time-in-
system may be computed by the numerical integration of highly structured,
finite systems of differential equations with constant coefficients.
Only waiting times under the first-come, first-served discipline are considered..

These systems of differentisl equations require prior evaluation of the
matrix R, which 1s shown in [2] to be the minimal, nonnegative solution to
a nonlinear matrix equation of the form

©
1) R= J RkA .
ke0 kK

In the stable GIL/PH/1l queue, the matrix R is positive and its Perron eigenvalue
n satisfies 0< n < 1, The probabilistic significance of the matrix R is

discussed in [3] and a detailed, general treatment of matrix-geometric

solutions in stochastic models may be found in [s5].

A. The Waiting Time at Arrivals

In Theorem 7 of [2], it is shown that the Laplace-Stieltjes transform

W*(s) of the stationary waiting time distribution W(+) of an arriving customer




is given by

(2) Wh(s) =Ca J E® [(sI-T) T°A°Fe, for Re s >0 .
n=0

From Formula (2), the mean waiting time W may be computed by routine

differentiations. One obtains

(3) WAL, -4,

where L, is the mean queue length at an arbitrary time. The quantity Ly 1s
: explicitly given as a function of R and the parameters of the queue by
Formula (92) of [2]. Upon rewriting (3) as L, = 31'.-1 (W'Hll'), we recognize

the clagssical relation, known as Little's Formula.

We now consider the matrix

(4) o*(s) = ) R® [(sI-T)~lrop0]?
n=0

whose entries are Laplace-Stieltjes transforms of mass-functions on {0,). The

§ matrix ¢ *(s) clearly satisfies

(5) @%(s) = I + R o*(s) (sI-T)~110A° .

In order to obtain the equation (5) in a more transparent form, we consider

1
-i the vector ¢*(s), obtained by forming the direct sum of the rows of #*(s). The
? vector v is similarly obtained from the identity matrix I.

PRREY

|

|

| : . Equation (5) may then be equivalently written as
' (6) ¢*(s) =v + g*(s)[n%(sr-'rrl'r%ﬂ.
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vhere @ denotes the Kronecker product of matrices and RT is the transpose of R.

The latter equation may now be transformed, by using classical properties

of the Kronecker product, into the following successive forms:

¢o*(8) = v + 0*(s) [I1® (sI-T)"1] RT @ 194°) ,

@ GI-N1e1@I-1@T - RT@TA) =y,
and finally

(7 ¢*(s) = v+ v[sI@I - I@T - RT @ T°A° "1 (R} T0A°)

The existence of the matrix inverse in (7) will be proved below.
Let ¢(+) be the m2-vector of mass-functions, corresponding to the vector

of Laplace-Stieltjes transforms ¢*(s). It then readily follows from (7) that

> 4
(8) i(x) -v+ !I exp [(I®T + RT ® TOA®) u]du(RT®T°A°)
0
i =v+y IDT+RI@TA) 7] (exp [G@T + RT ® T°A%)x]

-1@1) RT®T°°) ,

"., for x > 0.

; 1f we introduce the m2-vectors v° and 6(x) by setting
{
i

(9) vo = vI@T+RI@TA)T ,
and

(10) 8(x) = v° exp [I®T + RT@T°A%)x], for x>0
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then Formula (8) leads to

(11) ¢(x) = v + vPRT@TOA%) - 6(x) RT@® TOA®) , for x > O.

Let now ¢(¢), 6(¢) and V° be the mxm matrices of which the direct sums of

2

the rows are respectively the m“-vectors ¢(°), 0(¢) and v°. Formulas

(11) and (9) may then be rewritten as

(12) o(x) = I +RVOTA°-RO(x) T°A°, forx>0 ,
and
(13) VT + RVOT°A° = - 1 .

From Equation (10), it is clear that the vector 8(°) satisfies the

matrix-differential equation

8'(x) = (X(I®T + F®TA®), 9(0) =v° ,
or equivalently
(14) 8'(x) = 6(x)T +RO(x) T°A° , @(0) = Vv°,

The matrix V° may be explicitly expressed in terms of R. To see this,
we postmultiply in (13) bythe colummn vector e and recall that Te = -1°. We

e then obtain
e Vore = (1-R)7le ,

so that V°T°A° may be replaced by (I-R)'lg e a = (I-R)"1A°°. Dpoing so, readily

yields




(15) v° = (1-R)“1(R-1-RA®°)T"1 .,

Equation (13) corresponds to an inhomogeneous system of m? linear equations
in m’ unknowns. The coefficient matrix I®T+ RT® TOAC of the latter is
now clearly nonsingular. A more detailed result is proved in Lemma 2 below.

From Formulas (2) and (12), we now obtain that
W(x) =C+CaRVI°-CaR6x)I° , for x> 0.
Since however, o RVOTO= - g R(I-R)"le , and C = [gﬂ!-R)'%g]-l ’
this expression may be further simplified to
(16) W(x) =1-CaRO(X)I°, forx>0 .
The results of this derivation may be summarized as follows.

Theorem 1
If for the stable GI/PH/1 queue, the matrix R is known, then the stationary
waiting time distribution W(*) is given by Formula (16). The matrix O(x) is

obtained by numerical integration of the matrix-differential equation (14).

Remark

We note that Formula (16) provides a transparent solution to Lindley's
equation for a wide subclass of GI/G/1 queues. For this subclass, the solution
is more elementary and appropriate for numerical implementation than the

classical appreach, which is based on Wiener-Hopf techniques.
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The stationary distribution Wl(') of the time-in-system of an arriving
customer may be easily computed along with the probability distribution
W(°*). One appropriate computational organization is discussed in Sectiom 4.1
of [5]; we present a somewhat different ome here.

The distribution Wl(') is the convolution of W(*) and the service time
distribution H(*). Since the latter is of phase type with irreducible

representation (&,T), we have

(17) Wl(x) = r W(uw)a exp[T(x-u)]T%u , forx >0 .
0
1f we set
x
(18) p(x) = gI W(uwexp [T(x-u)] du , for x>0 ,
o

then elementary calculations show that
(19) p'(x) = p(x)T + W(x)a , for x>0 ,

with p(0)= 0. In order to compute wl(-), it therefore, suffices to integrate
the system of differential equations (19) and to evaluate Wl(x) = p(x)T°, for
x > 0. We note that this is a general procedure for the numerical comvolution

of two distributions on [0,”), when one of them is of phase type.

B. The Virtual Waiting Time

In Theorem 8 of [2], the Laplace-Stieltjes transform ﬁ*(s) of the virtual

waiting time distribution W(+) is given by

(20) W(s) = 1 - p+ ] cari~l y[R][(s1-1)~11°A%}1e, for Res > O .
1=1




The matrix Y[R] is defined in Formula (74) of [2] and satisfies the

equation
(1) R =1+ v[R] +2y' Ry[R] TOA°

proved in Lemma 9 of the same paper. The matrix ¥[R] may be explicitly obtained
in terms of R. This was overlooked in [2] and the following lemma indeed

yields the result of Theorem 6 more directly.

Lemma 1

The matrix Y[R] is given by

' =1(p_1-R 499)7-1,

(22) Y[Rr] = A

Proof

Postmultiplication by e in (21) yields
Re = e - ;' ¥[R]T® + 2y 'R y([R] 1°.

Since I-R is nonsingular, it follows that A,' Y[R] T® = e, and hence
1 i =e

A;' ¥[R] TOA® = A%, Upon substitution into (21), we readily obtain Pormula (22).

The transformation of Formula (20), required to obtain a convenient
algorithm for the computation of the probability distribution ﬁ(-), is entirely
analogous to that given above. We shall only show the most important steps.

We may write (20) as
(23)  W*(s) = 1-p + C o #*(s) (sI-T)"11° ,

vhere ¢*(s) 1s anm x m matrix of Laplace-Stieltjes transforms, satisfying
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(24) $*(s) = (R-I-RA®)T~L + R &*(s) (sI-T)~1TOA° .

Performing the same manipulations as those following Equation (5), we

obtain
(25) #x) = (R-I-RA®®)T~14+ RVOTCAC - RO (x)TCAC ,

for x > 0. This equation corresponds to (12) above.

The matrix ‘7°, which now satisfies the equation
(26) VOT + R VOT®A® = -(R-I-RAO®)T"1 |
is explicitly given by
(27) ¥° = -(R-I-RA%%)T"2 - R(I-R)~}(R-I-RAO0)T-1p00T-1
= -vor-14 pyo(1-a%0)T-1 |

where V°1is given in Formula (15).

The matrix 8 (+) is obtained by solving the matrix-differential equation

~

(28) B'(x) = 6(x)T + RO(X)TOA® , 8(0) = VO,

As we compute the matrix 3(-), by use of (28) and (25), we simultaneously

integrate the differential equation
(29) ') =4 T + 8, ®,(0) = O,

This ylelds the inverse of the Laplace-Stieltjes transform 3*(9) (sI-’l‘)'l.

The probability distribution W(+) 1s then finally given by
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1

a v -~
(30) W(x) =1-p+3; Ca®x)I° , forx>0 .

The algorithm for Q(-) is now clear. We evaluate the matrix §° and inte-
grate the differential equations (28) and (29) by classical methods. These
will usually give the computed value of 81(x) at values of x, which are the
successive multiples of an appropriately chosen step h. We note that it is
not necessary to store all the preceding values of 3(') and 81('), but

only those few that are needed by the integration procedure. For each computed

value of 81(-), the corresponding value of ﬁ(-) is evaluated and stored
for printout.
The mean of ﬁ(-) i8 obtained by a routine differentiation in Formula (20)

and is given by

z -1
(31) WepW+arl u

Hy

where ui is the second moment of the service time. The quantity W is the

stationary mean waiting time at arrivals.

2. Asymptotic Results for the Waiting Time Distributions ?

The preceding derivations also readily yield precise asymptotic results
for the probability distributions W(*), Wl(') and ﬁ(-). We first discuss
i some preliminary matters.

l The positive matrix R has the maximal eigeanvalue pn, satisfying 0 < n < 1.

Let the vectors u and u® be left and right eigenvectors, corresponding to p.
Both vectors may be chosen to be positive and to satisfy u e = u u® = 1,

The matrix T + p T°A° 1s clearly an irreducible, stable matrix. It

. therefore has an eigenvalue - < 0, which is simple and for which the

-

". ‘1:40“4 )

PPN o aint i oo -




e e

corresponding left and right eigenvectors z and 5_° may be chosen to be positive

and to satisfy z e = E_z_o = 1. Any other eigenvalue §' satisfies Re(£') < -f

The eigenvalue -f will be called the eigenvalue with maximum real part of

T + n TOAC.

Lemma 2

a., The vectors u and z are identical.

b. The matrix IET + RT@ TPA° has nonnegative off-diagonal elements.
Its eigenvalues E'' satisfy Re(f'') < -, and the quantity -£ is its
eigenvalue of maximum real part. The left and right eigenvectors
corresponding to-f are given by 5°T ®u and 9_T® £°, respectively. The

inner product of these two positive vectors is equal to onmne.

Proof
We recall from [2] that, in the case of the GI/PH/1 queue, the matrix
L]
A*(z) = ): szv, 0 <z <1, is given by
v=0

(32) A*(z) = r exp[ (T+zT°A%) t] dF(t).
0

Moreover, n is also the maximal eigenvalue of the positive matrix A*(n) and

the vector u is the corresponding left eigenvector, whose components sum
to ome.

On the other hand, it readily follows from (32) that z A*(n) = f*(£)g,
where f*(+) denotes the Laplace-Stieltjes transform of F(¢). The uniqueness
of the Perron eigenvalue and of the (normalized) corresponding left

eigenvectors now readily imply that u = z, and n = £*(f).




It is clear, from the definition of the matrix I®T + RF @T°A°, that
its off-diagonal elements are nopnegative. Moreover, the positivity of R
and the irreducibility of T+TOAC imply that this matrix is also irreducible.

We have

T
WCRWIPT + R @ T°A®) = 2°T® uT + _1_;_°TRT® uTOA® =

T
E_OT®_|£T + n20®£TOA0 - .EOT@E_(T + I’\TOAO) - "E(_‘_‘_O:I:@E_) .

A similar calculation holds for the vector t_x_T® z°, Since the vectors g"T@ u
and 9}@ £_° a - positive, they are respectively the left and right eigenvectors
corresponding to the eigenvalue - of maximum real part of the matrix

I@T + RT@TOA°. Finally (3_°T®g) W®z0) = (u g°)T® (u 2 =1,

It now follows from Formula (10) that

(33) 6(x) = v(I®T + T@® 1°4°) 1 [(uT® 1°)-(g_°b w)Je~ 5% +o(e7FX) ,
as x + », The coefficient of e %X may be simplified as follows

~v(I®T + RT®T°A°)'1[(37®1°)-(9.°T® )

RS B ROy

& @z WDy - & CDw .
The m2-vector goTQ)g is the direct sum of the rows of the mxm matrix u®u, so
that Formula (33) may be equivalently written as

(34) o(x) = -:-g" u e X 4o ) , asx+ e,
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Theorem 2

The probability distribution W(+) satisfies
(35) 1-W(x) =k e5% + o(e-ex), as x * =,
The constant k is given by
(36) k = cn(1-m)"1(a u®).

Proof

Upon substitution of (34) into (16), we obtain
1-W(x) = %-g_k(g?g)!? etX 4 o(etX) , as x+ e

However, Ru® = nu®, and uT + n(uT%a = -tu. Upon postmultiplication by e
in the latter equation, we obtain that u T° = g(1-n)~l. The stated result
is now immediate.

It is also clear from the last two equations in the preceding proof
that u = -En(l-n)a(EI+T) L. Upon postmultiplication by T°, we obta‘n the

useful formula

(37 <Hn -l |
n

Since Wl(-) satisfies the equation (17), one readily obtains that

(38)  1-W;(x) = —a(E4TTO * ke 5% + o(e~t%)

= n~1k €% 4 o(e~tX), as k + =

-“




Jpp————— o

15

An entirely similar argument holds for the distribution W(:). One

obtains after some calculations that

(39) 1-W(x) = k e~ + o(e~t%)

14

where k is given by
k -1 -1 -1q0
(40) k== £ " (1-n)a(§I+T) 7T - k

=N el .

Remarks

a. The asymptotic results in Formulas (35), (38) and (39) correspond to
the exact results for the GI/M/1 queue. For that simple case, the
term o(e"5%) may be omitted; the resulting formulas then hold for
all x > 0.

b. We shall show below how the quantities n and ¢ may be computed by an

elementary and efficient algorithm, We then see from the proof of

Theorem 2 that
(41) u = -gn(-n) "L a(e+m 7 |

This formula providesus with a powerful accuracy check in the computation
of the matrix R. The latter is obtained by iterative solution of

Equation (1). The quality of the computed value for R may be assessed

by seeing how closely the equation uR = nu, is satisfied. The amount of

computation required to obtain §,n and u is small, compared to that

needed to get R.
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c. It is impossible, in general, to compute the vector g? without
evaluating the matrix R, The coefficients k, kl and i. therefore,
require a fair amount of computation. Even without precise knowledge
of these coefficients, the asymptotic results have a number of practical
uses. We propose to discuss cthese in a forthcoming paper, which deals

with similar asymptotic results of much greater genmerality.

The following result provides us with an elementary numerical procedure,
vhich simultaneously yields the values of n and {. We note that the Laplace-
Stieltjes transform of the service time distribution is given by
h(s) = a(sI-T)71T°, This transform is e rational function in s and has an
abscissa of convergence -t* < 0. The function h(s) is strictly decreasing
on the interval (-t*,») and satisfies h(0) = 1.

We define y(z) to be the unique real solution of the equation
(42)  afwar-rle - L,

where 0 < z < 1. We see that y(z) increases from -t* to zero, as T varies

from 0 to 1.

Theorem 3
For the stable GI/PH/1 queue, the quantity n is the unique solution in

(0,1) to the equations

(43) z=f4fy(0], 1-nlwo] ,
and

(44)

£ = -%(n).

RS R, N PR
W e "

e
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The quantity y(z) is the eigenvalue of maximum real part of the marrix

T+2TOAC, To see this, we write

u(z) [T+ 2 TOA°] = y(z)u(z) , 0<z<1,

and normalize u(z) by u(z)e = 1.

We then readily obtain

() = X v(na @113 .

Postmultiplication by T® yields (42). It is also elementary to verify that
the vector u(z) is positive. The quantity y(z) is therefore the eigenvalue
of maximum real part of the stable matrix T+zT°A°, for 0 < z < 1.,

It is nov immediate that
u(z)A*(z) = u(z) r exp[ (T+2T°A°)u] dF(u) = £#[—y(2)] u(s) ,
0

80 that f#[-y(z)] is the Perron eigenvalue of the positive matrix A*(sz) for
0<z <1,

We know hovever from [2] that, provided the queue is stable, n is
the unique solution in (0,1) of the equation z = f*[-v(:)]. Finally, from

the definition of -f, it is clear that { = -y(n).
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To compute n and {, we may either solve the equation f*(-s)h(s) = 1,
for its unique solution 8° in (-1*,0) and set E = -8 and n = f*(g) - or
we may compute $(z) for successive values of z by using (42) and select the
latter to approximate the solution to z = fA -y(z)] in (0,1). Any of the
classical methods, such as the bisection, secant, or Newton's method may
be implemented. Convergence is rapid and the required computation time 1is

very small.

3. Asymptotic Behavior of the Quene Length Densities

The powers of the matrix R have the well-known asymptotic behavior
(4S5) Rk-nkg°o\_|_+o(nk), as k> =
Furthermore, it follows from (22) that
wolel =337t [n-Dg - nalTt

Using the expression for u obtained in (41), we may routinely simplify the

preceding formula to

1

(46)  u VIRl = A na(e4m 7L

The following results are now immediate,

Theorem 4

In the stable GI/PH/1l queue, the stationary queue length densities satisfy

SN My
Wi e
~ o o
- L 3
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(47  x =caq B* =g 1) nku + o(nk)

J

I x, = Clg u°) (1)1 n* 4ok ,
v=k
(48) 7, = Co BHR] = ot (g w0 ik L a4 o)

e~ -xl"l C(a u%) nk g(elﬂ)'lg +o(n®) ,
L %= A7 e )T ok s + o)
v.

(49) =[] 1, 117 g4 10 = caR¥e = Ca 4% nF + o),
vsl

I %~ ce ) A-n7L kv (k)
v-

a8 k + o,

Formulas 47-49 give asymptotic expressions for the stationary densities
and distributions of the queue length, respectively at arrival epochs, at an

arbitrary time and immediately after departure epochs.

Remarks and Acknowledgments

In Section 5 of [2], we described a recursive procedure to compute the

matrices A, k > 0, for the PH/PH/1 quene. This procedure is particularly

appealing as it completely avoids the use of numerical integration. We did
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expregs concern, however, over the possible singularity of the matrix
1@ S + T@ 1, wvhich appears in it. This concern is without foundation.
As the Kronecker sum of the nonsingular matrices S and T, the matrix IX)S +
T @1 1s nonsingular [1]. The recursive procedure for the computation of the
matrices Ak has now been implemented and performs very well [4].

The author is indebted to Professors Y. Takahashi and V. Ramagwami

for helpful comments on the derivations in this paper.
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