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During the period of the grant Professors David Heath, John

Muckstadt, and Carol Shilepsky have conducted research on the inter-

changeability/substitutability problem for recoverable items (items
that are subject to repair when they fail). This problem arises when

recoverable items can be substituted for one another during the vrepair

=
: g of an assembly. %Fﬁj/_, 7/-/3%/
<=> The long range objective of the research project is to develop
(JC) a method that the Air Force can use to assist in the management of
c interchangeable recoverable items. To accomplish this goal we have n
< proposed to analyze several simplified problems that will give us U"i‘ g
i ) insight into the form of the optimal or near-optimal policy for the .-U &'—
| < ~u ‘
; real problem. Specifically, we proposed: l::}-J 23
: i o
(a) to understand fully the behavior of a single-echelon, %
two-item system over an infinite horizon when the failure
processes for the items are independent, stationary Poisson v
' processes and the repair times are exponential; '
i ' (b) to develop methods for finding optimal and near-optimal u;ﬁ @
t 1* policies for the situation described in (a);
; k (¢} to extend the results for topics (a) and (b) to systems ';y;?
} },"‘ having many iter?s; m:“:/;
! : i (d) to extend the analysis to situations in which there are two .
; ;' echelons (depot-base structure) and many items where, as
" ‘ % before, the failure processes for the items are independent,
‘ . } stationary Poisson processes and repair times are exponential;
. . i ' (e) to develop methods for finding the optimal or near-optimal f

operating policy for the situation described in (d);
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(£f) to study the problem when failure and repair processes

both single- and two-echelon systems; and

(g) to develop heuristic dispatching rules for the dynamic .
environment described in (f).
To date we have completed objects (a) and (b), developing heuristics
to find a near-optimal policy for the single-echelon, two-item system.
We have almost completed objective (c¢), developing two heuristics which
should produce a near-optimal policy for the system having many items.
We have begun working towards objectives (d) and (e), establishing the
framework and the procedure which will be followed in analyzing the
two-echelon system. Details of the progress made towards reaching these
objectives are given below.
In meeting objectives (a) and (b), we studied the interchangeability/
substitutability problem for two items that fail at a single location.
The failure processes for thesé items are assumed to be independent,
stationary Poisson processes, and repair times are exponentially distri-
buted. The system studied is assumed to be a closed system; that is,
no items are added to or deleted from the system. Based on these
assumptions we first showed that the problem could be viewed as a Markovian
decision problem for which there exists a stationary optimal policy. Since
our main goal is to find methods that can be used to solve the real
problem, we next developed various approaches for finding optimal and
near-optimal policies.
The first approach we tock was to formulate the decision problem as
a linear programming problem. The number of states in the Markovian
AIR FORCE OFFICE OF SCIERTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has boen raviesed and is
approved for puktlic rclease IAW AFR 190-12 (7b).
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decision problem is so large that the linear programming method would

not be a practical method for finding optimal policies. We developed
a procedure for avoiding this difficulty. We found that the behavior
of a system with many parts could be satisfactorily studied by con-
sidering a smaller system with fewer parts, and thus fewer states in
its associated Markovian decision problem. The number of states can be
further reduced by eliminating certain unlikely states from consideration.
With fewer states, it becomes practical to use linear programming to
obtain an optimal solution for the smaller system. This solution can
be translated into a near-optimal solution for the original system.
Thus we can use linear programming to obtain near-optimal solutions for
the single-location, two-item system.

Next, we studied the solutions obtained by linear programming and
were able to ldentify some properties that an optimal policy should possess.
We developed a simulation approach that exploits these properties that an
optimal policy is conjectured to have. This heuristic method is compu-
tationally efficient and finds, at least for the cases tested, a nearly
optimal policy. (The details of the results of this work can be found
in the attached technical report, entitled "An Analysis of a Single
Location Inventory Problem for Two Interchangeable Recoverable Items.")

In working towards objective (c), we extended the system studied
in (@) and (b) to include several interchangeable recoverable items.
We found that the number of states and possible actions grew so huge ﬁ
that any attempt to use linear programming to find an optimal policy

would be impractical. Hence we turned our attention to the development

of heuristic methods which should produce a good policy.
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Qur first approach involved regarding the multiple-item system as

a sequence of two-item systems. At each stage in the sequence the
linear programming procedure developed for objectives (a) and (b) is
used to find a near-optimal policy for a segment of the multiple-item
system. This method produces a rule prescribing when a substitution is
to be made. (The details involved in calculating and implementing

this substitution rule can be found in the attached Technical Report,
entitled "A Procedure for Finding a Nearly Optimal Policy for the
Inventory System with Several Interchangeable Recoverable Items.')

Our second approach involved formulating the multiple-item decision
problem as a policy improvement problem. Beginning with the policy of
never making any substitutions, the special structure of this problem
can be exploited to permit us to carry out the policy improvement algo-
rithm for a single iteration, producing an improved substitution policy.
Preliminary computational experience indicates that this policy is a good
one.

In beginning to work towards objectives (d) and (e), we have
established the framework for studying the two-echelon system. We are
constructing a flexible simulation model that will enable us to evaluate
and compare the performance of several alternative depot and base deci-
sion rules. This simulation will also be used to evaluate the performance
of the two heuristic rules developed under objective (c).

We have presented the results of our research at the International

Meeting of the Institute of Management Sciences in Hawaii in June 1979,

at the Multi-Level Inventory Conference in Philadelphia in October 1979,
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and at the Annual Meeting of the Operations Research Society of America
in Washington, D.C., in May 1980. Furthermore, we plan to prepare a
paper having the same title as the first attached technical report and
submit it for publication in the Naval Research Logistics Quarterly..
Throughout our investigations we have been in contact with Lt. Col.
Jon Hobbs and Mr. Victor Presutti of Headquarters, Air Force Logistics

Command (AFLC/XRS). Their guidance and assistance in providing experi-

mental data has been extremely valuable.
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ABSTRACT

In this paper we examine the interchangeability/substitutability
problem for two recoverable items that fail at a single location. We
assume the failure processes for each type of item are independent,
stationary Pocisson processes. We also assume the repair times are
exponentially distributed. Furthermore, we assume that the system is
a closed system, that is, no items ire added tu or deleted from the
system. We first consider a discrete-time problem and show that this
problem is a Markovian decision problem. We then show that for this
problem there exist optimal stationary Markov ccntrol policies. Next

we formulate a continuous time model and show how to find the optimal

stationary Markov control policy using linear programming. Unfortunately,

this approach is impractical for solving most real problems. Consequently

we have established and explored some of the properties that we feel
an optimal policy should possess. A discussion of these properties is

given in Section IV. Lastly, we will describe a heuristic that can be

used to find a good policy. This method is an efficient simulation search

method that finds policies having the properties we conjecture an

optimal policy should possess.
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I. TINTRODUCTION

During the past 15 years a substantial amount of research has been
ccnducted related to the management of recoverable items, that is, items
subject to repair when they fail [1,2,3,&,5,6,7,8,9,11,12,13,1&]. A
number of mathematical models have been developed that can be used to
determine optimal stockage levels for each recoverable item in both single
and multi-echelon systems. Most of the models are based on the assumption
that the items are Independent. That is, the failure processes among the
items are assumed to be independent. Some recent research has been devoted
to dependencies in the demand process by recognizing that certain recovasrable

[
items have a hierarchical design [1,-,6,13,14].

{or these items, the
failure of a recoverable component results in a demand for both a spare
compenent and the assembly containing the component. However, in all of
the models presenééd to date the replacement rule for a failed component is
the same: vreplace all failed units with a serviceable spare item of the
same type.

In this paper we examine a problem that arises when items are some-
times interchangeable or can be substituted for one another during repair.
Frequently it is possible to repair 4 broken assembly using several differ-
ent types of parts: however, choosing the "correct” part to use to repair
the assembly is not based on engineering considerations alone. Using one
type of item to complete the repair rather than using a second type of item
can cause subsequent parts shortages that can be avoided. This can occur
because some items are 'more useful" than others. For example, suppose
there are only two tyres of items in the system. The "more useful" item

can be used to satisfy a demand for either type of item whereas the

"less useful" item can only be used to satisfy demands for its own type
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of item. Many such interchangeable/substitutable items are found in the

Air Force. This is particularly the case for electronic items. In some
instances, newly designed items can be used to replace older units when they
fail; however, these older units cannot be used to repair a newer generation
of an assembly,

In this paper we will examine the interchangeability/substitutability

problem for two items that fail at a single location. We assume the failure

processes for eiach type of item are independent, stationary Poisson processes.

We also assume the repair times are exponentially distributed. Furthermore,
we assume that the system is a closed system, that is, no items are added

to or deleted from the system. We first consider a discrete-~time problen
and show that this problem is a Markovian decision problem. We then show
that for this problem there exist optimal stationary Markov control policies.
Next we formulate a continuous-time model and show how to find the optimal
stationary Markov control policy using linear programming. Unfortunately,
this approach is impractical for solving most real problems. Consequently
we have established and explored some of the properties that we feel an
optimal policy should possess. A discussion of these properties is given

in Section 1V. Lastly, we will describe a heuristic th;;‘can be used to

find a good policy. This method is an efficient simulation search method

that finds pelicies having the properties we conjecture an optimal policy

should possess.
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IT. A TWO-ITEM SINGLE LOCATION SYSTEM:
A DISCRETE TIME MODEL

In this section we present a discrete-time model for the inter-
changeability/substitutability problem. We examine this discrete-time
model since it yields a particular form for the optimal control policy.
In particular, we show that for the associated Markov decision problenm
there is a stationary Markov control policy which achieves the lowest
average back-order level. This result provides the motivation for
restricting attention to Markov control policies in the continuous time
medel developed in the next section.

To simplify the analysis and discussion we restrict our attention
to a single location system with only two types of items: type 1 and
tvpe 2. The assemblies in which these items are installed are called Eﬁiﬁi;
we also assume that there are two types of units and that each unit contains
only one item of the types considered. Furthermore, when a type 1 unit or a
type 2 unit fails, we assume that it can be repaired with a serviceatle
type 2 item. Type 1 items can also be used to repair failed type 1 units:
however, type 1 items cannot be used to repair type 2 uq}fs. For example,
two units might be different '"generations" of a computer found in a fire
control system; the items might be old and new versions of an integrated
circuit board found in the computer. The newer version of the circuit board
can be used in both generations of the fire control system computer: but,
the old generation circuit board is incompatible with the newer fire control
system computer.

Let Ni be the number of units of type i and Mi be the number

of spare items of type i in the system. Thus there are a total of

pa 1

N. + M, 1items in the system. Let Ny be the number of type i items
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installed in type 3 units, and m, be the number of servicable type i
4

items in spare stock.
Note that according to the substitution rules we have established

N, is always zero. Thus the five numbers m, , m and

1 2 » M1 0 Moy 0

n

2p specify the disposition of all items. The number of type i items
<Z .

i
in repair is given by N, + M, - (m, + £ n..) , and fhe number of back-
i i Ly ij

2
orders associated with type j units is N. - L n,. .
We assume the system operates as follows in the discrete time mocel.
At each time t =n - (At), n =0, 1, ... certain actions are available.
T!'.cse actions correspond to installing some iters currently in spare stock
in appropriate units lacking an item. After installation of items,
fallures may occur. We presume that items fail independently of one ancther

and that each Iitem of type I installed in a unit of tvpe 3 has proba-

bility A;j « (At) of failing (where (At) IiIs small enough so that these
numbers do not exceed 1). Next, items which have failed are removed from
the units and sent to repair. Items are repaired independently:; we presume
that each item is repaired during this time Interval with probability
: r. - (At) .
, i

After this sequence of action-failure-repair we begin again at the new
) time (n+l) - At by selecting another action. The system continues to

operate in this manner for an indefinite length of time.

The number of backorders during the action-failure-repair cycle is '

defined to te the number of backorders which exist immediately after the
, : g action (unit repair) is taken and before the failures occur.

: We wish to choose theze actions which minimize the average number

2f backorders.




The selection of the rtarticular sequencing of events - action, failure
rerair - was not made arbitrarily. This sequence was selected so that the
rroblem could be formulated &s a Markovian decision problem (average cost
model). (A discussion of Markovian decision problems can be found in
reference 10.)

Notice that for any policy (that is, a specification of the actions to

be taken for all possible situations) there is positive probability (actually
hounded away from zero) that after one cycle of action-failure-repair all
items which were in use will have failed and been repaired. Hence there

is 3 state (namely that with no items installed and all in spare stock)

for which every action taken at every state gets to that state in one step
with probability greater than or equal to B >0. By Ross [10] (Theorem
6.17, Corollary 6.20, and the remarks following Corollary 6.20) there is

then an optimal stationary Markov control policy. This policy can be com-
ruted by a technique involving linear programming: this technique is adapted

to the continuous-time model developed in Section III.




TIT. A TWO-ITEM SINGLE T.OCATION SYSTEM:
A CONTINUOUS TIME MODEL

We now ccnsider the continuous time model corresponding to that of
Section II. The notation describing th= numbers of units and items and
the state of the system remain the same. *

We now suppose that the failure times of type i items installed in
type j units. are inderendent exponentially-distributed random variables
with mean l/k;j , and that the repair times are independent, exponential
random variables with mean l/ri . As before, the measure of performance
of the system is the average number of backorders. Motivated by the
results of the previous section we shall consider only stationary Markov
control policies.

Since it would seem unreasonable to allow backorders for tyre 1 unlits
if there are type i items in spare stock we consider the installation of
type 1 items in type I units to be automatic and not subject to control.

Thus the actions available involve only the installation of type 2 items

in type 1 units. We shall compute the optimal stationarv Markov control
policy which takes action only when the system changes state due to an item
failing in service or being returned from repair. Finally, we allow only the
substitution of one type 2 item into type 1l units at a time.

When the process jumps to a new state there are (possibly) two actions
available: do nothing, or install a type 2 item in a type 1 unit. Of course,
if there are no type 2 items available or no backorders associated with
type 1 units, then there is only one action available: do nothing.

Following Ross [10] we allow randomized actions; thus corresponding to

a a,
state S there are two numbers PSl and PS‘ (non-negative and summing to 1)

ziving the probabilities of seliccting action a (= do nothing) or a,
(= put one type 2 item in a type 1 unit). These P's completely specify the

control policy.

R R i
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! Once these P's are specified the prozess which results is a staticnary

Markov rrocess. In fact, if we consider the process which specifies the state

the system most recently jumped to and the action taken there, this process is

a Markov chain and we can compute its stationary transition probabilities ;

and then the average cost.

Let Zg be the equilibrium (or stationary) probability that this precess

most recently jumped to state S and that the action taken there was a . Then

a
we must have Z T o S ZS

as, “1°2 2

[€2]+)

S,S

= I Zi where « (S,#S,) 1is the rate at
a "1 152 b2

which transitions to state SL will occur if the current state is S and

2
the action taken is "a" , and o2 = -3 o2 so that the column-sums
S,.S S.S
272 S 172
1 .
. (5,#5))

of the a-matrix are zero. (The subscripts may seem reversed in the above.
This is because in the usual Markov chain matrix notation the order of

vector-matrix multiplication is the reverse of that used in the usual L.P.

notation, which we adopt here.)
The cost associated with each state., C(S,a) , is the number of back- ;
orders (tctal for units of tvpe 1 and tvpe 2) associated with state S if

action a 1is chosen.

a

; We wish to minimize the cost-per-unit-time given by I I ZS c(s,a)
i S a
i ’ . cqtrs . a a a
i ' subject to the equilibrium equations I I A o ZS = I ZS and to the
i s as, 12 2 a "1
\ condition L I Z_ =1
1) S
. S a
'!
i -3
Zg 20 .

(Note that in some states substitution obviously cannot be performed:

cwn s |

for these states we can simply ignore (that is set to cero) the corresponding

[} ) Z

fer a = SUBSTITUTL).

e
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The solution to the above stated L.P. provides the values for the P's

(and hence the policy) as follows:

Pg = p{take action a when in state S}
73
- S,
Lz)
b

whenever L Zb # 0 . When I Zb
y O p °

0 , state 1 1is never reached by the
controlled system and thus it makes sense to leave the action chosen there
undefined.

Suppose T represents the number of realizable states in the system

. . a .. .
(a state is realizable whenever I ZS > 0 ). Then the above optimization
a

problem has T equality constraints and T basic variables (note there is

cne redundant constraint). If state S 1is realizable, then Zg >0 for at

. a . cas

least one action a . Consequently at least one ZS is positive for

5=1, ..., T . This implies that for each state S, ZZ can be positive for
cnly one action a . Thus P2 must be either 0 or 1

S
A program was written to generate the input for a linear programming
package (MPSX). The output was then submitted to MPSX and (in almost all
cases) an optimal strategy was obtained.
To present the results of the computations we notice that under our
control policies the number of variables necessary to describe the state of
the system can be reduced from the five above to three as follows: Since

we never allow backorders for type i units if there is serviceable spare
2
.

stock on hand; N, - Z n.. and m. cannot both be positive. We thus set

i g2 1

2
s, =m - [Ni - Z n,.], which is the net inventory of items of type i
=1 -

(it ir nepative If there are backorders associated with type i units),
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The variables S 5 S, and Nyy then describe the state of the sycter.

Finally, since at each state the control policy merely specifies
"substitute" or "don't substitute" it suffices to graph the set of states S
at which one would perform a substitution. Graphs of the optimal "substitution

cset" S for several situations are given in Figure 1, Figure 2, and Figure 3.
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IV. THE FORM OF AN OPTIMAL POLICY

To enable us to find approximations to an optimal policy, we examined
the structure of the set of states, S , from which a type 2 item should
be substituted into a type 1 unit. Clearly

€ s : < >
S {(Sl) 2’ n2l) Sl 0, 52 0}

Every such subset gives rise to a control policy; however, there are
three properties (monotonicity relationships) that one might expect the
optimal subset (sopt) to have. Willingness to perform a substitution
depends on the number of type 1 units out of service, the number of type 2
items in spare stock, and the number cf type 2 itemse already installed in type
1 units. Intuitively, for fixed s, and Ny s @8 S) decreases there is

at least as great a need to substitute type 2 parts in the type 1 units.

We express this as
3 < . .
MR1) (sl, Sy n21) € Sopt , S Sy s lmpl?es (s, Sy n2l) € Sopt
Similarly, a greater supply of type 2 spares should imply an equal or greater

willingness to substitute. This property is expressed as

N . .
MR2) (sl, S,» n2l) £ Sopt , S S implies (sl, s, n2l) £ sopt
Finally,
MR3) (sl, Sns an) € Sopt , n< Ny o implies (sl, Syo n) € Sopt

Since S 1is a set in three-dimensional space we can draw its graph in
sections; thus if we let each section correspond to a fixed value of s, we
would expect the grach to look like that of Figure 4.

In each optimal stratery computed using the linear programming method

described in Section III the properties MR1)-MR3) held. On the basis of

this conjectured form of the optimal policy we developed a procedure to

nxamine states for possible inclusion in S .
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V. APPROXIMATIONS TC AN OPTIMAL POLICY

To £ind a good approximation to the optimal substitution policy we
employed a search technique which proceeds as follows: begin with §
empty (i.e., with a policy which allows no substitution); repeatedly
consider adding one point at a time to S by comparing the performance
of the system using the augmented S with the current policy; then add
the point if the level of performance is higher.

The first states considered are those for which sl = -1 . In this

set, the most likely candidate for membership in S is (-1, M_, 0):

2’

i.e., allow substitution when there is a type 1 unit out of service only
if there 3re M, type 2 items in stock and none already installed in

type 1 units. If this state is added to S , s, is successively decreased

by one unit as long as the inclusion of (-1, s 0) improves the policy.

2,

Then Ny is incremented by 1 and (-1, MQ—l, 1) is considered (no?e,

if n., = 1, then at most M2-l serviceable spare type 2 items can be in

ste-k). Again, s, 1is decreased until there is no further policy improvement.

We then increment N, again. After all appropriate states of the form

(-1, S5 nz,) have been added to S , those for which S, = -2 are con-
e

sidered in a similar fashion. We tahe advantage of preperty MR1) to include

automatically in S each state (-2, s,, n,,) such that (-1,
“~

01 ) has

520 a1
already been added to 3 . This significantly reduces the number of comparisons
which have to be made.

An alternate search pattern was considered in which (-Nl, M,, 0) is

2’

the first state examined for inclusion in S . In this state all tvpe 1 units

are out of service and all type 2 items are in spare stock. Intuitively,

this is the state from which one would be most likelv to allow substitution
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and hence an appropriate starting point for the search. The disadvantage
of this approach was that MP1) could not be used to increase the ccmputational
efficiency, and hence the first method was used.

The search technique Involved beinc able to compare the performance of
two policies. We developed two methods for this: one, analytic, which gava
an exact number ror the expected backorders under a given policy, and the
second, simulation.

In the analytic method we observe that the substitution rules for a ziven
pclicy and the transition probabilities depend only on the present state,
kence the svstem is a Markov chain. The method consists of generating the
steady state equations, finding the equilibrium probakbilitv distrikution
for the chain and calculating the expected number of backorders under the
equilibrium distribution. This number can be compared to the expected back-
orders for the same policy augmented by one state as required by the search
crocedure.

A serious disadvantage of this method of policy comparison is related
to the number of states in the chain and hende the number of equaticns to be

-

solvad for the eguilibrium distribution. The number of states for a system

with M, units of type 1 and M, items of tvpe i is

(”i + Mi + l)(M2 + 1) 32 + MZ/: + 1) .
Fcr example, a relatively small svstem with Ni = 10 and Mi = 5 has 12u8
states. When the number of units and items grows bv a facter of n , the
number of states increases rourhly bv a multiple of n3 . The time required
to solve the equations corresponding to the enlarged system then increases
by approximately a multiple of ng . We are, therefore. critically limited
in the size of the system we can investigate using the Markov analysis to

-

compare policies.
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The major advantage ¢f this approach is that the answers are exact and
nence twe policies can be compared. The similar results obtained bv linear
crogramming and bv the search technigue with analytic vpolicy comparison
sugrested that the search mechanism is valid and encouraged the development
of a more efficient method of policy comparison.

The simulation method, which provides the only tcol suitable for the
analysis of larfe systems, performs two simulations, one for each policy
and uses the state a* which the policies differ as a starting point for the

simulation. In one, the substitution of a type 2 part is made, and in the

O

ther it is not made. The two simulations are then run until they both
reach the same state. This state is not necessarily the ;;e in which the
simulaticns started. If either system reaches the initial state in which
the desirability of substitution is being questiocned. the substitution is
net made.

When the two systems reach the same state the run is terminated and the
difference between the number of backorder-days is reccrded; call the result
(say *he numter of backorder-days with the extra substitution minus the back-
crder-days without it) for run i Bi

de wish to determine E(El) , since if E(Bl) > 0 we should not perform
the additional substitution while, if E(Bl) < 0 we should. To estimate

n n
E(Bl) we computed I B. and I B

i=1 i=1
V(Bl) and construct confidence intervals for E(Bl) . Large groups of runs

; we could then estimate E(Bl) ané
were made:; after each group of runs a confidence interval was computed at a
selected confidence level. If +his confidence interval did not include the
origin the procedure was terminated and the appropriate strategy was selected
as =optimal. Moreover, iF the confidence interval did include zero but was

shorter than some pre-sel-rcted tclerance level, the procedure was terminated

and It was concluded that both tolicies gave nearly the same performance level.




(4ctually iIn our runs this ocutcome did not occur.) It should be noted that
although we were using a sequential procedure we used analvysis appropriate

for a single sample and that this is not precisely correct. However, in

each case the results obtained by simulation were the same as those obtained
ry analvtic compariscon. Moreover, the simulation was computationally superior
in two respects: the amount of computer time did not grow as rapidly with
increased system size a did for the analytic method, and, perhaps even
more relevant in terms of absclute limitations, the simulations did not
rezuire the large anmounts cf storaze necessitated by solving such large
svstems of equaticns. Substituticon sets (S) generated tv the search pro-

cedure for the same examplas presented in Section III are found in Figures

In conclusion, we make the following observations:

the exact solutions obtained through linear programming

and the approximate solutions obtained with the search

support the assumption that the form of the optimal policy
satisfies MR1) - MR3);

comparison of exact results and those obtained by a search
with analytic policy evaluation indicate that a search

is an effective method of policy improvement:

the correlation between results of search with analvtic
comparison and simulation comparison indicates that the
simulation method i3z valid and hence gives us a method

for finding an approximation to an optlmal policy which

can be applied to large systens.
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VI. A SUMMARY AND COMMENTS CCNCERNING FUTURE EFFORTS

While we now have a method for policy approximation which can be used
on large svstems, there are several possibilities for further work with this
model. Continued investigation of the structure of an optimal policy (i.e..
is it linear in any of its variables?) might suggest a reduction in the
number of states to be considered for inclusion in S during a search for
an approximation to the optimal policy. A more precise comparison of the
performance of the exact and approximate solutions should be made to £ind
a balance between reduced backorders and computational accessibility.

In addition, we plan to use the insights obtained threugh the study
of this highly simplified inventorvy model as a basis for our future efforts
to study more complex situations.

Unfortunately, many real-weorld considerations are not addressed in our
simplified model. For example, we have ignored the fact that a) sometimes
a family of substitutable items may consist of more than two items, b) items
are normally stocked at more than one location, c¢) the failure and repair
distributions may not be stationary, d) the planning horizon may be of such
a short duration that infinite horizon models may be inappropriate, and
e) the system stock level for each item may not remain constant for an

extended period of time. We plan to address many of these issues in our

future work.
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1. Introduction

The effective management of recoverable spare stock leads to many
important problems in inventory theory (See [1] for references +to earlier
work). Very little work has been done in the case that recoverable items
are interchangeable or that one can be substituted for another during
repair. Such a problem can arise when one part is more useful than another
and can be used to satisfy a demand for itself or for another type part,
while the less useful type part can only be used to satisfy a demand for
itself. A substitution (i.e., of the more useful part for the less use-
ful part) may lead to subsequent shortages of the more useful type part,
and, although it will prevent an immediate backorder, may not always
be the best action. An inventory policy would specify conditions under
which a substitution should be made.

In {1] Heath, Muckstadt and Shilepsky consider the following inter-
changeability/substitutability problem for two items that fail at a single
location. The failure processes for each type of item are independent,
stationary Poisson processes. Failed items are repaired and the repair
times are exponentially distributed. TFurthermore, the system is closed,
that is, no items are added to or removed from the system.

They first consider a discrete time formulation of this model and
show that it is a Markovian decision problem for which there exist optimal
stationary Markov control policies. They next formulate a continuous
time mcdel and show how to find the optimal stationary control policy using
linear programming. Because of the size of most real problems, the linear

programming approach cannot be applied; however, its application to small




problems led to conjectures concerning properties that an coptimal solu-

tion should possess [Heath, Muckstadt and Shilepsky]. Based on these

i properties an efficient simulation search method was developed to find

good, but not optimal, policies.

In this paper we discuss computational considerations relating to the
linear programming solution of small problems. We first examine a tech-
nique for improving the efficiency of the linear programming solution by
providing a good starting basis. Second we discuss techniques for redu-
cing the number of variables in the linear programming problem. These
techniques enable us to solve problems which had creviously been inaccess-
ible either because of their size of numerical problems.

In [2] Heath, Muckstadt and Shilepsky present a scaling technique by

PRRPURUR

which one may approximate a large problem by a small one, find the optimal

solution for the latter and use it to find a solution to the large problem.

The effectiveness of the scaling technique depends heavily on the ability

to solve small problems efficiently and accurately.




II. formulation of the Model and Solution by Linear Programming

We consider the following model. We surpose that there are two

types of items in the system: type 1 and type 2. The assemblies in which

these items are installed are called units; we also assume that there are
two types of units and each unit contains only one item of the types con-
sidered. All items are assumed to be stored at a single location.

We assume that items of type 2 can be placed in units of type 1 or

/oe 2, but that items of type 1 can be placed only in units of type 1.

| add
n
Y
l—l
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y, we assume that times to failure and repair times are exponentially
distribured.

Tor the model we suppose that:
1) There are N, units of type 1 and N, + M. items of type i are

availabl

(1)

(i.e., there are M, spare items of type 1),
2) The state of the system at any instant can be specified by the five
numbers:

n,., the number of type 1 items installed in type Jj units,

i

e

Y

i>3.
m s the number of serviceable type 1 units in spare stock.

n

The number of type i items in repair is then given by Ni'+Mi'-(mi'+ i
1

e

s
LU e 1 2]

and the number of back-orders associated with type J units is

N, -
J

stall

.i nij' We suppose that the failure times of items of type i in-
i=
edjin units of type 3j are independent exponential random variables

wish mean l/kij, and that repair times are independent, exponential random
variables with mean l/ri. The measure of performance of the system under any
substitution policy is the expected number of backorders when the system is

in equilibrium.




Under any reasonable control policy (i.e., rule specifying which items
to use to repair various units under all possible circumstances) the num-
ber of wvariables necessary to describe the state of the system can be re-
duced from the five above to three as follows: it would clearly be

unreasonable to allow backorders for type 1 units if there were serviceable

spare stock on hand; thus, Ni - Z. nij and m. cannot both be peositive.
We thus set s; = m, - [Ni - 'gllg;;], which is the net inventory of items
of type 1 (it is negative ig-there are backecrders associated with +type
i wunits). The variables s,,8, and Ny then describe the state of the

system,

Clearly all reasonable strategies will use items of type i to satisfy
demands for units of type 1 whenever these items are available. Thus the
only question which needs to be considered is under what conditions to allow
the use (i.e., substitution) of a type 2 item in a type 1 unit. Moreover,
in this situation there always is an cptimal stationary Markov policy (see
Ross [2]); and hence 1t suffices to identify the set of states (called S,
or the substituting states) in which a type 2 item wculd be installed in a

type 1 unit. Clearly

S < {ls;,spmy)t s, <0, 5, >0}

The set of states correspending to the policy which minimizes the ex-
pected number of backorders can be found by solving a linear programming
problem in which the variables are non-substituting states: one corresponding

to each possible state of the system, plus substituting states: one corre-

sponding *to each state from which a substitution could be made (s1 < ) and

-




32 > 0). In the former, no substitution is made; in the latter, a sub-

stitution iIs assumed. There Is a constraint corresponding to each non-

T T vt e ey
w

substituting state and the objective function is the expected number of
backorders corresponding to the states in the solution. The basic variables
in the final solution are those states in the optimal policy. See [1], Heath,
Muckstadt, and Shilepsky for further discussion of the linear programming
formulation,

A program was written to generate the input for a linear programming
package, MPSX., The output was then submitted to MPSX. We present the re-
sults from twe problems in Example 1 and Example 2. Note that since at each
state, an optimal policy merely specifies "substitute'" or "don't substitute',

it suffices to graph the set of states at which one would perform a sub-

stitution.

{
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III. Providing an Input Basis for the Linear ProgrammiggﬁSoluticn

A modificaticon of the linear programming method for finding the
optimal solution was made to allow specification of a starting basis
for MPSX. Most of the computational time for determining the optimal
policy appeared to be used finding an initial feasible solution. Any
policy will give a feasible solution and one possible policy is to
allow no substitution. Hence the basis of vectors which contains only
non-substituting states should correspond to a feasible solution.

The program which generated input for MPSX was expanded to produce
a second file, specifying the variables corresponding to each of the
non-substituting states as a basic variable in the starting solution.

In a small problem the number of iterations was reduced by this technique
from 53 to 5. Larger problems which had terminated because of accumulated
roundoff errors were successfully solved.

Larger problems such as that of Example 2 were difficult to solve
even with the starting basis. For such problems a further refirement was
successfully used. An approximation of the optimal solution was obtained
by solving a smaller problem and the scaling to be discussed in later work.
The approximation was then used as a starting basis for MPSX. This re-
duced the number of iterations and again allcwed us to solve problems for

which the linear programming algorithm had terminated because of numerical

difficulties.




IV. Restricting the State Space for the Linear Programming Solution

The number of states in a system with Ni units cf tyre i an

Mi spares of type 1 1is

Mz
(Nl + Ml)(N2 tot ’.)(M2 + 1),

Thus as the values of Ni and Mi grow, the number of states for the
control problems grows very rapidly. We therefore considered two methods
for reducing the number of states allowed:

1. Restriction of the set of policies considered.

2. Removal of a class of "very unlikely" states.

Such restricticns decrease the number of variables for the linear
programming prcblem and hence increase the size of the problems we can
consider. These reductions also lead to greater efficiency iIn generating
the input for MPSX.

1. Restriction of the set of policies: One component of the state,

namely n is under our direct control. If we choose to, we can control

21’

the process in such a way that n, ~pever gets very large. If we restrict

consideration to those policles which maiantain 0 we can re-

21 < P21 Max

duce the states allowed to those having n The sclution then

<7 .
21 = 21 MAX
found is still an optimal solution but tc a smaller problem, one in which
certain types of substitutions are prohibited. A reasonable but possibly
not optimal solution for the unrestricted problem can then be obtained

Zor each s: Dby an extrapolation of the restricted solution. A typical

restriction is n < 2 or < 3,
estriction s < n21 <
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A comparison of solutions for restricted and unrestricted state spaces
suggests that very little accuracy is lost by the restriction. This is
partially due to the fact that states with large n, are reached so in-

frequently that their omission changes the behavior of the system very

little.
Example 1 in Section II with Nl =4, Ml = 2, N2 =4, M2 = 4 was
set up and solved using only states with nyy < 2. The number of states

was reduced from 522 to 361 and the sclution shown in Figure 3 was obtained.

The restrictieon n21 1

Ml = 3, N2 = 6, M2 = 6 reduced the number of states from 791 to 421 and

gave the solution shown in Figure 4.

< 2 in Example 2, Section II with N, = 6,

Note in Figures 2 and 3 that because 0,, < 2, no state with n_, > 1

21 21
will be in the set of substituting states, but that the results obtained

for Ny 0 or 1 agree exactly with those obtained for the full space.

We can use these results to guess (by, say, linear extrapolation to larger

values of nZl) good policies for the original problem, or, alternatively,

we can carry out the cemputation with n,, < 3 using the results obtained

21

to choose a good initial basis.

2. Removal of a class of "verv unlikely' states: Although the number

of possible states grows very rapidly, the aumber of states which "can
reasonably cccur' grows much more slowly. TFor example, if no substitution i

is allowed, standard approximations show that the number of type 1 items
N.A

in repair is approximately normally distributed with mearn 11l

11
N_A
(The corresponding result holds for type 2 items.) If we let

and variance

1
r (r2) be the number of type 1 (2) items in repair, we see that




Figure 3.
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is approximately a x2 random variable with 2 degrees of freedom.

t can be seen (most casily Dy considering scaling results to be cre-
sented in a later work) that allowing some substitution does not change
the distributicn of T very much.

We thus use T to identify a class of states to be eliminated...we
rule out all states for which T 1is greater than scme tolerance limit TCL.
In doing this we do not allow those transitions which would lead tc an
eliminated state. All other *transition protabilities remain the same.

In Ixample 1, for example, eliminating those states for which T > 3
reduces the number of states frem 522 to 287. The policy obtained remains
exactly <he same. If all states having T > 2.5 are eliminated, the num-
ber of states is further reduced o 211. The results for this case are
shown in

Sirce some states were eliminated, the policy is not <ofined at some
of the original s+tates. Where It is defined it agrees with the previous-
ly obtairned policy axcept 3t +he zoint indicatad by 0 in Figure S.

As a further illustration, Example 2 with all s*tates having T > 3
eliminated yielded the policy shown in Figure 6.

in this case the number of states was reduced from 791 o 496. Again
the solution agrees with the exact solution for those states not eliminated.

A reasonable approach tc restricting the statespace seems to be a com-

bination of the two techniques Ziiscussed. The fcllowing resul*s cbtained







-
s «~
- £

Bo1

™ u)

. o800 0 _

000060

w)

%o1
2

(ORY,

Figure 6.

(o]

" ..‘.O

Ba1

09000

(ot}
vy

a1

OR®) 00 0000

o

" QOOOO %)

0 0-0-00-O0—

N




—— — e A U — .. - v
Al
} 16
Sor Zxample 1 with 321 <2 and TOL 3 and only 150 states agreed with
the exact results. A more useful result Is cbzained here with only 120

[

n

bae

states then igure 5 with 211 states indicating that judicious combination

i ~f the two techniques is aprropriate.
Example 2 in Section IZwith Nl =6 Ml = 3 N2 =6 M, =86 was

run with ny 2 2 and TOL 3. Here the number of states was reduced

from 791 to 332 obtaining, again, results that agree with the exact soluticn.

..
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Summary and Comments Concerning Future Work

We have ncow improved ocur ability to find optimal or near-optimal solu-
+ions using linear programming on small examples. 3y croviding a s*tarting
basis for MP3X and by eliminating states from those we ccnsider we have
reduced the size of the problem and the amount of +time MPSX takes to solve
it. This has been helpful in reducing the cost of e2ach solution and in
lessening the effact of roundoff errors. We have been able “o obtain op-
timal or near-optimal solutions for many cases which had been zreviously
unsolvable.

The effects of this have been two-fold. T[rirst, we have attained greater
insight into the structure of the set of substituting states in an optimal
solution. For example, the monotonicity properties proposed in [1] have
held in each case we investigated. Second, we now have the ability to

solve sufficiently large problems that the scaling technique +to be discussed

in future work will Le an effective way to solve prcblems of any size.

We plan to extend this approach to finding optimal rolicies for finite

state Markcvian decision problems.
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1. Introduction

In [1] Heath, Muckstadt and Shilepsky consider an inventory model
for recoverable items in which one item may be substituted for another
during repair. The model is formulated as a Markovian decision problem
for which there exists an optimal stationary control policy. The
optimal policy can be found by linear programming, but the size of
most real problems makes this approach impractical. Its application
to small problems led to conjectured properties that an optimal policy
should satisfy. Based on these properties, an efficient search method
was developed to find good, but not necessarily optimal policies.

The search involves a comparison of policies by analytic methods or
simulation, This paper focuses on policy comparisen by simulation and
several variance reducing techniques that contribute to the efficiency

of the simulation.

II. Formulation of the Model

We consider the follcwing model. We suppose that there are two

types of items in the system: <type 1l and type 2. The assemblies in which

these items are installed are called units; we also assume that there
are two types of units and each unit contains only one item of the +ypes
considered, All items are assumed to be stored at a single location.

We assume that items of type 2 can be placed in units of type 1
or type 2, but that items of type 1 can be placed only in units of

type 1. F[inally, we assume that times to failure and repair times are

exponentially distributed.




For the model we suppose that:
1) There are Ni units of type i and Ni + M items of type L
are available (i.e., there are Mi spare items of type i),
2) The state of the system at any instant can be specified by the

five numbers:

n,., the number of type i items installed in type ]
units, 1 > j.
s, the number of serviceable type 1 wunits in spare

stock.

The number of type i items in repair is then given by
i
N, + M, - (mi + Z nij) and the number of back-orders associated with
j=1 2
type j units is

P
[

Nj - Z nij' We suppose that the failure times of
i=j

(o

type installed in units of type j are independent exponential

random variables with mean l/Aij, and that repair times are inde-
pendent, exponential random variables with mean l/ri. The measure of
performance of the system under any substitution policy is the expected
number of backorders when the system is in equilibrium.

Under any reasonable control policy (i.e., rule specifying which
items to use to repair various units under all possible circumstances)
the number of variables necessary to describe the state of the system
can be reduced from the five above to three as follows: it would
clearly be unreasonable tc allow backorders for type i units if there

2
were serviceable spare stock on hand; thus, Ni - Z n and mi

2
cannot both be positive. We thus set s. = m, - [N, - n..J], which
? i i i




backorders associated with type i wunits). The variables $1» S and
Ny then describe the state of the system.
Clearly all reasonable strategies will use items of type I to

satisfy demands for units of type i whenever these items are
available. Thus the only question which needs to be considered is
under what conditions to allow the use (i.e., substitution) of a type 2
item in a type 1 unit. Moreover, in this situation there always is
an optimal stationary Markov policy (see [1]); and hence it
suffices to identify the set of states (called S, or the substituting
states) in which a type 2 item would be installed in a type 1 unit.

The set of states éorrespcnding to the policy which minimizes
the expected number of backorders can be found by solving a linear
programming problem. Since at each state an optimal policy merely
specifies "substitute" or "don't substitute', it suffices to graph
the set of states at which one would perform a substitution. We
present the solution for a typical problem in Figure 1.

The most serious drawback to the linear programming solutions is
related to the number of states in the Markov chain and hence the
number of constraints in the linear programming formulation. See [1],

p. 10 for discussion. We therefore investigated alternative approaches.

IITI. Search for Optimal Policies

To find a good approximation to the optimal policy we employ a

search technique which begins with the set of substituting states, S,

empty and repeatadly considers adding states one at a time to $§ by




A~

Nl =4
Ml =2
N, =
M2 =3
M1t
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comparing the performance of the system using the augmented set of
substituting states with the performance using the current policy.

We developed two methods for policy comparison: one, analytic which
gives an exact number for the expected backorders under a given policy,
and the second, simulation. Similar results cbtained by linear program-
ming and the search with analytic policy comparison suggest that the
search mechanism is valid. However, the search with analytic policy
comparison requires roughly the same amcunt of computer time and
storage as solution by linear programming. Hence simulation was
investigated for more efficient policy comparison. In each case
examined, the results obtained by analytic and simulation comparison
were the same. See [1, p. 10] for a discussion of the search technique

and comparative results.

IV. Policy Comparison by Simulation and the Use of Variance Reducing

Techniques

The simulation method performs two simulations, one for each policy
and uses the state at which the policies differ as a starting point for
the simulation. In one, the substitution of a type 2 part is made, and
in the other it is not made. The two simulations are then run until
they both reach the same state. This state is not necessarily the cne
in which the simulations started. If either system reaches the initial

state in which the desirability of substitution is being questioned, the

substitution is not made,




When the two systems reach the same state the run is terminated.

This is repeated a large number of times, and the difference in
backorder days for the system with substitution and the system

| without substituticn is recorded. We compute the sample mean for

the difference in backorder days, X, and sample variance, 02. e

wish to determine E(X) since if E(X) < 0, the substitution should

be made and if E(X) > 0, it should not. A confidence interval is

constructed at a selected confidence lavel; if this confidence interval
does not include the origin, the procedure is terminated and the

appreopriate strategy selected as optimal., If the confidence interval
does include the origin, the results of another large group of runs

are included with the previous results. The procedure is repeated

until the confidence interval does not include the origin or is
shorter than scme zre-selected tolerance level. In the latter case

the decision tc substitute or not is based on the sign of the sample

mean, but no level of confidence assured. In these cases both policies
ive nearly the same performance level and hence an incorrect choice

would have little effect con system behavior.

The number of runs in each group is large enough so that the

central limit theorem may be invoked and confidence intervals constructed.

It should be noted that we are conducting a sequential test, but in the
construction of confidence intervals, applying non-sequential techniques.
In practice, however, if the number of runs in the Ffirst group is large
enough, the results are definitive and 3 second group unnecessary.

A major contribution to variance reducticn of X comes through the

carallel simulation of the systems with znd withcu® substituticn. We
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E note that if X = X* - X° where X  and X° are sample means for

systems without and with substitution then

%)

var(X) = Var( = Var(X") + var(X°) - 2 Cov(in,is).

Failure and repair times for parts which are common to esach system
. . . . =N =S

are the same, inducing a high correlation between X and X .
The search with policy comparison by simulation was run for the
» 7 s ) : —- s 1 \—<ﬁ -
problem in Figure 1 keeping track of Var(X ), Var(X®) and

Sn TS - . : :
Cov(X',X7) after each decision. We present these results in Figure 2,
also including the variance if the systems were uncorrelated,

2 . Ss . . . :
Var(X") + Var(X®), and the variance with the induced correlation,
Var(X) + Var(X) - 2 Cov(?n,is) in the last two columms.

¥ and X are highly correlated and that the

i We note that
average ratio of correlated to uncorrelated variances is .1358,
hence we have decreased the number of runs necessary to obtain the

same level of confidence by a factor of approximately 8.

: var(X") var(X®) Cov(X®,X°) variance if Variance with
uncorrelated correlation

68.98 539.5 53.17 128.48 22.14
' 37.06 55.61 58.56 142.87 28,85
' 4y.25 36.13 31.47 80.38 17.44
24,95 3u4.38 25.18 $9.33 8.97
25,7u 17.08 18.67 uz2.8 5.46
28.17 38.59 29.863 67.76 8.5
44,58 32.3 35.86 76.88 5.16
38.86 4y .08 37.85 82.3u4 7.64
uL7.06 67.51 §2.11 114,57 10.35

Average ratio of column 5 to column 4: .1358
Average correlation cocefficient: .37u46

Figure 2
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Two other factors contribute to shortening the run time necessary

to compare policies. First, each simulation is begun at the state

where a substitution is made in onre svstem and not in the other and
continued only until they reach the same state. In fact the results
obtained could have Deen acnlieved by simulating the entire process
for the two policies. If we were to do this, there would be no
difference in backorcer days until the systems reach the state where

the substituticn is performed cor not and the differences would cease

when the systems reach the same state. The simulation, then, can be
regarded as a series of disjoint cycles, each beginning at the state

in question. It suffices to simulate only these cycles.

Seccnd, we make only one substitution of the kind in question

; for each run, but the policy we are evaluating requires a substitution
‘ each time the new state Is reached. We justify this by appealing o
the linear programming formulation and soluticn of the problem. In
practice the strategies for an optimal sclution are pure,but for
linear programming, the feasible solutions are mixed strategies
: on the states. In the algorithm-an entering varizble is selected by
comparing the rate of change of the objective function with respect
. to a small change in the variable. A small change from 0 in a contrel
variable correspends in a probabilistic setting tc making a substitution
with a very small probability. To compare policies by simulation, If

this substitution were made with the same small probability, mest

runs woulid consist of single substitutions at the state in question

since, even 1Ff this state were reached before the systems came dack




o

together, the probability of a second substitution would be very
small. In the simulaticn, the effect of not making a seccnd sub-
stitution tends to be to bring the systems together sooner and
: shorten the run length.

We considersd but did not use variance reducing techniques
such as antithetic variables and stratified sampling. Our intuitive
Jeelings were that the large number of events in each run would make
questicnable *their benefits and that the computational complexity wculd

not be justified.

V. Summarv and Comments Concerning Tuture Work

We have developed an efficient method for comparing policies which
differ at just one state. This method appears to be computationally
superior to other methods we have investigated in two respects: the
amount of computer time does not grow as rapidly with Increased system
size and, terhaps even mcre relevant in terms of absolute limitatioms,
the simulaticns do not use the large amounts of storage required to
solve linear programming problems or systems of equations.

Continued investigation of the structure of optimal poclicies has

' reduced the number of states necessary to consider for inclusion in an
optimal policy [ 2]. The development of a scaling technique allows
large problems to be approximated by small precblems that can be solved
explicitly and <he extrapolated soluticn used as a first approximation

. for a search with simulaticn.
4e are currently investigating other models for the interchange-

abiili<v/substitutabi’licy orcblem and are able to extend many of the

ta2chniques Zevelored for this model <5 multi-echelon and multi-item problems [ 3 1.
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Abstract

In this paper we examine the substitutability problem for several
recoverable items that fail at a single location. We assume the
failure processes for each type of item are independent, stationary,
Poisson processes. We also assume the repair times are independent
and exponentially distributed. Furthermore, we assume the system is
a closed system; that is, no items are adlded to or deleted from the
system. We develop a procedurc for obtaining an approximation to
an ortimal substitution policy for this svystem. The procedure
uses a sequence of two-item Llnventory systems to model the multiple-

item system. We then examine several properties that we expect

an optimal substitution policy to possess, and show through an
example how to use these properties to describe a comprehensive
optimal substitution policy. Tinally we identify some areas suggested

by this problem which merit further investigation.
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1. The Multiple-Item Sinple-[ncition Inventory System

In this secticon we present a single location inventory system
with several types of items: <vpe 1 through type n. The assemblies
‘ in which these items are installed are called units; each unit
contains only one item. We asgume that the units themselves are also

classified as being of one of the types from type 1 to type n. When

a unit of type k fails, it can be repaired with any serviceable item
of type k or greater. Thus there is a one-directional substitutability
among the items; an item of type k may be used whenever an item of a

lesser type is used.

For example, there may be three units corresponding to successire
generations of a computer. The three items might be the successive

generations of a circuit board installed as original equipment on the

three generations of the computer. Each version of the circuit board is
designed to be used in the current generation of the ccomputer and in all
previous generations, but is incompatible with the newer generations of
the computer. In this example, a second-generation circuit board may be
X used in both the first and second-generation computers, and a second-
generation computer may be repaired with either a second or third-generation
. circuit board.
Let Ni be the number of units of type i, and let Mi be the
number of spare items of type 1. Then the total number of items of type i
is (N, + Mi)' Let nij be the number of type 1 items installed in
type 3 units, and let m be the number of serviceable type 1 items
. in spare stock.

According to the substitution rules we have established, nij is
i

zero whenever 1 is less than j. The number of items of type

in
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i
repair is given by (Ni *M-mo- ) nij)’ and the number of back-

j n
orders associated with type J units is (Nj - z nij)'
=]

[

We suppose that the failure times of type items installed
{ in type 3J units are independent, exponentially distributed random
variables with mean l/kij. The repair times of type 1 1items are
independent, exponentially distributed random variables with mean l/ui;
we assume the repair time does not depend on the type of unit in which
the item is installed when it fails.
We suppose that no cannabilization occurs in the inventory system,
so that an item remains in the unit in which it is installed until it
ails. We also suppose that no condemnations occur, so that every item
is repaired and returned to service.
The measure of performance of the inventory system is the expected
number of backorders. Tt seems clear that an optimal policy would never
allow a backorder for a unit of type 1 when there is a spare item of

type 1 in stock. But it is not at all obvious whether to substitute

an item of a type greater than i or to allow a backorder when there

: are no spare items of type i in stock. This decision will depend on
the substitutability rules we have described, on the failure rates and

. repair rates, and on the number of items already in use or in repair.
For example, repairing a unit of type j with an item of type i may

"1 result in subsequent avoidable shortages if it happens that a type j

. item becomes available and a type 1 urit fails. It may be advantageous
to reserve some of the more useful items so that they will be available

L : if they are needed in a newer generation unit.




2. A Procedure for Cbtaining an Approximation to the Optimal Substitution

Policy

This section develops a procedure for obtaining an approximation to

the optimal substitution policy for the inventory system just described.
It begins by recalling the solution for the two-item system developed by
Heath, Muckstadt, and Shilepsky, and shows why a new procedure is needed
to keep the problem down to manageable proportions. The motivation for
the new procedure is given next, followed by a stage-by-stage accounting
of how the procedure would be implemented.

To obtain an approximation to the~optimal substitution policy for the
multiple-item inventory system, we will rely heavily upon the analysis of
the similar two-item inventory system by Heath, Muckstadt, and Shilepsky.
They formulated the two-item inventory system as a continuous-time Markovian
decision problem and showed how to find the optimal stationary Markecvian
contrel policy by using lirnear programming. The optimal substitution policy
consists of a rule dictating whether to repair a type 1 unit with a type 2
item when no type 1 item is available. This rule depends on three fac-
tors: the number of backorders for type 1 units, the number of type 2
items in spare stock, and the number of type 2 items currently installed
in type 1 units,

Unfortunately, the size of the linear program and the number of
factors needed by the optimal substitution rule grow rapidly as the number
of types of items increases, and this method of solution becomes impractical.
For a three-item system, the optimal decision rule will depend on the net
inventory position of each of three items together with the number of

type 2 items already installed in type 1 units, the number of type 3 items




already installed in type 1 units, and the number of type 3 items already
installed in type 2 units. For more than three items, the factors used
by the optimal decision rule are even more numerous., So we must develop
a new methoed or solution of the multiple-item problem for two reasons:
the linear program used to solve the two-item prcblem becomes too large
to be solved quickly and economically, and the optimal decision rule
becomes unwieldy because it depends on too many factors.

To motivate the approach we will take in finding an approximate
solution to the multiple-item inventory system, let us consider the inven-
tory system from the perspective of the person who manages the warehouse
which holds spare items of type i. His job is to receive serviceable
spare items as they are repaired and to make available a spare item
whenever thé repair policy dictates that a repair should be made with an
item of type 1i. This manager will be called upon to make a decision
when he holds some spare items and an item fails in a unit of type j,
where j 1is less than or equal to i. His decision will be either to
make an item available for use or to hold his spare items in reserve.

We have already mentioned that any reasonable substitution policy
will always call for the repair of a type 1 unit if a type i item
is available. So the only decision which merits consideration is
whether to make available a type 1 item to a type j unit, where 3
is less than i. When an item is made available to a type j unit,
there is one fewer item available to the type 1 wunits. So the inventory
manager will need to be concerned with the duration of time for which the

item is on loan to a type j unit and the likelihood that he would need

the item for a type i unit during the period of the loan.




Here we make a simplifying assumption which allows us to reduce the
number of factors needed by an optimal decision rule. We will assume
that the failure rates Aij are identical for all items i in all

| units j, and that the repair rates W, are identical for all items 1.

Thus the manager of spare items of type 1 will not care what type of
unit is in need of repair. Whether it be a type 1 unit or a type (i-l)
unit, one backorder will be filled and one type i item will be unavailable
for a period encompassing a failure with rate A and a repair with rate u.
This simplifying assumption enables the inventory manager to regard
the demand for spare items as arising from only two.sources: from units
of type 1 and from units of type less than 1i. This means that we have
{ a two-item system: type I is an aggregate comprised of all types less than
. i and type II is identical to type 1i. We already know how to find an

optimal decision rule for a two-item inventory system. We will be able

to use a sequence of two-item cystems to find an optimal decision rule
for the multiple-item system if we can adequately model the behavior of
the aggregated system compriced of all types less than 1i.-

i Let us focus our attention on the aggregated system. It consists of

items and units of types 1 through (i-1). Units fail and are repaired

o, with items according to some decision rule. Sometimes the decision rule
dictates that an item not be repaired: sometimes there are no suitable
spare items available for the repair. In these instances, a backorder
exists in the aggregated system, and a demand is placed for a spare item

of type 1. The interaction between the aggregated system of types 1l

-

through (i-1) and the system of type i is in these demands placed when

a backorder exists in the aggregated system, so the essential feature

|
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nust carture in a model of the aggrrepgated system is the distribution

of backorders in the system.

The steady-state distribution of backorders in a single-item
system can be computed analytically. The steady-state distribution
of backorders in a two-item system can be obtained from the two-item
model of Heath, Muckstadt, and Shilepsky, where a linear program is
used to compute the steady-state probabilities of the continuocus-time
Markov chain model of the system. We propose to replace a two-item
system with the single-item system which most closely matches the
backorder distribution of the two-item system. We will enumerate the
single item systems for all reasonably small numbers of units N and
spare items M, compute the mean and the variance of the number of
backorders éxpccted in each sy:stem, aad choose as the bast match the

i system which most closely approximates the mean and the variance of
~he number of backorders expected in the two-item system.

With this technique we can recursively model an inventory system
with any number of types of items. We will begin by replacing types 1

i and 2 with the single-item system which most closely matches the

backorder distribution of the two-item system. We will then consider

the resulting single-item system along with the type 3 system to be

another two-item system which we will replace with yet another single-item

system, We will continue in this manner until we have included all types

of items in the inventory system.

A stage-by-stage description of this procedure follows.




Stage 1.

T X ~r— =

i Stage 2.

(a)

(b)

(c)

Stage 3.
(a)

(b)

(c)

Consider only types 1 and 2. Use the approach described by
Heath, Muckstadt, and Shilepsk: to find the optimal decision
rule for using type 2 items in type 1 units.

Add tvpe 3 to the inventory system.

Agpregate types 1 and 2. The inventory manager for type 3
will receive demands for spare parts from units of types 1
and 2. Use the results of Stage 1 to determine the distribution
of total backorders in units of types 1 and 2 under the optimal
decision rul: found in Stage 1.

Find a single-item inventory system which incurs backorders
according to the same distribution as that of the total back-
orders in units of types 1 and 2. Denote this single-item
sygtem as type (1,2).

Use the approach of Heath, Muckstadt, and Shilepsky to find
the optimal decision rule for using type 3 items in type (1,2)
units.,

Add type 4 to the inventory system.

Use the results of Stage 2c to determine the distribution of
total backorders in units of types (1,2) and 3 under the
optimal decision rule found in Stage 2c.

Find a single-item inventory system, type (1,2,3), which
incurs backorders with the same distribution as that of the
total backorders in units of tvpes (1,2) and 3.

Find the optimal decision rule for using type 4 items in

type (1,2,3) units.

Stages 4 through (n-1). Continue in this manner until type n has been

added to the inventory svstem.




The results of this sequence of decision rules for two-item

systems can be ftranslated inte an expiicit rule for whether to repair
a type j unit with a type 1 1tem. But this matter is not entirely
straightforward. A discussion of the considerations involved follows

in the next section.

3. The Form of an Optimal Substitution Policy

This section discusses the form of an optimal substitution policy
for the multiple-item inventory system. It begins by reviewing the
structure present in the optimal decision rule for a two-item system
and describes some additional properties which an optimal decision
rule for a multiple-item system should possess. Then we show how to
se these properties in conjunction with the results of the sequence of
item inventory systems discussed in the previous section to state
explicitly the decision rule to follow in the multiple-item system.

Heath, Muckstadt, and Shilepsky examined the form of an optimal
policy for the two-item inventory sy:tem. They showed that the states
of the system could be described by three parameters.

State = (sl,s2 )

oy

where s net inventory of type 1 items (=N, < s M)

1-"1

| A

»n
]

net inventory of type 2 items (-N2 M.)

{A
1]
]A

Ny, = number of type 2 items installed in type 1 units

T (0 < n, < min{¥ M, }).
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A decision rule specifies a ulset of states from which a type 2 item

should be substituted ir-o a tyne 1 unit. TFor a decision rule to be
feasible, these states must correspond to backorders among type 1 items
and spares among type 2 items. That is, the subset S must satisfy

S < {(s ){s, <0 and s, > 0}.

2" 1 2

1°52°"
Every such subset corresponds to a control pelicy. However, there

are three monotonicity relationships that one might expect the optimal

subset to have.

)

220y’ ¢ Sopt'

That is, as the number of type 1 backorders increases, there

(1) (51’82’n2l) < Sopt and s < s, implies (s ,s
should be¢ a greater willingness to substitute.

A - . : : = .

(2) (31’32’n2l) < SOpt and o > S, implies (sl,a,ngl) € Sopt

That is, as the number of type 2 spares increases, there should
be a greater willingness to substitute.

(3) (sl’SQ’an) < Sopt and n < nyy implies (sl,s2,n) € Sopt'
That is, as the number of type I items installed in type 1
units decreases, there should be a greater willingness to
substitute. The explanation for this is that i smaller value
of n,, means that more of the type 2 items on loan are in
repair, and so are closer to being available again as spare items.
In our procedure which models the multiple-~item inventory system

as a sequence of two-item systems, we get a set of rules specifying

whether to perform a repair or to hold the spare items in reserve.

However, it is not clear which repair is. to be performed. As an
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illustration of the ambiguity involved here, consider the stage in which
we solve a two-item system where type I is an aggregate of types 1 and

2, and type II represents type 3. Suppose that the optimal policy calls

for substitution when (sl = -2, s, =1, and Ny = 1). t seems
reasonable to interpreat (sl = -2) to mean that there are two backorders
within the type 1 and type 2 systems, (s2 = 1) to mean that there is

one spare type 3 item, and (n:‘l = 1) to mean that there is one type 3
item installed in a unit of types 1 or . But glven this, which of

the two backorders are we suprosed to fill with the one spare item?

To help us decide, we con’ecture that the choice of which repair to
make will obev an additional set of monotonicity relations.

(1) If a substitution Is called for and there is a sy ire item of

where

type 1 and there are backorders of tyres and

i i,

j2 < 1, do not fill the backorder of tvpe jl. The explana-
tion is that this backorder would be easier to fill later.

(2) 1If a substitution is called for and there are spare items of
types il and i2 and a backorder of type j, where J < il < i2,

do not use the item of type ig. The explanation is that this
item is potentially more useful for filling subsequent backorders.
The principle behind both of these properties is to fill any backorder
as inexpensively as possible, saving as much flexibility as possible
for the future,
A ccnsequence of these monotonicity properties is that care must
e taken in translating the optimal policies for the sequence of two-

item systems into a comprehensive policy for the multiple-item system.

To illustrate, let us suppose that the optimal policy from Stage 1




(where type 1 is type 1 and type II is type 2) calls for no substi-

tution whea (s, = -1, s, = 1, and = 0). Suppose also that

1 2 Mo1

the optimal pnolicy from Stage 2 (where type I is types 1 and 2 and

type II 1s type 3) calls for substitution when (sl = -1, s, = 1,

and = 0). What should we do 1f there is a type 1 backorder,

M1
a type 2 spare, and a type 3 spare, and there are no items currently
on loan? The Stage 1 policy savs not to substitute, so there is a
backorder in the aggregated system comprised of types 1 and 2.
The Stage 2 policy says to substitute a type 3 item in this set of
circumstances. But it would violate a monotonicity property if we
were to fill a type 1 backorder with a type 3 item when a type 2
item is available,

The regolution of this problem lies in separating the question
of whether to fill a backorder from the question of which backorder to
fill. The optimal policies for the sequence of two-item models should
determine only whether to fill some existing backorder. The mono-
tonicity properties should be used to determine which backorder to

f£ill,

4. An Example

This section presents an example of a three-item inventory system.
The steps taken in solving this problem as a sequence of two-item systems
are outlined. The results are then used together with the monotonicity
properties in formulating a policv which dictates whether to repair a

failed unit and specifies the type of item to be used in the repair.

B
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We begin with an inventory system with units and items of tvpes

1, 2 and 3. Each unit requires the installation of one working item
to be in working conditisn. Type 1 items may be used only in type 1
units: type 2 items may be used in units of types 1 and 2% type 3
ltems may be used in any of the unirts.

There are four units of each tvpe and twwo spare items of each type;
that is, there are four units and six items of each tvpe. The times
until failure of any item installed in a unit are assumed tc be inde-
pendent, identically-distributed exponential random variables having a
mean of one time periocd. The repair times are also assumed to be Inde-
pendent, identically-distributed exionential random variables having
a mean of one time period.

For thé first stage, we consider only types 1 and 2. Following the
crocedure developed by Heath, Muckstadt, and Shileosky, an optimal
substitution strategy for this two-item problem was computed by the
mathematical programming package MPSX. This strategy Is presented below
in the form of charts. Recall that we established that the state of
tbe two-item inventory system could be characterized by three variables:
the net Inventory of type 1 items, the net inventory of type 2 items,
and the number of type 2 items correctly installed in type 1 units.

A substitution policy can then be characterized by i decision of whether
to substitute a type 2 Item Into a type 1 unit for each state where the
net Iinventory of tyre 1 items 15 necative and the net inventory of

type 2 ltems Is positive. The following charts depict those states

where a sch

-

tution should be performed.

w
=2
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Optimal substitution policy for types 1 and 2
\ s
-1 2
1 o)
0 n
21
s
2 Key
2
-2 1 .
(o) s, - net inventory of type 1
items
. 0 Ny
s, - net inventory of type 2
items
s n, - number of type 2 items
2 installed in type 1 units
2
-3 .
1 (@) ® - substitute a type 2 item
into a type 1 unit
0 “n
21 O - make no repair
)
2
-4
1
0 n

21
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We can give a verbal characterization of this policy. "Substitute
a spare type 2 item into a broken type 1 unit whenever there are two
available spare items or whenever there are at leasf two broken type ﬂ/
units and no type 2 items are currently being used in type 1 units."

Stage 2 calls for the aggregation of types 1l and 2 as a single
inventory system and the introduction of the type 3 system. We must
first find a single-item system which behaves as the combined type 1
and 2 system. To this end, we use the steady-state probabilities computed
by MPSX to determine the mean and the variance of the number of backorders
using the optimal policy just described for the combined type 1 and 2

system. We compute

Exp[backorders]) = 2.151

Var(backorders] = 2.206

We next search for a single-item inventory system which closely
matches this mean and variance. Fortunately, the mean and variance of
backorders in any single-item system can be readily calculated by
computer, To keep the number of states from becoming too large for
efficient computations, we restrict the number of units and the number

. of spare items to be no more than ten. The systems which best match the

1 mean and variance of backorders are listed below.

(" Number of Number of Mean of Variance of
Units Spare Iltems Backorders Backorders

7 3 2.042 - 2,163

" 8 4 2.062 2.490

5 7 2 2.513 2,131

. 6 2 2.024 1,812

8 3 2.524 2.524
ﬁ%
¥
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We chose to use the system with seven units and three spare items.
We again turned to MPSX to find an optimal strategy for the two-item
system, where type I (corresponding to types 1 and 2 combined) had
seven units and three spare items and type II (corresponding to type 3)
had four units and two spare items. The following charts depict the
optimal substitution strategy.

A verbal characterization of this policy is to "substitute a
spare type II item into a broken type I unit except when there is
only one broken type I unit and another type I unit currently contains
a type II item.” Under this policy we expect the number of backorders
to have a mean of 3.081 and a variance of 3.362, compared with a mean
of 3.255 and a variance of 3.2u9 for the same inventory system using
no substitution.

We have now solved the sequence of two-item systems and are ready
to use the monotonicity properties to develop a comprehensive strategy
for the three-item system. We first note that there are several sets
of circumstances where the results from Stage I prescribe no substitution
while the results from Stage II prescribe a substitution. One such
situation is one type 1 backorder, one type 2 spare part, and one
type 3 spare part, with no items on loan to a unit of a different type.
In such situations, we should make the substitution but use-the mono-
tonicity properties and fill the backorder with the type 2 item instead
of with the type 3 item.

There is a very appealing rationale for interpreting the results

of the two stages in this manner. The decision not to substitute

made in Stage I was made without any knowledge of the type 3 system.
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Optimal substitution policy for types (1 and 2) and type 3.

2
2
sl,-'--l
1 o}
0
Bo1
S2
2
sl= -2 1 ®
0
o1
S)
2
sl=—3 1 ®
0
n
. 21

21

Key
s, - net inventory of type I items

s, - net inventory of type II items

Ny - number of type II items
installed in type I units

21

21

@ - substitute a type II item
into a type I unit

Q - make no repair
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The decisions made at Stage I will necessarily be conservative because

the policy is determined on the basis of no spare items being available
from the type 3 system. When the potential availability of type 3

spare items is considered, we would expect to be willing to substitute
items more freely. The type 3 inventory system can be said '"to bankroll"
the type 2 inventory system by providing available type 3 spare items

to fill the extra backorders the type 2 system incurs as a result of its
more liberal substitution policy.

So the optimal decision rule in this example will be to perform a
substitution whenever it is dictated by either the Stage 1 or the Stage 2
decision rule. The decision about which backorder to fill should be made
in accordance with the monotonicity properties, filling a backorder with

the least versatile item able to fill that backorder.

5, Areas of Further Investigation

This section lists several areas of further investigation for
matters that were either suggested or carefully avoided in the.preceding
sections.

(1) There is no analytical proof that the preceding procedure
will produce an optimal substitution policy. A simulation study could
be designed to evaluate the performance of the procedure we suggest
here and compare it to the performance of other substitution strategies.
The simulation study could also confirm that the monotonicity properties
are indeed valid.

(2) There are variants of our dynamic programming approach which

merit some consideration. Instead of building a sequence of two-item
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systems from the bottom, we could start from the top and work down,
matching the distribution of spare items in the aggregate system

with a two-item system, instead of matching the distribution of
backordérs. Another alternative is to combine at each stage the pair of
adjacent systems which would be expected to have the highest degree of
substitution (resulting from system i incurring many backorders and
system (i+l) providing many spare items) on the grounds that a high
degree of substitution causes a pair of systems to behave more as a
single system. It would be interesting to see if these approaches
produce similar optimal substitution policies.

(3) The criterion for choosing a single-item system to replace an
aggregate system could be studied further. We might be able to produce
a closer fit to the first two moments by varying the repair rate along
with the number of units and the number of spare items in our search
for an equivalent single-item system.

(4) The comprehensive substitution policy may be made more auto-
mated instead of using an ad hoc procedure based on the monotonicity
properties. We illustrate this by continuing the example of the
previous section. At Stage 2 an optimal policy was prescribed for
substituting spare type 3 items into type 1 and 2 units. The type
3 system could have either zero, one, or two spare items. We could
determine a comprehensive substitution policy by returning to Stage 1
to recalculate the optimal substitution policy as if the type 2 system
had one and two additional spare items. In effect, we would be deter-
mining an optimal policy by explicitly incorporating the "bankroll"

of spare type 3 items into the inventory of type 2 items.

.
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(5) The monotonicity properties alone do not always enable us

' to choose which substitution to make. They do not, for example,

tell us how to choose between repairing a type 1 unit with a type 2

item and repairing a type 3 unit with a type 4 item.




