
During the period of the grant Professors David Heath, John

Muckstadt, and Carol Shilepsky have conducted research on the inter-

changeability/substitutability problem for recoverable items (items

that are subject to repair when they fail). This problem arises when

,e recoverable items can be substituted for one another during the repair

of an assembly.

The long range objective of the research project is to develop

a method that the Air Force can use to assist in the management of

0 interchangeable recoverable items. To accomplish this goal we have

proposed to analyze several simplified problems that will give us -

insight into the form of the optimal or near-optimal policy for the U o

j real problem. Specifically, we proposed: CJ

(a) to understand fully the behavior of a 
single-echelon,

two-item system over an infinite horizon when the failure

processes for the items are independent, stationary Poisson

processes and the repair times are exponential;

Cb) to develop methods for finding optimal and near-optimal

policies for the situation described in (a);

(c) to extend the results for topics (a) and (b) to systems LM

having many items;

(d) to extend the analysis to situations in which there are two

echelons (depot-base structure) and many items where, as

before, the failure processes for the items are independent,

stationary Poisson processes and repair times are exponential;

! l.(e) to develop methods for finding the optimal or near-optimal

* ioperating policy for the situation described in (d);
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(f) to study the problem when failure and repair processes \// -

need not be stationary and the time horizon is finite fo

both single- and two-echelon systems; and

(g) to develop heuristic dispatching rules for the dynamic

environment described in (f).

To date we have completed objects (a) and (b), developing heuristics

to find a near-optimal policy for the single-echelon, two-item system.

We have almost completed objective (c), developing two heuristics which

should produce a near-optimal policy for the system having many items.

We have begun working towards objectives (d) and (e), establishing the

framework and the procedure which will be followed in analyzing the

two-echelon system. Details of the progress made towards reaching these

objectives are given below.

In meeting objectives (a) and (b), we studied the interchangeability/

substitutability problem for two items that fail at a single location.

The failure processes for these items are assumed to be independent,

stationary Poisson processes, and repair times are exponentially distri-

buted. The system studied is assumed to be a closed system; that is,

no items are added to or deleted from the system. Based on these

assumptions we first showed that the problem could be viewed as a Markovian

decision problem for which there exists a stationary optimal policy. Since

our main goal is to find methods that can be used to solve the real

problem, we next developed various approaches for finding optimal and

near-optimal policies.

The first approach we took was to formulate the decision problem as

a linear programming problem. The number of states in the Markovian

AIR FORCE OFFICE OF SCIERTIFIC RESEARCH (APSC)
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decision problem is so large that the linear programming method would

not be a practical method for finding optimal policies. We developed

a procedure for avoiding this difficulty. We found that the behavior

of a system with many parts could be satisfactorily studied by con-

sidering a smaller system with fewer parts, and thus fewer states in

its associated Markovian decision problem. The number of states can be

further reduced by eliminating certain unlikely states from consideration.

With fewer states, it becomes practical to use linear programming to

obtain an optimal solution for the smaller system. This solution can

be translated into a near-optimal solution for the original system.

Thus we can use linear programming to obtain near-optimal solutions for

the single-location, two-item system.

Next, we studied the solutions obtained by linear programming and

were able to identify some properties that an optimal policy should possess.

We developed a simulation approach that exploits these properties that an

optimal policy is conjectured to have. This heuristic method is compu-

tationally efficient and finds, at least for the cases tested, a nearly

optimal policy. (The details of the results of this work can be found

in the attached technical report, entitled "An Analysis of a Single

Location Inventory Problem for Two Interchangeable Recoverable Items.")

In working towards objective (c), we extended the system studied

in (a) and (b) to include several interchangeable recoverable items.

We found that the number of states and possible actions grew so huge

that any attempt to use linear programming to find an optimal policy

would be impractical. Hence we turned our attention to the development

of heuristic methods which should produce a good policy.

'4. .... ..
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Our first approach involved regarding the multiple-item system as

a sequence of two-item systems. At each stage in the sequence the

linear programming procedure developed for objectives (a) and (b) is

used to find a near-optimal policy for a segment of the multiple-item

system. This method produces a rule prescribing when a substitution is

to be made. (The details involved in calculating and implementing

this substitution rule can be found in the attached Technical Report,

entitled "A Procedure for Finding a Nearly Optimal Policy for the

Inventory System with Several Interchangeable Recoverable Items.")

Our second approach involved formulating the multiple-item decision

problem as a policy improvement problem. Beginning with the policy of

never making any substitutions, the special structure of this problem

can be exploited to permit us to carry out the policy improvement algo-

rithm for a single iteration, producing an improved substitution policy.

Preliminary computational experience indicates that this policy is a good

one.

In beginning to work towards objectives (d) and (e), we have

established the framework for studying the two-echelon system. We are

constructing a flexible simulation model that will enable us to evaluate

and compare the performance of several alternative depot and base deci-

sion rules. This simulation will also be used to evaluate the performance

of the two heuristic rules developed under objective (c).

We have presented the results of our research at the International

Meeting of the Institute of Management Sciences in Hawaii in June 1979,

at the Multi-Level Inventory Conference in Philadelphia in October 1979,

* '



-- 5-

and at the Annual Meeting of the Operations Research Society of America

in Washington, D.C., in May 1980. Furthermore, we plan to prepare a

paper having the same title as the first attached technical report and

submit it for publication in the Naval Research Logistics Quarterly..

Throughout our investigations we have been in contact with Lt. Col.

Jon Hobbs and Mr. Victor Presutti of Headquarters, Air Force Logistics

Command (AFLC/XRS). Their guidance and assistance in providing experi-

mental data has been extremely valuable.
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ABSTRACT

In this paper we examine the interchangeability/substitutability

problem for two recoverable items that fail at a single location. We

assume the failure processes for each type of item are independent,

stationary Poisson processes. We also assume the repair times are

exponentially distributed. Furthermore, we assume that the system is

a closed system, that is, no items ire added to or deleted from the

system. We first consider a discrete-time problem and show that this

problem is a Markovian decision problem. We then show that for this

problem there exist optimal stationary Markov control policies. Next

we formulate a continuous time model and show how to find the optimal

stationary Markov control policy using linear programming. Unfortunately,

this approach is impractical for solving most real problems. Consequently

we have established and explored some of the properties that we feel

an optimal policy should possess. A discussion of these properties is

given in Section IV. Lastly, we will describe a heuristic that can be

used to find a good policy. This method is an efficient simulation search

method that finds policies having the properties we conjecture an

optimal policy should possess.
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I. INTRODUCTION

During the past 15 years a substantial amount of research has been

conducted related to the management of recoverable items, that is, items

subject to repair when they fail [,2,3,4,5,8,7,8,9,l1,l2,13,l4] A

number of mathematical models have been developed that can be used to

determine optimal stockage levels for each recoverable item in both single

and multi-echelon systems. Most of the models are based on the assumption

that the items are independent. That is, the failure processes among the

items are assumed to be independent. Some recent research has been devoted

to dependencies in the demand process by recognizing that certain recoverable

items have a hierarchical design [1,5,6,13,14]. or these items, the

failure of a recoverable component results in a demand for both a spare

component and the assembly containing the component. However, in all of

the models presented to date the replacement rule for a failed component is

the same: replace all failed units with a serviceable spare item of the

same type.

In this paper we examine a problem that arises when items are some-

times interchangeable or can be substituted for one another during repair.

Frequently it is possible to repair a broken assembly using several differ-

ent types of parts; however, choosing the "correct" part to use to repair

the assembly is not based on engineering considerations alone. Using one

type of item to complete the repair rather than using a second type of item

can cause subsequent parts shortages that can be avoided. This can occur

because some items are "more useful" than others. For example, suppose

there are only two types of items in the system. The "more useful" item

can be used to satisfy a demand for either type of item whereas the

"less useful" item can only be used to satisfy demands for its own type

o' -P
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of item. Many such interchangeable/substitutable items are found in the

Air Force. This is particularly the case for electronic items. in some

instances, newly designed items can be used to replace older units when they

fail; however, these older units cannot be used to repair a newer generation

of an assembly.

In this paper we will examine the interchangeability/substitutability

problem for two items that fail at a single location. We assume the failure

processes for each type of item are independent, stationary Poisson processes.

We also assume the repair times are exponentially distributed. Furthermore,

we assume that the system is a closed system, that is, no items are added

to or deleted from the system. We first consider a discrete-time problem

and show that this problem is a Markovian decision problem. We then show

that for this problem there exist optimal stationary Markov control policies.

Next we formulate a continuous-time model and show how to find the optimal

stationary Markov control policy using linear programming. Unfortunately,

this approach is impractical for solving most real problems. Consequently

we have established and explored some of the properties that we feel an

optimal policy should possess. A discussion of these properties is given

in Section IV. Lastly, we will describe a heuristic that can be used to

find a good policy. This method is an efficient simulation search method

that finds policies having the properties we conjecture an optimal policy

should possess.

, 4 __ _
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II. A TWO-ITEM SINGLE LOCATION SYSTEM:
A DISCRETE TIME MODEL

In this section we present a discrete-time model for the inter-

changeability/substitutability problem. We examine this discrete-time

model since it yields a particular form for the optimal control policy.

In particular, we show that for the associated Markov decision problem

there is a stationary Markov control policy which achieves the lowest

average back-order level. This result provides the motivation for

restricting attention to Markov control policies in the continuous time

model developed in the next section.

To simplify the analysis and discussion we restrict our attention

to a single location system with only two types of items: type 1 and

type 2. The assemblies in which these items are installed are called units;

we also assume that there are two types of units and that each unit contains

only one item of the types considered. Furthermore, when a type 1 unit or a

type 2 unit fails, we assume that it can be repaired with a serviceable

type 2 item. Type 1 items can also be used to repair failed type 1 units:

howevertype 1 items cannot be used to repair type 2 units. For example,

two units might be different "generations" of a computer found in a fire

control system; the items might be old and new versions of an integrated

circuit board found in the computer. The newer version of the circuit board

can be used in both generations of the fire control system computer; but,

the old generation circuit board is incompatible with the newer fire control

system computer.

Let N. be the number of units of type i and M. be the number

of spare items of type i in the system. Thus there are a total of

N. + M. ite.i in the svste!:. Let n.. be the number of type i items

- I
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installed in type ; units, and m. be the number of servicabie type i

items in spare stock.

Note that according to the substitution rules we have established

n12 is always zero. Thus the five numbers m. , m2 , i 1 1 , n2 1 , and

n 2 2  specify the disposition of all items. The number of type i items
i

in repair is given by N. + M. -( + n..) , and fhe number of back-
S mi j=l 1 2

orders associated with type j units is N. - E n..
i=j 

-,

We assume the system operates as follows in the discrete time model.

At each time t = n - (At), n = 0, 1, ... certain actions are available.

-cse actions correspond to installing some items currently in spare stock

in appropriate iunits lacking an item. After installation of items,

failures may occur. We presume that items fail independently of one another

and that each item of type i installed in a unit of ype 4 has proba-

bility .. - (At) of failing (where (At) is small enough so that these1]

numbers do not exceed 1). Next, items which have failed are removed from

the units and sent to repair. Items are repaired independently; we presume

that each item is repaired during this time interval with probability

r. (At)1

After this sequence of action-failure-repair we begin again at the new

time (ntl) • At by selecting another action. The system continues to

operate in this manner for an indefinite length of time.

The number of backorders during the action-failure-repair cycle is

defined to be the number of backorders which exist immediately after the

action (unit repair) is taken and before the failures occur.

We wish to choose thcse actions which minimize the average number

of backorders.
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The selection of the particular sequencing of events - action, failure

repAir - was not made arbitrarily. This sequence was selected so that the

:;roblem could be formulated as a Markovian decision problem (average cost

model). (A discussion of Markovian decision problems can be found in

reference 10.)

Notice that for any policy (that is, a specification of the actions to

be taken for all possible situations) there is positive probability (actually

bounded away from zero) that after one cycle of action-failure-repair all

items which were in use will have failed and been repaired. Hence there

is a state (namely that with no items installed and all in spare stock)

for which every action taken at every state gets to that state in one step

with probability greater than or equal to a > 0 . By Ross [10] (Theorem

6.17, Corollary 6.20, and the remarks following Corollary 6.20) there is

then an optimal stationary Markov control policy. This policy can be com-

iuted by a technique involving linear programming: this technique is adapted

to the continuous-time model developed in Section III.
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II1. A TWO-ITEM SINGLE !LOCATION SYSTEM:
A CONTINUOUS TIME MODEL

We now consider the continuous time model corresponding to that of

Section ii. The notation describing thn numbers of units and items and

the state of the system remain the same.

We now suppose that the failure times of type i items installed in

type j units, are independent exponentially-distributed random variables

with mean !/X.. , and that the repair times are independent, exponential2i]

random variables with mean 1/r. As before, the measure of performance

of the system is the average number of backorders. Motivated by the

results of the previous section we shall consider only stationary Markov

control policies.

Since it would seem unreasonable to allow backorders for tyrc 1 units

if there are type i items in spare stock we consider the installation of

type i items in type i units to be automatic and not subject to control.

Thus the actions available involve only the installation of type 2 items

in type I units. We shall compute the optimal stationary Markov control

policy which takes action only when the system changes state due to an item

failing in service or being returned from repair. Finally, we allow only the

substitution of one type 2 item into type 1 units at a time.

4 When the process jumps to a new state there are (possibly) two actions

available: do nothing, or install a type 2 item in a type 1 unit. Of course,

* if there are no type 2 items available or no backorders associated with

type 1 units, then there is only one action available: do nothing.

Following Ross [1O] we allow randomized actions; thus corresponding to

a1  a,
state S there are two numbers PS and P (non-negative and summing to 1)

giving th'e ?rob.,iilities of sclucting action a1  (: do nothing) or a2

put one type 2 item in a type 1 unit). These P's completely specify the

:ontrol policy.

,!I L
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Once these P's are scecified the process which results is a stationary

Markov process. In fact, if we consider the process which specifies the state

the system most recently jumped to an( the action taken there, this process is

a Markov chain and we can compute its stationary transition probabilities

and then the average cost.

Let -a be the equilibrium (or stationary) probability that this process

most recently jumped to state S and that the action taken there was a . Th-n

we must have Z ! a a2 Z a a where cc (SI S2 ) is the rate at
a S 2  2 a 2

which transitions to state S. will occur if the current state is S2  and

the action taken is "a" , and - E a so that the column-sums

S sI SsS2 S2 S 1IS2

(S $ S)
1 2

of the a-matrix are zero. (The subscripts may seem reversed in the above.

This is because in the usual Markov chain matrix notation the order of

vector-matrix multiplication is the reverse of that used in the usual L.P.

notation, which we adopt here.)

The cost associated with each state, C(S,a) , is the number of back-

orders (total for units of type 1 and type 2) associated with state S if

action a is chosen.

We wish to minimize the cost-per-unit-time given by Z Z Z a C(S,a)
S 1

a a a
Jsubject to the equilibrium equations Z Z ~S~ Z S an o h

aa S 2 12 2 a I
condition E Z 2 1

SSa S
* '' !

-a > 0

*(Note that in some states substitution obviously cannot be performed;

for these states we can simply ignore (that is set to zero-) the corresponding

Z for a =SUBSTITUTL).1

C.



The solution to the above stated L.P. provides the values for the P's

(and hence the policy) as follows:

Sa = P{take action a when in state S}
I zsa

a.1 S

bS

b b=whenever Z b € 0 . When E Z 0 , state i is never reached by the

controlled system and thus it makes sense to leave the action chosen there

undefined.

Suppose T represents the number of realizable states in the system

(a state is realizable whenever EZ a > 0 ). Then the above optimization
S

a

problem has T equality constraints and T basic variables (note there is

one redundant constraint). If state S is realizable, then Za > 0 for at
S

aleast one action a . Consequently at least one Z ais positive forS
S=1, ..., T . This implies that for each state S, Za can be positive for

a
only one action a . Thus P must be either 0 or 1

S

A program was written to generate the input for a linear programming

package (MPSX). The output was then submitted to MPSX and (in almost all

cases) an optimal strategy was obtained.

To present the results of the computations we notice that under our

control policies the number of variables necessary to describe the state of

the system can be reduced from the five above to three as follows: Since

we never allow backorders for type i units if there is serviceable spare
2

stock on hand; N. - n.. and m. cannot both be positive. We thus set
3. . . ]1 1]=j

2
s. m. - [N. - Z in.] , which is the net inventory of items of type i

i t 1- nep.it! v,- if theo ir l, ckordo's a:=-ociated with type i units).
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The variables sl , s2  and n21  then describe the state of the syster.

Finally, since at each state the control policy merely specifies

"substitute" or "don't substitute" it suffices to graph the set of states S

at which one would perform a substitution. Graphs of the optimal "substitution

set" S for several situations are given in Figure 1, Figure 2, and Figure 3.

I

!

I -- - ---,--'~
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IV. THE FORM OF AN OPTIMAL POLICY

To enable us to find approximations to an optimal policy, we examined

the structure of the set of states, S , from which a type 2 item should

be substituted into a type 1 unit. Clearly

S {(s , s 2 , n 21) s < 0, s2 > 0}

Every such subset gives rise to a control policy; however, there are

three properties (monotonicity relationships) that one might expect the

optimal subset (Sp) to have. Willingness to perform a substitution
opt

depends on the number of type i units out of service, the number of type 2

items in spare stock, and the number cf type 2 item-- .iready installed in type

1 units. Intuitively, for fixed s2 and n21  , as sI  decreases there is

at least as great a need to substitute type 2 parts in the type 1 units.

We express this as

MR!) (S s2' n 21 ) E Sopt s < s1 , implies (s, s2, n 21) Sopt

Similarly, a greater supply of type 2 spares should imply an equal or greater

willingness to substitute. This property is expressed as

MR2) (Sl, s2, n2 1 ) E Sopt , s >s 2 , implies (sI , , n21 ) C Sop t

Finally,

MR3) (sI , so, n1) C S , n < n , implies (sI , s n) C S
1 2 21 opt 29 '2 opt

Since S is a set in three-dimensional space we can draw its graph in

sections; thus if we let each section correspond to a fixed value of s1  we

would expect the graph to look like that of Figure 4.

In each optimal stratecy computed using the linear programming method

described in Section III the properties MRl)-MR3) held. On the basis of

this conjectured form of the optimal policy we developed a procedure to

examine states for possible inclusion in S

$-,., ___
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V. APPROXIMATIONS TO AN OPTIMAL POLICY

To find a good approximation to the optimal substitution policy we

employed a search technique which proceeds as follows: begin with S

empty (i.e., with a policy which allows no substitution); repeatedly

consider adding one point at a time to S by comparing the performance

of the system using the augmented S with the current policy; then add

the point if the level of performance is higher.

The first states considered are those for which sI = -1 . In this

set, the most likely candidate for membership in S is (-1, M2 1 0):

i.e., allow substitution when there is a type I unit out of service only

if there are M, type 2 items in stock and none already .istalled in

type 1 units. If this state is added to S , s2 is successively decreased

by one unit as long as the inclusion of (-I, s29 0) improves the policy.

Then n 2 1  is incremented by 1 and (-1, M2 -1, 1) is considered (note,

if n_, = i, then at most M -1 serviceable spare type 2 items can be in
2

:tc-k). Again, s, is decreased until there is no further policy improvement.

We then increment n 2 1 again. After all appropriate states of the form

S(-, n 21) have been added to S , those for which sl = -2 are con-

sldered in a similar fashion. We take advantage of property MRl) to include

automatically in S each state (-2, s2 , n 2 1 ) such that (-i, s2' n2 !) has

already been added to S . This significantly reduces the number of comparisons

which have to be made.

An alternate search pattern was considered in which (-NI, M2' 0) is

the first state examined for inclusion in S . In this state all type 1 units

are out of service and all type 2 items are in spare stock. Intuitively,

this is the state from which one would be most likely t. allow substitution

d..
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and hence an appropriate starting point for the search. The disadvantage

of this approach was that MRI) could not be used to increase the computational

efficiency, and hence the first method was used.

The search technique involved being able to compare the performance of

two policies. We developed two methods for this: one, analytic, which gave

an exact number -or the expected backorders under a given policy, and the

second, simulation.

in the analytic method we observe that the substitution rules for a Diren

policy and the transition probabilities depend only on the present state,

hence the system is a Markov chain. The method consists of generating the

steady state equations, finding the equilibrium probabilitv distribution

for the chain ani calculating the expected number of backorders under the

equilibrium iistribution. This number can be compared to the expected back-

orders for the same policy augmented by one state as required by the search

!rocedure.

A serious disadvantage of this method of policy comparison is related

to the number of states in the chain and hence the number of ecuations to be

solv_& for the ecuilibrium distribution. The number of states for a system

with N linits of type i and !. items of type i is

(1.1 + M. + 1)(M2 + 1)(N + M^,/2 + 1)
i i *2

For example, a relatively small system with N. 10 and M. 5 has 12481 1

states. When the number of units and items grows by a factor of n , the

3
number of states increases rouhly by a multiple of n . The time required

to solve the equations corresponding to the enlarged system then increases

by approximately a multtlpe of n We are, therefore. critically limited

in the size of the system we can investigate using the Markov analysis to

compare policies.

$!C.
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The major advantage of this approach is that the answers are exact and

n hence two policies can be compared. The similar results obtained by linear

programming and by the search technique with analytic policy comparison

suv7'ested that the search mechanism is valid and encouraged the development

of a more efficient method of policy comparison.

The simulation method, which provides the only tool suitable for the

analysis of large systems, performs two simulations, one for each policy

and uses the state a: which the policies differ as a starting point for the

simulation. In one, the substitution of a type 2 part is made, and in the

other it is not made. The two simulations are then run until they both

reach the same state. This state is not necessarily the one in which the

simulaticns started. If either system reaches the initial state in which

the desirability of substitution is being questioned, the substitution is

not made.

When the two systems reach the same state the run is terminated and the

di-fference between the number of backorder-days is recorded; call the result

(say the number of backorder-days with the extra substitution minus the back-

order-days without it) for run i B.i

We wish to determine E(B ) since if E(B ) > 0 we should not perform

the additional substitution while, if E(B ) < 0 we should. To estimaten n

E(3,) we computed Z B. and Z B' ; we could then estimate E(BI ) and

V(B) and construct confidence intervals for E(BI) . Large groups of runs

were made; after each Froup of runs a confidence interval was computed at a

selected confidence level. If this confidence interval did not include the

orig n the procedure was terminated and the appropriate strategy was selected

as optimal. Moreover, if the confidence interval did include zero but was

shorter than Sone re-selc-ted tolerance level, the procedure was terminated

and it was concluded that both olicies gave nearly the same performance level.
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(Actually in our runs this outcome did not occur.) It should be noted that

although we were using a sequential procedure we used analysis appropriate

for a sin-le sample and that this is not precisely correct. However, in

each case the results obtained by simulation were the same as those obtained

zv analytic comparison. Xoieover, the simulation was computationally superior

in two respects: the amount of commuter time did not grow as rapidly with

in,-reased system size as it did for the analytic method, and, perhaps even

more relevant in terms of absolute limitations, the simulations did not

recuire the large amounts cf stora-e necessitated by solving such large

systems of equations. Substitution sets (S) generated by the search pro-

cedure for the same examples presented in Section III are found in Figures

5, 6, and 7.

In conclusion, we make the following observations:

i) the exact solutions obtained through linear programming

and the approximate solutions obtained with the search

support the assumption that the form of the optimal policy

satisfies MR1) - MR3);

2) comparison of exact results and those obtained by a search

with analytic policy evaluation indicate that a search

is an effective method of policy improvement.

3) the correlation between results of search with analytic

comparison and simulation comparison indicates that the

simulation method is valid and hence gives us a method

for finding an approximation to an optimai policy which

can be applied to large systems.
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VI. A SUMMARY AND COMMENTS CONCERNING FUTURE EFFORTS

While we now have a method for policy approximation which can be used

on large systems, there are several possibilities for further work with this

model. Continued investigation of the structure of an optimal policy (i.e..

is it linear in any of its variables?) might suggest a reduction in the

number of states to be considered for inclusion in S during a search for

an approximation to the optimal policy. A more precise comparison of the

performance of the exact and approximate solutions should be made to find

a balance between reduced backorders and computational accessibility.

In addition, we plan to use the insights obtained thrugh the study

of this highly simplified inventory model as a basis for our future efforts

to study more complex situations.

Unfortunately, many real-world considerations are not addressed in our

simplified model. For example, we have ignored the fact that a) sometimes

a family of substitutable items may consist of more than two items, b) items

are normally stocked at more than one location, c) the failure and repair

distributions may not be stationary, d) the planning horizon may be of such

a short duration that infinite horizon models may be inappropriate, and

e) the system stock level for each item may not remain constant for an

extended period of time. We plan to address many of these issues in our

future work.

'I
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1. Introduction

The effective management of recoverable spare stock leads to many

important problems in inventory theory (See [I] for references to earlier

work). Very little work has been done in the case that recoverable items

are interchangeable or that one can be substituted for another during

repair. Such a problem can arise when one part is more useful than another

and can be used to satisfy a demand for itself or for another type part,

while the less useful type part can only be used to satisfy a demand for

itself. A substitution (i.e., of the more useful part for the less use-

ful part) may lead to subsequent shortages of the more useful type part,

and, although it will prevent an immediate backorder, may not always

be the best action. An inventory policy would specify conditions under

which a substitution should be made.

In [I] Heath, Muckstadt and Shilepsky consider the following inter-

changeability/substitutability problem for two items that fail at a single

location. The failure processes for each type of item are independent,

stationary Poisson processes. Failed items are repaired and the repair

times are exDonentially distributed. Furthermore, the system is closed,

that is, no items are added to or removed from the system.

They first consider a discrete time formulation of this model and

show that it is a Markovian decision problem for which there exist optimal

*stationary Markov control policies. They next formulate a continuous

time model and show how to find the optimal stationary control policy using

linear programming. Because of the size of most real problems, the linear

programming approach cannot be applied; however, its application to small
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problems led to conjectures concerning properties that an optimal solu-

tion should possess [Heath, Muckstadt and Shilepsky]. Based on these

properties an efficient simulation search method was developed to find

good, but not optimal, policies.

In this paper we discuss computational considerations relating to the

linear programming solution of small problems. We first examine a tech-

nique for improving the efficiency of the linear programming solution by

providing a good starting basis. Second we discuss techniques for redu-

cing the number of variables in the linear programming problem. These

techniques enable us to solve problems which had previously been inaccess-

ible either because of their size of numerical problems.

In [2] Heath, Muckstadt and Shilepsky present a scaling technique by

which one may approximate a large problem by a small one, find the optimal

solution for the latter and use it to find a solution to the large problem.

The effectiveness of the scaling technique depends heavily on the ability

to solve small problems efficiently and accurately.
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II. Formulation of the Model and Solution by Linear Programming

We consider the following model. We suppose that there are two

types of items in the system: type 1 and type 2. The assemblies in which

these items are installed are called units; we also assume that there are

two t-pes of units and each unit contains only one item of the types con-

sidered. All items are assumed to be stored at a single location.

We assume that items of type 2 can be placed in units of type 1 or

type 2, but that items of type 1 can be placed only in units of type 1.

Finally, we assume that times to failure and repair times are exponentially

distribuzed.

For the model we suppose that:

1) There are N. units of type i and N. + M. items of type i are

available (i.e., there are Mi spare items of type i),

2) The state of the system at any instant can be specified by the five

numbers:

n.., the number of type i items installed in type j units,

i>j'

mi., the number of serviceable type i units in spare stock.
i

The number of type i items in repair is then given by Ni +M i - (mi + n..)

and the number of back-orders associated with type j units is

M n... We suppose that the failure times of items of type i in-
~ 1]

stalled in units of type j are independent exponential random variables

with mean l/X and that repair times are independent, exponential random

variables with mean 1/r. The measure of performance of the system under any• 1

substitution policy is the expected number of backorders when the system is

in equilibrium.
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Under any, reasonable control policy (i.e., rule specifying which items

to use to repair various units under all possible circumstances) the num-

ber of variables necessary to describe the state of the system can be re-

duced from the five above to three as follows: it would clearly be

unreasonable to allow backorders for type i units if there were serviceable
2

spare stock on hand; thus, N. - n.. and m. cannot both be positive.

We thus set s. n. - [N. - n J3, which is the net inventory of items

of type i (it is negative if there are backorders associated with type

i units). The variables SlS2 and n21  then describe the state of the

system.

Clearly all reasonable strategies will use items of type i to satisfy

demands for units of type i whenever these items are available. Thus the

only question which needs to be considered is under what conditions to allow

the use (i.e., substitution) of a type 2 item in a type 1 unit. Moreover,

in this situation there always is an optimal stationary Markov policy (see

Ross C23); and hence it suffices to identify the set of states (called S,

or the substituting states) in which a type 2 item would be installed in a

type 1 unit. Clearly

S C Uss 29n 21): sI < 0, s2 > 0}

The set of states corresponding to the policy which minimizes the ex-

pected number of backorders can be found by solving a linear programming

problem in which the variables are non-substituting states: one corresponding

to each possible state of the system, plus substituting states: one corre-

sponding to each state from which a substitution could be made (s < 0 and



s > 0). In the former, no substitution is made; in the latter, a sub-

stitution is assumed. There is a constraint corresponding to each non-

substituting state and the objective function is the expected number of

backorders corresponding to the states in the solution. The basic variables

in the final solution are those states in the optimal policy. See [I], Heath,

Muckstadt, and Shilepsky for further discussion of the linear programming

formulation.

A program was written to generate the input for a linear programming

package, MPSX. The output was then submitted to MPSX. We present the re-

sults from two problems in Example 1 and Example 2. Note that since at each

state, an optimal policy merely specifies "substitute" or "don't substitute",

it suffices to graph the set of states at which one would perform a sub-

stitution.

I



_ 6
iExamnie I

i 2Sl =  - N1  =

00 
2

M L4
2M 2 4

112 22

nr
I  r 2  1

S 2 S !  -2 S2 S = -3

*00 S

n 21 n 22

S, -4
S2 9

| substitute

o do not substitute

Figure 
1.

7!



Example 2

S, S,\ = 3

0 0 0 ": :

0 0 0 0 1 .

0 0 0 0 00 12 22

n 
2

21

s Q S1 :-2 $2 S 1 : -3

0 0

S CG 0 0 0

0000 0 0

21 n21

2  S1  :-4 S2  -0

S2n21
n21

S,: -6

* substitute

0 do not substitute

Figure 2.



III. Providing an Input Basis for the Linear Programming Solution

A modification of the linear programming method for finding the

optimal solution was made to allow specification of a starting basis

for MPSX. Most of the computational time for determining the optimal

policy appeared to be used finding an initial feasible solution. Any

policy will give a feasible solution and one possible policy is to

allow no substitution. Hence the basis of vectors which contains only

non-substituting states should correspond to a feasible solution.

The program which generated input for MPSX was expanded to produce

a second file, specifying the variables corresponding to each of the

non-substituting states as a basic variable in the starting solution.

In a small problem the number of iterations was reduced by this technique

from 53 to 5. Larger problems which had terminated because of accumulated

roundoff errors were successfully solved.

Larger problems such as that of Example 2 were difficult to solve

even with the starting basis. For such problems a further refinement was

successfully used. An approximation of the optimal solution was obtained

by solving a smaller problem and the scaling to be discussed in later work.

The approximation was then used as a starting basis for MPSX. This re-

duced the number of iterations and again allowed us to solve problems for

which the linear programming algorithm had terminated because of numerical

difficulties.



IV. Restricting the State Space for the Linear Programming Solution

The number of states in a system with N. units of typ.e i andI

M. spares of type i is

%M

M2

( 1 + M1)(N 2 + - + I )(M2  1).

Thus as the values of N. and M. grow, the number of states for the1 1

control problems grows very rapidly. We therefore considered two methods

for reducing the number of states allowed:

1. Restriction of the set of policies considered.

2. Removal of a class of "very unlikel!" states.

Such restrictions decrease the number of variables for the linear

programming problem and hence increase the size of the problems we can

consider. These reductions also lead to greater efficiency in generating

the input for MPSX.

1. Restriction of the set of policies: One component of the state,

namely n21, is under our direct control. If we choose to, we can control

the process in such a way that n never gets very large. If we restrict
21

consideration to those policies which maintain n21  n21 MAX we can re-

duce the states allowed to those having n21 < n21 MAX' The solution then

found is still an optimal solution but to a smaller problem, one in which

certain types of substitutions are prohibited. A reasonable but possibly

not optimal solution for the unrestricted problem can then be obtained

=or each s: by an extraDolation of the restricted solution. A typical

restriction is n21 <2 or n2, < 3.

2-2

- -°"
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A comparison of solutions for restricted and unrestricted state spaces

suggests that very little accuracy is lost by the restriction. This is

partially due to the fact that states with large n21  are reached so in-

frequently that their omission changes the behavior of the system very

little.

Example 1 in Section I with N1 = 4, M1  2, N2 = 4, M2 = 4 was

set up and solved using only states with n21 < 2. The number of states

was reduced from 522 to 361 and the solution shown in Figure 3 was obtained.

The restriction n21 < 2 in Example 2, Section II with U[ = 6,

M1 = 3, N2 = 6, M2 = 6 reduced the number of states from 791 to 421 and

gave the solution shown in Figure 4.

Note in Figures 2 and 3 that because n 2 1 <2, no state with n21 >1

will be in the set of substituting states, but that the results obtained

for n21  0 or 1 agree exactly with those obtained for the full space.

We can use these results to guess (by, say linear extrapolation to larger

values of n21) good policies for the original problem, or, alternatively,

we can carry out the computation with n21 < 3 using the results obtained

to choose a good initial basis.

2. Removal of a class of "verv unlikely" states: Although the number

of possible states grows very rapidly, the number of states which "can

reasonably occur" grows much more slowly. For example, if no substitution

is allowed, standard approximations show that the number of type 1 items

in reoair is apzroximately normally distributed with mean 1 and variance

(1he corresponding result holds for type 2 items.) if we let

r (r2) be the number of type 1 (2) items in repair, we see that
2
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is approximately a X2 random variable with 2 degrees of freedom.

It can be seen (most easily by considering scaling results to be ;re-

sented in a later work) that allowing some substitution does not change

the distribution of T very much.

We thus use T to identify a class of states to be eliminated...we

rule out all states for which T is greater than some tolerance limit TOL.

In doing this we do not allow those transitions which would lead to an

eliminated state. All other transition probabilities remain the same.

In Example 1, for example, eliminating those states for which T > 3

reduces the number of states from 522 to 287. The policy obtained remains

exactly the same. If all states having T > 2.5 are eliminated, the num-

ber of states is further reduced :o 211. The results for this case are

shown in Figure 5.

Since some states were eliminated, the policy is not efined at some

of the original states. Where it is defined it agrees with the previous-

ly obtained policy except at the point indicated by C in Figure S.

As a further illustration, Example 2 with all states having T > 3

eliminated yielded the policy shown in Figure 6.

in this case the number of states was reduced from 791 to 496. Again

the solution agrees with the exact solution for those states not eliminated.

A reasonable approach to restricting the statespace seems to be a com-

bination of the two techniques liscussed. The following results obtained
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for Examole 1 with n 2 2 and -CL 3 and on!* IS0 s-;ites agreed with

the exact results. A more useful result is obtained here with only 10

states then in Figure 5 with 211 states indlating that -judicious combination

5 the two techniques is appropriate.

Example 2 in Section 1:with N, = 6 M, = 3 N = 6 M') 6 was1 1 *2

run with n21 < 2 and TOL 3. Here the number of states was o'educed

from '9' to 332 obtaining, again, results that agree with the exact solution.

,S
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'i'. Summary and Comments Concerning Future Work

We have now imoroved our abilivy to find ootimal or near-optimal solu-

tions using linear programming on small examples. By providing a starting

basis for MPSX and by eliminating states from those we consider we have

reduced the size of the problem and the amount of time MPSX takes to solve

it. This has been helpful in reducing the cost of each solution and in

lessening the effect of roundoff errors. We have been able to obtain op-

timal or near-ootimal solutions for many cases which had been previously

unsolvable.

The effects of this have been two-fold. First, we have attained greater

insight into the structure of the set of substituting states in an oztimal

solution. For example, the monotonicity properties proposed in [1 have

held in each case we investigated. Second, we now have the abilitj to

solve sufficiently largc problems that the scaling technique to be discussed

in future work will be an effective way to solve prcblems of any size.

We plan to extend this approach to finding optimal policies for finite

state Markovian decision problems.
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1. Introduction

In Cl] Heath, Muckstadt and Shilepsky consider an Inventory model

for recoverable items in which one item may be substituted for another

during repair. The model is formulated as a Markovian decision problem

for which there exists an optimal stationary control policy. The

optimal policy can be found by linear programming, but the size of

most real problems makes this approach impractical. its application

to small problems led to conjectured properties that an optimal policy

should satisfy. Based on these properties, an efficient search method

was developed to find good, but not necessarily optimal policies.

The search involves a comparison of policies by analytic methods or

simulation. This paper focuses on policy comparison by simulation and

several variance reducing techniques that contribute to the efficiency

of the simulation.

I. Formulation of the Model

We consider the following model. We suppose that there are two

types of items in the system: type I and type 2. The assemblies in which

these items are installed are called units; we also assume that there

* are two types of units and each unit contains only one item of the types

considered. All items are assumed to be stored at a single location.

We assume that items of type 2 can be placed in units of type 1

or t-pe 2, but that items of type I can be placed only in units of

type 1. Finally, we assume that times to failure and repair times are

exponentially distributed.
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For the model we suppose that:

1) There are N. units of type i and N. + M. items of type i

are available (i.e., there are M. spare items of type i),

2) The state of the system at any instant can be specified by the

five numbers:

nij, the number of type i items installed in type j

units, i > j.

M; the number of serviceable type i units in spare

stock.

The number of type i items in repair is then given by
i

N. + M. - (m. + n..) and the number of back-orders associated with
1 1 j=l i 2

type j units is Nj - Z nij. We suppose that the failure times of
i=j

type i installed in units of type j are independent exponential

random variables with mean I/Xij, and that repair times are inde-

pendent, exponential random variables with mean /r.. The measure ofI

performance of the system under any substitution policy is the expected

number of backorders when the system is in equilibrium.

Under any reasonable control policy (i.e., rule specifying which

:tems to use to repair various units under all possible circumstances)

the number of variables necessary to describe the state of the system

can be reduced from the five above to three as follows: it would

clearly be unreasonable to allow backorders for type i units if there
2

were serviceable spare stock on hand; thus, Ni - n.. and m.

2
cannot both be positive. We thus set s. m. - [N. - n ij], which

is the net inventory of items of type i (it is negative if there are
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backorders associated with type i units). The variables sl, s2 and

n 21 then describe the state of the system.

Clearly all reasonable strategies will use items of type i to

satisfy demands for units of type i whenever these items are

available. Thus the only question which needs to be considered is

under what conditions to allow the use (i.e., substitution) of a type 2

item in a type 1 unit. Moreover, in this situation there always is

an optimal stationary Markov policy (see [I]); and hence it

suffices to identify the set of states (called S, or the substituting

states) in which a type 2 item would be installed in a type 1 unit.

The set of states corresponding to the policy which minimizes

the expected number of backorders can be found by solving a linear

programming problem. Since at each state an optimal policy merely

specifies "substitute" or r"don't substitute", it suffices to graph

the set of states at which one would perform a substitution. We

present the solution for a typical problem in Figure 1.

The most serious drawback to the linear programming solutions is

related to the number of states in the Markov chain and hence the

number of constraints in the linear programning formulation. See [l],

p. 10 for discussion. We therefore investigated alternative approaches.

III. Search for Optimal Policies

To find a good approximation to the optimal policy we employ a

search technique which begins with the set of substituting states, S,

em t and repeatedly considers adding states one at a time to S by
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comparing the performance of the system using the augmented set of

substituting states with the performance using the current policy.

We developed two methods for policy comparison: one, analytic which

gives an exact number for the expected backorders under a given policy,

and the second, simulation. Similar results obtained by linear program-

ming and the search with analytic policy comparison suggest that the

search mechanism is valid. However, the search with analytic policy

comparison requires roughly the same amount of computer time and

storage as solution by linear programming. Hence simulation was

investigated for more efficient policy comparison. in each case

examined, the results obtained by analytic and simulation comparison

were the same. See [l, p. 10] for a discussion of the search technique

and comparative results.

IV. Policy Comparison by Simulation and the Use of Variance Reducing

Techniques

The simulation method performs two simulations, one for each policy

and uses the state at which the policies differ as a starting point for

the simulation. In one, the substitution of a type 2 part is made, and

in the other it is not .made. The two simulations are then run until

they both reach the same state. This state is not necessarily the one

in which the simulations started. If either system reaches the initial

state in which the desirability of substitution is being questioned, the

substitution is not made.

- .'
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When the two systems reach the same state the run is terminated.

This is repeated a large number of times, and the difference in

backorder days for the system with substitution and the system

without substitution is recorded. We compute the sample mean for

2the difference in backorder days, X, and sample variance, a . We

wish to determine E(.) since if E(7) < 0, the substitution should

be made and if E(X) > 0, it should not. A confidence interval is

constructed at a selected confidence level; if this confidence interval

does not include the origin, the procedure is terminated and the

appropriate strategy selected as optimal. If the confidence interval

does include the origin, the results of another large group of runs

are included with the previous results. The procedure is repeated

until the confidence interval does not include the origin or is

shorter than some ore-selected tolerance level. In the latter case

the decision to substitute or not is based on the sign of the sample

mean, but no level of confidence assured. In these cases both policies

give nearly the same performance level and hence an incorrect choice

would have little effect on system behavior.

The number of runs in each group is large enough so that the

central limit theorem may be invoked and confidence intervals constructed.

It should be noted that we are conducting a sequential test, but in the

construction of confidence intervals, applying non-sequential techniques.

In practice, however, if the number of runs in the first group is large

enough, the results are definitive and a second group unnecessary.

A major contribution to variance reduction of X zomes through the

parallel simulation of the systems with and withcut substitution. We
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note that if ; = R - , where n and s are sample means for

systems without and with substitution then

Var(T) = Var(n-7) = Var(&n) + Var(T) - 2 Co(V,7).

Failure and repair times for parts which are common to each system

are the same, inducing a high correlation between ,n and Rs.

The search wi-h policy comparison by simulation was run for the

problem in Figure 1 keeping track of Var(,'), Var(7) and

Cov(,n,7s ) after each decision. We present these results in Figure 2,

also including the variance if the systems were uncorrelated,

Var(3R) + Var(7), and the variance with the induced correlation,

Var&' ) + Var(Xs ) - 2 Cov(.'n,7) in the last two columns.

We note that ,n and ks are highly correlated and that the

average ratio of correlated to uncorrelated variances is .1358,

hence we have decreased the number of runs necessary to obtain the

same level of confidence by a factor of approximately 8.

Var(Rn) Var(TX) Cov(C',xs ) Variance if Variance with
uncorrelated correlation

68.98 59.5 53.17 128.48 22.14
87.06 55.61 58.56 142.67 25.55
44.25 36.13 31.47 80.38 17.44
24.95 34.38 25.18 59.33 8.97
25.7" 17.06 18.67 u2.8 5.46
29.17 38.59 29.63 67.76 8.5
4".58 32.3 35.86 76.98 5.16
38.86 44.08 37.65 82.94 7.64
47.06 67.51 52.11 114.57 10.35

Average ratio of column 5 to column 4: .1358
Average correlation coefficient: .3746

Figure 2



Two other factors contribute to shortening the run time necessary

to compare policies. First, each simulation is begun at the state

where a substitution is made in one system and not in the other and

continued only until they reach the same state. in fact the results

obtained could have been achieved by simulating the entire process

for the two policies. if we were to do this, there would be no

difference in backorder days until the systems reach the state where

the substitution is performed cr not and the differences would cease

when the systems reach the same state. 7he simulation, then, can be

regarded as a series of disjoint cycles, each beginning at the state

in question. It suffices to simulate only these cycles.

Second, we make only one substitution of the kind in question

for each run, but the policy we are evaluating requires a substitution

each time the new state is reached. We justif- this by appealing to

the linear programming formulation and solution of the problem. In

practice the strategies for an optimal solution are pure, but for

linear programming, the feasible solutions are mixed strategies

on the states. In the algorithm.an entering variable is selected by

comparing the rate of change of the objective function with respect

to a small change in the variable. A small change from 0 in a control

variable :orresponds in a probabilistic setting to making a substitution

with a very small probability. To compare policies by simulation, if

this substitution were made with the same small probability, most

runs would consist of single substitutions at the state in question

since, even if this state were reached before the systems came back



together, the probability of a second substitution would be very

small. In the simulation, the effect of not making a second sub-

stitution tends to be to bring the systems together sooner and

shorten the run length.

We considered but did not use variance reducing techniques

such as antithetic variables and stratified sampling. Our intuitive

feelings were that the large number of events in each run would make

questionable their benefits and that the computational complexity would

not be justified.

V. Summa-7 and Comments Concerning Future Work

We have developed an efficient method for comparing policies which

differ at just one state. This method appears to be computationally

superior to other methods we have investigated in two respects: the

amount of computer time does not grow as rapidly with increased system

size and, :erhaps even mcre relevant in terms of absolute limitations,

the simulations do not use the large amounts of storage required to

solve linear progranning problems or systems of equations.

Continued investigation of the structure of optimal policies has

reduced the number of states necessary to consider for inclusion in an

optimal policy [ 2]. The development of a scaling technique allows

large problems to be approximated by small problems that can be solved

explicitly and the extrapolated solution used as a first approximation

for a search with simulation.

We are currently investigating other models for the interchange-

abilit-/s'ubstitutabiit-- problem and are able to extend many of the

.echnicues develoced for this model to multi-echelon and multi-item problems E 3
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Abstract

In this paper we examine the substitutability problem for several

recoverable items that fail at a single location. We assume the

failure processes for each type of item are independent, stationary,

Poisson processes. We also assume the repair times are independent

and exponentially distributed. Furthermore, we assume the system is

a closed system; that is, no items are added to or deleted from the

system. We develop a procedure For obtaining an approximation to

an octimal substitution policy for this system. The procedure

uscs a sequence of two-iterm inventory systems to model the multiple-

item system. We then examine several properties that we expect

an optimal substitution policy to po isess, and show through an

example how to use these properties to describe a comprehensive

optimal substitution policy. Finally we identify some areas suggested

by this problem which merit further investigation.



I. The Xultiple-ltem iln '1 -,c~tion Inventory System

In this section we present a single location inventory system

with several types of items: ty pe I through type n. The assemblies

in which these items are installed are called units; each unit

contains only one item. We assume that the units themselves are also

classified as being of one of the types from type 1 to type n. When

a unit of type k fails, it can be repaired with any serviceable item

of type k or greater. Thus there is a one-directional substitutability

among the items; an item of type k may be used whenever an item of a

lesser type is used.

For example, there may be three units corresponding to successire

generations of a computer. The three items might be the successive

generations of a circuit board installed as original equipment on the

three generations of the computer. Each version of the circuit board is

designed to be used in the current generation of the computer and in all

previous generations, but is incompatible with the newer generations of

the computer. In this example, a second-generation circuit board may be

used in both the first and second-generation computers, and a second-

generation computer may be repaired with either a second or third-generation

circuit board.

Let N. be the number of units of type i, and let M. be the

number of spare items of type i. Then the total number of items of type i

is (N. + M.). Let n.. be the number of type i items installed in
1 1I

type j units, and let m. be the number of serviceable type i items

in spare stock.

According to the substitution rules we have established, n. * is
z]

zero whenever i is less thn j The number of items of type i in
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repair is given by (N. + M. - m. - ni ) and the number of back-t I j:l J "

orders associated with type j units is (N. - n.] . . 1]
i~jWe suppose that the failure times of type i items installed

in type j units are independent, exponentially distributed random

variables with mean 1/X... The repair times of type i items are

131independent, exponentially distributed random variables with mean i/P i;

we assume the repair time does not depend on the type of unit in which

the item is installed when it fails.

We suppose that no cannabilization occurs in the inventory system,

so that an item remains in the unit in which it is installed until it

;ails. We also ;unpose that no condemnations occur, so that every item

is repaired and returned to service.

The measure of performancc of the inventory system is the expected

number of backorders. It seem; clear that an optimal policy would never

allow a backorder for a unit of type i when there is a spare item of

type i in stock. But it is not at all obvious whether to substitute

an item of a type greater than i or to allow a backorder when there

are no spare items of type i in stock. This decision will depend on

the substitutability rules we have described, on the failure rates and

repair rates, and on the number of items already in use or in repair.

For example, repairing a unit of type j with an item of type i may

result in subsequent avoidable shortages if it happens that a type j

item becomes available and a type i uri.t fails. It may be advantageous

to reserve some of the more useful items so that they will be available

if they are needed in a newer generation unit.

f --
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2. A Procedure for Cbtaining an Appr'oximation to the Optimal Substitution

Policy

This section develops a procedure for obtaining an approximation to

the optimal substitution policy for the inventory system just described.

It begins by recalling the solution for the two-item system developed by

Heath, Muckstadt, and Shilepsky, and shows why a new procedure is needed

to keep the problem down to manageable proportions. The motivation for

the new procedure is given next, followed by a stage-by-stage accounting

of how the procedure would be implemented.

To obtain an approximation to the optimal substitution policy for the

multiple-item inventory system, we will rely heavily upon the analysis of

the similar two-item inventory system by Heath, Muckstadt, and Shilepsky.

They formulated the two-itOn inventory system as a continuous-time Markovian

decision problem and showed how to find the optimal stationary Markovian

control policy by using linear programming. The optimal substitution policy

consists of a rule dictating whether to repair a type 1 unit with a type 2

item when no type 1 item is available. This rule depends on three fac-

tors: the number of backorders for type 1 units, the number of type 2

items in spare stock, and the number of type 2 items currently installed

in type 1 units,

Unfortunately, the size of the linear program and the number of

factors needed by the optimal substitution rule grow rapidly as the number

of types of items increases, and this method of solution becomes impractical.

For a three-item system, the optimal decision rule will depend on the net

inventory position of each of three items together with the number of

type 2 items already installed in type 1 units, the number of type 3 items

o r
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already installed in type 1 units, and the number of type 3 items already

installed in type 2 units. For more than three items, the factors used

by the optimal decision rule are even more numerous. So we must develop

a new method or solution of the multiple-item problem for two reasons:

the linear program used to solve the two-item problem becomes too large

to be solved quickly and economically, and the optimal decision rule

becomes unwieldy because it depends en too many factors.

To motivate the approach we will take in finding an approximate

solution to the multiple-item inventory system, let us consider the inven-

tory system from the perspective of the person who manages the warehouse

which holds spare items of type i. His job is to receive serviceable

spare items as they are repaired and to make available a spare item

whenever the repair policy dictates that a repair should be made with an

item of type i. This manager will be called upon to make a decision

when he holds some spare items and an item fails in a unit of type j,

where j is less than or equal to i. His decision will be either to

make an item available for use or to hold his spare items in reserve.

We have already mentioned that any reasonable substitution policy

will always call for the repair of a type i unit if a type i item

is available. So the only decision which merits consideration is

whether to make available a type i item to a type j unit, where

is less than i. When an item is made available to a type j unit,

there is one fewer item available to the type i units. So the inventory

manager will need to be concerned with the duration of time for which the

item is on loan to a type j unit and the likelihood that he would need

the item for a type i unit during the period of the loan.

#,,
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Here we make a simplifying assumption which allows us to reduce the

number of factors needed by an optimal decision rule. We will assume

that the failure rates A.. are identical for all items i in allI3

units j, and that the repair rates p. are identical for all items i.

Thus the manager of spare items of type i will not care what type of

unit is in need of repair. Whether it be a type 1 unit or a type (i-l)

unit, one backorder will be filled and one type i item will be unavailable

for a period encompassing a failure with rate X and a repair with rate p.

This simplifying assumption enables the inventory manager to regard

the demand for spare items as arising from only two sources: from units

of type i and from units of type less than i. This means that we have

a two-item system: type I is an aggregate comprised of all types less than

i and type II is identical to type i. We already know how to find an

optimal decision rule for a two-item inventory system. We will be able

to use a sequence of two-item systems to find an optimal decision rule

for the multiple-item system if we can adequately model the behavior of

the aggregated system compr;-ed of all types less than i.-

Let us focus our attention on the aggregated system. It consists of

items and units of types 1 through (i-l). Units fail and are repaired

with items according to some decision rule. Sometimes the decision rule

dictates that an item not be repaired- sometimes there are no suitable

spare items available for the repair. In these instances, a backorder

exists in the aggregated system, and a demand is placed for a spare item

of type i. The interaction between the aggregated system of types 1

through (i-l) and the system of type i is in these demands placed when

a backorder exists in the aggregated system, so the essential feature
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we must caFture in a model of the aggregated system is the distribution

of backorders in the system.

The steady-state distribution of backorders in a single-item

system can be computed analytically. The steady-state distribution

of backorders in a two-item system can be obtained from the two-item

model of Heath, Muckstadt, and Shilepsky, where a linear program is

used to compute the steady-state probabilities of the continuous-time

Markov chain model of the system. We propose to replace a two-item

system with the single-item system which most closely matches the

backorder distribution of the two-item system. We will enumerate the

single item systems for all reasonably small numbers of units N and

spare items M, compute the mean and the variance of the number of

backorders expected in each sy::tom, a:id choose as the b~st match the

system which most closely approximates the mean and the variance of

the number of backorders expected in the two-item system.

With this technique we can recursively model an inventory system

with any number of types of items. We will begin by replacing types 1

and 2 with the single-item system which most closely matches the

backorder distribution of the two-item system. We will then consider

the resulting single-item system along with the type 3 system to be

another two-item system which we will replace with yet another single-item

system. We will continue in this manner until we have included all types

of items in the inventory system.

A stage-by-stage description of this procedure follows.
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Stage 1. Consider only types I and 2. Use the approach described by

Heath, Muckstadt, .,nd Shilcpsk: to find the optimal decision

rule for using type 2 item; in tvpe I units.

Stage 2. Add type 3 to the inventory system.

(a) Aggregate types I and 2. The inventory manager for type 3

will receive demands for sp are parts from units of types 1

and 2. Use the results of Stage 1 to determine the distribution

of total backorders in units of types 1 and 2 under the optimal

decision rule found in Stage 1.

(b) Find a single-item inventory system which incurs backorders

according to the same distribution as that of the total back-

orders in units of types 1 and 2. Denote this single-item

system as type (1,2).

(c) Use the approach of Heath, Muckstadt, and Shilepsky to find

the optimal decision rule for using type 3 items in type (1,2)

units.

Stage 3.. Add type 4 to the inventory system.

(a) Use the results of Stage 2c to determine the distribution of

total backorders in units of types (1,2) and 3 under the

optimal decision rule found in Stage 2c.

(b) Find a single-item inventory system, type (1,2,3), which

incurs backorders with the same distribution as that of the

total backorders in units of types (1,2) and 3.

(c) Find the optimal decision "ule for using type 4 items in

type (1,2,3) units.

Stages 4 through (n-1). Continue in this manner until type n has been

added to the inventory system.

k _L . ....
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The resullts of this .qucr:ce of decision rules for two-item

systems can be translated into an explicit rule for whether to repair

a type j unit with a type i item. But this matter is not entirely

straightforward. A discussion of the considerations involved follows

in the next section.

3. The Form of an Optimal Substitution Policy

This section discusses the form of an optimal substitution policy

for the multiple-item inventory system. It begins by reviewing the

structure present in the optimal decision rule for a two-item system

and describes some additional properties which an optimal decision

rule for a multiple-item system should possess. Then we show how to

use these properties in conjunction with the results of the sequence of

two-Item inventory systems discussed in the previous section to state

explicitly the decision rule to follow in the multiple-item system.

Heath, Muckstadt, and Shilepsky examined the form of an optimal

policy for the two-item inventory system. They showed that the states

of the system could be described by three parameters.

State = (sl,s 2,n21)

where sI = net inventory of type I items (-N, < s < M )

s = net inventory of type 2 items (-N < s < M
2 *2 - 2-< 2

n21 = number of type 2 items installed in type 1 units

( < n 2 1 < min{NM2})'
1' 2



A decision rule spcifies a uls et of ataites from which a type 2 item

should be substituted irto a type 1 unit. For a decision rule to be

feasible, these states must correspond to backorders among type 1 items

and spares among type 2 items. That is, the subset S must satisfy

S c {(sl,s,,n2 1 )Is < 0 and s. > 0}.

Every such subset corresponds to a control policy. However, there

are three monotonicity relationships that one might expect the optimal

subset to have.

(1) (SlS2 ,n21 ) E Sop t and s < s1 implies (s s ,2,n1) Sopt '

That is, as the number of type I backorders increases, there

should be a greater willingness to substitute.

(2) (S ls 2,n 2 Sopt  and > s, implies (s ,s,n 1) E Sopt *

That is, as the number of type 2 spares increases, there should

be a greater willingness to substitute.
(3) (sl,s 2,n21 ) E Sopt and n < n21 implies (S,S 2,n) E Sopt '

That is, as the number of type 2 items installed in type I

units decreases, there should be a greater willingness to

substitute. The explanation for this is that i smaller value

of n21 means that more of the type 2 items on loan are in

repair, and so are closer to being available again as spare items.

In our procedure which models the multiple-item inventory system

as a sequence of two-item systems, we get a set of rules specifying

whether to perform a repair or to hold the spare items in reserve.

However, it is not clear which repair is. to be performed. As an

F



illustration of the ambiguity involved here, consider the stage in which

we solve a two-item system where type I is an aggregate of types i and

2, and type II represents type 3. Suppose that the optimal policy calls

for substitution when (s z -2, s2 = 1, and n21 = 1). It seems

reasonable to interpret (sI = -2) to mean that there are two backorders

within the type 1 and ty-e 2 systems, (s = 1) to mean that there is
2

one spare type 3 item, and (n21 = 1) to mean that there is one type 3

item installed in a unit of types 1 or '. But given this, which of

the two backorders are we suprosed to fill with the one spare item?

To help us decide, we conjecture that the choice of which repair to

make will obey an additiona) so: of monotonicity relations.

(1) If a substitution is call(, for and there is a s; ire item of

type i and there ire backorders of types ]I and J2 9 wh-ere

< 2 < i, do not fill the backorder of type 4 The explana-

tion is that this backorder would be easier to fill later.

(2) If a substitution is called for and there are spare items of

types i and i2 and a backorder of type j, where j < i1 < i2 ,

do not use the item of type i2, The explanation is that this

item is potentially more useful for filling subsequent backorders.

The principle behind both of these properties is to fill any backorder

as inexpensively as possible, saving as much flexibility as possible

for the future.

A consequence of these monotonicity properties is that care must

be taken in translating the optimal policies for the sequence of two-

item systems into a comprehensive policy for the multiple-item system.

To illustrate, let us suppose that the optimal policy from Stage 1
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(where type I is type i and type II is type 2) calls for no substi-

tution w:hcn (s , = -1, = n, a 0). Suppose also that
12

the optimal policy from Stage 2 (whore type I is types 1 and 2 and

type II is type 3) calls for substitution when (s, = -1, s2 = 1,

and n21 = 0). What should we do if there is a type 1 backorder,

a type 2 spare, and a type 3 spare, and there are no items currently

on loan? The Stage 1 policy says not to substitute, so there is a

backorder in the aggregated system comprised of types 1 and 2.

The Stage 2 policy says to substitute a type 3 item in this set of

circumstances. But it would violate a monotonicity property if we

were to fill a type 1 backorder with a type 3 item when a type 2

item is available.

The resolution of this problem lies in separating the question

of whether to fill a backorder from the question of which backorder to

fill. The optimal policies for the sequence of two-item models should

determine only whether to fill some existing backorder. The mono-

tonicity properties should be used to determine which backorder to

fill,

4. An Example

This section presents an example of a three-item inventory system.

The steps taken in solving this problem as a sequence of two-item systems

are outlined. The results are then used together with the monotonicity

properties in formulating a policy which dictates whether to repair a

failed unit and specifies the type of item to be used in the repair.

A
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We begin with an inventory system with units and items of tvyes

1, 2 and 3. Each unit recuires the installation of sne working item

to be in working conditisnn. yve . it.ms may be used only in type I

units: type 2 items may be used in units of types I and 2 . type 3

items may e used in any of the units.

There are four units of each tvpe and two spare items of each type;

that is, there are four units and six items of each tve. The times

until failure of any item installed in a unit are assumed tc be inde-

pendent, identically-distributed exponential random variables having a

mean of one time period. The repair times are also assumed to be inde-

pendent, identically-distributed exoential random variables having

a mean of one time jeriod.

For the first stage, we consider only types I and 2. Following the

procedure developod by Heath, X.uckst-dt, and Shilecsky, an optimal

substitution strategy for this two-item problem was computed by the

mathematical programming package MPSX. This strategy is presented below

in the form of charts. Recall that we established that the state of

the two-item inventory system could be characterized by three variables:

the net inventory of tyre 1 items, the net inventory of type 2 items,

and the number of type 2 items correctly installed in type 1 units.

A substitution policy can then be characterized by a decision of whether

to substitute a type 2 item into a ty:pe 1 unit for each state where the

net inventorv of type 1 items Is ne-ative and the net inventory of

type 2 items Is positive. .he follcwing ciharts depict those states

where a s.stit.tion should bo performed.
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Optimal substitution policy for types i and 2

\S

s 1 2

1 0

0t
21

,, 
2

s I  -2 1 0 s 1 - net inventory of type 1

items

* 0 1n21

s2 - net inventory of type 2
items

2 n 21 - number of type 2 items

installed in type I units

2

S = -3 1 - substitute a type 2 item
into a type 1 unit

n21  0 - make no repair

II

2 
21

-JL L

!0

*°
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We can give a verbal characterization of this policy. "Substitute

a spare type 2 item into a broken type 1 unit whenever there are two

available spare items or whenever there are at least two broken type 1

units and no type 2 items are currently being used in type I units."

Stage 2 calls for the aggregation of types 1 and 2 as a single

inventory system and the introduction of the type 3 system. We must

first find a single-item system which behaves as the combined type 1

and 2 system. To this end, we use the steady-state probabilities computed

by MPSX to determine the mean and the variance of the number of backorders

using the optimal policy just described for the combined type 1 and 2

system. We compute

Exp[backorders] = 2.151

Var~backorders] = 2.206

We next search for a single-item inventory system which closely

matches this mean and variance. Fortunately, the mean and variance of

backorders in any single-item system can be readily calculated by

computer. To keep the number of states from becoming too large for

efficient computations, we restrict the number of units and the number

of spare items to be no more than ten. The systems which best match the

mean and variance of backorders are listed below.

Number of Number of Mean of Variance of
Units Spare Items Backorders Backorders

7 3 2.042 2.163
8 4 2.062 2.490
7 2 2.513 2.131

* 6 2 2.024 1.812
8 3 2.524 2.524

-" -
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We chose to use the system with seven units and three spare items.

We again turned to MPSX to find an optimal strategy for the two-item

system, where type I (corresponding to types 1 and 2 combined) had

seven units and three spare items and type II (corresponding to type 3)

had four units and two spare items. The following charts depict the

optimal substitution strategy.

A verbal characterization of this policy is to "substitute a

spare type II item into a broken type I unit except when there is

only one broken type I unit and another type I unit currently contains

a type II item." Under this policy we expect the number of backorders

to have a mean of 3.081 and a variance of 3.362, compared with a mean

of 3.255 and a variance of 3.249 for the same inventory system using

no substitution.

We have now solved the sequence of two-item systems and are ready

to use the monotonicity properties to develop a comprehensive strategy

for the three-item system. We first note that there are several sets

of circumstances where the results from Stage I prescribe no substitution

while the results from Stage II prescribe a substitution. One such

situation is one type I backorder, one type 2 spare part, and one

type 3 spare part, with no items on loan to a unit of a different type.

In such situations, we should make the substitution but use. the mono-

tonicity properties and fill the backorder with the type 2 item instead

of with the type 3 item.

There is a very appealing rationale for interpreting the results

of the two stages in this manner. The decision not to substitute

made in Stage I was made without any knowledge of the type 3 system.

Y . ,,

i*
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Optimal substitution policy for types (1 and 2) and type 3.

S 2  3

22
sl  0l2 sI - -5 1

1 o I

0 0
21 21

2 2

s, -2 1 S 6

0 0n 21 n 21

2 2

s, -3 s =-7
S 1

o 0
n21 21

s2

'1 Ke1,, n21

5 1 - net inventory of type I items - substitute a type II item
into a type I unit

s2 - net inventory of type II items. 0 - make no repair

n - number of type II items
installed in type I units
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The decisions made at Stage I will necessarily be conservative because

the policy is determined on the basis of no spare items being available

from the type 3 system. When the potential availability of type 3

spare items is considered, we would expect to be willing to substitute

items more freely. The type 3 inventory system can be said "to bankroll"

the type 2 inventory system by providing available type 3 spare items

to fill the extra backorders the type 2 system incurs as a result of its

more liberal substitution policy.

So the optimal decision rule in this example will be to perform a

substitution whenever it is dictated by either the Stage 1 or the Stage 2

decision rule. The decision about which backorder to fill should be made

in accordance with the monotonicity properties, filling a backorder with

the least versatile item able to fill that backorder.

5. Areas of Further Investigation

This section lists several areas of further investigation for

matters that were either suggested or carefully avoided in the preceding

sections.

(1) There is no analytical proof that the preceding procedure

will produce an optimal substitution policy. A simulation study could

be designed to evaluate the performance of the procedure we suggest

a here and compare it to the performance of other substitution strategies.

The simulation study could also confirm that the monotonicity properties

. are indeed valid.

* •(2) There are variants of our dynamic programming approach which

merit some consideration. Instead of building a sequence of two-item

;N-
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systems from the bottom, we could start from the top and work down,

matching the distribution of spare items in the aggregate system

with a two-item system, instead of matching the distribution of

backorders. Another alternative is to combine at each stage the pair of

adjacent systems which would be expected to have the highest degree of

substitution (resulting from system i incurring many backorders and

system (i+l) providing many spare items) on the grounds that a high

degree of substitution causes a pair of systems to behave more as a

single system. It would be interesting to see if these approaches

produce similar optimal substitution policies.

(3) The criterion for choosing a single-item system to replace an

aggregate system could be studied further. We might be able to produce

a closer fit to the first two moments by varying the repair rate along

with the number of units and the number of spare items in our search

for an equivalent single-item system.

(4) The comprehensive substitution policy may be made more auto-

mated instead of using an ad hoc procedure based on the monotonicity

properties. We illustrate this by continuing the example of the

previous section. At Stage 2 an optimal policy was prescribed for

substituting spare type 3 items into type 1 and 2 units. The type1 "3 system could have either zero, one, or two spare items. We could

4determine a comprehensive substitution policy by returning to Stage 1
to recalculate the optimal substitution policy as il the type 2 system

had one and two additional spare items. In effect, we would be deter-

mining an optimal policy by explicitly incorporating the "bankroll"

'* of spare type 3 items into the inventory of type 2 items.

'''
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(5) The monotonicity properties alone do not always enable us

to choose which substitution to make. They do not, for example,

tell us how to choose between repairing a type 1 unit with a type 2

item and repairing a type 3 unit with a type 4 item.

I
., 7- . '


