
7 AD-A089 
855 NAVAL RESEARCH 

LAB WASHIN6TON 
DC 

F/S 20/9TRANSPORT STUDIES IN REVERSED FIELD THETA PINCNES.(U)
SEP 80 W M MANHEIKER. J M FINN DOE-EX-76-A-34-1006

UN UCLASSIFIED NRPL-4348 NLmEEEhEIWE E E 5E5 .E 

E



IIII '° IIII0 , mi IIU I
1m 1111--.2

t 1136

IIIIII .25 1111.6

MICROCOPY RESOLUTION TEST CHART





-EUMXCLASSIFICATIb% &170tS AG(Wflin Daste ired)
READ INSTRUCTIONSCq REPORT DOCUMENTATION PAGE R________TRU________

q__ REPORTDOCUMENTATIONPAGE_ BEFORE COMPLETING FORM
I- Wq)

. j KN U M B E 
- 12. GOVT ACCESSION NO. . RECIPIENT'S CATALOG NUMBER

NRL Mlemorandumr ,lput 3,48 D tq!;
4. TITLE (and Subtitle) - -.-..- S. TYPE OF REPORT & PERIOD COVERED

Interim report on a continuing
Z#RANSPORTX UDIES IN REVERSED FIELD THETA NRL problemi "i ?ANCSOT UDE --_

PINCHES, 6. PERFORMING ORG. REPORT NUMSER

7. AUTHOR(e) S. CONTRACT OR GRANT NUMER(s)

e Manheimer MM John

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA I WORK UNIT NUMBERS

Naval Research Laboratory j -RL PIbLem 67 --
Washington, D.C. 200370 DOE-EX-T6-A-34-]6Pit 01-80- ET Mm"P2(0O

11. CONTROLLING OFFICE NAME AND ADDRESS

U.S. Department of Energy Se

Washington, D.C. 20545 31

14. MONITORING AGENCY NAME G ADDRESS(iI different from Controlling Office) IS. SECURITY CLASS. (of this repore)

UNCLASSIFIED

StSO. DECL ASSI FIC ATION /OOWN GRADING
SCHEDULE

iS. DISTRIBUTION STATEMENT (of tlhi Report)

Approved for public release; distribution unlimited.

I?. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. it different from Report)

1S. SUP'LEMENTARY NOTES

*Present address: Science Applications, Inc.
McLean, VA 22102

IS. KEY WORDS (Continue en revere. aide if necoeaaiy and Identify by Wock number)

Reversed field theta pinches
Transport
Rotation generation
Similarity solution

20 .". 11STRACT (Conlnue en reverse side It neceasy end Identlfy by Wock numbsr)

-This paper examines anomalous transport in a reversed field theta pinch. The principal
effects are anomalous resistivity and rotation generation. Similarity solutions for the resistive
decay are found which agree qualitatively with experiment. Also it is shown that the spin up
and anomalous resistivity may be the effect of a single underlying cause, a current driven
microinstability.

D FOM 1473 EDITION OF I NOV 61 8 ' OBSOLETE T

SECURITY CLASSIFICA O THIS PA l bsan



CONTENTS

I. INTRODUCTION .............................................. I

II. REVIEW OF FRX EXPERIMENTS.............................. 5

III. SIMILARITY SOLUTIONS FOR RESISTIVE DECAY .................. 8

IV. ANOMALOUS ROTATION GENERATION ............................. 14

ACKNOWLEDGMENTS ............................................. 21

APPENDIX ................................................... 22

REFERENCES ....................................................... 24

Accession For

NTIS GRA&I
DTIC TAB
Unannounced 0
Justifi c ati

DTIC By-

ELECTE Distribution/_
OT2Availability CodesOCT 2 IW8O U Dibt vail and/or

D Dist Special

i



TRANSPORT STUDIES IN REVERSED FIELD THETA PINCHES

I. INTRODUCTION

This paper studies transport processes in reversed field theta

pinches (RFPs). In such a pinch an initial bias field points in the

negative z direction. Then the main e pinch coil, which produces a

positive Bz is pulsed on. The idea is that the negative and positive

magnetic fields reconnect, either spontaneously or with the aid of forcing

coils, to form a closed field region as shown in Figure 1. Just outside

this closed field region are open field lines which intersect the wall. A

plasma which is trapped in the region of closed field lines can be effec-

tively isolated from all external surroundings. Recent experiments on the

FRX devices at Los Alamos,I as well as earlier experiments on Pharos at the

Nav3l Research Laboratory2 and also other experiments3 show that these

configurations can be produced and apparently are stable to magnetohydro-

dynamic modes (i.e., they live for many tens, or hundreds of Alf~en times).

Also, they are quite elongated, which indicates that there is a great deal

to learn with a one dimensional theory.

If RFPs are stable to gross magnetohydrodynamic modes, the next

problem is the effect of transport. This paper is specifically motivated

by the Los Alamos experiments, although these transport effects have also

been seen in nearly all other reversed field e pinch experiments. There

are twc% striking transport effects in FRX.I First of all, there is the

decay of the plasma, apparently via resistive diffusion, although the decay

rate is much higher than one would expect on the basis of classical
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collisions. Secondly there is the generation of rotation in the plasma. As

the plasma decays, it spins up to about the ion diamagnetic velocity, at

which point it disrupts via the onset of an m = 2 rotational instability.

A significant experimental fact is that the plasma spins up to the ion

diamagnetic velocity in about the resistive decay time, as measured by

plasma loss. This fact motivates our hypothesis that there is a single

underlying mechanism which is responsible for both the decay and spin-up.

Other theoretical work on the decay was done by Hamasaki and

Linford,4 who used a one dimensional, high a transport code to study the

decay of a reversed field 8-pinch plasma. There are several theories of

the spin-up. Steinhauer5 invokes end shorting so that Er = 0 for the

plasma on the open field lines. This plasma then rotates at the ion

diamagnetic frequency, and the rotation is transported inward via classical

shear viscosity. In order to use this theory, of course, the rotational

velocity in the sheath plasma, which probably has gradient scale lengths

of an ion cyclotron frequency or less, as well as high speed convection

along the field lines, must be accurately known. Barnes and Seyler6 explain

rotation by examining the angular momentum of a particle just as it crosses

the separatrix. They find that such a particle does have a particular

angular momentum, so that as particles diffuse across the separatrix, the

remaining plasma spins up in the opposite direction. This theory is like

ours in that it relates the spin up to the particle loss. Fang and Miley7

also examine the effect of particle transport on rotation.



Our work begins in Section II by reviewing the experimental

data for FRX.1 We conclude that the resitivity is almost certainly

anomalous by at least two orders of magnitude. The viscosity also

seems to be anomalous by more than one order of magnitude, unless the

rotation speed on the open field lines is of order of the ion thermal

speed. The thermal conduction losses however, are small compared to

diffusive losses. Thermal conduction therefore does not seem to be

an important effect, and it may well be classical. Another striking

feature of the decay is that the separatrix stays nearly fixed in

time and the density profile decays, but does not change its structure

very much. This fact leads us to attempt a similarity solution for

the resistive decay of a reversed field e pinch.
Section III shows that similarity solutions for the decay can

be found. While the problem we solve is somewhat idealized, solutions

can be found much more simply and economically than with a transport

code, and a great deal of useful information can be obtained. For

instance we show that the resistive decay of a reversed field 0 pinch

is quite different from either of the two separate decay processes

which together constitute it; namely the pure resistive decay uncoupled

to fluid motion, and the transport of plasma across a prescribed field,

uncoupled to field decay. Probably the most interesting conclusion

we arrive at is that the decay rate is quite insensitive to the

boundary condition on the separatrix. We express this boundary condi-

tion as a ratio of density at the separatrix to that at the field null.

Although the density and field structure, particularly near the
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separatrix, does depend strongly on this ratio, the overall decay rate

does not. Therefore our physical model does not require detailed

knowledge of the behavior near the separatrix. Another interesting

conclusion is that the decay rate remains finite as the resistivity

at the neutral line goes to zero. This is the same conclusion obtained

by Drakeet al., 8 using a quite different model for transport in a

reversed field geometry.

Finally, Section IV describes our theory of rotation genera-

tion. It assumes that there is a current driven instability which

gives rise to fluctuating fields in the plasma. The precise instability

is not crucial to our model, but to be specific we consider a lower

hybrid drift. This gives rise to an anomalous resitivity, which can

be used in transport codes like that of Hamaskal. 4  However, one can

9show that it also gives rise to off diagonal terms in the stress

tensor, so that there is a net force on the plasma in the e direction.

In Section IV we calculate these off diagonal terms. While the spin

up depends on the detailed nature of the turbulent spectrum, one could

also calculate the ratio of spin up time to resistive diffusion time.

This ratio turns out to be independent of spectrum and it depends

only on the phase velocity of the fluctuating potential, the very

quantity which is best known. It turns out that the plasma is indeed

predicted to spin up to about the ion diamagnetic velocity in about a

resistive diffusion time. Thus the anomalous resitivity and anomalous

spin up appear to have a single underlying cause.
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* II. REVIEW OF FRX EXPERIMENTS

This section briefly reviews the information available from

FRX experiments which has been reported at various meetings. We do

not discuss the circuitry required to set up the field reversed

configuration, but discuss the decay of the plasma once it is initialized.

At t = 0, the plasma is set up in a state like that shown in Figure 1.

There is no poloidal field, and the plasma is quite elongated. The

radius of the separatrix in FRX-B is about 5 or 6 centimeters, and

the total length is about 80 centimeters. The electron temperature

is typically 150 eV, nearly uniform in both space and time. The ion

temperature and density are functions of fill pressure. As the fill

pressure increases from 9 to 21millitorr,the density increases from

about 1015 cm 3 to 4 x 1015 cm 3 , and the ion temperature decreases

from about 400 eV to about 100 eV.

Once the plasma is formed it decays over a time scale of

about 40 V sec. As it decays, it starts to rotate in the ion dia-

magnetic direction. The plasma finally disrupts because a rotational

instability is excited when the rotation speed is of order the ion

diamagnetic speed. It is also worth noting that at this point, roughly

half of the plasma has been lost due to the slower decay. During this

initial slow decay phase, the plasma basically retains its shape, both

axially and radially. An estimate of the decay rate can be obtained

from the decay in particle and energy inventory for the first

30 p sec. The e-folding time for density is about 40 P sec and the

e-folding time for energy is slightly less. Since resistive (particle)

5
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diffusion causes loss of both particles and energy, while thermal

conduction causes loss of only energy, these results argue strongly

that resistivity is more important than thermal conduction since the

latter gives rise to the difference between the two decay rates. To

summarize, the two most important transport effects occurring during

the initial decay seem to be resistive diffusion and generation of

rotation. Thermal conduction may also be playing a role, but it is

probably a less important role.

We continue by examining qualitatively what classicial trans-

port predicts for these effects. The resistive diffusion time is

Tr P 47ra 2 /c 2 where a is roughly the separatrix radius and n is the

resistivity, 11 - 10 -13/T e3/2 . Taking a = 5 cm and Te = 150 eV, we

find that Tr 2z6 x 10-3 sec. The observed decay time is more than

two orders of magnitude smaller. Thus it seems certain that anomalous

resistivity is playing an important role in FRX-B.

We next consider classical cross field ion thermal conduction.
The thermal conduction coefficient is K = 2nTi/1i~iiT i where Ti is

11? wher Ti/ns
the ion collision time, Ti = 2 x 106 Ti/n, assuming a value of 10 for

the Coulomb logarithm. flaking use of the fact that on the average,

the beta is unity for a reversed field theta pinch configuration, we

find that the thermal conduction time is given by

T 6 x 1 T 10-9 (eI\ T 3 2 a2  for Ti in eV and a in cm. Takingc Ti )

T= 150 eV and a = 5 cm, we obtain Tc m 1.4 x 10-4 sec. This may

be the explanation of the difference between the decay rates for energy

and particle inventory. To confirm this, however, would require much

more data than is currently available.

6



The other classical process is shear viscosity. The relevant

i = 3 2ion viscosity coefficient is n, 1= nTi/W 1ii i . This has the same

form as Ki, but is considerably smaller. The time for the entire

bulk of the plasma to spin up to the speed of the plasma just outside

the separatrix is then about 6 x 10-4 sec. Unless the plasma on the

end shorted field line is rotating at least 10 times faster than the

ion diamagnetic speed, classical viscosity does not seem able to

generate the observed spin up in FRX-B. To summarize, the experimental

evidence indicates that resistivity and shear viscosity (or equivalently,

the off diagonal part of the stress tensor) are anomalously large, but

that thermal conduction is not far from classical.

7

6



III. SIMILARITY SOLUTIONS FOR RESISTIVE DECAY

As was shown in the previous section, experiments on FRX-B

indicate that the decay is roughly exponential in time, that the

separatrix remains fixed in space, and that the density profile does

not change shape as the plasma decays. All of this suggests that the

equations for the resistive decay have similarity solutions. Further-

more, the extreme elongation of the plasma and the fact that the length

does not change appreciably after the compression period, indicate that

a one-dimensional model should suffice. We find that this is indeed

the case for resistive decay of a reversed field configuration in slab

geometry. In slab geometry, the equations for resistive diffusion are

A + vA - nc2  2A (la)

{a.2

1 A nT = noT (1b)
8rr 00x 0 0

3n +_anv = 0 (ic)
t

Here, x = o is the position of the field null, and the separatrix is

taken to be at x = xo. ThequantitiesA=Ay and nhaveeven symmetry in x,

whereas B=B z andv=vx have odd symmetry. Thequantitiesn o andT are respec-

tively the density and temperature at x = o, and they are functions of

time. Because the symmetry, n is a function of maqnetic flux.

8



Equations (1) must be supplemented by an equation for the tempera-

ture. Since we have seen that thermal conduction is not the dominant

transport mechanism, we assume T = T where - is the specific

heat ratio. We consider principally y = 1 (isothermal) because in

FRX-B experiments, the temperature seems to be uniform in space. Our

discussion of Eqs. (1) assume y = 1. However, generalization to

other values of y is trivial and we present also results for y = 5/3.

To generate a similarity solution to Eqs. (1), let us

assume A(x,t) = A(x)e - st , n(x,t) = n(x)e -2st (e -2st/  in the general

case), v(x,t) = v(x) and T constant in space and time (i.e., T(x,t) = T

for an isothermal plasma). The total magnetic flux is zero inside the

separatrix. On the separatrix, there is some field B(x=x) =

xx5

and for x > xs there is vacuum so that B(x) has the same value it has

on the separatrix plus any jump required to contain the pressure on

the separatrix. Hence our similarity solution assumes that the field

in the vacuum decays at the same rate as the field in the plasma.

That is, the boundary condition on the vacuum wall necessary for the

existence of a similarity solution is that magnetic flux is just

absorbed by the wall at a rate dictated by its decay in the plasma.

That is, the vacuum wall is "black" to the vacuum flux. Specifically,

if the vacuum wall conserves flux (i.e., is a perfect conductor), no

similarity solution is possible if this wall is off the separatrix.

However, a similarity solution exists if a perfectly conducting wall

is at the separatrix.

9



To find the similarity solution and the eigenvalue s we have

devised an iteration scheme. First we assume a density profile n(x)

and an eigenvalue s and solve for v from Eq (1c);

x

v(x) = n dx n(x). (2)

Then using this form for v, we solve (la)

-sA + v(x) A c2 2A (3)

for A(x) and the eigenvalue s, imposing boundary conditions A(xs) = 0

and 2A 0. The vector potential must be equal to zero, rather
ax~

x=O

than some constant, on the separatrix because the enclosed flux is

zero for all time. Thus E = -1/c 3A y/t = 0 on the separatrix. The

only value of Ay consistent with both this and the assumed time

dependence of the similarity solution is A(xS) = 0.

To normalize A, choose a ratio of density at the center to

density at the separatrix. This specifies inside the separatrixjust

from pressure balance as dictated by Eq. (ib). Thus n(x=xs)/n(x=o) is

required as a boundary condition. The exact determination of this

quantity undoubtedly involves the physics of the separatrix. For our

purposes, we simply regard it as a parameter and examine the similarity

10



solution as a function of it. Then to continue, we solve the pressure

balance, Eq. (1b) for n(x). This completes one cycle of the iteration.

In practice, this iteration scheme converges very rapidly and

a self similar solution is found. In our similarity solutions, there

is no requirement that n is constant as a function of x. In fact an

anomalous resistivity might well be larger near the separatrix where

the gradients are steeper. To study this we have taken n(x) = [(I-CL)

+ 2ax/x ]n. The average n is independent of a; a = 0 corresponds to
s

uniform resistivity and a = 1 has n peaked at the edge. For a = 0.6,

profiles of A(x) and B(x) are shown in Figure 2a, while profiles of

n(x) and v(x) are shown in Figure 2b, assuming n(x=xs)/n ° = 1/2

(B(x=xs)/Bo=0.71). The distance is normalized in units of xs and the

velocity is normalized in units of nc2/4rrs. The eigenvalue s = 1.03

c2 Clearly the self similar solution predicts 
very reasonable

profiles of density, field and velocity. Figure 3 shows the dependence

of s/(nc2/4rx2) as a function of a for both y = 1 and y = 5/3 for

n(Xs)/n 0 = 1/2. For a = 0, y = 1, i.e., for uniform resistivity and

an isothermal plasma, we have s/(nc2 /4rxs) = 1.31. The decay rate

decreases monotonically with a, the amount of peaking of n. It is

interesting to note that s approaches a finite value as a - 0, although

n(O) = 0 seems to imply s - 0 from (3). This happens because with

n(O) small, there is little magnetic diffusion near x = o and there-

fore the current (c/47)aB/ax becomes large in such a manner that

n(O)(aB/ax)x=o remains finite. This effect has also been observed

by Drake et al.
8
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Let us now digress briefly to compare our similarity solutions

of the coupled flow and magnetic diffusion with two simplified models.

First assume the magnetic diffusion is uncoupled to the flow, so that

the time dependence is governed by

-sA = C 2 a 2A (4)47T 2

subject to the same boundary conditions at x = o and x = xs, and with

2 c2
constant n. Then s =2---2' which is roughly twice as large as the

decay rate s for the coupled problem. Thus the plasma configuration

decays slower than the pure magnetic configuration. The reason is

that in either case, the magnetic field decays because of the inward

diffusion of field. However for the plasma configuration, the fluid

motion is outward, and the plasma, of course, attempts to take the

field back out with it. The net result is a reduction in the rate of

magnetic decay.

The other simple model is pure plasma motion across a specified,

time independent magnetic field, as is usually appropriate for a low

beta plasma. In this case, flow balances Ohmic dissipation and

V= .c2 a2A / A (5)

12



Assuming B is proportional to x and A satisfies the same boundary

nc2conditions, then v = 4-xso that v diverges at the field null and has

just the opposite structure in x to that in Figure 2b. Thus to get

reasonable results, the time dependence of the magnetic structure must

be taken into account. Specifically, at the field null, Ohmic dissipa-

tion is balanced entirely by the induced electric field, and not at

all by the flow.

We have also studied the dependence of the decay rate on n(x5 )/n.

The decay rate turns out to be nearly independent of this parameter.

For instance Figure 4 shows a plot of s versus n(x )In0 for -y = 1 for

a = 0 and 0.6. There is almost no change in s as this parameter is

varied. This leads to the very interesting conclusion that the decay

rate is very insensitive to the boundary condition on the separatrix.

To suimmarize, the experimental data of FRX-B seems to be

consistent with a similarity solution to the equations. We have found

similarity solutions in slab geometry which give very reasonable profiles

and decay rates. We have concluded that the decay rate remains finite

if the resistivity at the neutral line goes to zero. Another interesting

result is that a knowledge of the exact boundary condition on the

separatrix is not necessary for an accurate calculation of the decay

rate of the equilibrium.

13



IV. AN011ALOUS ROTATION GENERATION

In this section we examine how a current driven instability

which gives rise to anomalous resistivity can also generate rotation

of the plasma itself. Our basic assumption is that the fluctuating

fields generated by the instability constitute the only transport

mechanism; that is we neglect collisions and classical transport. To

calculate the rotation generation, we assume first the distribution

function is given by f + 6f where 6f is the fluctuating part which is

in phase with the fluctuating potential. That is if

(x) = t *(k)e ik x + c.c. , (6)

then

6f(x) = ) 6f(k)e
ikx + c.c. (7)

where there is a particular phase relation between 6f(k) and 0(k) but

where the (k) for different k have random phases with respect to

one another.

In order to generate ensemble average fluid equations from the

Vlasov equation, there are now two types of ensemble averages which

are necessary. First there is the usual integration over particle

velocity u (the symbols u, v denote individual particle velocities

and fluid velocities, respectively); second there is the average over

wave phases. We denote the former by an angle bracket <A> = fd3ufA,

14



the latter by a top line. In what follows we essume the magnetic field

has only a z component and that all ensemble average quantities vary

only with r. The double average u. moment of the ion Vlasov equation is

V.~i + V *<.ii + v VBz - -E~n = 0 (8)

and the corresponding average of the electron Vlasov equation is

ne. eEn

rz + ;E6n+4n = 0 (9)

In deriving Eqs. (8) and (9) we have made several assumptions. First

we have assumed quasi-neuturality so ni = ne and 6ni = 6ne. Second

we have assumed vir = ver = v. In the appendix, it is shown that the

slight difference between vir and ver necessary for setting up the

radial electric field Er does not make a significant contribution to

the rotation. Third, we have neglected both electron inertia and any

electron transport resulting from an off diagonal component of the

electron pressure tensor. Since the last three terms of Eq. (8) are

zero because of Eq. (9), the equation for rotation generation is simply

a _ 1 a <uU <uiruiO>= ii r VirUi1> r

The problem now is to calculate <Uiruie>. The approach here

is similar to that taken in the calculation of anomalous transport due

15



to drift instabilities.9  One takes the Uir and 2 moments of their 10
ion Vlasov equation and subtracts the two. The result is

2eB <urU>- e-<u 6E 6f> + 6<Ur6Er 6f>
Mc -- - - -M M ~u

-RE + frnvr = u r - Fr UrU-uu /2 (11)

where we have dropped the i subscript. It can be shown that the right

hand side of Eq. (11) gives rise to a contribution which is small by

(WciT)"1 or Pi/L where T and L are macroscopic time and length scales.

We neglect this and set the left hand side of Eq. (11) to zero. Thus

<U rue > : [<ueSE0 > - <Ur6Er6f>

C e

+ Eenve - Ernvr] . (12)

Inserting <urue> from Eq. (12) into Eq. (10) gives an equation for the

generation of rotation from a fluctuating field. Note that the rotation

generation is a bulk effect and occurs everywhere in the plasma. This

is quite different from other models 5 which invoke rotation by end

shorting outside the separatrix, and then spin up, via classical

viscosity, inside. Furthermore, up to now, there has been no need to

identify any particular instability. One attractive feature of this

model is that the same instability responsible for anomalous resistivity

could also be responsible for spin up. This seems to be a reasonable

hypothesis, because the time to lose half the plasma is measured to be

16
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roughly the same as the time for the plasma to spin up to the ion

'. diamagnetic velocity. We will see that by making only very weak

assumptions concerning the micro-instability, it is possible to compare

the diffusion time to the spin up time. It turns out that the plasma

does indeed accelerate to roughly the ion diamagnetic velocity in a

resistive diffusion time.

We now examine qualitatively the rotation of the plasma assuming

that the fluctuating fields arise from a lower hybrid drift instability.

Assume that initially there is no plasma rotation, so that the ions are

confined electrostatically and

Ti 3n (13)r -ne ar

assuming Ti has no spatial variation. Then if Te << Ti , the electrons

rotate with drift velocity

E
Voe = - rc-z (14)

z

Since a < 0 in the outer part of the plasma, vee > 0. According toar e

Reference 10, the fastest growing electrostatic lower hybrid drift

instability has k. w,(2 m/M) 'ce/vi, krf 0 and w/k0 ft voe/
2, where

Vi is the ion thermal velocity. If 6Er = 0, the quantity to calculate

is <u 6E,6T>. Since the frequency of the lower hybrid drift instability

is much larger than the ion cyclotron frequency, the ions are effectively

unmagnetized, so

17
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-e6E6  f
f= M u

6f- k u ) (15)-i(w+iL - ko0u 6)

where the sign of the ic is from the causality condition and it tells

which way to integrate around the singularity. Making use of the fact

that the drift velocity is much less than the ion thermal speed, we

find

_E 2 n v e

M 4jkofv 3

using the fact that w/ke = Veol2.

Let us first calculate the volume average rate of change of

angular momentum, and then compare the rate of spin up to the rate of

resistive diffusion. Since the right hand side of Eq. (10) is the

divergence of a tensor, we can do a volume integral for r < rs where

rs is the radius of the spearatrix, and find

d d3rnv in ' u e 2TrsL

r 
s

eo,2  nVe

= r " sLc [! 44 eav Ernvr (16)

r= r s



where L is the length of the plasma. The Eeve term does not contribute

to Eq. (16) because E, is zero at the separatrix (which is assumed fixed

in time) because the enclosed magnetic flux is zero at all times, and

the <u 6E-6f> term is zero because k is assumed zero. Sincer r r
Er <Oandvr >0, the right hand side of Eq. (16) isnegative, so the plasma

r=r s  r=r s

spins up in the negative theta direction, that is, in the diamagnetic direction.

It is interesting that the phase velocity of the instability

is in the positive e direction, so that the force exerted directly on

the ions is also in the positive e direction. However the plasma spins

up in the opposite direction. The explanation, of course, is that the

net force on the ions is not a force on the plasma; there is an equal

and opposite force on the plasma electrons. This force between

electrons and ions cannot rotate the plasma, but gives rise to anomalous

resistivity and particle loss. The rotation results from an off

diagonal contribution to the pressure tensor. It is analogous to

classical viscosity, except that this off diagonal term does not arise

from a velocity shear, but rather from an instability driven by the

relative electron-ion drift vee.

It is useful now to see how much the plasma spins up in a

resistive diffusion time. The resistivity can most easily be calculated

in terms of the anomalous force density on the ions Fe = e 6n6E0

and it is

19



2 n~2  m Mk n 2  3v (17)
Vee1

Then the resistive diffusion time is T_ c adteotadrdar -Tr an2 h uwadrda

velocity is given roughly by vr st r S/T r With this, one can show

that the two terms on the right hand side of Eq. (16) are about the

same size assuming E r is given by Eq. (13), and also that the plasma

spins up to about the ion diamagnetic frequency in about a resistive

diffusion time.

In calculating the ratio of spin up time to resistive diffusion

time, it is interesting to note that this ratio is independent of both

kand 16E,1 . Thus the ratio depends only on the phase velocity of

the fluctuation, which we assume is vee/2 . This is a very weak assump-

tion, because no matter what Che instability is, or what saturates it,

the phase velocity will almost certainly be between the ion and electron

rotation speeds.

To summarize, we have shown that in FRX-B, the anomalous re-

sistivity and spin up might both result from the same cause, namely

an instability driven by the 0 current. The fact that the plasma is

observed to spin up to the ion diamagnetic frequency in about a

resistive diffusion time lends credence to this hypothesis. By making

only very weak assumptions concerning the instability (taken to be a

lower hybrid drift instability in our case) it is possible to show that

the plasma spin up is in the right direction and that it accelerates to

about the ion diamagnetic velocity in about a resistive diffusion time.
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APPENDIX

In this appendix we show that the difference in radial diffusion

velocity of electrons and ions induce only a negligible amount of plasma

rotation. To do so, consider the ion and electron momentum equations

in the 0 direction neglecting all off diagonal terms in the pressure

tensor. They are

nMv ir v i .
-niMvi + - - rnMvrvie + ir - n -eE nie-8-F (A-1)i r ar ir r c eiO

Ver FeiO
0 -E0 + i + (A-2)

where Feie is the force density action from one species on another.

Also we now explicitly account for small differences in electron and

ion densities and radial velocities. Substituting for E and neglecting

the F term, which is small both because F (the collisionality) is small

and because it is multiplied by ne-ni, we find that the equation for

rotation generation is

a 10 + - nMvir v i + nc1virvio w (A-3)

rtn e r r rl r C

where we adopt the notation w = VeroVir . This equation relates vie

to w. There are two other equations, Maxwell's equation relating

Er to w
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8Er = 4wne W (A-4)
at

and the radial ion mementum equation

E - ie laPi

E - B +L- (A-5)r c ne ar

where we have neglected the centrifugal force in Eq. (A-5). Thus

Eqs. (A-3)-(A-5) relate the quantities w, vie and Er to each other

and to the other fluid quantities. However if the centrifugal force,

which is small compared to the pressure gradient is not included in the

pressure balance equation, the equations for the other fluid quantities

n, vr, Te, T. and B do not couple to vie, w and Er. Thus Eqs. (A-3)-(A-5)

are equations for the rotation which can be solved after the other fluid

quantities are known. We now show that the rotation generated in this

way is negligible.

The idea is that a change in ion pressure pi in time due to the
aE

decay of the plasma produces a displacement current - according to

Eq. (A-5). This in turn produces a current-new according to Eq. (A-4),

which generates a rotation, according to Eq. (A-3). A simple calcu-

lation shows that the rotation generated in the decay time is of order

(Q ci/W pi) 2vDi , which for a dense plasma like FRX-B is much less than

the observed rotation velocity, of order VDi* Thus ordinary resistive

transport can explain the decay of the plasma, but not its spin up.

To explain the spin up, an off diagonal contribution to the pressure

tensor is required. This can come from either a classical transport

effect, i.e., shear viscosity, or anomalous transport, i.e., a current

generated instability.
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Fig. 1 -Flux surfaces for a typical RFP equilibrium. The scale
is compressed in the axial (z) direction.
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Fig. 2 - Profiles of (a) vector potential Ay (solid)
and magnetic field Bz (dotted), (b) density (solid)
and velocity vx (dotted) as functions of the nor-
malized distance from the separatrix for a~ 0.6
and n(xs)/no 1/2
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at

Fig. 3 - Normalized decay rate S =s/(ic
2/4x;) as a function of the

peaking parameter ot for ~y - 1 and 'y -5/3, and for n(xs)/no 1/2.
Notice that S remains finite as ot approaches zero, i.e., -q(o) -. o.
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Fi9. 4 - Normalized decay rate S -s/(ijc 2 /4wx2) as a function of the
normalized aeparatrix density n(x1 )/n0 - N(1)IN((!) for y - 1 and a = o
and 0.6. Note that S is nearly independent of the density (and hence
pressure) on the separatrix.
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