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COMPUTER SIMULATION OF INTENSE ELECTRON BEAM
GENERATION IN A HOLLOW CATHODE DIODE

Introduction

Several years ago at the Naval Research Laboratory, Cooperstein, et al.,

observed some interesting anode damage patterns during runs of the Gamble I

low-impedance diode.1 The experimental arrangement is depicted in Fig. 1.

A simple carbon hollow cathode opposed a flat plate porous graphite anode.

(Note that only the small D carbon witness plate location is of interest

here.) Large external magnetic field coils maintained the entire configura-

tion in a 30 kG solenoidal magnetic field. A number of discharges were run

in the 600 kV to 1 MV range. After a typical experiment, examination re-

vealed that a perfect circular groove had been cut into the anode surface.

The dimensions of the groove were such that the cathode could neatly fit into

it. Furthermore, upon closer examination there was an even finer pattern of

damage inside the groove. A radial cross-section had the shape of a straight-

sided "W". The groove was decidedly deeper at the edges than along the

center.

The close correspondence between the cathode radius and the damage

radius was attributed to the effect of the strong axial magnetic field. This

effect alone, however, could not explain the sheer magnitude of the damage.I2 Some 100 kA/cm2 of electron current density would have been required to

pulverize the anode material. Standard one-dimensional analysis cannot

explain the emission of such high current densities from the cathode.

Manuscript submitted June 16, 1980
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Nevertheless, their existence has been established. A possible explanation

is that electron emission is enhanced through a two-dimensional intensifica-
2,3

tion of the electric field near the cathode face edges. This enhanced

edge emission would also explain the "W" shape of the anode groove cross-

section. The computer simulations described below were conducted to test

this theory.

The Simulation Code

The computer code utilized in these studies is a modified version of the

DIODE2D code developed at the Naval Research Laboratory during the mid-1970's

by one of the authors (R.E.L.). That original code performed numerous

accurate and efficient one- and two-dimensional electrostatic diode simula-

tions. These results encouraged the expansion of the program to allow the

full treatment of radial and axial self-magnetic fields as well as the inclu-

sion of an imposed axial magnetic field. As in the original code, great

emphasis was placed upon optimizing the numerics of the new code for use on

NRL's vector machine, the Texas Instrument Advanced Scientific Computer. The

coding work was completed by another of the authors (R.J.B.) in August of

( 4 1978. Since then, work to improve its efficiency has continued simultaneous

to its application to a variety of problems of interest including the one

presented herein. The capabilities of the code and its limitations are out-

lined below.

The code is 2 dimensional, particle-in-cell (PIC). Inhomogeneities

are allowed in the radial (r) and axial (z) spatial dimensions. Complete

azimuthal symmetry is assumed. On the other hand, all three momentum com-

ponents (r, e, z) are retained. This retention of the theta momentum is a

prerequisite for the treatment of radial and axial magnetic fields in the

simulation. The"particles" in this model are axially-centered rings of

2



charge with all other degrees of freedom. In reality they are macropazticles

carrying many times an elementary charge but retaining the physical charge-

to-mass ratios of the protons and electrons which they represent. Area

weighting (i.e., linear interpolation) is used to couple these charges with

the electric and magnetic fields calculated over a fixed set of grid-points

in the region of interest. The fields thus interpolated to the particle

positions act on these charge-current rings byway of the relativistic

Lorentz force equation.

The fields are treated electrostatically and magnetostatically. In

this sense the code does not perform a true "simulation" since Maxwell's

equations are not observed. Rather the treatment is "quasistatic". Equilib-

rium solutions to various diode geometries are sought. The "timesteps"

which appear in the code are actually snapshots of the system while it seeks

to relax toward its steady-state operation. It is this steady state which

is of primary interest. In order to determine the electric field within the

diode region particle charge densities are distributed over a fixed grid and

the discrete Poisson's equation is solved.6 The same technique is used to

determine the axial and radial components of the self-magnetic field from the

9$ azimuthal current densities. In both cases the code permits irregular

conducting boundaries inside the computational region. The treatment of such
7

internal boundaries entails the use of a "capacitance matrix". The internal

surfaces thus created are held at predetermined electric potential values

jwhile magnetic flux from all but the imposed fields is excluded from them.
Direct radial integration of the axial current densities over the msh yields

the azimuthal magnetic field via Ampere's Law. The outer radial boundary of

the diode region may be either conducting or free-space. The electrostatic

potential, *, is set constant along all conducting boundaries. Along radial

3
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free-space boundaries, * is graded logarithmically and along axial ones,
linearly. For A., when a free-space outer radial boundary is chosen, the

external source-free cylindrical vector potential eigenvectors are matched

up with their internal, source-consistent counterparts there. The algorithm

also permits the imposition of a temporally and spatially uniform axial

magnetic field. This feature was essential to the completion of this

particular study.

At the start of a typical computer run, the computational diode region

is a complete vacuum, devoid of particles. The electric potential is pre-set

along the entire boundary as well as along all internal conducting surfaces.

A fixed value is similarly set for the imposed axial magnetic field (B ).z

The emission of the ions is permitted anywhere along the conducting high

voltage boundary (anode) surface. Electrons are emitted along the front face

of the cathode surface. The value of the perpendicular electric field at a

given emission point determines the total charge (i.e., number of particles)

that will be emitted there. At the beginning of a timestep, the electric

field at a surface specifies the net charge density on the surface via Gauss'

Law. The surface integral of this density over a cell width around a given

grid point yields the net charge which is emitted there for this timestep.

Prior to the actual particle-pushing the electric field is recalculated

taking into account the newly emitted charge.

The emitted particles are then pushed according to the relativistic

Lorentz force law using the area weighted electric and magnetic field values

interpolated at the particle position from the four nearest grid points.

After the pushing in each timestep the charge and current density associated

with each particle is distributed over the four nearest gridpoints using the

same linear interpolation scheme in reverse. This yields a complete array of

4
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values for the charge density, p, and the current density, J, over the compu-

tational mesh. Poisson solving these arrays yields * and Ae from which ER#

Ez, BR and Bz are calculated. The azimuthal component of B is obtained

through direct integration of J over the grid. Quantities of interest arez

then extracted and output via diagnostic subroutines. The code then cycles

to the next timestep for particle emission.

Finally, it would be noted that the numerics of the particle pushing as

well as the potential solving has been completely I'vectorized". Thus the

momentum, position, and field components associated with the entire ensemble

of particles are treated as macro-vector quantities. Arithmetic operations

performed with them are accomplished in a completely vector-array format.

This property of the code permits efficient running times on the most

advanced scientific computers. (Of course, the interpolation of p, J, E, and

B values between particle positions and grid points requires random accessing

of array points and this process cannot be vectorized.)

The Computer Experiment

Configuration Under Study

4I The diode configuration modeled in this simulation was chosen specif-

ically for its significant distortion of the internal electric field. Any

emission enhancement resulting from this distortion should be relatively easy

to see. Figure 2 provides a scale drawing of the actual geometry of the

diode modeled. The hollow-cathode projects into the computational region

from the left-hand boundary. A cylindrical anode cup completely surrounds it

radially and to the right. One-quarter centimeter separates the cathode face

from the anode disc plate while radial gap between these two coaxial elec-

trodes is one and one-quarter centimeters wide. The cathode itself measures

1.27 centimeters in outer radius with a wall thickness of 0.14 cm. It

IL 5
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projects 0.08 cm into the 2-D computational region. A conducting plug fills

the cathode interior to within 0.08 cm of the edge face and thus coincides

with the computational region's inner left boundary. The upper half of the

region's left boundary is left "open" with the electrostatic potential

graded logarithmically with radius.

The vacuum diode equipotential surfaces are depicted in Fig. 3. Of

particular interest in this plot is the manner in which these surfaces are

compressed near the edges of the cathode face. This bunching gives rise to

the electric field enhancement at these points and to the resulting enhanced

electron emission there.

Operational Parameters

For all of the runs discussed herein, the diode voltage is initialized

at 120 kV and climbs linearly over 50 timesteps to a steady state plateau

value of 600 kv. The timestep, At, itself is fixed at 1.6 x 10- 12 second.

The two-dimensional numerical mesh over which the pacticles move measures

128 cells in the radial dimension and 64 cells in the axial. In addition, a

monolayer of "guard cells" completely surrounds the mesh to yield a total of

130 x 66 cells overall. All boundary surfaces run between neighboring rows

of gridpoints rather than along them. (Gridpoints are defined as the cell

centers.) The electrostatic potentials on these boundaries are held fixed

relative to the full diode potential at any given timestep throughout the

t ,l simulation. The cell widths (or gridpoint spacings) are 0.0195 and 0.00521

centimeters for AR and AZ, respectively. The front face of the cathode

emits electrons over six radial cells. This emission profile provided

adequate resolution for this experiment. Finally, a solenoidal magnetic

field is imposed and is assumed to have been on long enough to have

/6
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completely penetrated the anode and the cathode before particle emission is

initiated.

For the first 300 timesteps of the simulation, only electron emission

was permitted. By that time, an electrons-only steady state had been

attained. The program diagnostics were then examined to determine which

regions of the anode surface were being bombarded by the largest electron

current densities. At timestep 301, ion emission was turned on over those

regions. (In the physical diode, these are the areas where the most heating

8
of the anode surface has occurred.) The computer simulation then continues

until the net ion and electron currents equilibrate. The numerical data

presented in the next section are taken from this final timestep with the

device in its steady-state operation.

Results

In order to gauge the specific effect of a strong imposed solenoidal

magnetic field, B, on diode operation, the same diode was simulated with

and without B = 30 kG. In both cases the plateau voltage is set at 600 kV.z

In Case 1, B is set equal to zero. The major phenomenum to be observed inz

ithis case is the two-dimensional electric field enhanced emission of electrons.

The results are graphically presented in Fig. 4. After 300 timesteps of

electrons-only operation, the equilibrium profiles of electron emission cur-

* rent density at the cathode face and the electron impact current density at

the anode are plotted as shown. It is quite clear that the compression of

-Y electrostatic equipotential liner at the cathode face edges (see Fig. 3) has

had its effect. Electron emission is up by a factor of about 2.5 at the

edges as compared to the center of the cathode face. A peak electron current

density of over 78 kA/cm2 is observed at the edge. The sharpness of this

profile degenerates markedly before hitting the anode face. Virtually all

7



of the double-peaked definition is lost. The distribution is relatively dif-

fuse with a maximum density of only about 24 kA/cm 2 . A net current of

37.6 kA now flows through the diode. Since the critical current is about

82 kA, only very weak pinching can occur.

At timestep 301, ion emission begins on the anode face in the region

where the electrons have been arriving. The addition of protons into the

system has a substantial effect (see Fig. 5). At equilibrium, the total

current through the diode has jumped to 61.5 kA. The electron emission pro-

&2
file has about the same shape but it now exceeds 90 kA/cm 2 at the cathode

face edges. Similarly, the anode electron impact plot is still diffuse but

it now peaks at about 32 kA/cm 2 . Note also that the self-pinching of the

electron beam is more pronounced. The mean radius of the beam has decreased

by about one millimeter in its passage across the two and a half millimeter

gap.

For the diode simulation Case 2, a thirty kilogauss solenoidal magnetic

field, Bz, is imposed. The results of the runs are plotted in Figs. 6 and 7.

As in the previous case, only electrons flow through the system during the

first 300 timesteps. Figure 6 reveals once again a double peaked emission'1 2
distribution at the cathode with a maximum value of about 96 kA/cm . The

truly dramatic change is found in the anode profile. The beam's radial

diffusion while crossing the gap has been sharply restricted by the imposed

B . The anode impact plot has about the same shape as the plot of the elec-
tron emission. It peaks at about 83 kA/cm 2 . In this steady state about

40 kA is flowing through the diode. The results become more marked after

ions are permitted into the system (see Fig. 7). Peak electron emission

rises to 108 kA/cm2 while a maximum of 92 kA/cm2 of electron current density

is being deposited at the anode face. (Note that the total diode current is

8
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59.2 kA in steady state. This is less than that recorded for the B = 0
z

case for the simple reason that ion emission was artifically limited to fewer

points on the anode face for this run.)

These results indicate the following: (a) Electron emission is

enhanced at the cathode face edges. (b) Protons flowing in the system sub-

stantially increase net diode current figures. (c) A strong imposed B
z

significantly reduces the self-pinching of the electron beam as well as its

radial diffusion.

* Comparison of Results to Theory and Experiment

The computational results just presented gain significance only through

comparison with the predictions of theory as well as with the findings of

experiment. The first question is that of electron emission enhancement due

to two-dimensional electric field distortions. In a one-dimensional analysis,

in the absence of ions the Child-Langmuir emission law predicts that for an

infinite flat plate vacuum diode with gap separation, d (in centimeters),

and potential difference, V (in volts), electrons will be emitted uniformly

9
over its cathode surface with a current density of

SCL = 2.34 x 10 - 6 v 3/2 d 2

For the diode treated in this paper, V equals 600 kV while d is 0.25 centi-

meters. The formula thus yields JCL 17.4 kA/cm 2. This prediction comes

2
fairly close to the 20-24 kA/cm measured near the center of the cathode

* face. One would physically expect those interior regions to most closely

resemble the one-dimensional model. At the edges, on the other hand, the

electron emission exceeds the one-dimensional JCL prediction by a factor of

4 to 5.

* 9
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The introduction of protons into the system modifies the theoretical

predictions. This new condition is termed one-dimensional bi-polar flow.

The new electron emission current density, JBP' is approximated by

JBP 1.86 JCL

Thus, it predicts about 32 kA/cm 2 for the diode operating witn ions and

2
electrons. This agrees quite well with the 32-42 kA/cm seen in the simula-

tion for the inner cathode face emission. However, it is off by a factor of

2.5 to 3 from the edge emission figures. The two-dimensional field enhance-

ment effects have to drastically change the physics there from the simple

1-D analysis.

The second major question concerns the effect of the 30 kilogauss

solenoidal magnetic field on the electron current densities impacting the

anode face. Experimental corroboration for the computational results pre-

sented herein was derived from the previously mentioned observations obtained

from a series of runs by the Gamble I device at NRL in the mid 1970's. These

empirical results were presented by Cooperstein to the 1976 meeting of the

Plasma Physics Division of the American Physical Society. Of those results,

* one of particular interest here is shown in Fig. 8. Using a diode configura-

tion closely approximating that modeled in this computer simulation, a double

* I peaked damage pattern was observed on the anode face at very nearly the

radius of the hollow cathode after each discharge. Such damage could result

if the anode material was being pulverized by the electron beam. The pulver-

ization of carbon requires the deposition of 2 kcal/g. Assuming a mean

graphite density of 2.5 I/cc this translates to 5 kcal/cc. The electron beam

in the computer simulation was delivering a peak power of 54 j/cm 2-sec over

2
an area of roughly 1.1 cm . Thus the experimentally observed damage could

10



be obtained to a depth of about one millimeter if the simulated beam were

maintained for approximately forty nanoseconds. According to Fig. 8, the

experimental voltage and current peaks were 1 MV and 200 kA, respectively.

Comparing this to the 600 kV and 60 kA of the simulation would indicate that

the experimental diode could have achieved the observed damage in twenty

nanoseconds or less.

In short, the correlation between experiment and simulation is very

good. The empirical results can now be better understood as a consequence

of the combined effects of two-dimensional electric field electron emission

enhancement as well as of the electron path stiffening caused by the strong

axial magnetic field.
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