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THE SENSITIVITY OF WAVE FORCE COMPUTATIONS
TO COMMON ERRORS, UNCERTAINTIES,

AND HYDRODYNAMIC APPROXIMATIONS

1.6 INTRODUCTION

In the face of rising construction costs, the increased importance of dynamic loadings, and

in view of the more hostile sites under consideration, the accuracy of wave force computations
becomes a critical question. The least well understood wave loading regime, hence the one

with the leat accurate descriptions, is the regime wherein both drag and inertia forces are

important. The basis for most wave force computations in this regime is the so-called Morison

equation. In the past the Morison approach has been tailored with some success to particular

applications. However attempts to generalize the approach have not been successful and as a

consequence, large uncertainties can accompany a new application. The discrepancies between

prediction and observation are often as large as 50 to 100 percent [1J.

For the most part these inaccuracies stem from a poor understanding of the unsteady vor-

Ly tex flows which occur in this regime and from several simplifications inherent in the usual Mor-

f~j ison approach. In lieu of a complete hydrodynamic description of the complex vortex wake

flows, an unlikely accomplishment in the near future, an improved approach to wave force

C prediction appears to be one that can account for the major differences between wake flows

which may occur for various wave-cylinder combinations. This report outlines such an

approach and at the same time identifies uncertainties that can arise from differences in the
methods of force or force coefficient calculation.

Manuscript submitted February 20. 1980.



RAMBERG AND NIEDZWECKI

Most investigations of the fluid forces on an object immersed in an unsteady flow begin

by resolving the force into drag and inertia components 121. It is less widely known that the

general unsteady force also contains a history term and should be written as the sum of three

contributions in the form,

FToeI(f) - Fo, (u) + Fl, ,,(u) + FHfl,,m(u, u. t) (1.1)

where u and it are the velocity and acceleration, respectively, which depend only on the time t.

Some years ago, Morison et a [31 made use of this approach in attempting to describe the wave

forces on a cylinder. In essence, they took an elemental force on the cylinder to be of the form

dF(ts) - dF, + dFr,,, (1.2)

where

dF - 1/2p D CD ululds (1.3)

and

dF,& - ir/4 p D2 CM 4 ds (1.4)

and with s measured along the cylinder axis. Since this equation first appeared it has become

the basis for the majority of practical wave force computations and is widely known as the Mor-

ison equation. The unknown force transfer coefficients CM and CD are usually taken as time

invariants so that the unsteadiness of the force resides entirely in the variations of u and ii.

Along with the recent growth of offshore construction, considerable effort has been

expended to collect values of Cm and CD and to correlate the changes in the coefficients with

the important parameters of the problem. Except for a few simple cases, notably not including

progressive wave flows, the variations in the force transfer coefficients have not been coin-

pletely accounted for. To be sure, one can obtain reasonably good force estimates but even

with preat care in the analysis errors of 20 to 50 percent in the total force are common and

errors in the local force are often as great as 100 percent or more Ill.

2
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The objective of the present investigation is to improve the resolution of the Morison

approach by first examining the sensitivity of the computed wave forces (or computed

coefficients) to the common simplifications of method and to the common hydrodynamic

approximations. Then, alternatives or modifications that can improve the resolution are con-

sidered. These are compared to wave force data obtained in a laboratory channel and are com-

pared to previous results for simple oscillatory flows about cylinders 14, 5, 6, 7, 8J. By way of

example, the present approach can be introduced by considering a simplification of method and

a hydrodynamic approximation that already have occurred in passing from Eq. 1.1 to Eq. 1.2.

The simplification is due to the apparent lack of a history term in Morison's equation as

compared to the general Eq. 1.1. However, if the flow is purely periodic (0 - at) the omission

does not actually occur because the now periodic history term is included in the periodic drag

and inertia terms. This can be demonstrated as follows. Let the drag and inertia forces be writ-

ten in the usual way

dFw - CD uIuidf (1.5)

and

dF,,, - CId. (1.6)

With little or no loss in generality theperiodic history term can be expanded in the form

dFHI,., - (l/2p D ChH uIuI + r/4 p D 2C14u) ds (1.7)

becau-. both so and 6 will be composed of orthogonal periodic functions. One can then redefine

coefficients to obtain

dF() ,(1/2 P D CD u IuI + ,/4 p D2 CA it) ds (1.8)

where

CID- Ch + C& (0.9a)

and

3



RAMBERG AND NIEDZWECKI

CM -C1J4 +CUR (1.9b)
represent composite force transfer coefficients. The significance of this simplification is that the

composite coefficients obtained from either of two separate experiments may not be appropriate

when the two flows are superimposed. Important problems in this category are the forces on a

structure exposed to a wave/current system or one experiencing oscillatory motion as well. The

history term will not be considered further in this investigation; here the coefficients CM and

CD represnt composite values for nominally purely periodic flows.

The hydrodynamic approximation in Eq. 1.2 is the assumption that Eq. 1.1 can be

extended to two-dimensional flows by taking a differential approach and then assuming that the

distributed force depends only on the local kinematics of the flow. In fact, the variation of flow

along the span will introduce three-dimensional effects in a number of ways. The axial pressure

gradient will produce an axial component of velocity which can greatly influence wake forma-

tion. Less obvious is the effect arising from the wake which may be swept back over one

segment of the structure after being generated at another segment under different flow condi-

tions. Three-dimensional effects have been observed to have a pronounced influence on the

drag in steady bluff body flows (15,161. This approximation is examined further in Section 3.0

of this report along with other sources of errors and uncertainties. Before these are considered

a brief review of previous results from planar or one-dimensional harmonic flows is presented.

2.0 SIMPLE OSCILLATORY FLOWS - A REVIEW OF RESULTS AND MOETHODS

The experiments of Sarpkaya 14, 51, Bearman et al. [6, 71, Maull and Milliner (81, and to

a slightly lesser extent the experiments of Keulegan & Carpenter (91 belong in the category of

simple oscillating flows over a cylinder. Each investigation approaches the conditions for which

Eq. 1.1 is written and therefore does not require several of the usual assumptions and

24
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simplifications of Morison's equation necessary for wave flows. Most importantly, each flow is

one-dimensional or nearly so.

Sarpkaya's cylinders were mounted in the horizontal section of a large, U-tube apparatus.

A similar arrangement was used by Maull and Milliner [81 and Bearman et al. [6,71. Once set

in motion, the fluid oscillated back and forth over the cylinder at the natural period of the water

* column. Keulegan & Carpenter placed their cylinders horizontally under the node of a standing

wave. In all of these studies the fluid velocity and acceleration fields could be adequately

described by the single components

U - U. cosO (2.1a)

and 
2a T U, sine. (2.1b)

In each case the flow did not vary along the cylinder axis and Eq. 1.8 could be directly

integrated over the cylinder length L to obtain

F(0) - 1/2p D CD L Uh cose1cosOl - ir2/2Tp D2 L CM UM sine (2.2)

for the total unsteady force. By matching this expression with the experimental results it has

been found that the variations in CD and Cm could be accounted for through the use of any

4two of the following three parameters.

U T period parameter = K (Keulegan-Carpenter number) (2.3a)

.fiReynolds numbers R (2.3b)

-'--frequency parameter (2.3c)

Only two of the three parameters are independent because R - S K. The period parameter

and Reynolds number are often emphasized because of the analogy with inverse Strouhal

- * number and Reynolds number in steady flows. Unfortunately both K and R contain U. and

this can mask important frequency effects. The use of the frequency parameter P has a certain

practical advantage since it is a constant for a given wave/cylinder combination.

5
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Using the Keulegan-Carpenter number, the above equation for the fluid force may be

written in the non-dimensional form

F(6) #r2
f(O) 1/2pDL U2  CD cos@csO I- 1R CM sinO, (2.4)

which will be employed in the balance of this investigation. In this form it is also readily

apparent that the ratio of the peak drag force to the peak inertia force is given by CDK/ir 2 CM

and this should be kept in mind when assessing the relative importance of errors in CM and CD

for various ranges of K. The conclusions that have been drawn from the one-dimensional or

* planar-flow experiments are:

i) Morison's equation appears to adequately describe the in-line force for simple one-

dimensional oscillating flows about circular cylinders.

ii) Tabulations of CM and CD are available for predicting in-line fluid forces on circular

cylinders in one-dimensional oscillating flows; see Figures 1 and 2.

iii) Several shortcomings in the Morison approach have been identified for non-circular,

sharp-edged cylinders [6, 71.

iv) Large cycle-to-cycle variations in Cm and CD can occur even for nearly uniform total

I forces as measured by the root-mean-square (rms) value 16, 7, 81.

v) A side or lift force is generated which may be nearly as large as the in-line force

19,101.

As stated in the introduction, the direct application of these results to wave force predic-

tion has resulted in large errors. This is not surprising in view of the added complexities of

* wave-induced flows but it suggests certain objectives. For example, one could decide to retain

the usual form of Morison's equation and then catalog values of CM and CD for each different

6
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situation. This is the pragmatic approach taken by much of the offshore industry and will, or

course, pose some difficulty for every new situation. Alternatively one could modify the equa-

tion in search of forms that permit a single tabulation or several tabulations of CM and CD to

certain levels of accuracy and equation complexity. Both approaches are examined in the fol-

lowing sections, but first it is instructive to present the three common methods for determining

Cm and CD from a force record.

The first method makes use of the fact that the drag force is a maximum when the inertia

force is zero (0 - 0, 1r) and vice versa (0 - ir/2, 3r/2). The measured force is then examined

at these special times in the cycle and set equal to either the drag or inertia force as appropriate.

This method is very simple and has the added advantage of relying primarily on peak forces.

However, it lacks averaging to cancel spurious errors, and in more complex flows the presence

of harmonics can distort the results (see section 3.1). Morison et al 13] used this approach but

with the advent of digital computers to handle the data reduction single-point methods have

largely beep abandoned.

The second method employs a Fourier analysis of the force coefficients. Let the non-

dimensional, measured force be given by Eq. 2.4, and then multiply it by sinO and integrate

over a cycle. This yields the inertia coefficient

S f,,a,(#) sinO dO Kr2
2 - o f, sin0 dO. (2.5)

K sin29

When the measured force is multiplied by cosO and integrated over a cycle, the drag coefficient

is given by

(f, cs(0) c O0 dO2
CD- o f_, osdO (2.6)

f.1 cos2Olcoseld O

7
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The integrals can be evaluated numerically using the measured force. The Fourier approach

emphasizes the periodic nature of the problem and can be extended to find any desired har-

monic in the measured force record as was done originally by Keulegan & Carpenter.

The third method is a least-squares curvefitl given by the weighted sum of the squares of

the force residuals,

NS - .WV[ f (9)] 2 (2.7)
i-I

subject to the constraints

as. Ocs, o. (2.8)

This will minimize the differences between the measured and calculated forces in the least-

square sense. Performing the differentiation for the general coefficient C gives

_._ = . $Wf 2  2 f,,. f() + f 2()] 0 (2.9)
OC OC

or

T 9, 2 fas +2f ) - 0 (2.10)
and

Of(0 ) Of(9)i " , : .~~1 W f " ." s 1-- - ' " "w f, f (0 , d ' - - - (2 .1 1 )

where the summation is understood to be over the N data points.

* y Introducing Eq. 2.4, to get

cif O cosei cosOi (2.12)

and

Of, r2
- - sin0i (2.13)&CM K

'See Appendix A for a description of the least-squares method.

, IS
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yields two equations

C X Wf--,,1 coselcosIl . 2C Z W coseIcos,,sin, (214)

CD " . W cos40 +Z M . W cos 4#.

and

I W, ,, sinOl W cos1 lcosfilsinf,
CM- + s C (2.15)

~K LW sin 2 0 ,K W sine9

which can be solved for Cm and CD. Clearly, if the quantity X W, cos9, Icoseolsine, is zero

then the solutions for Cm and CD are given by the first terms of Eqs. 2.14 and 2.15. For uni-

form statistical weighting (W - constant) and for equal increments in 0, from 0 to 2v

inclusive, this quantity is identically zero and the solutions for CD and CM reduce to

Xf,,, coseilcose'l
CD - . cos 4#i (2.16)

and

K I; fm°s sinO9,

CM - K I sin 2 , (2.17)

Analogous equations can be obtained using an integral error criterion2 with the results

CD - f0 f2 coselcoselde (2.18)

and

CM . K f,2,, sin8 d# (2.19)

which were utilized by Sarpkaya [5]. The advantage of the integral formulation is that the

terms containing coselcos0lsin g drop out during the integration, but it must be employed with

some caution because f,,., is usually a discrete function and the integral criterion becomes

strictly inappropriate. Under the conditions set forth in Appendix A the integral and discrete

least-squares method can be used interchangeably. Those conditions are tantamount to the

2See Appendix A

9
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RAMBERG AND NIEDZWECKI

conditions imposed above to make the discrete summations of cos9 cos0[sin0 vanish and

require the integrals to be evaluated in a certain way as well.

Upon comparing the integral least-squares results and the Fourier results the expressions

for Cw are found to be identical but the two methods produce different equations for CD. This

difference can be examined by first supposing that the measured fluid drag force is proportional

to cos9 IcosOl. For this condition the two methods produce the same numerical result as they

should. On the other hand a drag force proportional to cos@ or proportional to cos 30 will pro-

duce about a 4 percent difference between computed coefficients. Sarpkaya applied both

methods to his measured forces and found a small but consistent difference between results

which, according to the above, would imply the presence of large even harmonics of the force

other than those due to cosicosO I. In other words, Morison's equation may not account for all

of the significant in-line forces even for a simple planar flow.

If, for some reason, the statistical weighting is not uniform or a few irregular intervals in

0, are chosen, then the full Eqs. 2.14 and 2.15 must be solved. To do this we first make the

following substitutions

f- f. (2.20a)

i ,W2

ft sinG, (2.20b)

f" cosOIcosOI (2.20c)
in Eqs. 2.14 and 2.15 to get

CD I Wifu fD + C M 1 W, Df (2.21)

' and

CM + W, f? + CD X W, W " (2.22)

10
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The solutions for the coefficients are

CD- W fMfD WI fl - 7 W ftfDrWIhfM (2.23)

- W, f? . W f - (z Wf

and

-1. W, fM f . - 
:W fA +. .W, f, f D

Cm - (2.24)- W i, f? .T. W A1 - (1 W fh fD)2 2.4

These equations are of the form given by Chakrabarti et al (10, 111 in their studies of wave

forces on inclined cylinders. The sign changes in Eq. 2.24 as compared to Chakrabarti's expres-

sion are a consequence of the minus sign before the inertia term in Eq. 2.2 which is in turn a

result of the definitions in Eq. 2.1.

One important source of error which is common to all of the above methods is that due to

an uncertainty in the phase between the fluid motion cycle and the measured force cycle. This

uncertainty can arise from a phase shift in some portion of the sensing or signal processing sys-

tems or may occur physically as a result of cycle-to-cycle variations in the wake processes.

Whatever the cause, the sensitivities of the usual Morison coefficients to an arbitrary phase

shift are given by

Sir CDsn+cs
C/C - C sin + cos (2.25):., 3K Cm

and

32K C s2
,/CD- I(#) - 9 2  sin (2.26)

when the measured force is assumed to be given by Morison's equation but phase.shifted in

* the integral least-square expressions by an amount #. The primes in the numerators are used

, el to denote the phase-shifted coefficients as compared to the *correct" values in the denominators

and on the right-hand sides. The term denoted by I(#) is a lengthy trigonometric expression

which is closely approximated by cos for the present purposes. Two features, which are

II
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expected, become apparent and quantified in these expressions. FiMrst is the tendency to swap

one component for the other as the phase shifts [11 and the second is the marked influence of

the quantity !-- - which is the ratio of peak drag force to peak inertia force as discussed in

connection with Eq. 2.4. These equations are plotted in Figure 3 for several values of the

phase shift #. In viewing the figure it must be kept in mind that large errors in either Cm or

CD are relatively unimportant when the other force component dominates the total force as

f2 Dzdetermined by the ratio C -"- The most striking results in the figures are the significant

errors (5-10 percent) which can occur for phase shifts as small as I or 2 percent of the cycle.

Clearly, special care must be taken to remove or identify phase shifts in the measurement sys-

tem.

Before considering wave flows one further comment is in order. Experiments with simple

oscillatory flows as described here have revealed the presence of large transverse or side forces

that are not accounted for in the Morison equation. The side or lift force as it is sometimes

* called arises from the asymmetric vortex shedding that occurs for moderate and large

Keulegan-Carpenter numbers. If K is large enough, the transverse force can oscillate a number

of times during a wave cycle in relation to the number of vortices shed. This not only raises

the possibility of flow-induced vibrations but also raises the possibility that the resultant peak

force on the cylinder will be greater than the peak force predicted by Morison's equation. Max-

imum side forces of comparable magnitude to the maximum in-line force have been recorded

in one-dimensional experiments. This difficulty may not be as severe in wave flows because the

three-dimensional character of such flows tends to limit the spanwse coherence of the shedding

processes. It should be noted, however, that cylinder vibrations can restore the coherence and

therefore deserve consideration.

12
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3.0 WAVE FLOW APPROXIMATIONS AND UNCERTAINTIES

The velocity and ucceleration fields induced by a progressive surface wave are nominally

two-dimensional with components (u. w) and (t, ), respectively. The u components coincide

with the direction of wave advance while w and si occur in the vertical direction. Short-creted

or multi-directional no will produce additional components of velocity and acceleration. In

order to apply Morison's equation to such a complex flow field some adaptations and

simplifications are required. This section considers the common approximations and

simplifications in order to assess their influence on the accuracy of predicted wave forces and to

assess their effects on computed force coefficients.

The additional hydrodynamic complexities that are encountered in wave flows may be

summarized as follows.

0 The flow is not always perpendicular to the cylinder axis.

* The wake is not always swept back and forth over the cylinder.

0 The flow is not always uniform along the span.

* The flow velocities and accelerations are not explicitly known.I i
The first two effects are largely determined by the eccentricity of the water particle orbits and

by the orientation of the cylinder with respect to the orbits 1121. The variation of the flow

along the span will introduce three-dimensional effects in a number of ways. Obviously, the

,, instantaneous velocities and accelerations will have an axial variation which can alter the flow

forces away from the distribution predicted using one-dimensional results, Iess obvious is the

three- dimensional effect arising from the wake which may be swept beck over or near one seg-

ment of the cylinder after being generated at another segment under different flow conditions.

13
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Three-dimensional effects have been observed to have a pronounced influence on the drag in

steady bluff body flows (13. 14).

The flow velocities and accelerations are usually computed from a particular wave theory

which has been matched to the wave shape. Since different wave theories will, in general, pro-

duce different pairs of force transfer coeffcients for the same data, it is often suggested that the

user be consistent in the selection of wave theory 11). Many investigators have employed

higher-order expansions, e.g. - Stokes 5th order, in wave force computations and report

improved matching to the wave force (21. In all likelihood these improvements are largely a

result of the additional terms in the curve fitting function and bear little relation to any

improvements in the hydrodynamic description as discussed in the following. In many

instances the usual approach reduces to a selection of a wave theory that best matches the

observed wave surface profile or, in other words, the velocity and acceleration fields are

obtained by matching computed and observed dhadtcemexts at the free surface. Since the velo-

city and acceleration are essentially derivatives of displacement it is clear that a good match to

the surface displacements does not insure an equally good match to the interior kinematics of

the flow. Stokes expansions are routinely invoked for describing the kinematics of finite-height

waves, so that it is constructive to examine their use.

First, the dynamical surface boundary condition can be used to illustrate the problems of

obtaining velocities from a matching of surface displacements. Let the surface elevation il be

expanded in the regular perturbation series

v - 'is + 114 + ,q,.1 + O(.4) (3. 1,,
where s «< I is the wave slope. The velocities and accelerations can be similarly expanded but

* not to the same order of accuracy if the dynamical boundary condition given by

+ I/(u2 w2)- 0(3.2)at
14
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is to be uniformly satisfied. In particular, the quadratic terms in the velocity require that a

remainder of order 40 in the surface displacement will correspond approximately to a remainder

of order 012 in the velocity expansion. Hence, the use of such expansions will require a

disproportionately large number of terms to significantly improve the representations of velocity

and acceleration beyond their linear descriptions. In view of the ease of superposition of linear

waves and the practical importance of directionality and short-crested seas, higher order expan-

sions or theories hardly seem worthwhile except possibly in the extreme, single design wave

approach. The use of Stokes-type expansions can also introduce other sources of error and

uncertainty as described below.

The two problems of interest are the use of Morison's equation to predict wave forces and

the use of M:'ison's equation to obtain the force coefficients CMt and CD from a wave force

record. To begin, let the velocity expansion be written symbolically as

im- U, cos it, (3.3)
4-1

so that the acceleration is given by

u.- 2 ' - U, sin n,. (3.4)

where r represent the order of the expansion and 0 - ka - wt. This notation is adopted for

convenience and it should be noted that the forms of the coefficients U depend on both n and

tf i. To simplify the discussion, the usual Morison approach is taken for a horizontal cylinder in

waves so that so the nondimensional force becomes

f~(*) 1CD cs Ic iI+jC E 11sin n0 (3.S)i "I + t t - .,,-,., + CH n. U. I . . , .,
when the characteristic velocity U,, is equal to U,, a constant. As expected, a large number of

harmonics are rapidly introduced. For fixed values of the coefficients C,,v and CDo the presence

of these harmonics can be examined by looking at the first few contributions from Stokes

second-order wave theory where

is

171-7
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U, osh k (d +z) (3.6s)
sinh kd

and

2 -IH.-J cosh2k (d+z) (3.6b)
S4 L sinh 4 kd

with d being the water depth, k the wavenumber -, H the waveheight, and z the depth of the

cylinder below mean water level. The two additional drag terms are

U2(Icos~t cost + cos2Olcos 0 1) (3.7a)

and

21u '(cos,91o 201)

while the additional inertia term is

21 jsin 29 37

one of which is plotted in Figure 4. The proliferation of harmonics is quite clear and their

importance depends directly on the ratio U2, U1. For deep water waves of any realizable steep-

ness this ratio is quite small. For a wide range of other wave conditions this ratio remains small

enough that the use of Stokes expansions can be avoided.

It is perhaps more interesting to examine the complementary problem of obtaining Cu

and CD from the same wave force record using different order Stokes wave theories. The

integral least-squares results, Eqs. 2.18 and 2.19, can be generalized to permit arbitrary (but

orthogonal) velocities and accelerations as follows

CD jr,. (3.8)

,* A¢ f (3.9)
f m 2  dO
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The expression for C. is easier to deal with and an important point can be made using it alone.

Upon substitution of u from Eq. 3.4 the expression for Cm becomes

CM¢ " W3 I U'n--"- *•f f., (Z U, sinn#) de (3.10)

in analogy with earlier expressions. Next let the non-dimensional measured force be separated

into its Fourier components as follows

-ea( " (a. sin nO + b, cos nO). (3.11)

Upon substitution into Eq. 3.9 the result is

2T
CM -- 2 D 2L U 2 aU+ a2 U2 + a3 U3 +... (3.12)

as one would expect. This result is however based on the assumption that the harmonics in the

measured force are solely a result of the harmonics in the acceleration. If harmonics occur for

some other reason then this approach cannot distinguish their origin and simply lumps the

effect into the computed coefficient and by definition will give a good fit to the data. The prob-

lem once again is to attach any general significance to the coefficient so obtained. A natural

question concerns the type of harmonic structure that can be expected for various flows.

Sarpkaya largely neglects the higher harmonics and thereby implies their smallness. On

the other hand Keulegan & Carpenter devoted significant effort to categorizing the higher har-

monics or, as they termed it. the residual force. The observed residual force was greatest in the

neighborhood of K - 15 which is usually associated with asymmetric vortex-shedding. The

peak residual force was as much as twenty percent of the peak force and had components at

both cos 30 and sin 30. It seems that these variations in the in-line force correspond to some

of the largest changes in the transverse or lift force. Due to the orbital motion of the fluid, a

measurement of the horizontal component of force f,(#) on a horizontal cylinder will at times

contain a component of the lift force generated by the vertical component of velocity. Since
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this Usually Oscillates at a multiple of the wave frequency, it will appear as a harmonic in the

force record and in view of the above equation it can lead to an improper computation of the

coefficients. Thus, higher-order wave theories must be applied with some care in order to

obtain consistent results and in order not to mask some of the physical differences between

various situations. By the same token it may be possible to identify the various physical

processes by carefully analyzing the changes in harmonic structure. It is interesting to note that

Chakrabarti's experiments with inclined cylinders in waves produced the largest residual force

variations at twice the wave frequency [ 10, 111 as compared to 30 for Keulegan & Carpenter. As

a final comment, the sensitivity to harmonics of single-point methods for obtaining CW and C0

is evident in the above expressions.

There are many possible wave-cylinder configurations, but two particular cases are studied

here to isolate, as far as possible, two different physical situations. The first configuration is a

horizontal cylinder whose axis is parallel to the wave crests. As in a simple oscillating flow, the

velocities and accelerations are always normal to the cylinder axis and it is possible to select a

diameter that is small compared to the scale of the vertical gradients of velocity and accelera-

tion. Under these conditions one would expect some correspondence between a wave flow and

the simple oscillating flow. The principal differences are due to the eccentricities of the water

particle orbits under waves, such that the wake is not always swept back over the cylinder. The

vertical cylinder case admits the axial variation of velocity and generally the velocities and

accelerations are no longer normal to the cylinder axis. On the other hand, the wake is swept

back and forth over the vertical cylinder as it is in the one-dimensional case.

,' 3.1 Horizontal Cylinder - Even with the available simplifications it is not obvious what

form Morison's equation should take for wave flows about a horizontal cylinder. This is due to
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the second components of velocity and acceleration. It has become customary to write

Morison's equation for each component of force using the corresponding components of velo-

city and acceleration to obtain

x() D- C (3.13)
U.2, K 2w U.1T

and

fwu W (3.14)

( -+ TD + 7- CM 2U'T

where U is as yet an unspecified characteristic velocity and the subscripts refer to the com-

ponent directions. It is also possible to write Morison's equation using vector quantities and

then to take the components of the resultant vector force so that

if 2  uT
fC() -CD +52- (3.1s)

and

r2  t T

C - + M - . (3.16)

where

- ull + wk (3.17a)
and

q - +u2  w2, (3.17b)
,/U + VV WI (3.17c)

The second pair of equations for the force components are seldom employed even though they

K "appear somewhat more rigorous. It must be emphasized that both approaches reduce to the

one-dimensional case and both give a good fit to the data but for different values of the

4 coefficients CD and Cu.' This is the crux of the problem because a common objective (and

one objective of this investigation) is to determine what form of the Morison equation is valid

for wave flows and whether or not the coefficients obtained from a one-dimensional experiment
'The linearity of the inertia term often results in no difference between the two approaches.
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are useful in a two-dimensional wave flow. Clearly, the choice between Eqs. 3.1 and 3.2 or

Eqs. 3.3 and 3.4 will have to be made with the aid of experimental results and a careful compar-

ison with one-dimensional results.

Although the vector approach appears to yield the more complex expressions, the particu-

lar case of deepwater waves produces a simpler expression for the drag force and no difference

at all between the inertia force terms. For a horizontal cylinder at a depth z - - d, we have

from linear wave theory

u(t) - -d" cosO, *t) = 2T 2H e-kd sino (3.18)

and

W )'1H e-kd, 27r2H F.kd,. OS
w(t) = -T- et iO (t- 72H . cos0

where 0 - x - cut. By defining Un H e-k, the drag terms in Eqs. 3.13 and 3.14 become
T

fDx(O) - CD cosOIcosOI (3.19)
and

fz(O) - CD sinOlsin0l. (3.20)

The drag terms in Eqs. 3.3 and 3.4 take the alternate forms

adfDx(O) - CD cosO (3.21)
I and

f& (0) - CD sin. (3.22)

The difference between the two pairs of expressions is significant in that both give the

same peak drag force but for the remainder of the cycle the second pair predict larger drag

forces than the first. For example, at 0 - ir/4 the second approach gives a drag 40 percent

larger than the usual approach for equal peak values. In a situation where the drag and inertia

forces are comparable in magnitude this difference means about a 20 percent change in the
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predicted peak wave force. Therefore, the proper selection of approach, i.e. component versus

vector, has important consequences other than the matter of specifying CA, and CD. An experi-

ment that measures both components of force on a horizontal cylinder under waves can be

expected to resolve this question, but owing to vortex-induced side force this will not be as

straightforward as it might appear [10, 1 1].

3.2 Vertical Cylinders - As in a planar flow the vortex wake of a vertical cylinder in waves

is swept back and forth over the cylinder. However, the flow usually varies in direction with

time and varies in magnitude along the span. The usual approach is to write Morison's equa-

tion in a differential form, take the components of velocity and acceleration normal to the

cylinder, and then integrate over the length of the cylinder to get the total in-line force. The

key assumption is that CA, and CD can be taken as uniform along the span to get

f -CD Cos 0 lcos 0 fl a 2dz - Cm wr2/K sin 9 f7, adz (3.23)

where

a - cosh kz + tanh kd sinh kz (3.24)

for a cylinder extending from a depth z -- zb to the instantaneous free surface q.* It is also

customary to evaluate the coefficients at the still water level, which is to say that the charac-

teristic velocity U is the horizontal velocity at z - 0. The obvious difficulty with this approach

is its inability to account for different vertical distributions which may have the same charac-

4 teristic velocity U. For example, two cylinder-wave combinations, one a deepwater wave and

one a shallow water wave, can be selected to give the same values of K and P3 at z - 0, but the

a vertical distributions of CA, and CD can be quite different. The discrepancy is potentially

greater when the differences in orbital motions are considered as well. A simple correction can

be obtained by assuming a linear distribution of Cw, fitting this to the data and then comparing

the linear distribution to a distribution constructed from the planar flow results. Since the total

inertia component of force is the same regardless of the choice of description we have
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CM f asin 0 dz=J (C 1 + CM2z) a sin 0 dz (3.25)

where

CM - the best fit constant coefficient.

cu - the z - o value of a linear distribution, and

C1 2 - the slope of the linear distribution.

This expression can be used to estimate the slope of a "best fit" linear distribution by setting CM

equal to the coefficient obtained using Eqs. 3.1 and 3.2 and setting CM, equal to the correspond-

ing planar flow value. For simplicity and in view of the approximate nature of this approach the

upper limit of integration is taken as z - o to get

o dz
CM2 - (CM - CM1) 'rw -- (3.26)

J_ za dzf-Z
b

where the integrals are easily evaluated for each wave condition. A similar analysis for the drag

term yields

f0f a2dz
f-zb

CD2  (CD CD V (3.27)
J za 2dz

With these expressirns it will be possible to examine, in a rudimentary way, the effects of flow

gradients along the cylinder axis upon the individual drag and inertia components of the wave

force.

* 4.0 PRESENTATION AND DISCUSSION OF EXPERIMENTAL RESULTS

'I The present results were obtained for relatively low Reynolds numbers,

Re 103 - 4 x 103, and for values of the frequency parameter in the range s - 300-700.

The depths of the horizontal cylinders varied between three and twelve cylinder diameters

below still water level while the vertical cylinders were positioned to pass through the free sur-

face at all times and terminate some distance (approx. 12 cyl. dia.) from the bottom of the

tank.
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4.1 Horizontal cylinders. Despite the common use of horizontal or near horizontal struc-

tural members in many offshore platforms, little work has been done regarding horizontal

cylinders under waves. From a hydrodynamic viewpoint the wave flow about a horizontal

cylinder is interesting because of certain similarities to the planar flow case. Namely, the flow is

uniform over the span and is always perpendicular to the cylinder axis. The significant

differences are due to the orbital motions under waves such that the wake is not always swept

back and forth over the cylinder.

A recent paper by Maull & Norman [8] considered the horizontal cylinder under waves

and represented the measured force by RMS coefficients defined as

(Force,),,(.: 1/2 p DL (U,,,, )

for the force component in-line with the wave direction and as

(Force.) ,,
l -- .rmS (4.2)1/" /2 p DL (W,,,,) " 242

for the component transverse to the wave direction. C1 is often referred to as a lift coefficient

although this is potentially confusing because the transverse force in this case is also of the

* Morison-type. The characteristic velocities, U and W, are computed for the centerline depth of

the cylinder.

Comparisons between the present results and those of Maull & Norman are presented in

Figures 5 and 6. The coefficients are based on the RMS force components at the wave fre-

quency. The comparisons can only be qualitative since the ratio of maximum vertical velocity

W to maximum horizontal velocity U in the present experiments ranges from W/U - 0.9 to

W/U - 1.09 while Maull & Norman's data were obtained for W/U - 0.81-0.84. Also, their

I velocities and accelerations were computed from Stokes second order theory whereas the

present values were obtained from the linear theory. Maull & Norman do not give a range of i3
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values although the experimental description suggests that they should be close to the present

values of - 450 and 0 - 630. In spite of these differences the results of the two sets of

experiments agree quite well. Also included in the figures ave Maull & Norman's representa-

tions of the predicted RMS coefficients based on Sarpkaya's planar flow results. A substantial

overprediction is observed although it must be noted that as W1 U decreased Maull & Norman

found that the RMS wave forces tended toward the one-dimensional results as might be

expected.

The total in-line and transverse RMS coefficients for the present results are compared in

Figure 7 to each other and to the planar flow results of Sarpkaya [51 and of Bearman, Graham

& Singh [6]. The discrepancies between the two sets of one-dimensional results are unex-

plained but again either set will significantly over-predict the RMS wave force. It should also

be noted that the RMS transverse or lift force is consistently less than the RMS in-line force

for equivalent values of the Keulegan-Carpenter number.

The individual coefficients Cm and CD can be determined once a suitable form of

Morison's equation is adopted. The choices were described in Section 3.1 and amounted to

either a scalar application of Morison's equation to the components of velocity and acceleration

)or a vector approach using the vectors of velocity and acceleration. The best fit of each method

I ' to a typical measured force record is presented in Figure 8 where it is evident that the vector

approach is indeed more appropriate and suggests the use of Eqs. 3.3 and 3.4 for horizontal

cylinder. In every case Eqs. 3.1 and 3.2 produce drag coefficients that are smaller (approx. 5-

10%) than the drag coefficients obtained from Eqs. 3.3 and 3.4. The inertia coefficient is, of

course, the same in each case. Another significant feature of the vector approach is the linear-

ity of the resulting force components in deep water which will permit stochastic analysis of hor-

izontal members without artificial linearization.
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The least-squares, best fit inertia coefficients are presented in Figure 9 along with the

one-dimensional results of Sarpkaya and of Bearman et al. As might be anticipated from the

RMS coefficients, the wave-induced intertia forces are less than either set of planar flow results

but appear to follow the same trend of decreasing CU with increasing K. On the other hand the

results for the drag coefficient exhibited a marked departure from the one-dimensional results

as shown in Figure 10. Not only are the drag coefficients less than their planar flow analogues

but they also do not contain the "hump" which is characteristic of CD in this range of K. There

is a suggestion that the present results might eventually merge with the planar flow results of

Bearman et al. at larger values of K and this ought to be investigated further.

The difference in behavior between the wave drag coefficients and the planar flow drag

coefficients must be explained on the basis of the orbital motions of the fluid. Physically, this

is satisfying because the present range of Keulegan-Carpenter number corresponds to a rela-

tively small number of vortices being shed during a flow cycle. If these few vortices are rectil-

inearly swept back over the cylinder then their influence on the nascent vortices, thence the

force, is likely to be much larger or at least much different than a few vortices which are swept

away during the orbital motion under waves. In a sense, the drag on a horizontal cylinder

under waves is more akin to the steady flow drag thin to the I-D unsteady drag. Thus, the

"hump" behavior will not occur for horizontal cylinders and the drag coefficient appears to

monotonically approach the steady-state drag coefficient as the Keulegan-Carpenter number

increases. This limit has been demonstrated by Bearman et al. for a variety of body shapes in

planar flows at large K [6).

4.2 Vertical cylinders- The present results are listed together with corresponding one-

dimensional data in Table 1. The one-dimensional values were obtained from Sarpkaya 151

because his data are quite extensive. Even so, it was often necessary to interpolate and, in
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Table 1 - Vertical Cylinder Results

Total Total RMS RMS
Meas. Pred. Inertia Drag 1

K),-.o ')-0 RMS RMS Force Force Cu CD W/U ' - CL
dz _ rO

Force Force Ratio Ratio
5.8 701 1.16 2.18 0.58 0.05 0.76 0.11 0.94-1.0 0.81 0.08
8.2 454 1.44 2.58 0.55 0.18 0.66 0.36 0.62-0.98 0.31 0.16

11.3 573 0.74 1.36 1.01 0.12 0.65 0.26 0.81-1.0 0.87 0.06
11.4 619 0.72 1.48 1.01 0.14 0.72 0.30 0.87-1.0 1.11 0.06
12.7 395 1.12 2.56 0.92 0.17 0.65 0.29 0.52-0.95 0.31 0.17
13.6 526 0.70 1.80 0.86 0.16 0.58 0.36 0.74-1.0 0.81 0.08
13.7 451 1.06 2.42 0.93 0.26 0.62 0.63 0.62-0.98 0.51 0.18
18.0 312 1.16 3.26 0.90 0.22 0.68 0.43 0.41-0.87 0.21 0.35

some instances, to extrapolate the one-dimensional data so that the comparisons should only be

viewed as qualitative. Had the one-dimensional results of Bearman et al. 161 been used, the

comparisons between wave results and planar flow data would be more favorable but the same

general discrepancies would occur. The total wave force, as measured by the RMS value, is

again over-predicted by the planar flow results but it is not obvious whether this is due to inap-

propriate coefficients of drag and inertia due to the assumption of uniform coefficients over the

span or due to the combination. To begin to resolve this question the individual RMS com-

ponents of drag and inertia were compared to their predicted values and the ratios are listed in

Table 1. Evidently, the overprediction is principally in the drag contribution since the ratio of

measured and predicted RMS inertia forces is close to one. In fact, the values are close enough

to suggest that a correction for the distribution of CM may be able to account for the

discrepancy. A simple estimate of the correction can be obtained by assuming a linear distribu-

tion of CM, fitting this to the data and then comparing the linear distribution to a distribution

constructed from the planar flow results as discussed in Section 3.2. Plots which are typical of

the results that can be obtained are presented in Figure 11. Since the inertia force decays

essentially exponentially with depth in the present experiments it is clear that th actual CU dis-

tribution is well represented by a distribution constructed from one-dimensional flow results.
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Alternatively, a uniform value can be assumed and the error in doing so can be estimated from

one-dimensional results using Eq. 3.26. A plot of this estimate of the error is given in Figure

12.

A similar analysis of the drag component is far less fruitful because of the large disparities

between the observed and the predicted drag. The disparity in each case can be attributed to

either the variation in the velocity along the span or to the variation in the flow direction during

the cycle or to both of these. During the present experiments the slopes of the velocity varia-

tion and the eccentricities of the water particle orbits varicd from test to test. Unfortunately

they often varied together and so it is not possible to separate the two effects. The eccentrici-

ties W1 U and velocity variations, characterized by the slope at z - 0, are listed in Table 1. The

apparent trend is that as the velocity variation decreases and/or the orbits flatten the drag tends

toward the one-dimensional result. With further study, or possibly further analysis of existing

wave force data, this approach could provide a basis for modifying one-dimensional results for

use in wave force prediction. It would also be possible to establish error bounds for the

assumption of a constant CD.

The final entry in Table 1 is the measured RMS lift coefficient, which in this case is

purely a vortex effect and is not described by Morison's equation. In the same sense that the

velocity variation and orbit eccentricity influence the drag, one intuitively expects that the

vortex-induced lift will be similarly influenced and indeed this appears to be the case. An

important event which was observed during the experiments but masked by the RMS

coefficient of lift was a significant peak in the lift that occurred near the crest of the wave. The

peak resultant force in those cases was much larger than expected from any combination based

on the RMS values of the tn-line and the lift force. This has been discussed elsewhere 15, 71

and is only mentioned here as a reminder.
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5.0 SUMMARY AND CONCLUSIONS

The results of the present investigaton have shown that the resolution of a Morison-type

approach to wave force prediction can be improved if consistent methods of computation are

employed along with some accounting for the major differences between wave-induced vortex

flows.

In the case of a horizontal cylinder in waves the horizontal and vertical components of the

wave force must be obtained from a modified form of Morison's original equation whereby

each component is derived from an equation written for the instantaneous total force. The

modified equations are linear and are therefore readily employed in stochastic analyses. The

force transfer coefficients Cw and CD for the horizontal cylinder cannot be obtained from one-

dimensional planar flow results except possibly at large Keulegan-Carpenter numbers. The

planar flow coefficients can overpredict the actual wave force on a horizontal cylinder in waves

by as much as 100 percent. The present results along with some simple physical arguments

suggest that the drag coefficient on the horizontal cylinder rapidly approaches the steady flow

value for increasing Keulegan-Carpenter number and does not exhibit the "hump" behavior

which is characteristic of unsteady planar flows.

The wave forces on vertical cylinders were decomposed into inertial and drag contribu-

tions for which vertical distributions were estimated. It was shown that the usual assumption of

S! ] uniform Cy and CD can lead to significant errors but that a distribution of Cm based on one-!

dimensional results adequately accounts for the wave-induced inertia force. On the other hand,

the one-dimensional flow drag coefficients greatly overpredict the wave-induced drag and the

amount is attributed to the "steepness" of the velocity gradient along the span and to the eccen-

tricity of the water particle orbits.
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The implications of the present findings for the wave-induced forces on inclined cylinders

and for the forces on cylinders in short-crested seas are straightforward. When the various

hydrodynamic complexities associated with wave flows were isolated as much as possible, it was '

found that a reduction in force occurred as compared to one-dimensional results. Thus it may
be expected that situations where all or most complexities occur together, such as inclined

cylinders or short-crested seas, a further reduction in wave force is likely. Predictions based on

results from other configurations, particularly one-dimensional flows, will be very conservative.
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APPENDIX A

The Least-Squares Error Method

There are a number of methods that can be used to determine the coefficients CM and CD

for a particular form of Morison's equation and a certain set of data. The most common and

widely accepted methods involve Fourier analysis or curve-fitting or both. A complete descrip-

tion of Fourier analysis can be found in most standard math texts but descriptions of

curvefitting methods are usually restricted to the simplest case(s). For this reason a brief

review of the general least-squares curvefit is given here and the reader is directed to a book by

Wolberg for a full description 117].

The first step in any curvefit is to assume that a "true" relationship exists in the form

- ./(1 ,. 4 .2 . . , , a 2 , a3 ... a,) (Al)

where

T1 is the dependent variable,

are the n true independent variables,

a, are the m true coefficients, and

f( ) is the true relationship.

The objective is to construct the best representation of this relationship using measured values

of the independent variables X', and measured values of the dependent variable YV. The con-

structed equation is written as follows

v- f(x1, x ,, x , ... x,, 2. a 2. a. a.) (A2)

yk is the kh computed value of the dependent variable,

x,, is the kh computed value of the i" independent variable, and

a,, are the computed coefficients.

The "best constructed equation" is defined as the equation whose values for the coefficients a.
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satisfy some minimum error criterion with a particular set of observed values Y, and Xk,. It is

customary to minimize the differences between the observed values and the calculated values in

the least square sense. To do this we first must define the residuals,

RYA Yk - yk

Rk, Xk, - xk,- observed value - calculated value (A3)

and the weights,

- (standard deviation). (A4)
Xkx I

The latter statistical weighting is adopted so that the residuals can be measured in units of stan-

dard deviation or, in other words, units of equal uncertainty. The computed values of a, are

sought which minimize the sum S of the squares of the weighted residuals

AS; 1W R,' + E ,R (AS5)

The minimization of S is the general least squares curvefit. The solution procedure depends

greatly on the form of the "true" relationship f and ultimately the form of S.

A few points are worth noting. First, the least squares curvefit does not determine if the

assumed relationship is true or even if it is a good representation. The "goodness" of the

I assumed function must be judged by some other means such as its ability to match all or cer-

tain of the observed values of the dependent variable or perhaps its ability to produce certain

values of the coefficients. The question of "goodness" becomes the question of the validity of

Morison's equation for describing wave forces. In the case of wave forces, the judgement of

"goodness" of Morison's equation can be made very difficult by the fact that the wave force is

inherently periodic and the equation itself can be viewed as the first few terms of a Fourier

expansion. Thus, a reasonably good fit can always be obtained quite apart from any physical

considerations of the flow.
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The second comment concerns the contribution of the independent variable residuals to

the sum of the weighted, squared residuals. In most experiments the uncertainties in the

independent variables are much smaller than the uncertainty in the dependent variable, i.e.

wX, << Wy, so that the sum S reduces to

S jw,, R (A6
k-1

and if w.k - constant = w then

S - W (Yobserved- Ycalc) 2 - W E (A7)
k-I

Now if the parameters a,. appear linearly in the assumed function, f, then the least square solu-

tion is obtained from the equations resulting from

OE o. (A8)
Oam

This is the commonest least-square solution and the one presented in most texts. The point to

be made here is that this simple curvefit is often applied to the wave force problem without

regard to the implications. Morison's equation relates the wave forces to the wave-induced

velocities and accelerations but these quantities are rarely measured. Instead the velocities and

accelerations are computed from a wave theory and the observed surface profile. This can be

viewed as the assumption of another "true" relationship or as the introduction of significant

residuals in the independent variables. In the first instance the "goodness" of Morison's equa-

tion cannot be separated from the "goodness" of the wave theory. In the second instance the

simple curvefit procedure no longer applies and the general form of S must be employed with

the introduction of more parameters. The general approach will not yield new or even very

different answers but it would provide a rigorous basis for assessing the errors and ultimately

the degree of confidence in the results obtained.

The final comment concerns the use of an integral representation of the error function to

be minimized. These expressions are generally of the form
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E - W(t) (ob - Ycaic)2d( W(t)R(t) dt (A9)

and the least-square solution is again found by

- 0 (AI0)
lam

provided that E is linear in the unknown coefficients am. Obviously, this error criterion is the

limiting case of the earlier discrete summation and is strictly defined only when W(t) and R (1)

are continuous or piece-wise continuous functions. If one wishes to apply the integral error cri-

terion to a discrete function then some care must be taken in evaluating the integral so that

arbitrary statistical weightings are not introduced. For example, the integral may be evaluated

by simple rectangular segments to obtain

E - J w(t) R 2 (t) dt EP W(t) R(ti) At, (All)
i-

or by Simpsons rule to obtain

1 4 p -
E - AtW(t) R2 + W(t) R 2] + ± At Wt 2 ) R1

3 3 i-2

+ - At -(t2i-1) R 2 (A12)
i-2

which on comparison with the usual discrete form

- wp, R,2  (A13)

shows that the choice of method to evaluate the integral can produce very different statistical

weightings which will lead to different least-squares solutions. The integral operator has the

advantage of simplifying many calculations so it is of interest to know the conditions that lead

to the proper discrete, least-squares solution. Comparing Eqs. All and A13 and keeping in

mind that the solution will be given by Eq. A10, it is clear that uniform statistical weighting and

uniform sampling intervals At will permit the interchangable use of integral and discrete expres-

sions provided that the integral is evaluated simply (i.e. - by means of a rectangular or a tra-

pezoidal rule).
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APPENDIX B
Experimental Systems and Methods

The experiments were performed in a 100 ft (30.5m) long, 4 ft 01.2m) wide, and 6 ft

01.8m) high wave tank at the Naval Research Laboratory [181 (see Figure BI). The tank was

filled to a 3-1/2 ft (1.1m) depth during the tests. A one inch (2.54cm) diameter cylinder, 3 ft

(0.9m) long, was placed in a U-shaped frame with two-component force gages at each end. The

frame could be positioned so that the cylinder was either vertical or horizontal. In the horizon-

tal configuration the bulk of the support frame was above water and the entire assembly was

raised or lowered to achieve the desired cylinder depth. For the vertical cylinder tests the U-

shaped frame was fastened to a vertical strut near one side of the channel so that the measure-

ment cylinder was centered in the flume. The gap between the measurement cylinder and the

nearest vertical support member was greater than 12 cylinder diameters. End effects [141 were

not examined in this study but will be the subject of subsequent work on horizontal cylinders in

waves.

The force gages were assembled as square-section cantilever beams with full-bridge

straingage circuits arranged to sense orthogonal components o1 only the force applied to normal

* to the beam's end. The cylinder, force gage, and U-frame assembly was statically calibrated by

applying known deadweights at various positions and directions along the cylinder. The linear-

ity of the output as well as the proper partitioning of the load between the sensors at each end

is indicated in Figure B2. From these tests the equivalent load for a precision shunt resistor

across one arm of the bridge was also determined so that the resistor could be switched into the

circuit for later check calibrations. The signals from the four DC bridge circuits were amplified
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and filtered (Preston DX-l amplifiers) before plotting on a strip chart recorder. The dynamic

response of the force measurement and recording system was checked by pendulum oscillations

of the deadweights. The phase shifts between the applied signals and the recorded results were

undetectable (less than 0.0iT for 0 < li/T < 2hz and less than 0.0ST for 2 < I/T < 10hz).

After recording the data on strip charts several consecutive cycles were digitized, by hand,

and stored on tape for processing with a desktop computer (Tektronix 4051).

The period and height of the incident wave were set by the motions of a mechanical,

bulkhead-type wave generator located at one end of the channel [181. For the present range of

conditions, 98 percent or more of the generated wave energy was absorbed by a porous, sloping

beach at the other end of the channel. The instantaneous water elevation at the cylinder was

recorded and digitized in the same manner as the forces with a capacitance-type wave gage as

the sensor. The measurement system was calibrated before each run and checked after each

run. The accuracy of all measurements is believed to be better than + 2 percent.

The force transfer coefficients were obtained from the digitized wave force record by the

least-squares criterion,

S - (fmea.. - fa1,-)2 (BI)

subject to

as as* - -0 (B2)

where N is the number of data points in the cycle which varied from 20 to 35. The wave-

induced velocities and accelerations were computed using linear wave theory.
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Figure I - Force transfer coefficients for one-dimensional oscillatory flow past circular
* cylinders from Sarpkaya 151. a) inertia coefficients, b) drag coefficients.
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Figure 2 - Force transfer coefficients for one-dimensional oscillatory flow past variously shaped
cylinders from Bearman et al. 16, 71. a) inertia coeMcients. b) drag coefftcients
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* Figure 5 - The in-line RMS wave force coeffcients (evaluated for the fundamental frequency)
for a horizontal cylinder in waves. Present data. 0~ 430, 1.1- 610. 0

42



NRL MEMORAND)UM REPORT 4206

9

8@

0

U4

5

Lnii 0

''4
0I wlava flow, Rif RefI

U) 0

Keulegan-Carpenter Number, K
Figure 6 -The transverse RMS wave force coefficiens (evaluated for the fundamental

frequency) for a horizontal cylinder in waves, Present data: fl! 430.,) 0;M 610. 0.
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Figure 9 - The in-line and transverse inertia coefficients for horizontal cylinders in waves and
for corresponding one-dimensional oscillatory flows. Present data: in-line, i), transverse, 0.
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Figure 10 - The in-line and transverse drag coefficients ror horizontal cylinders in waves and
* ('or corresponding one-dimensional oscillatory flows. Present data. in-line. 0; transverse, 0.
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Figure BI -A photograph of the wave tank.
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