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THE SENSITIVITY OF WAVE FORCE COMPUTATIONS
TO COMMON ERRORS, UNCERTAINTIES,
AND HYDRODYNAMIC APPROXIMATIONS

1.0 INTRODUCTION

In the face of rising construction costs, the increased importance of dynamic loadings, and
in view of the more hostile sites under consideration, the accuracy of wave force computations
becomes a critical question. The least well understood wave loading regime, hence the one
with the least accurate descriptions, is the regime wherein both drag and inertia forces are
important. The basis for most wave force computations in this regime is the so-called Morison
equation. In the past the Morison approach has been tailored with some success to particular
applications. However attempts to generalize the approach have not been successful and as a
consequence, large uncertainties can accompany a new application. The discrepancies between

prediction and observation are often as large as 50 to 100 percent [1).

For the most part these inaccuracies stem from a poor understanding of the unsteady vor-
tex flows which occur in this regime and from several simplifications inherent in the usual Mor-
ison approach. In lieu of a complete hydrodynamic description of the complex vortex wake
flows, an unlikely accomplishment in the near future, an improved approach to wave force
prediction appears to be one that can account for the major differences between wake flows
which may occur for various wave-cylinder combinations. This report outlines such an
approach and at the same time identifies uncertainties that can arise from differences in the

methods of force or force coefficient calculation.

Manuscript submitted February 20, 1980.
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L‘ Most investigations of the fluid forces on an object immersed in an unsteady flow begin
by resolving the force into drag and inertia components [2]. It is less widely known that the
general unsteady force also contains a history term and should be written as the sum of three

contributions in the form,

L’ i Frowt{t) = Fprag(u) + Fppemia () + Fygon (4, 4, 1) (1.1)
where » and # are the velocity and acceleration, respectively, which depend only on the time .

Some years ago, Morison et al [3] made use of this approach in attempting to describe the wave

e Aeamw o

forces on a cylinder. In essence, they took an elemental force on the cylinder to be of the form

dF (t,5) = dFpeey + AFpernia (1.2)
where

dFpg=1/2p D Cp ululds (1.3)
and

dF pperic = m/4p D Cpy 0t ds (1.4)

and with s measured along the cylinder axis. Since this equation first appeared it has become
the basis for the majority of practical wave force computations and is widely known as the Mor-
* ison equation. The unknown force transfer coefficients Cy, and Cp are usually taken as time

invariants so that the unsteadiness of the force resides entirely in the variations of v and .
[ ,} Along with the recent growth of offshore construction, considerable effort has been

expended to collect values of Cy and Cp and to correlate the changes in the coefficients with

[ " the important parameters of the problem. Except for a few simple cases, notadly not including
: progressive wave flows, the variations in the force transfer coefficients have not been com-

pletely sccounted for. To be sure, one can obtain reasonably good force estimates but even

. with great care in the analysis errors of 20 to 50 percent in the total force are common and

“ errors in the local force are often as great as 100 percent or more [1].




T

NRL MEMORANDUM REPORT 4206

The objective of the present investigation is to improve the resolution of the Morison
approach by first examining the sensitivity of the computed wave forces (or computed
coefficients) to the common simplifications of method and to the common hydrodynamic
approximations. Then, alternatives or modifications that can improve the resolution are con-
sidered. These are compared to wave force data obtained in a laboratory channel and are com-
pared to previous results for simple oscillatory flows about cylinders [4, 5, 6, 7, 8]. By way of
example, the present approach can be introduced by considering a simplification of method and

a hydrodynamic approximation that already have occurred in passing from Eq. 1.1 to Eq. 1.2

The simplification is due to the apparent lack of a history term in Morison’s equation as
compared to the general Eq. 1.1. However, if the flow is purely periodic (@ = w?) the omission
does not actually occur because the now periodic history term is included in the periodic drag
and inertia terms. This can be demonstrated as follows. Let the drag and inertia forces be writ-
ten in the usual way

AFppeg ~ Cp* uluids (1.5)
and

AF tpersia — Cl¢ 0 ds. (1.6)
With little or no loss in generality the periodic history term can be expanded in the form

dFysory = (1/2p D Chy ulul + /4 p D’Chyy &) ds (W)
becaur> both u and & will be composed of orthogonal periodic functions. One can then redefine
coefficients to obtain

dF@) = (1/2p D Cp ulu| + w/4p D* Cpy ) ds (1.8)
where
Cp=ChH+Chy (1.92)
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Cu=Cl+ Cly (1.9v)
represent composite force transfer coefficients. The significance of this simplification is that the

composite coefficients obtained from either of two separate experiments may not be appropriate
when the two flows are superimposed. Important problems in this category are the forces on a
structure exposed to a wave/current system or one experiencing oscillatory motion as well. The
history term will not be considered further in this investigation; here the coefficients C), and

Cp represent composite values for nominally purely periodic flows.

The hydrodynamic approximation in Eq. 1.2 is the assumption that Eq. 1.1 can be
extended to two-dimensional flows by taking a differential approach and then assuming that the
distributed force depends only on the local kinematics of the flow. In fact, the variation of flow
along the span will introduce three-dimensional effects in a number of ways. The axial pressure
gradient will produce an axial component of velocity which can greatly influence wake forma-
tion. Less obvious is the effect arising from the wake which may be swept back over one
segment of the structure after being generated at another segment under different flow condi-
tions. Three-dimensional effects have been observed to have a pronounced influence on the
drag in steady bluff body flows (15,16]. This approximation is examined further in Section 3.0
of this report along with other sources of errors and uncertainties. Before these are considered

a brief review of previous results from planar or one-dimensional harmonic flows is presented.
2.0 SIMPLE OSCILLATORY FLOWS ~ A REVIEW OF RESULTS AND METHODS

The experiments of Sarpkaya {4, 5], Bearman et al. [6, 7], Maull and Milliner (8], and to
a slightly lesser extent the experiments of Keulegan & Carpenter [9] belong in the category of
simple oscillating flows over a cylinder. Each investigation approaches the conditions for which

Eq. 1.1 is written and therefore does not require several of the usual assumptions and
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simplifications of Morison's equation necessary for wave flows. Most importantly, each flow is
one-dimensional or nearly so.

Sarpkaya's cylinders were mounted in the horizontal section of a large, U-tube apparatus.
A similar arrangement was used by Maull and Milliner (8] and Bearman et al. {6,7). Once set
in motion, the fluid oscillated back and forth over the cylinder at the natural period of the water
column. Keulegan & Carpenter placed their cylinders horizontally under the node of a standing
wave. In all of these studies the fluid velocity and acceleration fields could be adequately

described by the single components

u= U, cosf (2.1a)
and 2 _
i-- —% U, siné. (2.1b)

In each case the flow did not vary along the cylinder axis and Eq. 1.8 could be directly
integrated over the cylinder length L to obtain

F@)=1/2p D Cp L U} cos@|cos8| — n%/2Tp D* L Cy Uy sin@ .2
for the total unsteady force. By matching this expression with the experimental results it has

been found that the variations in Cp and Cj, could be accounted for through the use of any

two of the following three parameters.

U,T .
D = period parameter = K (Keulegan-Carpenter number) (2.3a)
D
U:' = Reynolds numbers = R (2.3b)
D!
T = frequency parameter = S (2.30)

Only two of the three parameters are independent because R = 8 - K. The period parameter
and Reynolds number are often emphasized because of the analogy with inverse Strouhal
number and Reynolds number in steady flows. Unfortunately both K and R contain U,, and

this can mask important frequency effects. The use of the frequency parameter 8 has a certain

practical advantage since it is a constant for a given wave/cylinder combination.

5
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Using the Keulegan-Carpenter number, the above equation for the fluid force may be

written in the non-dimensional form

2
f0) = F@) ~ Cp cos8lcosd| — =~ Cy, siné, 2.4)

1/2p DL U? K

which will be employed in the balance of this investigation. In this form it is also readily
apparent that the ratio of the peak drag force to the peak inertia force is given by CpK/m2 Cy,
and this should be kept in mind when assessing the relative importance of errors in Cy, and Cp

for various ranges of K. The conclusions that have been drawn from the one-dimensional or

planar-flow experiments are:

i)  Morison’s equation appears to adequately describe the in-line force for simple one-

dimensiona) oscillating flows about circular cylinders.

ii)  Tabulations of Cy, and Cp are available for predicting in-line fluid forces on circular

cylinders in one-dimensional oscillating flows; see Figures 1 and 2.

iii) Several shortcomings in the Morison approach have been identified for non-circular,

sharp-edged cylinders (6, 7).

iv) Large cycle-to-cycle variations in C,, and Cp can occur even for neatly uniform total

forces as measured by the root-mean-square (rms) value {6, 7, 8].

v) A side or lift force is generated which may be nearly as large as the in-line force

{9,101.

As stated in the introduction, the direct application of these results to wave force predic-
tion has resulted in large errors. This is not surprising in view of the added complexities of
wave-induced flows but it suggests certain objectives. For example, one could decide to retain

the usual form of Morison’s equation and then catalog values of Cy, and C, for each different

6
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situation. This is the pragmatic approach taken by much of the offshore industry and will, or
course, pose some difficulty for every new situation. Alternatively one could modify the equa-
tion in search of forms that permit a single tabulation or several tabulations of Cy, and Cp to
certain levels of accuracy and equation complexity. Both approaches are examined in the fol-
lowing sections, but first it is instructive to present the three common methods for determining

Cy and Cp from a force record.

The first method makes use of the fact that the drag force is a maximum when the inertia
force is zero (8 = 0, w) and vice versa (@ = #/2, 3m/2). The measured force is then examined
at these special times in the cycle and set equal to either the drag or inertia force as appropriate.
This method is very simple and has the added advantage of relying primarily on peak forces.
However, it lacks averaging to cancel spurious errors, and in more complex flows the presence
of harmonics can distort the results (see section 3.1). Morison et al [3) used this approach but
with the advent of digital computers to handle the data reduction single-point methods have

largely beeQ abandoned.

The second method employs a Fourier analysis of the force coefficients. Let the non-
dimensional, measured force be given by Eq. 2.4, and then multiply it by sin@ and integrate

over a cycle. This yields the inertia coefficient

n
fo JSmeas(0) sin@ do K
Cu = — = =5 7 frneas 5in0 d6. (2.5)
z f sinlé LA
K Yo

When the measured force is multiplied by cos@ and integrated over a cycle, the drag coefficient

is given by
b1 g
L Imeu® cosode 5 o
Cp= ; - J' Simeas €080 dO (2.6)
" b} 2 o
fo cos’0|cos0|d o
7
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The integrals can be evaluated numerically using the measured force. The Fourier approach
emphasizes the periodic nature of the problem and can be extended to find any desired har-

monic in the measured force record as was done originally by Keulegan & Carpenter.

The third method is a least-squares curvefit! given by the weighted sum of the squares of

the force residuals,

N
S=Y Wfpeas — £0)]? Qn
im1
subject to the constraints
a5 _ o8 _
3C, Cur 3C, Co 0. (2.8

This will minimize the differences between the measured and calculated forces in the least-

square sense. Performing the differentiation for the general coefficient C gives

g—g - 3"’5 L Wlf2 — 2 fineus S6) + L20)], = 0 2.9)
or
B 2eas 3/0) EYAC)
IW, Ya 2 fomeas 5C + 2149) ac |, 0 (2.10)
and
L TACH) CYACH;
T W, fm_" —a—c— z Wf' f(o,«) —a—c— (21D
where the summation is understood to be over the N data points.
Introducing Eq. 2.4, to get
af
3¢, = cosd,|cosd,;| (2.12)
and
8f n?
3C, ~ Tk find 2.13)

'See Appendix A for a description of the least-squares method.
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yields two equations

L W, Smeas, €080, |cos8,|

1 T W, cos®,|cosd,|sind
Cp = +|Z ! 2.14
b T W, cos'd, K ”l I W, cos'e, 2.14)
and
L W, Smeas, 8in0 I W, cos®,lcosd,|sing
Cu= _".2__1"."_"__' +Cp ;2 ilooslsiné, (2.15)
X L W, sin?0, x L W, sin%,

which can be solved for Cy and Cp. Clearly, if the quantity I W, cosd, |cos@,Isin@, is zero
then the solutions for Cy, and Cp are given by the first terms of Eqgs. 2.14 and 2.15. For uni-
form statistical weighting (W, = constant) and for equal increments in @, from 0 to 2w
inclusive, this quantity is identically zero and the solutions for Cp and C,, reduce to

I fimeas, €088 ,1cos @ A
T cos‘d;

Cp - (216)

and

K E fmas‘ sino,-

Cum -t —— 17
M w2 I sin’é, .17

Analogous equations can be obtained using an integral error criterion? with the results

Cp= Lf”f cosO|cos6|de (2.18)
D 3 ° meas co: .
and
K ,
Cuy=~ - fo Simeas Sin8 d8 2.19)

which were utilized by Sarpkaya [S]. The advantage of the integral formulation is that the
terms containing cos8)cos@]sin @ drop out during the integration, but it must be employed with
some caution because f,.. is usually a discrete function and the integral criterion becomes
strictly inappropriate. Under the conditions set forth in Appendix A the integral and discrete

least-squares method can be used interchangeably. Those conditions are tantamount to the

—

ISee Appendix A.
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conditions imposed above to make the discrete summations of cos@|cos®(sin® vanish and

require the integrals to be evaluated in a certain way as well.

Upon comparing the integral least-squares results and the Fourier results the expressions
for Cy, are found to be identical but the two methods produce different equations for Cp. This
difference can be examined by first supposing that the measured fluid drag force is proportional
to cos®|cos@|. For this condition the two methods produce the same numerical result as they
should. On the other hand a drag force proportional to cos@ or proportional to cos’@ will pro-
duce about a 4 percent difference between computed coefficients. Sarpkaya applied both
methods to his measured forces and found a small but consistent difference between results
which, according to the above, would imply the presence of large even harmonics of the force
other than those due to cos{cos@|. In other words, Morison’s equation may not account for all

of the significant in-line forces even for a simple planar flow.

If, for some reason, the statistical weighting is not uniform or a few irregular intervals in
8, are chosen, then the full Eqs. 2.14 and 2.15 must be solved. To do this we first make the

following substitutions

"l’2 .
Si= X sinég, (2.200)
Sp = cos@,|cosé,| (2.20c)
in Eqs. 2.14 and 2.15 to get
LW /Su/lp LW, fohi
Cp= +C (2.21)
T w3 T M i w s
and
-L W, W,
Cuy= LW Juli + Cp JoJi 2.22)

T W, P A
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The solutions for the coefficients are

_EIW/Sulo T WI-SW ifoLW fifu
TW R ILWR-EW S/

Co (2.23)

and
LW Suli EWRB+IW [ fp

LW ff-TWSh— (WS fo)
These equations are of the form given by Chakrabarti et al (10, 11] in their studies of wave

CM"'

(2.29)

forces on inclined cylinders. The sign changes in Eq. 2.24 as compared to Chakrabarti’s expres-
sion are a consequence of the minus sign before the inertia term in Eq. 2.2 which is in turn a

result of the definitions in Eq. 2.1.

One important source of error which is common to all of the above metheds is that due to
an uncertainty in the phase between the fluid motion cycle and the measured force cycle. This
uncertainty can arise from a phase shift in some portion of the sensing or signal processing sys-
tems or may occur physically as a result of cycle-to-cycle variations in the wake processes.
Whatever the cause, the sensitivities of the usual Morison coefficients to an arbitrary phase

shift are given by

. C
Cu/Cy= 38%2% sin ¢ + cos ¢ (2.25)

and

2K C

M .
927 C, sin ¢ (2.26)

when the measured force is assumed to be given by Morison's equation but phase-shifted in

Cp/Cp = 1(¢) -

the integral least-square expressions by an amount ¢. The primes in the numerators are used
to denote the phase-shifted coefficients as compared to the "correct” values in the denominators
and on the right-hand sides. The term denoted by /(¢) is a lengthy trigonometric expression

which is closely approximated by cos ¢ for the present purposes. Two features, which are
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expected, become apparent and quantified in these expressions. First is the tendency to swap

one component for the other as the phase shifts (1] and the second is the marked influence of

1 C :
Z_ 2 which is the ratio of peak drag force to peak inertia force as discussed in

the quantity X C
M

connection with Eq. 2.4. These equations are plotted in Figure 3 for several values of the
phase shift ¢. In viewing the figure it must be kept in mind that large errors in either Cy, or

Cp are relatively unimportant when the other force component dominates the total force as

1 C
”7 FD_' The most striking results in the figures are the significant
M

determined by the ratio
errors (5-10 percent) which can occur for phase shifts as small as 1 or 2 percent of the cycle.
Clearly, special care must be taken to remove or identify phase shifts in the measurement sys-

tem.

Before considering wave flows one further comment is in order. Experiments with simpie
oscillatory flows as described here have revealed the presence of large transverse or side forces
that are not accounted for in the Morison equation. The side or lift force as it is sometimes
called arises from the asymmetric vortex shedding that occurs for moderate and large
Keulegan-Carpenter numbers. If K is large enough, the transverse force can oscillate a number
of times during a wave cycle in relation to the number of vortices shed. This not only raises
the possibility of flow-induced vibrations but also raises the possibility that the resultant peak
force on the cylinder will be greater than the peak force predicted by Morison’s equation. Max-
imum side forces of comparable magnitude to the maximum in-line force have been recorded
in one-dimensional experiments. This difficulty may not be as severe in wave flows because the
three-dimensional character of such flows tends to limit the spanwise coherence of the shedding
processes. It should be noted, however, that cylinder vibrations can restore the coherence and

therefore deserve consideration.

i
i
i
|
i
|
1
i
|
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3.0 WAVE FLOW APPROXIMATIONS AND UNCERTAINTIES

The velocity and ‘acceleration fields induced by a progressive surface wave are nominally
two-dimensional with components (v, w) and (4, w), respectively. The ¥ components coincide
with the direction of wave advance while w and w occur in the vertical direction. Short-crested
or multi-directional seas will produce additional components of velocity and accelerstion. In
order to apply Morison's equation to such a complex flow field some adaptations and
simplifications are required. This section considers the common approximations and
simplifications in order to assess their influence on the accuracy of predicted wave forces and to

assess their effects on computed force coefficients.

The additional hydrodynsmic complexities that are encountered in wave flows may be

summarized as follows.
o The flow is not always perpendicular to the cylinder axis.
®  The wake is not always swept back and forth over the cylinder.
®  The flow is not always uniform along the span.
®  The flow velocities and accelerations are not explicitly known.

The first two effects are largely determined by the eccentricity of the water particle orbits and
by the orientation of the cylinder with respect to the orbits (12). The variation of the flow
along the span will introduce three-dimensional effects in a8 number of ways. Obviously, the
instantaneous velocities and accelerations will have an axial variation which can alter the flow
forces away from the distribution predicted using one-dimensional results, Less obvious is the

three- dimensional effect arising from the wake which may be swept back over or near one seg-

ment of the cylinder after being generated at another segment under different flow conditions.
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Three-dimensional effects have been observed to have a pronounced influence on the drag in

steady bluff body flows (13, 14].

The flow velocities and accelerations are usually computed from a particular wave theory
which has been maiched to the wave shape. Since different wave theories will, in general, pro-
duce different pairs of force transfer coefficients for the same data, it is often suggested that the
user be consistent in the selection of wave theory [1]. Many investigators have employed

higher-order expansions, e¢.g. — Stokes Sth order, in wave force computations and report

improved matching to the wave force [2). In all likelihood these improvements are largely a
result of the additional terms in the curve fitting function and bear little relation to any
improvements in the hydrodynamic description as discussed in the following. In many
instances the usual approach reduces to a selection of a wave theory that best matches the
observed wave surface profile or, in other words, the velocity and acceleration fields are
obtained by matching computed and observed displacements at the free surface. Since the velo-
city and acceleration are essentially derivatives of displacement it is clear that a good match to
the surface displacements does not insure an equally good match to the interior kinematics of
the flow. Stokes expansions are routinely invoked for describing the kinematics of finite-height

waves, 30 that it is constructive to examine their use.

First, the dynamical surface boundary condition can be used to illustrate the problems of
obuining velocities from a matching of surface displacements. Let the surface elevation % be
expanded in the regular perturbation series

n=n,+ne+n9e+ 0 Qa1
where ¢ << 1 is the wave slope. The velocities and accelerations can be similarly expanded but

not to the same order of accuracy if the dynamical boundary condition given by

%+l/2(u’+w’)—n-0
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is to be uniformly satisfied. In particular, the quadratic terms in the velocity require that a
remainder of order ¢” in the surface displacement will correspond approximately to a remainder
of order ¢"'? in the velocity expansion. Hence, the use of such expansions will require a
disproportionately large number of terms to significantly improve the representations of velocity
and acceleration beyond their linear descriptions. In view of the ease of superposition of linear
waves and the practical importance of directionality and short-crested seas, higher order expan-
sions or theories hardly seem worthwhile except possibly in the extreme, single design wave
approach. The use of Stokes-type expansions can also introduce other sources of error and

uncertainty as described below.

The two problems of interest are the use of Morison’s equation to predict wave forces and
the use of Mrison’s equation to obtain the force coefficients Cy and Cp from a wave force

record. To begin, et the velocity expansion be written symbolically as

= t U, cos no, 3.3
a=]
30 that the acceleration is given by
i3 t U, sin no, (34)
2 T nwl

where r represent the order of the expansion and @ = kx — wt. This notation is adopted for

convenience and it should be noted that the forms of the coefficients U, depend on both n and

~

r. To simplify the discussion, the usual Morison approach is taken for a horizontal cylinder in

waves 3o that so the nondimensional force becomes

- P .-

r r U U 2 L/

f@O=CoF T ——Lcosntlcosjol+Z Cy Enl|-2lsinne a9
awl jml vt K a=l U

when the characteristic velocity U, is equal to U,, a constant. As expected, a large number of

harmonics are rapidly introduced. For fixed values of the coeflicients C, and Cp the presence

of these harmonics can be examined by looking at the first few contributions from Stokes

second-order wave theory where

15
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J cosh k (d + z)
- CoShXxdYZ 6a
v sinh kd (3.60) .
and
3 |=H| cosh 2k (d + 2)
Va= 4 l L sinh 4 kd (3.65)

with d being the water depth, k the wavenumber ZT" H the waveheight, and 2 the depth of the

cylinder below mean water level. The two additional drag terms are

% (|cos29|cos® + cos20|cos 8) (3.79)

: 1

i and

}

. Ak

: 2 A (cos 20|cos 261) (3.7v)
1

while the additional inertia term is

Uy| . .
Il 7 ] sin 20 (3.7¢)

one of which is plotted in Figure 4. The proliferation of harmonics is quite clear and their

importance depends directly on the ratio U,/ U,. For deep water waves of any realizable steep-
i ness this ratio is quite small. For a wide range of other wave conditions this ratio remains small

enough that the use of Stokes expansions can be avoided.

It is perhaps more interesting to examine the complementary problem of obtaining Cy,

and Cp from the same wave force record using different order Stokes wave theories. The

-
- =i i

by integral least-squares results, Eqs. 2.18 and 2.19, can be generalized to permit arbitrary (but

orthogonal) velocities and accelerations as follows

n
: _ L Smeas 4lu1d®

b Co = (.9
' ; S wluh? e .
» 2'
7 Snew i d @
; Cum = (3.9)
J" i ae
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The expression for C,, is easier to deal with and an important point can be made using it alone.

Upon substitution of # from Eq. 3.4 the expression for Cy, becomes

cu=X L ¥ 5, @ U, sinn0) do (3.10)
M7 wd LU Jo T " '
in analogy with earlier expressions. Next let the non-dimensional measured force be separated

into its Fourier components as follows

mess® = ¥ (a, sin n8 + b, cos nd). (.11

Upon substitution into Eq. 3.9 the result is

—— 2T
npDILE U}

as one would expect. This resuit is however based on the assumption that the harmonics in the

CM- a|U|+a; U2+03 U3+... 3.12)
measured force are solely a result of the harmonics in the acceleration. If harmonics occur for
some other reason then this approach cannot distinguish their origin and simply lumps the
effect into the computed coefficient and by definition will give a good fit to the data. The prob-
lem once again is to attach any general significance to the coefficient so obtained. A natural

question concerns the type of harmonic structure that can be expected for various flows.

Sarpkaya largely neglects the higher harmonics and thereby implies their smaliness. On
the other hand Keulegan & Carpenter devoted significant effort to categorizing the higher har-
monics or, as they termed it, the residual force. The observed residual force was greatest in the
neighborhood of K = 15 which is usually associated with asymmetric vortex-shedding. The
peak residual force was as much as twenty percent of the peak force and had components at
both cos 38 and sin 30. It seems that these variations in the in-line force correspond to some
of the largest changes in the transverse or lift force. Due to the orbital motion of the fluid, a

measurement of the horizontal component of force /,(#) on a horizontal cylinder will at times

contain a component of the lift force generated by the vertical component of velocity. Since
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this usually oscillates at a multiple of the wave frequency, it will appear as a harmonic in the
force record and in view of the above equation it can lead to an improper computation of the
coefficients. Thus, higher-order wave theories must be applied with some care in order to
obtain consistent results and in order not to mask some of the physical differences between
various situations. By the same token it may be possible to identify the various physical
processes by carefully analyzing the changes in harmonic structure. It is interesting to note that
Chakrabarti’s experiments with inclined cylinders in waves produced the largest residual force
variations at rwice the wave frequency [10,11] as compared to 30 for Keulegan & Carpenter. As
a final comment, the sensitivity to harmonics of single-point methods for obiaining Cy, and Cp

is evident in the above expressions.

There are many possible wave-cylinder configurations, but two particular cases are studied
here to isolate, as far as possible, two different physical situations. The first configuration is a
horizontal cylinder whose axis is parallel to the wave crests. As in a simple oscillating flow, the
velocities and accelerations are always normal to the cylinder axis and it is possible to select a
diameter that is small compared to the scale of the vertical gradients of velocity and accelera-
tion. Under these conditions one would expect some correspondence between a wave flow and
the simple oscillating flow. The principal differences are due to the eccentricities of the water
particle orbits under waves, such that the wake is not always swept back over the cylinder. The
vertical cylinder case admits the axial variation of velocity and generally the velocities and
accelerations are no longer normal to the cylinder axis. On the other hand, the wake is swept

back and forth over the vertical cylinder as it is in the one-dimensional case.

3.1 Horizontal Cylinder — Even with the available simplifications it is not obvious what

form Morison's equation should take for wave flows about a horizontal cylinder. This is due to

18
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the second components of velocity and acceleration. It has become customary to write
Morison’s equation for each component of force using the corresponding components of velo-

city and acceleration to obtain

£.0) = Cp ulu| | =2 o

u
g K ”21rU,,/T 3.13)
and
e wlwl ow W
J;0) = Cp U2 + e Cy U T 3.19)

where U, is as yet an unspecified characteristic velocity and the subscripts refer to the com-
ponent directions. It is also possible to write Morison’s equation using vector quantities and
then to take thie components of the resultant vector force so that

ul
2n

2
1.0 = Cp -3‘7 + 1',—(- Cy (3.15)

2 .
9) = B LA wr
1£:0) = Cp 02+KCM2"Q,

T = ui + wk (3.17a)
g =vVul+w? (3.17b)
Q0=VUi+ W? (3.17%)

The second pair of equations for the force components are seldom employed even though they
appear somewhat more rigorous. It must be emphasized that both approaches reduce to the
one-dimensional case and both give a good fit to the data bur for different values of the
coefficients Cp and C),.! This is the crux of the problem because a common objective (and
one objective of this investigation) is to determine what form of the Morison equation is valid

for wave flows and whether or not the coefficients obtained from a one-dimensional experiment

"The linearity of the inertia term often results in no difference between the two approaches.




- ey -

PR

RAMBERG AND NIEDZWECKI

are useful in a two-dimensional wave flow. Clearly, the choice between Egs. 3.1 and 3.2 or
Egs. 3.3 and 3.4 will have to be made with the aid of experimental results and a careful compar-

ison with one-dimensional results.

Although the vector approach appears to yield the more complex expressions, the particu-
lar case of deepwater waves produces a simpler expression for the drag force and no difference
at all between the inertia force terms. For a horizontal cylinder at a depth z = — d, we have

from linear wave theory

_ 2 _
u(@) = mH e “ cosd, u(r) = 2n H ¢ "% sing (3.18)
T T2
and
2
w(t) = 1;1 ¢ sing, w(r) = 2’;,2H &% cos#
where 8 = kx — wt. By defining U, = —"7’1 e the drag terms in Egs. 3.13 and 3.14 become
Sox (@) = Cp cos@|cosé| (3.19)
and
;@) = Cp siné|sind|. (3.20)
The drag terms in Egs. 3.3 and 3.4 take the alternate forms
Jpx(0) = Cp cosé (3.21)
and
fpz 8) = Cp sinf. 3.22)

The difference between the two pairs of expressions is significant in that both give the
same peak drag force but for the remainder of the cycle the second pair predict larger drag
forces than the first. For example, at § = 7/4 the second approach gives a drag 40 percent

larger than the usual approach for equal peak values. In a situation where the drag and inertia

forces are comparable in magnitude this difference means about a 20 percent change in the
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predicted peak wave force. Therefore, the proper selection of approach, i.e. component versus
Lz vector, has important consequences other than the matter of specifying Cyy and Cp. An experi-

ment that measures both components of force on a horizontal cylinder under waves can be

expected to resolve this question, but owing to vortex-induced side force this will not be as
straightforward as it might appear [10, 11].

3.2 Vertical Cylinders — As in a planar flow the vortex wake of a vertical cylinder in waves
is swept back and forth over the cylinder. However, the flow usually varies in direction with
time and varies in magnitude along the span. The usual approach is to write Morison’s equa-

tion in a differential form, take the components of velocity and acceleration normal to the

cylinder, and then integrate over the length of the cylinder to get the total in-line force. The

key assumption is that Cy, and Cp, can be taken as uniform along the span to get

f=Cpoosoleosl [ a%dz~ Cyn¥Ksing [ ad (3.23)
2 i

where

a = cosh kz + tanh kd sinh kz (3.24)

for a cylinder extending from a depth z = — z, to the instantaneous free surface n. It is also

?‘ customary to evaluate the coefficients at the still water level, which is to say that the charac-
.';} teristic velocity U is the horizontal velocity at z = 0. The obvious difficulty with this approach
v is its inability to account for different vertical distributions which may have the same charac-
g teristic velocity U. For example, two cylinder-wave combinations, one a deepwater wave and
. one a shallow water wave, can be selected to give the same values of K and 8 at z = 0, but the
vertical distributions of Cy and Cp can be quite different. The discrepancy is potentially

greater when the differences in orbital motions are considered as well. A simple correction can

4 wtd

be obtained by assuming a linear distribution of C),, fitting this to the data and then comparing
the linear distribution to a distribution constructed from the planar flow results. Since the total

inertia component of force is the same regardless of the choice of description we have

21
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Cu f_':b asing dz= fl» (Cu, + Cyy2) asin 6 dz (3.25)

where

Cy = the best fit constant coefficient.

Cy, = the z = o value of a linear distribution, and
Cu, = the slope of the linear distribution.

This expression can be used to estimate the slope of a "best fit" linear distribution by setting Cy,
equal to the coefficient obtained using Eqgs. 3.1 and 3.2 and setting Cy, equal to the correspond-
ing planar flow value. For simplicity and in view of the approximate nature of this approach the

upper limit of integration is taken as z = o to get

[

jbadz

-2
CM2 - (CM - CMI) Y 2 (326)
f za dz
-z,
where the integrals are easily evaluated for each wave condition. A similar analysis for the drag
term yields

- aldz
CDI - (CD - CDI) —r (327)
f . za’dz

With these expressiens it will be possibie to examine, in a rudimentary way, the effects of flow
gradients along the cylinder axis upon the individual drag and inertia components of the wave

force.
4.0 PRESENTATION AND DISCUSSION OF EXPERIMENTAL RESULTS

The present results were obtained for relatively low Reynolds numbers,
Re = 10° — 4 x 10°, and for values of the frequency parameter in the range 8 = 300-700.
The depths of the horizontal cylinders varied between three and twelve cylinder diameters
below still water level while the vertical cylinders were positioned to pass through the free sur-
face at all times and terminate some distance (approx. 12 cyl. dia.) from the bottom of the

tank.

22
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4 : 4.1 Horizontal cylinders. Despite the common use of horizontal or near horizontal struc-

e ey

tural members in many offshore platforms, little work has been done regarding horizontal

cylinders under waves. From a hydrodynamic viewpoint the wave flow about a horizontal

. cylinder is interesting because of certain similarities to the planar flow case. Namely, the flow is
uniform over the span and is always perpendicular 1o the cylinder axis. The significant

differences are due to the orbital motions under waves such that the wake is not always swept

back and forth over the cylinder.

A recent paper by Maull & Norman (8] considered the horizontal cylinder under waves

YA g R . Sra Y AT Y WP PP e oY P et W

and represented the measured force by RMS coefficients defined as g

(Force ) ,m,
1/2p DL(U,,,)?

for the force component in-line with the wave direction and as ;

4.1)

F =

(Force. ),
1/2p DL(W,,)?

for the component transverse to the wave direction. C; is often referred to as a lift coefficient

L= (4.2)
although this is potentially confusing because the transverse force in this case is also of the
Morison-type. The characteristic velocities, U and W, are computed for the centerline depth of

the cylinder.

Comparisons between the present results and those of Maull & Norman are presented in
Figures $ and 6. The coefficients are based on the RMS force components at the wave fre-
quency. The comparisons can only be qualitative since the ratio of maximum vertical velocity
W to maximum horizontal velocity U in the present experiments ranges from W/U = 0.9 to
W/U = 1.09 while Maull & Norman'’s data were obtained for W/U = 0.81-0.84. Also, their
velocities and accelerations were computed from Stokes second order theory whereas the

present values were obtained from the linear theory. Maull & Norman do not give a range of 3
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values although the experimental description suggests that they should be close to the present
values of B = 450 and B = 630. In spite of these differences the results of the two sets of
experiments agree quite well. Also included in the figures are Maull & Norman's representa-
tions of the predicted RMS coefficients based on Sarpkaya’s planar flow results. A substantial
overprediction is observed although it must be noted that as W/ U decreased Maull & Norman
found that the RMS wave forces tended toward the one-dimensional results as might be

expected.

The total in-line and transverse RMS coefficients for the present results are compared in
Figure 7 to each other and to the planar flow results of Sarpkaya [5) and of Bearman, Graham
& Singh [6). The discrepancies between the two sets of one-dimensional results are unex-
plained but again either set will significantly over-predict the RMS wave force. It should also
be noted that the RMS transverse or lift force is coansistently less than the RMS in-iine force

for equivalent values of the Keulegan-Carpenter number.

The individual coefficients C,; and Cp can be determined once a suitable form of
Morison’s equation is adopted. The choices were described in Section 3.1 and amounted to
either a scalar application of Morison’s equation to the components of velocity and acceleration
or a vector approach using the vectors of velocity and acceleration. The best fit of each method
to a typical measured force record is presented in Figure 8 where it is evident that the vector
approach is indeed more appropriate and suggests the use of Eqs. 3.3 and 3.4 for horizontal
cylinder. In every case Egs. 3.1 and 3.2 produce drag coefficients that are smaller (approx. S-
10%) than the drag coefficients obtained from Egs. 3.3 and 3.4. The inertia coefficient is, of
course, the same in each case. Another significant feature of the vector approach is the linear-
ity of the resulting force components in deep water which will permit stochastic analysis of hor-

izontal members without artificial linearization.
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The least-squares, best fit inertia coefficients are presented in Figure 9 along with the
L} one-dimensional results of Sarpkaya and of Bearman et al. As might be anticipated from the

RMS coefficients, the wave-induced intertia forces are less than either set of planar flow results

i but appear to follow the same trend of decreasing C), with increasing K. On the other hand the
results for the drag coefficient exhibited a marked departure from the one-dimensional results
as shown in Figure 10. Not only are the drag coefficients less than their planar flow analogues
but they also do not contain the "hump"’ which is characteristic of Cp in this range of K. There !
is a suggestion that the present results might eventually merge with the planar flow results of

Bearman et al. at larger values of K and this ought to be investigated further.

—— -

The difference in behavior between the wave drag coefficients and the planar flow drag
coeflicients must be explained on the basis of the orbital motions of the fluid. Physically, this

is satisfying because the present range of Keulegan-Carpenter number corresponds to a rela- i

. ‘ tively small number of vortices being shed during a flow cycle. If these few vortices are rectil- ﬁ;

; inearly swept back over the cylinder then their influence on the nascent vortices, thence the

-
T —

force, is likely to be much larger or at least much different than a few vortices which are swept
away during the orbital motion under waves. In a sense, the drag on a horizontal cylinder
under waves is more akin to the steady flow drag than to the 1-D unsteady drag. Thus, the

"hump” behavior will not occur for horizontal cylinders and the drag coefficient appears to

e ——— g (P a———
B N

monotonically approach the steady-state drag coefficient as the Keulegan-Carpenter number

——y

i increases. This limit has been demonstrated by Bearman et al. for a variety of body shapes in

planar flows at large X [6}.

- b

4.2 Vertical cylinders— The present results are listed together with corresponding one-

dimensional data in Table 1. The one-dimensional values were obtained from Sarpkaya [5]

Al

because his data are quite extensive. Even so, it was often necessary to interpolate and, in
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Table 1 — Vertical Cylinder Results

Total | Total RMS RMS
Meas. | Pred. | Inertia | Drag

du
K):0 [ B):=0 | RMS | RMS | Force | Force | ™ | b wiu 7{1_0 G

Force | Force { Ratio | Ratio

58 101 1.16 218 0.58 005 [ 0.76 | 0.1l | 0.94-1.0 0.81 0.08

8.2 454 1.44 2.58 0.55 0.18 | 0.66 | 0.36 | 0.62-0.98 0.31 0.16
11.3 573 0.74 1.36 1.01 012 | 065 | 0.26 | 0.81-1.0 0.87 0.06
114 619 0.72 1.48 1.0t 014 | 0.72 | 030 | 0.87-1.0 1.1} 0.06
127 395 1.12 2.56 0.92 0.17 | 0.65 | 0.29 | 0.52-0.95 0.31 0.17
13.6 526 0.70 1.80 0.86 0.16 | 0.58 | 0.36 | 0.74-1.0 0.81 0.08
13.7 451 1.06 242 0.93 0.26 | 062 | 0.63 | 0.62-098 0.51 0.18
18.0 312 1.16 3.26 0.90 022 | 0.68 | 0.43 | 0.41-0.87 0.21 0.35

some instances, to extrapolate the one-dimensional data so that the comparisons should only be
viewed as qualitative. Had the one-dimensional resuilts of Bearman et al. [6] been used, the
comparisons between wave results and planar flow data would be more favorable but the same
general discrepancies would occur. The total wave force, as measured by the RMS value, is
again over-predicted by the planar flow results but it is not obvious whether this is due to inap-
propriate coefficients of drag and inertia due to the assumption of uniform coefficients over the
span or due to the combination. To begin to resolve this question the individual RMS com-
ponents of drag and inertia were compared to their predicted values and the ratios are listed in
Table 1. Evidently, the overprediction is principally in the drag contribution since the ratio of
measured and predicted RMS inertia forces is close to one. In fact, the values are close enough
to suggest that a correction for the distribution of Ci, may be able to account for the
discrepancy. A simple estimate of the correction can be obtained by assuming a linear distribu-
tion of Cy, fitting this to the data and then comparing the linear distribution to a distribution
constructed from the planar flow results as discussed in Section 3.2. Plots which are typical of
the results that can be obtained are presented in Figure 11. Since the inertia force decays
essentially exponentially with depth in the present experiments it is clear that the actual Cy, dis-

tribution is well represented by a distribution constructed from one-dimensional flow resulits.
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Alternatively, a uniform value can be assumed and the error in doing so can be estimated from
one-dimensional resuits using Eq. 3.26. A plot of this estimate of the error is given in Figure

12.

A similar analysis of the drag component is far less fruitful because of the large disparities
between the observed and the predicted drag. The disparity in each case can be attributed to
either the variation in the velocity along the span or to the variation in the flow direction during
the cycle or to both of these. During the present experiments the slopes of the velocity varia-
tion and the eccentricities of the water particle orbits varicd from test to test. Unfortunately
they often varied together and so it is not possible to separate the two effects. The eccentrici-
ties W/ U and velocity variations, characterized by the slope at z = 0, are listed in Table 1. The
apparent trend is that as the velocity variation decreases and/or the orbits flatten the drag tends
/loward the one-dimensional result. With further study, or possibly further analysis of existing
wave force data, this approach could provide a basis for modifying one-dimensional results for
use in wave force prediction. It would also be possible to establish error bounds for the

assumption of a constant Cp.

The final entry in Table 1 is the measured RMS lift coefficient, which in this case is
purely a vortex effect and is not described by Morison’s equation. In the same sense that the
velocity variation and orbit eccentricity influence the drag, one intuitively expects that the
vortex-induced lift will be similarly influenced and indeed this appears to be the case. An
important event which was observed during the experiments but masked by the RMS
coefficient of lift was a significant peak in the lift that occurred near the crest of the wave. The
peak resultant force in those cases was much larger than expected from any combination based

on the RMS values of the in-line and the lift force. This has been discussed elsewhere {5, 7]

and is only mentioned here as a reminder.
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5.0 SUMMARY AND CONCLUSIONS

The results of the present investigaton have shown that the resolution of a Morison-type
approach to wave force prediction can be improved if consistent methods of computation are
employed along with some accounting for the major differences between wave-induced vortex

flows.

In the case of a horizontal cylinder in waves the horizontal and vertical components of the
wave force must be obtained from a modified form of Morison's original equation whereby
each component is derived from an equation written for the instantaneous total force. The
modified equations are linear and are therefore readily employed in stochastic analyses. The
force transfer coefficients Cy, and C,, for the horizontal cylinder cannot be obtained from one-
dimensional planar flow resuits except possibly at large Keulegan-Carpenter numbers. The
planar flow coefficients can overpredict the actual wave force on a horizontal cylinder in waves
by as much as 100 percent. The present results along with some simple physical arguments
suggest that the drag coefficient on the horizontal cylinder rapidly approaches the steady flow
value for increasing Keulegan-Carpenter number and does not exhibit the "hump" behavior

which is characteristic of unsteady planar flows.

The wa\fe forces on vertical cylinders were decomposed into inertiai and drag contribu-
tions for which vertical distributions were estimated. It was shown that the usual assumption of
uniform Cy, and Cp can lead to significant errors but that a distribution of C,, based on one-
dimensional results adequately accounts for the wave-induced inertia force. On the other hand,
the one-dimensional flow drag coefficients greatly overpredict the wave-induced drag and the

amount is attributed to the "steepness” of the velocity gradient along the span and to the eccen-

tricity of the water particle orbits.
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The implications of the present findings for the wave-induced forces on inclined cylinders

and for the forces on cylinders in short-crested seas are straightforward. When the various

L{ ) hydrodynamic complexities associated with wave flows were isolated as much as possible, it was
: i found that a reduction in force occurred as compared to one-dimensional results. Thus it may
be expected that situations where all or most complexities occur together, such as inclined
cylinders or short-crested seas, a further reduction in wave force is likely. Predictions based on

results from other configurations, particularly one-dimensional flows, will be very conservative.
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APPENDIX A
The Least-Squares Error Method

There are a number of methods that can be used to determine the coefficients Cy, and Cp
for a particular form of Morison’s equation and a certain set of data. The most common and
widely accepted methods involve Fourier analysis or curve-fitting or both. A complete descrip-
tion of Fourier analysis can be found in most standard math texts but descriptions of
curvefitting methods are usually restricted 10 the simplest case(s). For this reason a brief
review of the general least-squares curvefit is given here and the reader is directed to a book by

Wolberg for a full description [17).

The first step in any curvefit is to assume that a “true” relationship exists in the form

ne=f. & & ... £, ay ay a; ... ay) (Al)

where

7 is the dependent variable,

&, are the n true independent variables,
a, are the m 1rue coefficients, and
S() is the true relationship.

The objective is to construct the best representation of this relationship using measured values
of the independent variables X,, and measured values of the dependent variable Y,. The con-
structed equation is written as follows
Vo= X, Xy, Xy, . Xpo @y, @3 @y, ... Gy) (A2)
v, is the k" computed value of the dependent variable,
x,, is the k"™ computed value of the /" independent variable, and

a,, are the computed coefficients.

The "best constructed equation” is defined as the equation whose values for the coefficients a,,
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satisfly some minimum error criterion with a particular set of observed values Y, and X,,. It is
customary to minimize the differences between the observed values and the calculated values in

the least square sense. To do this we first must define the residuals,

R),‘ = Yk - y,‘
= v _ = observed value - calculated value (AY)
Rxlu Xlu Xis

and the weights,

w, = /o }k
— 3 [ = (standard deviation) . (A4)
N = 1/0’ i
The latter statistical weighting is adopted so that the residuals can be measured in units of stan-
dard deviation or, in other words, units of equal uncertainty. The computed values of a,, are
sought which minimize the sum S of the squares of the weighted residuals
¢ ? ‘ 2
S= E,l w, R + 2; w, RI} (AS)

The minimization of S is the general least squares curvefit. The solution procedure depends

greatly on the form of the "true" relationship f and ultimately the form of §.

A few points are worth noting. First, the ieast squares curvefit does not determine if the
assumed relationship is true or even if it is a good representation. The "goodness” of the
assumed function must be judged by some other means such as its ability to match ail or cer-
tain of the observed values of the dependent variable or perhaps its ability to produce certain
values of the coefficients. The question of "goodness” becomes the question of the validity of
Morison’s equation for describing wave forces. In the case of wave forces, the judgement of
"goodness” of Morison's equation can be made very difficult by the fact that the wave force is

inherently periodic and the equation itself can be viewed as the first few terms of a Fourier

expansion. Thus, a reasonably good fit can always be obtained quite apart from any physical

considerations of the flow.
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The second comment concerns the contribution of the independent variable residuals to
the sum of the weighted, squared residuals. In most experiments the uncertainties in the
independent variables are much smaller than the uncertainty in the dependent variable, i.e.

Wi, << Wy, S0 that the sum S reduces to

s~%wR (A6)
k=1

and if w,, = constant = w then

S=w t (Yobserved - Ycalc)2 =wk (A7)
k=1
Now if the parameters a,, appear linearly in the assumed function, f, then the least square solu-

tion is obtained from the equations resulting from

%;- -0. (A8)
This is the commonest least-square solution and the one presented in most texts. The point to
be made here is that this simple curvefit is often applied to the wave force probiem without
regard to the implications. Morison’s equation relates the wave forces to the wave-induced
velocities and accelerations but these quantities are rarely measured. Instead the velocities and
accelerations are computed from a wave theory and the observed surface profile. This can be
viewed as the assumption of another "true" relationship or as the introduction of significant
residuals in the independent variables. In the first instance the "goodness” of Morison’s equa-
tion cannot be separated from the "goodness™ of the wave theory. In the second instance the
simple curvefit procedure no longer applies and the general form of S must be employed with
the introduction of more parameters. The general approach will not yield new or even very

different answers but it would provide a rigorous basis for assessing the errors and ultimately

the degree of confidence in the results obtained.

The final comment concerns the use of an integral representation of the error function to

be minimized. These expressions are generally of the form
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T
Em [ WO (Yo~ Vi = [ WORNO) at (A9)

and the least-square solution is again found by

1
da,,

-0 (A10)
provided that E is linear in the unknown coefficients a,. Obviously, this error criterion is the
limiting case of the earlier discrete summation and is strictly defined only when W () and R ()
are continuous or piece-wise continuous functions. If one wishes to apply the integral error cri-
terion to a discrete function then some care must be taken in evaluating the integral so that
arbitrary statistical weightings are not introduced. For example, the integral may be evaluated
by simple rectangular segments to obtain

T p=l
E= [ w() RA0) dr =%, W(t) RX) Ay, (AID)

i=1

or by Simpsons rule to obtain

p—~1
E= 3 alW(n) RE+ Wi,) RA+ 3 80T wi) - R}
im2
2 el
+ ? At z W(fzi__l) Rzzi_.] (AlZ)
i=2
which on comparison with the usual discrete form
- § v R (A13)

i=1

shows that the choice of method to evaluate the integral can produce very different statistical
weightings which will lead to different least-squares solutions. The integral operator has the
advantage of simplifying many calculations so it is of interest to know the conditions that lead
to the proper discrete, least-squares solution. Comparing Eqs. A1l and Al3 and keeping in
mind that the solution will be given by Eq. A10, it is clear that uniform statistical weighting and
uniform sampling intervals Ar will permit the interchangable use of integral and discrete expres-

sions provided that the integral is evaluated simply (i.e. — by means of a rectangular or a tra-

pezoidal rule).
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APPENDIX B
Experimental Systems and Methods

The experiments were performed in a 100 ft (30.5m) long, 4 ft (1.2m) wide, and 6 ft
(1.8m) high wave tank at the Naval Research Laboratory (18] (see Figure B1). The tank was
filled to a 3-1/2 ft (1.1m) depth during the tests. A one inch (2.54cm) diameter cylinder, 3 ft
(0.9m) long, was placed in a U-shaped frame with two-component force gages at each end. The
frame could be positioned so that the cylinder was either vertical or horizontal. In the horizon-
tal configuration the bulk of the support frame was above water and the entire assembly was
raised or lowered to achieve the desired cylinder depth. For the vertical cylinder iests the U-
shaped frame was fastened to a vertical strut near one side of the channel so that the measure-
ment cylinder was centered in the flume. The gap between the measurement cylinder and the
nearest vertical support member was greater than 12 cylinder diameters. End effects [14] were
not examined in this study but will be the subject of subsequent work on horizontal cylinders in

waves,

The force gages were assembled as square-section cantilever beams with full-bridge
straingage circuits arranged to sense orthogonal components of only the force applied to normal
to the beam’s end. The cylinder, force gage, and U-frame assembly was statically calibrated by
applying known deadweights at various positions and directions along the cylinder. The linear-
ity of the output as well as the proper partitioning of the load between the sensors at each end
is indicated in Figure B2. From these tests the equivalent load for a precision shunt resistor
across one arm of the bridge was also determined so that the resistor could be switched into the

circuit for later check calibrations. The signals from the four DC bridge circuits were amplified
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and filtered (Preston DX-1 amplifiers) before plotting on a strip chart recorder. The dynamic
response of the force measurement and recording system was checked by pendulum oscillations
of the deadweights. The phase shifts between the applied signals and the recorded results were

undetectable (less than 0.01T for 0 < 1/T < 2hz and less than 0.05T for 2 < 1/T £ 10h2).

After recording the data on strip charts several consecutive cycles were digitized, by hand,

and stored on tape for processing with a desktop computer (Tektronix 4051).

The period and height of the incident wave were set by the motions of a mechanical,
bulkhead-type wave generator located at one end of the channel [18]. For the present range of
conditions, 98 percent or more of the generated wave energy was absorbed by a porous, sloping
beach at the other end of the channel. The instantaneous water elevation at the cylinder was
recorded and digitized in the same manner as the forces with a capacitance-type wave gage as
the sensor. The measurement system was calibrated before each run and checked after each

run. The accuracy of all measurements is believed to be better than +2 percent.

The force transfer coefficients were obtained from the digitized wave force record by the

least-squares criterion,

N
§S= 2 (fmfns. - fralc )2 (Bl)
i=1
subject to
85 _ 9S _
3C, aC, 0 (B2)

where N is the number of data points in the cycle which varied from 20 to 35. The wave-

induced velocities and accelerations were computed using linear wave theory.
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Figure 2 ~ Force transfer coefficients for one-dimensional oscillatory flow past variously shaped
cylinders from Bearman et al. [6. 7]: 2) inertia coeficients. b) drag coefficients.
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Figure 3 — The variations in computed force transfer coefficients Cy, and C'p as a function of an error
in phasc between the fluid motion cycle and the force cycle.
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Figure S — The in-line RMS wave force coefficients (evaluated for the fundamental frequency)
for a horizontal cylinder in waves. Present data: g8 = 430, .3 = 610, ®
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Figure 7 — The total in-line and transverse RMS force coefficients for horizontal cylinders in waves and for
corresponding one-dimensional oscillatory flows. Present data: in-line, O: transverse, ®.
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Figure 9 — The in-line and transverse inertia coefficients for horizontal cylinders in waves and
for corresponding one-dimensional oscillatory flows. Present data: in-line, O: lransverse, ©.
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Figure 10 — The in-line and transverse drag coefficients (or horizontal cylinders in waves and
for corresponding one-dimensional oscitlatory flows. Present data. in-line, O; transverse, ®.
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Figure Bl — A photograph of the wave lank.
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