
AD-AO89 846 BROWN UNIV PROVIDENCE RI LEFSCHETZ CENTER FOR OYNAI--ETC F/6 12/1
SPLINE APPROXIMATION FOR AUTONOMOUS NONLINEAR FUNCTIONAL DIFFER-ETCIU)
JUN 80 F KAPPEL DAA2979-C-016

UNCLASSIFIED AFfl ThAl0rA
A  €

D END

'IIIIIIIIIIIl//llll///m -C



IlBl i .c... I~HIH 1111118__ 111112Z

tuB I.~25 11111.0_

IIFIJIL25 -6I
ILl



PGLI RUNtflNSCrUCflON5 " . -D -.
FATION PAGE FORE COMPLETING FORM I

jI REPORTNUMB
E R  i0 086 2 GOVI ACCESSION NO. 3. RECIPIENTS CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

SPLINE APPROXIMATION FOR AUTONOMOUS Interim
NONLINEAR FUNCTIONAL DIFFERENTIAL ,PEOMNOGRERNUBEQUATON '., PERFORMING ORO. REPORT NUMBER

EQUAT ION .

7. AUTHOR(*) 8. CONTRACT OR GRANT NUMBER(*)

FRANZ KAPPEL AFOSR 76-3092&V

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMEIJT. PROJECT, TASK

e' f) AIR FORCE OFFICE OF AREA 8 WORK UNT' NUMBERS

.DIVISION OF APPLIED MATHEMATICS /
BROWN UNIVERSITY, PROVIDENCE, R.I. 02912 61102F 2304/Al A.

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AIR FORCE OFFICE OF SCIENTIFIC RESEARC June 12. 1980
BOLLING AIR FORCE BASE .3. NUMBER OF PAGI.S

WASHINGTON, D.C. 22
14. MONITORING AGENCY NAME & ADDRESS(If diiieteni from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

IS.. DECL ASSI FICA T! ON/DOWNGRADING .

SCHEDULE 2 =

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20. Ii different from Report)

1I. SUPPLEMENTARY NOTES t .

It. KEY WORDS (Continue on reverse side If neceeery and Identify by block number)

i •-

20. ABSTRA (Contienu on ,evre e side It necesery end identity by block number)

,. Based on abstract approximation results in semigroup
theory .w.-4. an approximation scheme for nonlinear autonomous

* .:-.: funct~onal-dj~l ~a1 equations with globally Lipschitzean righ -'K
sihand sid s e can be realized by using spline approxi-

mation ofthe state.

DD , "N, 1473 EO, ONOF 1NOVS oUsoLEV3 UNCLASSIFIED



LEV EU<
tqo I SPLINE APPROXIMATION FOR AUJTONOMOUS

NONLINEAR FUNCTIONAL IFFERENTIALJ QUATIONS.

by

kappe1Isc es nstitut

Universitht Graz

Elisabethstrasse 11

A 8010 Graz (Austria)

and

Lefschetz Center for Dynamical Systems
Division of Applied Mathematics

Brown University

Providence, R. I. 02912

C=- This research was supporte/ by the *i r Force Office of Scientific
Research under contract AFOR-76-392, LnA J1 01 r hV th" Itnited
States Army Research Officiu- e-r c-nfract #ARcF DAAG29-79C-0161

0Approv(-, f" .li _ release,::,,~~~ tf0 21,E-Eo-")



SPLINE APPROXIMATION FOR AUTONOMIOUS

NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

by

F. Kappel

ABSTRACT:

Based on abstract approximation results in semigroup theory we

develop an approximation scheme for nonlinear autonomous functional-

differential equations with globally Lipschitzean right-hand side. The

scheme can be realized by using spline approximation of the state.

Acoession For

NTIS CRA&I
DTIC TAB

AIR FORCE OFFIClL OF SCIENTIFIC RZI2AXCH (AC) I Unannounced E)

NOTICE OF TRANSMITTAL TO DDC Justiication--- -

ThIS teohnioal report has boen revlewd4 and II

approved for public rle,aso IAN Ak* I1P148 (7b). By----
Distribution is unlimited. Distributo/
A. D. BLOS
Toohnioal Inforiation Officer 

AvnttlitY Codes

Dint Epc L



1. Introduction and Notation

In this paper we show that approximation techniques developed in [5]

for linear autonomous functional-differential equations of retarded type are

also applicable to a rather broad class of nonlinear equations. These

techniques already have been successfully applied to linear autonomous

equations of neutral type (see for instance [9], [10]). As in the linear

case the approach here is based on abstract approximation results in semi-

group theory and provides a sequence of ordinary differential systems of

increasing dimension whose solutions approximate those of the original delay

system. The same algorithm is obtained in [2] by a different method under

the more restrictive condition of differentiability of the right-hand side.

On the other hand the proof in [2] also works in the time-dependent case.

The general idea of using abstract approximation results of semigroup theory

in order to get algorithms for the numerical solution of optimal control

problems involving delay systems goes back to [31, [4]. Here we restrict

ourselves to the approximation of nonlinear autonomous delay equations. With

respect to control problems for nonlinear delay systems see [1]. The assump-

tions of (1] in the autonomous case are stronger than those imposed here.

In [111 the scheme of averaging projections developed in [4] was shown to be

convergent also in the case of nonlinear autonomous equations with locally

Lipschitzean right-hand side. For nonlinear time-dependent equations satisfy-

ing Caratheodory type conditions an approximation scheme based on interpolation

by splines of first order was developed in [12].

Our state space will be Z = n x L2 (_r,O.Rn), r > 0, which is a Hilbert
2

space with norm 1(n,')l1 =n2 + [ [2 and corresponding inner product.

z 2



2.

and ''12 denote the Euclidean norm in An~ and the usual norm in

L 2(-r,O1R ), respectively. It will be necessary to endow Z with an

equvalnt orm 10 )2=_II + 0o 1()2g sWds, where g is a positive

weighting function on (-r,O]. Z supplied with this equivalent norm and the

corresponding inner product (0(1.9h1), (n2P42))g - n02 + for s)4 ) (s)g(s)ds

will be denoted by Z .V.-,pn ) is the linear space of square-integrable

functions [-r,0J -+]Rn (in contrast to L 2(-r,01R ) which is the Banach

space of equivalence classes of such functions). W 1, denotes the space of

absolutely continuous functions 4): (-rO] -KRn such that 4) is square-

integrable. Ik k = 0,1,..., is the subspace {(4)(O),4)Jl4 E C k} of Z,

k
where C is the space of k-times continuously differentiable functions

4)[-r,0] - Mn. Finally, given a function x: [-r,a) +lRn, . > 0, the

function xt-t E [0,cO, is defined by x C s) = x(t+s), s E [-rOl.

2. The Class of Autonomous Nonlinear Delay Equations

Let a map f: .(-r,0 ;1n) _,.le be given and assume that the following

two conditions hold throughout the paper:

(Hi) If, for some a > 0, x is in L 2 (r,a1 n ) and has a representation

which is continuous on (0,a), then for any representation X of x

the map defined by t -* f(Xt) on [ba] is in the same equivalence

class of L 1 (0,tfl).

(H42) There exist constants L > 0 and r~ j -0,...,m, with

0 - r < r < .. <r - r such that for any 4),tP in -.(-rO;Wn)
0 2

If(4)) - f(*)I < L( 104(~~ -i(-r )I + 14)412).
j-0



3.

The Cauchy problem we are concerned with in this section is

x(t) - f(xt), t > 0, (2.1)

x(O) rl E]11n,x(s) - 0(s) a.e. on [-r,01, (2.2)

where 0 E L2 (-r,0O.,Rn). By a solution of (2.1), (2.2) we mean a function

x: [-r,a) -]Rn, a > 0, such that (2.2) holds and x(t) f n + 1f(x)ds for

t E [O,a). Condition (HI) just assures integrability of f(xs) for all

functions x which are candidates for a solution.

Lemma 2.1.

a) For any (n,O) E Z problem (2.1), (2.2) has a unique solution

x(t) - x(t;n,O) existing on [-r,-). Moreover, this solution

is continuously dependent on initial data.

b) The family T(') of operators Z -* Z defined by

T(t)(n,O) f (x(t;n,O), xt(l, )), t > 0, (n,4) E Z, has the

following properties:

(i) T(O) = I.

(ii) T(t+s) - T(t)T(s), t,s > 0.

(iii) For any (n,O) E Z the map defined by t T)

is continuous on [O, ).

(iv) There exist constants M > 1 and w E R such that

IT(t)z 1 - T(t)z21 < MeWtlzl-z 2  for t > 0 and z E Z,
z z

i " 1,2,
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This lemma is a special case of results proved in 1I] (Proposition 1.1,

Remark 1.7, Proposition 1.2 and Proposition 2.1). Note, that (Hl) and (H2)

imply that the global Borisovi8-Turbabin conditions as formulated in [11]

hold.

In (11; Proposition 2.2] it was shown that the infinitesimal generator

.W of the semigroup T(.) defined in Lemma 2.1 is given by

domeV Q($(),O)jO E WI1,2,

(2.3)

((0 (f(),) for (0(0),0) E dom .

We may decompose Q,,

-J'+ (2.4)
0 1

where AO(4(O), ) = (O,$) and JQ(((O),O) = (f(O),O). -Q( is a closed
010

linear operator with dom -0 - dom -W dense in Z. -Q/ is the infinitesimal
0 0

generator of the C o-semigroup corresponding to the equation x(t) = 0 (cf.

[il).

If -4 is a single valued nonlinear operator in a Hilbert space X,

then _ - wI, w E IR, is called dit 4ipative if

( x 1- '-l2x 2

for all x i E dom -, i - 1,2. In general, WQ - wIl will not be dissipative

for any w EIR (_Q( the operator defined in (2.3)), because the constant M

appearing in (iv) of Lemma 2.1, b) cannot be chosen as one. But following an

idea given by Webb in [151 it is possible to renorm Z such that we get
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dissipativeness. Corresponding to the numbers rj in (H2) we choose a

weighting function g satisfying

g(s) m - j + I on (-rj,-rj ), j =1...,M.

Of course, . is a norm on Z equivalent to IZ.

Lemma 2.2.

a) There exists an w EIR such that / - wI is dissipative in Z .g

b) There exists a X 0 > 0 such that

(I- ) z

for X E (0,X 0).

c) T(t)z = lim (I - I -nz for all z E Z uniformly with respect

to t in bounded intervals.

Proof. For ( (O),j) and ( (O),f) in domjW we obtain (using (2.3) and

(H2))

(_ (mo) ,) - .. (m(o),, (w()-4)(0),Io-o) )g

< L(j m (-r )-*(-r) + - ) m()*0 (m-J+l) J(1 - 0)T (i$- )ds

0 1 --r

< 2LjI((0)-iJ(O),i$I)12 + mL2I.(O)_4i(0)I1 + 1 m 1

2Lj (0)_-4(0) T 2 2 - 2

< [2L + 2!(L2+)1](,(0)-M(0),- ) •
g
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This proves a) with W = 2L + M(L2+1). In order to prove b) we show that

(I - kw)((O),$)= OM (2.5)

has a solution ( (O), ) E domst for any (n,P) E Z provided X is

sufficiently small. (2.5) is equivalent to

vo) -Xf() = n and 4-X = p.

The second equation implies O(s) = eS/AO (O) -I fe (S- TA,(T)dT which for

any 0(0) is certainly in W1 ' For 0(0) we get the fixed point equation

0(0)= h(4(O)) in JRn , where

h(a) = Af(e / a e(-T)/ P(T)dT) + q.

An easy calculation using (H2) shows that h has the Lipschitz constant

XL(m+l+r1 /2) on In. This proves b) with X0 = i/L(m+l+rl/2)"

In [11; Proposition 2.31 it is shown that u(t) = T(t)z for z E domaV

is a strong solution of the abstract Cauchy problem

u = Slu,u(O) = z.

On the other hand any strong solution of this Cauchy problem is representedt -n z
by u(t) = T(t)z, where T(t)z = lim(I - - an z (see [8; Theorem II]).

nn~
Therefore the semigroups T(.) and T(.) coincide on dom -. Since dom CV

is dense in Z, we have T(t) - T(t), t > 0.

We express the situation of Lemma 2.2, c) by saying that the semigroup

T(.) is generated by s .
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For our approach we shall need

Lemma 2.3. The sets , k = 0,1,..., and (I - , k f 1,2,...,

are dense in Z for X sufficiently small. Moreover, 6k a dom _Q for

k = 1,2,...

Proof. Define Ok = {(O(O), )J4 E Ck and $(0) = f(4)}, k f 1,2,...

Then (I - X6Ck (I - X Oj_ 9k =Wk-I = doram _k and everything follows
k

from the fact that domJ 0  is dense in Z. Note, that -9/ is the
0 0

infinitesimal generator of a Co-semigroup of bounded linear operators. It

k konly remains to show (I - A k f -l. It is already established that

equation (2.5) has a unique solution (4(0),) for (qp) =M ,

E C k -  and X E (0, 0 ). E C k -  immediately implies E E C. From

0(0) - X (0) = (0) and (0) - Xf(*) - i(0) we get 4(0) f() which

proves (4(0),O) E -k. Sk c dom-' is clear by (2.3).

Remark. From Lemma 2.2, a) and b) it follows that (I - k - exists for

X E (o,Xo) and is a globally Lipschitzean operator Z dom -. Therefore

W(I - _)lk- for A E (O,0), which implies that .k is also

dense in Z, k = 1,2,....

3. The Approximation Scheme

Following the idea already used in [5] we choose a sequence ZN of

finite dimensional subspaces of Z such that
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ZN cdom-, N = 1,2,..,

Let P Z + Z be the orthogonal projection onto Z and define -YN byN g N NN

Q = PYN' N = 1,2,....

We call the sequence {ZNPN, N} an approximation scheme for equation (2.1).

Lemma 3.1.

a) SN - wI is dissipative in Z for all N, where w is the
N g

constant of Lemma 2.2, a).

b) 'N is globally Lipschitzean on Z, N = 1,2,...

c) For all X > 0 such that M(I -XS/) Z

(I - X-) -l ZN c ZN, N = 1,2.

Proof. Part a) is proved in the same way as in the linear case (see [5],

Proof of Theorem 3.1). For the proof of part b) we recall that se W -P/ +
0 1

(see (2.4)) and therefore SN = O+ N, where NQ( PNQ/0 P and
N N,O N,l' N,0 N 0 N

-Vi = PN-QIPN" 5N,0 is a bounded linear operator on Z (see [51, Proof

of Theorem 3.1). We only need to estimate

N~l1 NI 2Z - I-WlPNzlr-QiPN 2IZ
m

S- ,) I _ L( I~N(-r9)"N(-rj)I + IN i2)

< L(m sup lN(s))Ns)I + IPNzrPNz21d)
-r<8<0
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where zl,z 2 E Z and PNZl (N(O),) PNZ2 = (ON(O),'N). Since ZN is

finite dimensional all norms on Z are equivalent. Therefore there exists
N

a constant aN > 0 such that

zl ~ z ~z Z21z
L;N ,l 1 j1 3N01 0'Z 1  Z2-

In order to prove part c) we recall that dissipativeness of --W - WI

implies the existence of (I - on M(I - X-Q/) for X E (0,-).
N N

Assume that R( - XN) = Z. We take y E Z and put z (1 - QN )-ly .

N N yN

Then z = z + z where z E Z and z E ZL and
N a$1 Nd 2  N'

zI + z2 - ) N(zl+Z2) = y E ZN

implies z2 = 0, i.e., z E ZN. Note, that -PNZ C ZN.

Proposition 3.1.

a) -'N generates a semigroup TN(,) of type w on z (i.e.,

properties (i) - (iv) of Lemma 2.1, b) hold for T N(-) with M = 1),

TN(t)z = lim (I N-nz, z E z,

.1N n N Z Z

uniformly with respect to t in bounded intervals.

b) TN(t)ZN a ZN for t > 0, N = 1,2,....

c) For any z E Z the function u(t) = TN(t)z, t > 0 is continuously

differentiable for t > 0 and

U(t) -W. - u(t) , t-> 0,
N

(3.1)

u(O) - z.

.. ... ......... ..
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Proof. Since by Lemma 3.1, b) JQN is globally Lipschitzean on Z,

equation (I- Xj) z = y has for any y E Z a solution z E Z provided

X is sufficiently small, i.e., .Q(I - N = Z for those X. This

together with dissipativeness of -N - wI (Lemma 3.1, a)) shows that we may
N

use the Crandall-Liggett Theorem ([8; Theorem I]) in order to get a). Part b)

then is an immediate consequence of Lemma 3.1, c). It is clear that equation

(3.1) for any z E Z has a unique solution on [0,co) which is continuously

differentiable. By Theorem II of [8] we get u(t) = T N(t)z.

In the proof of Proposition 3.1, a) we have seen that for each N

A(I - AsN) Z for A sufficiently small. For our convergence proof we
N

shall need that this range condition holds uniformly with respect to N.

Proposition 3.2. Let w be the constant of Lemma 3.1, a). Then

_Q(I - X ) z

1N

for all A E (0,-) and all N.W

Proof. In the proof of Proposition 3.1, a) we have seen that for any N

there exists a AN > 0 such that R(I - AX.W) = Z for all A E (O,AN).

Then for A < min(N I we have

- 5~ Nw (')z = 9(I - )_tl) = . ((l-Aw)(I - A(.W - wI)))

= Q(I l-W(s N - W1))

i.e., .W(I - ( - wl)) - Z for p sufficiently small. Since N - wI
N N
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is dissipative, we immediately (see for instance [6; p.73]) get

Al - u(N - wI)) - Z for all P > 0 or equivalently Q(I - k j) = Z

for all X E (0,1).

By Proposition 3.1 we obtain a sequence of ordinary differential

equations on the finite dimensional spaces ZN,

N(t) = Nz N(t), t > 0, (3.2)

where .N denotes the restriction of _QN to ZN . For any z E Z the
N N N*

solution of (3.2) with initial condition zN(0) = PNz is given by

zN(t) = TN(t)PNz. In order to prove that zN(t) - T(t)z as N - we shall

use the following nonlinear version of the Trotter-Kato Theorem:

Theorem 3.1. Let MN' N = 1,2,..., and ! be single-valued operators

on a Banach space X such that domAN domM for all N and dom_ = X.

Moreover, assume that the following conditions are satisfied:

(i) There exists a X0 > 0 such that

ma - ) ) = (l - )N) = x

for N = 1,2,... and all X E (0,E0).

(ii) There exist real constants WN, N - 1,2,..., and W

such that the sequence WN } is bounded above and

_q - WNI and 2? - w1

are dissipative in X.

(iii) There exists a subset - of dom M such that

(I - )) - X for X sufficiently small and

-N x4 x as N

for all x E _.

__ _ __9
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Let TN(.) and T(.) denote the semigroups generated by -.N and ! ,

respectively. Then for all x E X

lim TN (t)x = T(t)x

uniformly with respect to t in bounded intervals.

This theorem can quite easily be extracted from (7]. Using the same

conclusions as in the proof of Theorem 4.1 in [7] one first shows that there

exists a X> 0 such that (1- X -) (I- X#) as N for all

x E X and all X E (O,X). The rest of the proof is the same as the proof

of Theorem 3.1 in [7].

Theorem 3.2. Let {Z P ,J N } be an approximation scheme for equation (2.1)
N' N' N

and assume:

(1) PNz - z for all z E Z.

(ii) There exists a k > 1 such that E E C implies

ON(o) Oo) and ' N - 12

as N -. ON E W 1 2  is defined by

P N(0(O),O) - (ON(O),$N).

Then for any z E Z

lim TN(t)PNz f T(t)z
N-0-

uniformly on bounded t-intervals.

__ _ _ __ _ _ __ _ _ _
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Proof. By assumption (i) it is sufficient to prove lim TN(t)z T(t)z.

Conditions () and (ii) of Theorem 3.1 are satisfied because of Lemma 3.1, a)

and Proposition 3.2. The verification of condition (iii) in Theorem 3.1 is

done in the same way as in the linear case choosing Ld = W k (see [5],

Proof of Theorem 3.1). Note, that under condition (ii) we have

u (S)-(s)l - 0 and therefore by (H2) f f(0) as N - oo.

-r<s<O

Remark. The proof of Theorem 3.1 in [5] uses only = fk and not

k.

Let k. =f dim Z N . We choose a basis 1I ... N, fZ 9whr

^N N (0 N WI, 2
=j : (8 (O),j)J 1j', and define the n x kN matrix

N N

If we put a = ($N(o),$N), then for any zN E ZN we have

N N N
zN = N = 0 N(O)aN,8 aN),

where NER N is the coordinate vector of z . The same calculations as

in [5] show that for (n,) E Z

^N
P N(",) =8aN,

where aN is the solution of

QN k N(n,4O).

-. 7777N -
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The N x kN-matrix QN and the kN-vector hN (n,) are given by

,0

QN = N(o)TBN(o) + T N(s)TON(s)g(s)ds,

t0
N(nO) _ aN(o)Tn + aN(s)TO(s)g(s)ds.

-r

The matrix representation A,O of -(N,O = PNAW'oPN restricted to ZN Is

given by

AN,o - QNHN,

where % _ f0 6N(s)T N(s)g(s)ds.
-r

For zN E ZN with coordinate vector CN we denote the coordinate

vector of "'N,lZN = PN-J IPNZN with FN( N). From N,lZN = PN(f(ONoaI),O)

we get that FN(aN) is the solution of QNFN(UN) - h N((f(SNaN),O)) -

8N(o)Tf(ON N), i.e.,

FN((N) _ QN1  8N(o)Tf(6%N) .

ZN(t) is a solution of (3.2) with ZN (0) P PN(n, ) if and only if the

coordinate vector wN(t) of zN(t), zN(t) = NWN(t), is a solution of

VN(t) - AN OwN(t) + FN(wN(t)),

(3.3)

wN(O) - aN, where ^NaN 0,0)

6 ON P



15.

By Theorem 3.2 we have

iiH,
lir 0 wN(t) (x(t;,*), xt(,,)) (3.4)

uniformly on bounded t-intervals.

4. Spline Approximation

A realization of the scheme presented in Section 3 can be obtained by

using subspaces of spline functions. In order to do so take a sequence of

partitions of [-r,O] with meshpoints t|, N N 1,2,..., such that

max lt N t _ l I - 0 as N -' and max ItN - t N_11/minlt N - t N 1 <  <

N - 1,2,..., for some constant 6 > 0. For instance we may take

N
t - - K9, j M O,...,O ,

or

t N mrk rk+l-rk k 1
kN+j - O,...,m ; j 

In the second case -rk, k = 0,...,.m, is always a meshpoint of the partition.

Theorem 4.1. Let ZN be the subspace of all elements (0(0),0) in Z such

that 0 is a first order, a cubic Hermite or a cubic spline with knots at

t respectively, and choose the corresponding approximation scheme {ZN,PN,J-WN}

for equation (2.1). Then for any z E Z,

lim TN(t)PNZ T(t)z

....
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uniformly on bounded t-intervals, where zN(t) = TN(t)PNZ is the unique

solution of (3.2) with zN(O) = P Z .

Proof. We have to verify conditions (i) and (ii) of Theorem 3.2. This is

done in the same way as in the linear case using the nice convergence properties

of spline functions (see [51, Proof of Theorem 4.1, or [9), Section 4).

For calculations one chooses B-splines as basis elements of ZN  (see

for instance (14], Sections 2.1, 3.1 and 4.1). The matrices QN',I% are

calculated as indicated at the end of Section 3. Of course, system (3.3) is

always solved in the form

QNWN(t) - HNwN(t) + aN(o)Tf(NwN(t)).

Example. The cubic spline scheme was used for the following initial value

problem:

k(t) - -x(t-1)(4-x 2(0)), t > 0, (4.1)

x(t) = cos j t, -1 < t < 0. (4.2)

Nussbaum proved (13; Corollary 2.1] that equation (4.1) has a unique slowly

oscillating solution xo(t) such that xo(t) > 0 on (0,21, xo(-t) - -x0 (t)

and xo(t+2) - -xo(t) for all t. Moreover, 1xo(t) < 2 for all t. The

solution of (4.1), (4.2) tends to x0 (t+c) for some c E(R.

In Table 1 we give the values for x(t) on the interval (0,5],
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which were obtained by stepwise integration of (4.1), (4.2) using a standard
fourth order Runge-Kutta scheme, and the values of B (O)wN(t), N - 16,

Nu

where wN(t) is the solution of (3.3) for n -i, #(t) cos t. A is the

difference x(t) - 016(O)w16(t).
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TABLE I

t x(t) Bl 6 (O)wl 6 (t) o. IO 5

0.0 1. 1. 0

0.2 0.90365 0.90365 0

0.4 0.59385 0.59384 1

0.6 0.04893 0.04890 3

0.8 -0.63787 -0.63791 4

1.0 -1.23865 -1.23869 4

1.2 -1.60894 -1.60897 3

1.4 -1.77853 -1.77855 2

1.6 -1.82899 -1.82901 2

1.8 -1.78650 -1.78653 3

2.0 -1.56826 -1.56829 3

2.2 -0.89005 -0.89006 1

2.4 0.40275 0.40279 -4

2.6 1.45999 1.46003 -4

2.8 1.85918 1.85920 -2

3.0 1.96289 1.96289 0

3.2 1.98664 1.98664 0

3.4 1.98925 1.98926 -1

3.6 1.97633 1.97634 -1

3.8 1.90934 1.90935 -1

4.0 1.61011 1.61013 -2

4.2 0.62214 0.62218 -4

4.4 -0.88263 -0.88258 -5

4.6 -1.70637 -1.70636 -1

4.8 -1.93456 -1.93456 0

5.0 -1.98423 -1.98422 -1
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