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NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS
by

F. Kappel

ABSTRACT :

Based on abstract approximation results in semigroup theory we

develop an approximation scheme for nonlinear autonomous functional-

differential equations with globally Lipschitzean right-hand side. The

scheme can be realized by using spline approximation of the state.
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1. Introduction and Notation

In this paper we show that approximation techniques developed in [5]
for linear autonomous functional-differential equations of retarded type are
also applicable to a rather broad class of nonlinear equations, These

‘techniques already have been successfully applied to linear autonomous

P
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equations of neutral type (see for instance [9], [10]). As in the linear
case the approach here is based on abstract approximation results in semi-

group theory and provides a sequence of ordinary differential systems of

e

increasing dimension whose solutions approximate those of the original delay
system. The same algorithm is obtained in [2] by a different method under

the more restrictive condition of differentiability of the right-hand side.

i T e A o &

On the other hand the proof in [2] alsoc works in the time-dependent case.

The general idea of using abstract approximation results of semigroup theory
in order to get algorithms for the numerical solution of optimal control
problems involving delay systems goes back to [3], [4]. Here we restrict
ourselves to the approximation of nonlinear autonomous delay equations. With
respect to control problems for nonlinear delay systems see {l]. The assump-
tions of [1] in the autonomous case are stronger than those imposed here.

In [11) the scheme of averaging projections developed in [4] was shown to be
convergent also in the case of nonlinear autonomous equations with locally
Lipschitzean right-hand side. For nonlinear time-dependent equations satisfy-
ing Caratheodory type conditions an approximation scheme based on interpolation

by splines of first order was developed in [12].

Our state space will be Z = R" x Lz(-r,OﬂRn), r > 0, which is a Hilbert

space with norm l(n.¢)l§ - Inl2 + |¢|§ and corresponding inner product.




|-| and |:|, denote the Euclidean norm in R" and the usual norm in

L2(-r,0ﬂRn), respectively. It will be necessary to endow Z with an

0
equivalent norm l(n,¢)|§ = |n|2 + I |¢(s)|2g(s)ds, where g 1is a positive
-r

weighting function on (-r,0). Z supplied with this equivalent norm and the

. 0
corresponding inner product ((n1,¢1), (n2,¢2) )g = n'{n2 + J ¢1(s)T¢2(s)g(s)ds
-r

will be denoted by Zg. 122(—r,0ﬂRn) is the linear space of square-integrable

R e e

functions [-r,0] >R" (in contrast to LZ(-r,OﬂRn) which is the Banach

1,2

space of equivalence classes of such functions). W denotes the space of

absolutely continuous functions ¢: [—r,O]-»lf‘ such that '$ is square-

k

integrable. ¥, k = 0,1,..., is the subspace {(¢(0),¢)|¢ € Ck} of Z,

where Ck is the space of k-times continuously differentiable functions

v e, W R 3 S A%

¢ [-r,O]-*nfR Finally, given a function x: [-r,a)-+n{u a > 0, the

function X, t € [0,a0), is defined by xt(s) = x(t+s), s € [-r,0].

2. The Class of Autonomous Nonlinear Delay Equations

Let a map f: 12;(-r,0ﬂRn) >IR® be given and assume that the following

two conditions hold throughout the paper:

é
|
|
;
|
¥

(Hl1) 1If, for some o > 0, x 1is in Lz(-r,aﬂRn) and has a representation
which 18 continuous on [0,a), then for any representation x of x
the map defined by t + f(xt) on [0,a] 1is in the same equivalence

class of Ll(O,a;Rn).

(H2) There exist constants L > 0 and j=0,...,m, with

l‘j'

0= ro < n < ,.. < LA such that for any ¢,y in 1?;(-r,OﬂRn)

l£@) - €] < LC S o-r,) = wr)| + lo-vl)).
3=0




The Cauchy problem we are concerned with in this section is
x(t) = £(x,), t2>0, (2.1)
x(0) = n €R",x(s) = ¢(s) a.e. on [-r,0], (2.2)

where ¢ € Lz(-r,OﬂR“). By a solution of (2.1), (2.2) we mean a function
t

x: [~r,a) +]Rn, a > 0, such that (2.2) holds and x(t) =n + ] f(xq)ds for

0
t € [0,0). Condition (H1) just assures integrability of f(xs) for all

functions x which are candidates for a solution.

Lemma 2.1.

a) For any (n,¢) € Z problem (2.1), (2.2) has a unique solution
x(t) = x(t;n,9) existing on [-r,~). Moreover, this solution
is continuously dependent on initial data.

b) The family T(*) of operators Z =+ Z defined by
T(t)(n,4) = (x(t;n,9), x.(n,9)), t >0, (n,¢) €2, has the
following properties:

(i) T(0) = I.
(11) T(t+s) = T(t)T(s), t,s > 0.
(1i1) For any (n,$) € Z the map defined by t -+ T(t)(n,¢)
is continuous on [0,»).
(iv) There exist constants M >1 and w € R such that
|T(t)z1 - T(t)zzlz < Mewtlzl-zzlz for t >0 and z, €2,

i=1,2,
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This lemma is a special case of results proved in [11]) (Proposition 1.1,
Remark 1.7, Proposition 1.2 and Proposition 2.1). Note, that (Hl) and (H2)
imply that the global Borisovi&-Turbabin conditions as formulated in [11]
hold. _

In [11; Proposition 2.2] it was shown that the infinitesimal generator

¥ of the semigroup T(:) defined in Lemma 2.1 is given by

domZ = {($(0),4) |6 € W *2),
(2.3)
o(6(0),9) = (£(4),4) for (¢(0),4) € dom &
We may decompose
¥ = 536 + ;x;, (2.4)

where O (6(0),0) = (0,8) and O (4(0),4) = (£(¢),0). ¥ is a closed
linear operator with dom % = dom &/ dense in Z,. % is the infinitesimal
generator of the Co-semigroup corresponding to the equation ;((t) =0 (cf.
(11]).

1f 4 1is a single valued nonlinear operator in a Hilbert space X,

then @ - wI, w €R, 1is called diriipative if

2
(Bx =By x %y )y < wlxl-lex

for all Xy € dom 4, 1 = 1,2, 1In general, o - wl will not be dissipative
for any w € R (g the operator defined in (2.3)), because the constant M
appearing in (iv) of Lemma 2.1, b) cannot be chosen as one. But following an

idea given by Webb in [15] it is possible to renorm Z such that we get




dissipativeness. Corresponding to the numbers rj in (H2) we choose a

weighting function g satisfying
g(s) =m-3j+1 on (—rj,-rj_l), ji=1,...,m.

Of course, |-|g is a norm on Z equivalent to |°|Z.
Lemma 2.2.
a) There exists an ®w € R such that @/ - wl 1is dissipative in Zg.

b) There exists a AO > 0 such that

H(1 -)\F) =12
for X € (O,Xo).
c) T(t)z = lim (I - %;io-nz for all z € Z uniformly with respect
n-roo .

to t 1in bounded intervals.

Proof. For (¢(0),) and (P(0),y) in dom ¥ we obtain (using 2.3) and

(H2))

(7(9(0),4) - Z(W(0),¥), (¢(0)-W(0),¢-¢))

-1

l¢-w| |¢(o)-w<0)|+ ) (m—j+1)f (4- ) T (4-v)ds

~r

m
<L( Y ¢(-’rj
3=0

Y=b(- 4

2
)

| A

2 2 2 1 m
2LI(¢(0)-W(0),¢-¢)| + %L |¢(0)—w(0>| + 5—2 |¢(-rj)-w(-rj
g j=1

1 2
- 51¢(—rm)—W(—rm)‘

+ ﬂ|¢<0)-w(0)|2 -1 '{ |4><-r )=y (-r
2 2 41 3

1A

2
(21 + 32411 | (60)-4(@) ,0-0) |
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This proves a) with w = 2L + %(L2+1). In order to prove b) we show that
(I -~ AN ($(0),9) = (n,¥) (2.5)

has a solution (¢(0),$) € dom¥ for any (n,¥) € Z provided A is

.sufficiently small, (2.5) is equivalent to
¢(0) - Af(9) =n and ¢ - Ap = Y.

S
-T)/A
The second equation implies ¢(s) = eS/A¢(0) - %-foe(s T/ P(T)dT which for

1,2

any ¢(0) 1is certainly in W . For ¢(0) we get the fixed point equation

$(0) = h($€0)) in R, where

v = e e - 11D yman 4o,
0

An easy calculation using (H2) shows that h has the Lipschitz constant

1/2

AL(m+1+r7 ') on R®. This proves b) with AO = 1/L(m+l+r1/2).

In {11; Proposition 2.3] it is shown that u(t) = T(t)z for z € domy

Is a strong solution of the abstract Cauchy problem

On the other hand any strong solution of this Cauchy problem is represented
by u(t) = ;(t)z, where ;(t)z = :i:(l - %;xﬁ-nz (see [8; Theorem II)).
Therefore the semigroups T(.) and T(:) coincide on dom 9 Since don o
is dense in Z, we have T(t) = i(t), t >0,

We express the situation of Lemma 2.2, c¢) by saying that the semigroup

T(-) 1is generated by

Th -




For our approach we shall need

Lemma 2.3. The sets &fk, k =0,1,..., and (I - Ag/xgk, k=1,2,...,
are dense in Z for A sufficiently small. Moreover, &fk c dom & for

k=1,2,... .

Proof. Define P* = {(4(0),4)[¢ € c* and $(0) = £(¢)}, k=1,2,...

Then (I - A;yﬁck o (I - A;y?f?k = ifk_l o) dom.&%% and everything follows
from the fact that dom_Qfg is dense in Z. Note, that 136 is the
infinitesimal generator of a Co-semigroup of bounded linear operators. It
only remains to show (I - K;f?é?k = jfk-l. It is already established that

equation (2.5) has a unique solution (¢(0),9) for (n,y) = @0),y),

k-1 k~1

VEC and A € (0,A VEC immediately implies ¢ € CX. From

).
0
$(0) - A$(0) = $(0) and $(0) - Af(P) = P(0) we get ¢(0) = £(§) which

proves (¢(0),¢) € 9k, %k c dom 9/ is clear by (2.3).

Remark. From Lemma 2.2, a) and b) it follows that (I - Xj&3-1 exists for

A€ (0,) and is a globally Lipschitzean operator 2Z + dom . Therefore

o)

Dk - (1 - Agﬂﬁ_ljfk-l for A € (0,X which implies that E?k is also

0)’
dense in Z, k = 1,2,... .

3. The Approximation Scheme

Following the idea already used in [5] we choose a sequence Zy of

finite dimensional subspaces of Z such that

e
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Zy cdom¥, N =1,2,,,,,

and define &/ by

Let PN: Zg > ZN be the orthogonal projection onto ZN N

o = PR, N=1,2,... .

We call the sequence {ZN’Pﬁ’Jx%} an approximation scheme for equation (2.1).

Lemma 3.1.

a) J&k - wI 1is dissipative in Zg for all N, where w 1is the
constant of Lemma 2.2, a).
b) Eik is globally Lipschitzean on Z, N =1,2,,.. .

¢) For all X >0 such that (I - AJ&%) =2

(- e~ Z Sl N=1,2,... .

Proof. Part a) is proved in the same way as in the linear case (see [5],

Proof of Theorem 3.1). For the proof of part b) we recall that & = JXB + in
(see (2.4)) and therefore J&& = Jx§’0 + J%&’l,
J3§,1 = PNJXEPN' Jx§’0 is a bounded linear operator on 2 (see.[S], Proof

where £¥&‘0 = PNJXG P, and

of Theorem 3.1). We only need to estimate
|~“’N,1zl‘%,1zzlz < |J/1PN21—'Q/1PN22lZ
m
= £ -£W | < L(jzolch(-rj)-wN(-rj)l + 6Nyl

< L( (s)-y,(s)| + |P z,~P ),
< m-r;‘;;o [on () (8)| + |Pyz)Pyzy|,




e g e o - -

where 2112, € Zz and PNzl = (¢N(O),¢N), Psz = (wN(O),wN). Since ZN is
finite dimensional all norms on ZN are equivalent. Therefore there exists
a constant UN > 0 such that
- < -
Py 171 MN,IZZ'Z z "lel zzlz

1 In order to prove part c¢) we recall that dissipativeness of JX% - wI

implies the existence of (I - XL&%)_I on #(1 - XJX%) for X € (O,%).

Assume that (I - lﬁ%&) = Z, We take y € Z, and put z = (1 - AJ&&)-lY-

Then z = z; + z,, where z. € Z_  and z, € Z;, and

1 N

2, +z, - 153&(zl+22) =y¢€ Zy

implies z, = 0, i.e., z € Zy- Note, that ;y&z < Zy-

Proposition 3.1.

a) jﬂ& generates a semigroup Ty(+) of type w on z (i.e.,

properties (i) - (iv) of Lemma 2.1, b) hold for TN(-) with M = 1),
T . (t)z = 1im (I - EJ&/)—nz z €2
N n N » r
n-)w

uniformly with respect to t in bounded intervals,
b) TN(c)zN czzN for t >0, N=1,2,....
¢) For any z € Z the function u(t) = TN(t)z, t > 0 1is continuously

differentiable for t > 0 and

u(t) = Hu(t), t >0,

3.1)

u(0) = z.




Proof. Since by Lemma 3.1, b) & is globally Lipschitzean on Z,

N

equation (I - Ajy&) z=7y has for any y €Z a solution 2z € Z provided

A is sufficiently small, i.e., (I - A\Q) =2 for those A. This
together with dissipativeness of J&% - wI (Lemma 3.1, a)) shows that we may
‘'use the Crandall-Liggett Theorem ( [8; Theorem I]) in order to get a). Part b)
then is an jmmediate consequence of Lemma 3.1, c). It is clear that equation
(3.1) for any z € Z has a unique solution on [0,©) which is continuously
differentiable. By Theorem II of [8] we get u(t) = TN(t)z.

In the proof of Proposition 3.1, a) we have seen that for each N

K1 - AJJQ) = Z for A sufficiently small. For our convergence proof we

shall need that this range condition holds uniformly with respect to N.

Proposition 3.2. Let w be the constant of Lemma 3.1, a). Then ;i

R - A%) =7 i

for all A € (0,%) and all N.

Procf. 1In the proof of Proposition 3.1, a) we have seen that for any N

there exists a )‘N > 0 such that R(I ~ A_VN) =7 for all )\ € (O,XN).

Then for A f.min(kN,%) we have

Z = RL - D) = R(L-M)(T - -1—_—%(% - wD)))
A
= (1 - m(ﬂN - wl)),

i.e., (1 - u(Jx%'— wl)) =2 for u sufficiently small. Since Jv% -l




11.

is dissipative, we immediately (see for instance [6; p.73]) get

M1 - u(v%l -wl)) =2 for all u > (¢ or equivalently (I - AMN) =2
for all X € (0,%).
By Proposition 3.1 we obtain a sequence of ordinary differential
‘equations on the finite dimensional spaces ZN’
zy(t) =z (t), t>0, (3.2)
where .S/N denotes the restriction of JJN to ZN' For any 2z € Z the
solution of (3.2) with initial condition zN(O) = PNz is given by

zN(t) = TN(t)PNz. In order to prove that zN(t) + T(t)z as N -+ = we shall

use the following nonlinear version of the Trotter-Kato Theorem:

Theorem 3.1. Let ‘QN’ N=1,2,..., and 4 be single-valued operators

on a Banach space X such that domQN SDdom4# for all N and dom%¥ = X.
Moreover, assume that the following conditions are satisfied:

(1) There exists a )‘0 > 0 such that

X1 - 2DB) = O - }‘QN) = X

for N=1,2,,., and all A € (0,7\0).

(i1) There exist real constants ., N=1,2,,.,., and

N?
such that the sequence {wN} is bounded above and
‘QN - wyI and P - uwl
are dissipative in X.
(i11) There exists a subset < of dom & such that
(I -)M)2 =X for A sufficiently small and
Dyx > DPx as N+

for all x € 2.




-,

Theorem 3.2. Let {Z

12,

Let Ty (+) and T(+) denote the semigroups generated by QQN and 4,

respectively. Then for all x € X

1im TN(t)x = T(t)x

N-»c0

uniformly with respect to t 1in bounded intervals.

This theorem can quite easily be extracted from [7]. Using the same
conclusions as in the proof of Theorem 4.1 in [7] one first shows that there
exists a A > 0 such that (I - Aﬁﬂk);l + (I - Af?);l as N »> o for all
x € X and all X € (0,X). The rest of the proof is the same as the proof

of Theorem 3.1 in [7]).

N’PN’Jx§} be an approximation scheme for equation (2.1)
and assume:
(1) Pyz >z for all z € 2.
(11) There exists a k > 1 such that ¢ € C* implies
64(® > 6(0)  and  |gy - b|, >0
as N+ o, ¢N € w1,2 is defined by

Pu(6(0),0) = (6,,(0),dp).
Then for any z € 2

1lim TN(t)PNz = T(t)z

N-»oo

uniformly on bounded t-intervals.




Proof. By assumption (i) it is sufficient to prove 1lim TN(t)z = T(t)z.
N-»oo !
Conditions (i) and (ii) of Theorem 3.1 are satisfied because of Lemma 3.1, a) '

and Proposition 3.2. The verification of condition (iii) in Theorem 3.1 is t
done in the same way as in the linear case choosing D = 2fk (see [5], X
Proof of Theorem 3.1). Note, that under condition (ii) we have

sup I¢N(s)—¢(s)| + 0 and therefore by (H2) f(¢N) + f(¢p) as N =+ o, E
-pﬁgip :

Remark. The proof of Theorem 3.1 in [5) uses only 2 = &fk and not
2 - 9%

Let kN = dim ZN’ We choose a basis B?,...,éN of 2 where

N’
\ ky

N,,N. 1,2
j(0),Bj),8j€W *>©, and define the n x kN matrix

w
|

= (B

g = (Bﬁ.--.,eﬂN)-

1f we put é“ = (BN(O),BN), then for any zy € ZN we have

ZN = BNQN = (BN(O)GN’BNQN),

3

where aN €ER is the coordinate vector of 2z The same calculations as

N
in (5) show that for (n,$) € Z

PN(n9¢) = éNaN’

i
]
§
i
!
i
i
!
i

where aN is the solution of

QN“N - kN(n,¢)v




14,
The kN X kN—matrix QN and the kN-vector hN(n.¢) are given by
N/~ T,N 0 N, .T,N
Qq = B(0)"87(0) + ] B (s) B (s)g(s)ds,
-r

0
() = '@ + [ e To(oraterds.
-r

-
gy ——r— - g =~ g -——-—v—wv-«-———vﬁJ

The matrix representation AN,O of jy&’o = PN;ybPN restricted to ZN is

given by

Ao T Oy Hys

0 .
where HN = I BN(s)T BN(s)g(s)ds.
-r

For zy € ZN with coordinate vector aN we denote the coordinate

N
vector of L&&’lzu PNJJEPNzN with FN(QN). From Jﬁk,lzN PN(f(B aN),O)

we get that FN(GN) is the solution of QNFN(aN) = hN((f(BNaN),O)) -

'), t.e.,
Ry = o7t 8" @ ecaNy).

zN(t) is a solution of (3.2) with zN(O) = PN(n,¢) if and only if the

coordinate vector wN(t) of zN(t), zN(t) = §qu(t), is a solution of

&N(t) = Ay oin(®) + Fy(wy (),
(3.3)

wy(0) = ay, where éNGN = Py(n,¢).




15.

By Theorem 3.2 we have

Lim 8w (6) = (x(E3n,0), %, (b)) (3.4)
N-+oo

uniformly on bounded t-intervals.

4. Spline Approximation

A realization of the scheme presented in Section 3 can be obtained by
using subspaces of spline functions. In order to do so take a sequence of
partitions of [-r,0] with meshpoints t?, N=1,2,..., such that

N N N

m;x |tj - tj-l j-1

N=1,2,..., for some constant B > 0. For instance we may take

| >0 as N+ o and max |tN - tN 1I/minltN -t | < B <=,

N r
cj.-j'ﬁ' }=0,...,N,

or

N T4l Tk

% I St B

k = 0,,ee,m~1; §=1,...,N,

In the second case o k =0,...,m, 18 always a meshpoint of the partition.

Theorem 4.1. Let Z_ be the subspace of all elements (¢$(0),4) in Z such

N
that ¢ 18 a first order, a cubic Hermite or a cubic spline with knots at

t?, respectively, and choose the corresponding approximation scheme {ZN'PN'Jr&}

for equation (2.1). Then for any z € 2,

1im T (t)P .z = T(t)z
Now NN
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uniformly on bounded t-intervals, where zN(t) - TN(t)PNz is the unique

solution of (3.2) with zN(O) =P 2,

N
Proof. We have to verify conditions (i) and (ii) of Theorem 3.2. This is
done in the same way as in the linear case using the nice convergence properties

of spline functions (see [5], Proof of Theorem 4.1, or [9], Section 4).

For calculations one chooses B-splines as basis elements of ZN (see
for instance (14], Sections 2.1, 3.1 and 4.1). The matrices Q.ly are
calculated as indicated at the end of Section 3. Of course, system (3.3) is

always solved in the form

Qi () = B (6) + 8 (£ (BYw (o).

Example. The cubic spline scheme was used for the following initial value

problem:

x(t) = -x(t-1) (4-x2(t)), ¢t >0, (4.1)

x(t) = cos 7 t, -1<t<o0. (4.2)

Nussbaum proved [13); Corollary 2.1] that equation (4.1) has a unique slowly
oscillating solution xo(t) such that xo(t) >0 on [0,21, xo(-t) - -xo(t)
and xo(t+2) = -xo(t) for all t. Moreover, Ixo(t)l < 2 for all t. The

solution of (4.1), (4.2) tends to xo(t+c) for some c¢ € IR,

In Table 1 we give the values for x(t) on the interval (0,5],

API Y A o

A L -

T -

rewn

e e e moTLERReTy =t Wt - i VPR N NOENEL "
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which were obtained by stepwise integration of (4.1), (4.2) using a standard
fourth order Runge-Kutta scheme, and the values of BN(O)wN(t), N = 16,
where wN(t) is the solution of (3.3) for n = 1, ¢(t) = cos %-t. 4 1is the

difference x(t) - 816(0)w16(t).
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TABLE 1
t x(t) 8180w 4 (0) 810
0.0 1. 1. 0
0.2 0.90365 0.90365 0
0.4 0.59385 0.59384 1
0.6 0.04893 0.04890 3
0.8 | -0.63787 -0.63791 4
’ 1.0 -1.23865 -1.23869 4
1.2 -1.60894 -1.60897 3
1.4 -1.77853 -1.77855 2
1.6 -1.82899 -1.82901 2
1.8 -1.78650 -1.78653 3
2.0 ~1.56826 -1.56829 3
2.2 -0.89005 -0.89006 1
2.4 0.40275 0.40279 -4
2.6 1.45999 1.46003 -4
2.8 1.85918 1.85920 -2
3.0 1.96289 1.96289
3.2 1.98664 1.98664
3.4 1.98925 1.98926 -1
3.6 1.97633 1.97634 -1
3.8 1.90934 1.90935 -1
4.0 1.61011 1.61013 -2
4.2 0.62214 0.62218 -4
4.4 | -0.88263 -0.88258 -5
4.6 | -1.70637 -1.70636 -1
4.8 | -1.93456 -1.93456 0
5.0 | -1.98423 -1.98422 -1
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