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COMPUTATIONAL DIFFICULTIES IN THE IDENTIFICATION AND

OPTIMIZATION OF CONTROL SYSTEMS

H. T. BANKS+

Lefschetz Center for Dynamical Systems
Division of Applied Mathematics

Brown University
Providence, Rhode Island 02912

ABSTRACT

As more realistic models for resource management are developed, the need
for efficient computational techniques for parameter estimation and optimal
control involving nonlinear vector systems will grow. We discuss some of the
difficulties associated with such computational schemes and also report on
results available for identification and control of several classes of systems
which are of increasing importance in a number of areas of applications.

1. INTRODUCTION

In this presentation we consider computational methods for vector dynamical

systems of the type

//(I) i(t) =f(t,x(t),u(t),0), 0 < t < T, .,/

x(O) x A

or" '

'. / . "s "b .- " '

C , . . -

(2) x(i+l) F(i,x(i),u(i),0), I = 0,1,2,...,M-

x(O) - x0, ,4

with x - (x,,." x ) E R, u - (u,...,u) £ Rm, and 8 =(l,..lv) E R

The methods discussed are for the related problems of parameter estimation

(identification) and optimization (optimal control) in "state" models which

This research was supported in part by ttfe National Science Foundation under
grant NSF-MCS 79-05774, in part by the Air Force Office of Scientific Research
under AFOSR 76-3092C, and in part by the U.S. Army Research Office-Durham under

grant AROD-DAAG-79-C-0161.
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are assumed to be based on accepted (or hypothesized) mechanisms for growth,

competition, harvesting, etc. in resource management. As one considers in-

creasingly realistic models that include multi-species effects, age structure,

multiple trophic levels, etc., (e.g. see (May et al. 1979), (Clark 1976),

(Clark 1976a)) the analytic techniques employed in early studies of scalar or

two dimensional vector models (see (Clark 1976)) will undoubtedly prove

inadequate and one should find computational procedures such as those outlined

below quite useful even in investigations of qualitative features of the more

sophisticated models.

Our discussions here will be divided into two main sections. First, we

give a brief review of standard ideas and techniques for identification and

optimization problems involving ordinary differential equation models such as

(1). Least squares techniques entailing such standard iterative techniques

as gradient and conjugate gradient procedures will be outlined for the para-

meter identification problem for (1). Brief mention of maximum likelihood

estimator ideas will be made. We next turn to necessary conditions for optimal

control problems governed by (1). Our emphasis here will be on the celebrated

Pontryagin maximum principle and the resulting two point boundary value

problem that must be solved.

The second part of our presentation will be devoted to an indication of

recent results (the development of which was mostly motivated by needs in other

areas of applications such as aerodynamics, biochemistry and radiation biology)

for special systems that we feel should be of use in resource management studies.

We discuss the difficulties associated with identification and control of models

with delays (hereditary systems) and offer tested ideas to alleviate some of these

difficulties. Finally, procedures for optimization problems with underlying

discrete systems such as (2) will be briefly outlined. Special problems in which

the time intervals At between the control actions u(i) are themselves part of

I _____________________ Mai_____
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the optimization parameters appear to be of interest in certain terrestrial

management endeavors and these will be discussed.

2. PARAMETER IDENTIFICATION

Consider the equation (1) in which the vector function u represents

input to the system, 0 is a vector of unknown parameters (e.g., time constants,

growth rates, etc.) and we are able to observe the "output" vector y(t) = Cx(t).
p

Here y - (yly 2 ,...,y p) E R and C is a known 'p x n matrix. In practice,

we make observations fy ,y I...,y ) of the output y at times

t < t2 < ... < tK (with or without perturbing the system via the input u).

If we denote by x(.;a) the corresponding solution of (1), yi is then an

observation for y(t ;0) = Cx(ti;0) and a Least Squares Estimate (LSE) of

is a solution to the problem of choosing 0 E 2? RV  so as to minimize

(3) = K ^y y(t; )I2

i=l

Here j is some given parameter set determined by physical, biological,

economic, chemical, etc., restraints on the system.

For nonlinear vector systems, the problem of finding a 6* E to

minimize (3) is not, in general, solvable by analytic methods and some type of

iterative numerical scheme is called for to produce estimates {0j } that

hopefully converge to a "best fit" parameter 0*. Such a procedure can be

formally stated as:

Mfl Guess an initial estimate B0 . (To make a good initial guess

is important and one usually relies on his "knowledge" of the

parameters although "apparent" values for parameters-which may

have little relation to actual physical or biological limits-often

play an important role in biological and ecological models!)
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(ii) Given an estimate 0j , generate a next estimate 0J+l by some

formula J). (For example, many popular methods are

based on the iterate formula 0 = + Qi d where dj  is a

"direction" and %. is a "step-size" parameter.)

(iii) If 1J0l-8JI is less than some given error tolerance, stop

the procedure, accepting 8j+l as our value for 0*. Otherwise,

set - j+l and return to step (ii) to generate a next

estimate.

Among the most popular methods for the choice in (ii) above are the so-

called descent methods (see Chapter X of (Banks and Palatt 1975)) which include

the gradient and conjugate-gradient techniques as special cases. Letting

33
VJ - denote the gradient (partial derivative) of J with respect to 0,

the gradient method employs the iterative formula

8J+ = ( A

where ci is determined by a one-dimensional search on OL in 0- cVJ(8)

to minimize J. The conjugate-gradient or conjugate-directions methods modify

this choice of directions di (one no longer chooses di . -VJ(&J), but a

choice related to this direction is made) in an attempt to insure that

"independent" directions are chosen on subsequent steps in the algorithm.

This is especially profitable in problems where narrow, steep "valleys" are

present in the surface J as a function of the parameters. Among the more popular

conjugate directions methods are those of Fletcher-Reeves and Daniel (Ortega

and Rheinboldt 1970). In practice, hybrid methods combining gradient (G) and

conjugate-gradient (CG) steps in some pattern (e.g., G, CG, CG, CC, G, CG, CG,

CG, G, CG,...) often are found to perform better than an algorithm employing

a single typc of formula at each step.
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A somewhat different approach to the least squares fit to data utilizes

the method of quasilinearization. We shall not discuss these ideas here, but

interested parties may consult (Banks and Groome 1973), (Bellman and Kalaba 1965),

or Chapter X of (Banks and Palatt 1975).

An alternative to the LSE as formulated above is the Maximum Likelihood

Estimator (MLE) for 8. This procedure is based on the following considerations.

In many problems, the observations {y I are corrupted by noise so we might

write = Y(t ;o,) + Zi where Zi  is the random measurement noise at time ti
and e is the true parameter value. If one assumes that ZI...,ZK  are in-

dependent random variables with identical probability density functions h

(an assumption that is often not true in practice), then the joint probability
K

density function is given by h(Zlz 2, ...,zK) - -h(zi). Loosely speaking,
i-=1

the function h has its maximum at those values of (z1,. .. ,zK ) that are most

likely to occur. Therefore, we might devise a procedure for estimating 8 on

the basis that the observed values of Z i y(t1 ;0*) correspond to those

that are most likely to occur, i.e., max h(zl,.. .,zK) = h(Z1,... ,ZK). If we

thus consider the function F($) =_ h(9 1-y(t1;a),.-- Y(tK;0)), we might

expect this function to be maximized at the value 8 = 8 . An MLE for 0 is

then defined to be a value B which yields a maximum for F(O). Instead of

maximizing F, we define the likelihood function

K
L(O) - in F(B) - n h(y-y(t;0))

and equivalently seek a maximum for this function. This usually reduces to

employing a procedure to determine 8 so that L (L ) 0 0. A more detailed
30

discussion of MLE's can be found in almost any standard text on statistics or

.. ... . ... .. . . = . . . . .. : _, i 
. a '

: ... ..
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We note that in certain cases the HLE reduces to the LSE (Deutsch 1965,

p. 136). For example, assume that Z is scalar, Gaussian with mean zero and

variance 02. Then h(z) = (1//2 ) exp(-z 2 /2a2) and

-42 2
K -(Y(tt;0)) /2a

L( S = .kn e

i=i

K [yi-y(ti;)l 2

= i n( 2f o) 2

K 2- 2
- -Kkn(r 0Y) - i=1 2020 "

Therefore maximizing L is equivalent to minimizing the least squares

function J defined in (3).

3. OPTIMAL CONTROL

For this class of problems we assume that the parameters in (1) are

known and define g(t,x,u) E f(t,x,u,O). In addition to the initial conditions

in (1) we impose terminal or target conditions x(T) E - where is

n
some given desired (smooth) subset of Rno The control system is thus defined

by

k(t) = g(t'x(t),u(t)), 0 < t < T,

(4) x(0) - x0

x(T) E

i1
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and control functions u: [O,T] U, U a given restraint set, are to be

chosen from a prescribed set of admissible controls, The optimal control

problem consists of choosing u E * so as to minimize

I(u) = g0 (x(T) + 0f(sx(s),u(s))dsfI;
subject to (4). Here g 0,f0 are given "payoff" or "cost" functions.

The necessary conditions for (x*,u*) to be a solution of this problem

that we present here are the first order conditions that are analogues to the

conditions F'(4) = 0 employed in calculus when minimizing a scalar function

F of one variable. More correctly, they are, roughly speaking, the function

space analogue to the well-known Lagrange Multiplier Rule for constrained

minimization in multivariable calculus problems (see (Luenberger 1969), (Kirk 1970)?

(Hestenes 1975), (Bryson and Ho 1969)). Numerical computations are almost

always essential for solving these necessary conditions in the case of vector

systems that realistically model biological or engineering phenomena. While

the method of dynamic programming has received wide spread publicity, we shall

not discuss it here since for vector systems of dimension greater than two it is

often very difficult, if not impossible, to implement this method.

For *0 E R and * - %l...,*n) C R , we define the "Hamiltonian"

function (scalar-valued) by

H(t,x,U,oVVi) * 0fO(t,x,u) + 'g(t,x,u).

The Pontryagin Maximum Principle may then be stated (for a careful statement

and proof, see (Berkovitz 1974) or (Fleming and Rishel 1975))as follows;
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IMP: If (;*,u*) is a solution to the above problem, there exist a nontrivial

n+l vector function t - (SA(t)) = (O, 1 1(t),...,'An(t)) such that

(a) X0 - constant < 0,

3H

(t) - (t,x (t),u*(t),X0 ,PX(t)), 0 < t < T,

(b) X(T) is orthogonal to l at x*(T),

(c) H(t,x*(t),u*(t),AOA(t)) = max H(t,x (t),v,X0,A(t)) for 0 < t < T.
VEU

The boundary conditions on X given in (b) are called transversality

conditions and the condition in (c) is of course the "maximum condition" that

the optimal pair (x* ,u*) must satisfy. The equations in (a), which can be

equivalently written

f
a(t) _X - 0  (t,x*(t),u*(t)) - X(t) -g (t,x*(t),u*(t)),

~ 0)= ax ax

are called the "costate" or "adjoint" or "multiplier" equations. These

equations, with the boundary conditions from (b), are coupled with the system

(4) and together they form a two-point boundary value problem (TPBVP) for a

2n-vector system (i.e. (4), (a), (b) must be solved simultaneously). Note,

however, that these equations involve the (unknown but sought after) control

function u* which must be determined from the condition (c). But condition

(c) involves the functions x* and A which are to be determined from (4),

(a), and (b). Thus, conditions (a), (b), (c) taken with (4) constitute a

TPBVP with a coupled maximization condition. There is, in general, no hope of

solving this analytically and some type of computational scheme is required.

Just as in the case of the identification problems of section 2, one can
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develop iterative schemes based on gradient, conjugate-gradient, etc. ideas

to generate a sequence of pairs (xJ,u j) that (hopefully) converge to (x*,u*).

However, in this case the iterations are made in function space. The gradient

of I with respect to u is an operator with kernel -; that is,

T 3H
VI(u;6u) = -u 6u dt

3H

and the descent type procedures will thus use au s the gradient "direction".

For example, a procedure based on the gradient method is given by the steps:

0
[1] Choose an initial estimate u

[2] Given the ith estimate u , generate the next estimate u by:

(i) Use u in i = g(t,x,u), x(0) = x0 , to compute x

j, . 7_H itxu X T)I-i-a jT
(ii) Use u ,x with X - x

to compute A3 .

(iii) Compute D= H ,xj,ujX A X)

(iv) Put uj+l = uj + 0. Di where CL is determined by a one-

dimensional search to minimize I(u);

[3] If u J+l uj
, terminate the procedure, accepting uj+l as the

estimate for u*; otherwise, set uj = uj+ l  and return to [2] above.

There are many variations on the iterative procedure outlined here, some ofdj

which involve different choices for the directions Di. For further discussions,

one can consult (Kirk 1970), (Polak 1973), (Banks and Palatt 1975). An

excellent survey of other methods can also be found in (Polak 1973).

i.m&"
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4. SYSTEMS WITH DELAYS

Most investigations of resource management are, by necessity, based on

models for "population" behavior (resource increase, utilization, etc.). Due

to the complexity in ecological chains, it is often desirable to consider

multiple trophic levels (e.g., vegetation-herbivore-carnivore systems) in the

models used. Other factors that play an important role are age structure,

environment recovery, and delay in recruitment. All of these considerations

lead, in any realistic modeling effort (May et al. 1979, p. 275), (Cushing

1977), (Clark 1976), (May 1973, p. 73), (May 1976, p. 6) to systems with

delays. Such systems have played an increasingly important role in engineering

and other areas of applications and in recent years efforts to develop

mathematical techniques to aid in investigating delay systems have grown. We

report on some of the recent results obtained from these efforts in hopes that

these techniques will also prove of value to investigators of models for

renewable resources.

Consider for the moment the delay system

it(t) = f(t,x(t),x(t-r),u(t),O), 0 < t < T

(5)
x(e) = 0(e), -r <0< 0,

which, even though we include only a discrete delay term, is an infinite

dimensional "state" system (similar to a partial differential equation). This

poses immediate added difficulties for the identification and control problems

discussed in Sections 2 and 3 above. However, in the case of certain parameter

estimation problems, there are even more serious questions that must be entertained.

Often, in addition to the parameters 0 in (5), one also wishes to estimate the

..... .......



delay r so that the parameter identification problem consists of estimating

'Y - (O,r) or, in the case of multiple delay systems, Y = (O,r,...,r). A

moment's reflection (see (3) and the related discussions) will reveal that in

order to use the standard techniques discussed above, one needs to be able to

compute L(.;) and, in this case, aLXtir). However, this derivative

does not, in general, even exist! Consider the following example:

i(t) = x(t-r), t > 0,

0i -i < a < 0

- <6<

For r > -1, the solution is given by x(t;r) = 0 for t > 0. For r < -1,

say r= -1 , we find x(t;r) = t for 0 < t < E, and x(t;r) = for

e < t < 1 + c. It is then very easy to show that for 0 < ti < 1, ar(t;.l)

does not exist. The techniques we summarize here will overcome this

difficulty as well as those presented by the infinite-dimensional state

aspects of (5).

We sketch the ideas for the simplest linear delay system. Results are

available for the most general linear systems, including those with distributed

delay terms (e.g. J O )dO) - see (Banks and Burns 1978), (Banks et al.

1979), (Banks and Kappel 1979), (Banks et al. 1979b)-as well as for a rather

general class of nonlinear systems (Banks 1979), (Banks 1980).

Consider the simplest linear delay system

k(t) - A0 (O)x(t) + Al(1)x(t-r) + Bu(t) t > 0,

(6) x(O) - *(O), -r < 0 < 0,

y(t) - Cx(t).
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Here x E R and Ao,AI are nX n matrix functions that are assumed to

depend on the parameters in a smooth manner. Let Y - (O,r) with r some

given admissible parameter set. We wish to choose Y E r so as to minimize

K

j(y) I A ly _ Y(ti;Y)J2
i=l

where the y are observations for y(t1 ;Y) Cx(ti;Y). The methods we

propose entail approximating (6) by high order differential equations in which

the parameters Y appear smoothly so that we may apply standard techniques.

That is, we have an approximating identification problem:

Find N E r so as to minimize

K
j N(Y) = X J _ c w N(ti;Y)12

i= 1

where

.N N N N
.N(t) A (,r)w (t) + B u(t)

(7) w N(0) _

Here (7) is an approximating system for (6) that is finite dimensional

(w NC R P(N n )) with the dimension P depending on the index of approximation N

and the dimension n of the original system (6). One can, for the schemes we have

developed, argue that YN converges (as N -o-) rapidly to a solution y*

of the original estimation problem. For details see (Banks et al. 1979b).

We shall not discuss this here since the arguments are quite technical.

Essentially, one treats (6) as an abstract system in a Hilbert space and

employs classical Ritz type ideas: Approximate the problem on finite-dimensional
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subspaces. Convergence properties and error estimates can then be obtained

using approximation results from linear semigroup theory.

These approximation ideas (for both the parameter estimation and optimal

control problems) have been developed to date for two specific classes of

schemes:

(I) The "averaging" approximations (Banks and Burns 1978): These

approximations are based on approximations of states 4 E L2n(-r,O)
N 

N

by step functions YN = a X where X is the characteristic

N[-JL -(j-l)rl
function for I N = , j fi 1,2,...,N, and a is the

j N N

integral average of 4 over the subinterval I N; i.e.

a N f (s)ds.aj r=

ij

The matrix A (r) in (7) turns out to be very simple to use in

computations, being given by

A0(8) 0-0 A1(I)

N -N7 0 0
r n * r nN.r- .. "I .

A N(6,r) 0 'l-.

0 0 N -N-
r Pn r -n

Here 0 is the n x n identity matrix.
n

(II) Spline based approximations (Banks and Kappel 1979): These approxi-

mations are based on best L2  approximations of states in subspaces

consisting of spans of standard spline basis elements. The theory

____
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has been developed for arbitrary order splines and has been tested

numerically for piecewise linear and cubic elements. The matrix AN

in these cases is not as simple as in the case of the averaging

approximations, but the methods still are quite easily implemented.

We have carried out extensive testing of these methods as applied to

identification and optimization problems. These findings (Banks et al. 1979a)

indicate that our theoretical estimates are supported by computational

efficacy of the methods. We present here a sample of the numerical findings

in a parameter estimation problem. The example is typical of tubular column

reactor problems discussed in (Banks et al.1979b) in which one designs ex-

periments to determine a transport coefficient 0 for the product of an

enzyme catalyzed reaction taking place in the column. Enzyme pellets are

packed in the column and it is also desired to estimate the "diffusion delay"

r associated with diffusion from the interior of the pellet to the exterior

flow region of the column. Mathematically, we wish to estimate $ and r

in the system

zl(t) - E0 (0)zI(t) + E1 (0)zl(t-r) + G

0 < t < 8,

i(t) - Eo(0)zi(t) + E1 (0)zi(t-r) + E2zi 1 (t-2) i 2,3,4,

zl(e) - (1,0)
T

-2 < 0 < 0,

zi(O) - (0,o)T

where

'I.



[30] E (0)-[ E:; ,- 0] 1
In this example we have each vector z is 2-dimensional so that the example

is an 8 vector system x - (zlz 2,z31z4)T. It is assumed that only the first

component of z4 can be observed. Data was generated using the "true" values

0* - -3 and r* - 2. A least squares criterion as in (3) was used along with

a standard Iterative package (an IMSL package). The approximate problem for

(7) with N - 24 was investigated for both the averaging and linear spline

schemes. Start-up values in the iteration were Y 0 (8O,rO) - (-4,3). For

the averaging approximations, satisfactory convergence was not obtained, while

the iterates for the spline scheme are given in Table 1. (This illustrates

dramatically one difference between theory and practice-in theory both schemes

should produce good approximations-only the spline scheme does in this example.)

a r

-4.0 3.0
-3.717 2.341
-3.535 1.954
-3.436 1.929
-3.172 1.903
-3.109 1.921
-3.069 1.950
-3.039 1.987
-3.004 1.994

TABLE 1

Use of these approximation ideas in optimization problems as described in

Section 3 has also been investigated both theoretically and numerically.

Briefly, if one wishes to minimize 1(u) (see Section 3) over * subject

to (6), one again approximates by a problem for a high dimension ordinary differ-

ential equation (7). One then seeks to find a uN E that minimizes



N(u) O 0 (wN(T)) + Iof0(s,w N(s),u(s))ds
00 00

subject to (7). Here gNfN are appropriately chosen approximations for g, 0.

Again, one can argue (see Banks and Burns 1978, Banks and Kappel 1979, Banks

N Net al. 1979) that solutions (x ,u ) of the approximating problems converge

as N * to (x* ,u*), a solution of the original problem, for a large class

0 0of payoff functions g , f . Extensive numerical results can be found in

(Banks et al. 1979a), while theoretical results for nonlinear systems can be

found in (Banks 1979, Banks 1980).

5. DISCRETE SYSTEMS

Parameter estimation and optimal control problems for discrete systems

(2) can be formulated in much the same way as indicated above for the con-

tinuous systems (I). We outline briefly the optimization problem and results

because we feel that these have direct applications in resource management and

because the associated necessary conditions are not simple analogues to those

for the continuous system problem in the case of many nonlinear systems.

Assuming that the parameter 0 is known, we seek a set of values

u - {u(O),u(l),...,u(M-l)} from a given constraint set U a Rm  so as to

minimize

0 M-1 01(u) - gO(x(M)) + I f (i,x(i),u(i))
i=0

subject to (2). The necessary conditions (see PHP above) are again defined in

terms of a Hamiltonian function

Hi(v) f 0 (i,x(i),v) + A(i+l)'F(ix(i),v,O), i -0,,...,M-1,

- .4
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and an adjoint or costate equation

(8) X HI (u*(i)), i = ,...,M-I,
)x(i)

with appropriate boundary conditions (see (Almquist and Banks 1976) for a more

precise statement). However, the global maximum condition (the analogue of (c)

in PMP above)

Hi(u*(i)) - max Hi(v)
vEU

is valid for nonlinear system problems only under very strong convexity con-

ditions on F and U (which are not usually satisfied in applications).

Rather there is a local maximum condition

(9) u(i) (u*(i)).[u*(i)v] > 0, v E U

or, in some cases,

(10) Hi W )-0(I0) u(i) (u*(i)) 0 ,

that is valid for most nonlinear system problems of interest. For a precise

statement of the global and local conditions one can consult Chapter VII,

Section 4 of (Neustadt 1976). The last chapter (Notes and Historical Comments)

of (Neustadt 1976) contains an account of the interesting historical development

(marked with some confusion and incorrect claims) of necessary conditions for

discrete systems control problems along with a rather complete bibliography.

Computational techniques based on (9) or (10) that are modifications of the
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iterative schemes (e.g. descent methods) discussed above have been developed

and employed on a wide variety of discrete system problems. For examples

see (Almquist and Banks 1976), (Bryson and Ho 1969), (Kirk 1970).

In the usual applications of discrete system theory in engineering and

in some biological models-see (Almquist and Banks 1976), (Clark 1976a)-one

has an underlying continuous time process in which "discontinuous" events or

phenomena (e.g. treatments, harvests, etc.) occur. That is, one has a process

evolving in time with major events (controls u(i)) occurring at time intervals

AtoAtl ...,AtM_1 apart as depicted in Figure 1.

x i) u(i) Fu(i+l)

xMi UM F - DYNMICS x(i+l)- il

OF PROCESS

At i

FIGURE 1

In the optimization problem formulated above, it is assumed that Ati,

the time between control actions u(i) nnd u(i+l), is a fixed parameter.

However, in our efforts to extend the work of (Almquist and Banks 1976) on

fractionated therapy for tumors, we have been obliged to consider optimization

problems for discrete systems in which the times Ati are additional para-

meters over which one wishes to optimize. That is, in addition to dealing

with variable levels of discrete control actions, one wishes to allow variable

times between the control actions. We have recently tested computational ideas
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such as those described in (Almquist and Banks 1976) for problems where one

seeks optimal "controls" w(i) - (u(i),Ati) for problems with systems of the form

x(1+1) - G(i,x(i),w(i)). Our preliminary findings (details will appear in a

manuscript in the future) suggest that efficient methods can be readily

developed for discrete time variable-control-time problems via careful

modification and extension of existing schemes.

We believe that such techniques could be of use in resource management

studies in which one considers variable times between harvesting, etc. For

example, they could be important in forestry management problems since it has

been observed (Aber et al. 1978, Aber et al. 1979) that rotation length (time

between control actions) is perhaps in some cases a more important parameter

than harvesting intensity (level of control action). Simulation and

optimization studies of various cutting regimes must, due to the complexity of

the underlying ecological models (Botkin et al. 1972), ultimately involve

computational procedures for vector models.

Acknowledgement: I am grateful to Dan Botkin for fruitful conversations which

led me to include the comments of Section 5 in my presentation at the Workshop.
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