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. . ABSTRACT

This paper deals with the analysis of closed boundaries of
arbitrary shape in a plane. Specifically, it is concerned with
the problems of representation and reconstruction. We first set
up a one to one correspondence between the given closed boundary
and a univariate or multivariate sequence of real numbers. Uni-
variate or multivariate circular autoregressive models are sug-
gested for the representation of the sequence of numbers derived
from the closed boundary. The stochastic model representing the
closed boundary is invariant to transformations of the boundary
such as scaling, rotation and choice of the starting point.
Methodsfor estimating the unknown parameters of the model are
giventand a decision rule for choosing the appropriate order of
the model is included. Constraints on the estimates are derived
so that the estimates are invariant to transformations of the
boundaries. The specific stochastic model used enables us to
reconstruct a closed boundary with less computational effort using
FFT algorithms. Results of simulations are included and applica-
tions to contour coding are discussed. In a subsequent paper we
will consider the classification problem. C>
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1. Introduction

The problems of closed boundary analysis and discrimination

are familiar in pattern recognition. They arise in a variety of

situations such as contour coding (1,2], classification of chromo-

V

somes (3], interpretation of chest x-rays [41, scene analysis

15], and the detection of parts in a bin in robotics [6]. In

this first part of our study of the applicability of stochastic

models to such problems, we consider the analysis of boundaries.

In a subsequent paper, classification of a closed boundary as

one of several mutually exclusive boundaries will be considered.

Specifically, in this paper we consider the problems associated

with the representation and reconstruction of closed boundaries.

The statistical approach to shape analysis has so far been

concerned with the Fourier analysis of some function derived from

the boundary [7-10]. This is essentially a deterministic approach.

Moreover, in practical applications, the Fourier series expansion

is truncated to a certain number of terms, leading to an inexact

representation of the data. Further, not all Fourier descriptions

yield coefficients which are insensitive to rotation, scaling

and variability in the starting point in the tracing of the

boundary 17] and the coefficients do not always regenerate a

closed boundary [8).

In this paper we suggest a stochastic model of a special

type, the so-called Circular AutoRegressive (CAR) models, to



describe the data from the boundary. The given boundary is

approximated by a series of straight line segments and the two-

variable data formed by the (x,y) co-ordinates of the end points

of the line segments denoted as {x1 (i),x2 (i)}, i = 1,2,...,N,

are used for the representation. One of the characteristics of

the data is its circularity, i.e., x1 (t+N) = x1 (t), x2 (t+N) =

x2 (t). For the class of objects in which each of N radii vectors

from the centroid of the boundary intersect the boundary at only

one point, a simple version of the two-dimensional representation

is used, i.e., a one-dimensional series of real numbers is

formed by measuring the lengths of successive radii vectors that

are angularly equispaced. The observations {r(l),...,r(N)} again

possess the circularity property.

The observation set, be it one-dimensional or two-dimensional,

is represented by CAR models characterized by a set of unknown

parameters. By making suitable assumptions about the noise driving

the model, expressions are obtained for the maximum likelihood

(m.l.) estimates of the parameters of the model. In actual

applications, the so-called least square estimates are used which

are an approximation to the m.l. estimates. The conditions for

these estimates tobe invariant to scaling, translation and start-

ing point on the boundary are derived. It also turns out that

these estimates are the sufficient statistics for the unknown

parameters. We also consider the reconstruction problem and

present algorithms for generating a closed contour. The CAR

models yield the reconstruction of a closed curve in O(NlogN)
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operations. The data compression aspects of the model are con-

sidered with specific applications such as the archival storage

of weather maps 122] and contours.

The organization of the paper is as follows: Section 2

describes the different ways of obtaining suitable representations

from a closed boundary. The general representation suggested is

two-dimensional and is applicable to all closed boundaries in a

plane. A one-dimensional representation is used for the class of

objects in which each of the N radii vectors intersect the boun-

dary at only one point. In later sections all the analytical

results are obtained for the case of a one-dimensional model,

which can be easily generalized to two-dimensional representations.

The mathematical model is introduced in Section 3 and the proper-

ties possessed by the estimates of the parameters characterizing

the model are described in Section 4. A decision rule to choose

appropriate neighbors is also given. In Section 5 the coding of

closed boundaries is considered. Results of the simulation are

given in Section 6. Discussion is given in Section 7. Main re-

sults are stated as theorems, the proofs being given in the

appendix.
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2. Representation of Closed Boundaries

We will represent the given closed boundary by a finite

sequence of real numbers, the so-called time series. We assume

that the boundary has no crossovers. We first approximate the

boundary by a polygon of N sides. The time series exactly repre-

sents the polygon, i.e., given the time series, we can reconstruct

the polygon, and vice versa. We can choose the integer N large

enough to obtain the desired accuracy of approximation. We em-

phasize that the time series is constructed such that the corre-

sponding shape analysis and classification rules are invariant to

transformations of the boundary such as translation, scaling,

rotation and the starting point in the tracing of the boundary.

We now describe several methods of obtaining the time series from

the boundary.

Method 1 (Two-Dimensional): Consider a Cartesian co-ordinate

system such that the origin is at the centroid of the object.

Let {xl(i), x2 (i)}, i = 1,2,...,N, represent the co-ordinates of

a large number (say) I of points on the boundary as in Fig. 1.

The required representation is {(x1 (i),x2 (i)),i = 1,2,...,N).

Method 2 (One-Dimensional): Let{(xl(i),x 2 (i)), i = 1,2,...,N}

be the coordinates of a large number, say N, of points on the

boundary. Let
N N

X1 (O) - (1/N) Z xl(i), x2 (0) = (1/N) Z x2 (i)
i=l i=l

iL ........



and let (xl(0),x 2 (O)) be denoted as the origin 0. Let A1 be

any point on the boundary. Mark off (N - 1) points A2 ,A3 . . AN

such that the angles between OA. and OAi are all the same,

viz., (2ff/N) radians. This is shown in Fig. 2. Let the

distance OAi = r(i), i = 1,2,...,N. The required polygon is

AlIA 2 ,...,AN, and the time series is {r(l),r(2),...,r(N)).

Method 3 (One-Dimensional): We can construct the points A,...,AN

as in Method 2. Let the distance between A. and A be b(i), i =
1 i+l

1,2,...,N-1. b(N) is the distance between AN and A1 . The re-

quired time series is {b(l),b(2),...,b(N)}.

Method 4 (One-Dimensional): We fit a polygon of N sides to the

boundary such that all the sides have the same length. Call the

polygon A1 A2 .. .ANA,. Let 0i be the angle between AiAi+1 and a

reference line. Then {i, i = 1,2,...,N} is the required time

series.

Note that methods 2, 3 and 4 can be used to represent what we

shall call Type 1 objects. The class of Type 1 objects include

non-convex objects as in Figure 2.

Definition (Type 1):

In any type 1 object the N radii vectors from the centroid

of the object intersect the boundary at only one point.



Another possible representation for closed boundaries is

the tangent angle versus arc length [8]. One disadvantage of

this representation is that the angle function is more sensitive

to the noise inherent in a fuzzy boundary. The angle function is

related to the derivative of the coordinate function, and hence

small variations in the co-ordinate values of the boundary points

can result in large variations in the direction of the tangent

vector.

L:

p~

*1!



3. Mathematical Modeling of Boundaries

Henceforth, we consider the analysis with respect to the

one-dimensional data {r(l),...,r(N)} derived by using Method 2.

These results are generalizable to the two-dimensional represen-

tations of the non-Type 1 objects.

We are given a one-dimensional sequence {r(l),r(2),...,r(N)}

such that

r(N+k) = r(k), k = 1,2,...,N

r(-k) = r(N-k+l), k = 1,2,...,N (3.1)

We will fit a particular type of stochastic process called a

Circular AutoRegressive (CAR) Process as in (3.2):

m
r(t) = + O0r(t-t.) = /8W(t), t = l,...,N (3.2)j=lJ J

where t), j = 1,2,...,m are positive integers,

w(N+t) = w(t), t = 1,2,...,N,

E(w(i)) = 0, E(w(i)w(j)) = 8a6.., lsi,j-&N

6.. 0 if i = j

= 0 otherwise,

w(-) is independent and normal (0,8) and {,1...,m,8}

are unknown.

A similar stochastic model is used for both co-ordinates of

the two-dimensional representation, i.e.,
m

a.+ E 0 X. (t-tij)+/i . (t) i = 1,2
i 1 j=l 1 j 1 1) 11



where xi(t+N) = x.(t), i = 1,2 and (u, 1(*)1 and 2 (') are two indepen-

dent normal i.i.d. noise sequences. This simple extension of (3.2)

will be used throughout for non-Type 1 objects. By introducing

interdependence between xl(-) and x2 (.) more general models can

be considered.

Because of the circularity assumption, given w(l),...,w(N),

we can obtain r(1),...,r(N) by solving the system of N equations

in (m+l) variables given in (3.3):

1 -0m ... - 2 -0 r(1) 1(i)

-(1 1- m  ... -3 -0 2 r(2) 1 w(2)

-02 -01 1 ""-84 -836i

a + 8 (3 3) i

0 ... m - 1  -01 1 r(N) 1 w(N)m-... .1i

or equivalently,

B(0)R = A + IW

where R = [r(l),...,r(N)JT

TA = [a, *.,al , Nxl vector

W = [w(1),...,A(N)] T

B(O)= circulant [l,0,0,...,-, -m

B(O) is a circulant matrix and it can be generated from its

first row given above. The probability density of the set of

observations is given in (3.4):



p(r l),...,r(N)I a, 0,3

detlB(O)l (1/2rS] exp {(-1/2a) E (r(t) - - 0 z(t-l)) 2 } (3.4)
t=l

where 0 = . . . , 0 m ) T

z(t-l) =  (r(t-t I1 ) , r(t-t 2 ) ,...,r(t-t m)) T

and Idet B (0)I is the Jacobian of the transformation from

r(l),...,r(N) to w(l),...,w(N) and has the following expression

[11] in view of the circulant structure of B(O):

N-I
Idet ) B() = II (1 - 0 T T )(3.5)

k=0

where the m-vector Y k is as follows:

!k = column [exp (-/i2rkti/N), i = 1,2,...,m]

In our formulation, the shape of the boundary is controlled

by the coefficients (a,0,B). The random sequence w(l),W(2),...,

w(N) represents the effect of noise on the boundary. For instance,

given N i.i.d. random variables w(l),...,w(N) from a Gaussian or

Gamma distribution, we can account for a class of shapes which

are minor variations of the basic shape, the so-called local

variations of the shape. On the other hand, global transforma-

tions like scaling and rotation of the given shape are controlled

by the parameters (ce,3). Note that these global variations

preserve the shape and the parameter sets (cOL) corresponding

to various shapes which are related to each other by transforma-

tions like scaling, rotation, translation and the starting point

Vgna
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are simply related by Theorem 1. On the other hand, the para- r

meter sets of quite different shapes cluster in (a,O,8) far

apart. Fig. 3 illustrates some possible transformations of

shapes. The constraint on the parameter set (c,e,8) represent-

ing the class of shapes that result due to these transformations

is given in Theorem 1.

Theorem 1: Consider a closed boundary represented by r(l),

r(2),...,r(N) , obeying the following equation involving the

coefficients (e,8,4)
m

r(t) = E 0 r(t-ti) =/ruw(t), t = 1,2,...,N (3.6)
i=l 1'1

All other boundaries which have the same shape as the boundary

represented by r(l), r(2),...,r(N) can be generated by equation

(3.6) with the same w(-) and indexed by the coefficients

(a',',') related to (a,Oa) by (3.7):

T0, = (3.7)

The proof is given in the appendix.

The significance of Theorem 1 is as follows: Given a shape

and its scaled or rotated version, the corresponding values of

e and / are identical. Or equivalently, similar shapes

cluster closely in the (m+l) parameter space (e,a/V). Allowing

variations within a class of shapes due to noise, etc., we see

that the parameters of the class of shapes will form a close

cluster. This suggests the use of * = (0T,//8)T as the



feature vector for classification of shapes. This will be

considered in detail in a subsequent paper.
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4. Parameter Estimation and the Properties of the Estimates

The unknown parameters (,6,8) in the model in (3.2) are

estimated from the observed time series taken from a given boun-

dary. The popular method of estimation of parameters is the

maximum likelihood estimate (m.l.e). The m.l.e. denoted by

(t*,0",8") is the value of (a,Q,a) which maximizes p(r(l),...,

r(N)la,0,0). The estimates are given in Theorem 2.

Theorem 2: Let (x*,B*,8*) be the maximum likelihood estimates

of the parameters (aO,8). Then

N-1

0* Arg Fmin - l - 0T~ k
~ k=0 - ~

I(4.1)NT2

+ N/2 in E (r(t) 0 z(t 1) - a(6))2
t=l

where

N
a (0) = 1/N F (r(t) - 0 Tz(t - 1))

t=l ~

N
a*= a(e*) = I/N E (r(t) -e*Tz(t - 1)) (4.2)

~ t=l ~ ~

and
N

= 1/N F. (r(t) - a*- o*Tz(t - 1))2 (4.3)

t=l ~



The proof is given in the appendix.

0* can be computed by a gradient algorithm. For reduced

computations we suggest the use of the least square (l.s.)

estimates given below:

T (N - T - 1 Nl-(4
((- ) T  =  [ :u(t - l)uT(t 1 )] -  Ft_ -~ l)r(t ( .4

~ ~t=l~  u t  44

and

N
(1/N) ): (r(t) - (6T,)u(t- 1))2 (4.5)

t=l

Also, a can be written as

N -T
a= 1/N E (r(t) -80z(t - i)) (4.6)

t=l ~ ~

where

z(t 1 ) = (r(t - tl),...,r(t - tm )

The l.s. estimates can be interpreted as obtained by

maximizing p(r(l),...,r(N) Ic,8,i), with the determinant term

IB(0)I in (3.4) suppressed. Since the relevant matrix B(6) is

nearly lower triangular for large N, the l.s. estimates tend to

m.l. estimates asymptotically. However, the easily computable

1.s. estimates also possess invariance properties w.r.t. trail.-

formations like rotation, scaling and starting point. Numerical



simulations indicate that the error in the estimates due to

the suppression of the determinant term is negligible. The

details of the simulations are given in Section 6.

We make a brief note regarding the estimation of parameters

when the two-dimensional representation is used for objects. By

making the simplifying assumption of independence of the set

of observations {x1 (-)} and {x2 (-)), the above mentioned methods

of estimation are directly applicable. More details on the

estimation of parameters for vector processes can be found in [12].

In Theorem I we considered the constraints imposed on the

parameter sets representing the class of shapes that result due

to the transformations of shape. But in practice we work with

only the estimates of the parameters. It is then necessary to

consider the constraints imposed on the estimates of the para-

meter sets from the shapes that result due to transformations

like scaling, rotation, etc. The properties possessed by the

estimates can be broadly classified as those related to the shape

and those related to the statistics of the data derived from the

shape. For instance, the invariance of (Oi//) under transfor-

mations like scaling and rotation are shape related properties,

and the sufficiency property of the estimates comes under the

other category. The estimate (O,oV/_) possesses the following

properties:

P1) Invariance to scaling of the boundary.

P2) Invariance to variation in the starting point used in

tracing the boundary.



P3) Invariance to rotation of the boundary.

P) Invariance to translation of the boundary.

P5) The l.s. estimates are a sufficient statistic for the

unknown parameters.

The method of tracing the boundary in the one-dimensional

representation is such that an effective normalization is done

w.r.t. the center of gravity of the shape. Thus the one-dimen-

sional representation is invariant to translation. Since the

origin of the two-dimensional co-ordinate system is fixed at

the centroid of the object in Method 1, this representation is

also independent of translation.

Also, since we go around the boundary once completely, and

use the entire observation set in estimating the parameters, the

effect of rotation of the axes and the effect due to the varia--

tion in the starting point are the same.

Theorem 3: Let (a,8) denote the estimates of the oarameters of

the model representing a Type 1 object and let (a and

(a 2,282) represent the corresponding estimates of the model

representing a non-Type 1 object. Then the estimates (T,-a//P)

and {(810,a 1/" 1 ), (62, 2//02)} satisfy the properties Pl-P4.

The proof of Theorem 3 is given in the appendix.

We state a theorem below regarding P5. A proof similar to

the one found in [13] can be given for this theorem.

-



Theorem 4: The l.s. estimates (c,B are sufficient statistics

for the unknown parameters (a,O,0).

There are two consequences resulting from the existence of

sufficient statistics for the parameters (cO,0). The first

consequence is that all the information contained in the unknown

parameters (a,O,8) is also contained in the estimates (c.E,J).

The second consequence is that (a,) is the optimal

feature set for classification purposes (13]. Hence, we can

restrict our attention to a class of decision rules that are

functions of sufficient statistics. This will be further con-

sidered in a subsequent paper.

Choice of the number of lag terms: We have so far done the

analysis as though the number of lag terms in eq. (3.2) is known.

As mentioned in Section 3, we need not have all the lag terms

up to the highest lag term, the lag terms present being indicated

by the set {ti}. The problem of determining the number of laq

terms comes under a general class of problems known as "system

identification" and has been considered elsewhere (14]. Withiout

going into the details we simply formulate the problem and give

a decision rule to choose the best m for the given boundary.

Suppose that we consider three possible values of m, mi, m2 ,

and m3 . Corresponding to each mi, i = 1, 2, 3, we will write the

corresponding circular autoregressive equation Ei, i = 1, 2, 3:



m.1

E.: r(t) a. + F 0..r(t - t. +) + W(t),
I j=l' 1] 1j

t = 1,2,...,N, i 1,2,3 (4.7)

T

2 . = (8 , im.. . )T, 8 .. ] # 0 , V. = 1 ,2

> 0, i = 1, 2, 3

The lag teLms {t..} differ from model to model.

We only know that r(') obeys one of the given equations Ei.

Note that the equations are mutually exclusive. We can use the

standard Bayesian methods [13] to obtain a decision rule. The

simplified decision rule is given below. Compute the statistics

Ck, k = 1, 2, 3:

N-IT
Ck = NKn k  + E In(l - T ) + mkfi(N) (4.8)

i=0 i

where 8,8 are defined in (3.10) and (3.12) and fi (N) is some

suitable function of N. Typically, fi (N) could be XnN [14], or
0.01. The decision rule to choose the appropriate m i is as follows:

Choose the model k* if

k* = arg min {Ck (4.9)
k

The choice of fi (N) in (4.8) is a tradeoff between the two

types of errors that arise in a hypothesis testing problem.

Consider the case of choosing between a mth and an (m+l) st order

model. Then it can be shown that the probability of choosing

the lower order model when indeed the higher order model is true

• .. .. .. .. ... . . . . .a . , .'. - " - , ,. , , ' __ ' 
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(the so-called Type II error) is proportional to vii(N). When
1

the primary interest is to reconstruct the shape, a higher order

model is preferred and it is important to keep the Type II error

under control. For this reason, f (N) should be 0.01 or smaller.



5. Coding and Reconstruction Schemes

In this section we discuss the coding and reconstruction

schemes possible with the circular model developed in this

paper. We consider the applicability of such schemes to a

class of two tone images [2] like weather maps and geographical

contours, typical illustrations of which are shown in Fig. 4.

The given closed contour is represented by a model similar

to (3.2). The estimates of the parameters characterizing the

model and the residuals defined as

P m
W(t) = (aI ))[r(t) - - Z l.r(t - t.)] (5.1)

j~l~ )

are computed. The CAR model considered in this paper splits

the information contained in the original correlated observations

into two sets: the statistical information contained in the set

(a,0,0) and the information contained in the uncorrelated resi-

duals. The former set characterizes a class of shapes with dif-

ferent noise sequences while the combined set ,

represents a particular realization of the shape. In actual

implementation the exact residuals are never stored. Either they

are truncated or truncated and skipped, i.e., some of the trun--

cated residuals are replaced by those from a (0,1) Gaussian random

generator. If the skipped and truncated residuals are denoted

by {W(')} and {w'(-)} respectively and {v(')} denote the (0,1)

Gaussian random numbers then one method of generating {w(.)

would be as in (5.2):



Aw(2t) 1 ' (2t), t = 1,2,...,N/2

Aw(2t-l) = v(2t-l), t = 1,3,...,N/2-1 (5.2)

A(2t+l) = w'(2t+l), t = 0,2,...,N/2-2

In (5.2), every 1/4th of truncated residual is replaced by a

(0,1) Gaussian random number. It is also possible to generate

A{w(.)} where every other {w'(-)}is replaced by {v(-)}. The

particular scheme is generally decided by the degree of appro-

ximation desired. Such trimmed residuals are quantized and

stored. From this stored information a closed contour that is

a good approximation to the original contour can be generated

by the simultaneous scheme described below:

ASimultaneous Scheme: Given N trimmed residuals {w(.)}, truncated

Aor truncated and skipped, arl the estimates (cO,8), find r(i),

i = 1,2,... ,N such that the norm

I IB()R - K - I112 (5.3)

is minimized, where RT = (r(l),...,r(N)), A = [ca,...,c], Nxl

vector, and 0 = [(l),...,w(N)]T. An optimal solution that mini-

mizes the expression in (5.3) is given in Theorem 5:

Theorem 5: Let A(),...,a(N) be the trimmed residuals and
(a,-,B) be the estimates of the parameters of the model. Let

Arg {min{IIB(T)R - A - /aI 12 } . Then 0 can be computed

as shown below:



r(k) E ej(7N(l (1ul(i), k=1,2,...,N, j /1 (5.4)

where

u(i) = 1N E e) 2 hN(-)(ni (a + 'le n i=l, 2,. .N (5.6)
n= 1

~i)=(1 _ OTT ), = 1,2,...,N (5.7)

and

T ]e(2'rt/N) (i-1)t I -j(2ru/N) (i-1)t 2  -j (2TT/N) (i-l)t

The proof of Theorem 5 is given in the appendix.

Comments:

1) Reduction in the computations using FFT algorithms is possible

due to the following:

a) the eigenvalues of the circulant matrices can be written

down by inspection from the first row of the matrix, and

b) The eigenvectors of the circulant matrix are universal,

i.e., all possible circulant matrices of a specified order

have an identical set of Fourier eigenvectors.



2) E'q. (5.7) is of computational complexity O(N log N) and

so is Eq. (5.9). Since other computations like Eq. (5.8) are

of complexity O(N), the overall computational complexity is

O(N log N).

Recursive Scheme: A recursive scheme similar to the DPCM

scheme can be suggested for the reconstruction of contours.

The estimates (cO,1) and the truncated and quantized residuals

are used in (3.2) along with m initial conditions to generate

the synthetic observation set. Owing to the uncorrelated nature

of the residuals considerable saving in bits can be achieved.

If exact residuals are used the original closed contour can be

generated but in practice the exact residuals are never stored.

Only truncated and quantized residuals are stored. Depending on

the particular truncation and quantization schemes, contours

that are close enough to the original contours can be generated.



6. Results of Simulation

In this section we summarize the results of simulations

done with three closed boundaries shown in Fig. 5, denoted as

shapes A, B, and C. Shapes A and C are typical Type 1 objects

and shape B is a typical non-Type 1 object.

6.1 Model Order Selection: The decision rule in (4.9) was used

to choose an appropriate model for different values of fi (N).

The model orders chosen for different values of f (N) for shapes

A and C are given in Table 1.

Table 1. Model orders for different fi (N) in (4.8).

MODEL ORDER CHOSEN
f.(N)

SHAPE A SHAPE C

0.01 13 15

0.1 13 15

1.0 12 6

1.2 6 6

1.5 2 2

2.0 2 2

As discussed before by decreasing fi (N) we reduce the pro-

bability of choosing a lower order model when the higher order



model is true. It is this error that is crucial for applications

like reconstruction. The value of fi(N) is chosen depending on

the quality of reconstruction desired.

6.2 Accuracy of the least square estimates: To check the accu-

racy of the l.s. estimates as compared to m.l. estimates, the

relative contributions of the first term and the quadratic term

in (4.1) to the log likelihood function Znp(r(l),...,r(N)ie,O,8)

were computed for shapes A and C, for a twelfth order model, and

are given in Table 1. It is seen that the contribution of log

Idet B(0) I is negligible compared to the other term.

Table 2. Relative contributions of the log linear term
and the quadratic term in (4.1).

CONTRIBUTION CONTRIBUTION
SHAPE DUE TO LOG LINEAR DUE TO QUADRATIC

TERM IN (4.1) TERM IN (4.1)

A .1590 24.96

C -.2326 48.90

6.3 Reconstruction of boundaries: We give examples of the re-

construction of boundaries. Fig. 6 gives the results of simu-

lation experiments with shape A. Since shape A is a Type 1

object the one-dimensional representation was used. Least square



estimates (ce,8) were computed. In Fig. 6 all the closed

contours have been reconstructed using the simultaneous scheme

in Theorem 5. Fig. 6a is the shape reconstructed using a second

order model and the exact residuals. Fig. 6b is the shape

using the residuals truncated to the first decimal place. The

quality of reconstruction is close to Fig. 6a. Figs. 6c and 6d

are similar to Figs. 6a and 6b except that a twelfth order model

has been used. All the shapes in Fig. 6 look very similar to

the original shape A. Then the natural question is the relevance

of the decision rule used in fitting an appropriate model. This

is explained as follows: the residuals of an inappropriate model

will not be as uncorrelated as those of an appropriate model

and hence the efficiency of coding is higher when a model of the

correct order is used. Since the data generated by the simulta-

neous model is circular we always reconstruct closed contours.

Fig. 7 gives the same results as in Fig. 6 for shape B.

Fig. 8 gives the reconstructed shape A using the recursive

scheme mentioned earlier. Fig. 8a and 8b are the results of

this scheme with m = 2 and using the exact and the truncated

residuals respectively. Though this scheme does not truly

generate a closed contour (because of its recursive nature)

still the quality of reconstruction is good. Figs. 8c and 8d

are similar to 8a and 8b, with a twelfth order model. Fig. 9

gives the results for shape B. Fig. 9a and 9c are reconstructed

using the exact residuals and m = 2 and 12. Fig. 9b is the

.. .. .. - ar,. ,AI



result of the recursive scheme with truncated residuals and

m = 2. Note the presence of a spike, due to the noncircularity

of the data. Similarly, Fig. 9d is the reconstruction with m = 12

and the resulting contour is not closed.

As mentioned before, the circular model splits the informa-

tion in two parts, the estimates of parameters and the residuals.

The information contained in the estimates represents a class of

shapes corresponding to different i.i.d noise sequences. To see

how much information is contained in the estimates, synthetic

generation of shapes is attempted. The results are given in

Fig. 10 for shape A. The residuals used were drawn from a (0,1)

Gaussian random number generator. Fig. 10a and 10b are recon-

structed with m = 2 and the recursive and simultaneous schemes

respectively. Note that the recursive scheme does not generate

closed contours. Figs. 10c and 10d are for m = 12. As expected,

the quality of reconstruction with pseudo-random numbers is not

as good as with exact residuals but the general shape is still

recovered. Also note that models of order 12 generate contours

that are much closer to the original than the contours generated

by a model of order m = 2.

The coding schemes mentioned above can be used for the

storage of contours as in Fig. 4. We.fit a stochastic model

to every closed contour, and store the estimates of the coeffi-

cients and the quantized residuals. For contours in the map



that are not closed, we can fit ordinary autoregressive models.

The map can be reconstructed by reconstructing each contour

separately.



7. Discussion

In this section we compare the theory developed here with

other well-known methods like Fourier analysis [7-10,15]. The

main emphasis of the theory developed here is to demonstrate

that statistical methods can be developed to handle a wide class

of closed boundaries.

In the familiar Fourier analysis method a continuous function

is extracted from the boundary and represented as a Fourier series.

These methods are basically deterministic compared to the

stochastic models considered here. Generally stochastic models

are found to be more useful in noisy situations and tend to

describe the data by fewer parameters than the deterministic

models [16]. In fact by using the theory of comparison of dynamic

models [14], an exact comparison of the Fourier series represen-

tation and the stochastic model considered here can be made.

In any practical situation, the Fourier series expansion has

to be truncated. Because of the truncation in the Fourier series

representation, the data reduction from the observations to the

Fourier coefficients is not exact. We have given a decision rule

to choose the appropriate lag terms for the boundary analysis.

One of the criticisms of current boundary coding schemes

[17, p. 161] is that the points (A,B) and (C,D) in Fig. 11

which are geometrically close together can be encoded quite far

apart in the resulting string. Such boundaries can be adequately

-_--__.,_ _ _ __ _ _ _ _
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represented by models which have non-contiguous lag terms [121.

Typically, such a model would include lag terms like {x

x(t-N) where N1 is the number of spaces between A and B.

The specific CAR model considered here, because of its cir-

cular nature, is intuitively pleasing for representing a closed

boundary. The two-dimensional representation considered here is

used to represent any closed curve on a plane, and the one-dimen-

sional representation is used for the Type 1 objects. The time

series is constructed such that the corresponding shape descrip-

tion is invariant to the transformations of the boundary. The

vector (e,Q//) is insensitive to these transformations of the

shape and so is a natural choice for shape classification prob-

lems. We have suggested coding and reconstruction algorithms.

The specific simultaneous reconstruction algorithm always results

in a closed contour in O(NlogN) operations. We have also con-

sidered the problem of boundary coding for archival storage of

weather maps and geographical maps. It is possible to extend

these methods to two-dimensional images [181 where the edges are

coded as contours.

Shape descriptors like ratio of square of perimeter to

area (191 are not useful for synthesis of complicated shapes.

Also they are not robust since they often yield similar numerical

values for contours that are significantly different from one

another [201, as shown in Fig. 9.

Ii
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The theory developed here is based on a global description

of shapes. In a subsequent paper (Part II), we will consider

the problems of shape discrimination. In particular, we will

be interested in obtaining decision rules that are invariant

to transformations of shapes.

000
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Appendix

We give the proofs of the various theorems given in the

body of the paper.

Theorem 1: Given a closed boundary represented by {r(l), r(2),...,

r(N)}, obeying the following equation involving the coefficients

(a,e,$),

m

r~ ) e + 8 r (t - t i) + ( ) t = 1,2,...,N(i
r(t) = a + i

all other boundaries which have the same shape as the boundary

represented by {r(l),...,r(N)}, can be generated by equation (1)

with the same w(l),...,w(N) and the coefficients (W,',') re-

lated to (a,6,8) by (2):

, -- 0, --a/ - (2)

Proof: Shape is preserved by the operations of scaling and rota-

tion. We first consider the constraints imposed on the parameters

to represent a class of shapes that differ due to scaling.

a) Scaling:

Any boundary which has the same shape as {r(-)}, but is

scaled, is generated by {kr(l), kr(2),...,kr(N)}, where k is the

scale factor, and obeys



m
kr(t) = '+ F Okr(t - t) +SW(t) (3)

i=l

or
m

r(t) = cO/k + E 8'r(t - t.) + (/B-r/k)w(t) (4)
i=l'

Since r(t) obeys both (1) and (4), by the uniqueness of the

solution of the difference equation, (2) follows.

b) Rotation: Consider the rotated boundary r'(i),...,r'(N),

such that

r'(i) r(i+S) (5)

and

W'(i) W(i+S)

where S is a positive integer. Now

m
r'(t) = a + E O!r'(t - t.) + AP'W(t), t = 1,2,...,N (6)

i=l ~

or

m
r(t + S) = a' + F O!r(t - t. + S) + /Pw(t + S), t =1,2,...,N

i=l 1 1

Equivalently,



m
r(k) = a' + E e'r(k - t i ) + VWw(k), k = l+S,...,S+N (7)i=l 1  1

(1) and (7) are identical and hence (2) follows.

Q.E.D.

Proof of Theorem 2: From (3.4), taking logarithms and using (3.5),

£np(r(l),...,r(N)Ia,e,3) = -N/21n28

N N-1
1/2B E (r(t) - z (t - 1)0 -a)2 + E Zn(l - ) (8)

t=l k=0
r

Differentiating w.r.t. a,8 and equating to zero,

a(6) 1/N N (r(t) - zT (t - 1)8)
t=l

N T
8(0) = (1/N) E (r(t) - z (t - 1)6 -a(e)) 2  (10)

t=l

Substituting (9) and (10) in (8) we have

£np(r(1),...,r(N)Ict,0,) = -(N/2)In(2T/N)
N

(-N/2)tn N [r(t) - zT (t - 1)6 - a(0)]2
t=l

iN-l1

+ E Xn(1 - T 0) N/2
k=O

., .
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Maximizing In p(r(1),...,r(N)Ia,8,8) given above w.r.t. 0 is

equivalent to minimizing (4.1) w.r.t. e. Substituting the re-

sulting 0* in (9) and (10) we obtain Theorem 2.

Theorem 3: Let (c,0,8) denote the estimates of the parameters of

the model representing a Type 1 object and let (alWl1Wl) and

(a 2 ,02 ,fa2 ) represent the corresponding estimates of the model

representing a non Type 1 object. Then the parameter sets

((),a //) and (01,a 11 F0, (021a2 / ) } satisfy the properties

Pl-P4.

Proof: (a) Invariance to P1:

Let

r' (t) = kr(t), t = 1, 2,...,N (11)

be the scaled boundary.

Let the l.s. estimates of the parameters associates with

{r')}, be (a' 0O V)

From (4.4) and (11), it follows that 0' 0. Also from (4.5)

and (4.6)

(l/N)1(r'(t) - oTz I(t - 1))
a'//Sr = /2 = / using (11)N

/N (r(t) - T z' (t - a) - 2 / ui (

(b) Invariance to P2: for this case r' (t) = r(t+S) where S is

the unit of rotation. By actually substituting in the expressions

for 0' and a'/i' and using

~.



r(N+k) =r(k),

it is shown that 0' = and a'//' =

Proof of Theorem 5:

From (5.3) we have

= + (1.2)

where B(U) is a NxN circulant matrix. It is well known [i]

that the eigenvectors of a NxN circulant matrix are the Fourier

vectors bP1 42 , where the j th component of the ith

eigenvector is given by

/ = e) (2T/N) (i-i) (j-1) (13)

and the distinct eigenvalues A(1),...,I(N) are given by

(dk) = (1 - WT~k)~ (i )

b = + W (15)

Expanding b in terms of the Fourier vectors {¢i } we have

N
b (16)
- i=l

where

Lt. -(17)

.. -F"



and O. denotes the complex conjugate of T.Hence from (12),

(15), (16), and (17)
N*

= B()-ib = B() -  .b/N

Using

B(O) 14 = (i/A(i))O(i)
-i

the LHS of (18) is equal to

N ,
= £ i~ib/NX (i) (19)i=l 1 ~

Using (13), (14), and (19), the kth component of f is

A N
r(k) = E exp[/--12n(i - 1) (k - 1)/N]/(1 - 9-Tii=l ~ ~

N
E exp[- 1 2w(i - i)(n - 1)/N] (a-+/0-w(n)) (20)

n=l

Defining
N

u(i) I 1/N E exp(- r-12Tr(i - 1)(n - IN)(T +V (n)
n=l

and

u'(i) = u(i)/(l - OTT.)

we have
N

P(k) = Z exp[/---127r(i-) (k-1)/N]u' (i), k = 1,2,... ,N (21)
i=1

Q.E.D.
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Fig. 1. Two dimensional representation.
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Fig. 2. One dimensional representation.
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(a)
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(c)

Fig. 3. Variations in shape: a) original shape, b) noisy shape (local trans-
formations), c) original shape globally transformed (scaling).



V

_____________________________________________ 
1~

FIg. 4. Contour maps.

t

A -.



(a) (b)

Fig. 5. Closed boundaries considered in the simulation: a) shape A, b) shape
B, c) shape C.
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(a) (b)

C€) Cd)

Fig. 6. Reconstruction of shape A using the simultaneous scheme. a) m-2
with exact residuals, b) m-2 with residuals truncated to first
decimal place, c) similar to a) with m-12, d) similar to b)
with m-12. Note that b) and d) are close to the original.
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(a) (b)

\ /

(C) (d)

Fig. 7. Reconstruction of shape 8 using the simultaneous scheme, a) m-2
with exact residuals, b) m-2 with residuals truncated to first
decimal place, c) similar to a) with m-12, d) similar to b)
with m-12. Note that b) and d) are close to the original.



(a) (b)

(C) (d)

Fig. 8. Reconstruction of shape A using the recursive scheme. a) m-2 with
exact residuals, b) m-2 with residuals truncated to first decimal
place, c) similar to a) with m=12, d) similar to b) with m-12.
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(a) (b)

/

(c) (d)

Fig. 10. Synthetic generation of shape A with residuals drawn from a (0 1)
pseudorandom Gaussian generator. a) m-2 with recursive scheme,
b) m-2 with simultaneous scheme, c) similar to a) with m-12,
d) similar to b) with m-12. Note that the contours constructed
with the recursive scheme are not closed.



Fig. 11. Shapes with necks.
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Fig. 12. Non-robustness of shape descriptor P I A, P perimeter, A area
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