






ABSTRACT

We describe an algorithm for minimum delay routing in a communication

network. During the algorithm each node maintains a list of paths along

which it sends traffic to each destination together with a list of the

fractions of total traffic that are sent along these paths. At each

iteration a minimum marginal delay path to each destination is computed

and added to the current list if not already there. Simultaneously

the corresponding fractions are updated in a way that reduces average

delay per message. The algorithm is capable of employing second

derivatives of link delay functions thereby providing automatic scaling

with respect to traffic input level. It can be implemented in both a

distributed and a centralized manner, and it can be shown to converge

to an optimal routing at a linear rate.
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iI • INTRODUCTION

We consider the problem of optimal quasistatic routing of data

in a communication network with slowly varying input traffic statistics.

The type of physical situation underlying the problem is the one described

in Gallager [1] and we refer to that paper for further discussion. We

describe an algorithm for solving the corresponding optimization problem

in either a distributed or a centralized manner. The algorithm is similar

to Gallager's method Ill and its generalized versions [21 in that it

relates to the gradient projection method for nonlinear programming

(Goldstein [3], Levitin-Poljak [4] - see Bertsekas [2) for a related

discussion). The algorithm given here .4 different primarily in that it

operates in the space of path flows rather than in the space of link flows.

Furthermore it utilizes a shortest path computation to obtain a search

direction rather than an upstream summation of link marginal delays.

As a result the amount of computation per iteration is typically smaller

for our algorithm. Our algorithm is also well suited for virtual circuit

networks since it operates directly.in terms of the quantities of

interest - the path flows. In this respect it is similar to a routing

algorithm by Segall [5). The algorithm bears also a close relationship

with an algorithm developed in a different context by Aashtiani [6]

which utilizes second derivatives. Aashtiani's algorithm need not

converge to an optimal routing but, for problems where it does converge,

the corresponding computational results have been very encouraging.

Our algorithm is also similar to the flow deviation method (Fratta,

Gerla, and Kleinrock [7]) and the extremal flow method (Cantor and Gerla

E81), in that at each iteration it involves the same type of shortest

........ ~~~- . ....... .. ...
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path computation. However, the first of these methods is characterized by

sublinear and hence slow convergence rate ([9], [10]), while the second requires

the solution of a nonlinear programming problem at each iteration. By contrast

the convergence rate of our method is linear, while the computational requirements

per iteration are rather modest. Furthermore, within the context of our method

it is possible to employ second derivatives in a manner that is reminiscent of

Newton's method. Computational results for related methods that employ second

derivatives [11], [12] have been very favorable and this provides grounds for

optimism that the same will be true for corresponding versions of our method.

An additional benefit of the use of second derivatives is that it provides

automatic stepsize scaling with respect to level of traffic input as has been

shown computationally within the context of generalized versions of Gallager's

method [11]. This advantage is of crucial importance if the algorithm is

operated in a distributed manner.

We consider a network consisting of N nodes denoted by 1,2,...,N

and a set of directed links denoted by L. We denote by (i,t) the link from

node i to node k , arid assume that the network is connected in the sense

that for any two nodes m,n there is a directed path from m to n . We

consider the following multicommodity flow problem in the vector of total

link flows f - (fi9 I(i,I)e L, j - 1,...,N):

(1) minimize D(f)

subject to fi (J) - fi(J) r (j), V i,jl....N i
XC (i) mit Ei) mi i

fit(J) > 0, V (i,t)eL, ij-l, ...N

f i(j) - 0 V (J,L)eL, j -

N
Here fit(j) is the flow on link (it) destined for node J, fix E fi(jI) is

the total flow on link (it), 0(i) and I(i) are the sets of nodes t for which
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(i,t)EL and (t,i)CL respectively, and, for i J, ri (j) is a given traffic

input at node i destined for j. Each link (ij) has associated with it a

number Cil , referred to as the capacity of the link which is assumed positive

Of + . The standing assumptions throughout the paper are:

a) ri(j) > 0, V i,j - i, ... N, i # j
:,

b) The real valued function D is defined on the set

(2) S= {flO < f < C V (ij)CL}

and is convex and twice continuously differentiable. Furthermore lim D(f) = + ,

9f)f i citi
aD(f) > 0, and the Hessian matrix of D is positive definite for all feS

ana (ij)CL.

Problem (1) is formulated in the space of link flows. We consider an

equivalent formulation in the space of path flows. Consider the set of all

active origin-destination (OD) pairs

iiA - {(i,j)lri(J) > 0, i,j - 1,... ,NI

For each a - (i,j)CA we also write ri(j) = ra For each OD pair

a - (i,J)EA let 'P be the set of directed paths with no repeated nodesa
originating at I and teominating at J. For a - (ij)CA and a path

Ppa we denote by h the flow originating at i destined

for j and travelling along the path p. Let h - (hpIPCPa , aCA) be the

vector of path flows and H be the set of all feasible path flow vectors

(3) H - h > 0, hp r Vpep, aCA

p aa

FOr each hCH there is a corresponding flow vector f satisfying the constraints
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of problem (1) and related to h linearly by means of the equation

(4)(i,)h , V (i,)L
aCA pCP p p

a

when 6 p(i,) - 1 if the path p contains the link (i,Z) and p(i,2.) = 0

otherwise. Let us write (4) as

(5) f = Eh,

where E is the appropriate matrix, and let us consider the function

(6) J(h) = D(Eh)

and the problem

(7) minimize J(h)

subject to hEH

It is easy to show that problem (7) is equivalent to problem (1) in

the sense that an optimal solution h of problem (7) yields an optimal

solution {ff£(J)1(it)eL, j 1 l,...,N) of (1) via the relation

itD

(ii)Et~ p p
(i,5)A Pc(iLlj)

This is based on the assumption !- > 0 which precludes the existence
afit

of optimal sets of flows that contain loops.

The algorithm of this paper solves numerically problem (7) but its

definition, as well as its convergence and rate of convergence properties

depend crucially on assumption (b) made earlier regarding the function D.

In the next section we describe the algorithm for the case where there

is a single OD pair. The generalization to the case of several OD pairs

and the corresponding convergence and rate of convergence results are

given in Section 3. In Section 4 we describe briefly how the algorithm

can be operated in a distributed manner.
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Proofs of various statements and results of this paper are generally

omitted due to space limitations. However, the reader who is familiar

with recent work on optimal routing should be able to convince himself

of the validity of the algorithm and the corresponding convergence results.

References where appropriate are provided as an aid in this respect.

2. The Algorithm for a Single OD Pair

Consider the special case of problem (7) where there is a single

OD pair (i,j) - a. Problem (7) is written then as

(8) minimize J(h) = D(E)

subject to E h r
P p a

h > 0 , pEP

The algorithm is initiated with a subset of paths P C P and a set
a a

of path flows h O which may be nonzero only on the pattin P0  i.e.,
a

(9) h°  =0 if p PO

pa

and are such that the corresponding set of total link flowsf
0 = E h °

belongs to the set S of (2), i.e.

(10) f ES

At the kth iteration we have a subset of paths Pk C P anda a

corresponding sets of path flows hk and total link flows fk satisfying

() hk - 0 if pepk f ks •
p

We compute a shortest path p kcP by means of a shortest path algorithm
ak

using as length of each link (,m)EL the partial derivative f )

We set

(12) Pk+l Pk U p k }
a ak
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(Note here that p may already belong to P k.We then solve the
a

quadratic programming problem

(13) minimize X (dk (h - hk) +lI 1 k (h - hk)2}
ppk+l P p p 2 p p p

a

subject to F h =ra h > 0, V pep
k+l p a p- a

a

k+l kwhere for each pep , d is the total length of the path p with
a p

respect to link lengths aD(fk) , i.e.
afm

(14) d = 3 (,m) D(fk)

P (R,m)eL p af2

andk is a positive scalar. If hk is the solution of problem (13)
p p

we set for Pepa

Ek if pck+la a

(15) hk+l = a
P 0 if pPPk+ l

a

In the way of explanation we mention that there holds

Jhk)dk J(h vpEpk+l

p 3h a
p

[cf. (4), (5), (6) and (14)]. As a result the subproblem (13) may be

viewed as a quadratic approximation of the original problem (8) and

the algorithm may be viewed as a version of the Goldstein-Levitin-

Poljak gradient projection method (see [ 2]) - the only different being

that problem (13) involves only the paths in Pk+l rather than the
a

entire set of paths P a Note that problem (13) involves a single

equality constraint and can be solved by essentially analytical means

(compare with [2]). It is possible to show by using rather standard



nonlinear programming arguments that there exists a scalar p > 0 such

that if

k k+l(16) P < p V PET a k = 0,1,...

kand the sequences fVk} are all bounded, then the generated sequence
p

(fk} satisfies ff k CS and converges to the unique optimal solution of

problem (1).

kA choice of pi based on second derivatives is given by

k k2J hk 92 D(fk)

Dh2(m,9t)FL 9f2 6 m,
pp

where n is a positive scalar. When n = 1 the resulting algorithm

represents a diagonal approximation to Newton's method. Algorithms

of this type with p near unity have been shown computationally to be

quite successful in a related context [111], [12]. Another possible

choice is

k k 3 
2D(fk) (i,

(m,5)EL M f2
kk+

where nmk is the number of paths in Pk+l that contain link (m,9 ).
a

With this choice it may be shown that the objective function of problem

(13) is an upper bound to the one corresponding to Newton's method

applied to problem (8). This in turn can be used to show that if fk

is near the optimum, then the kth iteration leads to guaranteed reduction

of the objective function.

The algorithm just described does not involve a search for an

-k k
appropriate stepsize along the descent direction (h - h ), and as

such it is more suitable for distributed operation. When the algorithm

is operated in a centralized manner it is possible to incorporate a linear
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search of the type that is usual in many nonlinear programming algorithms

thereby guaranteeing a reduction of the objective function value at

each iteration (compare with [2]).

3. The Algorithm for Several OD Pairs

In the general case where there are several OD pairs the algorithm

consists of several simultaneous OD pair iterations of the type described

in the previous section. The set of OD pairs A is partitioned in a

union of disjoint subsets A1 , A2, ... An where n is some positive

integer. The algorithm operates in cycles of n iterations. In the

first iteration of each cycle a single iteration of the algorithm of

the previous section is carried out simultaneously for all OD pairs

ac. In the second iteration of the cycle the same thing is done for

all OD pairs in A2, and so on until the OD pairs in An are iterated upon.

At this point the n-iteration cycle is completed and a new cycle begins

with the OD pairs in AI .

Among the possible partitions of the set A the two extreme cases

are when n = 1, A. = A, and when A, consists of a single OD pair.

Other possibilities of interest are when n = N and Ai consists of

all OD pairs corresponding to the same origin i or the same destination i.

Any one of these algorithms can be shown to generate sequences

{fk} that converge to the unique optimal solution of problem (1) under

the assumption that the sequences Pk} are bounded and satisfy (16) for
p

a sufficiently large lower bound P.

The proof of this fact is similar but actually simpler than Gafni's

convergence proof [13] for a related algorithm that operates in the space
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of link flows. Regarding rate of convergence it is possible to show for

the case where n - 1, A1 = A that f k} converges to the optimal solution

k .
at a linear rate. A proof of this fact for the case where 1p is a

p

constant may be found in Bertsekas and Gafni [14]. It is our conjecture

that the convergence rate is linear even when n > 1 but this remains

to be shown.

4. Operating the Algorithm ift a Distributed Manner

It is possible to distribute the computation involved in each iteration

of the algorithm among the nodes of the network. Each node i measures

r.0j) for all destinations j and receives periodically the values of the

total flows f m of all links (Z,m). Node i can then execute the

portion of the iteration of the algorithm that corresponds to OD pairs

for which i is the origin. This involves computation of shortest

paths from i to all destinations and an adjustment of the flows of

the currently active paths according to (13), (15). Each node i is

also involved in monitoring the average link flows of outgoing links fiz"

The values of these flows are broadcast to all other nodes at the

beginning of each iteration by either a flooding scheme, or by means of

a spanning tree.

A distributed algorithm of the type just described resembles the

current ARPANET routing algorithm [15] in that information providing a

length for each link is broadcast throughout the network, each node

computes shortest paths from itself to each destination on the basis of

these lengths, and shifts flow to the shortest paths. In the ARPANET

algorithm all flow is shifted to the shortest path at each iteration.

In our algorithm a portion of the flow is retained in previous shortest
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paths and, if this is done properly, the resulting flow pattern converges

asymptotically to the optimal. By contrast an algorithm of the ARPANET

type cannot provide optimal routing since it precludes the possibility

of sending data along more than one paths for any single OD pair.

A certain amount of synchronization of link flow broadcasts is

necessary in our algorithm. It would be interesting to know what would

happen if these broadcasts and the corresponding shortest path computations

and flow adjustments were carried out asynchronously as in the ARPANET

algorithm. Such an algorithm would certainly offer important practical

advantages but the associated questions of convergence are quite difficult

and as yet unexplored.

.4i
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