AD-A089 836

UNCLASSIFIED
o

404
LERREN

MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE~~ETC F/8 9/2

MANAGEMENT OF OBJECT HISTORIES IN THE SwWALLOW REPOSITORY. ()
JUL 80 L SVOBODOVA N00016-75-C-0
MIT/LCS/TR-243

1 .

|||||;E_9 E L

o

flel

) ENTH

VAOUOHOAS

MASSACHUSETTS
LABORATORY FOR %% INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TR-243

MANAGEMENT OF

"OBJECT HISTORIES
IN THE ,.
SWALLOW REPOSITORY

Liba Svobodova

This research was supported by the Advanced Research
Projects Agency of the Department ot Detense and was
monitored by the Office ¢f Naval Research under
contract number NOOOT4-75-C-006061

S5 THFCHNOTOGY SOUARE. CAMBRIDGE ., MASSACHUSETTS 021329

: SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)
' READ INSTRUCTIONS
4 REPORT DOCUMENTA'"ON PAGE BEFORE COMPLETING FORM
r 4 r"‘l |7 _REFORY NUMRER 2. GOVT ACCESSION NO.| 3. REC.PIENT'S CATALOG NUMBER i
" 1Y |\ MIT/LCS/TR-243 AN-Ap 87 K36 ;
-] . TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED i
{14 -)
Management of ObJeCt H.Lstorles in the Swallow 6. PERFORMING ORG, REPORT NUMBER [‘1
Repository, e MIT/LCS/TR-243 113
7. AUTHOR(S) ’ 8. CONTRACY OR GRANT NUMBER(s) .
: Y . S 2
< } . ’ T L
(] Svobodova | s ¥ N00014—75-C—066‘f :
\— i L v — '»\ . E,
» 9. PERFORMING ORGANIZATION NAME AND ADD?ESS 10- :ggin’AMoEA-KE SINTT'NPU':‘OBJEEEST' TASK
MIT/Laboratory for Computer Science Y s T -
- 545 Technology Square /., 77|
o Cambridge, MA 02139 e L
11. CONTROLLING OFFICE NAME AND ADDRESS . _,11,__8590&7—“ E
ARPA/Department of Defense “// p. Julg=#980
1400 Wilson Boulevard S T NUMBER OF PAGES
Arlington, VA 22209 85
4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 1S. SECURITY CLASS. (of this report)
mWDemEnt of the Navy Unclassified
Information Systems Program
Arlington, VA 22217 TSa DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)
This document has been approved for public release and sale; its
distribution is unlimited
I7T DISTRIBUTION STATEMENT (of the abslract entered in Block 20, it different from Report) ‘!
t
3
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Distributed systems
atamic actions
storage management *
reliability
recovery S
20 ABSTRACT (Continue on reverse side if neceseary and identify by block number)
L SWALLOW is an cxperimental distributed data storage system that provides personal computers
with a uniform interface to their local data and the data stored in shared remote servers called
repositories. ‘The SWALLOW repositories provide reliable, secure, and efficient long-term storage ey
for both very small and very large objects and support updating of a group of objects at one or
several repositorics_in_a single atomic action. ‘The repusitorics support, with same minor.iJ

DD , 5", 1473 eoition oF 1 NOV 68 13 OBsOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) Jr‘/

1l 7,

C e e et e - : b

-

INGURITY CLASSIFICATION OF THIS PAGE(Whaen Data Bntered)

20.

~nudifications, the object model developed by Reed [REED 78]

The core of the repository is stable append-only storage called the Version Storage (VS). VS is the
only stable storage in the repository. 1t contains the histories of all objects in the repository and all
the information nceded for crash recovery. 1t is assumed that VS will be implemented with write-
once storage devices such as optical disks. ‘The upper 2"_words of VS are kept in the Online
Version Storage (OVS). Technigues similar to real-time garbage collection are used to keep the
current versions of frequently used objects in OVS. ‘Two different policics for retaining current
versions of objects in QVS are investigated: the actual implementation further depends on the type

of storage devices used for OVS,

A critical concern addressed throughout the design of the repository is recovery from system crashes
and storage device failures. ‘The crash recovery of the repositories is based entircly on the
information contained in VS; VS is scanned sequentially, starting from its current end, until “all
objects histories have been reconstructed. f\'l'hc recovery can be distributed over time, such that the
recovery process is invoked for one ohjcc/(.ml a time, as individual objccts are accessed. The same
mechanism is used to recover commit reu"&rds. which are data structures that vecord the state of
atomic actions and group together the objects to be updated in a single atomic action. ‘The
\
implementation of commit records in the rcﬁnsilory guarantees that all updates made by a specific
atomic action are cither alt completed or all undone, regandless of failures. Further, interrupted

atomic actions can be continucd from the point of interruption, without any additional (backward)

recovery.

SECURITY CLASSIFICATION OF THIS PAGR(When Date Bntered)

MANAGENMENT OF OBJIFCT INSTORIES IN THE SWALLOW REPOSITORY

l.iba Svobodova

July 1980

@r\'lussachuscl(s tastitute of Technology

‘This rescarch was supported by the Advanced Rescarch Projects Agency of the Departiment ol Defense
and was monitored by the Oftice of Naval Rescarch under contract munber NOOOLE-75-C-0661

MASSACHUSETTS INSTTFUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE
CAMBRIDGE, MASSACHUSIEETIS 02139

¥ P AT A

T

TS NN 1 g S S

Ryl e T T TR TREET T D S % POT I YE BRI
i 3

MANAGEMENT OF OBJECT HISTORIFS IN THE SWALLOW REPOSITORY

p— TS
.,l“ M:w-»\.
; ABSTRACT
E SWALLOW is an experimental distributed data storage systemn that provides pessonal computers
with a uniform interface o their local dita and the dita stored in shared remote servers called
3 4 repositories. The SWALLOW repositories provide reliable, sccure, and efficient long-term storage
for both very small and very Large objects and support updating of a group of objects @t one or
several repositories in a single atomic action. ‘The repositories support, with some minor

modifications, the object model developed by Reed [REED 78]

‘The core of the repository is stable append-ondy storage called the Version Storage (VS). VS is the
only stable storage in the repository. It contains the histories of all objects in the repository and all
the information needed tor crash recovery., 1t is assumed that VS will be implemented with write-
once storage devices such as optical disks. ‘The upper 2™ words of VS are kept in the Online

Version Storage (OVS). Technigues similar to real-time garbage collection aic used to keep the

current versions of frequently used objects in OVS. Two different policies for retaining current

T e

versions of objects in OVS are investigated: the actuwal implementation further depends on the type

of storage devices used for OVS.

“A.

A critical concern addressed throughout the design of the repository is recovery from system crashes
and storage device failures. The crash recovery of the repositories is based entirely on the
information contained in VS; VS is scanned sequentially, starting from its careent cod, until all

ubjects histories have been reconstructed. The recovery can he distributed over time, such that the

recovery pracess is invoked for one object at a time, as individual objects are accessed. The same
mechanism is used to recover commit records, which are dita structures that record the state of
atomic actions and group together the ohjects o be updated in a single atomic action. The
mplementation of commit records In the repository guarantees that all updates made by a specific

atomic action are cither all completed or all undone, regardless of failures, Further, interrupted

atomic actions can be continued from the point of imerruption, without any additional (hackward)

recovery.

Keywords: Distributed systems, atomic aclions, storage management, reliability, recovery.

v, S

N TR, WS [T PN

ACKNOWLEDGEMENT

This work builds directly on the PhI) thesis of David Reed. 'The object model developed in that
thesis forms the basis of the repository design: also, the idea of implementing a systein of this kind
with writc-once storage devices is Reed's.

I am indebted to all those people who have participated in the discussion meetings of the
SWALLOW project since its beginning in the fall 1979, in particular, 1o those people who have
stayed with it Gail Arens, Karen Sollins, and Dan ‘Theriault. and of course, David Reed. who
started the project and is Ieading it. “Uheir criticism and suggestions were very valuable in shaping
and clarifying the ideas presented in this report. Finally, 1 wish o thank Jerry Saltzer fer his
encouragement and critical comments on carlier drafts.

W I R)

I Py

.,‘

Tamn AL A ROy

Ty e S

E
!
%

CONTENTS

1. Object model 1

1.1 Representation of object historics 4

1.2 Modified object model 8
1.3 Implementation issucs 10
2. Version Storage 12
2.1 Online Version Storage 12
2.2 Transfer of data between primary memory and VS 16
221 Yacking of version images in VS buffers 16
222 Yartitioning of large objects 17
23 Mapping VS address space onto physical storage devices. 20
; 3 Management of OVS 24
; RN Current versions of alt objects maintained in OVS 24
3.2 Most recently used current versions maintained in OVS 28

: 33 Adapting OVS management o an implementation with
t writc-once devices 29
! 34 Online support for VS 35
4. Management of ohjects 43
4.1 Object headers 4
E 4.2 Synchronization 46
4.3 Object directory 49
‘ 5. Management of commit records 50
5.1 Representing commit records as objects 51
5.2 Distributed possibilitics 57
6. Recovery 61
6.1 Retrieval of VS images 62
6.2 Reconstruction of object hcaders 63
6.3 Real-time recovery 66
6.4 Communication with brokers 68
7. Summary 69
References 73
3 Appendix: Structure of the repository 74
iii
*
W >

Kot g P 4T iyt g

MANAGEMENT OF OBJECT HISTORIES IN THE SWALLOW REPOSITORY

SWAILLOW is an cxperimental project that will test feasibility of several advanced idcas on design
of object-oriented distributed systems. lts purpose is to provide reliable, secure and cfficient storage
in a distributed environment consisting of many personal machines and one or more shared
repusitorics. ‘The objectives and the overall structure of SWALLOW are presented in [RIEED 80);
the major components of the SWALI.OW system are shown again in Figure 1.

liach personal machine runs a subsystem called a broker that interacts with the manager of the local
storage device and the remote repositorics; this broker implements a uniform interface to all objects
accessible from the personal computer. ‘The repositories provide stable. reliable, long-term storage
for untyped objects. ‘They must handle cfficiently both very small and very large objects and
provide mechanisms for updating of a group of objccts at one or more physical nodes in a single

atomic action.

This report discusses the organization and management of the repositorics in the SWALLOW
system. The repositorics support, with some minor modifications, the object model developed by
Reed [REED 78] ‘this model provides the basis for synchronization and recovery in the
implementation of atomic actions. ‘The main features of Reed's object model are outlined in
Section 1; however, the material presented in this report assumes a much deeper knowledge of

Reed’s work.
1. Object model

An object can be viewed as a history of all the states assumed by the object since its creation. Each
distinguishable (abstract) state of an object is represented by a special immutable entity called a
version. In addition to having a valuc, a version has a time auribute that specifics its range of
validity. The range of validity of a particular version is the time interval in the history of the object
during which the object was known to be in the state represented by the version. Each version
delimits the range of validity of the preceding version. All operations on objects include an implicit
paramcter, a pscudo-time, which specifies the exact point in the object’s history to which this
operation refers. A read operation selects a version that has the highest "start time” that is lower
than the pscudo-time p specified in the read request. If the "end time™ of that version is lower
than p, it is extended to p. A writc operation creates first a token, which has to be explicitly
committed to become a version. ‘The start time of that version is the pscudo-time specificd in the
write request. A token can be later discarded, thus returning the object history to the state that

existed prior to the cxecution of the write operation,

Client
nodes

Client

—

Bioker

Bioker 31 oker

&

local

slorage

Network

ST S

Repository

Repository Reposilory

§od dbv &b

Storage devices

Figure 1: Structure of the SWALLOW system

interface

Swallow

|
i
|
:

o R S Sy S

‘The object model supports construction of atomic actions. An atomic action is a control abstraction

that guarantecs the following:

i atomic actions are mutually cxclusive, that is, operations performed as part of onc atomic

action cannot sec or interfere with the tokens created within a different atomic action, and

ii. the tokens created as part of the same atomic action are cither all committed (converted

into versions) or all aborted (removed from the object histories).

Associated with an atomic action is a pseudo-temporal environnent and a possibility. Al operations
performed within an atomic action are assigned pscudo-times from the same pscudo-temporal
cnvironment; the pscudo-temporal environment is a mechanism for making atomic actions mutually
exclusive. A possibility is a group of tokens created by a specific atomic action. The possibility
mechanism guarantees that only the atomic action that created the tokens can read them and that

the tokens are either all committed or all aborted.

Possibilitics arc represented by commit records. A commit record is a data structure that records
the state of a possibility and keeps track of what entitics are dependent on the outcome of the
possibility. A commit record is created with the possibility state set to unknown. When an atomic
action completes successfully, the possibility that represents it is committed and the possibility state
in the commit record is sct o committed. If the atomic action is aborted. the possibility state in the
commit record becomes aborted. The commit record includes a list of references to tokens created

by the atomic action. Also, cach token contains a reference to its commit record.

Construction of atomic actions is controlled by the brokers. This includes generation of the pscudo-
temporal cnvironment for atomic actions and creation and commitment or abortion of possibilitics.
The tokens in the same possibility can be created by different brokers; thus the commit records are
shared data structures and must be in soine repository. The repositorics therefore must implement
two abstractions: the object histories and the commit records. 'The following arc the operations that
can be requested by the brokers to be performed by the repositories. (Although the requests are shown in
the form of procedure calls. this docs not imply that a remote procedure call type of protacol will be used [J.AMP 79)
Also, the lists of parameters as shown are not necessarily complete. Specifically, instead of a gencral acknowledgement,
the repository will return cnough information about the request and its result to make the response seli-identifying. 1f

the requested operation cannot be performed, the repository relurns an crror message.).
Requests that pertain to object historics:

create (pscudo-time, commit-record-id) returns (object-id)

read (object-id, pscudo-time, commit-record-id) returns (valuc)

e nre st S 2 g e iy A RAIMATTIRCTR AR S i

RIRE s NN TSR R

create-token (object-id, pscudo-time, commit-record-id, value) returns (ack)

delete (object-id. pscudo-time, commit-record-id) returns {ack)
Requests that pertain to commit records:

create (timecout) retums (ack)
test {commit-rccord-id) returns (commit-record-state)
commit (commit-rccord-id) returns (ack)

abort (commit-record-id) returns (ack)

Additional operations on commit records must he supported in order to implement possibilitics that
involve objects in more than one repository (distributed possibilitics); these operations, wlich can be

requested only by a repository, will be discussed in Sccion S.

1.1 Representation of ohject histories

In Reed's original model, there may be time intervals in the object history that do not have
corresponding versions (Iigure 2). A new version can be created belatedly in any such time interval
(by creating and committing a token), or the interval can be diminished when a request to read the
value of the object at a time point that falls within this intcrval is exccuted. The latter action
cxtends thclvulidity range of the immediately preceding version, up to (including) the pscudo-time

of the read request. Both of these forms of "eduction” have to be accomodated in the object history
representation.

Figure 3a shows a linked list representation where the range of validity and the state of the version
(token/committed) is physically a part of cach version representation [REED 78, REED 79} An
alternative representation is to concentrate the various information about versions, including the
pointers to the actual values, in a separate data structure which becomes a part of the object header
(Figure 3b). The main problem with the first scheme is that the entitics that represent versions are
not immutable. The range of validity changes as versions are read. Also, if a new version is inserted
into a gap, the "next version” link of the version that follows the new one in time must be changed.
Similarly, if an action that produced i token is aborted, the token must be discarded, that is, the
token must be removed from the history by destroying the pointer to the token. Another
disadvantage is that if an operation refers 1o an older part of the history, it is necessary to inspect all
newer verstons o find the appropriate version (or gap). ‘The other scheme (b) lecads to more
complicated storage management. The size of the object header varies from object to object and
changes as new versions arc created; also, since it must be possible to insert new entrics anywhere

in the version list, a simple array representation is not possible. Sccond, the number of versions in

57 b AR DA Rr e

————a
B SN

T IRT .)

O s RO LA

Lo ahe

At

g

ks

PP PPV ERER TR U U ST

1

+
PRSP ~

S

Lo e G,

|
]
’
object t
creation
10 t ty ty
1 i 1 1
time
ot
oty bt tg Nt s
t e tﬂ e le t e L o] '
committed committed s |-» |
version version token version token
vV X
2 Va X2 3 1

unknown I

rEmmi(ted J I unknowu

commit record commit record commit record

CR cR
CR, 1 2

Figure 2: An example of an object history.

Token X5 was created after version Vy and token X. Version V3 was committed recently, but has
not had its state encached yet. Reading the object at time tp will return the value of version V).
Reading the object at time ty will return the value of version Vy, after extending the validity of this
version (end time) oty Attempts to read the object at time 13 and Yy will result in a wait,
pending commitment or abortion of tokens Xy and X respectively, unless the read operation is
requested from within the same possibility under which the token was created.

| @‘/\/\/\/\

j { nil B
E 's 's ts 'S 'S ;
i t 1 ‘ t t g .
i |- Lo |- committed committed -

y
E X, vy X, v, 2 ')
;*

Lunknown j lﬂnmmed j L unknown —]

CR CR
CRQ 1 3

a. Version information stored
with the version value

object id

[unknown J [committed I unknown

v
»

3

s te /
L’ 'e i m X
e t, I 2
t t comm *>—
s e
'S ie comm V2

Vi

b. Version information concentrated
in the object header

Figure 3: Possible representations of known object histories;
shown for the example given in Figure 2.

5 »'"'a!‘-l. i'm’é’;ﬁ“"w"'; o

an object history may grow very large, and old versions must be removed from online storage. If
the stored versions physically contain the validity range and linking information, this information
will be purged from online storage automatically with the old versions. If the list of version

references is kept in the object header, it may have to be pruned scparately.

It is highly dcsirable to represent versions by immutable storage cntitics. Perhaps the strongest
rcason for this restriction is that it is much simpler o design mechanisms to ensure integrity of

stored versions.

Onc of the main functions of the repository is to provide very reliable storage. ‘This means that the
physical storage must be stable, that is, the information stored in it must not decay over time. In
addition, it is necessary to cnsure that information written to it is cither written completely and
correctly or not at all, that is, that the operations on stable storage arc afomic. Since no physical
device provides storage with these propertics, the atomnic stable storage must be implemented as an
abstraction. using hardware components with less desirable propertics. In particular, atomic stable
storage must be designed to tolerate processor crashes during write operations and decays of the
storage media. This is accomplished by writing the data twice, into decay-independent sets [ILAMP
79).

An opcration that is most difficult to perform atomically is an in-place update of stored information,
An atomic update mcans that cither the content of the updated centity is changed into the new
valuc or, if the operation fails, the value of this entity is left unchanged. ‘That is, atomicity
guarantees that a stored entity is never left in an inconsistent state where the old value has been lost
and the new value is incorrect. To perform an atomic update, the two copices of stored information
in the decay-independent sets must be changed strictly scequentially, i.e. the first write must
complete successfully (correct data written to correct address) before the second write is initiated. If
the storage model docs not have to support an update operation, the problem of atomicity is
simplificd. 1t is still necessary to have two copics for stability, and the ability to detect and correct

bad writes, but thc two writes into the two decay-independent sets can be done concurrently.

A sccond strong motivation for choosing an immutable representation for object versions and tokens
is the possibility of using optical disks, which are writc-once storage. The given object model will
require a large amount of storage. ‘Thus, it is important to utilize storage devices that are: 1)
incxpensive, 2) casy to store offline. To provide fast access to old versions, a random access device

is nceded. Optical disks look promising in all these aspects.

To satisly the immutability requirement with the preseat object model, it would be necessary to use

the scheme of Figure 3b, However, it will be shown that with a minor maodification to the

!
It.
|

ié
|
|

conceptual object model it is possible (and better) to include most information about versions in the
version representation.,

1.2 Modificd ohject model

If we allow insertion of new versions in an arbitrary place in the list, the information about the
ordering of the cxisting versions (the physical pointers o stored versions) must be kept in storage
that allows multiple (unlimited) writes. In addition, the "end time” information for cach version
has to be kept in such storage, since it must be changed when a version is to be read at a pscudo-
time greater than the current end time. Anothei possiblility would be o completely cwrite cach
version every time its end time must be extended and when a new version is inserted after it, but
such a scheme does not scem practical.

I.ct us constrain the conceptual model such that when a new version is created. the end time of the
previous version is extended to close the gap. ‘This means that new versions can be inserted only at
the "current” cand of the list. Also, cach object can have at most onc token. Actually. an object could
have multiple "dependent” tokens at the “current” end. as it is done in Takagi's scheme [FAKA 79) This possibility will
not be imestigated in this report. However, with the exception of the current (latest) version and the
token, the end time of a version can be derived from the start time of the next newer version and
thus does not have to be included in the version representation. Consequently, an object history

can be represented by a fixed-size object header and a growing list of immutable cntitics that
represent the versions.

The data structures rneeded to represent an object history are shown in Figure 4. The object header
contains a reference to the current version of the object and the end time of the current version.
This time is updated cvery time the current version is read past its end time, 'Ihe object header also
includes a token reference that is cither null if the object does not have a token or it contains the
physical address of the current token. One reason for including both the current version reference
and the token reference in the object header is that it is simpler to discard a token (remove it from
the object history) when the atomic action that created it is aborted. However, having both of these
references in the object header i crucial to the storage management, as will be scen later. Tokens
can be read from within the atomic actions that created them; cach such read cxtends the end time
of this future version, Since the cnd time of the current version should not be automatically
extended up to the start time of the token until that token is actually committed, it is necessary to
keep track of the end time of the tokens as well as the end time of the current versions. 1t should be
kept in mind that the current version end time and token end time in the object header are pscudo-times that do not

necessarily correspond to real time. Finally, a reference to the commit record for the current token is

-

- ey g e =
TR

QAN e

e e e———— =W
T 7 ST -

object uid
\ object header commit record
object uid
cutrent version reference
current version end time -
token reference [
token end time
commit recotd reference =
object uid object uid object uid object uid
nil . |_e |_—»
ty tg s 's
CRret CRrel CRref CRref o
Y 1 V2 v 3 X 1
current token
version

Figure 4: Representation of the object history for the modified object model;
itis not possible to create token X, in this model.

contained in the object header, although this is only an optimization, since this information is

present also in the token.

The data structures that represent the versions are called version images. A version image contains,

in addition to the "value” field, the “start time™ 1. a reference to the immediately preceding

s
version, the uid of the object it represents and a reference to the commit record for this version.
The fast two items arc needed for recovery, as will be explained later. ‘The time g specifies the
beginning of the time interval in the object’s history represented by that version. Again, t is not the

real time when the version image was created, but the pscudo-time specified in the request to create a ioken

Itis important to make a distinction between versions and the representation of versions, that is, the
version images. A version is a logical concept: it is the value of the object during a specific interval
in the object’s history. A version image represents cither a version or a token: to determine which
of these two it represents, it is necessary to inspect the object header or the commit record specified
in the version image. Several copics of a version image may coexist in the repusitory. Since versions are
immutable, this docs not cause any synchronization problem. Also, a version image may remain in the
repository although it no longer represents a valid version. ‘Thus to discard a token when the action

that created it is aborted, it is sufficient to sct the token reference field in the object header to null.

In addition to climinating the need to include mutable data structures in the version representation,
the modificd model also climinates the need to perform a write operation when an older version is
read. ‘The lost ability to feave regions of the object’s history undefined and create versions in such
regions later does not reduce significantly the power of the object model. In most situations, an
object that is to be updated is read first, and it is desirable to extend the end time of the read
version up to the start time of the new version e ensure that the object has not been changed after

it was read.
1.3 Implementation issucs

A crucial problem is to find an cfficient and reliable scheme for mapping object histories into
physical storage. The two structures used to implement object histories, the object header and the
list of version images, require different maodels of storage and different management policies.
Object headers are mutable and therefore must be kept in storage that allows maodifications of
stored information. The version images are immutable and thus can be stored in write-once storage.

In addition, the reliability requirements are different.

The main issuc in the implementation of the lists of versions is storage allocation and management,

Giving cach object a section of consccutive physical storage locations for its entire history is clearly

10

vy

Lol L R

infeasible. Rather, it seems natural to view the version storage as a lustory of creation and updates
of all the objects in the repository. Section 2 develops a model of the version storage as an infinite
append-only file. Since it is infeasibie to keep the entire version storage onling, the online portion
of the version storage must be “reusable”, that is, it must be puasible to free it for newer version
images. This problem is studied in more depth in Section 3. That section addresses also the

problem of the assignment and management of the physical storage devices used to implement VS,

The role and management of object headers is discussed in Scction 4. It is too expensive to
immediately reflect all changes to an object header in stable storage. ‘I'herefore, the object headers
are viewed only as hints that may be destroyed by a processor or storage device failure, but are
reconstructable from the information contained in the version images. ‘That section also addresses

how abjects are located and how concurrent requests for the same object wre synchronized.

Scction § discusses the implementation and management of commit records. Commit records are
special data types provided by the repository, but are ultimately mapped into the same object model
as other data. For possibilitics that include objects in more than one repository, commit record

representatives are added to the model.

Recovery issues are addressed throughout this report, but the ajor step, the reconstruction of
object headers, is described in Section 6. Finally, Section 7 presents a summary, including a list of

issucs that must be studied in more depth.

R

1. Version Storage

The core of the repository is the Version Storage (VS). Abstractly, VS is an infinite append-only
tape. VS stores information as stable immutable entitics. ‘These entitics will be called VS images.
A VS image consists of two ficlds: the data ficld, which at this level is simply an uninterpreted
sequence of bits, and the size field. VS is the only stable storage in the repository. 1t will contain
all versions of all objects in the repository. In addition, all the information needed for a crash

recovery must be stored in VS, as immutable VS images.

Version images, as described in Section 1.2, are contained in the data ficld of VS images. ‘That is,
for storage in VS, an cnvelope that contains the size field is added ()igure 5). The version
references in individual V8 images as well as the current version reference and the token reference
in the object header are dircetly the addresses of the representing VS images in VS, A, The lists
of versions representing histories of different objects are intertwined in VS; their ordering in VS is
determined by the relative frequencics of updates of individual objects. And to some extent also by read

activities, as will be scen later.

Since VS may grow arbitrarily large. it is infcasible to keep it online in its entirety. The issues of
what information should be kept online and how the online storage is to be managed arce discussed
in Scction 2.1, Scction 2.2 is concerned with the transfer of datt between the primary memory and
VS. Small objects (version images of small objects) must be packed into buffers while large objects
have to be partitioned inte smaller picces. inally, Scction 2.3 discusses some problems with the

mapping of the VS address space into the physical address spaces of the used storage devices.
21 Online Version Storage

Only a fraction of the information contained in VS can be made available online. One approach is
to add a special kind of cache for the current versions of all objects. The most straightforward
policy for controlling the use of such a cache is to replace (overwrite) the version in the cache when
a new version of that object is created. However, this new version may ncver be committed; when
it is written into the cache, it is only a token. Altermatively, the cache corld be assigned to contain
the latest committed version of cach object and the tokens. When a token is commitied, the other,
now old, version would be deleted and the freed space reused. Since version images can vary
greatly in size, the cache storage would become fragmented and it would bhe necessary to do
recompiction or garbage-collection. “This problem arises even if tokens are allowed to overwrite the
commitied versions in the cache, since subsequent versions of an object can have greatly different
sizes! Another unpleasant aspect of this form of caching is that there is no casy way to deduce the

location of a version images in the cachie from its address in VS and vice versa: thus two addresses

12

size } size field

object uid

previous version
reference

t

s .
q data field

CR reference

value

Figure 5: VS image representing a version image.

Loadhb e BB i it ui

have to be remembered for cach version image in the cache.

Instead of using a cache, the Online Version Storage (OVS), that is, the portion of VS currently
available online, will be the most recent 2™ words of VS. OVS will be implemented as a circular
buffer. as illustrated in Figure 6. Mark My will be used to specify the current end of VS on the
device that serves as OVS. New version images are created always in OVS, but for read requests, it
is nccessary to determine if an image of the specified version cxists in OVS. Such a check is very
simple: if (A - Ay <= 2N where Ay is the VS address of My, then the version image is in
OVS. and its address in OVS is (A; mod 2"

OVS shall contain the version images created during the interval (¢.-1, t.> where 1. is the current
time and T is determined by the speed with which the available online version storage fills up.
Unfortunately, since versions of different objects are created at different rates cven the current
versions of some objects may disappear from OVS. To make sure that all or somne objects (for
example, those objects that are read frequently) retain their current versions in OVS, it is necessary

to copy version images in OVS, and conscquently in VS,

To preserve the current versions of objects in OVS, it is not sufficient to copy just the immediate
current versions when the time comes to reuse the respective fragment of OVS space: the tokens
have to be copied too. But, if an object has a token at the time the latest image of the current
version is to disappear from QVS, it is still necessary to copy the current version, since the token

later may be aborted.

When an image of a current version or a token is copied. the appropriate reference in the object
header must be changed. But if an object has a token, a reference to the current version appears
not only in the object header, but also in the token, Since the tokens arc to be immutable, the
reference to the current version embedded in the token cannot be changed: it will always refer to
the vorsion image that represented the current version at the time when the token was created.
Fortunately, the fact that the reference in the token is not modified doces not lead to an crror, If the
token becomes a version image, the reference to the copied version, which existed only in the object
header, is replaced by (he refercnce to the version image of the former token, ‘The copied version
image in OVS is cffectively lost, but the object does have its current version in OVS. If the token is

aborted, the current version is found in OVS as it should be.

To summarize, as a conscquence of the copying, VS may contain many version images that
represent the same version, but only one of these images is accessible by following the chain of
pointers in the object history. ‘The other images use up storage, but do not have an adverse impact

on the implementation of the object historics,

14

ovs

7

VS

Y

Figure 6: OVS as a circular buffer.

New version images arc appended at the mark M.

A moie detailed model of OVS will be presented in Section 3. Two different policies for retaining
version images in OVS will be investigated: one policy is to keep the current versions of all objects
in OVS; the other is to keep in OVS only the current versions of those abjects that have been used
in the recent past. ‘The actual implementation of these policies depends further on the type of

storage devices used.
22 Yransfer of data between primary memory and stable VS

The repository has to handle cfficiently objects of greatly varying size, from very small ones (< 100
bytes) to very large ones O100 Kbytes). 1t would be very expensive to write small version images
into VS individually. Because of the constraints of the communication network and protocols, very
large objects will be sent to the repository in picces: it would be very expensive il not impaossible to

buffer very large objects in primary memory.
Thus, prior to crcating new versions of objects in VS, it is necessary to:

1. pack small version images (tokens) before writing them w VS

2. Sragment large objects before writing them to VS,

. For ecasicr management of VS (mainly for faster VS address resolution and object location), it is
desirable to allocate VS in fixed-sized blocks. ‘These fixed-sized blocks. or pages, arc the units of

atomic write into VS. Both the packing and fragmentation must take this into consideration.

22.1 Packing of version images in VS buffers

‘ et us first look at the packing problem. Basically. as tokens for new versions are created, their
version images are placed into a buffer in main memory. This buffer consists of one or imore pages.
When a buffer page is full, it is written atomically into VS, However, there are two problems with
this scenario. First, creation of a token is a commitment that, regardless of processor, memory, or
device failures, if and when the possibility under which the token was created is committed, the
token is in the repository, undamaged. ‘Thus a creation of a token cannot be acknowledged until
the token has been written into stable VS, This action is delayed by the packing process; since new

tokens will not be created at a constant rate, on an occasion, it may take a long time to fill up a

page. Thus, a timeout should be associated with cach buffer page: if a buffer page is not filled up
hefore the timeout, it is written into stable storage partially empty, ‘The filling of the buffer is sped
up by the copying process which creates copies of old current versions and tokens at the "high” end

of VS: these copics again are first written into the buffer.

The sccond problem is what to do if a version image just created or copied does not fit into the

Lo e

16

space remaining in the buffer page. Or, restated, the question is whether a version image should be

allowed to cross a page boundary. Although such a provision would lcad to a better storage

utilization and a possibility to deal more flexibly with large objects, there are strong reasons for not

': permitting it. Once split version images are permitted, atimost every page will end with a split
image, unless some restrictions are imposed in regards o how version images can be split. A read

| operation on a split image requires more than one VS access. Two VS accesses if the mavimum permined
[sizc of a version image is one page. Also, crash recovery would be slightly more comiplicated: since the
t ; repository may crash between the writes that imvolve a split image, the recovery algorithm would
have to deteet that the image is incomplete. ‘the last consideration is that the buffer pages that

contain parts of a split image have to be mapped sequentially into the VS address space. ‘The

alternative scheme described next will demonstrate the advantage of the lack of this restriction.

If split version images are not altowed, it does not mean that the buffer pages have to be written
mto VS half empty. As already indicated. the buffer in the main memory may consist of several
pages, or, better, at any time, there may be several one-page buffers for VS in the main memory, as
shown in Figure 7. The timeout for cach buffer is sct when the first version image is placed into
that buffer. Now. new version images can be placed into any of the existing buffers, or, if no
biiffer offers enough space. a new buffer may be created, subject to a limit on the number of
buffers allowed. I no more buffers may be created. one must be written into VS before the new
version image can be placed. Since no ordering (precedence constraints) exist among the buffers,
they can be written into VS in any order. 'Thus the VS manager may select the buffer which is
most full, or the one which is closest to its timeout. That buffer is then assigned the next sequential
VS page address. ‘This means that the actual VS address of a version image is not known unli! the containing page

is wiitten into VS, The timeout associated with cach buffer guarantees that no buffer will wait forever

for a version image of the “right” size.
222 Partitioning of large objects

Large objects are partitioned invisibly to the brokers. However, this partitioning is not performed
solely by the repository, but starts at the level of the communication protocols, since the amount of
data that can be sent in a single packet is limited. 1 this amount is less than or cqual to the page
size in the repository, no further partitioning is nceded; otherwise the data received in individual
packets must be (urther divided. In cither case, the fragments of an object (token) received in
different packets can be processed and written into VS as they arrive: each fragment will become a
scparate version image. Since this partitioning is invisible to the brokers, a broker must always read
or write the whole object, ic., it is not possible to retrieve or to update only a snzall portion. This

mcans that it should be sufficient to chain together the fragments of such an object and let the

bulfer 1 buffer 2 pbutter 3

VS) .)
buffers | " | '2|

VNN
NN

ovs

7
. 7

Vs

//// free storage

Figure 7: Writing VS image into VS.

Images iy are packed in one-page buffers. k specifies the order in which they were created. Since
buffer 2 is full, it is written into VS (via OVS) before buffer 1.

object header point to the fast fragment; it is not necessary o have random access o the individual

fragments. Unfortnately, if a version image that represents such a fragment of an object is copied
by the OVS manager, it would be necessary 1o modify a pointer in the version image that represents !
the next piece, but this is impossible since the version images are immutable. On the other hand,
since the whole object (object version) will be read, all fragments should be copied, and the
cmbedded pointers can be modified as cach fragment is copicd. However, although the object
header must point to the last fragment, the copying must start with the first fragment, otherwise the

new VS addresses of the individual fragments cannot be determined. Actually, this also impacts the

initial creation of a version of a partitioned object. A version image of a picce k cannot be created ;
until the VS address of the version image of the fragment k-1 is known: this again imposes r

precedence constraints on the set of buffers for VS,

To overcome these problems. it is necessary to have a special pointer array. There are several

e

reasons for nor including this pointer array in the object header: as will be seen in Scction 4, the

B

entire object header must be reconstructable from the information stored in VS and therefore the

images of the individual fragments would have w0 include additional information; object headers

would have different sizes, and the size of a particular object header could vary over its lifetime;

LT

but the most seriovs problem is that this would necessitate reconsideration of how to represent

object historics. What would be the meaning of the "previous version™ reference in cach version
image? Different versions of an object can be partitioned in different ways, so there is no

meaningful mapping between fragment k of one version and fragment k of the preceding version.

Thus the pointer array will be stored in VS, In fact, it will look like a version image. This does
not require any changes to the object header: the current version reference and the token reference '
simply point to images that contain the appropriate pointer arrays, as do the “previous version”
pointers in each version image. A version image constructed in this way will be called a strucrured

version image. ‘The individual fragments referred to through this pointer array can be of different

sizes. Both the VS image that contains the pointer array and the images of the individual fragments
will be packed in VS buffers as before,

Both for normal operations on objects and for recovery, the information whether a version is simple

(represented by a single version image) or structured must be included in the version images
themselves. It docs not make sense, though, to propagate this distinction into the definition of an
object, since the representation may change during objects lifetime: as an object changes size,
individual versions may be cither simple or strectured. “This can also happen because of changes in
the lower tevel commumication protocols (Row control). Also, it is superfluous to include all the

information so far associated with all version images in those images that represent the individual

19

. N i T PIRE ‘
£ odiRanna e - i

t
o Y
fragments of a structured object version. In fact, none of these fields is needed! Thus for]
representation of object versions and tokens, the repository should provide three distinet types of
stable cntities: {'.
simple version image: scif-identifying;
data ficld contains the actual data
LI
. P]
header of structured sclf-identifying;
version image: data ficld contains an array of pointers

to data images

data imagce: interpretable only in the context of
the appropriate structured veision image;

not used during recovery.

Figure 8 shows a fraction of an ohject history that uses both simple and structured version images,

and consequently all three types of stable entities just described. However, these distinet entities
should be supported on a higher level of abstraction than VS the stability is assured by mapping

them into the same uninterpreted stable VS images.

Use of structured version images docs not impose any precedence constraints on the transfer of
main memory buffers to VS, Of course, the header of a structured version image cannot be created
until all data images of that version have been written into VS, since the VS addresses are not
known until then. If such a version image is copied by the OVS manager, it is nccessary to create a
new header after all data images have been copied. Structured version images are substantially
more cxpensive than sinole version images, thus fragmentation should be used only when

necessary,
23 NMapping VS address space onto physical storage devices

To ensure that the version storage is stable, all VS images should be written twice, that is, the entire
VS should he duplicated. ft can oc assumed that two separately controlled physical devices provide
decay-independent sets from the point of view of physical failures of the driving hardware, ¢.g. head
crashes. As discussed carlier, the two write operations to duplicate VS can be performed
concurrently, thus the response time performance does not have to degrade significantly as a price

for stability.

In addition to ensuring stability of stored information, it is nccessary to ensure that version images

are wrilten correctly into VS, ‘The usual approach is to follow cach write by a rcad and a test

20

b N N n“!’ . -
PRE SRR T e

ﬂrw—m

i .
object uid B

urrent version reference CR .

current version end time 5'
] token reference - r,' j
token end time ‘
commit record reference g ‘
size ; ’
type = 1 f,
object uid 1
- Y
t < size ki
size size CRuef lype =2 v
type = 1 type =2 h

object uid
e

size t < size :
type =0 CRrel lype=2 size i
object uid type=2 ' '

's e N size 1

CRref type =2 ‘

|

size " size ‘ :

type = 2 type =2 l‘

Type: 0 = simple version image ’;
Type: t = heade(of stuctured ‘r
version image !

Type: 2 = dataimage :

Figure 8: Representation of large object versions.

The current version and the token are reprresented as structured version images. '

21

P

e o A - T SRR NN)
R T T A

operation. I it is decided (after possibly several read and (est attempts) that the write was incorrect,
the write operation must be repeated. However, il the physical device is write-once only, the
repeated write has o write the data to a new address! This may happen even with devices that
allow multiple writes to the samie focation, since some arcas on a device may be faulty, and
consequently a write operation to such a location can never succeed. This problem can be handled
in two ways. One is o leave a "hole”™ in the VS address space. The other one is to mask the bad
write on the device level by writing into an alternative address in an arca specifically reserved for
this purpuse. In the first case, the correct VS address cannot be determined until after the write to
VS has succeeded. This means only that the token reference (or the current vension reference, when
a copy operation ts performed by the OVS manager) in the object header cannot be set until the VS
write terminates, but this order must be upheld anyway. However, the duplication of VS creates
an additional problem. The address of cach of the two copics of cach version image must be casily
computable from the VS address. Thus, for a duplicated write if one write operation docs not
succeed, the other one must be invalidated also. ‘Thus, the same "hole” (bad data) has o be created
on both devices. This scheme, however, cannot support recovery from later decays. When it is
discovered that some ofd version was damaged on one device. than in order to restore the
rcdundancy for the future, it would be necessary to copy the entire device. but in this process,
different bad writes may occur, and the two copies of that part of VS would be out of sync! Note
that it is not possible to copy just the respective version image (from the other device), since then
the cntire "newer history™ of that object, that is, the portion of the object history between the
current version and the version represented by the defective version image, would have to be

recreated.

Thus, the chosen approach is to preserve the continwity of the VS address space. Each device must
have a reserved arca that provides substitute locations for data that could not be written into its
correct address. There still may be "holes™ on the device. but when such a hole is detected, the
reserved arca is scarched for the missing data. Thus both write and read operations on VS may
require several device accesses, but presumably (he reserved area will be used only in rare cases, so
the performance penalty should be low. However, the fact that the device manager decides that a
write was unsuceessful does not guarantee that on a later read the same entity will be detected as
bad. Thus, the device manager should explicitely mark (overwrite) the arcas declared o be holes,

in such a way that holes can be rcliably detected in the future.,

Finally, it is necessary to address the problem of VS performance. ‘The provision for maintaining
the current versions online is only the first step. The performance of the repository will depend

strongly on the performance of OVS, that is, on the speed of reading from and writing to OVS,

2

D

Since write operations are multiplexed with random read accesses, the low overhead of the
sequential write (append) operations on VS is lost. However, the repository is shared. and thus
there miay be many outstanding read requests o dilferent locations of the OVS device. ‘The
performance of the device (throughput) can be improved significantly if these requests are processed
in an order that minimizes the positioning overhead. The most effective disk scheduling algorithn
is to scan the disk in alternating directions, servicing requests in the order of their physical
addresses. Several variants of the basic SCAN algorithin were developed and analyzed JCOFE 73);
however, since the address distribution of reguests in OVS is not completely random, it may be
possible to find a variant of SCAN that will perform better than these general algorithms. Also, a
possible enhancement of the SCAN scheduling algorithm for the OVS device s o foree a write of

onc of the VS buflers when the disk heads reach the current end of OVS (M)

tn addition 1o finding a suitable algorithm tor the OVS device management, performance of VS can

abo be influenced by:

i assigning physical addresses to VS addresses

ii. mapping VS access requests o physical devices.

One possibility is to interleave VS, that s, assign conseeutive VS blocks o different physical devices.
This of course requires additional device drives. However, it is possible 1o take advantage of the
duplicarion of VS. If both devices in this duplicated implementation provide fast random read
access, a read request can be satisfied by cither of the two devices and can be scheduled for that
device which is more convenient (i.c., not currently busy, or needs less ume to locate the requested

version image).

23

3. Management of OVS

The Online Version Storage is very important to the performance of the repository. As presented in

Scction 2.1, OVS is an onlinc address space managed as a circular buffer that contains the most

recent 2™ words of VS. If no version images must be copied. removal of old version images is
accomplished by simply overwriting them as M. the end of VS mark, reaches that part of OVS. b,
However. if a version image must be copied to maintain the curreat version of the respective object

in OVS, a rather unpleasant situation may arise: in order to write a version image for a new

-

version. the OVS manager must copy one or more version images that lay ahcad of M: to make

cnough space for this new version image. However, in order to make space for the copied version
images, more space has to be freed. Such a "chain reaction” can be prevented if the OVS manager
looks ahead at which version images may have to be copied and performs the copying before that
part of OVS spice must be overwritten. On the other hand. i the copying is postponed. it may not be necessary

to copy an old version image of a current version physically. sinee it s approamately n the night place with respect o

M. but some storage may have to be wasted in return - Mo will be used to mark the copy point in OVS.
M specifies how far the OVS manager has cleared OVS for an immediate reusal, that is, no i
version images need be copicd before that part of OVS can be reused. (M i - Mmod 2" is then r

‘ K

the amount of the immediately reuscable space.

The main problem in managing OVS is how to determine when a version image must be copied. It

is clearly wasteful to examine cvery single version image in OVS as the copy mark M moves; most

version images should not have to be copied, since the respective objects alrcady will have newer
versions. If this assumption does not hotd, then this whole approach is wrong Since the information whether a
version image represents the current version or the token of an object is embedded only in the
object header, the decision process concerning what and when te copy should start at the object

headers.

In order to maintain the current versions of all objects in OVS. the objects should be ordered

according to the time when their current versions were last written into VS, 'Phis approach is

investigated in Scction 3.1. In Scction 3.2 the requirement that cach object must have at least one

version in OVS s relaxed: this lcads to a much simpler implementation. In Scction 3.3, i
management of OVS is recxamined and adjusted to an implementation: with writc-once storage
devices. Scction 3.4 fooks at the implementation of QOVS from the point of view of the number of 1

device drives needed.
3.1 Current versions of all objects maintained in OVS

The general moving window scheme outlined carlier can be restated as follows. When more OVS

24

has to be cleared for reuse, the OVS manager will scarch for the object that has not had a new
version image written into OFS for the longest time. ‘The current version of this object will be
referred to as the oldest current version in OVS. Let us call it X, Note that this is not necessarily the
oldest current version in the repositors, that 1s, a current version with the lowest creation tme . snce that one may have
been copied more recently. 1.et Acs be the VS address of MC' Then Ay >= A, where Ay is the VS
address of x, since by definition the portion of OVS “older” than the position of M has already
been cleared. Al version images older than X, that is, with addresses Ayi € Ay, can be deleted:
this means that MC can be moved o /\X (Figure 9). However, if AL‘ = /\X, it is nceessary o

copy X o the “newer” portion of OVS.

The first problem is how to find X, First let us assume that all objects in the repository are
ordered according to the time the last version image of their current version was written into QVS,
that is, according to the VS address of the Tast image of their current versions. The OVS manager
will maintain a sorted list of objects: Tet it be cafled COPYIIST. cOPYUIST i fact would contain just
pointers 1o the object headers The object with the oldest current version in OVS is on the tp of the
list. When a new version image for some object is written into OVS, the object should move to the
bottom of COPYILIST. Unfortunately, the new version image may, and in most cases will,
represent a token. Since a token may be later aborted. it is not appropriate o move the object to
the bottom of the COPYLIST at the time the version image for the token is created. Now, assume
that an object has a token, and its current version will become subject to being overwritten if MC is
moved. The current version must be copied, again because the token may be later aborted. But
what should be the relative position of the object in the COPYVIST after the current version has
been copied? Since the version image of the token precedes the new sersion image of the current
version, the position of the object in the COPYLIST is detcrmined by the wken, If the token is
later commitied, nothing nced be done. If the token is aborted, the object must be moved to a
position in COPYLIST that corresponds to the location of the current version in OVS. IF the
current version has not been copied since the creation of the token, ne action is necessary.
Finally, if the fate of the token is still undecided when M- reaches the respective version image,
the token must be copicd, or, more precisely, the representing version image must be copicd. “That

is, thc OVS manager must al:» look for the oldest wken in OFS, as it clears OVS.

To summarize, an object is cligible 0 move in the COPYLIST only when:

l. its current version is copied or
2. its token is committed or

3. its token is aborted or

4,

its token is copicd.

15

R e e - TN

t

i
) .

‘ 1

|
3221 1345 2500 2483 e
Q 2

b
headers *
¥
3
‘ 4
~ \ ; ‘fi

v OVsS \©\ -

\ . o~ Z ‘
(size V su\aQ size [size s‘i{e size ; ize size :4

/ 7500 1345 500 |483[¥345 Jaza1 1345 2500 2483 t
. AN LS . 3
'
[N Yylto talta]ty 1 tj 1y
CR CR |CR |CR |[CR |CR CR CR CR .
ref / ref |ret lref | ref |ret ret ref rel / . 4
: §

X ,

g /i f
MC ----------- - MC E;

i

X the oldest current version version in QVS

//// cleared storage

—~— — — pointers to offine VS

Figure 9: Release of OVS occupied by old versions.

Since objects 1345, 2500 and 2483 alrcady have newer versions, the portion of OVS between MC
and M" cin be released without having to copy any version image. Note that the version images

in the cleared storage arc still accessible.

26

let A, and Ay be the current version and the token reference contained in the object header.
‘Then Table 1 shows under what conditions the object does move in the COPYLIST. A graphical
ilustrauon for a simpler kind of COPYIIST will be found in Section 33, in ligure 11 If a nil reference (no
token cxists) is represented by a negative number, then to test for an existence of a token when the
current version is copied. it is sufficient to test if A, < A Thus, for any of the four kinds of
cvents, the resulting position of the object in the COPYLIST is always determined by the greater of

Acy and Ay prior 10 that cvent.

Table 1: Management of COPYLIST

event: condition: result

object is eligible to object is moved position of

move in COPYLIST in COPY1 IST : the object in
COPYIIST
determined by

current version object has a token A

is copicd

token is committed Aoy A, A

token is aborted A <ALy Ay

token is copied At< ALy Ay

The overhead of clearing OVS for reuse should be distributed over time. The OVS manager can be
implemented as a demon process that runs concurrently with the processes that create and commit
tokens. To maintain the amount of cleared OVS within specified limits, the demon is run when
My M=> drops below the lower limit, and it goes to sleep when it has cleared enough space as
determined by the upper Jimit. A large amount of OVS may be cleared in just onc step, by
Jwnping to the oldest current version or token in OVS, Thus it is quite possible that the amount of
cleared space far cxceeds the upper limit; many new version images may be created before it is
necessary 10 run the demon again. The demon should not copy the oldest current version or token
unless more clear space is necessary. IF the demon stops at such a version, it may be that the next
time it is run, the respective object will by then have a newer version, and thus no copying is
needed. On the other hand. the demon may run into a situation when it must copy almost cvery
version: this, of course, will not free any space. If this is just a local phenomenon, that is, the
images of the current versions of some objects became clustered, the demon will eventually release

enough space (unless none of these objects is ever updated again). Otherwise, it might be an

27

v

indication that the system is saturated.

‘This scheme could be finely tuned to operate with a very small amount of cleared storage. ‘This in
turn means that multiple copies of a version or a token exist in OVS for only a very bricf time
interval; thus it is possible to achieve very good OVS utilization, in terms of the wsefil information
stored. However, even if the entire COPYLIST could be kept in primary memory, the vverhead
of re-sorting the COPYLIST may be significant. ‘This problem can be climinated if a different

policy for keeping current versions in OVS is adopted, as discussed in the following sections.
3.2 Most recently used current versions maintained in OVS

In the schemes described in the preceeding section, the OVS manager must maintain at least the
current version of every object in OVS. This mcans that if T is the average time it takes to cycle
through OVS, then the current version of an object that has not been updated for n’l” will be
copiced n times. ‘This represents a performance penalty that may be unnecessary, since some objects
will not even be read for long periods of time, yet the OVS manager will keep copying them in
OVS. To give a more specific example, in a rcasonably busy repository, a 300 Mbyte disk used as
OVS may fill up in less than a day. It is highly likcly that many objects in the repository will be

dormant for many days, weeks, or cven months; copying them every day would be quite wasteful.

‘The OVS management policy will be relaxed such that only those objects that had their current
version actually accessed (reiad, or had a new version created) since (P T" will be kept in OVS,
where T is again the time it takes to fill up OVS. With this relaxation, copying of dormant objects

is avoided. In addition, the copying process can be simplified. 1n particular:

i. it is not nccessary to sort objects to keep track of which objects must have their current
versions or tokens copicd as the OVS manager works on clearing OVS; the current versions

and tokens can be copied as they arc accessed,

il. no special demon process is necessary to clear OVS: clearing of OVS is automatically

distributed over time.

Let M specify again the copy point. If M = My, (ic., A -Ac = 2™, an object will maintain
its current version in OVS only if a new version is created at least every I time units. If Ap: - A
< 2" the version images of the current version and tokens that aie in this portion of OVS will be
copied in OVS when read. ‘The bigger the distance between M= and My, the less frequently must
the current versions be read to remain in OVS. An additional optimization is possible; if the

version image o be copicd is close to My (mod 2™, then if one is willing to sacrifice the

|
b p]

——— -

intervening storage, such a version image docs not have to be copiced, since the storage between the

version image and Mg is in a scnsc alrcady “clcared.”

A version (token) reference is resolved as before: if Ap-A,; £ 20 the representing version image
is in OVS. In addition, when a version image of a current version or a token is read. then if A, <
Ac. a copy of this version image will be created in OVS. To improve the chances that the current
version is in OVS, at the time a token is committed, that version image should also be copied, if its
address is lower than Ac If a current version is not represented in OVS, the appropriate version
image is retrieved from the offline VS and written at the current end of OVS. ‘Thus current
versions of objects that have not been read for a long time can be reinstalled in OVS with this
simple mechanism. Finally, it would be possible 1o provide a simple “refresh™ process for those
objects that should always stay online. This process would periodically read such objects to force

their copying in OVS,
3.3 Adapting OVS management to an implementation with write-once devices.

The two schemes presented in the preceding sections assumed that OVS is implemented with
reusable physical storage, that is, that new and copicd version images simply overwrite those with
addreses lower than A - 2" 'This means, however, that the overwritten images must be preserved
at some other device that is a part of the permanent VS, Alternatively, the storage devices used in
OVS can be the actual VS. When a device is filled up, it is removed and stored offline, and a fresh
device replaces it. Since the devices are written only once, VS can be implemented entircly with
optical disks. Unfortunately, the fine wining, which is the major attraction of the schemes presented
so far cannot be achicved when OVS is implemented in this way since the OVS space can be
"rcuscd" only by replacing an entire device. Rather, OVS should be viewed as being divided into

fixed-sized partitions, where cach partition corresponds to one physical device.

To implement the same policy as the one used in Scction 3.1, when the current versions of all
objects are to be kept in OVS, it is necessary to have the minimum of three partitions. ‘These
partitions, called here [.OW space, MIDDLE space, and HIGH space do not have to be of cqual
size, but for simplicity. let us assume that they are. Again, OVS will i¢ muanaged as a circular
buffer (Figure 10). When the MIDDILE space becomes full, all the version images in the LOW

space will be purged and the spaces will be reassigned such that:

MIDDLE - L.OW
HIGH MIDDLE
1.OW HIGH

29

;
object headers ‘
3227 S A
N = !
e TN OVvS .
N
\ | sze | sue size // /s !
\| 1345 3221 1345 / j
t tj t e
CRrel |CRret CRret /
LOW space MIDDLE space HIGH space :
M
MC E
a) The middle space is full; it is necessary
to clear the LOW space
object headers
1345 3221
[+ = e
—
ovs ~ -
\ LN
/ \ size \ size
\ [aas \ |32
\ ~
~e -~
% t
CRref ICR ref
HIGH space LOW space MIDDLE space
M
MC E

b} The current version of object 3221 was copied,
and the spaces were reassigned

//// cleared storage

—_—— - pointers to offline storage

Figure 10: Management of OVS: tripartite scheme.

30

. _ _ - S b R o S e

M}: marks again the current end of VS in OVS: My; falls into cither the MIDDLE or HIGH space.
M points always to the beginning of the T.OW space; it moves only when the spaces are
reassigned. To ensure that cach existing object will retain an image of the current version in OVS,
it 1s necessary to find all objects that have their current versions in the LOW space. Copies of these
versions will be created in the NEW space, which is free at the beginning of the purge of the 1.OW

space.

This scheme reduces the sorting problem into a tripartite sort. An object is logically mapped into
the space which is the older of: the space that contains the last version image that represents the
current version, and the space that contains the last version image that represents the token, if any.
The conditions under which an object moves inte a higher space are similar to those for the
previous scheme. et SC\. and S be the OVS spaces that correspond to the addresses A, and Apat
a given moment. An object is then mapped as specified by Fable 2, where the ordering on the
spaces is FOWKMIDDI EKHIGH. The possible changes in the logical mapping of an object into

the three spaces are illustrated in Figure 11,

Table 2: Mapping to OVS spaces

cvent; condition: resuit:

object is cligible to move object s moved to a mapping of the abject to

10 a higher space higher space OV'S spaces determined
by

current version is copied object has a token and S, <S; S

token is committed Scv$S, S¢

token ls ab()f'lcd S¢<Sey Sev

token is copiced S&Sey Scy

This OVS management scheme is not limited to an implementation with write-once devices. It is
possible to take advantage of the simplified ordering on objects required by this scheme even if the

physical OVS decvice is reuscable.

iIf OVS is implemented with writc-once devices, then although the physical storage capacity of OVS
is 21 words, OVS docs nor contain the most recent 2 words of VS as before. This is because when
the 1.OW space is reassigned as the THGIH space, the physical device (or this part of the OVS must
be replaced with a fresh one and thus the corresponding OVS address space does not contain valid
version images. In fact, on average, 50 percent of OVS will be empty. This has to be reflected in
the resolution of version references. et us use another mark, My | to identify the oldest vatid VS

image in OVS: M; will point to the beginning of the 1 OW space. In this scheme. M| is the same as

m.-&-w.w:‘

object header
CR 3227
3
T2 -V
12 +
sy
OVvS
B/
N \ size size //
| 3221 3221
Ne
ty 1y
CR ref PCR ref
/ /
| i £
8
LOW space MIDDLE space HIGH space
M
MC E
a. Situation just prior to the beginning of a purge of the LOW space. Object 3221 has
its current version in the LOW space and a loken in the MIDDLE space.
object header
CR 3227
>
==
- - - _ __ J - 19 4+
> T~ OovsS
\ ~
\ /\
\ size size size
\ 3221 3221 3221
M- S S
Y P Y
CR ref [fCR ref CR ret
g
LOW space MIDDLE space HIGH space
MC E
/// cleared space
. pointers to offline storage
b. Situation just after the current version has been copied into the HIGH space.

Figure 11: Resolving the token problem.

32

AR c ¥~ <

,...A
"\ “
ki

object header
CR
3227
o
o7
2y
T - - - =S
\ < OovSs
\ ~ N\
> L
Al size |/ - N size '] size
\
N AN 3221 3221

— -~

~e o

i t 2 _ t 2 t 1

CRret o CR ref *| CR ref

HIGH space LOW space MIDDLE space
M
E MC

¢. Situation during the next purge. The token of object 3221 has not yet been
committed, so it has to be copied intlo the HIGH space.

object header
322
[
3
nil
[l
-~ - — T 7T T T - -~ -~ OVS
\ ~ \
N "
) size size o size
\ N \ :
\ 3221 N\ - 3221 \ | 3
N ~e ~ e
ty ty t 1
CR cet CRret CRret
yv4
HIGH space LOW space MIDDLE space
M
E Mc
//// cleared space
—_—— - pointers to offfine VS

d Situation duiing the next purge The token was commilted, the reference to the

pve\gously copied version is lost. The former token is the only version of object 3221
in OVS.

Figure 11: Resolving the token problem. (Cont.)

33

NSRS N

- “_.4
DIPUUPY T G T VL S

ovs

object header

93221

A}
T

1

N\
N

size size
3221 3221

— ~e

CRref CR ret CR ref

<
m

HIGH space LOW space MIDDLE space

M
C

e. Situation during the next purge. The former token was committed. but a new version
was alieady created (and commiitted). Thus the former token does not have to be
copied.

object header

3221
[
[}
(a1l
OVS - -
\
) \
// ‘\ size \ size
D ! 3221
\
/ ~ Lo ~ -
/
CRref CRief
HIGH space LOW space MIDDLE space
M
E MC

cleared space

pointers to offtine VS

f. Situation during the next purge. The token was aborted.

Figure 11: Resolving the token problem. (Cont.)

M

-t 41—y

»

.-

SV CRLUT Y

M~ but it will be differeat for the other copy policy, as discussed below A version image is in OVS only if

Al € Ay € AR

If the management policy is to maintain in OVS only those current versions that have been actually
used in the recent past, it is sufficient to divide OVS into two partitions, LOW space and HIGH
space. When the current version of an object is read, the address of that version image, Acys 18
used to determine whether this image is in the LOW or the HIGH space. If it is in the 1.OW
space, it is copied into the HIGH space. New versions (tokens) are created always in the HIGH
space, that is. My maps always into the HIGH space. The copy mark M must point to the
beginning of the HIGH space and- the mark M) 1o the beginning of the 1OW space. Again, if A
2 Ay the version image is in OVS. 1 a version image represents a current version, then if Ay, <

Ac. the version image will be copicd.

These schemes resemble real-time copying garbage collection algorithins. However, in the context

T T T < s < ————e

of garbage collection, objects that are not copicd into the HIGH space arc irretrieyably fost. ‘Thus,
any object to which there exists a valid reference must be copied. 'This would mean copying the

cntire histories of all objects in the repository. Thus although the bipartite (and tripartite}) OVS

————— -~

model and copying of version images was borrowed from the work on garbage collection, the

a
implementation details are significantly different. A copyving "parbage collector” for large paged virwual '
memory that works in a similar way as the schemes presented here was recently proposed lor the | ISP machine, but the :

details have not been worked out yet

34 Online support for VS

As alrcady discussed in the previous section, the physical support of OVS may be reusable storage
devices that are maintained permanently online, or just "reusable™ device drives, where the storage
devices are replaced with fresh ones as they hecome full. The latter approach has the advantage
that the entire VS can be implemented exclusively with optical disks. To implemient the schemes 1
presented in Section 3.3, one device drive is needed for each OVS space. When the 1.OW space is
filled up, the device that contains the FOW space is replaced with a fresh device, and the replaced

device becomes part of the off-ine version storage. In particular, if the policy that only those

current versions and tokens actually accessed are to be maintained in OVS is adopted, two drives i

are nceded: an implementation of OVS that uses this management scheme will be examined in ;

more detail.

As said carlier, the entire VS should be duplicated for stabifity. However, since version images are
created only in one space at any time, only one additional device drive is necessary, to duplicate this

space. ‘This duplicate is removed when that space is filled up, and replaced with a fresh device that

35

e Sl Y Y

3

is assigned to the next space.

Finally. if it is necessary to read a version that is not available in OVS, the respective device has to
be found and brought online. This requires yet another drive. Figure 12 illustrates the

implementation with the minimum number of device drives.

To avoid long delays duc to the manual replacement of the storage devices, it is necessary to add
one more drive. ‘Two drives are used for the LOW and HIGH spaces as before, and two drives are
assigned to VS backup, but the actual assignment of the drives changes as illustrated in Figure 13.
Each OVS space is divided into two cqual parts, and cach part is mapped into a different backup
device. When the HEGH space s filled halfway, the backup device is full and the backup is
redirected o the other backup device. ‘The full backup device is replaced with a fresh device, and
once the HHIGH space is full, this device will become the new HIGH space; thus the drive is
reassighed from the backup function to the “"current VS status. Basically, at any time, the

assigninent of the drives st

current VS: [.OW space Dy nod 4
HIGH space I)(i+l)mod 4

backup: low part of HIGH space D+ 2mod 4
high part of HIGH space D+ 3ymod 4

when the HIGH space fills up, i « i+1

The same scheme can be implemented with a reusable device such as a comventional magnetic disk
in the following way. Both partitions, the 1OW and the THGEH space, can be mapped to the same
device. As the spaces are switched, the LOW spacce is simply overwritten, Of course, it is necessary
to ensure that the version images that will be overwritten will not be lost from VS, If we assume
that all images are written twice for stability, the sccond copy could be made in nonrcusable storage,
thus guarantecing that when the OVS device s reused, there does exist amother copy of cach
overwritten version image in VS, However, (his does not ensure funere stability, since once a
version image is overwritten in OVS, only one copy will continue to exis' Thus if it is required
that the copics of all images are maintained in VS, then cither every image must be wrilten three
times when it is ereated, or. a copy of the TOW space must be made i nonrcusable storage before
the 1OW space is reused. The Latter looks like o better solution. In particular, as a fresh HIGH

space begins to fill up, the TOW space can be copicd onto another deviee (Figure 14).

The minimum number of device drives needed is the same as in the implementation that uscs

optical disks only, Although OVS can be put now on a single device, mo devices are necded for

oo
space
section
of VS \
Avi ¢ A \ ! !
vi L ,
\
/
\ /
\ p NEW
\ space
ONLINE DEVICES v/ backup
\/ :
JA
\
/ \
___________ L..,__.___.__________.__.____._____.___
/
\
/
\
/
/ \

OFFLINE VS , \

Figure 12: Implementing OVS/VS entirely with optical disks.

kY

PP e R ST L

g s
o ak baea N Ao 2

! o . sl ..-&:-:1"""

3
4

o 4

e —
S~ IR

e

Figure 13:

0o Low D1 HIGH
T
|
l B
AT e T DT
02 .~ o T 03
|
1
backup backup
a) Device at the driver D2 is full and ca be replaced;
backup switches to D3
LOW
Do] D1 '
| t
/1
e T T s e ol -
D2 — 03 =< >
I
/% 7
4
HIGH backup
b} Device at the driver D1 is full; D2 becomes the
HIGH space DO can be replaced.
0o backup D1 LOW
I
V// / |
|
NN _— T T T =~ -—
D2 N - T - D3 T -
T T
! |
i
HIGH “backup

¢) DO becomes the next backup

Implementation of OVS/VS with optical disks;
management of device drives.

38

SO
Cavtit el RN o

- g o e e g
ST T S ~ W . BN

i e

RPN R U

EVPRRMBI Rt Y

reusable
storage

OLD |NEW
space |space

dump
OLD space

duplicate

section
ol V§

AVi ¢ Ab \

ONLINE DEVICES \

___________ e e e e e e e = -
\

868k

A the VS address

of the first version
on the “current VS§*
device

Figure 14: Implementation of OVS/VS with a reusable OVS device.

9

backup. Finally. as before, an additional drive is nceded to bring selected picees of VS online when

a rcference to an old version that is not in OVS is made.

| 1
The need to replace the backup device for the HIGH space creates again the problem of long ;
delays. However, this problem can be resulved without an additional drive. If a "dump” of the 1]
1LOW space 10 the backup device can be finished sufficiently fast, the backup device can be It"
removed before the HIGH space fills up. and replaced with a fresh device which will become the ’
next “current VS” device. When the "current VS” device is filled, the VS manager switches to the “

other drive which alrcady has a fresh device mounted. Now a fresh backup device needs to be
i mounted on the other drive; it should be possible o perform this operation and dump the current
1.OW space before the HIGH space fills up again. Figure 15 illustates the management of the
device drives where the VS devices are twice the size of the reusable OVS device. To sian this
duplicated VS system, the first backup device will be partially empty. corresponding 10 the first dump of the 1 OW space,

which is initially empty.

Although it is possible to save one device drive compared to the implementation that uses only
nonreusable devices, the performance penalties for an interlcaving of the normal operation of OVS
with the dump of the 1.OW space could be severe. The only real advantage of using a reusable
device for OVS is that it is possible to apply the more flexible moving window management

scheme.

i
S

i — il s g o skl SN Wb < Hoivs

D1 7

D2

backup
device

%

a) Normal operation, dump of LOW completed

D1 T T T = - - — - - -

backup
device

%

b) Spaces switched, dump of LOW completed.
Backup device is full and can be removed.

Figure 15: Implementation of OVS/VS with a reusable device;

management of device drives.

41

current VS
device

currtent VS
device

T
[PV A PIREP TSI YT

PR

% //’////// - 'm Surentvs

c) Fresh device mounted on the driver D1,
momentarily, there is no backup device

/
e __.!
D1 e | -
|
t VS
e 000 |
unassigned

d) Current VS device is full, the VS manager switched
to the other driver; no backup device yet

Figure 15: Implementation of OVS/VS with a reusable device;
management of device drives. (Cont.)

42

AP ALY /ST € s
y e i i el il

4. Management of objects
An object in the DDSS repository is an abstract type. ‘The operations allowed on objects are:

creiate (pscudo-time, commit-record-id)

read (object-id, pscudo-time, commit-record-id)
create-token (object-id. pscudo-time, commit-record-id)
commit-tohen (object-id, commit-record-id)

abort-token (object-id. commit-record-id)

defete (object-id, pscudo-time, commit-record-id)

These operations are necessary to support the model described in Scction 1. All of these operations
are performed as part of some atomic action. A token can be read only by the atomic action that
created it. Similarly. until the creation of an object is committed. only the atomic action that
created the object should be allowed to ereate a token for that object. The comumit record reference
ficld in the object header can be used also for this purpose. When an object is created, this field
will contain a reference to the commit record of the possibility for the creation: if a token is created
later under the same possibility, the reference does not change. When the possibility is committed,
this reterence will be set to nil, regardless of whether the object has a token. Then a token can be
created only it the commit record reference in the object header is cither nil or is the same as the
commit record reference specified in the create-token request, and the object does not alrcady have

a version for the specified pscudo-time.

In addition to the external opcrations listed above, opcerations copy-cv (copy current version) and
copy-token arc needed for OVS management, but these are only internal operations, available solely

to the object manager. Both the external and the internal operations must start at the object header.

Objects in the repository have identifiers that are unique both in space and time; all requests to
perform operations on cxisting objects must include the uid of the desired object. "The repository
must map the objeet uid into a physical address of the object header. The most straightforward way

is to have an object dircctory; this issuc will be discussed in Section 4.3.

Since the object headers play such an important role, they should be stored in stable storage.
However, the object header is updated twice for cach update of the object (create-token and

commit/abort token), and may be updated when the current version or token is read (extend the

p——

r end time). Finally, the object header is updated when the version image of the current version is
; copied. ‘The additional disk write for cach update would represent a large overhead. Further, object

headers should be updated in place, otherwise it would be also necessary to change the map that
".

4

st D L el e an e e srimt At ot e R s e L v e i

associates the object uid with the object header address. Thus rcad-write atomic stable storage
would be needed, which is more difficult and expensive to implement than the append-only atomic
stable storage used for VS. In particular, the two writes must be done sequentially. Thus the
deciston is not to reflect all changes in the object header in stable storage; Section 4.1 discusses how
the object headers will be stored. Finally, Section 4.2 looks at the problem of synchronizing

concurrent accesses to objects on the level of object representation.
4.1 Object headers

The object headers are stored on a nonvolatife storage device that allows unlimited writes (c.g.,
magnetic disk). This device provides Online Header Storage. or OHS. Object headers are brought
into main memory as needed, and the changes made to an object header do not have to be
propagated into the copy in OHS until the main memory used by the object header is to be
reassigned. Since the current object headers might not be in stable storage at the time of a
processor crash or a device crash, they must be reconstructable from the information that is in stable
storage, in particular, the information contained in the version images. Consequently, the object
headers themselves become Ains: they are not necessary to guarantee correct operation, but of

course are very important for good performance.

The object header as presented in Section 1.2 does not contain all control information that must be
associated with an object. In particular, for accountability and protection, it is necessary to associate
with cach object the owner's id and access control specification. The access control information has
to be checked for every remote request. 1t should be as casy to reach as the information contained
in the object header: the simplest strategy is to include it in the object header. However, this
additional information must be maintained in stable storage. The approach used so far, that is,
inclusion of all such information in version images. is rejected for two reasons: first, it represents
additional (and possibly substantial) storage overhead. Sccond. it is illogical to keep write permit
information in read-onls versions, To make it stable without having to maintain the entire object

header in stable storage, the following strategy s proposed.

e object headers are maintained in OHS, but OIS is not stable (i.c., it is not duplicated). In the
termnofopy of Tampson and Sturgss, OUS s carefid storage The object header consists of two parts, stable
mformation and a hint, as shown in Figure 1oa. When an object is created, and every time the
stable information changes, the object header is created (updated) in OHS wfier a new image of the
entire object header (that is, including the hint information) is written into VS, Finally, the object
header should be written into VS when an object is deleted. The information that the object has

been deleted has to be included in the object header: the access control specification ficld could be

object uid

current version reference

HINT cuttent version end time

token reference

token end time

commit record reference

owner id
STABLE
INFORMATION access control
specification

a) Structure of an object header

size
type=3
object vid object vid
--—-/ B -—/ - i
s s
commit record reference commit record reference
object uid

object uid

current version reference

cutrent version reference

- - | - -
curent version end time current version end time

token reference token reference T

token end time

token end time i
comimil record reference commil record reference ';
1 owner id owner id E‘!
access control access control |
specification specitication |
E

b) Version image of an object header c) VS image representing an object header i

Figure 16: Object header and its image in VS. ;

»

as

Ry -

usced also for this purpose. Thus in addition to guaranteeing that this information will not be lost,
the repository keeps a complete history of the changes of the access rights, which may be useful for

auditing purposes.

To create an image of an object header. the object header is simply treated as data, and the same
ficlds (cnvelope) are added as for version images (Figure 16b). The CR reference in an object
header image refers to the commit record of the possibility under which the object was created,
deleted, or the stable information changed. ‘Thus treating objeet headers in this way solves not only
the stability problem but extends the mechanism for committing tokens to the rest of the operations
} that modify the state of an object. In addition, the object may have a token, which has its own

commit record.

The object header images in VS have to be distinguishable from the version images and data

images: it must be possible to determine from the stored image itself that the dura field represents

an object header. Thus object header images represent yet another tagged iype of entity that can be

stored in VS, as shown in Figure 16¢.

The hint information is guarantced to be current only in the main memory. Quce in a while, it is
written into OHS, and it is also possible to create periodically new images of object headers in VS
as checkpoints. Note that the images of the object headers will not be continuously copicd in VS,
since in the normal situation the object headers will be read from OHS: the VS images will be used

only during recovery.
4.2 Synchronization

The repositery must be able to handle several requests concurrently, since most requests will require
one or more disk accesses. Also, the demon process of the OVS manager runs concurrently with the
processes that exceute the requests. In some cases. it is also possible to process concurrently several

requests that pertain to the sume object.

All accesses 1o individual object histories have to be negotiated at the object header: a single lock or
monitor s needed per object. The muost natural place for the lock is the object header. However,
the locks must be “soft”. that is. must be automatically released by a crash, otherwise if the
operation that sct the Jock was aboited by a crash, the object could renain Jocked out. This can be
achicved by allowing tocks to be set only on the copics of the object headers in main memory, but
this approach has i scrious shortcoming, For casier memory management, objects should he packed
in pages. Since it is not possible to "expand” the object header to add the Jock when the object

header is mapped into main memory, the object header must have a permanent “lock ficld”. tf

46

locked object headers are not allowed to appear in OHS, the pages of object headers in main
memory have to be handled carcfully: they must not be "write-through™, and they cannot be
automatically paged out by the virtual memory manager, at least net while some of the object
headers on the page have their locks set. [Further, it is not possible to force 4 modified object header
into OHS while some other object header on the same page is locked. Alternatively. the locks for
cach page of QNS could be kept in a special data structure (a bit vector) in main memory. Since
all object headers are of the same size. finding the appropriate lock given the OHS address of an

object header is not difficult.

The "automatic release of locks™ after a crash can be accomplished in yet another way: the
recovery process can simply ignore the locks set on the surviving object headers in OHS, und clear
the locks as part of reconstructing the object headers. This assumes that ne normal processing is
allowed on any object until the object header has been inspected by the recovery process: actually,
as will be seen in Section 6. a read request that refers to g portion of the object history that is
accessible from the sunviving object header can be allowed to proceed. in spite of the object header

being still locked from the epoch before the last crash.

The simplest locking policy is to lock the object header for the duration of cach of the operations
listed in the beginning of Section 4, but for maximum concurrency. object headers should be locked
only for the shortest possible tinie. This corresponds to operations on the object representation that
must be atomic. 1ocking guarantees only indinvsibility in the absence of failures Recoverability s provided by the

undertying VS system. The individual operations an objects must lock the object header as follows:

create: locking is not necessary since the object does not become known until the
create operation terminates (returns object-id)
read: find the appropriate version; if it is still a token, test if it can be read:
change the end time if nceded
create-token: i. test if this token can be created; if yes, modify the object header to indicate
that the object now has a token (note: the VS address of the token is not
yet known)
it. set the token reference after the version image of the token has been
written into VS
commit-token: i, change the current version reference and the current version end time
ii. clear the lq'licn reference and the refated ficlds (the token end time and the
commit -record reference)
abort-token: clear the token reference and the related ficlds

copy-vs: change the current version reference

47

copy-token: change the token reference

The copying of version images, however, could cause problems when interleaved with exceution of

the external operations, in particular, commit-token or abort-token:

i If commit-token is exccuted while the current version is being copied. the OVS
demon could change the current version reference afier it has been changed o point to the

ncw committed token.

ii. If commit-token or abort-token is executed while the token is being copied, the OVS
demon could change the token reference affer it has been cleared to indicate that the object

no longer has a token.

The latter is a lesser problem (on the first attempt to read such a copied token, it would be
discovered that the token was commiitted and the object header would be properly reset), but it is
stll annoying. An additional problem arises if the "copy when read™ policy is adopted (Section
3.2). When a version image of the current version or token is read and found to be past the copy
mark, the OVS manager will initiate a copy operation. Now, if between the test for Ay < A and
the completion of the copy operation the same image is read again, it would be copied again! In
case of such a read and copy it is particularfy undesirable o fock the object until the copy operation
is completed, since the requested version image may have to be read from the offline VS. To solve
this problem, two Nags should be added to the object header: cv.copy and token.copy, to indicate
that a copy operation on the current version or the token is in progress. Subsequent read requests
can then proceed, but if the flag is sct, the positive outcome of the Ay; < A test will not start

another copy operation.

The copy flags are also uscful in commit-token and abort-token operations. Before changing the
current version reference or the token reference field, these operations should check the appropriate

copy flag. If the flag is sct, the conflict can be resolved in two ways:
i Wait until the copy operation completes.

ii. Abort the copy operation; that is, prevent the OVS demon from changing the current
version or token reference. Note that the particular version image (copy) may have aircady been
written into VS or will incvitably be written «f it is already in some VS bulfer when the copy operation
is aborted. However, writing it into VS will not do any harm, not ceven with respect to object header

reconstruction after a crash.

Note that the create-token operation docs not have to be concerned with simultancous copying. 1t

48

T AN 4

- -

e

is impossible to copy the token before create-token terminates, and it docs not matter whether the

token refers to the old or the new version image of the current version,
43 Object directory

‘The object dircctory in a repository serves two purposes: it locates objects actually stored in the
repositary, and it serves as a forwarder if an object created in that repository is moved into another
repository. For local objects, the dircctory contains the OHS address of the object header. For

objects that were moved. it contains just the id of the new repository.

If the dircctory of some repository is lost or damaged, an exhaustive scarch of @/l repositories may
have o be conducted to find an object known to have been created in that repository. Thus it is
dosirable to keep the directory in stable storage. 'The simplest way o accomplish this is (o represent
the directory as an object, with a reserved OHS address, Since the dircctory will be large, it will

have to be represented as a structured object.

The OHS addresses do not have to change during the objects” lifetimes: thus the dircctory must be
changed only when an object is ereated, moved to another repository. or deleted. Still, even with
relatively infrequent changes, creating a new version of the catire directory would be very
expensive. However, it should be possible to take advantage of the implementation of structured

objects: for cach change to the directory, it is only necessary to create a new data image of the

affected picce and & new structured version image that differs from the previous one only in the

reference to the moditied picce. Since the size of individual picces can change, the necessary

modifications can be kept pretty localized, even if the directory is represented as a sorted list or a
tree. If an enury is added and the size of the affected picce exceeds one page. it is simply split into |

two picces.

Requests reeeived by the repository must contain the uid of the desired object. The OHS address
of the object header is obtained from the directory. To improve performance it is possible to return
to the brokers also the OHS addresses. These addresses can then be included in future requests, in
addition to the objeet uid. However, they are mercly hints, that is, it is not guaranteed that the
particular object can still be found at that address when the request is reccived. Prior (o accessing
an object, the object manager would have to check the validity of the hint by testing it against the
object uid in the object header, I the hint as received is invalid, a2 new hint can be seat back as
part of the response to that request. This kind of hint could be included also in the directory for

those objects that were moved into another directory.

49

5. Management of commit records

e

Repositories must implement another abstract entity -+ the commit record. A commit record
] includes the state of the possibility it represents, a timeout, and a list of tokens (references to
tokens) created under that possibility. Commit records are mutable entities: both the possibility
state and the Tist of tokens must be maodifiable. While a commit recard is still in an unknown state,
tokens can be added to (and possibly deleted from) the list in the commit record. Once the
possibility is completed. the state of a commit record is set to committed or aborted and tokens can

only be removed from the list !

The list of tokens associated with cach commit record is only an optimization; it is not needed to .

! preserve consistency as required by the atomic action that created the possibility. Fach token refers "

to its commit record; thus whether or not i token can be comverted into a version can be

determined by inquiring about the state of the commit record specified in this reference. This ‘

process can be sped up with the help of the token list: when the possibility is committed or aborted,

all local tokens can be committed or aborted immediately. Another optimization is that it is
possible to delete the commit record once all of the tokens on the list have been processed. If the [

F token list cannot be guaranteed to include all tokens created under that possibility, then the commit

record must never be deleted, because there is no other mechanism o insure that all tokens are

informed about the final state of the possibility.

In Reed's original model [REED 78], the commit record of a committed possibility is assumed to he :
stored in atomic stable storage until all tokens on the tist have been reliably changed to versions.

Commit records of uncommitted possibilitics (aborted, or possibilities the state of which s still

unknown) do not have to be kept in stable storage: if the commit record cannot be found, the |
possibility can be assumed to have been aborted. Unfortunately, when the recovery of the
repositories is considered. the list of tokens in a commit record is not sufficient to determine when a
commit record can be deleted. In the present model, the conversion of tokens into versions is done }
merely by changing the references in the object header, and, as discussed in Section 4, the object
headers are not stable. As it will be seen in Section 6, for recovery purposes, it is necessary to be
able 1o determine the state of a possibility for a long time after all the tokens have been converted
into versions. ‘This means that committed commit records must never completely disappear fromy the
repusitory; Section 5.1 presents a scheme that accomplishes this by representing conimit records as
objects. A consequence of the chosen representation is that the token lists need never be stored in
stable storage. The fact that the token list does not hinve to be stable simplifies also the

implementation of distributed possibilitics as discussed in- Scction 5.2

50

S.1 Representing commit records as objects

For stability, commit records can be mapped into VS. Since nothing ever disappears from VS, a
commit record can be reconstructed cven after it has been deleted at the level of abstraction
implemented by the commit record manager. Commit records could be represented by yet another
type of stable cntity (similar to the object header image), or, they could be represented as objects.
implementing commit records as objects has the advantage that all externally accessible entities in
the repository can be located and access to them controlled by the saine mechanisms. On the other
hand, the object abstraction needs to be extended to facilitute implementation of commit records, as

will be scen later.

There are several possible ways to implement commit records as objects. The following approach
was chosen because it utitizes best the mechanisms atrcady present in the object model. When the
repository reecives a request (o create a commit record, it ercates an object. “The objects and tokens
created under this possibility will use, as their commit record reference, the uid of this object. Since
creation of objects also must happen under some possibility, it is necessary to supply a commit
record reference for the object that will represent a commit record. Recall that ths commit record
relerence appeats in both the OHS image and the VS mmage of the object header when an object 15 created Creation
of a commit record can be committed immediately. ‘Thus a simple solution is to set the commit
record reference for a commit record object to nil, o indicate that such an object is implicitly

committed.

Fach stable image of a commit record contains the state of the possibility. The commit record
reference in the version image of an object representing a commit record is again nil. In this case,
however, nil commit record reference does not mean that the version image is implicitly commitied.
Rather, such a version image refers indirectly to itselft the actual state of the possibility, and
conscequently of the representing version image, is cmbedded in the data ficld of that version image.
It might be more suggestive to let the commit record reference in version wmages of a commit record refer to the commit

record itsclf, bLut it is casier to test for a nil reference than 1o detect such a circular seference.

As will be scen in Scction 6, the st of tokens associated with a commit record does not have to be
stored in stable storage, since it is only a hint; it is not needed for recovery. If the repository
crashes, all objects will e recovered individually by locating their Tatest version images in VS, In
this process, the object manager will determine whether a version image represents a version or a
token by inspecting the appropriate commit record; this must be done even for those version images
that have carlicr been determined to represent committed versions, “Thus if the repasitory crashes

after a possibility was committed but before all of the tokens have been converted into versions, it is

51

et - T RO e 2 R

-

not necessary to resume or restart the conversion process sinee it will be finished automatically as
part of recovery of the individual objects. The only reason for including the token list in a stable
image of a commit record is to aid in error detection: prior to converting a token, the token list can

be used to verify that this token is indeed part of that possibility. *

The representation of a commit record is shown in Figure 17, In addition to creating an object as
the commit record represcentation, the create-commit-record operation creates also a token for that
object. Then the waiting for the outcome of a possibility can be accomplished through the alrcady

existing mechatism: a process aitempting o read the commit record object will find a token, and

conseguently the read operation will be delaved untid the token is cither committed or aborted. To ,
commit a possibility, the commit record manager creates the Tast version image for the commit ‘

record object that has the possibility state in the data fickd set to committed: this is a committed

!
version which also commits ol the preceding 1okens. Now_if the possibility s aborted, it should be L
sufficient to abort the tokens of the commit record. For casier reconvery from criashes, however, the :'
commit record manager should, after aborting the existing tokens of the commit record, create a f
stable version with the possibility state set to aborted (Figure 17¢). Finally. although deletion of an
object is merely a deletion of the object header. it is still important to he able to delete commit |
records, since OHS is limited. With the chosen representation, commit records have to be explicitly r
deleted cven if a possibility is aborted internally, by a repository crash or because of a timeout. .
The commit record manager should delete a commit record after it has processed the associated list
of tokens. Such a deletion is again implicitly commitied. Thus the VS image of the ubject header
created by the delete operation will have the commit record reference set o nil. If the repository

crashes before the commit record could be deleted. the commit record object will be recovered; it

should be deleted as part of the recovery.,

The present object model does not permit creation of another token and its commitment if the
object already has a token. Since a token of a commit record cannot be turned into a version with
the existing mechanisms, it is not possible to create the final version of a commit record as
described above. 1t would be possible to add another operation, create-version, that would ignore
the token, but a more general solution is to cxtend the object model such ™at it allows creation of

more than one token for the same abject within the same possibility. As presented in the beginaing

of Scction 4, the object model already allows, within the same possibility, creation of a token for a
newly created and unconumitted object; the extension needed o support multiple tokens is very

simple. To create another token, a version image is created as for the first token, but the "previous

version” field in this verion image must refer now to the preceding token (Figure 18). ‘The tken H
reference in the object header is changed to point to the version image of the new token, ‘The 1
t
commit record reference is unchanged since the new token is created under the same possibility. ;'
|

52

object uid = xx ‘

. /m:xx

nil

t‘f

CRrel = ml 11

CRref = nil

reposiory id

access control possibility state =
specitfication un kn own

a) Creation of a commit record

object uid = xx
./
t
2 ‘, object uid = xx object uid = xx
token ref = nil
nil ~—e
CRref = nil ty 12
- - CRref = nil CRref = nil
repository id
access control possibility state = possibility state =
specification unknown committed

b) Commit record of a committed possibility

Figure 17: Representation of acommit record as an object.

83

object uid = xx

l2¢

T -

token ref = nil

object uid = xx

objectuid = xx

nil

<

CRref = nil

ty

t2

repository id

CRref = nil

CRret = nil

access controf
specification

possibility state =
unknown

pussibility state =
aborted

¢) Commit record of an aborted possibility

Figure 17: Representation of a commit record as an object. (Cont.)

o AR Ay e

PR

XX
A%
t2 -
—e
t
t 2 / 2
CR? CR2
XX
[—~—e
/ ty
CR1
a) Creation of the first token
XX
t 2 - 1] ——
e e [~~~
S
o, . / 12 ta te
4 +
CR2 CR2 CR2 CR2
XX
B
/ ‘ ’
CR1
b) Multiple tokeng
Figure 18: Creation of multiple tokens for an object within the same possibility.
55
{
*
% . . oo bl GRS

o

A

xx

* xx /\ xx /\ xx
ty + — —
nil
ta tg ts
'_' CR2 CR2 CR2
nil

XX

'
CR1

c) Possibility committed

Figure 18: Creation of multiple tokens for an object within the same possibility.
(Cont.)

56

ot W,

g [

.y

When the possibility is committed, this entire chain of 1kens is committed at once. This does not
require any changes: the current version reference becomes the reference to the last token, and the
token reference is set to nil. Similarly, when the possibility is aborted. the entire chain of tokens is
aborted. This extension to the object model facilitates checkpointing of commit records and data
objects in general; as an extreme, commit records can be made stable throughout their lifetime. To
achicve the latter, cvery time a token fcfcrcm:c is added, a new version image (token) including the
current list of tokens would have to be created for the commit record. However. special care must
be taken when a wken is copied by the OVS manager. First, only the Jatest token (which, if
committed, will become the current version) should be subject to copying. Sceond., if a copy-token

operation is in progress, it should be completed before an additional token can be created.

Comnit records represent yet another problem. Once the possibility state is set 0 committed or
aborted, it must not change in the future. If commit records are represented as objects, this means
that it must not be possible o create another version of the representing object. ‘This restriction
must he entorced by the commit record manager., but it is aided on the object Ievel by the access
spectfication field, which can be set to restrict the right to update the representing object to the

owner, that is, the repository.
5.2 Distributed possibilities

For a distributed possibility, that is, a possibility that includes objects in maore than one repository, a
primary conunit record is created in one repository. and commit record representatives are created in
cach other repository that contains a token for this possibility (Figure 19). When a possibility is
committed or aborted. this state is encached in the commit record representatives in all involved

nodes, and the committment or deletion of tokens is done locally.

The introduction of commit record representatives complicates the protocol for commiting a
possibility. To be able to rely on the token lists in deciding when to delete a commit record, all
representatives with their lists of tokens must be first forced to stable storage before a decision can
be made whether the possibility can be committed: a two-phase commit protocol is neceded. An
alternative solution is to treat the token lists in the representatives only as hims, and rely on the
dual mechanism, that is, the commit record references embedded in the individual tokens. A

protocol of this kind is outlined below.

Commit record representatives can be implemented in the following way. T'o create a commit
record representative, the repository creates again an object with nil as the commit record reference
(implicitly committed). In addition, it creates a token for this object, with the uid of the primary

commit record as its commit record reference. All local tokens for this possibility will refer to the

57

o

Fe

I primary
i commit record ‘
| ! commit record tokens
' poss id = xx ' representative
state J »
: timeout I ! e
t P ' state
s > I timeout
! ! !
== e
N T REPOSITORY B
T o tokens ‘l
| commit record ;
tokens representalive /—' |
L |
~ | l
) st N1 |
REPOSITORY A —
_ _____; N
.———-'—_—w \

REPOSITORY C

Figure 19: Implementation of a distributed possibility with commit record
representatives.

58

LAY Y e i e

o b G G o

PR it .

Bttt o A 2 R A S

object which is the local representative. When the final state of the possibility is known, the wken
of the commit record representative s either committed or aborted. I nothing else is done, then
during crash recovery, it would be necessary 1o ingquire again about the state of the primary commit
record, and primary commit records would have to be maintained {be casily accessibie) forever.
‘Thus it is desirable to encache the state of the possibility locally in such a way that crash recovery
can be confined to the failed repository. Again, it is only necessary to create a committed version
of the commit record representative with the final state of the possibility (committed or aborted)

cmbedded in it; the comumit record reference in this sversion is now nil.
The actual protocel for distributed possibilities i summarized below:

Tohen accumudation phase: A repository receives a request to create a token for object x and
examines the commit record id contained in the cequest: this is always the id of the primary comimit
record. 1f the respective object does not already have a committed version for the specified pseudo-
time, or another token that was created under a different possibility. the repository proceeds o
create the token. The create-token operation still can fail. if the repository finds out that the possibility specified in
the request has already been committed or aborted If this repository does not contain the primary commit
record, it checks whether it already has a representative for this comunit record. 1 not, it sends a
request to the primary commit record for a permit o create a local representative. 1f approved, it
creates the representative. Once the local commit record representative is located or created, the
repository creates the token for object x and sets its commit record reference to the id of the object

that represents the commit record.

When the request to create a commit record representative is approved by the primary commit
record, a reference to that commit record representative, or, more precisely, a reference to the token
of the representing object, is added 1o the list of tokens of the primary commit record. Note that

obtaining an approval from the primary commit record is again only an optimization.

If a repository fails during the token accumulation phase, the list of tokens, if it existed only in the
main memory, is lost. This docs not mean, however, that the entire atomic action must be aborted,
since the representing object is guaranteed to sunvive the crash. The only complication is that the
tokens (including the tokens of the representatives in other repositories) will have to be converted

individually, as other atomic actions attempt o access those objects.

Commit point; Requests (o commit or abort a possibility must be sent to the primary commit
record. When the repository that contains the primary commit tecord receives such a request, it
creates a version image of the primary commit record, with the possibility state being cither

committed or ahorted. ‘This version image may contain also the list of local tokens and the

59

- A O AP, OB gl T

LSRN

references to the tokens of the representatives in other repositorics.

Conversion of tokens: After the commit point, the tokens at the samce repository as the primary
commit record are removed from the list and converted into versions or aborted. A message
specifying the final state of the possibility is sent to cach repository that contains a represeniative for
this commit record. Fach such repository, when it receives such a message, creates a version image
of its local representative; the possibility state in this version image is set to the sume value as the
state in the version of the primary commit record. ‘The repository then replies with a commit-ack
message to the primary and starts converting the local tokens and removing them from the list of

the local representative.

Deletion of commit record representative: - When all local tokens in the list of a commit record
representative are removed. the commit record is deleted, and consequently the representing object

is defeted. This approach should be followed cven if the posssibility has been aborted.

Deletion of the primary commit record: When the primary record representative receives a commit-
ack message from a representative. it removes the token reference for this representative from its

list. ‘The primary commit record can be deleted when its token list is empty.

Determining the state of a token during normal operation: To determine the real state of a token,
the commit record reference in the token is used to find the local commit record representative. If
the local object representing the commit record still has a token. then if the commit record
reference in this token is nil, this object represents the primary commit record and the state of the
possibility is still unknown, Otherwisc, it is necessary to ingquire at the primary commit record.
which is specified by the commit record reference. I the commit record has a committed version,

the state of the possibility is known locally, and is cmbedded in that version.

A repository should maintain a map from the primary commit record ids to the ids of the local
commit record iepresentatives. This map does not have to be stable. According to the protocol
above, if a local commit record representative is not found through this map, the repository must
send a request to the primary commit record 1o approve a creation of a representative. If the
primary commit record contains a reference to a representative at that repository, its id (the uid of
the representing object) will be returned. If the repository containing the primary commit record
failed also and lost the token list but the atomic action contihues, the requesting repository may
reccive an approval to create a new local record representative. ‘This means that a repository may
have more than one local representative for the same possibility, but the mechanisms of the object
model and the particular implementation of the commit record representatives still guarantee

consistency.

6. Recovery

At the core of the reliability measures adopted for the repository is the distinction between stable
information and hints. A hint is information that is not essential for correct functioning of a
system, but is important or even essential for good performance. In the SWALLOW repositorics,
all information in main memory and in OHS is considered 10 be hints reconstructable from the
information in VS, ‘The integrity of information stored in VS and OHS is assumed to be testable:

this is accomplished by associating a checksum with cach page.

Since during normal operation. the repository relies primarily on the hins, it is also important to be
able ta check the integrity of the hints. A checksum could be used also on each page in main
memory, but since most hints (the object headers) change frequently, it is not feasible o recompute
the checksum for cach such change. In most cases, however, the validity of hints can be tested
against the infonnation in VS, For example. the current version and token reference ficlds of the

object header must contain a VS address Ay which is:

i valid in VS address space,
n. AVI < Al‘,’
iit. the object uid contained in the first word of the version image represented by this

VS image matches the uid in the object header.

Only the last test is necessary to ensure that the accessed cntity is indeed a version of the given
object, but the first two tests can save time, since they can catch some errors without having to

access VS.

The bulk of this section concentrates on the problem of recovering objects from system crashes and
storage device decays. It is assumed that a system crash invalidates the entire content of the main
memary. The major part of a crash recovery is reconstruction of object headers, since the current

statc of the recently active objccts may have cxisted only in the main memory.

If the latest version image (the current version or a token) of an object is known, all older versions
can be found by following the chain of references embedded in the individual version images. If
this information is lost {(when the current state of the object header is lost or damaged), it is
necessary to find this version image by scarching VS, This is why cach version image must include
the uid of the object of which it is a part. 1 cach object is guaranteed 1o have at least the version
images of the current version and the token in OVS, a backward scarch of OVS will find the
beginning of all object historics. Otherwise the scarch must be extended to the oftline portion of
VS.

61

The recovery prucess must examine cvery VS image. starting from the end of VS, The issues of
how to find the end of VS and how to isolate individual VS images on a VS page are discussed in
Section 6.1, Section 6.2 presents an algorithm for reconstructing the object headers from the
information in VS. Scction 6.3 describes how recovery of individual objects can be distributed over
time. triggered by an access to an object. Section 6.4 discusses the offect of a failure of a repository

on the communication protocol between the repository and the brokers.

6.1 Retrieval of VS images

Before recovery of object headers can begin, it is necessary to find the current end of the version
storage, that is. the address of the latest page written into OVS: the mark My: can be viewed as
pointing to the end of this page. This address could be found by scarching from the Jow end of
OVS or fram the copy mark, in the direction of increasing VS addresses. In some of the OVS
management schemes, these other marks are implicit. and thus no additional precautions must be
taken. To remember the end of VS reliably, the mark M|: would have to be kept in stable storage.

"

Otherwise, My; can be found by scarching for the first "free page.” On an optical disk, this means
the beginning of the arca that has not vet been written. On a magnetic disk, cach page, as released
by the OVS demon, could be marked as "free.” Such information provides a uscful check in
general: before the version buffer in main memory is written into VS, the specified OVS page

should be checked if it is free.

The failure might have occurred between the two physical writes in the duplicated implementation
of stable VS. If the latest page as written to one of the devices is found correct, the VS write can
be completed, that is, that page is written also to the other device: otherwise that page should be
marked as bad. and the end of VS set to the end of the preceding page (the latest page on the other
device). No external request {that is, a request from a broker or another repository) for which some
information has to be written into VS is acknowledged until both writes complete; thus if a (dual)
VS page is declared bad because the second write did not complete correctly, no harm is done,
However, if the write is completed during recovery, the create-token reguests that caused creation of
VS images on that page cannot be acknowledged. since the repository lost all information about

these requests. ‘The original requestors may retry their requests, in which case the recovered

repository will send back an acknowledgement. as discussed in Section 6.4, Otherwise, the
individual tokens on that page eventually will be aborted because of a timeout. Copics of version
images made by the OVS manager will be found and incorporated into the chains representing the

object histories by the main recovery process.

‘The next problem is to isolate the individual VS images. The scan of VS should proceed from its

62

e G e ——

high end towards the low end; for individual pages, this means from the end of a page towards its
beginning. This means that the size ficld should be at higher-address end of a VS image. Since for =

. |
normal use, the position of the size ficld must be computable from the VS address contained in a

version or token reference, this implies that VS images should be stored so that their first word, that
is, the word specified by those references, has the highest VS address. Finally, if a page is not
completely filled when written into VS, a dummy data image should be created in the unused space. .
‘This dummy data image will be discovered only during recovery, but it will be awtomatically
ignored since all data images are ignored during recovery: only the size ficld of the representing

VS image is used to get to the beginning uf the preceding VS image.

6.2 Reconstruction of ohject headers

Since most repository crashes witl not damage OHS. the recovery process can use OHS image as the

‘. starting point. As sated earlier. it is assumed that a checksum is associated with cach OIS page. and that it is

sufficient to test the integrity of the object headers on the page. The value of the field that specifies the end

validity time of the current version in the object header in OHS provides a logical delimitation for :
recovery: only if some version (token) was created after this time (this would mean that the OHS r
image was not updated), the hint in the object header must be updated (reconstructed) from the -

information in VS. Unfortunately, because of the copying of version images in VS, there is no
simple unique mapping from timc to a physical location in VS. Thus only the current version ‘
reference Acy and the token reference, A, in the surviving object header are uscful: VS must be ¢

scarched only as far as the higher of these two addresses. |

If the object header in OLIS is damaged, VS must be scarched until all of the following is found:

1) a version image of the current version '}
b
2) a version image of the token (if any) H

3) an image of the object header.

“
If the OHS image is not damaged but is merely obsolete, it is only necessary to find the first two &
items. If the found image of the object header precedes the version images of both the current X
version and the token (i.c., it is the latest entity in VS pertaining to this object), the object header is
recovered without any further scarch. 1F a version image of a token is found first, it is not neccssary
to scarch for a version image of the current version, since a reference to it is contained in the token.
However, if a version image of the committed version is found first, it could be a copy, and thus it |

is still necessary to search for a token. Morcover, (his version image does not necessarily represent
the current version! ‘this can happen if the current version had been copiced while the object had

had a token, such as in ligurc 8b, after which the token was committed but not copicd.

63

e e e LA L TR AE TR e S VRN

Fortunately, these two anomalies are mutually exclusive. Thus, if the first version image vy (Jatest
in VS), found for a particular object represents a committed version, it is necessary to continue the
scarch until a version image viy that represents a different version or a valid (not aborted) token is
found. 1f an image of the object header is found next after vip, then viy is the version image
pointed to by the token reference, if not nil, the current version reference otherwise. Now vip

represents the current version if;

1) Viy fepresents a token or

2) l\.(vix) < l\.(\‘il) where L is the start validity time of that version.
I tviy) > tvip) then iy is the current version and the object docs not have a token.

A token representation is indistinguishable from a version representation, If there exists a reference
to version image X in another version image, X must be a committed version. But it 4 version
umage is retrieved without such context. to distinguish between a commitied version and a token, it
is necessary to check the commit record, or, more specifically, the local commit record
representative. This is why a version image of a token (and consequently, a version) must contain
the uid of its commit record. Also, when an image of an object header is found, it may have been
written into V'S as part of an operation that has not yet been committed. Recall that o VS image of
the object header is made when the object’s status is changed: the object is created or deleted, or
its access specification is changed. Again, it is necessary to use the commit record reference in the
object header image to determine the state of the possibility under which the status of the object
was o be changed. Thus an important part of reconstructing the object headers is finding the

appropriate commit records.

Since commit records are represented by ohjects. they must first be recovered by the same
mechanism as objects representing clients” data. However, at the time of a crash, a large portion of
the commit records that will have to be inspected during recovery hanve been probably deleted.
This means that their object headers were written into VS, marked as deleted. ‘The repository docs
not have to recover deleted objects (given that the deletion was commiitted), but it must temporarily
recover deleted commit records, »o that other objects can be recovered. Since VS images of object
headers are casily distinguishable (their contmit record reference is nil), the handling of deleted

commit records does not represent a - major problem.

The copying of version images by the OVS manager complicates also the reconstruction of the
relevant commit records. Without copying, the commit record of a possibility that reached the
final state would be guaranteed to be recovered prior te all version images and object header wnages

created under that possibility,. When a committed version image is copied, it gets “ahead” of its

4

commit record, that is, the recovery process will find that version image before it recovers the
} commit record. This can happen cven if the copiced version image is still a token: if the copying of ;

the token oecurs just before the state of the possibility is finalized, the copy of the token and the

version image of the commit record may end up in different VS buffers, and be written into VS in '
the reverse order. The images of object headers are always ordered correctly in VS, since they are '

rcad from VS only during recovery and therefore are not copied by the OVS manager.

The scarch process sketched in the beginning of this section must be expanded to take into account .
the problem of recovering the commit records. 1t is assumed that only the final state of o possibility
is recorded in stable storage. Also, if the recovery process does not find a version representing the
final state of a given possihility, it cannot abort the possibility, since the reconstructed local object

might be just a representative of the cunmit record. .

Again, the exact recovery of individual objects depends on in what order the various relevant [

.. i
entities arc found: y

» ‘The first entity found is an image of the object header: 1

Since the VS images of object headers are not copied in OVS, then il the changes to the object r
status as reflected by this object header image were finalized (committed or aborted). the i

appropriate commit record version must have been already found by the recovery process. If it

T -y

has not heen found, the possibility is still in unknown state. tn any case, the current version
reference and token reference in this object header image can be used to rebuild the object
header in OHS. If the found object header image is not committed, the version reference in this ;
image can be used to find the preceding VS image of the object header which contains the

correct stable information for this object.

» ‘The first catity found is a version image; call it again vip:

1. ‘The commit record for this version image has alrcady been reconstructed. This can happen

_ only if:
: a. vip is a committed version that has not been copicd; sinee this is the first image found,
; I.

the object does not have a token,
b. vip is an aborted token. Embedded in this token is a reference to the current version;

neither the current version nor the commit record for the current version have to be

H scarched.

2. ‘Ihe commit rccord has not been reconstructed yet. This can happen if:

65

-
PR SR Ee © R T

a. ‘Ihe final version of the commit record has not been created yet, thus vij represents a
token.
b. vij represents a committed version that was copied by the OVS manager.
} c. vip represents an aborted token that got ahcad of the final version of the commit record
duc to the nonscquential management of the VS buffers.
To resolve this uncertainty, it is necessary to continue the scarch of VS until one of the
following is found:
i. A version image of the commit record:
- If the cinbedded possibility state is unknown, vij is a token, and it contains a
reference to the current version,
- if the embedded possibility statc is conmnitted, vij is a copy of the current
version; it is still necessary to search for the possible token.
- If the embedded possibility state is aborted, viy is a copy of an aborted token. vip
contains a reference to the current version, and the object does not have a token.

ii. Another version image, viy, created under a different possibility than vij - (this

restriction is sufficient to handle correctly situations where \'ix is just another copy of the same version
image. and also the cases when mulliple tokens were crealed under the same possibility):
- If [s("ix) < ls("il,) then vil‘ must be a token. Embedded in vil_ is a reference o
the current version; this is not necessarity viy. since viy could be an aborted token
or a no longer accessible copy of an carlier version.
- 1P t(viy) > tvig). then vip must be a copy. If viy is a token or an aborted
token, then vip represents the current version, otherwise it is a copy of the
preceding version. Thus it is necessary to continuc the scarch of VS until the

commit record for viy s reconstructed.

Finally, the object headers contain the end time of the current version and the token; this
information also must be reconstructed somehow. If an object has a token, the end time of the
current version must be one “tick” less than the creation time of the wken, The end time of the
token, and if an object does not have a token, then the end time of the current version, ought to be

set to the current time, that is, the time when the object is recovered.

6.3 Rcaltime recovery

The actual recovery process should be as cfficient as possible so that the dcelays experienced by the
clients will not he noticcable. The repository can limit the extent of crach recovery through special
checkpoints. In addition, rather than recovering all objects in the repository before resuming

normal processing, recovery can be distributed over time. In particular, individual objects can be

66

b

3w

gy

+ ———
T

g

R
TV e ke

- - — o At onioa e e S i o, rima o g — iy
' [

i v
' ' recovered as they are accessed.

-
r‘ . For this, it is necessary to be able to distinguish the cpochs between different recoverics. Thus the
;j‘ ‘ repository should maintain, as part of its state, the current recovery epoch number, REN. Every ,
‘, (time the recovery process is started, the repository is assigned a new REN such that these numbers 1'
B monotorically increase in time. REN must be included also in cach object header. When an object '
* is created, it is assigned the current REN. When an object is accessed through any of the '
¥ operations listed in Section 4, then if its OHS image is not damaged. the REN in the object header ; ‘

is compared o the current REN of the repository. If they differ. the object header must be

updated 10 reflect the changes since the time the object header was written into VS during the
recovery cpoch as given by its REN. If the object is Jocked. the lock is simply broken: the locks
, must be honored ondy if the object REN and the current repository REN are the same. 1 an object

is not used for a long time, several crashes (and recoverics) could have occurred since the object was

created or recovered. However, since such an object has not been recovered carlier. it could not
have been used (read or written) since the recovery epach given by its REN, and thus to recover : 4
such an object, it is not necessary 1o scarch VS from its current end, but only from the point that F

coricsponds o the end of that epoch.

Thus, the recovery process should, at the commencement of a recovery, write a mark into VS that
specifies the beginning of a new recovery cpoch. For quick location of these marks, they should be
chained together as are the histories of individual objects. Thus the recovery mark can be

represented by an object: if the object header in OHS survives the ciash. the last version is casy to

If the object header of the recovery mark is destroyed, it is necessary first to scarch VS for the last

|

.

|

1

find, and the new version of the mark can be created with the reference to the tast one immediately. &
\

'|

{

version version of the recovery mark. The object header of the reconery mark is maodificd only
during recovery, and it should be forced immediately into OHS. This guarantees that the correct

information is always in OHS and thus should survive most crashes.

When an object is recovered, its REN in the reconstructed object header is set to the current REN.

Also, a VS image of the object header should be created: this will delimit the extent of the next
recovery should the OHS image be damaged. In such a case, the recovery must start from the

current end of VS,

In the process of reconstructing an object, it is again necessary o reconstruct the appropriate
comnit record(s). Since atomic actions survive repository crashes, the fact that the final version of a
commit record is not found in the samce recovery epoch as the object in question docs not incan

that the state of the possibility has not been resolved. But since a commit record s also an object,

61

),

an attempt to access it will direct automatically the recovery process into the right recovery epoch.

6.4 Communication with brokers

A failure of a repository can also affect the brokers. 1t is the resposibility of the brokers to
supervise that requested operations are indeed performed by the repositories. If a broker does not
reccive a reply from a repository, then unless the requested operation is not important for correct
completion of the given atomic action, the bioker has two options:

i. abort the cntirc atomic action, or

. repeat the request.
Now, of course it is possible that the first request was received and processed by the repository, but
since all operations supported by the repositories are idempotent (if they carry the same pscudo-
time). duplicate requests do not represent any problem. The only complication arises if a message
from a broker containing data for a token is delivered in picces. Unless the entire structured
version image was alrcady created, if the request is repeated, the previous incomplete message must

be discarded, since the partitioning of the repeated message may be different from the previous one.

7. Summary

Figure 20 summarizes the structure of a SWALLOW repository as a lattice of abstractions. A more
detailed description of the structure is given in the appendix. ‘The entire design of the repository is
centercd around the Version Storage, which is the only stable storage in the repository. In a sense,
VS is similar (o the transaction log of database management systems [GRAY 79]. However, there is

an important difference: VS is used not just for recovery, but it is where the actual data are.

VS contains not only the versions of objects, but also the commit records and images of the object

headers. However, the name Version Stworage has been retained, since:

i commit records are represented by ordinary objects (and thus VS contains their

versions), and

it the objeet header images are in fact selected versions of the state of individual

objects.

VS is append-only storage, in accordance with the basic object model. It provides a linear paged
address space with a straightforward mapping from the VS address into a location on the physical
device. VS is duplicated for stability, but since no update in place is possible, the two required

writes can be concurrent.

Since VS may grow very large, it is impossible to maintain the entire VS online. Only the upper 2"
words of VS are kept in the Online Version Storage. OVS would thus contain the current versions
and tokens of the recently updated objects. To make sure that the current versions of most objects
are found in OVS, it is necessary to copy occasionally the images of current versions and tokens to
the high end of VS. The most recasonable policy for managing OVS seems to be to copy a version
image when the repository is processing a read request involving a current version or a token and
the representing VS image is found to have a lower VS address than the copy mark. This policy
preserves locality of reference, and automatically brings back online the current versions of the

objects that have not been used for a long time.

OVS can be implemented with a reusable device, or with write-ance devices. The latter form
simplifics the transfer of version images from online to offline storage. The delays due to manual
device replacement can he climinated through a circular assignment of device drivers o different
functions in the implementation of OVS.

‘The crash recovery of the repositories is based entircly on the information contained in VS,

Current contents of object headers, although the object headers are the key clements in all

69

requests requests
lroemq brokers from ot er repositories recover ‘ E

requesl handler crash recovery : *
/ |
1o
; P
SWALL object . commit record
Message manager manager .
Protocol I
directory v
manager manager
“'

object object hrstory

header | v manager

f
i
. . . t
OHS image version image 3

manager manager
storage VS image
devices manager
VS ™M
manager ME
[
vs storage
buffer devices
D internal abstractions

Figure 20: Structure of the repository.

70

. L. g e e
o e v . . e e e e -

operations on objects, are treated as hints that are fully reconstructable from the information found
in VS. Since the commit records arc implemented as objects, they are reconstructable by the same

process. Finally, the object directory is an object itself and hence reconstructable from thie
information in VS,

This report presented only a skeleton for the design of the SWALLOW repositorics. Many issucs
were touched on only very lightly, and some important issucs have not been addressed at all. In
particutar, performance of OVS under the proposed copying policy needs to be evaluated and the
sketched algorithm for reconstruction of the object headers ought 10 be analyzed more formally for

pussible inconsistencies. Some of the additional issues are:

i Virtusd memory. It has been assumed that both VS and OHS are divided into pages,
and that pages from both arc brought into main memory on demand. So far, OHS and VS
have been treated as distinet address spaces. This means that to implement virtual memory
their pages would have 1o be mapped into main memory in different ways. Alternatively,
OHS and VS can be made part of the same address space, c.g.. OHS can be the lowest 2k
words of that space.

ii. Communication with brokers and other repositories. Objects can be sent to
repositories in picces, subject to the constraints imposed by the communication substrate
and communaication buffer capacity of the receiver. Although the repository can deal with
picces of any size (if they are too big, they will be broken up further before heing stored as
data images), better performance can be achieved if the communication substrate already
delivers picces of the right size; the optimal size is the size of a page minus the amount of
storage needed for the size ficld and the type tag which arc added when a data image is
created.

iii. Protection. It is assumed that object versions in the repository will be stored in an
encrypted form, where encryption provides the only kind of protection for read accesses
[REED 80]. Some protection against modification is provided by the immutability of object
versions, but it should be possible to control the ability to create and delete objects, create
tokens and change the state (commit or abort) of commit records. Objects and commit
records in the repository were designed to include an access control specification ficld which
is stable; however, it is not clear what should be in this ficld and how the rights of the
requestors should be checked. An interesting question is what the right to read means in

the context of the given object model. In particular, docs a revocation of such right apply

only to the future versions of the object, or also to the current and the past versions?

iv. The repository provides mechanisms that facilitate building of atomic actions;

however, it is the responsibility of the users of SWALTOW (o make sure that these

nn

B

h

—— = ——— -

~—- -
o

T

-

mechanisms are used properly. ‘The division of responsibility for correct implementation of
atomic actions should be studied in more depth. SWALLOW could assist in enforcing
correct use by supervising that;

a. apossibility cannot be committed until all outstanding requests to create a

token have been received and processed

b. once a possibility is committed or aborted, no new tokens can be added.
However. distributed possibilities make such checking difficult.

I/

References

COFF 73 Coffman, E.G., Jr., Denning, P.J., Operating Systems Theory, Prentice-Hall, Inc.,
Englewood Cliffs, N.J.

GRAY 19 Gray,)., ct. al, "The Recovery Manager of a Data Management System,” 1BM
Rescarch Laboratory Technical Report RJ2623, August 1979.

LAMP 79 Lampson, B.W. Sturgis, HE., "Crash Recuvery in a Distributed Data Storage
system,” Xerox Palo Alto Rescarch Center, Palo Alto, California, April 1979, to be
published in Comm. of ACM.

PAX'T 79 Paxton, W.H.. "A Client-Based ‘T'ransaction System to Maintain Data Integrity,” Proc.
of the ACM/SIGOPS Seventh Symposium on Operating Systems Principles,
Asilomar, California, December 1979, pp. 18-23.

REED 78 Reed, D.P.. Naming and Synchronization in a Decentralized Computer System, MIT

Laboratory for Computer Science Technical Report 205, September, 1978.

REED 79 Reed, D.P., "lmplementing Atomic Actions on Decentralized Data,” presented at the
ACM/SIGOPS Seventh Symposium on Operating Systems Principles, Asilomar,
California, December 1979; submitted to Comm. of ACM.

REED 80 Reed. D.P., Svobodova, 1., "SWALLOW: A Distributed Data Storage System for a
l.ocal Network," submitted to the International Workshop on Local Networks to be

held in Zurich, Switzerland, August 1980.

SWIN 79 Swinchard, D., McDanicl, G., Boggs,)., "WFS: A Simple Shared File System for a
Distributed Environment,” Proc. of the ACM/SIGOPS Seventh Symposium on
Operating Systems Principles, Asilomar, California, December 1979, pp. 9-17.

TAKA 79 ‘Takagi, A., "Concurrent and Recliable Updates of Distributed Databases,” MIT
l.aboratory for Computer Science ‘Technical Mcemo No. 144, Cambridge, Ma.,
November, 1979.

13

Appendix

STRUCTURF OF THE REPOSITORY

T VIR

This appendix describes in more detail the individual modules of the repository and their logical ‘
interconnection {the "uses” hicrarchy presented in Figure 20). Note that some maodules support

more than ene abstraction developed in this report. External operations are the operations provided

at the module’s interface, that is. operations that can be invoked from other modules. Internal ‘
. operations are available only within the module. Recovery operations are special external operations
: that arc invoked only by the recovery process.

acadkas mb Im -

Request handler i

implements; repository interface .

uses: object |:
i commit record R
§ SWALLOW Message Protocol 4
é The request handler inspects messages delivered by the SWALEOW Message Protocol [REED 80]

and invokes the appropriate manager to handle the request, and it constructs reply messages from
the information rcturncd by the manager. !
Commit record manager

implements: commit record
commit record representative

uses: object

cxternal operations: use: ‘

create - create abject ’
create token e
add reference -) primitives of the implementation language o
commit - create token
commit token
delete reference
delete object
abort -> create token
commit token .
abort token ¥
delete reference P
delete object "

74

H 3

L . Ceebe i ,‘.Aggmmwgéeuj

internal operations:

§
T dclete reference ->
H delete ->

recovery operations:

none (recovered only as objects)

Object manager

implements: object
uses: directory
object history
uid
cxternal operations:
create ->
read -
create token -3
comimit token ->
abort token ->
set access control ->
delete ->

recovery operations:

none

UID manager
implements: uid

uscs: object history

use:

primitives of the implementation language

delete object

usc:

get new uid

create object history
enter into directory
lookup directory
rcad object history
lookup directory
create wken
lookup directory
commit token
lookup dircctory
abort token

lookup directory

set access control on object history

lookup dircctory
delete object history
delete from directory

15

external opcerations:

new
recovery operations:

reset uid

Directory manager
implements: directory
uscs: object history

external operations:

create

cnter

lookup
recovery operations:

recover

Object history manager

implements: object history
uses: version image
OHS image

cxternal operations:

create

rcad

creaic token
commit token
abort token

sct access control

delete

use:

may have to crcatc new version
use*

reconstruct object history

usc:

create object history
primitives of the implementation language
primitives of the implementation language

use:

reconstruct object history

use:

create object header

create version image (of object header)
crcate OHS image

rcad object header

read version image (returns also Ag)

copy current version

copy token

read objcct header

create ver i iimage

read objec. acader

read object header

read object header

create version image (of object header)
rcad object header

create version image (of object header)
delete OIS image

76

i ol CENDALAR iee

MG

internal operations:

use:
create object header -> primitives of the implementation language
read object header - read OHS image
write object header - write OHS image
copy current version - copy version image
copy token -> copy version image
recovery operations: usc;
reconstruct -> read object header

Version image manager

scarch version image
create version image (of object header)
write object header

implements; simple version image
structured version image
F'S image of object header

uses: VS image

cxternal operations:

usc:

create version image -2 create VS hinage
read version image -> read VS image (returns also Ac)
copy version image -> create VS image

recovery operations: use:
search -> next VS image

VS image manager

implements; VS image

uses: Vs

external operations: use:

rcad
create

--> read VS page (returns also Ac)
- append VS

77

S b ARk e i |

e

recosery operations;

next (itcrator)

VS manager

implcments: Vs
uses: main memory page
storage device

external operations:

append
read page

internal operations:
append VS buffer

reset MC

gClA(:
assign device drivers

recovery operations:

find end

next page (iterator)
OHS image manager
implements: OHS image
uses: storage device
external operations:

create

read

write
dclcte

->

use:

next VS page

use:

append VS buffer

read storage device page (OVS or offline VS)
get Ac (returned together with the requested page)

usc:

allocate main memory page

write storage device page

primmitives of the implementation language
primitines of the implementation language

primitives of the implementation language
use:

read storage device page (recover M)
read storage device page

use:

write storage device page
read storage device page
write storage device page
write storage device page

78

recovery operations:

none

Crash recovery

uses: uid
object history
Vs

external operations:

start recovery -

internal operations;

create recovery mark ->

usc:

use:

find end of VS
create recovery mark

use:
get new uid (new R1EN)

create token (for the recovery mark object)
commit token

19

$Te00

. Lt L e

Lo ade

OFFICIAL DISTRIBUTION LIST

Defense Technical Information Center

Cameron Station
Alexandria, VA 22314

Office of Naval Research
Information Systems Program
Code 437

Arlington, VA 22217

2 copies

Office of Naval Research
Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, MA 02210

1 ocopy

Office of Naval Research
Branch Office/Chicago
536 South Clark Street
Chicago, IL 60605

1 copy

Office of Naval Research
Branch Office/Pasadena
1030 East Green Street
Pasadena, CA 91106

1 copy

New York Area
715 Broadway - 5th floor .
New York, N. Y. 10003

1 copy

Naval Research Laboratory
Technical Information Division
Code 2627
Washington, D. C. 20375

6 copies

Assistant Chief for Technology
Office of Naval Research
Code 200
Arlington, VA 22217
1 copy

12 copies

Office of Naval Research
Code 455
Arlington, VA 22217

1 copy

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
{Code RD-1)
Washington, D. C. 20380

1 copy

Office of Naval Research
Code 458
Arlington, VA 22217

1 copy

Naval Ocean Systems Center, Code 91
Headquarters-Computer Sciences &
Simulation Department

San Diego, CA 92152

Mr. Lloyd Z. Maudlin

1 copy

Mr. E. H. Gleissner

Naval Ship Research & Development Center
Camputation & Math Department

Bethesda, MD 20084

1 copy

Captain Grace M. Hopper, USNR
NAVDAC-OOH

Department of the Navy
Washingon, D. C. 20374

1 copy

