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The core of the ipository is st;ible aI l4pemdil storage called the Versioi Stoige (VS). VS is tlie

only stable soi;ge iii the rep~ository. It colplaioss the histories of all objects in (le icaoilony and all

the information needed Im crash recovery. It is ;issilied that VS will he implemencd with write-

once storage devices such as optical disks. lhe upper 2"n words of \'S are kept in the Online

Version Storage (OVS). 'echniques similar to real-time garbage collection are used to keep tlie

current versions of frequently used objects in OVS. Two different policies for retaining current

verions, of objects in OVS are investigated: the actual implementation fiurther depends on the type

of storage devices used for OVS.

A critical concern addrcssed throughout the desigii of the repository is recovery front system crashes

and storage device failures. The crash recovery of the repositories is based entirely on the

information contained in VS; VS is sanned sequentially, starting froll its current end, until 'all

objects histories have been reconstructed. ?The recovery call be distributed over time, such that the

recovery process is invoked for one object at a tine, as indpidual objects are accessed. The same

mechanism is used to rccover cofIit records, which ae da ta structures that record the state of

atomic actions and group together the obects to be updaied in a single atomic action. 'T7hc

implemeniation of commit records in the reI'ository guarantees that all updates made by a specific

atomic action arc eitler all completed or all mdunde, regardless of failures. Further, intermpted

atomic actions can be continued from the point of interruption, without any additional (backward)

recovery.

//, ., .\

SEItuqTY CLASSlIFICATION OF THIS PAOEt(3h Dee. 3niwee.0

'.17



01 111(1 iisi~i:SINTIIESIVALLOW I POSI0I(R'

I Am~ Svobodova

Juily 1980

0 Missaclusets tnsihille oI'Ichnlohogy

I his reca.rcI wits sImppovlcd by ifhe Adv'anced Research Prj'cts Agen~cy oftlie Dqmprimiemi of I efensc
aldits~ 1 1I IItIIit(IrctI by the M~ice ol' NavaI IRcscach unider cI)ILIta munI~her NOI 1-75 -C-0661I

NIASSACI II I ITSli I NSTIT liii 01 ld I NOIOGY

LA .AORAI)RY N'IlOR (OMIVU I'l R SCI I-NCI-

CAM URII)OF, MASSACI I SATS 02139



MANAGKNlNT OF OIIII:CI' IIISOIF'S IN TlII1o SlW .IJ.O\V RI'I'OSIORV

A RITRACI"

SWAI.I.OW is an experinental distribuled data storage system that provides personal computers

%ith a unililrln iiterl'a.ce tO their local d u atid the data stored in shared rcnote servers called

repositories. The SWAI.OW repositorics provide reliable. seculre, and e"ficient Iobg-tcrll siiage

fior both %cly small and %cry large objecis and slippoit up11dating (if a grotip (of ohjects al o11 or

several replsitories ill a siiigle atlonic action. 'li repositories support. with some minor

Iodilications. tie Object nodel de, eloped b%, Reed RI0l11) 781.

The core of, (lie reposilor), is slahle (qy',nd- (11ly. stoage called hlie Version Storage (VS). VS is the

(lilly SIA Ii lo5t age inl (lie rcp ( si bor It coihtal 115 the hiistories ol' all objc k inl the repo sitohry and all]

(lie infonucitiou neeCde'd ll" crash recovery. It is assumed that VS w4 ill be ilillneilled with write-

olnee storage devices such as optical disks. The tpper 2n (klids of' VS are kept ill the Online

VersIn Storage (O\S). IlcliiquliCs similar t(o rca -lime garibage coll.ec (1n are used to keep ihe

current versions of' Frequcently used ol)jects ill OVS. Iwo different )olicies for retaining currcnt

%ersiolis (If objects ill OVS are investigaltCd the actl ilpleCnettion further depends on the type

of' stlrage deices uised for OVS.

A critical concern addressed throughotit the design of the repository is reco ry froi Systell crashes

and storage device faihues. "The crash recovely ol' the ip osiloiies is based enirely oil thc

inlonration colitained ill VS: VS is scanl[d sequientiay. , starting fromin its current end, uillil all

objects Ilistlries have beell rec(lstruCted. The recover) call lie distributld olver time, such thal tIe

rec(very process is ilivolked fbr one object al a tlime, as illdiiduial Cl)jets aire accessed. The same

inc.hanisIn is uscd to recover co imil rc'rd. which are datm sirctuires that record tile statc If

atoiitic actions and group tioghtler the ohjects t) be l)pdaled ill a single atolinic actioi. The

inplmcinalatlll of commil records ill the repolsitory gilhraltees that all updates made b% it specific

atomic action arc either all compllted or all tindone, regardless Of' Ilihlirs. FL'iiher', i nterripted

aItolm~nic aCtilils aii be colltillued from (lhe loitil of ilerlUl)ion, without amy additional (hackward)

recovery.

Keywords: I)isributed systems, atolnic actiolls, sti rage i aliagemel, reliability, recovery.
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MANAGEMENT1 OF OI'I S HISTORIES IN "'ilH ESWAllOW IEPOSIrORY

SWAI.OW is an experimental project that will test feasibility of several advanced ideas on design

of object-oriented distributed systems. Its purpose is to provide reliable, secure and cfficient storage

in a distributcd environment consisting of many personal machines and one or more shared

repositories. The objectives and the overall structure of SWALLOW are presented in [RIEI) 801;

the major components of the SWALLOW system are shown again in Figurc 1.

ILach personal machine runs a subsystem called a broker that interacts with the manager of the local

storage device and the remote repositories; this broker implemcnts a uniform interfice to all objects

accessible from the personal computer. The repositories provide stable. reliable, long tern storage

fir untyped objects. They must handle efficiently both very small and \vcry large objects and

provide mechanisms for updating of a group of objects at one or more physical nodes in a single

atomic action.

'Ibis report discusses the organization and management of the repositories in the SWALLOW

system. 'ihe repositories support, with some minor modifications, the object model developed by

Reed [RFlFl) 781. 'his model provides the basis for synchronization and recovery in the

implementation of atomic actions. "lbe main features of Reed's object model arc outlined in

Section 1; however, the material presented in this report assumes a much deeper knowledge of

Reed's work.

I. Object model

An object can be viewed as a history of all the states assumed by the object since its creation. Each

distinguishable (abstract) state of an object is represented by a special immutable entity called a

version. In addition to having a value, a version has a time attribute that specifies its range of

validity. 'The range of validity of a particular version is the time interval in the history of the object

during which the object was known to be in the state represented by the version. Each version

delimits the range of validity of the preceding version. All operations on objects include an implicit

parameter. a pseudo-time, which specifics the exact point in the object's history to which this

operation refers. A read operation selects a version that has the highest "start time" that is lower

than the pseudo-time p specified in the read request. If the "end time" of that version is lower

than p, it is extended to p. A write operation creates first a ioke,, which has to be explicitly

committed to become a version. 'lhe start time of that version is the pseudo-time specified in die

write request. A token can lie later discarded, thus returning the object history to the state that

existed prior to the execution of the write operation.

L - . .. .. ...
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The object model supports construction of aomic actions. An atomic action is a control abstraction

that guarantees the following:

i. atomic actions are mutually exclusive, that is, operations performed as part of one atomic
action cannot see or interfere with the tokens created within a different atomic action, and

ii. the tokens created as part of the same atomic action are either all committed (converted

into versions) or all aborted (removed from the object histories).

Associated with an atomic action is a pseudo-einporl environment and a povsibilij'. All operations

perl'ormed within an atomic action are assigned pseudo-times fronn the same pseudo-temporal

enironment: the pseudo-tcmnporal cmironient is a mechanism for making atomic actions nutually

exclusive. A possibility is a group of tokens created by a specific atomic action. The possibility

mechanism guaraltees thai only the atomic action that created the tokens can read them and that

the tokens are either all committed or all aborted.

Possibilities are represented by commil records. A commit record is a data structure that records

the state of a possibility and keeps track of what entities are dependent on the outcome of the

possibility. A commit record is created with the possibility state set to unknown. When an atomic

action completes successfully, the possibility that represents it is committed and the possibility state

in the commit record is set to committed. If the atomic action is aborted, the possibility state in the

commit record becomes aborted. The commit record includes a list of references to tokens created

by the atomic action. Also, each token contains a reference to its comnit record.

Construction of atomic actions is controlled by the brokers. This includes generation of the pseudo-

temporal environment for atomic actions and creation and commitment or abortion of possibilities.

Tbe tokens in the same possibility can be created by different brokers: thus the commit records are

shared data structures and must be in some repository. The repositories therefore must implement

two abstractions: the object histories and the commit records. The following are the operations that

can be requested by the brokers to be performed by the repositories. (Although the requests are shown in

ihc form of procedure calls. this does not imply thai a remote procedure call 1)t)c of prool will be used I ANIP 79]

Also, the lists of paranmetrs as shown are not necess'rily complete. Specifically. instead of a general acknowledgement,

the repository will return enough infomiation aboul the rCluuest and its rtsult to make the response sel-identifying. If

the requested operation cannot he performed, the relository returns an error message.):

Requests that pertain to object histories:

create (pseudo-time, commit -record-id) returns (object-id)

retd (object-id, pseudo-time, commit-record-id) returns (value)

3
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create-token (object-id, psudo-timc, commit-record-id. value) returns (ack)

delete (object-id. pseudo-time, commit-record-id) returns (ack) H

Requests that pertain to commit records:

create (timeout) returns (ack)

test (commit-record-id) returns (commit-record-state)

commit (commit-record-id) returns (ack)

abort (commit-record-id) returns (ack)

Additional operations on coninit records must he supported in order to implement possibilities that

involve objects in more than one repository (distributed possibilities): these operations, vhich call be

requested only by a repository, will be discussed in Secion 5.

1.1 Representation or object histories

In Reed's original model, there may be time intervals in the object history that do not have

corresponding versions (Figure 2). A new version can be created belatedly in any such time interval

(by creating and committing a token), or the interval can he diminished when a request to read the

value of the object at a time point that falls within this interval is executed. The latter action 4

extends the validity range of the immediately preceding version. ip to (including) the pseudo-time

of the read request. Both of these forms of "eduction" have to be accomodated in die object history

representation.

Figure 3a shows a linked list representation where the range of validity and the state of the version

(token/committed) is physically a part of each version representation JRtF-) 78, RFEI) 791. An

alternative representation is to concentrate the various information about versions, including the

pointers to the actual values, in a separate data structure which becomes a part of the object header

(Figure 3b). The main problem with the first scheme is that the entities that represent versions arc

not immutable. The range of validity changes as versions are read. Also, if a new version is inserted

into a gap, the "next version" link of the version that follows the new one in time must be changed.

Similarly, if an action that produced a token is aborted, the token must be discarded, that is, the

token must be removed from the history by destroying the pointer to die token. Another

dis.advantage is that if an operation refers to an older part of the history, it is necessary to inspect all

newer versions to find !he appropriate version (or gap). The other scheme (b) leads to more

complicated storage management. The site of the object header varies from object to object and

changes as new versions are created: also. since it must be possible to insert new entries anywhere

in the version list. a simple array representation is not possible. Second, the number of versions in

4
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Figure 2: An example of an object history.

l'oken X2 was crcatced after version V3 and token X I. Version V3 was conimiued rccntly, but has
not had its state clcachcd )et. Rcading the object at tinic I will reitrn the \,iue of version V1.
Reading the olbjcct at time t2 will rctlrn the value of' %ersioli Vi, after extending th validity of this

vcrsion (end tfim ic  to 2. Attempts to read thc ohject at tiln t3 and t4 'ill result in a wait,

pending conimilment or abortion of tokens X2 and X, rcspecti ely, tinless he rcad operation is

rcqucstcd from within the sanc possibility under which the token was created.
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2 13

a. Version information stored
with the version value

object id
unknown committed unknown

CR2  CR C

t t2

b. Version information concentrated
in the object header

Figure 3: Possible representations of known object histories;
shown for the example given in Figure 2.



an object history may grow very large, and old 'ersions must be removed from online storage. If

the stored versions physically contain the validity range and linking information, this information

will be purged from online storage automatically with the old versions. If the list of version

references is kept in the object header, it may have to be pruned separately.

It is highly desirable to represent versions by immutable storage entities. Perhaps the strongest

reason for this restriction is that it is much simpler to design mechanisms to ensure integrity of

stored versions.

One of the main functions of the repository is to provide very reliable storage. This means that the

. physical storage must be stable, that is, the information stored in it must not decay over time. In

addition, it is necessary to ensure that information written to it is either written completely and

correctly or not at all, that is, that the operations on stable storage are WoUMiC. Since no physical

device pro ides storage with these properties, the atoinic stable storage must be implemented as an

abstraction, using hardware components with less desirable properties. In particular, atomic stable

storage must be designed to tolerate processor crashes during write operations and decays of the

storage media. Tis is accomplished by writing the data twice, into decay-independent sets ILAMP

791.

An operation that is most difficult to perform atomically is an in-place update of stored information.

An atomic update means that either the content of the updated entity is changed into the new

value or. if the operation fails, (he value of this entity is left unchanged. That is, atomicity

guarantees that a stored entity is never left in an inconsistent state where the old value has been lost

and the new value is incorrect. To pertonn an atomic update, the two copies of stored information

in the decay-independent sets must be changed strictly sequentially. i.e. the first write must

complete successfilly (correct data written to correct address) before the second write is initiated. If

the storage model does not have to support an update operation, the problem of atomicity is

simplified. It is still necessary to have two copies for stability, and the ability to detect and correct

bad writes, but the two writes into the two decay-indepcndent sets can be done concurrently.

A second strong motivation for choosing an immutable representation for object versions and tokens

is the possibility of using optical disks, which are write-once storage. The given object model will

require a large amount of storage. Thus. it is important to utilize storage devices that are: 1)

inexpensive, 2) easy to store offline. To provide fast access to old versions. a random access device

is needed. Optical disks look promising in all these aspects.

tTo satisfy the immutability requirement with the present object model, it would be necessary to usc

the scheme of Figure 3b. Ilowever, it will be shown that with a minor modification to the

A7
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conceptual object nodel it is possible (and better) to include most infrnta(ion about versions in the

version representation.

1.2 Modified object model

If we allow insertion of new versions in an arbitrary place in the list, the information about the

ordering of tie existing versions (the physical pointers to stored versions) must be kept in storage

that allows multiple (unlimited) writes. In addition, tie "end time" information for each version '

has to be kept in stch storage, since it must be changed when a version is to be read at a pseudo-

time greater than the current end time. Another possiblility would be to completely rcwrite each

%ersion every time its end time must be extended and when a new version is inserted after it, but

such a schente does not seem practical.

I.et us constrain the conceptual model such that when a new %ersion is created, the end time of the

previous %ersion is extended to close the gap. 'Ibis means that new versions can be inserted only at

tie "current" end of the list. Also, each object can have at most one token. Actually. an object could

hac multiple "depenident" tokens at the "current" end. as it is done in Takagis schenc lIAKA 791 Ibis possibility will

not be incstigaled in this report. lowever, with the exception of the current (littest) version and the

token, the end time of a version can be derived front the start time of' the next newer version and

thus does not have to be included in the version representation. Consequently, an object history

can be represented by it fixed-size object header and a growing list of immutable entities that

represent the versions.

l'he data structures a:iedcd to represent an object history are shown in Iigure 4. The object header

contains a reference to the current version of tie object and the end time of tie current version.

This time is updated every time tie current version is read past its end time. The object header also

includes a token reference that is either null if the object does not have a token or it contains tile

physical address of the current token. One reason for including both the current version reference

and the token reference in the object header is that it is simpler to discard it token (remove it from

tile object history) when tile atolic action that created it is aborted. Ilowever, having both of these

references in the object header i. crucial to the storage nianagement, its will be seen later. Tokens

can be read from within tile atomic actions that created them; each stich read extends the end time

of this future version. Since the end time of the current version should not be automatically

extended up to tile start time of tile token until that token is acltally committed, it is necessary to

keep track of the end time of tie tokens its well as the end time of the current versions. It should be

kcpt in mifd that the ctrrcnt version cnd lime and tokcn end lime in the object header are pxcudo-times that do not

ncecssarily corrmss ond to real time. Iinally, a reference to the comtmit record for the current token is

8



object uld

object header commit record

object uid

ctnre~nt version reference

ctuirent voi sion end time

token reference

token end time

commit recoid referenc

current tokren
version

Figu re 4: Representation of the object history for the modified object model;
it is not possible to create token X2 in this model.
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contained in the object header, although this is only anl optimi/.ation, since this information is

present also in the token.

The data structures that represent tie versions are called version images. A %ersion image contains,
in addition to the "value" field, the "start time" ts. a reference t.) the immediately preceding

%ersion. the uid of the object it represents and at reference to the commit record ftor this version.

The last two items are needed for recovery, as %kill be explained later. The time ts specifies the

beginning of the time interval in tile object's history represented hy that version. Again. tS is not the

real lime when the version image was created, but the pseudo-nimc specified in the request to create a token

It is important to make a distinction l)etmeen \ersions and the representation of versions. that is, the

version images. A version is i logical concept: it is the value of' the object during it specific interval

in the object's history. A version image represents either i version or a token: to determine which

of" these two it represents, it is necessary to inspect the object header or tie commit record specified

in [he version image. Several copies of at %ersion image may coexist in the repository. Since sersioi.s arc

immutable, this does not cause any, s),nchroniation problem. Also, a version image inay remain in the

repository although it no longer represents a valid version. Thus to disLard a token when the action

that created it is aborted, it is sufficient to set the token relerence field in the object header to null.

In addition to eliminating the need to include mutable data structures in the \ersion representation,

the modified model also eliminates the need to perform a write operation Ahen an older version is

read. The lost ability to leave regions of the object's history undefined and create versions in such

regions ltter does not reduce significantly the power of the object model. In most situations, an

object that is to be updated is read first, and it is desirable to extend tie end time of the read

version tip to the start time of the new version to ensure that the object has not been changed after

it was read.

1.3 Implemelt|tion issues

A crucial problem is to find an efficient and reliable scheme for mapping object histories into

ph~sical storage. The two structures used to implement object histories, the object header and the

list of version images, require different models of storage and different management policies.

Object headers are mutable and therefore must be kept in storage that allows modifications of

stored infiormation. "he version images are immltable and thus can be stored in write-once storage.

In addition, the reliability requirements are diffeirent.

The main issue in the implementation of the lists of versions is slorage allocation and management.

Giving each object a section of consecutive physical storage locations for its entire history is clearly

10



infeasible. Rather, it seems natural to view the version storage as a hisiog of creation and updates

of al tile objects in the repository. Section 2 develops a model of the version storage as an infinile

appeti,-otily file. Since it is infeasible to keep the entire version storage online, the online portion

of tile version storage must be "retsable", that is, it must be p,,.sible to free it for newer version

images. This problem is studied in more depth in Section 3. That section addresses also the

problem of the assignment and management of die physical storage devices used to implement VS. [1

The role and management of object headers is discussed in Section 4. It is too expensive to

immediately reflect all changes to an object header in stable storage. Therefore. the object headers

are viewed only as hints that may be destroyed by t processor or storage device failure, hut are

reconstructable froIn the information contained in the version images. That section also addresses

how objects are located and how concurrent requests for the sane object are synchronized.

Section 5 discusses the implemHentation and nanagement of comm it records. Commit records are

special data types pro% ided by the repository, but are ultimately mapped into the same object model

as other data. For possibilities that include objects in more than one repository, commit record

representatives are added to the model.

Recovery issues are addressed throughout this report, but the major step, tie reconstruction of

object headers, is described in Section 6. Finally, Section 7 presents it simnmary, including a list of

issues that must be studied in more depth.

i
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2. Version Storage

h'lhc core of the repository is the Version Storage (VS). Abstractly. VS is an infinite append-only

tape. VS stores information as stable immutable entities. These entities will be called IS images.

A VS image consists of two fields: the data field, which at this level is simply an uninterpreted %'.

sequence of bits, and the size field. VS is the only stable storage in the repository. It will contain

all versions of all objects in the repository. In addition. all the information needed for a crash

recovery must be stored in VS, as immutable VS images. K

Version images. ias d,4cribcd in Section 1.2. are contained in the data field of VS images. That is, V
for storage in VS. an envelope that contains the size field is added (ligure 5). [he version

references in indi idual V'S images as well as the current version reference and (he token reference

in the object header are directl) the addresses of the representing VS images in VS. Avi. '[he lists

of \ersions representing histories of different objects are intertwined in VS- their ordering in VS is

determined by the relative frequencies of updates ,,f individual objects. And to snic extent also by read

acliities, as will be seen later.

Since VS may grow arbitrarily large. it is infeasible to keep it online in its entirety. 'The issues of

what informiation should be kept online and how the online storage is to bc managed are discussed

in Section 2.1. Section 2.2 is concerned with the transfer of data hetwecn the primar memory and

VS. Small objects (version images of small objects) must he packed into buffers while large objects

hae to be partitioned into smaller pieces. Finally. Section 2.3 discusses soine problems with the

mapping of the VS address space into the physical address spaces of the used storage devices.

2.1 Online Version Storage

Only a fraction of the infornation contained in VS can he made available online. One approach is

(Io add a special kind of cache for the current versions of all objects. The most straightforward

policy for controlling the use of such a cache is to replace (o\erwrite) the version in the cache when

a new version of that object is created. I lowever, this new version may never he committed; when

it is written into the cache, it is only a token. Alternatively. the cache co-ld be assigned to contain

the latest committed version of each object and the tokens. When a token is commitled. the other.

now old, version would be deleted and the freed space reused. Since version images can vary

greatly in size. the cache storage would become fragmented and it would be necessiary to do

recoinpaction or garbage-collection. This problem arises even if" tokens are allowed to overwrite the

committed versions in the cache, since subsequent versions of an object can have gready different

si/es! Another tunpleasant aspect of this form of caching is that there is no easy way to deduce the

location of a version images in the cache from its address in VS and vice ver.: thus two addresses
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have to be remembered for each version image in the cache.

Instead of using a cache, the Online Version Storage (OVS), that is, the portion of VS currently

available online, will be the most recent 2n words of VS. OVS will be implemented as a circular

buffer. as illustrated in Figure 6. Mark ME will be used to specify the current end of VS on the

device that serves as OVS. New version images arc cated always in OVS, but fior read requests, it

is necessary to detcrline if an image of the specified version exists in OVS. Such a check is very

simple: if (AF - Avi) <= 2n, where A, - is the VS address of MI. then the version image is in

OVS, and its address in OVS is (Avi rood 2n).T

OVS shall contain the version images created during the interval (tc-T. tc> %khcre tc is the current

time and T is determined by the speed with which the available online version StoraIge fills up.

Unfortunately, since versions of different objects are created at different rates e en tile current

versions of some objects inay disappear from OVS. To Inake sure that all or some objects (for

example, those objects that arc read frequently) retain their current versions in OVS, it is necessary

to copy version images in OVS, and consequently in VS.

Tro preserve the current versions of objects in OVS, it is not sufficient to copy just the immediate

current versions when the time comies to reutse the respective fragment of OVS space: the tokens

have to be copied too. But, if an object has a toket at the thim the latest image of the current

version is to disappear from OVS, it is still necessary to copy the current version, since the token

litter may be aborted. I:

When ain image of a current version or a token is copied, the appropriate reference in the object

header iust be changed. But if an object hits a token, a reference to the current version appears

not only in the object header, but also in the token. Since the tokens arc to be ilmutable, tie

reference to the current version embedded in the token cannot be changed: it %%ill always refer to

the version image that represented the current version at the time %hen the token was created.

Fortunately, die Ifct that the refecrnce in die token is not modified does not lead to an error. If the

token becomes a version image, the reference to die copied version, which existed only in the object

header, is replaced by the referei.cc to the version image of the former token. The copied version

image in OVS is efkecti ely lost, but the object does have its current version in OVS. If the token is

aborted, the current version is fiound in OVS as it should be.

To sulmmarize, its a consequence of the copying, VS may contain iany version images that

rresrelnt the same version, but only one of these images is accessible by Illlowing tie chain of

pointers in the object history. The other images use up storage, but do not have an adverse impact

on the implementation of the object histories.

14
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A moic detailed model of OVS will be presented in Section 3. Two diffeirnt policies for retaining r.

version images in OVS will be invcstigated: one policy is to keep the current %ersions of all objects

in OVS: the other is to keep in OVS only the current versions of those objects that have been used

in the recent past. The actual implementation of these policies depends further on the type of

storage devices used.

2.2 Transfer of lata between primary meinory aid stable VS

'11wc repository has to handle efficiently objects of greatly var)ing size, from %cry small ones (< 100

bytes) to very large ones (100 Kbytes). It would be very expensive to write small ersion images

into VS individually. Because of the constraints of the communication network and protocols, very

large objects will he sent to the repository in pieces: it would be %cry expensi\c if not impossible to

buffer very large objects in primary memory.

Thus, prior to creating new versions of objects in VS, it is necessary to:

1. ipck small version images (tokens) before writing them io VS

2. fragment large objects before writing them to VS.

For easier management of VS (mainly for faster VS address resolution and object location), it is

desirable to allocate VS in fixed-sized blocks. These fixed-si/ed blocks, or pages., are the Lnins of

wlomic write into VS. Both the packing and fragmentation must take this into consideration.

2.2.1 Packing of version images in VS buffers

I et us first look at the packing problem. Basically. as tokens for new versions are created, their

version imnages are placed into it buffer in main memory. This buffer consists of one or more pages.

When a buffer page is full, it is written atomically into VS. i lowever, there are two problems with

this scenario. First, creation of a token is a commitment that. regardle ,s of processor, memory, or

device Failures, if" and Mhen the possibility under which the token was created is committed, the

token is in the repository, undamaged. Thus a creation of a token cannot be acknowledged until

the token has been written into stable VS. This action is delayed hy the packing process; since new

tokens will not be created at a colstant late, on n occasion, it may take a long time to fill tip a

page. Thus. a timcout should be iociitlcd with cach hu l'kcr page: if a buffer page is not filled up

befire the timcout, it is written into stable storatge partially empty. The filling of the buffer is sped

up by the copying process which creates copies of old current \ersions and tokens at the "high* end

of VS: these copies again are first written into the buffer.

The second problem is what to do if a version image just created or copied does not fit into tie
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space remaining in the buffer page. Or. restatted, the question is whether it %ersion imiage shouild hc

allowed to cross at page boundary. Although suich at pro~ ision would lead to at better storage

utili/ation and at possibility to cal more flex ibl M th large objects, there are strong reasons for not

permitting it. Once split version images are permitted, almost every page % ill cnd with a split

imiage, unless some resiricuions are imposed in regards to ho"~ %ersion images can be split. A rcad

Operation onl a split image requires more than oite VS access. Iwo VS accec;ses if the maimim permillcd

site of a %ei-sion image is one page. Also. crash recoery %OUld he slightly more comtplicated: since thle

W repository may crash betseen the writes that im~olve at split image, the recos er) algorithml Would

hia~e to detect that thle imiage is incomplete. 'I'li last consideration is that the buffer pages that

contain parts of' a split image have to be mapped sequcntiatlIN into the V'S address space. 'I'le

alternative scheme described next w ill demonstrate thie adu ntage of the lack of this restriction.

If split versionl images are not allowed, it does not mecan that the buiffer pages ha%c to be written

into VS half empty. As already indicated, the bu ffer in the main memory may consist of sec eral

pages. or. better, at any ltme, there mla\, be set'crul one-pagc buffi'tx for V'S in thle main memory, as

shom i in Figure 7. [he timeoutt for each bu fer is set wkhen the first \ersion imnage is placed into

that buffer. Now. new versioni images can be placed into any of thle existing buffers, or, if no

bull'er Offers enouigh space, a new buiffer mlay; be created, subject to a limit Onl thle numbeI)r Of

buffers allowed. If no more buffers may be created, one must be written into VS before thle new

version image canl be placed. Since no Ordering (precedence constraints) exist amiong the buf'fers,

they can be written into VS in any order. Tlhus the VS manmager may select thie burfer which is

most fuill. or thie one which is closest to its timeout. Thiat buffer is then assigned the next sequential

VS page address. 'this means that ihe acitual V'S address of a %ersion inmg is lnot known until the containing page

is written into VS. [he timeout associated with each buffer guarantees that no buffer will wait forever

for a version unnage of fihe "right" size.

2.2.2 Pa~rtitioninig of large objects

L arge objects arc partitioned invisibly to the brokers. H owever, this partitioning is not performed

solely by the repository. btit starts at thle level of tile commnication protocols, sincc the amnount of

data that can be set in at single packet is liitied. 11' this amount is less thanl or equal to thle page

sue in the repository, no ffurther partitioning is needed: Otherwise thle data recei~ed in individual

packets must be further divided. In either case, thc fragmntns Of anl object (tokcii) received in

different packets can be processed and written into VS ats tdie arrive; each fragment will become a

separate version i mage. Si ne this part itioni ug is in misible tom (lie bro k ers. i b i ker mnuist amlways read

or write the ithole object. i.e.. it is no~t possible to retrieve Or to uipdate only at s;mall portion. 'Ibis

t means that it should be suflicient to chain together the friginens of' such arm objec and let thle
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object header point to the last fragment; it is not necessary to have lan, in access to the individual

fragments. Unfortunately, if a version image that represents such a fragment of an object is copied

by the OVS manager, it would be neccssar) to modify a pointer in the %ersion image that represents

the next piece, but this is impossible since the version images are immutable. On the other hand.

sincc the whole object (object version) will bc read, all fragments should be copied, and the
embedded pointers can be modified as each fragmnent is copied. Ilomccr, although the object

header must point to the last fragment, the copying must start " ith the fist fragmclnt, otherwise the

new VS addresses of the individual fragments cannot be determined. Actuall., this also impacts the
initial creation of a Ner'sion of a partitioned object. A ersion image of a piece k cannot be created

until the VS address of the version image of the fiagment k-I is knokl this again imposes

precedence constraints on the set of buffers for VS.

To o\ercomie these problems. it is necessary to have a special pointer array. There are several
reasons for nol including this pointer array in the object header: as will be seen in Section 4, the

entire object header must be rcconstructable from the infoniation stored in VS and therefore the

images of the individual fiagments would have to include additional information: object headers
would have different sizes, and the size of a particular object header could %ary over its lifetime;

bat the most serious probleml is that this would necessitate reconsideration of how to represent

object histories. What would be the meaning of the "pre\ions \Crsion" reference in each version
image? )ifferent versions of an object can be partitioned in different ways, so there is no

meaningful mapping between fragment k of one %ersion and fragment k of the preceding version.

Thus the pointer array will be stored in VS. In fact, it will look like a version image. This does

not require any changes to the object header: the current version reference and the token reference
simply point to images that contain the appropriate pointer arrays, as do the "previous version"

pointers in each version image. A version image constructed in this way will be called a structured
version image. The individual fragments referred to through this pointer array can be of different

sizes. Both the VS image that contains the pointer array and the images of the individual fragments

will be packcd in VS buffers as before.

Both for normal operations on objects and for recovery, the infornation whether a version is simple
(represented by a single version image) or structured must be included in the version images

themselves. It does not make sense, though, to propagate this distinction into the definition of an

object, since the representation may change during object's lifetime: as an object changes size,
individual versions may be either simple or structured. This can also happen because of changes in

the lower level co linitiicatio protocols (flow control). Also, it is sitfperiltiouis to incltde all the

information so far associated with all version images in those images that represent the individual
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fragments of a structured object version. In fact, none of' these fields is needed! llus for

representation of object versions and tokens, the repository should provide three distinct types of

stable entities:

simple version image: self-identifying;

data field contains dhe actual data

header of structured self-identifying;

version image: data field contains an array of pointers

to data images

data image: interpretable only in the context of

the appropriate structured vcrsion image;

not used during recovery.

Figure 8 shows a fraction of an object history that uses both simple and structured %ersion images.

and consequently all three types of stable entities just describcd. Ihoever. these distinct entities

should be supported on a higher level of abstraction than VS: the stability is assured b) mapping

them into the same uninterpreted stable VS images.

Use of structured vcrsion images does not impose any precedence constraints on the transfer of

mail memory bLuffers to VS. Of course, the header of a structured version image cannot be created

until all data images of that version hae been written into VS. since the VS addresses are not

known until then. If such a \ersion image is copied by the OVS manager, it is necessary to create a

new header after all data inmages have been copied. Structured version images arc substantially
more expensive than sin,ple version images, thus fragmentation should be used only when

necessary.

2.3 Nlappitig N'S address space onto physical storage devices

"T"o ensure that the version storage is stable, all VS images Should be wriltn twice, that is, the entire

VS should be duplicated. It can ,e assuned that two separately controlled physical devices provide

decay-independent sets fron the point of view of phxsical 2iltres of the dri\ ing hardware, e.g. head

crashes. As discussed earlier, the two write operations to duplicate VS can be performed

concurrently, thstS the response time performance does not have to degrade significantly as a price

for stability.

In addition to ensuring stability of' sorcol information, it is necessary to ensure that version images

are written correctly into VS. 'Ilic usual approach is to follow each write by a read and a test
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operation. If it is decided (,fter possihl seveial read and test attempts) that (he write as incorrect,

the write operation must be i'petted. Ilowever. if the physical device is itrii-on'ce only. ie

repeated write has to %rite the dala to it new address! This may happen e~cn with devices that

allow multiple writes to the sme localtion, since sonic areas on a device may bc faulty, and

consequently a i rile operation Io such a location can never succeed. This problem can be handled

in two wa.s. One is to leave at "hole" iv the VS address space. The other one is to mask the bad

write t the de'ice level by writing into an alternative address in an area specifically reserved for

this purpose. In the first case. the corr'ci VS address cannot be determined until after the write to

VS h s succeeded. This imeans onI that the token reference (or the ctLrrCnt %ersion reference, when

a copN operation is perflrmcd by the OVS 11anager) in the object header cannot be set until the VS

%rite terminates, but this order must be upheld anyway. Ilowe r, the duplication of VS creates

an additional prohlem. The address of each of the two copies of'each %er,,ion ilage nust be easily

ct)mptlahle fron the VS address. hlius. fori a duplicated write if one write operation does not

succeed, the other one must be inalidlated also. 'I hus. the same 'll*ole" (bad data) has t) be created

oii both de ices. This schemne, however. caninot support recovery froIm later decays. When it is

discovered that soie l %ersion was damaged on one device. than in order to restore tie

redundancy for the fiture, it would be necessary to copy the entire device, but in this process,

different bad writes may occur, and the two copies of that part of VS would be out of sync! Note

th(at it is 11l possible to copy just the respective version image (from the other device), since then

the entire "newer history" of that object, that is, the portioli of the object history between the

current version and the version represented by the defective version image, would have to be

recreated.

Thus, the chosen approach is to preserse the continuity of the VS address space. Fach device must

have at reserved area that provides substitute locations for data that could not be written into its

correct address. There still may he "holes" on the device. but when such a hole is detected, the

reserved area is searched fbr the missing data. Thus both write and read operations on VS may

require several device accesses, but presumably the reserved area will be used only in rare cases, so

the perfbrmance penalty should be low. Ilowe er. the fact that the device manager decides that a

write was unsuccessful does not guarantee that on a later read the same entity will he detected as

bad. Thus, the device Ianager should explicitely mark (omerwrite) the areas declared to be holes.

in such a way that holes can he reliaibly detected in the future.

Finally, it is necessary to address the problem or vs performance. The provision for maintaining

the current versions online is only the first step. The performance of the repository w ill depend

strongly on the performance of OVS. that is. on the speed of reading from and writing Ito OVS.
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Since write operations are multiplexed with random read accesses, the low overihead of the

sequential Arite (append) operations on VS is lost. Ilowever. the repository is shared. and thus

there mayn be many outstanding read requests to different locations of the OVS device. The

perfirmance of tie device (throughput) can be improved significantly if these requests are processed

in an order that minimi/es the positioning overhead. The most CfeCl'ti\e disk scheduling algorithm

is to sLan the disk in alternati g directions, servicing requests in the order of their physical

addresses. Several \ariants of the basic SCAN algorithm were deeoped Mnd an,6/ed JCOI 731:

however, since ie address distribution of requests in OVS is not completel,, random, it may be

possible I(1 lind a \arialit of SCAN that \kill perform better than these i mie. al algor nithls. Also. i

possible enhancement of the S('A N scheduling algorithm fill the OS de\ ice is to fIoce a vriLe of

one of tlie VS i fl ers thi'' the disk heads reach the curren end of O\S (NI,).

In addition to finding a soitable algorithm fr tihe OVS de\ ice i lanagenient. pei 'rfnlance of' VS call

also be influenced by:

i. assigning physical addresses to VS addresses

ii. mapping VS access requests to physical devices.

One possibility is to inlerleave VS, that is, assign consecutive \S blocks t different physical de ices.

This of course requires additional de\ ice dri\es. I loe'er, it is possible to take ad mltage of tihe

ihIipichlon of VS. If both devices in this doplicated inplinentatim provide f'dst random read

access, a read request can be satisfied by either of the two devices and can be scheduled for that

de\ice which is mole convenient (i.e.. not currently busy, or needs less ine to locate the requested

version image).
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3. imagement of OVS

The Online Version Storage is very important to the performance of the repository. As presented in

Section 2.1. OVS is an online address space managed as a circular buffer that contains the most

recent 2n words of VS. If no version images must be copied, removal of old %ersion images is

accoml)lished by simply overwriting them as M. the end of VS mhark. reaches that part of OVS.

lowever. if a version image must be copied to maintain the current version of the respectivc object

in OVS, a rather unpleasant situation may arise: in order to write a xersion image for a new

v'ersion. the OVS manager must copy one or more version images that lay ahead of Ml., to make

enough space for this new version image. l lowcer, in order to make space for the copied version

images, more space has to be freed. Such at "chain reaction" can he pre cnted if' tie OVS manager

looks ahead at which version images may have to be copied and perflrns tihe copsilig before that

part of OVS space must bie overwritten. On the other hand. if the co ip.in is pllsp(ped. it nia\ not he neccssar)

to cop. all (lId \ersion iniage of a current ,crion ph.2icall. . since t ii a ppr'ilnlatcl in the right place with respect to

\It:, but sonic storage n.a laie to be wasted in return MNc will be used to in,rk the copj poini in OVS.

MC specifies how far the OVS manager has cleared OVS for an immediate reusial, that is, no

version images need be copied before that part of OVS can be reuised. (M I :- l)minod 2 n is then

the amount of the immediately reuseable space.

The main problem in managing OVS is how to determine when a \ersion image must he copied. It

is clearly wasteful to examine every single version image in OVS as the copy mark M C movres; most

version images should not have to be copied, since the respective objects already will have newer

versions. Ir this assumption does not hold, then this whole approach is wronr Since the information whether a

versiton image represents the current version or the token of an object is embedded only in the

object header, the decision process concerning what and %hen to copy should start at the object

headers.

In order to maintain the current versions of all objects in OVS. the objIcts should be ordered

according to the time when their current versions were last written into VS. 'Ihis approach is

investigated in Section 3.1. In Section 3.2 the requirement that each object must have at least one

version in OVS is relaxed- this leads to a much simpler implmentation. In Section 3.3.

management of OVS is reexamined and adjusted to an impletnentation with write-nce storage

devices. Secifion 3.4 looks at the implementation of" OVS from the point of % iew tof the number of

device drives needed.

3.1 Current versions or ;ill objects ,maintained in OVS

The general moving window scheme outlined earlier can be resiated ats follows. When more OVS
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has to he cleared for reuse, tile OVS mlanager will search for tile object that has not had a new

%ersion image wrille into )01'.V ftor the longest time. The current \ersion of* this object will bc

referred to as the ohle.s tcuri rrion in 01'S.'. I ei us call it X. sote IhalI this is not I etssmilI) the

oldest current %crsioln in the repositoiri, that is, a culent ersion with the lowest CiCallifli time I,. since that one may hate

beei copied more recentl. . Iet AC be the VS address of MC. [hen AX >= Ac , where Ax is the VS

address of x, since by definition the portion of OVS "older" than the position of' MC has already

been cleared. All \ersion images older than X, that is, with addresses Av ( Ax , cal be deleted:

this means that Nc can be moved to AX (Figure 9). I Ioecer, if AC  - A X , it is necessary to

copy X to the "newer" portion of OVS.

The first problem is how to find X. IFirst let iis assume le ihall ll tbjccts in tilte repository are

ordered acctording to the time the last \ersion iMnge of*l" hcir Culrrel t \elsito inas written into OVS,

that is, according to tlie \'S address tr the last ilnagc at their cttlrleitl \it nt s. Ihe 0VS inager

will maintain a Sorted list ot objects: let it be called CO I IS V. CO) I Is I in Iltact Aould co.lain just

poiliers to li oltject heade, 'I he object ,ith tlie oldest current \ersion ill OVS is ail he top of the

list. When a new \ersion image ftor some oblject is \%ritten into OVS. thc (ibjcct should inome to the

botton of COPYI IST. tnftlrtiinately, the new %ersion image ma.. and in most cases will.

represent a to k en. Since a toke n may be later aborted. it is tt ippropriatc to nt me the o bject to

the bottom at' the COPYIIS'J' at tile time the \ersion image fIr the token is created. Now, assume

that an object has a token, and its current \ersion will bectnte subject to being o\erw ritten if MC is

moved. The current \ersion must be copied, again because the token ma. be later aborted. But

what should le the relative position of the object in the COl M I IST l'ter tile current version has

been copied? Since the \ersion image of the token precedes the new \ersion image of the current

version, the position of the object in the COPY I .SIT is detelmincd b the token. If the token is

later committed, nothing need be done. If tie token is ,thoi td, the object must be tmoved to a

position in COIPYI1IST that corresponds to (lie location of the cunrrent %ersion in OVS. If the

current version has not been copied since the creation of the token, no action is necessary.

Finally, if the fate of the token is still undecided when Nc reaches the respective \ersion imagc,

the token must be copied, or, more precisely. the representing version image must be copied. That

is, the OVS manager must all: look for the ohlest Iokei in 01'S, as it clears OVS.

"To summarize, an object is eligible to move in the COPI)TIST only when:

1. its current version is copied or

2. its token is committed or

3. its token is aborted or

4. its token is copied.

2.
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I et ACV and At be die current version and the token reference contained in the object header.

Then Table I shows under what conditions the object does move in tile COPYI.ISI. A graphical

illustration for a simpler kind of COPYI ISl will be found in SecLion 3.3. in Figure II If a nil reference (no

token exists) is represented by a negative number, then to test for an existence of a token when the

current version is copicd, it is sufficient to test if ACV < At. Thus, Ibr any of die four kinds of

events, the resulting position of the object in the COPYI.IST is always determined by the greater of

ACV and A, prior to that event.

Table 1: Management of COPYI.1ST

event: condition: result:
object is eligible to object is moved position of
move in ('OiYlIST in COI)YI IST the objec in

('OPYI IST
determined by

----------------------------------------------------------------------------------------------------------------------

current version object has a token At
is copied

token is committed ACV < A At At

token is aborted At < ACV ACV

token is copied At < Acv ACV

The overhead of clearing OVS for reuse should he distributed over time. [he OVS manager can be

implemented its a demon process that runs concurrcenlly with the processes that create and commit

tokens. 'To maintain the amount of cleared OVS within specified limits, the demon is nn when

<Mi., MC> drops belo% tie lower limit, and it goes to sleep %hen it has cleared enough space as

determined by the upper limit. A large amount of OVS may be cleared in just one step, by

jumping to the oldest current version or token in OVS. Thus it is quitc possible that the amouint of

cleared space far exceeds the upper limit: many new version images may be cleated before it is

necessary to run the demon again. The demon should not copy the oldest current version or token

unless more clear space is necessary. If lie demotn stops at such a version, it may be that tile next

time it is run, the respective object will by then have a newer version. and thus no copying is

needed. On the other hand. the demon may run into a situation when it must copy almost every

version: this, of course, will not free any space. If this is just a local phenomenon, that is, tile

images of the current versions of some objects became clustered, tie demon will eventually release

enough space (unless none of these objects is ever updated again). Otherwise, it might be an
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indication that the system is saturated.

Ihis sLheine could be finely tuned to operate with a very small amount of cleared storage. This in

turn means that multiple copies of a version or a token exist in OVS for only a very brief time

interval: thus it is possible to achieve very good OVS utilization, in terms of the uscful information

stored. lowever, even if the entire COPYIIST could be kept in primary memory. the overhead

of re-sorting the COPYIIST may be significant. 'Ihis problem can bI eliminated if a different

policy for keeping current versions in OVS is adopted, as discussed in the follo ing sections.

3.2 lost recently used current versions maintained in OVS

In the schemes descrihed in the preceeding section, the OVS manager ntust maintain at least the

current version of eery ohject in OVS. This means that if T is the a\erage time it takes to cycle

through OVS, then the current version of an object that has not been updated for n'T will be

copied n times. This represents a perfonnance penalty that may be unnecessary, since some objects

will not even be read for long periods of time, yet the OVS manager will keep copying them in

OVS. To give a more specific example, in a reasonably busy repositor), a 300 Mbyte disk used as

OVS may fill tip in less than a day. It is highly likely that many objects in the repository will be

dormant for many days, weeks, or even months; copying them every day would be quite wasteful.

The OVS management policy will be relaxed such that only those objects that had their current

version actually accessed (read, or had a new version created) since tc - T will be kept in OVS,

where T is again the time it takes to fill tip OVS. With this relaxation, copying of dormant objects

is avoided. In addition, the copying process can be simplified. In particular:

i. it is not necessary to sort objects to keep track of which objects must have their current

versions or tokens copied as the OVS manager works on clearing OVS; the current versions

and tokens can be copied as they are accessed,

ii. no special demon process is neccessary to clear OVS; clearing of OVS is automatically

distributed over time.

let MC specify again the copy point. If MC = Mt-, (i.e., A,: - AC = 2n). an object will maintain

its current version in OVS only if a new version is created at least every T time units. If' A,. - AC

< 2 n, the version images of the current version and tokens that aic in this portion of OVS will be

copied in OVS when read. The bigger the distance between Mc and MI. , the less frequently must

the current versions he read to remain in OVS. An additional optimi/ation is possible: if the

version image to he copied is close to M t - (mod 2 n), then if one is willing to sacrifice the
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intervening storage, such a version image does not have to be copied, since the storage bctwecn the

version image and MF is in a sense already "cleared."

A version (token) reference is resolved as before: if AE - Avi _< 2n, the representing version image

is in OVS. In addition, when a version image of a current version or a token is read. then if Avi (

AC, a copy of this version image will be created in OVS. To improvc tle chances that the current

version is in OVS, at the time a token is committed, that version image should also be copied, if its

address is lower than AC. If a current version is not represented in OVS, the appropriate version

image is retrieved from the offline VS and written at the current end of OVS. Thus current

versions of objects that have not been read for a long time can be reinstilled in OVS with this

simple mechanism. Finally. it would be possible to provide a simple "rcfresh" process for those

objects that should always stay online. This process would periodically read such objects to force

their copying in OVS.

3.3 Adapting OVS management to an implementation mith %rite-once devces.

The two schemes presented in the preceding sections assumed that OVS is implemented with

reusable physical storage, that is, that new and copied version images simply overwrite those with

addreses lower than AE - 2n . This means, however, that the overwritten iniages must be preserved

at some other device that is a part of the permanent VS. Alternatively, the storage dc iccs used in

OVS can be the actual VS. When a device is filled tip, it is removed and stored ofline, and a fresh

device replaces it. Since the devices are written only once, VS can be implemntroed entirely with

optical disks. Unfortunately, the line lining, which is the major attraction of the schemes presented

so far cannot be achieved when OVS is implemented in this way since the OVS space can be
"reused" only by replacing an entire device. Rather, OVS should be viewed as being divided into

fixed-sized partitions, where each partition corresponds to one physical device.

To implement the same policy as the one used in Section 3.1, when the current versions of all

objects are to bc kept in OVS, it is necessary to have the minimum of three partitions. These

partitions, called here .OW space, MII)I)I. space, and HIGH space do not have to be of equal

size, hut for simplicity, let us assume that they are. Again, OVS will ;c managed as a circular

buffer (Figure 10). When the MII))l.F space becomes full, all the version images in the .OW

space will be purged and the spaces will he reassigned such that:

MIDDL)E ---- L.OW

lIIGII .--- MII))DLF

LOW ---- HIGHf
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object headers

OVV

LOW space MIDDLE space HIGH space

M M
C E

a) The middle space is full, it is necessary
to clear the LOW space

object headers

", size sz

CR ref R e

t4GHac 2 LOW space MIDDLE space

M CME

b) The current version of object 3221 was copied,
and the spaces were reassigned

cleared storage

- - - pointers to off line storage

Figure 10: Management of OVS: tripartite scheme.
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MF marks again the current end of VS in OVS: Mi. falls into either the MII)l)I- or HIGIH space.

MC points always to the beginning of the .OW space, it moves only \hcn tile spaces are

reassigned. To ensure that each existing object will retain an iniage of the current version in OVS,

it is necessary to find all objects that have their current versions in the LOW space. Copies of these

versions will be created in the NEW space, which is free at tile beginning of the purge of the LOW

space.

'Ilis s6heme reduces the sorting problem into a tripartite sort ..\ n object is logicall) mapped into

tile space which is the older of: the space that contains the last version image that represents the

current %ersion, and the space tlat contains the last %ersion image that represents the token, if any.

The conditions under Ahich an object moves into a higher space are similar to those for tile

previouls scheme. let Sc and St be the OVS spaces that correspond to the addresses Acv and At at

a gisen moment. An object is then mapped as specified b lable 2. where the ordering on the

spaces is I.OW<(NII1))I .<IIIG 1 . ihe possible changes in the logical napping of' an object into

the three spaces are illustrated in Figure I1.

Table 2: Mapping to OVS spaces

event: condition: result:
object is eligible to ,nose object is niocd to a mapping of ihe object to
io a higher space higher space OVS spaces determined

by

current ersion is copied object has a token and S <S Scv t S1
token is committed Scv(St S

token is aborted St<Scv Scv
token is copied St<Scv Scv

This OVS management scheme is not limited to an implementation with write-once devices. It is

possible to take advantage of the simplified ordering on objects required by this scheme even if the

physical OVS device is rcuseable.

If OVS is implemented with write-once devices, then although the physical storage capacity of OVS

is 2n words, OVS does not contain the most recent 211 words it' VS as before. This is because when

the L.OW space is reassigned its tie HIIGI space, the physical device for this part of' the OVS must

be replaced with a flesh one ind thus tie corresponding OVS address space does not contain valid

version images. In fact, on a erage. 50 percent of OVS %ill he empty. This has to be reflected in

the resolution or version references. I et us use another mark, NI, to identify tie oldest %alid VS

image in OVS: Mi, will point to the beginning of the I OW space. In this scheme. M, is the same as
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object header

CR

OVS

LOW space MIDDLE space HIGH space

M M [

a. Situatioti just prior to the beginning of a purge of the LOW space Object 3221 has
its current veision in the LOW space and a token in the MIDDLE space.

object header

M M
C ER

" ... --- OVS

c sze srze spa

3221 3221

C R ~ CR re R ref

LOW space MIDDLE space HIGH space

M M
C E

pointers to otffline storage

b. Situation just after the current version has been copied into tlhe ltlGH space.

Figure 1 1: Resolving the token problem.
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object header

, WY"I

OVS

HIGI I space LOW space MIDDLE space

c. Situation during the next purge The token of object 3221 has not yet been
committed, so it has to be copied into the HIGH space.

object header

_ -_- ovs

size size size

3221 3221 3221

12 t._.2 _L _
tCRt OR ret , ret

HIGH space LOW space MIDDLE space

M E  MC

cleared space

...-. pointers to ofline VS

d Situation during the next p-irge The token was committed, the reference to the
previously copied version is lost The former token is the only version of object 3221
in OVS.

Figu re 11: Resolving the token problem. (Cont.)
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object header
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ovs "

2 I t3

CR ref OR ref CR ref

HIGH space LOW space MIDDLE space

ME M

e. Situation during the next purge. The former token was committed, but a new version
was already created (and committed). Thus the former token does not have to be
copied.

object header

ni

ovs

size F size I

t 2  ti

HIGH space LOW space MIDDLE space

M M

E C

// cleared space

pointers to offtine VS

f. Situation during the next purge. The token was aborted.

Figu re 11: Resolving the token problem. (Cont.)
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M. but it will he different for the other cop) y lxliC), as discu,,,d below A version imiage is in OVS only if

AI, :5 Avi < AE.

If the management policy is to maintain in OVS only those current versions that have been actually

used in the recent past, it is sufficicnt to divide OVS into two partitions, LOW space and IIIGI

space. When thc current vension of an object is read, the address of that version image, ACV, is

used to determine whether this image is in the ILOW or the IG11 space. If it is in the LOW

space, it is cotpied into the IlIGI space. New versions (toketis) are created always in the IGHl

space, that is. MI" i n aps always into the HIIGtl space. The copy Iairk MC inus point to the
beginning of the IIIGIl space and. the mark MI. o he begiining of' t I OW spce. Again, if Avi

> A, the version illage is ill OVS. If i version image repesCentCs a citlrlCnlt ersion, then if Avi <

Ac, the version image will be copied.

These sOcnes rcsembilc real-time copying garbage collection algorithms. I lowever, in the context

of garbage collection, objects that atc not copied into the I II1I space are irretrie\ably lost fl(us,

any object to %Ahich there exists a valid reference must be copied. 'his would mean copying tile

entire histories of all objects in the repository. Thus although the bipartite (and tripartite) OVS

imodel and copying of version images was borrowed fron tihe work ol garbage collection, the

implementation details are significantly different. A copsinu "garbage collector" for large paged virtual

mernoi) that works in a sinilar way as the schemes presented here was reccnti proposed oi the I ISP machine, but the

details have not been worked out yet.

3.4 Online support for VS

As already discussed in the previous section, the physical support of OVS may be reusable storage

devices that are maintained permanently online, or just "reusable" de\ ice drives, where the storage

devices are replaced with fresh ones as they hecomie full. The latt r approach has the advantage

that the entire VS can be implemented exclusixely with optical disks. 'o implement the schemes

presented in Section 3.3, one device drive is needed for each OVS space. When the .OW space is

filled up. the device that contains the LOW space is replaced with a fresh device, and the replaced

device becomes part of the off-ine version storage. In particular, if the policy that only those
cunrrent, versions alnd tokens actually accessed are to( he mnaintained ill OVS is adopted, two drives

lire needed-, an imlplemenlation of OVS that uses this management ,hene will be examined in

norc detail.

As said earlier, the entire VS should be duplicated for stability. I lowever, since version images are

created oilly in one space at any timle, only one additional device drive is necessary, to dtiplicate this

space. 'Ihis duplicate is remtoved when that space is filled ip, and replaced with a fresh device that
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is a.-signed to the next space.

Finally if it is necesgery to read a version that is nol asailable in OVS, the respective device has to

be found and brought online. "llhis requires yet another drive. IFigure 12 illustrates the

implementation with the minimun number of device drivcs.

To a0void long delays due to the manual replacement of (he storage devices. it is necessary to add

one more drive. Two drises aire used for the I OW and II 1( 11 spaces ils before. and two drives are

assigned Io VS backup, hil the actual assignment on the drixes changes as illustrated in Figure 13.

IFach OVS space is divided into two equal parts, and each part is mapped into a dif'freni backup

de% ice. When the III l space is filled lalf'way, the hackup desice is 111 and (he backup is

rediiected to the other backup device. The Coll backup deice is replaced with I fresh device, and

once the IIGlHll space is Rill, this desice will become ihe new I1GHI space; thus ihe drive is

reassigned from the backup function to the "current VS" status. Basicall), at any time. the

assignment of the drives is:

current VS: I.OW space i od 4

111011 space 1D(i+ I)rnod 4

backup: low part of IHIGH space Ii+2)rod 4

high part of IIIGII space I'(i + 3)mod 4

when [he 111011 space fills ip, i - i+1

The same scheme can be impleiited with a retisable des ice such as a coimelionial magnetic disk

in the following way. Both partitions. (ie I OW and tile II l( ill space, can he mapped to the same

device. As tile spaces are switched, the ILOW space is sinply oerwritten. Of course, it is necessary

to ensure thal the version images that will be overiritten will not be lost from VS. If we assune

that all images are written twice for siability, tile second copy could be made in nonreusable storage,

thus guaranteeing that when the OVS desice is reused, ihere does exist another copy of each

overmritten ver ion image in VS. Iloweser. this does not ensure .l0ure stability, since once a

version image is ovcrwritten in OVS. only one copy will conlinuc to exis Thus if" it is required

thal the copies of all images are maintained in NIS. then either cvery image mulst be written Ihree

lines wlen it is created, or. ai copy of the I ()W space must he tmade in uonreiisable storage before

the I OW space is reused. lhe lattet look,, like a better solution. In patticular. as a fresh IIM01I

space fegins to fill up. the I OW space tan be copied onto another ,lesice (Figure 14).

The minimum number of ds.ice drises needed is the same as in the implementation that usCs

oplical disks only. Althoogh (N'S can he put now on a single dcvice. Imv devices are needed for
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Figure 12: Implementing OVS/VS entirely with optical disk's.
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Figure 13: Implementation of OVS/VS with optical disks;
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backup. Finally, as before, an additional drive is needed to bring selected pieces of VS online when

a rcfcrcncc to an old version that is not in OVS is made.

The need to replace the backup dcvice for the HIGH space creates again the problem of long

delays. lowever, this problem can be resolved without an additional drive. If a "dump" of the

LOW space to the backup device can be finished sufficiently fast, the backup device can be

removed before the HIGlh space fills tip. and replaced with t fresh device which will become the

next "current VS" device. When the "current VS" device is filled, the VS manager switches to the

other drive which already has a fresh device mounted. Now a fresh backup device needs to be

mounted on the other drive, it should be possible to pcrforni his operation and dump the current

.OW space before the IHIGtH space fills up again. Figure 15 illustrates the nanagement of the

device drives where the VS devices are twice the size of' the reusable OVS device. lo sat this

duplicated VS S)rstelm, the first backup device will be partialli emupt%, corresponding to the first dump of the I OW space,

which is initially empty.

Although it is possible to save one device drive compared to the implementation that uses only

nonreusable devices, the perfornance penalties for an interleaving of the normal operation of OVS

with the dump of the LOW space could be severe. "llie only real advantage of using a reusable

device for OVS is that it is possible to apply the more flexible moving window management

scheme.
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Backup device is full and can be removed

Figu re 15: Implementation of OVS/VS with a reusable device;
management of device drives.
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Figu re 15: Implementation of OVS/VS with a reusable device;
management of device drives. (Cont.)
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4. Management of objects

An object in the I)I)SS repository is an abstract type. The operations allowed on objects are:

create (pscudo-time, commit-record-id)

read (objcct-id, pseudo-time. commit- record-id)

create-token (object-id, pseudo-time, commit-record-id)

connit-token (object-id, commit-record-id)

abort-token (object-id. commit-record-id)

delete (object-id, pseudo-time, commit-record-id)

These operations arc necessar) to suppor the model described in Section I. All of these operations

are performed as part of sorne atomic ,c.ion. A token can be read onlh b the atomic action that

created it. Similari.,. t lil the creation of an object is coummitted. inl the atoni c action that

created the object should be alh ed to create a token for that object. lhe comnnit record reference

field in the object header can be used also for this purpose. When an object is created, this field

will contain a reference to the commit record of the possibilit) for the crcation: if a token is created

later under the sanie possibilit , the reference does not change. When the possibility is comrilitted,

this reference will be set to nil, regardless of' Mhether the object has a token. lhen a token can be

created only if- the commit record reference in the object header is either nil or is the sailc as tile

commit record reference specified in the create-token request, and the object does not already have

a version for the specified pseudo-time.

In addition to the external operations listed above, operations copy-cs (copy current version) and

copy-token are needed for OVS management, but these are only internal operations, a~ailable solely

to the object manager. Ioth the external and the internal operations must start at the object header.

Objects in the repository have identifiers that are unique both in space and time: all requests to

perform operations on existing objects must include the uid of the desired object. lle repository

must map the object uid into a physical address of the object header. The most straightforward way

is to have an object directory: this issue will be discussed in Section 4.3.

Since the object headers play such an important role. they should he stored in stable storage.

Ilowever, the object header is updated twice for each update of the object (create-token and

commit/abort token), and may be updated when the current version or token is read (extend the

end time). Finally, the object header is updated when the version image of the current version is

copied. 'lIe additional disk write for each update would represent a large overhead. Further, object

headers should be updated in place, otherwise it would be also necessary to change Ile map that
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associatcs the object uid with the object header address. Thus read-write atolic stable storage

would be needed, which is more difficult and expensive to implement than the append-only atomic

stable storage used for VS. In particular, tile two writes must be done sequentially. 'Tus the

decision is not to reflect all changes in the object header in stable storage: Section 4.1 discusses how

the object headers will be stored. Finally, Section 4.2 looks at tile problem of synchroni/ing

concurrent accesses to objects on the level of object representation.

4.1 Object headers

The object headers are stored on a nonvolatile storage dev ice that allows unlimited writes (e.g.,

magnetic disk). This device prosides Online I leader Storage, or 01 IS. Object headcs are brought

into main memory as needed, and tie changes made to an object header do not have to be

propagated into the copy in OIlS until the main memory Lsed by tie object header is to be

reassigned. Since tile current object headers might not be in stable storage at the time of a

processor craslh or a device crash, they must be reconstructable from the informnation that is in stable

storage, in particular, the infornmation contained in the version images. Consequently, the object

headers themselves become hints: they are not necessary to guarantee correct opelation, but of

course are very important for good performance.

The object header as presented in Section 1.2 does not contain all control information that must be

associated with an object. In particular, for accountability and protection, it is necessary to associate

with each object the owner's id and access control specification. The access control information has

to be checked for every remote request. It should be as eas) to reach as the informiation contained

in the object header: the simplest strategy is to include it in the object header. Ilowever, this

additional in formation mnst be maintained in stable storage. 1 lie approach used so far, that is,

inclusion of aill such information in %ersion images. is rejected for two reasons: first, it represents

additomnil (and possibly substantial) storage overhead. Second. it is illogical to keep write permit

inforimtion in red-onl.; versions. To make it stable without hai ing to maintain the entire object

header ii stable storage, the following strateg) is proposed.

I le object headers are maintainc, in OlIS, but .11IS is not stable (i.e., it is not duplicated). In the

crliunolop of I aipon and Slurpis, OIlS is ca,'cfid torap" 'The object header consists of two parts, stable

inforllation and a hint, as show n ill Figure 16a. When an object is created, and every time the

stlble iiillimat ion changes, the object header is crea ted (uipdalcd) in 0IIS after a new image of tile

entire object header (that is, including the hint infoli,ltion) is vliIten into VS. Finally. the object

header should be written into VS when all object is deleted. lhe infiirnation that the object has

been leleted has to be included in the object header: the access control specification field could be
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current version reference

ItINT current version end time
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size

type = 3

object uid object uid

commit record reference commit record reference

object uid object uid

current version reference current version reference
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b) Version image of an object header c) VS image representing an object header

Figure 16: Object header and its image in VS.
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used also for this purpose. Thus in addition to guaranteeing that this inibnination will not be lost.

the repository keeps a complete history of the changes of the access rights, which may be useful for

auditing purposes.

To create an image of an object header. the object header is simply treated as data, and the same

fields (envelope) are added as for version images (Figure 16b). Tihe CR reference in an object

header image refers to the commit record of the possibility under which the object was created.

deleted, or die stable information changed. Thus treating object headers in this way soles not only

the stability problem but extends the mechanism lor committing tokens to the rest of the operations

that modify the state of an object. In addition, the object may have a token, which has its own

commit record.

The object header images in VS ha e to be distinguishable from the version images and data

images: it must be possible to determine from the stored image itself that the data field represents

an object header. Thus object header images represent yet another tagged lypc of entity that can be

stored in VS. as shown in Figure 16c.

The hint information is guaranteed to be current only in the main memory. Once in a while, it is

written into OHS. and it is also possible to create periodically new images of object headers in VS

as checkpoints. Note that the images of the object headers will not be continuously copied in VS,

since in the normal situation the object headers will be read from OIIS: the VS images %ill be used

only during recovery.

4.2 Synchronization

The repository must be able to handle several requests concurrently, since most requests will require

one or more disk accesses. Also, the demon process of the OVS manager runs concurrently with the

processes that execute the requests. In some cases, it is also possible to process concurrently several

requests that pertin to the same object.

All accesses to indiiidtul object histories have to he negotiated at the object header: a single lock or

monitor is needed per object. Ihe most natural place for the lock is the object header. IHowever.

the locks nust be ",oft". that is. miust be atolnatically released by a crash, otherwise if the

operai,,n that set the lock w as ahoitcd b% a crash, the object c)uld renin ht.'ked onut. This call be

achieved by allowing lcks to he set onl, on the copies of the object headers in main m1emlory. but

this approach has a serious shortcoming. For easier memory managemnit, objects shoolM be packed

in pages. Since it is not possible to "expand" the object header to add the lock Mhcn the object

header is mapped into main memory, the object header must ha,,e a permanent "lock field". If
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locked object headers are not allowed to appear in OlS, the pages of object headers in main

memory have to be handled carefully: the) must n1ot hc "AritC-thtiuLgh", and they cannot be

automatically paged out by the ,irtual memory manager. at least nt.t %hile soime of the object

headers on the page have their locks set. Further, it is not possible to .trcc , nodified object header

into OtIS w%.hilC some other object header on the same page is locked. Ahernati ely. the locks for

each page of OiS could b- kept in i special data structure (a hit %ecior) in nadin nienor. Since

all object headers are of the same size. finding die appropriate lock gien the OIlS address of an

object header is not difficult.

The "automatic release of locks" after i crah can be acconplishcd in ,et anothcr wa.: the

recover process call simply ignore the locks set on the stir i\ ing object hcAders in OIHS, and clear

the locks as part of reconstructing the object heiders. I his assunies thin It normal p.o'essing is

allowed on an, object until the object header has been inspected b) the recomer, plso.cess: actually,

as will be seen in Section 0. a read request tht refers to a poIrtion of' the object history that is

accessible from the sur\ i\ing object header can be allowed to proceed, in spite of the object header

being still locked from the epoch before the last Lrash.

'lhe simplest locking policy is to lock the object header for the duration of each of the operations

listed in the beginning of Section 4, bit for miaximuml COnCotrCCY. Object headers should be locked

only for the shortest possible tii .. This corresponds to operations oin the object rcpreseltiont that

Inust le atomiC. I ocking Utuaranlces onl indn,ibit)t in the absence of failrL' Recomcrabilit. 1s provided by the

undcrlying VS systeni. The individual operations on objects must lock the object header as follows:

create: locking is not necessary since the object does not becoiue known until tie

create operation tenninates (returns objcct-id)

read: find the appropriate version; if it is still a token, test if it can be read:

change the end time if needed

create-token: i. test if this token can be created: if yes. modify' the object header to indicate

that the object now has a token (note: the VS address of the token is not

yet known)

ii. set the token reference after the version image of the token has been

written int(o VS

connuit-token: i. change tie current version reference and the current version end time

ii. clear the token reference and the related fields (tile token end time and the

comilit record reference)

abort-token: clear the token reference and the related fields

copy-vs: change the current ,ersion reference
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copy-token: change the token reference

Ihe cops ing (f version images, however, could cause problems when interleaved with execution of

the external operations, in particular, commit-token or abort-token:

i. If commit-token is executed while the current version is being copied, the OVS

demon could change tile current %crsion reference afier it has been changed to point to the

new committed token.

ii. If commit-token or ahort-token is executed while the token is being copied, the OVS

demon could change the token reference after it has been cleared to indicate that tile object

no longer has a token.

The latter is a lesser problem (on the first attempt to read such a copied token, it would be

discoxered that the token was committed and tie object header would be properl, reset), but it is

still annoying. An additional problem arises if the "copy when read" policy is adopted (Section

3.2). When a version image of thc current version or token is read and found to be past the copy

mark, tile OVS manager will initiate a cops operation. Now, if between the test for Avi < Ac and

the completion of the copy operation the same image is read again, it would be copied again! In

case of such a read and copy it is particularly undesirable to lock the object until the copy operation

is completed, since tile requested version image may have to be read fiom tile offline VS. To solve

this problem, two flags should be added to the object header: c%.copy and token.copy, to indicate

that a copy operation on the current version or the token is in progress. Subsequent read requests

can then proceed, but if the flag is set, the positive outcome of the Avi < AC test will not start

another copy operation.

hlhe copy flags are also useful in commit-token and abort-token operations. Before changing the

current version reference or the token reference field, these operations should check the appropriate

copy flag. If the flag is set, the conflict can be resolved in two ways:

i. Wait until the copy operation completes.

ii. Abort the copy operation; that is, prevent the OVS demon from changing tie current

version or token reference. Note that ihc ranicular version imarc (cop)) may have alread) been

writen into VS or wilt mciiably hc writien if it is already in some VS bulrlc: when the cop, operation

is aborted Iloweser. writing it into VS will not do an) harm, not esen with respect to object header

reconstnicmion after a crash.

Note that the create-token operation does not have to be concerned with simultaneous copying. It
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is impossible to copy the token before create-token terminates, and it does not matter whether the

token refers to the old or the new version image of the current version.

4.3 Object directory

'flle object directory in a repository serves two purposes: it locates objects actually stored in the

repository, and it serves as a forwarder if an object created in that repositor is moved into another

repository. For local objects, tile directory contains the OIHS address of the object header. For

objects that were mo\ed, it contains just the id of the new repository.

If the directory of some repositor) is lost or damaged, an exhamtive search o aIll repositories may

have to be condducted to tind an object known to have been crctted in that repository. tl'us it is

desirable to keep the directory in stable storage. The simplest Aay to accomplish this is to represent

the direcr as an object, with a reserved OIIS address, Since the dirCctory wvill be large, it will

hase to be represented as a structured object.

[he OIlS addresses do not have to change during the objects* lifetimes: thus the director) must be

changed only %%hen an object is created, m6\cd to another repository. or deleted. Still, even with

relati ely infreqtent changes, creating a new version of the entire directory would be very

expensive. lIowc er, it should be possible to take adsantage of the implementation of structured

objects: for each change to tie directory, it is only necessary to create a new data image of tile

afti.cted piece and a n e structured %ersion image that differs from the previous one only in tie

reference to the modilied piece. Since the size of individual pieces can change, the necessary

modifications can he kept pretty Iocalied, even if the directory is represented as a sorted list or a

tree. If an entry is added and tile size of the affected piece exceeds one page. it is simply split into

two pieces.

Requests received by the repository must contain the uid of the desired object. le OHS addrcss

of the object header is obtained from the directory. To improve perfoirmance it is possible to return

to the brokers also the OIlS addresses. These addresses can then be included in fuiture requests, in

addition to the object uid. I lowever, they are merely hinis, that is, it is not guaranteed that the

particul.r object can still be foind at that address when the request is received. Prior to accessing

an object, the object manager would have to check the validity of the hint by testing it against the

object uid in the object header. If the hint as received is invalid, a new hint call be sent back as

part of the response to that request. This kind of hint could be included also in the directory for

those objects that were moved into another directory.
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5. Maniagement of commit records

Rcpositorics mustl implcmcnt another abstract eltilo -- the commit record. A commit record

includes tile site of the possibility it represents. tilicot., aind a list of tokens (references to

tokens) created inder that possibility. Commit records are inutable entities: both the possibility

statc and the list of tokens mnoist be modifiable. While a commit record is still in an unknown state,

tokens can be addcd to (and possily deleted from) ihc list in the comnmit record. Once thc

possibility is completed. the state of it commit record is set to coilited or abortled and tokens can

only be rciot cd from the list.

The list of tokens ass cia ted %%ith each commit record isn onl an optimi'/ation: it is uot needed to

p reser e consistency its reqni red by tlie atolmnic actio in that c ieatedt l e possilhilit). Itach to)ken refers

to its commit record: thus 11lietler or not i token can be conm ertcd into a \ersion can be

determined by inquiring about the state of the commit reco id specified in this ic.fere nce. "l'Ih is

process can be sped up " ith the help of the token list: %l hen the possihilit. is committed or aborted,

all lo'cal tokens call be co)mmittcd or aborted immcdia tl.e. Another optlimi/ation is that it is

possible to delete the commit record once all of the tokens on the list have been processed. If tie

token list cannot be guaranteed to include all tokens created uider thait possibility, then Il commit

record must never be deleted, becatuse there is no other mechanism to itsuC that all tokens arc

informed about the final state oif the possibility.

In Reed's originial model IRI'II) 781. the commit record of a committed possibility is assumed to be

stored in atomic stable storage until all tokens oil the list have been reliably changed to versions.

Commit records of uncommitted possibilities (aborted, or possibilities the state of' Ihich is still

lunknow1n) do not haie tti Ie kept in stable storage: if' the ctoimiiminit record canonot be f'oumid, the

possibility can he assunied to have been aborted. LIufortmately. when the remo ery of the

rcpvtbtories is considered, lhe list of tokens iii a commit record is not sufficient to de(eniine l wll a

commiit record :an be deleted. i the l)resenit iiodel, the coinversion of tokenis into \ ersitins is done

merely by changing the references in the object header, anmd, as discussed in Section 4, the object

headers are not stable. As it will be seen in Section 6, for rectvery purposs, it is neces.sary to be

able Ito determine the state of a, possibility for it long time a fter all the tokens i a%e been comertcd

into versions. This incaus tll at tmmillcd coimiit records mil never i.'omple(ely disappear from (lhc

repository Sectitm 5.1 presents it s eh (it accom)lishes this by represemi i|ng commit records as

obices. A conse(uence of the cthosen represcntation is thlt the token lists i .d never be stored in

stahle storage. [he fact that tihe token list does Ilt haloe It) be staible simplifies also the

implementation of distribunted possibilities ats discussed in Section 5.2.
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5.1 Representing commit records as objects

For stability, commit records can be mapped into VS. Since nothing ccr disappears from VS. a

commit record can be reconstructed even after it has been deleted at the level of abstraction

implemented by the comnmit record manager. Commit records could be represented by yet another

type of stable entity (similar to the object header image), or, h11cy could be represented as objects.

Implementing commit records as objects has the adantage that all externally accessible entities in

the repository can be located and access to them controlled by the saine mechanisms. On the other

hand. the object abstraction needs to be extended to facilitate implemientation of commit records, as

will be seen later.

l'here are several possible ways to implement commit records ats objects. The fillo ing approach

was chosell becattse it tili/es best the mechanisms alread3 present in the object model. When the

repository receives a request to create at commit record, it creates ain object. The objects and tokens

created under this possibilit \ ill use, as their commit record refercnce, the aid of' this object. Since

creation of objects also must happen under some possibilit), it is ncccsar) to supply a commit

record reference (br the object that will represent a coitl it record. Recall that mhl\ coriiiitt record

refcrence appeas iii both the Ot1S image and the VS image of the object header when an object is created Creation

of a commit record can be committed immediately. Thus a simple soltion is to set the commit

record reference for a commit record object to nil, to indicate that such an object is implicitly

committed.

ki:ch stable image of a commit record contains the state of the possibility. The commit record

reference in the version image of an object representing a commit record is again nil. In this case,

however, nil commit record reference does ,ot nican that the ersion ilge is implicitly committed.

Rather, stch a version image refers indirectly to itself: the actual stmte of the possibility, and

consequently of the representing version image, is embedded ill the dat field oif that version image.

It might he more suggestive to let the commit record reference in %crsion images of a commit recoid refer to the commit

record itself, but it is easier to test for a nil reference than to detect such a circular refelence.

As will be seen in Section 6. the "ist of tokens associated with a commit record does not have to be

stored in stable storage, since it is only a hint: it is not needed for recovery. If the repository

crashes, all objects will be recovered individmally by locating their latsl %ersion images in VS. In

this process, the object mamager will determine whether a version image represents il crsiom or a

token by inspecting the appropriate commit record: this nmust be done een for those version images

that have earlier been determned to represent cotmitted %ersio, s. I hit, if the repository crashes

after a possibility was committed btt before all (if the tokens have been ci m ,erled int %ersions, it is
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not necessary to resume or restart the conversion process since it will be finished automatically as

part of recocry of the individual objects. The only reason for including the token list in a ,,utblc

image of a commit record is io aid in crror detection: prior to converting a token, the token list can

be used to verify that this token is indeed part of that possibility.

The representation of a commit record is shown in Figure 17. In addition to creating an object as

the commit record representation. the create-commit-record operation creates also a token for that

object. Then tile wailing for tilei outcome of t posibility can be accomplished through the already

existing illeclallism: a pr.css ,auempting to read Ole commi record ohjcci will find at token, and

c)nsequently the read operat ion "ill be dcLi, ed umlt the token is either comntiitted or aborted. To

Colinllit a pIossibilit. the eolnltnit record in.in.ger creates the last \ersioi itiage Ir the commit

record object that hI the Ip,,ssihilit. state ill ie d.ita field set to cotiiitc(d this is t committed

%ersio i which al1so counltits .,ll the preceding iokeis. No%. if thc possibilit\ is aborted, it should be

suftficient to abort the tokens of the commit record. For easier recomery fron crashes, howewer, the

colnit record manager should. atier aborting the existing tokens of the commit record, create a

stable %ersimn with the possibility slate set to mborted (I Figure 17c). Iillatll.. athough deletion of all

object is merely a deletion of the object header, it is still imp' rtan It) he able to delete commit

records, since OIlS is limited. With the chosen reprCsentatioI, commit records hat\e to be explicitly

deleted even if a possibility is aborted internmlly. by a repository crash or bccuse of a timeout.

The conimit record imnager should delete a commit record after it has processed the associated list

of tokens. Such it deletion is again implicitly committed. l'hus the VS iiiage of the object header

created by the delete operation will have the commit record reforence set to nil. If ie repository

crashes before the comnmit record could be deleted, tie commit record object wilt be recomered; it

should be deleted as part of the recovery.

The present object miodel does not permit creation of another token and its conmmitment if the

object alrealy has a token. Since a token of a coininit record cannot be turned into a version with

tile existing mechanisms, it is not )ossible to create the final version of a commit record as

dcribed above. It would be possible to add another operation, create-version, that would ignore

tie token, but at more general solution is to extend the object model such lilt it illlOlkS creation of

more than one token for the same object within the same possilbility. As presented in the beginning

of Section 4. (tie object imo del already atlows, within the san e possibility. creaitn of a tokenl for a

newly created and uncommitted object: the extension needed to support ultiple tokens is very

simple. To create another token, it ersion image is created as for the first token, but tile "previous

%ersion" field in this \erion image must reler now to the preceding token (Figure 18). The token

reference in (lie object header is changed to point to tile ,ersion imge of the iew token. 'llic

commit record reference is tchanged since the new token is created under the same possibility.

52



object uid xx

CR rel ~nil
repository id

access controlposbltsae
specificationun ow

a) Creation of a commit record

t2 Co+trcr objaecotued poeaibillty =

spfaien7 Rersnaink owa committrcr sa be

* 53



c)ke Co m reor nil an iotdl osblt

Figure~ ~c 1omm: Rereenato of an omt reordsinbojet.iCot.

54



a)2 Crainoftefrs oe

IR

I I
b) Multiple token

Figure 18: Creation Of Multiple tokens for an object with in the Same possibility.



xV.

t4 +
nil 

2t1

n il C R 2 C 2

CR!

c) Possibility committed

Figu re 18: Creation of multiple tokens for an object within the same possibility.

(Cont.)

56



When the possibility is committed, this entire chain of tokens is committed at once. This does not

require any changes: the current version reference becomes dhe reference to the last token, and the

token reference is set to nil. Similarly, when the possibility is aborted, tie cntire chain of tokens is

aborted. This extension to the object model ftacilitates checkpointing of commit records and data

objects in general: as an extreme, commit records can be made stable throughout their lifetime. To

achieve the latter, every time a token reference is added, a new version image (token) including the

current list of' tokens would hawc to be created for the commit record. Ilowc\er. special care must

be taken when a token is copied by the OVS manager. First, only the lates token (which, if

comnited, will become the current 'ersion) shotuld be subject to cop)ing. Second. if a copy-token

operation is in progress, it should be completed before an additional token can be created.

Commit records represent yct another problem. Once the possibility state is set to commmitted or

ahorled. it miust iot change in the Iutture. It1 comlmit records are represented as objects, this means

that it must not he possible to create another ersion of tile representing object. This restriction

miust be enforced by the commit record mnmager, btc it is aided on ihe object level by the access

specification field, which can be set to restrict the right to update the representing object to the

owner, that is. the repository.

5.2 |Distrihuted possibilities

For a distributed possibility, that is, a possibility that includes objects in more than one repository, a
p~rimihn-1' comlmit r'ecord is created in one repository, and comtllt rc(-or,l treli-retahlives. are created in

each oflhcr repository tat contains a token for this possibilil (Figure 19). When a possibility is

committed or aborted. this state is eneached in the commit record representatives in all involved

nodes, and the conunittment or deletion of tokens is done locally.

"ll~e introduction of commit record representatives complicates the protocol for commiting a

possibility. 'o be able to rely on tie token lists in deciding when to delete a commit record, all

representatives with their lists of tokens must be first forced to stable storage before a decision can

le made whether the possibility can be committed: a two-phase commit protocol is needed. An

alternative solution is to trcat the token lists in the representatives only as hints, and rely on die

dual mechanism, that is. the commit record references embedded in the individual tokens. A

protocol of this kind is outlined below.

Commit record representatives can be implemented in the followitng %ay. To create a commit

record representative, tie repository creates again an object %ith nil as the commit record reference

(implicitly coumnitted). In addition, it creates a token for this object, with tie uid of the primary

commit record as its commit record reference. All local tokens for this possibility will refer to the
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object Ahich is the local representatie. When the final state of' the possibilit) is known, the token
t of the commit record representati e is either committed or aborted. If nothing else is done. then

during crash recovery., it Aould be necessar. it inquire again abit [li the state of (he primary commit

record, and primary comnilt records would ha e to be maintained (be easil accessible) forever.

Thus it is desirable to encache the state of the possibility loca;lly in such a wa that crash recovery

cal be confined to the failed repository. Again, it is only necessary to create a committed \ersion

of the commit record representative %ith the final state of the possibility (committed or aborted)

embedded in it, the commit record reference in this \ersion is now nil.

The actual protocol for distributed possibilities is sunmnalrizd below:

1 A4en , ncumuanio phase: A repository receives a request to create a token fior object x and

examines the colnlit record id conttined in tile request: this is al\,ays the id 0' the primal) colnlnit

record. I' tie respecti\e object does not already hi|\e it committed \ersion for the specified pseudo-

time, or another token that "was created Under a dill'rent possibilit , the repository proceeds to

create the token. ite cicale-token opetanon still ci1 f:il, if the relioilor. finds ou that the possil'ilit specified in

the reWLpIUS has alreads been committed or aborted If this repository does not contain the primatry commit

record, it checks whether it already has a representati'e fior this commit record. If not, it sends a

request to tie primary commtit rectrd for ,t pernit to cleate a local reprcsentat ie. It' approved, it

creates tile representatis e. Once the local commit record representatie is located or created, the

repository creates the token for object x and sets its commit record reti'rence to the id of the object

that represents tie commit record.

When the request to create a commit record representatise is aplprosed by the prin'iry commit

record, a reference to that commit record representative, or, more precisely, a reference to the token

of the representing object, is added to the list of tokens of the primary commit record. Note that

obtaining an approval from tile primary commit record is again only an optimization.

If a repository fails during the token accumulation phase, the list of tokens, if it existed only itn the

main memory, is lost. "liis does not mean, however, that tile entire atomic action mluSt be aborted,

since the representing object is guaranteed to sursise the crash. The oils complication is that the

tokens (including the tokens of the representatives in other repositories) will have to be converted

individually, as other atomic actions attemlipt to access those objects.

(C'ngppIi poin." Requests to commit or abort it possibility must be sent to the primary commit

record. When the repository that contains the prinmary commtlit i ecord receives such a request, it

creates at version image of the primary commit record, with the possibility stale being either

committed or aborted. 'Ihis sersion image may co itain also the list tl" local tokens and the

59



references to the tokcns of the representatives in other repositories.

('oversion of tokens: After the commit point, the tokens at the same repository as the primary

commit record are removed from the list and converted into versions or aborted. A message

specifying the final state of the possibility is sent to each repository that contains a representative for

this commit record. [ach such repository, when it receives such a message. creates a version image

of its local representative: the possibility state in this version image is set to the same %alue as the

state in the version of the primary commit record. The repository then replies with a commit-ack

message to the prinwry and starts converting the local tokens and removing them from the list of

the local representative.

Delelion of coinmit recoi rdpresentative: When all local tokens in the list of i commit record

rlI)resentati%e are reniomed. the commit record is deleted, and consequentlI the representing object

is deleted. This approach should be tblowed even if the posssibilit3 has been aborted.

I)eletion of the primary o tiili recotd: When the primary record representati e receives a commit-

ack message from a representati~e. it removes the token reference for this representative from its

list. The primary commit record can be deleted when its token list is empty.

Determining the state of a token during noral operation: I'o determine the real state of a token,

the conmmit record reference in the token is used to find the local commit record representative. If

the local object representing the commit record still has a token, then if the commit record

reference in this token is nil, this object represents the primary commit record and the state of the

possibility is still unknown. Otherwise, it is necessary to inquire at the primary commit record.

which is specified by the commit record reference. If the commit record has a committed version,

the state of the possibility is known locally, and is embedded in that version.

A repository should maintain a map from the primary commit record ids to the ids of the local

commit record representatives. This map does not have to be stable. According to the protocol

above, if a local commit record representative is not found through this map, the repository must

send a request to the primary commit record to approve a creation of a representative. If the

primary commit record contains a reference to a representative at that repository, its id (the uid of

tile representing object) will he returned. If the repositor )containing the primary commit record

Iailed also and lost the token list hut the atomic action continues, the requesting repository may

receive an approval to create a new local record representative. This umeans that a repository may

have ihore than one local representative for the same possibility, but the mechanisms of the object

model and the particular implementation of the commit record representatives still guarantee

consistency.
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6. Recovery

At the core of tile reliability measures adopted for the repository is the distinction between stable

information and hints. A hint is information that is not essential for correct finctioning of a

system, but is important or cven essential for good performance. In the SWALLOW repositories,

all infirmationi in main memory and in OiS is considered to be hints reconstructahie from the

information in VS. The inlegrit) of intonnaion stored in VS and 01IS is assumed to be testable:

this is acconplished by associating a checksum with cach page.

Since during normal operation. the repositorN relies primarily on the hints, it is also im portant to be

able to check the integrity of the hints. A checksum could be used also on each page in main

mflemlory, but since most hints (tihe object headers) change frequently, it is Iot l't~sihle to recompute

the checksum fir each such change. In most cases. however, the %alidity of hints can be tested

against the inlitrination in VS. F~or example, the current version and token reference fields of the

object leader must contain a VS address Avi which is:

i. valid in VS address space,

ii. Avi ( A,.

iii. the object uid contained in tile First word of the version image represented by this

VS imniage matches the uid in the object header.

Only the last test is necessary to ensure that the accessed entity is indeed a crsion of the given

object, but the first two tests can save time. since they can catch some errors without having to

access VS.

The bulk of this section concentrates on the problem of recovering objects from system crashes and

storage device decays. It is assumed that a system crash invalidates the entire content of the main

memory. 'llie major part of a crash recovery is reconstruction of object headers, since tile current

state of the recently active objects may have existed only in the main memory.

If [lie latest version image (die current version or a token) of an object is known, all older versions

can he found by following tile chain of references embedded in tile individual version images. If'

this in formation is lost (when the current state of the object header is lost or damaged), it is

necessary to find this version image by searching VS. Ihis is why each version image must include

the uid of the object of which it is a part. If each object is guaanteed to have at least the version

images of the current version and tile token in OVS, a backward search of OVS will find the

beginning of all object histories. Otherwise (lie search must he extended to the otlline portion of

vs.

61

-W



'Thc recovery process must examine every VS image, starting from tile end of VS. Illc issues of

how to find the end of VS and how to isolate individual VS images on a VS pagc are discussed in

Section 6.1. Section 6.2 presents an algorithm tor reconstructing the ohject headers flom the

information in VS. Section 6.3 describes how recovery of individual objects can be distributed over

time, triggered by an access to an object. Section 6.4 discusses the effect of a failure of a repository

on the communication protocol between the repository and the brokers.

6.1 Retrieval of VS images

Before recoery of object headers can begin, it is necessary to find the current end of the %ersion

storage, that is, tile address of the latest page written into OVS: the mark Nil can be viewed as

pointing to the end of this page. [his address could he found by searching from the lo end of

OVS or from the cop. mark, in the direction of increasing VS addresses. In some of the OVS

management schemes, these other marks are implicit. and thus no additional precautions must be

taken. To remember tile end of VS reliably, the mark Nil: \ ould ha e to he kept in stable storage.

Otherwise, Nil ., can be found by searching for the first "free page." On an optical disk. this means

the beginning of tile area that has not yet been written. On a imagnetic disk, each page, as released

by the OVS demon, could be marked as "free." Such information provides a useful check in

general: before the version buffer in main memory is written into VS, tile specified OVS page

should be checked if it is free.

The failure might have occurred between tile two physr'al writes in the duplicated implementation

of stable VS. If tie latest page as written to one of the devices is found correct, tile VS write can

be completed, that is. that page is written also to the otler de\ice; otherw ise that page should be

marked as had, and the end of VS set to tile end of the preceding page (tile latest page on tile other

device). No external request (that is. a request from a broker or another repository) for which some

infio'na!ion has to be written into VS is acknowledged until hoth \ rites complete; thus ifia (dual)

VS page is declared had because the second write did not col plete correctly, no h,,rm is done.

I lowever. if the write is completed during recovery, the create-token requests that caused creation of

VS images on that page cannot be acknowledged, since the repository lost all information about

these requests. The original requestors may retry their requests, in which case tle recovered

repository will send back ;in acknowledgement. as discussed in Section 6.4. Otherwise, the

individual tokens oil that page eventually will be aborted because of a timeout. Copies of version

images made by the OVS manager will be found and incorponted into the chains representing tie

object histories by the main recovery process.

The next problem is to isolate the individual VS images. I'he scanl of VS should proceed from its
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high end towards tile low cnd-, for individual pages, this means from the cnd of a page towards its

beginning. This means that the size field should be at higher-address end of a VS image. Since for

normal use, the position of the size field must be computable from the VS address contained in a

version or token reference, this implies that VS images should be stored so that their first word, that

is, the word specified by those references, has the highest VS address. Finally, if a page is not

completely filled when written into VS, a dummy data image should bc created in the unused space.

This dummy data image will be discovered only during recovery, but it will be automatically

ignored since all data images are ignored during recovery: only the si/e field of the representing

VS image is used to get to the beginning (f the preceding VS image.

6.2 Reconstruction of object headers

Since most repository crashes will not damage O IS, the recoN ery process can use OIlS image as the

starling point. As stated earlier. it is assumed that a checksum is associated with each OilS page. and that it is

sufficient to test the integrit) of ihc ohject headers on the page. hlie value of the field that specifies the end
validity time of the current version in the object header in 01-IS provides a logical delimitation for

recovery: only if some version (token) was created after this time (this would mean that the OHS

image was not updated), the hint in the object header must be updated (reconstnicted) from the

information in VS. Unfortunately, because of the copying of version images in VS, there is no

simple unique mapping from time to a physical location in VS. Thus only the current version

reference AcV and the token reference, At, in the surviving object header are useful: VS must be

searched only as far as the higher of these two addresses.

If the object header in OIlS is damaged, VS must be searched until all of the following is found:

1) a version image of the current version

2) a version image of the token (if any)

3) an image of the object header.

If the OIlS image is not damaged but is merely obsolete, it is only necessary to find the first two

items. If the found image of the object header precedes the version images of both the current

version and the token (i.e., it is the latest entity in VS pertaining to this object), the object header is

recovered without any further search. If a version image of a token is found first, it is not necessary

to search for a version image of the current version, since a reference to it is contained in the token.

Ilowever, if a version image of the committed version is found first, it could be a copy, and thus it

is still necessary to search for a token. Moreover, this version image does not necessarily represent

the current version! This can happen if the current version had been copied while the object had

had a token, such as in I-igurc 8b, after which the token was committed hut not copied.
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Fortuinately, these two anomalies arc mnutually exclusive. Thus, if* tie first version imiage Nil_ (hues,

in VS), found for it particular object rcprc~scnts at committed version. it is necessary 10i conilue tie

search until at version imiagc viX that represents a differeni version or at kulid ( not aborted) token is

found. If an iiagc of' thc object header is found next after kil ., then s'iX is the \ersion imlage

pointed to by the token reference. if not nil, thc current version reference otherwise. Now vil
represents (lie current version if-

1) viX represents a token or

2) ts(viX) < t5~ 1 )where ts is thie start validit time of that version.

If ts(\iX) > Q~vi ). thenl %ix is (lie cuirrent version and the object does ilot have a toke~n.

A token representation is indistinguishable From a version representation. 11' there cx isis a reference

to %ersiin imiii age X ill another crsi n imnage, X mnust be it commInit ted \ersion. IBut itI' at ersion

image is retrieved without such context, to distinguish lbet een a committed \ersioii and it token. it

is necessary to check the commit record, or, miore specificall , the local commit record

represenltative. T[his is wily a version imiage of it token tand consequently, at version) must contain

thie iid of its commit record. Also, when an image of anl object header is found, it iniq hai e been

wArit ten in to VS ats part of anl operationi tliat has not yet beeni comminit ted. Recall that a V S image of

tie object heaider is made when the oIbjcts status is changed: the object is created or deleted, or

its access specificationl is changed . /\gain, it is necessary to use the commit record reference in thie

object header image to determine theC state Of the possibility tinder whicli(the status of' the object

was to be changed. lTus anl important part of' reconstructing the object headers is finding the

appropriate cominit records.

Since comit records are repiresented by objects. they must First be recosered by the samec

mnechanism as objects representing clients' data. F lox~e\C erl a die time of at crash, at large portion of

the comimit records that will has e to bie inspected during recoery hase been pr-obably deleted.

Thliis mleanls that their object hecaders were written into VS, iiarked ats deleted. [Ilie repository does

not has e to recover deleted objects (given that the deletion was coimmnitted), but it mnust temlporarily

recover deleted commit reciords, .'o [flat oilier oibjects canl lie recovered. Since VS images of' object

headers are easily distinguishable (t lei r comnmi iit reciord ire t'renice is i ), thle hiandlIinig of' deleted

commit records does iiot refpresentit amlajor problem.

Th'le co py ing oif e rsio imii, ges by tlie ()VS manrage r cion p1icaites also the reconlist on of the

relevant comin iit records. WVithIou t copying, th e commi iiit recorid of' a poissi bili ty t hat reached thie

finial state would lie guaranteed to be rcosci-ed lilior to all \ersioni images and object header images

created utider tdat possibility. When at conuiited version image is copied. it gels "ahead" of' its
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commit record, that is, the recovery process will find that version imagc befbre it recovers the

cornmit record. This can happen even if the copied version image is still a token: if the copying of

the token occurs just before the state of the possibility is finalized, tile copy of the token and the

version image of the commit record may end tip in different VS buffcts, and bc written into VS in

the reverse order. The images of object headers are always ordered correctly in VS, since they are

read from VS only during recovery and therefore arc not copied by the OVS manager.

The search process sketched in the beginning of this section must be expanded to take into account

the problem of recovering the commit records. It is assumed that only the final state of a possibility

is recorded in stable storage. Also, if the recovery process does not find a 'ersion representing the

final state of ,i given possihility, it cannot abort the possibilit. , since the reconstructed local object

might he just a represcttative of the commit record.

Again, the exact recovery of indi idual objects depends on in what order the \arious relevant

entities are found:

0, The first entity found is an image of the object header:

Since the VS images of' object headers are not copied in OVS, then if' the changes to the object

status as reflected by this object header image were Iinali/ed (committed or- aborted). the

appropriate commit record version must have been already found by the recovery process. If it

has not been bund, the possibility is still in uniknown state, In any case, the current version

reference and token reference in this object header image can be Used to rebuild the object

header in OIlS. If the fIund object header image is not committed, the version reference in this

image can be used to find the preceding VS image of the objcct header which contains the

correct stable informnation for this object.

0 The first entity found is a version image: call it again vi1 :

1. The commit record foir this version image has already been reconstructed. This can happen

only if:

a. vii. is a committed version that has not been copied, since this is the first image found,

the object does not have a token.

h. vii. is an aborted token. Embedded in this token is a reference to the current version;

neither the current version nor the commit record for the current version have to be

searched.

2. 'Ilbe commit record has not been reconstructed yet. This can happen if:
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a. "k final version of the commit record has not been created yet, thus vii. represents a

token.

b. vii. represents a committed version that was copied by the OVS manager.

c. vii represents an aborted token that got ahead of the final Nersion of the commit record

due to the nonsequential management of the VS buffers.

To resolvc this uncertainty, it is necessary to continue the search of VS until one of the

following is found:

i. A version image of the commit record:

- If the embedded possibility state is unknown, vii, is a token, and it contains a

reference to the current version.

- If the enbcdded possibility statc is coinitted, vii. is a copy of the current

version; it is still necessary to search for the possible token. 'S

- If the embedded possibility state is aborted, vii. is a copy of an aborted token. vii.

contains a reference to the current version, and the object does not have a token. I
ii. Another version image, viX, created under a different possibility than vii (this

restriction is sufficient to handle correctl situations wlhere vix is just another copy of the same version

image, and also the cases when mulliple tokens were crealed under the same possibility):

- If ts(viX) < ts(vil) then vii. must be a token. I-mbedded in vii. is a reference to

the current version- this is not necessarily viX , since %iX cotuld be an aborted token

or a no longer accessible copy of an earlier version.

- If ts(vix } > ts(vil), then vii. must be a copy. If viX is a token or an aborted

token, then vil represents the current version, otherwise it is a copy of the

preceding version. Thus it is necessary to continue the search of VS until the

commit record for viX is reconstructed.

Finally, the object hcaders contain the end time of the current version and the token; this

information also must be ieconstrtcted somehow. If atn ohjcct has a token, the end time of the

current veision must be one "tick" less than the creation time of the token. The end time of the

token, and if an object does not have a token, then the end lime of the current version, ought to be

set to the current time, that is. the time when the object is recovered.

6.3 leal-li|ne recovery

'l11e acttal recoery process should e ais elbltient as possible so that (le delays experienced by ie

clients will n it be noticeable. The reposilor) can limit the extent of cra'h recovery thlrttgh special

checkpoints. In addition, rat her than rec|ovcring all objects in the t eposit ty before restumning

normal processing, recovery can he dislribttled over time. In particular, individual ohjects can be
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recovered as they are accessed.

For this, it is necessary to be able to distinguish tie epochs between different recoveries. Thus tile

repository should maintain, as part of its state, the current recovery epoch number, RIN. ery

time the recovery process is started, the repository is assigned a new RIN such that these numbers

monotorically increase in time. REN must be included also in each object header. When an object

is created, it is assigned the current RFN. When an object is accessed through any of the

operations listed in Section 4, then if its OIlS image is not damaged, the RFN in the object header

is compared to the current RN of the repository. If they di ffer, the object hcader must be

updated to reflect the changes since tile time the object header was "ritten into VS during the

reco ery epoch as given by its R'N. If the object is locked, the lock is simply broken: the locks

must he honored only if the object R UN and the current reposior R :N are the same. If an object

is not used for a long time, several crashes (and recoxeries) could have occurred since the ohject was

created or recovered. However, since such an object has not been recovered earlier, it could not

ha~e been used (read or written) since the recovery epoch given by its IN. and thus to recover

such an object. it is not necessary to search VS from its current end, but only ('ro1 the point that

corrcsponds to the end of that epoch.

Thus. tile recovery process should, at the comnencenent of a recovery, " rite a mark into VS that

specifies the beginning of a new recovery epoch. For quick location of' these marks, the) should be

chained together as are the histories of individual objects. Thus the reco\er) mark can be

represented by an object: if the object header in O IS survi~cs the crash. the last version is easy to

find, and the new version of the mark can be created with the reference to the last one immediately.

If' the object header of the recovery mark is destroyed, it is necessary first to search VS for the last

version version of the recovery nark. The object header of the rcco'ery mark is modified only

during recovery, and it should be f'orced immediately into OILS. Ihis guarantees that the correct

information is always in OIlS and thus should survive most crashes.

When an object is recovered, its RUN in the reconstructed object header is set to the current REN.

Also. a VS image of the object header should be created: this %ill delimit the extent of the next

recovery should the OiIs image be damaged. In such a case, the recovery must start f'romn the

current end of VS.

In the process of reconstrulcting an object, il is again necessary to reconstrtc tie appropriate

comlit record(s). Since atonic actions survive repository crashes, the fact that te final version of a

commit record is not f'ound in the same recovery epoch is tie object in question does not mean

that the state of the possibility has not been resolved. But since a, cohmnit record is also an object,
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an attempt to access it will direct automatically the recovery process into the right recovery epoch.

6.4 Communication %%ith brokers

A failure of a repository can also affect the brokers. It is the resposibility of the brokers to

supervise that requestcd operations are indeed performed by the repositories. If it broker does not F

receive t reply from a repository, then unless the requested operation is not important for correct

completion of the given atomic action, the bioker has two options:

i. abort the entire atomic action, or

ii. repeat the request.

Now, of couee it is possible that the first request was received and processed by tie repository, but

since all operations supported by the repositories are idenpotent (if they carry the same pseudo-

time), duplicate requests do not represent any problem. The only complication arises if a message

from a broker containing data for a token is delivered in pieces. Unless the entire structured

version image was already created, if the request is repeated, the previous iicomi)lete message must

be discarded, since the partitioning of the repeated message ma) be different from the previous one.
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7. Summary

Figure 20 summarizes the structure of a SWALLI.OW repository as a lattice of abstractions. A more

detailed description of the structure is given in the appendix. The entire design of tie repository is

centered around the Version Storage, which is tile only stable storage in the repository. In a sense,

VS is similar to the transaction log of database management systems IGRAY 79. IHowever, there is

an important difference: VS is used not just for recovery, but it is %here tile actual data are.

VS contains not only the versions of objects, but also the commit records and images of the object

headers. Ilovever, the name Version Storage has been retained, since:
I.

i. commit records are represented by ordinary objects (and thus VS contains their t

rcrsions), and

ii. the object header images are in fact selected versions of tile state of individual

objects.

VS is append-only storage, in accordance with tile basic object model. It proides a linear paged

address space " ith a straight forward mapping from the VS address into a location on the physical

device. VS is duplicated for stability, but since no update in place is possible, the two required

writes can be concurrent.

Since VS may grow very large, it is impossible to maintain the entire VS online. Only the upper 211

words of VS are kept in the Online Version Storage. OVS would thus contain tile culrent versions

and tokens of the recently u)dated objec s. To make sure that tie current versions of most objects

are found in OVS, it is necessary to copy occasionally the images of current \ersions and tokens to

the high end of VS. The most reasonable policy for managing OVS seems to be to copy a version

image when tile repository is processing a read request involving a current %ersion or a token and

the representing VS image is found to have a lower VS address than the copy mark. This policy

prmcr"es locality of reference. and automatically brings back online the current versions of tile

objects that have not been used for a long time.

OVS can be implemented with a reusable device, or with write-once devices. hle latter form

simplifies the transfer of version images from online to offline storage. The delays due to manual

device replacement can he eliminated through a circular assignment of device drivers to different

fumctions in the implementation of OVS.

The crah recovery of tie repositories is based entirely on the information contained in VS.

Current contents of object headers, although the object headers are the key celelenls in all
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Figure 20: Structure of the repository.
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operations on objects, are treated as hints that are fully reconstructable from the information f)und

in VS. Since the commit records are implemented as objects, they arc reconstructable by the same

process. Finally, the object directory is an object itself and hence reconstructablc from tlhe

information in VS.

This report presented only a skeleton for the design of the SWAILIOW repositories. Many issues

were touched on only very lightly, and some important issues have not been addressed at all. In

particular, performance of OVS under the proposed copying policy necds to be evaluated and the

sketched algorithm for reconstruction of the object headers ought to be analyzed more formally for

possible inconsistencies. Some of the additional issues are: V

i. Virtual nenjory. It has been assumed that both VS and Of IS are di% ided into pages,

and that pages from both are brought into main lemory on demand. So lir, OIIS and VS

have been treated as distinct address spaces. This means that to implcment %irtual memory

their pages would ha e to be mapped into main nienory in different ways. Alternatively,

OfIS and VS can be made part of the same address space, e.g., MIlS can be the lowest k

words of that space.

ii. Communication with brokers and other repositories. Objects can be sent to

repositories in pieces, subject to the constraints imposed by tile communication substrate

and commlunication buffer capacity of the receiver. Although the rcpo,,itor can deal with

pieces of any size (if they are too big, they will be broken up further befire being stored as

data images), better performance can be achieved if the comnniticalion substrate already

delivers pieces of the right size; the optimal size is the size of a pap, minus the amount of
storage needed fri the size field and the type tag which are added %len a data image is

created.

iii. Protection. It is assumed that object versions in the repository will he stored in an

encrypted form, where encryption provides the only kind of' protection for read accesses

IR 'IT) 801. Some protection against modification is provided by fhe immtiability of object

versions, but it should be possible to control the ability to create and delete objects, create

tokens and change the state (commit or abort) of commit recor-ts. Objects and commit

records in the repository were designed to include an access control specification field which

is stable; however, it is not clear what should be in this ficld ind how the rights of the

rcquestors should be checked. An interesting question is what the right to read means in

the context of the given object model. In partictlar, does a re~ocation of such right apply

only to the future versions of the object, or also to the current and the past versions?

iv. The repository provides niechanisnis that facilitate Iuilding of atonic actions;

however, it is the responsibility of the users of SWAI ILOW to make stile that these
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mechanisms are used properly. The division of responsibility for correct implementation of
atomic actions should be studied in more depth. SWAI.LOW could assist in enforcing
correct use by supervising that:

a. a possibility cannot be committed until all outstanding requests to create atoken have been received and processed

b. once a possibility is committed or aborted, no new tokens can be added.
However, distributed possibilities make such checking difficult.

i7
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Appendix

S'I'I4UCI'UR E 01: TII' R EIIOSII'ORY

This appendix describes in more detail the individual modules of the repository and their logical
interconnection (the "uses" hierarchy presented in Figure 20). Note that some modules support

more than one abstraction developed in this report. l:Aternal operations are the operations provided

at the module's intcrfacc. that is. operations that can be invoked from other modules. Iniernal
operations are available only within the module. RecoverY operations are special external operations
that are invoked only by the rccovery proccss.

Request lnmidler

implements: reposiloi)' interface

uses: object
coinnit record
SWI I. I.( JI tAlessage Protocol

The request handler inspects messagcs delivered by the SWALLOW Message Protocol IREI) 801
and invokes the appropriate manager to handle the request, and it constructs reply messages from
the infomnation returned by the manager.

Commiit record manager

implements: comnitni record
continit record representative

uses: object

external operations: use:

create --> create object
create token

add reference -- ) prinfilike of hc iniplercnlalion language
commit --> create token

commit token
delete reference
delete object

abort --> create token
commit token
abort token
delete reference
delete object
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internal operations: use:

delete reference --> primitihes of the implementation language
delete --> delete object

recovery operations:

none (recovered only as objects)

Object manager

implements: object

uses: directory
object history
uid

external operations: Ilse:

create get new uid
create object history
enter into directory

read lookup directory
read object history

create token lookup directory
create token

commit token lookup directory
commit token

abort token lookup directory
abort token

set access control lookup directory
set access control on object history

delete lookup directory
delete object history
delete from directory

recovery operations:

none

Ulf) manager

implements: uid

uses: object history
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external operations: use:

new may have to crcatc new version

recovery operations: use'

reset uid reconstruct object history

Directory manager

implements: directory

uses: object history

external operations: use:

create --) create object history
enter -- > primilkisc of the implmenatin language

lookup --> primtitces of the imlcmentation language

recovery operations: use:

recover -> reconstruct object history

Object history manager

implements: object history

uses: version image
OHS image

external operations: use:

create -- > create object header
create version image (of object header)
create O IS image

read read object header
read version image (returns also AC )

copy current version
copy token

create token --> read object header
create vet mn image

commit token read Objc(., eadcr
abort token read object header
set access control read object header

create version image (of object header)
delete read object header

create version image (of object header)
delete 01 IS image
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internal operations: use:

create object header priiniifics of Ihe inp1lencIntation languageread object header read O IS imagewrite object header write O IS imagecopy current version --) copy version imagecopy token copy version image

recovery operations: use:

reconstruct read object header
search version image
create version image (of object header)
write object header

Version image manager

implements: simple version inage
s11mm .1're'd version hnage
I"'S image (t'object header

uses: VS image

external operations: use:

create version image create VS imageread version image read VS inmgc (returns also AC)
copy version image create VS image

recovery operations: use:

search next VS image

VS inage manager

implements: VS image

uses: Vs

external operations: use:

read > read VS page (returns also AC)
create append VS

I
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reco er operations: use:

next (iterator) next VS page

N'S manager

implements: VS

uses: main memory page
storage device

external operations: use:

append -- > append VS buffer
read page read storage de' ice page (OVS or olline VS)

get AC (returned together \ ith the reqtuested page)

internal operations: use:

append VS buffer allocate main memory page
Srite storage de\ ice page

reset Mc primitives of the mplcmentation language

get AC - lrtucs or the implenic talion language
assign device drivers primitives of the implemetaion language

recovery operations: use:

find end read storage device page (recover ME)
next page (iterator) read storage device page

OilS image manager

implements: OIIS image

uses: storage device

extrnal operations: use:

create write storage device page
read read storage device page
write write storage device page
delete write storage device page
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rccovcry operations: use:

none

('rash recovery

uses: uid
object history
VS

external operations: use:

start recovery --> lind end of VS
create recovery mark

internal operations: use:

create recovery mark --> get new uid (new REN)
create token (1b the rccoN cry mark object)
commit token
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