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ABSTRACT

This study is concerned with the problem of calculating

potential flow about a nonlifting body in an unbounded fluid.

Several simple explicit approximations for the velocity potential

are obtained and investigated numerically. Results of calculations

are presented for the simple cases of potential flows due to

translations of ellipsoids and ogives.
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1. Introduction

A classical and fundamental problem in hydrodynamics is that of calcu-

lating potential flow due to motion of an arbitrary body through an unbounded

ideal (incompressible and inviscid) fluid. This potential-flow problem in-

deed is directly relevant to naval hydrodynamics (e.g. calculation of flow

about a deeply-submerged body and about a ship in slow motion) and to subsonic

aerodynamics. Mathematically, the problem consists in determining the velocity

potential (4) given by the solution of the Laplace equation V2 00 in the flow

domain (d) exterior to the body surface (b), subject to the condition that

vanishes "at infinity" (far away from the body) and to the Neumann condition

that the normal derivative *n of the potential is prescribed on the body sur-

face.

A great variety of methods have been developed for solving the above-

defined exterior Neumann boundary value problem. These methods can be divided

into two basic classes of methods, namely integral-equation methods in which

an integral equation is formulated and solved numerically, and direct numerical

methods, mainly of the finite-element type; hybrid methods, in which finite

elements and an integral representation are coupled, however have also been

used, e.g. by Jami and Lenoir (1977). Integral-equation methods are widely

favored, as is apparent from the long list of references in the review of Hess

(1975) and Krner and Hirschel (1977), and indeed are natural and a-priori

advantageous methods in the sense that they explicitly take advantage of the

Laplace equation for reducing the original three-dimensional problem to a two-

dimensional computational problem in which the velocity potential only needs

to be calculated on the body surface.

One of the earliest and most-widely used integral-equation methods is

that of Hess and Smith (1966), in which an auxiliary distribution of sources

on the body surface is employed, in the classical manner described by Kellogg

(1929). Modifications of this method have been devised by Landweber and

Macagno (1969), whose method mainly differs from that of Hess and Smith in

the treatment of the singularity of the kernel of the integral equation and

in the procedure for obtaining numerical solutions, and by Webster (1975),

whose method is based on a Fredholm integral equation of the first kind ob-

tained by assuming a distribution of sources on a surface slightly inside

-.
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the body surface. Methods based on the use of an auxiliary distribution of

normal dipoles (instead of sources) on the body surface have also been used,

e.g. by Chang and Pien (1975). Finally, methods based on an integral equation

for the velocity potential itself (rather than for assumed auxiliary distri-

butions of sources or dipoles as in the previous methods) have recently been

used by Chow, Hou, and Landweber (1976), and by Noblesse for the analogous

but more complex problems of ship wave resistance (1978) and of flow about

a body in regular water waves (1980).

In this study, a new basic integral identity is presented. An inter-

esting feature of this identity is that it is valid in the whole space (that

is, both in the flow domain and inside the body, as well as exactly on the

body surface), and is in fact equivalent to a set of three classical integral

identities that are exclusively valid for points outside the body, exactly

on the body, and inside the body. In the particular case when the Laplace

equation is satisfied, this "unified integral identity" becomes identical to

the integral equation of Chow, Hou, and Landweber (1976). This integral equation

is first investigated by considering the simple cases of potential flows due to

translations of elliptical cylinders and ellipsoids. The investigation then

is continued for other, complementary, simple cases, namely that of potential

flows due to translations of ogives. In particular, several simple explicit

approximations for the velocity potential, which are suggested by the above-

mentioned study of flows about ellipses and ellipsoids and indeed are exact for

these particular flows, are evaluated numerically and compared to the exact

potential (given analytically by conformal mapping). Finally, the basic

integral equation of Landweber is expressed in a %,;dified form, also of the non-

homogeneous Fredholm type. The given term in this modified nonhomogeneous Fredholm

integral equation provides another explicit approximation for the potential. This

explicit approximation is also exact in the particular cases of translations of

ellipsoids, and it is compared to the exact potential for translations of ogives.

The calculations for translations of ogives show that fairly-good approximations

to the velocity potential can be obtained by the above-mentioned simple explicit

approximations, notably the last one. For practical purposes, the main results

of the present study indeed reside in these simple explicit approximations.

: .. . . . ..... .. . . .. - - - ., -.... ., . .. ,,F 
.
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2. Basic integral identities

Throughout this study, variables are supposed to be nondimensional.

* It is well known that fundamental integral identities can be obtained for the

velocity potential by applying a classical Green identity to the potential

function *(x) and the free-space Green function G(xj), which is given by

G(x,C) = -1/4i[(x-) 2+(y-n) 2+(Z-0) ]12 . (2.1)

This classical Green identity is

d ( G-GV24)dv = jb( * G-G n )da, (2.2)

where the fact that 4=O(I/r) and G=0(/r) as r-(x 2 +y2 +z2 )1/2 was
3

used to discard the integral of *Gn-G n=0(l/r ) over a large surrounding
2

sphere of radius r (surface area ". r ). In formula (2.2), and indeed here-

after in this study, the following notation is used: 4- (x), G-G(x,) ,+ + 4

v-(a , a ), G n-G/9n-VG.n and n n-/3n-V., where nEn(x) is the unit
normal vector, at point +x, to the body surface b pointing inside the body

(outside the flow domain d), as is shown in figure 1; furthermore, dv-dv(x)

and da=da(7) represent the differential elements of volume and area at

point x of d and b, respectively.

The Green function G(x, ) satisfies the well-known equation

V2G = 6(x-E)6(y-n)6(z-C) , (2.3)

2 2 2 +2so that we have *(x)V G-4(')V G+[('x)-O()]V G=()V G, provided

is continuous in d+b, which is assumed here. Equation (2.3) then becomes

CO* - fdGV2 dv- fb(Gn -4Gn)da , (2.4)

where the notation *,.(e) was used for shortness (and will indeed be

used hereafter in this study), and C is defined as
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C 2 V2Gdv (2.4a)

It follows from equation (2.3) that we have C=l if the point E is in the ex-
terior domain d strictly outside the body surface b, whereas we have C=O if ,

is in the interior domain di strictly inside b.

We thus obtain the classical integral identities.

GV = - (G n- Gn)da (2.5a)
id fb

for in d-b, and

O = - n(Gn-Gn)da (2.5b)

for in d -b. It can also be seen from equation (2.3) that we have C-1/2

if the point t is exactly on the body surface b, at least for points

where the surface b is smooth; more generally, the value of 4wC at a point

of b is equal to the solid angle under which the exterior domain d is

viewed from . We then have

I = 2 G dv - f(GOnG)da (2.5c)
fd fb n

for Z exactly on (smooth) b. Identities (2.5a) and (2.5c) are usually obtained

by applying the Green identity (2.2) to the domain d-c, where c represents

the domain inside a small sphere centered at the point , or the inter-

section domain of this sphere with d if t is exactly on the boundary sur-

face b; we then have V2 GBO in d-e, while on the right side of equation (2)

there is an additional integral over the surface of the small sphere (or

portion thereof) whose value can be shown to be equal to - *(or -f*/2 if

is on b) in the limit as the radius of the sphere vanishes. This tradi-

tional derivation and the derivation used in this study, based on equation

(2.3), are of course equivalent.
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As is explicitly indicated in equations (2.5a,bc), the value of the

constant C on the left side of equation (2.4) is discontinuous across the

body surface, C being equal to 1 outside the body and to 0 inside. This

discontinuity in the value of C on the left side of equation (2.4) evidently

is accompanied by a corresponding discontinuity on the right side of the

equation. Specifically, the latter discontinuity stems from the integral

)b OGnda representing the potential induced by a surface distribution of

normal doublets of strength over b, as is well known. An integral identity

valid for any point -- either outside, inside or exactly on the body

surface -- can be obtained by eliminating the discontinuity in the value of

C in equation (2.4). This can readily by achieved by adding the term C

on both the left and right sides of equation (2.4) with Ci given by

C = V 2Gdv E - [ Gda (2.6)
C d.

1

as may be obtained by using the divergence theorem. Equation (2.4) then becomes

f GV 2dv - rE (,-,*)Gnda (2.7)

id ' f' bn

since we have C+Ci=I. The integral identity (2.7) is valid for any pointZ

either outside, inside, or exactly on the body surface. This new identity

thus is essentially equivalent to the set of the three classical identities

(2.5a,b,c), which are valid exclusively for outside, inside, or on the

body surface, respectively. As a matter of fact, these three identities

can be obtained from the identity (2.7) by noting that we have - fbG da

fd V 2Gdv = 0,1, or 1/2 for t outside, inside, or exactly on the body.

Integral identities analogous to identities (2.5a,b,c) and 2.7) can

evidently also be obtained for the "interior potential-flow problem".

These identities are listed in appendix A. Another classical integral

identity, obtained by combining these basic identities for the exterior and

interior problems, is also given in the appendix.
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3. Basic integral equation of potential flow about a body

In the particular case of potential flow about a body, we have V 2*O

in the (fluid) domain d outside the body, and the integral identity (2.7)

becomes

,=- b G nda + J (0-4*)Gnda , (3.1)

which is an integral equation for determining the velocity potential 0 on the

surface b of the body. More precisely, equation (3.1) is a nonhomogeneous

(second kind) Fredholm integral equation, of the form

= f(') + L(';¢) , (3.2)

where f(c) is the known (since n is specified on b) nonhomogeneous term given

by

b = b n (x (3.2b)

The above integral equation has previously been obtained by Chow, Hou,

and Landweber (1976), equation (19), by using a technique due to Landweber for

removing the singularity in the dipole integral in the classical integral equation

I; b -- i ( ( + G n )a (3.3)

given by the Green identity (2 .5c) in the particular case when V 2-O in d.

The manner in which the integral equation (3.2) was obtained in the present

study supplements the Landweber derivation and provides additional insight into

this integral equation. In particular, it has been slown that equation (3.2)

holds not only for Z on the surface b of the body, but also for in the fluid

domain d outside the body. This means that the integral equation (3.2) can



in principle be used to determine the potential 4 in the entire solution

domain d+b, for instance by using an iterative procedure based on a recur-

rence relation such as that given by equation (3.6). As a matter of fact,

such an approach may be necessary in the case of subsonic compressible flows

governed by a weakly-nonlinear equation of the form V 2 ffg(). However, in

the case of incompressible flows it would usually be much simpler to solve for

on the body surface b, and -- in the event (rare in reality) that knowledge

of 4 outside b is in fact required -- to determine 4 outside b by means of

equation (2 .5a), which here takes the simplified form

bG nda + fbGnda (3.4)

Equation (3.2) also holds for inside the body. It thus might appear that

this integral equation must also define the potential 4 inside the body. This

result, were it true, would certainly be quite surprising, indeed fundamentally

unacceptable, for it would mean that the "exterior boundary-value problem"

defined by the Laplace equation in the exterior domain d and a Neumann condition

on b would define a solution in the interior domain d.. It can easily be shown
1

however, that equation (3.2) allows the potential 4 to be extended inside b

in an entirely arbitrary manner. Indeed, equation (3.1) can be written in

the form

CO* ff - bGonda + Jb Gnda , (3.5)

where C is given by Cl+fbGnda. We have C=O for E inside b, as may easily be

verified (and indeed has already been shown in the previous section), so that

equation (3.5) clearly does not define 0* inside b. For outside b, on the

other hand, we have CUl, and equation (3.5) becomes equation (3.4), which

clearly defines 0,.

An interesting feature distinguishing the Landweber integral equation

(3.2) from the classical integral equation (3.3) is that whereas the dipole

integral in the usual integral equation (3.3) is discontinuous at the body

surface b (as was discussed in the previous section, and is indeed well known),

the corresponding integral in equation (3.2) is a continuous function (the

dipole strength 4-4, vanishes as the point of integration x and the field
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point coincide). As a matter of fact, the factor 1/2 on the left side of

equation (3.3) is correct only at points where b is smooth (that is, has

a tangent plane), as was also discussed in the previous section. The classical

integral equation (3.3) thus requires evaluation of a discontinuous function

exactly on the surface of discontinuity of that function. This awkward problem,

notably from the point of view of numerical calculations, is avoided in the

integral equation (3.2). As a matter of fact, the integrand (0-0,)Gn in the

integral L(Z;O) defined by equation (3.2b) is non-singular (i.e. remains finite)

as x + (as can easily be verified, and indeed is shown in Chow, Hou, and

Landweber), which evidently is advantageous for purposes of numerical calculations;

for two-dimensional flows, the integrand (4- ,)Gn actually vanishes as x +

A choice of methods is available for solving the nonhomogeneous Fredholm

integral equation (3.2). In particular, a natural method of solution consists

in using an iterative procedure. An obvious recurrence relation is that obtained

by simply replacing 4 by (k) and 4 (k+l) on the right and left sides, respectively,

of equation (3.2), that is

(k(0)¢(k+l)( f f(&) + L ( k ) ), k>O (3.6)

where the initial (zeroth) approximation 4( must be specified somehow. This

recurrence relation has in fact been used by Chow, Hou, and Landweber (1976),

equation (20), with the initial approximation $(0)( )taken as twice the given

term f(). The practical usefulness of such an iterative method of solution

depends on fast convergence of the successive iterative approximations *(k),
which in turn depends on selection of a reasonably-good initial approximation
(0)

Various initial approximations and associated iterative approximations

will be investigated in this study.

1I
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4. Potential flow about ellipses and ellipsoids

In this section, the integral equation (3.2) and the associated recurrence

relation (3.6) are investigated by considering the simple cases of potential

flows due to translatory motions of elliptical cylinders and ellipsoids. Two-

dimensional potential flows due to translatory motions of an ellipse in the

directions of its major and minor axes are considered first. The ellipse is

defined by the equation x 2+y 2/b -1, where b is the thickness ratio of the

ellipse (b-thickness/chord). Both "longitudinal" and "transversal" motions of

the ellipse with unit velocity in the x and y directions of the major and minor

axes, respectively, are considered.

For longitudinal motion, the velocity potential on the surface of the

ellipse is given by

0 = -bx . (4.1)

Furthermore, it can be shown that the given term f defined by equation (3.2a)

actually is proportional to the potential 0? specifically, we have

f/ - 1/(1+b) . (4.1a)

Use of equation (4.1a) in the integral equation (3.2) then yields

L(O)/O - b/(l+b). (4.1b)

For transversal motion, on the other hand, we have

= -(l-x2) 1 /2  (4.2)

on the upper portion (y>O) of the surface of the ellipse. The terms f and L(O)

in the integral equation (3.2) are also proportional to 0; specifically, we

have

f/O - b/(l+b) , L(O)/O - 1/(l+b) . (4.2a,b)

It thus can be seen that the value of f/O for longitudinal (transversal) motion

of the ellipse is identical to the value of L(f)/ for transversal (longitudinal)

motion.

The functions f/O and L(O)/ for longitudinal (L) and transversal (T)

motions are represented in figure 2 for values of b varying between 0 and 1,
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for which the ellipse becomes a flat plate and a circle, respectively. Figure 2

clearly shows that the known term f in the integral equation (3.2) is larger

than the unknown term L(O) for longitudinal motion of the ellipse, whereas the

opposite is true for transversal motion; in the intermediate case of a circle

(b=l), we have f-L()=0/2. In the particular case of a thin ellipse (b<<l),

equations (4.1) show that we have

0= (b), f = O(b), L(O) = O(b2 ) and L(O) << f (4.3a)

for longitudinal motion, whereas for transversal motion equations (4.2) yield

ff= 0(1), f = O(b), L(O) = 0(1) and f << L(4) . (4.3b)

The given term f in the integral equation (3.2) may thus be used as a "thin-

wing approximation" for longitudinal motion of the ellipse, but clearly not for

transversal motion.

Three-dimensional potential flows due to translatory motions of an ellipsoid

are now considered. The ellipsoid is defined by the equation x 2+y2 / 2+z 2 y 2=1,

where the parameters 6 and y may take values between 0 and 1, that is O<e<l and

OyX<1. Translatory motions of the ellipsoid with unit velocity in the x,y, and

z directions of the major, intermediate, and minor axes are considered. The

velocity potentials corresponding to these three fundamental translatory motions

are denoted by 0x,,y, and *z and the corresponding potentials f given by
equation (3.2a) are similarly denoted by fX fYad fz.

For translation with unit velocity in the positive x direction, we have

n =i n, where I is the unit vector along the positive x axis, and n in the unit
inward normal vector to the surface (b) of the ellipsoid as previously defined.

Equations (3.2a) and (2.1) then yield

f 1 1 -(x)da(')

Use of the divergence theorem gives

_= d x 1 dv(x) -- I d 14 . dv(X),
fd(.. 4.. df 

dx_. .i .. . . .
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where di is the domain inside the surface of the ellipsoid. By defining the

function F() as

d- i  dv(d) E G(',')dv(') (4.4)

we may finally express the potential fx in the form

f x 3F()/ . (4.5a)

Similarly, we have

fY(a) - 3F(')/3n , fz(') - 3F(')/aC . (4.5b,c)

It is known from Havelock (1931) that the velocity potentials ,y, and

Sz for unit-velocity translations of the ellipsoid along the x,y, and z axes

can be expressed in terms of the function F( ) defined by equation (4.4).

Specifically, we have

0x = (1/AX) aF , 4y = (i/AY)3F/3n, Oz = (1/ Z)3F/C , (4.6a,b,c)

where A X, X, and Az are constants defined by the integrals

A I 0_ T _ 2 'tM)12 E e 2ydt , Az - - 0 2t (4.7a,b,c)ydt Ay -1- 2 2ydt

0 (+) O2(t~f 2)E 0 2 (t4-02 y2 )E7~bc

in which E is the expression given by E=[(t+l)(t+e 2 )(t+ 2 )]1/2

It may then be seen from equations (4.5) and (4.6) that the given term

f(C) in the integral equation (3.2) is proportional to the velocity potential

0(Z) for translatory motions of an ellipsoid. Specifically, we have

fx/Ox Xx, fy/y - xy, fz/Oz - X (4.8a,b,c)

where the constants Xx,Xy , and Az are defined by the integrals (4.7). These

constants of proportionality are represented in figure 3 as functions of the
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parameters 8 and y defining the ellipsoid. This figure is subdivided into

four parts.

The lower left part of figure 3 represents A x as a function of 8(0<8<1)

for given values of y(y=O,.2,.4,.6,.8,1). We have l>A >2/3, wit- Xx=2/3 in ,

the limiting case of a sphere (a=l=y). For translation of an ellipsoid along h
its major axis, the known term f in the integral equation (3.2) may then be

seen to be the dominant term in comparison with the unknown term L( ), which

does not exceed 4/3. In particular, the value of the constant Xx is quite

close to 1 for small values of 8. This shows that the term f provides a fairly

good "slender-body approximation" to the velocity potential 0 for translation

of a slender ellipsoid in the direction of its major axis. Comparison between

Xxf xthe values of Aff/O and of Xffifx/O x represented in figures 2 and 3 for longi-

tudinal motions of an ellipse and of an ellipsoid, respectively, show that we

have X(b)<x (B;y=l)<x(8;O<Y<l) for corresponding values of the thickness and

slenderness parameters b and 8, respectively. More precisely, we have

i/2<X(b)=l/(l+b)<l, and

<_____2 l(I 82) 1/2

2 <x (;y=l) = 1 [I+ 2 n l=Zn ] < I
3- 2 221i_ 2) 1/2 i+(i_82)I/2

as may be obtained by evaluating the integral (4.7a) in the special case of a

spheroid (y=l). We thus have, for instance, X=.833 for b=.2 and .94 4 <x< I for

8=.2 and l>y>O.

The lower right and upper left parts of figure 3 correspond to translation

of the ellipsoid in the direction of its intermediate axis, and represent the

constant XY(8,)=fy/ y both as a function of a for given values of y (lower

right part of figure 3) and as a function of y for given values of 8 (upper

left part). It may be seen that we have I>XY>l/2, with AY= 1 /2 in the limiting

case 8=O,y-l corresponding to a circular cylinder. Finally, the upper right

part of figure 3 corresponds to translation of the ellipsoid along its minor

axis, and represents Az (8,y)= fz/Oz as a function of I for given values of 8.

In this case we have O<X z < 2/3, with A z=2/3 for 0-1-y (sphere). In summary,

the given term f in the integral equation (3.2) may be seen to be dominant for

translation of the ellipsoid in the directions of its major and minor axes,

whereas for translation along its minor axis the term L(O) is usually dominant,

except for values of y approximately given by 1-8/2<y< 1.



-14-

We conclude this investigation of the integral equation (3.2) for flows

due to translatory motions of an ellipsoid by examining the iterative procedure

defined by the recurrence relation (3.6) and the initial approximation 0.

By using the fact that we have f-Xo, we may obtain *(l)=f, (2) [l+(l-x)]fo(3 )-

[l+(l-X)+(l-)2 If, and more generally (nf[l+(l-A)+...+(l-X)nIf for n>l. This K
series converges to f/[l-(l-l)J f/X4 as n- provided -i<I-X<I. We have i>X>O,

which yields 0<i-X<l. The above-defined series and associated iterative procedure

therefore converge, except in the limiting case X=0 corresponding to translation

of an elliptical disk (y=0) in the direction normal to its plane (direction of

the minor axis of the degenerate ellipsoid).

More precisely, the relative error, c say, associated with the tn -h itera-

tive approximation 0 (n), defined as c =( 0_0(n))/O, can be shown to be given by

E =(-) n . The number of iterations n required for obtaining an approximation
n
to the potential within a specified relative error c then is given by n>enE/tn(l-X).

For instance, for c=10- 2 the following number of iterations is required

X .9 .8 .7 .6 .5 .4 .3 .2 .1

n 2 3 4 5 7 9 13 21 44

depending on the value of X. As an application, we consider translatory maneuver-

ing motions of an ellipsoidal ship hull form with values of e and y equal to .15

and .7, corresponding to the fairly typical values of the beam/length and draft/

length ratios .15 and .05, respectively.Figure 3 indicates corresponding values

of /x4fx/ and Xy=fy/y approximately equal to .975 and .6, for which we need

2 and 5 iterations, respectively.
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5. Potential flow about ogives

The remarkable property, enjoyed by ellipsoids, that the given term

f in the integral equation (3.2) is proportional to the velocity potential

does not hold in general of course. It thus is useful to consider other

body shapes besides ellipsoids. For simplicity, calculations have been per-

formed for two-dimensional potential flows due to translations of ogives along

their major and minor axes. A main reason for considering flows due to

translations of ogives is that the velocity potential 0 can be determined

analytically, by using conformal mapping. Another recommendation of ogives

is that their pointed shapes obviously supplement ellipses.

The ogives are defined by the equation

22 2 2 ]2
x + [Jyl+(l-b )/2b] = [(l+b )/2b] , (5.1)

where b is the thickness ratio (O<b<l) and -l<x<l,or by the parametric equations

=l-t 2  , 4bt/(l+b 2 (5.1a,b)

l+t2+2t(l-b 2 )/(l+b 2 ) l+t 2+2t(l-b 2 )/(l+b 2 )

I ~2 ta-lb anthprmer
where t is defined as t=(tan f) with 6=2(1-- tan b), and the parameter X
varies between the values 0 and w/2 (we have IxI=l and y-O for X-0, and x-O

and Jyj-b for X=ir/2). In the limit b=l, the ogive becomes the unit circle

x 2+y 2=1, while in the limit b-O we have jyl'b(-x 2).

The velocity potentials, on the body surface b, due to unit-velocity

translations of ellipses, defined by the equation lyf=b(l-x2) / 2 , and ogives

with corresponding values of the thickness ratio b are represented in figures

4 and 5 for longitudinal and transversal motions (translations along the major

and minor axes), respectively. These figures represent the potential 4 for

x varying between the forward stagnation point and the midchord point, that

is for >_x>O and O<x<l in figures 4 and 5, respectively. The potential 0 on

the surface of an ellipse in longitudinal motion is a linear function of x;

more precisely we have 0--bx, as is given by equation (4.1). The potential

on the surface of an ogive is given by

* - x -(cosX)/(l- - tan-lb) , (5.2a)

ii

where x(0cx<l) is given by equation (5.la),and O<</2. This potential is

Z -,.. 77M
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not a monotonic function of x, as may be seen from figure 4. The potential

on the upper surface (y>O) of an ellipse in transversal motion is given by

*-(l-x2 ) /2 , for any value of the thickness ratio b. For transversal motion

of an ogive, we have

= y -(sinX)/(1- tan-lb) , (5.2b)

where y(b>y>O) is given by equation (5.1b), and 0<X<)]r2. This potential be-

comes identical to the potential f=-(1-x 2 )1/ 2 for an ellipse in the limiting

cases b=l and b=O (corresponding to flow past a circle and a normal flat

plate,respectively, as is indicated in figure 5.

----
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6. Simple explicit approximations for the potential

It was shown in section 4, equations (4.1a) and (4.2a), that the velocity

potential 4 on the surface of an ellipse, with thickness ratio b, is related to

the given term f in the integral equation (3.2) by the equations

= (l+b)f and 4 = (l+l/b)f (6.1a,b)

for longitudinal and transversal translations, respectively. This result suggests

that useful simple explicit approximations to the velocity potential for longitudinal

and transversal translations of other cylinders might be given by the potentials

(l+b)f and (l+i/b)f, respectively, where b is the thickness ratio of the cylinder

and f is defined by formula (3.2a).

In particular, these explicit approximations might be used as zeroth-order

(initial) approximation 0(0) in the recurrence relation (3.6), that is

(0) = (l+b)f and ¢(0) = (l+l/b)f (6.2a,b)

for longitudinal and transversal motions, respectively. The first-order iterative

approximations 4(i) given by equations (3.6) and (6.2) are

f() = f + (l+b)L(f) and 6(i) = f + (l+l/b)L(f) (6.3a,b)

for longitudinal and transversal motions, respectively. These approximations are

also exact for translations of elliptical cylinders, as may be verified by using

equations (6.1a,b) in the term L() on the right side of the integral equation

(3.2).

The approximations (6.2b) and (6.3b) for transversal translation lead to

numerical difficulties in the limiting case of thin cylinders, that is for b<<l.

Indeed, we have f-0 as b-0, so that the terms f/b and L(f)/b are in the indeterminate

form 0/0. An alternative to these approximations, for the case of transversal

translation of thin cylinders, consists in using the potential, 4 fp say, for flow

past a normal flat plate as zeroth-order approximation (0) This then yields

the zeroth-and first-order approximations

4(0) fp -(l-x2)2 / 2 for y > 0, and 4) = f + L(fp). (6.4a,b)
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These approximations again are exact in the particular case of elliptical cylinders,

as may readily be seen from equations (4.2) and (3.2).

The above-defined approximations are compared to the exact potential 4 on

the surfaces of ogives in longitudinal and transversal translations in figures 6,

7, and 8. Figure 6 shows the potential 4 and the approximations f, (l+b)f, and

f+(l+b)L(f) for longitudinal motion of thin ogives, with thickness ratio b equal

to .1, .2 and .3. This figure clearly shows that multiplication of the basic thin-

body approximation f by the constant (l+b) yields significant improvements, and

the improvements obviously are more important for larger values of b. Figure 6

also depicts the improvements of the zeroth-order approximation 0 (0)=(l+b)f due

to the first-order approximation 4)=f+(l+b)L(f). These improvements are apparent

also from figure 7, in which the approximations (l+b)f and f+(l+b)L(f) are compared

to the exact potential 4 for longitudinal translation cf ogives with thickness

ratio b equal to .25, .5, .75, and 1. For b=l, the ogive is a circle and the approxi-

mations (l+b)f and f+(l+b)L(f) are identical to 4)_-x.

Figure 8 corresponds to transversal translation of ogives and represents

the potential 4 and the approximations (1+i/b)f, f+(l+I/b)L(f) and f+L(f ) for

b=O, .1, .25, .5, .75, and 1; the zeroth-order approximation 0fp=- - 2 has

already been represented, together with the potential 4, in figure 5. In the

limiting case b=l, all these approximations are identical to the exact potential

4, which is given by 4=-(l-x2)l/2. For fairly large values of b, say for b=.75

and for b=.5, the zeroth-and first-order approximations (l+1/b)f and f+(l+i/b)L(f)

may be seen to be fairly close to the potential 4, and somewhat superior to the

alternative approximations 4)fp and f+L( fp). Figure 8 also shows that the first

approximation f+(l+l/b)L(f) improves upon the zeroth approximation (l+i/b)f. The

approximations (l+i/b)f and f+(l+l/b)L(f) may however be seen to deteriorate as b

decreases, and the alternative approximations 4)fp and f+L( fp ) clearly are superior

for fairly small values of b, say for b<.25. In particular, in the limiting case

of a flat plate (b=O), the approximations 4fp and f+L(fp )HL()f ) become exact,
2 1/2. p fp p f/

equal to the potential 0=-(l-x2) /
. On the other hand, we have (l+i/b)f~f/b

and f+(l+i/b)L(f),L(f/b)f/b as b-0, so that the approximations (1+l/b)f and

f+(l+i/b)L(f) become identical in the limit b=O; however, the limit of f/b as

b O is not equal to the potential , as may be seen from figure 8.
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7. A modified integral equation and related explicit approximation

The preceding investigation of flows due to translations of ellipsoids and

ogives suggests that it may be advantageous to express the solution €(E) of the

integral equation (3.2) in the form *(Z)k(e)f(Z), where f() is the potential

given by formula (3.2a) and k(&) is the function defined as k=fi/f. Figures 6,

7, and 8 for flows due to translations of ogives suggest that k(E) may generally

be expected to be a slowly varying function. This function in fact is a constant

in the particular cases of translations of ellipsoids, as was shown previously

and is specifically indicated by equations (4.8). More generally, we will express
the potential @()in the form ( )=k( )() where ()is some supposedly-

given potential. An obvious choice for ' is the given term f in the integral

equation (3.2), as was just discussed. Other choices for the potential ' can

however be made. For instance, for two-dimensional flow due to transversal trans-

lation of a thin cylinder, the potential ' could be taken as the potential

fp=-(-x 2 )1/2 for flow past a normal flat plate, as was discussed in the

previous section.

By expressing the term ) in equation (3.2b) in

the form ( the integral equation (3.2) becomes

0('0 = f(') + k(') {b [(x)-(0)G n da + f [k(')-k()]('X)Gnda.

Multiplication of this equation by (C) and use of the relation k'= then yields

a+ b- f'p b -p! n da] = f(Z)'(Zb + [b n4~'()4()p~ danb-'bn

We thus may obtain the modified integral equation

() = 1(Z) + L'( ;4) , (7.1)

where the potential 0(r) is defined as

=( f f(Z)'p()/['p(t)-L(Z;p)] , (7.1a)

with W;41) -b ('X 'pG n (',Z)da(x) as is given by equation (3.2b), and the

term L'( ;O) is the linear transform of * defined by the integral

- -L() ; ) . (7.1b)
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The term L'(U; ) obviously vanishes if the function p() is proportional to the

potential 4((, whereas the function 0() then becomes identical to (), as may

be verified by using the integral equation (3.2) in e:pression (7.1a).

It then follows from equations (4.8) that the potential 0 defined by equation

(7.1a) with ' taken as the term f given by formula (3.2a), that is the potential

given by

= 2  )/[f(Z)L(;f) (7.2)

is exact in the particular cases of potential flows due to translations of ellipsoids.

In general, formula (7.2) defines an explicit approxi-ation for the velocity

potential . This approximation is compared to the exact potential 4 on the

surfaces of ogives in longitudinal and transversal translations in figures 9, 10,

and 11.

Figure 9 shows the potential 4 and the approximations f,f+L(f), and f2 /[f-L(f)]

for longitudinal motion of thin ogives, with thickness ratio b= .1, .2, and .3.

The approximatiois f and f+L(f) are the first and second iterative approximations

associated with the straightforward recurrence relation (3.6) and the initial

approximation 4(0)0. Computationally, the approximations f+L(f) and f /[f-L(f)]

are equivalent. However, the approximation f2/[f-L(f)] may be seen to be superior

to the approximation f+L(f). The superiority of the approximation f2/[f-L(f)]

in comparison with the approximation f+L(f) is apparent also from figure 10,

where these two approximations are compared to the exact potential 4 for longi-

tudinal translation of ogives with thickness ratio b=.25, .5, .75, and 1. In

particular, the approximation f2 /[f-L(f)] is identical to the potential fi-x

in the limiting case b=l, corresponding to a circular cylinder; for b=.75, this

approximation is practically indistinguishable from 4 on the scale of figure 10.

It is also interesting to compare the approximation f 2/[f-L(f)] to the
~(computationally-equivalent) approximation f+(l+b)L(f). Comparison of figures

10 and 9 to figures 7 and 6, respectively, show that the approximation f2/[f-L(f)]

is superior to the approximation f+(l+b)L(f) except for sufficiently-thin ogives,

say for b<.2 , for which the two approximations are comparable. Finally, figures

10,9,7, and 6 incidentally provide a comparison between the straightforward

second approximation f+L(f) and the modified first approximation (l+b)f.

Figures 6 and 9 show that the approximation f+L(f) is somewhat superior to the

approximation (l+b)f for b=.l, and that these two approximations are comparable

for b=.2 and .3. However, for thicker ogives, say for .5<b<l, figures 7 and 10

. ......
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show that the (computationally-simpler) approximation (1+b)f in fact is superior

to the approximation f+L(f).

Figure 11 corresponds to transversal translation of ogives with thick-

ness ratio b=O, .I, .25, .5, .75, and 1. This figure shows the approximation

f fp/[pf-L(4fp)], obtained by selecting the potential 4' in equation (7.1a) as

the potential ofp=-(l-x 2 )1 /2 of flow past a normal flat plate, and the computa-

tionally-equivalent approximation f+L(f ), obtained previously in equation (6.4b).

In the limiting cases b=O and b=l, both of these approximations are identical to

the exact potential o=-(l-x 2)1/2 . More precisely, we have ff/2,4fp=O,L(fp )=0/2,

and fp-L( fp)= /2 for b=l, while as b O we have f-0, 4 fp, and fp-L(, fp)f,

as may be verified from the integral equation (3.2); the approximation

f fp/[fp-L( fp )] thus is in the indeterminate form 0/0 for b=O, although we

have f/[4fp-L(fp )] l as b-0. Disregarding this potential numerical difficulty r
for very thin cylinders, figure 11 shows that the approximation fofp/[fp-L(f)]

is superior to the approximation f+L( 2fp).

Figure 11 also shows the approximation f 2/[f-L(f)] for b=l, .75, and .5.

In the limiting case b=l, we have f=0/2 and L(f)=0/4, so that we have f-L(f)=0/4

and the approximation f 2/[f-L(f)] is identical to 4. For b=.75 and .5, this

approximation may be seen to be fairly good, and roughly comparable to the approxi-

mation f fp/[fp-L(fp)]. However, the approximation f 2/[f-L(f)] deteriorates as

b decreases, and it is not shown for b<.5. The reason for the fact that the

approximation f 2/[f-L(f)] is not useful for transversal translation of thin

cylinders is that the terms f and L(f) then are comparable, as can easily be shown

by considering the particular cases of ellipsoids. For flows due to translations

of ellipsoids the given term f in the integral equation (3.2) is proportional to

the exact potential 0, that is we have f=)A, as is indicated in equations (4.8).

Use of this relation in th- integral equation (3.2) then yields L(f)fL(4)f(¢-f)=

so that we have f-L(f)=A2p and f2/(f-L(f)]ffi 2 2/ 2 4=4. The approximation

f 2/[f-L(f)] thus is exact, as was indeed noted previously, but numerical diffi-

culties may clearly be expected if L(f)=A(l-X)4 is comparable to fffi4, which

occurs if A is small. For practical purposes, it may be preferable not to use

the approximation f2/[f-L(f)] for values of X less than about .4, for which we

have f-.40, L(f)-.240, and f-L(f)=.164. Figure 3 then indicates that the approxi-

mation f 2/[f-L(f)] might be used for translations of a body along its major and

intermediate axes, as well as along its minor axis if the body is not too flat.

More precisely, figure 3 shows that we have X,.4 for translation of an t lipsoid

alongs its minor axis if y<.65-. 3 8, approximately.
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8. Conclusion

The foregoing study of flows due to translation of ellipsoids and ogives

shows that simple explicit formulas for the velocity potential can provide

realistic approximations, which may actually be sufficient for many practical

purposes. Two simple explicit approximations appear to be of particular interest.

These are the approximation f(Q) given by

f( - f (x )(x)da(F)=, (8.1)
)b

as is defined by formula (3.2a), and the approximation P(Z) given by formulas

(7.2) and (3.2b), that is

() = f2 f {f ('x)_f C)}G n (X, 'E ) daCx) ] . 1(8.2)
b

The approximation fEZ) is a (first-order) slender-body approximation which may be

useful for longitudinal translation of a slender body, such as a ship form for

instance. As a matter of fact, the approximation (8.1) corresponds to the zero-

Froude-number limit of the first-order slender-ship approximation obtained in

Noblesse (1978) for the problem of the wave resistance of a ship.

The more complex approximation (8.2) essentially corresponds to a second-

order approximation. In fact, in the particular case of longitudinal translation

of a slender body, we have Ifb f(x)-f()]Gda<<f()l , and the approximation

0() is asymptotically equivalent to the straightforward second-order slender-

body approximation

(2) (b = f() + fi [f()-f(')]G n ( ')da() (8.3)

given by the recurrence relation (3,6), with (-O (and * (1)f). However, the

approximation (8.2) has broader applicability, as is suggested by the results of

calculations for longitudinal and transversal translation of ogives reported in

figures 9, 10, and 11, and by the fact that the potential *( ) is exact in the

particular case of translation of ellipsoids, as was shown previously. Indeed,

these results indicate that the explicit approximation O() may be of practical

usefulness for a large class of bodies and body motion3, excluding however
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transversal motions of flat disk-like bodies. More precisely, if 1,0, and 6 are

the three main dimensions of a body, with I>0>6, it was predicted that the approxi-

mation 0(t) could lead to numerical difficulties for motion in the direction of

I ithe minor dimension 6 if 6<(.65-.3 ). This rough tentative criterion for

applicability of the approximation P() does not exclude usual ship hull forms,

I for instance (typical values of a and 6 for double-hull forms are 0=.15 and 6-.1).

Simple explicit approximations analogous to the above approximations (8.1),

(8.2), and (8.3) can likewise be obtained for the analogous, although more complex,

problems of potential flow about bodies in the presence of a free surface. In

particular, first-and second-order slender-ship approximations corresponding to

approximations (8.1) and (8.2), respectively, are given in Noblesse (1978) for

the problem of the wave resistance of a ship. The integral equation (3.2) and

the explicit approximation (8.2) have also been extended to the problem of poten-

tial flow about a body in regular water waves in Noblesse (1980).

* I

-i
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Appendix Integral identities for the interior problem

and for the combined exterior-interior problems

Although the present study is primarily concerned with the "exterior

potential-flow problem", that is the problem of potential flow about a

body, it may be interesting to list here the integral identities corresponding

to equations (2.5a,b,c) and equation (2.7) for the "interior potential". 4i

say, defined in the interior domain di. The integral identities correspond-

ing to equations (2.5a,b,c) take the forms

GV 2 dv + fb _4 n )da  (Ala)

di jb n

for in d -b, that is inside the surface b,

r i  b I

Jd Jb nn(bi-

for in d-b, i.e. outside b, and

1 GV 2 dv + 0 ( n-iGn)da

2 = id d + fb (Ac)

i

for exactly on (smooth)b. The integral identity corresponding to equation

(2.7) takes the form

0 = GV20idv + 'bn )G]da (A2)

This integral identity, like equation (2.7), is valid for any point , either

inside, outside, or exactly on the surface b, and indeed is equivalent to

the set of the three classical identities (Ala,b,c).

If we add the integral identities (2.5a) and (Alb), we may obtain the

relation

MFW t Z
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d V d + fdG v+ Tb [G n n)(-'GnIda.

Addition of the integral identities (2.5b) and (Ala) yields the same relation,

except for the fact that *, on the left side is replaced by *,. We there-

fore have the relation

= GV 2*dv + J [G(O -*n)+(- )G Ida, (A3)
-d+d. b n n n

where * on the left side and in the first integral on the right side clearly
corresponds to * or * for points outside or inside the surface b, respec-

tively. Naturally, the integral relation (A.3) can also be obtained by add-

ing identities (2.7) and (A2). Indeed, this yields

ii(lCi *+ i =d+d i  fb

where CifbGnda. It can easily be seen from equations (2.6) and (2.3) that

the expression (l-Ci) ,+C is identical to * or for t outside or in-

side the surface b, respectively, so that the above relation is identical

to relation (A3).

The integral relation (A3) expresses the potential $(Z) in the entire

space d+di in terms of a volume distribution of sources with density 
V 2,

and surface distributions of sources and normal dipoles on the surface b,
i- i

with densities -n and *-_ , respectively. Two classical results in po-

tential theory immediately follow from relation (A3), namely: (i) a distri-

bution of normal dipoles, with strength 6 say, on a surface, S say, generates

a potential = fs 6G da whose value is discontinuous across the surface S

(specifically, we have - -6, where superscripts e and i refer to the "exterior"

and "interior" sides of S, respectively; the "interior" side being that into

which the unit normal vector to S is drawn), and (ii) a distribution of sources,

with strength a say, over a surface S generates a potential - fsGoda

whose normal derivative *n is discontinuous across S (specifically, we have
i e,,).

n n



V

DISTRIBUTION LIST FOR UNCLASSIFIED
TECHNICAL REPORTS AND REPRINTS ISSUED UNDER
CONTRACT N00014-78-C-0169 TASK NR 062-525

Defense Technical Information Center NASA Scientific and Technical
Cameron Station Information Facility
Alexandria, VA 22314 (12 copies) P. O. Box 8757

Baltimore/Washington International
Professor Bruce Johnson Airport
U.S. Naval Academy Maryland 21240
Engineering Department

Annapolis, MD 21402 Professor Paul M. Naghdi
University of California

Library Department of Mechanical Engineering
U.S. Naval Academy Berkeley, CA 94720
Annapolis, MD 21402

Librarian
Technical Library University of California
David W. Taylor Naval Ship Research Department of Naval Architecture

and Development Center Berkeley, CA 94720
Annapolis Laboratory
Annapolis, MD 21402 Professor John V. Wehausen

University of California
Professor C. S. Yih Department of Naval Architecture
The University of Michigan Berkeley, CA 94720
Department of Engineering Mechanics
Ann Arbor, MI 48109 Library

David W. Taylor Naval Ship Research
Professor T. Francis Ogilvie and Development Center
The University of Michigan Code 522.1

Department of Naval Architecture Bethesda, MD 20084
and Marine Engineering

Ann Arbor, MI 48109 Mr. Justin H. McCarthy, Jr.
David W. Taylor Naval Ship Research

Office of Naval Research and Development Center
Code 211 Code 1552
800 N. Ouincy Street Bethesda, MD 20084
Arlington, VA 22217

Dr. William B. Morgan
Office of Naval Research David W. Taylor Naval Ship Research
Code 438 and Development Center
800 N. Quincy Street Code 1540
Arlington, VA 22217 (3 copies) Bethesda, MD 20084

Office of Naval Research Director, Office of Naval Research-

Code 473 Eastern/Central Regional Office (Boston)
800 N. Quincy Street Building 114, Section D
Arlington, VA 22217 666 Summer Street

Boston, MA 02210

-1-. . -i| -- i



Library The Society of Naval Architects and
Naval Weapons Center Marine Engineers
China Lake, CA 93555 One World Trade Center, Suite 1369

New York, NY 10048
Technical Library

Naval Surface Weapons Center Technical Library
Dahlgren Laboratory Naval Coastal Systems Laboratory
Dahlgren, VA 22418 Panama City, FL 32401

Technical Documents Center Professor Theodore Y. Wu
Army Mobility Equipment Research Center California Institute of Technology
Building 315 Engineering Science Department
Fort Belvoir, VA 22060 Pasadena, CA 91125

Technical Library Director, Office of Naval Research -
Webb Institute of Naval Architecture Western Regional Office (Pasadena)
Glen Cove, NY 11542 1030 E. Green Street

Pasadena, CA 91101
Dr. J. P. Breslin

Stevens Institute of Technology Technical Library
Davidson Laboratory Naval Ship Engineering Center
Castle Point Station Philadelphia Division
Hoboken, NJ 07030 Philadelphia, PA 19112

Professor Louis Landweber Army Research Office
The University of Iowa P. 0. Box 12211
Institute of Hydraulic Research Research Triangle Park, NC 27709
Iowa City, IA 52242

Editor
Fenton Kennedy Document Library Applied Mechanics Review
The Johns Hopkins University Southwest Research Institute
Applied Physics Laboratory 8500 Culebra Road
Johns Hopkins Road San Antonio, TX 78206
Laurel, MD 20810

Technical. Library
Lorenz G. Straub Library Naval Ocean Systems Center
University of Minnesota San Diego, CA 92152
St. Anthony Falls Hydraulic Laboratory
Minneapolis, bV 55414 ONR Scientific Liaison Group

American Embassy - Room A-407
Library APO San Francisco, CA 96503
Naval Postgraduate School
Monterey, CA 93940 Librarian

Naval Surface Weapons Center
Technical Library White Oak Laboratory
Naval Underwater Systems Center Silver Spring, MD 20910
Newport, RI 02840

Defense Research and Development Attache
Engineering Societies Library Australian Embassy
345 East 47th Street 1601 Massachusetts Avenue, NW
New York, NY 10017 Washington, DC 20036

-2-



Librarian Station 5-2 Professor Justin E. Kerwin

Coast Guard Headquarters Massachusetts Institute of Technology
NASSIF Building Department of Ocean Engineering
400 Seventh Street, SW Cambridge, HA 02139
Washington, DC 20591

Professor Phillip Mandel
Library of Congress Massachusetts Institute of Technology
Science and Technology Division Department of Ocean Engineering
Washington, DC 20540 Cambridge, MA 02139

Dr. A. L. Slafkosky Professor J. Nicholas Newman
Scientific Advisor Massachusetts Institute of Technology
Commandant of the Marine Corps Department of Ocean Engineering
Code AX Room 5-324A
Washington, DC 20380 Cambridge, MA 02139

Maritime Administration Professor Francis Noblesse
Office of Maritime Technology Massachusetts Institute of Technology
14th & E Streets, NW Department of Ocean Engineering
Washington, DC 20230 Cambridge, MA 02139

Maritime Administration Professor Ronald W. Yeung
Division of Naval Architecture Massachusetts Institute of Technology
14th & E Streets, NW Department of Ocean Engineering
Washington, DC 20230 Cambridge, MA 02139

Dr. r. Kulin Dr. Robert K. C. Chan
National Bureau of Standards JAYCOR
Mechanics Section 1401 Camino Del Mar
Washington, DC 20234 Del Mar, CA 92014

Naval Research Laboratory Mr. Marshall P. Tulin
Code 2627 Hydronautics, Incorporated
Washington, DC 20375 (6 copies) 7210 Pindell School Road

Laurel, MD 20810
Library
Naval Sea Systems Command Naval Ship Engineering Center
Code 09GS Code 6110
Washington, DC 20362 Washington, DC 20362

Mr. Thomas E. Peirce Naval Ship Engineering Center
Naval Sea Systems Command Code 6114
Code 03512 Washington, DC 20362
Washington, DC 20362

Naval Ship Engineering Center

Professor Paul Lieber Code 6136
University of California Washington, DC 20362
Department of Mechanical Engineering
Berkeley, CA 94720 Commandant, U.S. Coast Guard

G-OMI/31
Professor C. C. Mei 2100 Second Street, Southwest
Massachusetts Institute of Technology Washington, D.C. 20593
Department of Civil Engineering
Cambridge, MA 02139

-3-


