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EFFICIENT COMPUTATIONS AND REPRESENTATIONS

OF VISIBLE SURFACES

ABSTRACT

When the visual system is approached as performing information processing tasks, the processor

can be characterized as solving a computational problem [Marr, 1976; Marr & Poggio. 1977]. The

first step in this approach is to formulate the given problem precisely. This report addresses two

such problems, the extraction of surface shape information from the image of contours lying on a

surface and the determination of transparency. Our preliminary analyses discuss the constraints

and assumptions that underly the perception of surface shape and transparency. The identification

and elucidation of these assumptions and constraints is important for the design of flight simulators,

in order that synthetic images are not built up from conflicting ones that will mislead the observer.

The first part of the report examines our perception of surface contours (e.g., the projections of

linear surface markings such as seams, wrinkles, pigmentation edges, glossy reflections, and shadow

edges). Generally such contours lie interior to the silhouette of an object and have been regarded

as merely contributing to texture, or to making the surface appear solid, or simply adding to the

complexity of the image. In fact, they constitute an Important source of information about surface

shape. This study addresses a few fundamental issues concerning our perception of shape from

contour: the information content of surface contours (remembering that we usually have little a

priori knowledge that we may bring to bear in their interpretation), the computational problems of

inferring shape from contour, and the sorts of constraints that would be sufficient for solving these

problems. The approach taken is to decompose the problem into two subproblems: (I) relating the

surface contour in the image to the corresponding curve in 3-D (called the contour generator) and

(2) relating the contour generator to the actual surface on which it lies. This decomposition allows

one to focus on the aspect of the problem governed by projective geometry (the relation between the

Image surface contour and its contour generator) independently from that governed by intrinsic

geometry (the relation between the contour generator and the surface).

The second part of this report examines the problem of determining transparency from visual

information. Transparency of a homogeneous surface is considered as a limiting case '.-f a screen

consisting of a net of opaque elements. When the elements of the screen become invisible, then the

occluded scene Is viewed through a transparent film. The basic problem of transparency is to
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determine which part of the content of an image is attributable to the screen, and which part arises

from the occluded scene behind the screen. Although spatial (and temporal) as well as the spectral

and intensity content of an image may be used for such judgements, this study focuses upon the

color and lightness information available to the observer. The most useful cue for assessing

transparency using these two stimulus dimensions is a reduction in contrast or chromatic content.

This reduction can be determined- locally from image information alone. Although such a solution

is not computationally optimal, it may be very practical for most natural scenes.

~[1
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PART I: SURFACE CONTOUR ANALYSIS

Kent A. Stevens

1. INTRODUCTION

This part describes geometrical constraints that may govern the way in which we perceive surface

shape from surface contours in an image. in figure I, for example, the smooth curves are seen in

3-D as lying on an undulating surface. We appreciate not only the shape of the surface, but also its

spatial orientation relative to us, and to some extent we perceive the overall surface as receding in

depth. The difficulty we face in interpreting. figure I as merely a two-dimensional family of

sinusoids (which it is) shows that we impose constraints in the form of a priori assumptions. Some

of these assumptions lead us to interpret certain curves in the image as being surface contours

(which correspond to actual curves across 3-D surfaces); others constrain the inferred surface shape

that we derive by analysis of the surface contours, For the surface percept to be both definite and

accurate, such constraints must define a unique surface, and must generally be valid.

Although many have considered our perception of the shape of contours (e.g., [Koffka, 1935,

Rock, 1975)), the problem of how surface sAapt can be correctly inferred from the observed surface

contours has received virtually no attention. The primary intentions of this part of the report are

(a) to formalize the computational problem of recovering 3D surface shape

from contour,

(b) to introduce useful and valid constraints towards its solution, and

(c) to describe why those constraints are useful.

1.1 What Information is carried by surface contours?

The contours in figure I are in orthographicI projection; hence we cannot derive distance '1!
1. Orthographic projection is equivalent to a parallel projection, as opposed to a perspective projection.

Figure I demonstrates that we may perceive shape from surface contours in orthographic projection. Later
we will see that assuming that the projection in orthographic (and not perspective from some unknown
viewing geometry) is probably necessary in the analysis.
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information from perspectivity in the image. But the shape of the contours does provide surface

shape information in two forms. In the vicinity of the surface contour one may deduce either:

surface orientation. The relative surface orientation may be solved
uniquely (i.e., up to a slant reflection since the projection is orthographic)
or only to within a restricted range of slant and tilt.

qualitative surface shape. The intrinsic geometry of the surface may be
deduced from the shape of the surface contours. The primitive descriptors
might include "flat", "singly curved", "cylindrical", "doubly curved" and so
forth. This sort of shape information is independent of the viewpoint. V

This is not to say that a depth map may not be computed from the image, but that the geometry of

contours in an orthographic image more directly constrains surface orientation and intrinsic

geometry than distance -- the computation of a depth map would effectively require the

intermediate computation of surface orientation.

Note that information about intrinsic surface shape serves two useful purposes: (a) it constitutes

a primitive, coordinate-free shape descriptor, and (b) It constrains the values in any representation

of surface orientation or distance. Suppose that it can be determined from the image that a surface

region must be singly curved, then this restriction can be imposed on any independently computed

distance or surface orientation representation -- the distance or surface orientation must vary in a

manner consistent with a singly curved surface. Later we shall see the contribution of this

qualitative shape constraint on the computation of "shape from shading" (c.f., [Horn, 1975]).

1.2 Contours and oontour generators

It is valuable to distinguish between a contour in an image and the corresponding curve in 3-D,

called the contour generator, that projects to that contour (see Marr, 1976b]). The contour generator

is a physical curve which lies across a surface, such as a boundary between patches of differing

reflectance (e.g., a pigmentation marking), a discontinuity in illumination (e.g., a shadow edge cast

across the surface) or a discontinuity in surface orientation (e.g., a crease). The contour generator

may also correspond to the boundary of the surface from the given viewpoint.

So on the one hand, we have the contours in the image; on the other hand, their corresponding

physical curves In 3-D, the contour generators. To make 3-D interpretations from the image

contours we often need to understand what causes them -- whether they correspond to object

boundaries, shadow edges, or what.

1"
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Figure I. The undulating surface is suggested by a family of sinusoids. (This figure is adapted
from Bridget Riley's Katarakt 3.) The curves are naturally interpreted as surface contours, i.e., the
images of markings on a physical surface. What constraints can be brought to bear in making this
3-D interpretation?

)"

~ ~ -
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A

B I

Figure 2. The curves in a are interpreted as tangential contours and the underlying surface is seen
as a generalized cone, in this case, a vase-like 3D shape. Those in b are interpreted as surface
contours and the surface appears like a gently curved flag or a ruled sheet of paper.
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One basic distinction that is often proposed is between object outlines (also termed bounding

contours or occluding contours) which correspond to the edge of an object's silhouette from the given

viewpoint, and those contours that lie internal to the silhouette (which Gibson has termed "inlines").

A slight variant would be to distinguish only those bounding contours that correspond to the

silhouettes of smooth objects. This distinction is probably fundamental for reasons that will be given

in the following.

1.3 Tangential contours and surface contours

Physical objects are often smooth, and their silhouettes alone provide a strong source of

information about the overall shape (Marr, 1976b]. For instance, consider a vase. Its silhouette

projected onto the retinal image might appear like the upper outline shown in figure 2a. The

contour generator in 3-D of this outline is the locus of points along which the line of sight just

grazes the surface of the vase. In this case, the contour that comprises the outline will be termed a

tangential contour. An important class of such contours are those that exhibit qualitative symmetry

across an axis, like the "vase" in Fig. 2a. If it is assumed that the corresponding surface is smooth

then its silouette is that of a generalized cone whose 3-D shape is recoverable (given some other

restrictions, see [Marr, 1976b]). In this case, the silhouette boundary is comprised of tangential

contours. Note that the surface orientation (its slant and tilt) is known at all points along a

tangential contour: the slant is r/2 and the tilt is perpendicular to the contour.

In the previous discussion the 3D object was assumed to have a smooth surface. However, for

objects with angular faces (such as many man-made objects), or objects that are basically 2-D

surfaces (e.g., a leaf), the surface orientation will be discontinuous along the contour generator

which corresponds to the outline. Since the line of sight does not graze the surface along the edge,

the silhouette boundary is not a tangential contour. Observe that the contours in figure 2b, which

we interpret as the outline of a gently curved sheet, present a fundamentally different problem than

the contours in figure 2a. Neither do we assume that the surface is smooth nor that the contours

are tangential contours.

The distinction that I propose is therefore not between "outlines" and "inlines" -- not whether

the contour Is along the boundary of the silhouette or Interior to the bounary. Instead, the

distinction is between the special case of outline contours, the tangential contours, and all other

contours. This means that the outlines of objects that are not smooth will be treated as surface

contours for our purposes. The reason for this Is the following. The fact that a given contour is

W6
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part of an object outline does not constrain the shape of the underlying surface, expect when the

surface is smooth. Otherwise, the contours merely delimit the visual extent of a object from the

given viewpoint. The rest of this section will address the problem of using surface contours. In

general, it will not concern us whether the surface contour is an outline contour as well.

1.4 Surface contours: structural and illumination

Thus far, we have only distinguished between contours corresponding to the silhouettes of smooth

objects, the tangential contours, and all other contours (those being collectively termed surface

contours). But there are various, distinct physical causes of these surface contours. In particular,

we can distinguish two broad categories of surface contours, roughly speaking by whether the

associated contour generator corresponds to a physical feature on the surface or merely due to

illumination. The first category will be termed structural contours, the latter, illumination contours.

Structural contours are the projections of contour generators which mark some discontinuity on

the surface, e.g. of reflectance or of surface orientation. Examples that occur in nature are given by

the images of pigmentation markings on a zebra, wrinkles on skin, parallel ridges on leaves, rings

on bamboo stalks, and cracks on wood or rock. Images of synthetic objects commonly present

structural contours corresponding to seams, sharp edges, groves, and pigmentation markings.

Illumination contours are of three types: (a) the projections of glossy reflections, such as those

that appear on metallic or wet surfaces, (b) the projections of shadow edges that have been cast

upon a surface, and (c) the images of self-shadows, or "terminators" on surfaces. These three types

have been grouped together as illumination contours because their presence is strongly dependent

on the particular illumination and may shift their position relative to the surface as the viewpoint

or light source geometry changes. They are all potentially useful sources of information about the

shape of the surface, as we shall see, but since they depend on particular arrangements of

illumination and viewing geometry, they may be considered as fortuitous.

We now turn to address the problem of constraining the visual interpretation of surface

contours. First, we will examine a decomposition of the problem into two steps, each of which must

be constrained. Constraints for each step are then introduced, and their validity discussed.

Discussion of how these constraints are computationally useful is given in section 4.

I
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r.

2. THE CONSTRAINTS

In the following discussion a surface will be denoted by E, a contour generator by r, and the

projection of r from viewpoint V will be the contour Cv (see figure 3). (When the viewpoint is not

discussed, the contour will be referred to simply as C.)

A surface contour in the image is the projectionI of a contour generator r lying on a surface E;

neither the shape of r nor E is known a priori. Note that the surface contour C is completely

determined by the 3-D locus of its generator r in space relative to the viewer, regardless of the

orientation of the surface on which r lies so long as the surface allows r to be continuously visible

along its length. This is an important point. We want to infer the shape of the surface E from the

shape of the surface contour C, but in fact C is not a function of the shape E; C is only a function

of r. In order to infer the shape of E, the relationship between r and E must be constrained.

Likewise, to infer r from C, the relationship between r and C must be constrained. The

decomposition that is suggested, therefore, involves two stages:

(a) inferring the shape of the contour generator in 3-space (C * F) then

(b) determining how the surface lies under the contour generator (F * E).

This can be thought of as (a) bending a wire in 3-space so that it appears to the viewer as does the

contour in the image, then (b) gluing a ribbon along the wire to represent the strip of surface that

lies directly under the contour generator. In these terms, we see that infinitely many bendings are

possible that would appear identical from the given viewpoint, and the ribbon may twist arbitrarily

along the wire. These two aspects of the problem are distinct.

This characterization applies equally to the problem of inferring surface shape from multiple

surface contours (Ci) in the image, such as those in figure I. The geometrical arrangement of {Ci},
particularly if they are parallel, may constrain both stages I and 11 (section 4.2.2). Note that the

appearance of figure I may lead one to suspect that parallelism uniquely constrains the surface, but

the image is in orthographic projection and significantly different surfaces may project to the same

1. The projection is assumed orthographic, i.e., the contour generator r is assumed small compared to is
viewing distance. The perspective distortions otherwise induced in C would be infeasible to differentiate
from those induced by slight distortions in r under conditions of orthographic projection. Note further
that the informal term "image plane" will be used, although the retinal projection is more closely
approximated by spherical projection.
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CV

Figure 3. The orthographic projection of contour generator r from viewpoint V is Cv. The curve
C,, is termed an occluding contour if it is an edge of the silhouette of an object from viewpoint V.
In particular, if the line of sight just grazes the surface along r then the curve C", is also a
tangential contour. The curve C,, is termed a surface contour if it is not a tangential contour.
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image -- the separation in depth between the contour generators on the surface is not restricted'

Thus even in the case of multiple parallel contours, the surface interpretation process must be

constrained, and that constraint is naturally described in terms of the above two stages.

This decomposition provides a framework for applying constraints to the problem of inferring

E from C. The constraints necessary for stage I involve projective geometry, for the problem is

naturally one of "deprojectlng" from the image curve to the curve in space. The constraints

necessary for stage II do not involve projective geometry -- they do not depend on the particular

viewpoint. Rather they involve intrinsic geometry, specifically the relationship between the curve

on the surface and the surface itself.

2.1 Borne geometrical concepts

This section reviews some concepts that are necessary for discussing the relation between a curve on

a surface and the underlying surface itself. I shall review the notions of Gaussian curvature, lines

of curvature, developable surfaces and cylinders, asymptotic curves, and geodesics (c.f. [Hilbert &

Cohn-Vossen, 1952]).

To introduce Gaussian curvature, consider the family of normal sections at some point of a

smooth surface, i.e., the contours that result from sections that contain the surface normal at that

point. The various section contours through that point usually vary in curvature, with greatest and

least curvature occurring at two principal directions. For example, contours parallel to the axis of a

cylinder will be lines of least curvature (they are straight), whereas circles in planes perpendicular to

the cylinder's axis will be lines of greatest Gaussian curvature. (For a sphere, the curvature is

constant everywhere and hence this shape has no unique principal direction of curvature.)An

Important property of the two principal directions is that they are mutually orthogonal at every

point on the smooth surface.

The Gaussian curvature at a point is the product of the greatest and least curvatures. The

Gaussian curvature may be positive, negative, or zero, and for an arbitrary surface may vary

continuously across the surface. For example, the curvature is positive on a smooth pebble,

negative on a saddle surface, and zero on a cylinder (defined momentarily).

1. In fact, one consistent surface solution is given immediately by the sheet of paper on which figure I of
this article is printed -- the parallel contour generators would be the ink on the page.

_____.__.......... ~ A



Richards & Stevens - 15- Surface contours K

A line of greatest (or least) curvature is a curve whose tangent everywhere coincides with one of

the two principal directions. Important examples are the cross sections and meridians of surfaces of

revolution (which of these is the line of greatest curvature depends on the surface shape).

A developable surface is a surface with zero Gaussian curvature everywhere (i.e.. the curvature

in at least one of the principal directions vanishes). Thus the lines of least curvature are straight

lines on a developable surface. Examples of developable surfaces are planes. cylinders, and

helicoids. Informally, they correspond to the class of surfaces that may be made by twisting and

curling a sheet of paper.

A cylinder is a developable surface where the lines of least curvature are parallel. Cylinders

may be formed by curling a sheet without torsion -- it may be rolled into a tube or be rippled like a

hanging curtain. It is useful to think of a cylinder as a one-dimensional surface.

An asymptotic curve is a locus of points on the surface where the Gaussian curvature is zero.

By definition, all curves on developable surfaces are asymptotic. On the other hand, surfaces with

everywhere positive Gaussian curvature (such as a sphere) have no asymptotic curves. And

surfaces of negative Gaussian curvature must have asymptotic curves, since the principle curvatures

are of opposite sign and for some direction between the principle directions at each point on the

surface the curvature must vanish.

Finally, a geodesic, usually defined as the shortest path between two points on a surface, is also a

curve whose principal normal I everywhere coincides with the surface normal. Importantly, the lines

of greatest and least curvature on a cylinder are geodesics.

2.2 What oonstraints might be useful?

We now introduce some constraints that allow solutions to steps I and 11. They are provided by

restricting the geometrical properties of the contour generators, and restricting the relationship

between the contour generators and the surface on which they lie. This section only tabulates the

various geometric restrictions. Next, in section 3 we will discuss the validity of assuming that these

restrictions hold in natural situations involving actual contour generators on physical surfaces and,

I. The principal normal to a planar curve is the perpendicular to the tangent to the curve and lies in the
plane of the curve. The principal normal to a curve with torsion, similarly, is perpendicular to the tangent
but lies in the osculating plane of the curve at that point (where the osculating plane is defined by two
successive tangents at the given point). Note that we will often restict curves to be planar, so fixing the
plane of a geodesic immediately fixes the normal to the surface.

io " .... ...
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in section 4, we will describe how the restrictions constrain the shape-from-contour analysis.

2.2.1 Constraints on the contour generator

With regard to step 1, the 3-D shape of a contour generatr r (corresponding to a given surface

contour C) may be recovered if restrictions are imposed on r and on the viewing position. Some of

these restrictions are listed below.

(a) general position, the viewpoint is not misleading. This allows one to
infer properties of the contour generator r on the basis of the properties of
its image, the surface contour C. For instance, if C is smooth then r is
smooth; if (Cil are parallel then {rij are parallel.

(b) planarity r is planar. This reduces the problem of determining r to
that of determining the orientation of the plane F containing r. The
plane I is constrained by the following.

(c) symmetry. Given planarity and general position, if C presents evidence
of symmetry then r is symmetric, and the orientation of 11 must be
consistent with r being symmetric.

(d) minimum curvature variation. Given planarity and general position, if
the curvature of r is roughly constant then the variations in curvature
apparent in C may be attributed to foreshortening. Consequently that
plane 11 that minimizes the variation in curvature of r would solve r.

2.2.2 Constraints on the relation between contour generator and surface

Given the contour generator r, the surface E may be solved if the relationship between r and E is

restricted. if r is planar and lies on some plane 11 then the relationship between the contour

generator and the surface is naturally described in terms of the angle between !' and the tangent

plane to E for points along r. The relation between the surface and the contour generator is quite

simple if we make the strong restriction that this angle is constant along the length of r. That is to

say, the plane containing the contour generator meets the surface at a constant angle. The two

cases we will consider is when the angle is 712 and zero.

If the angle between nl and the tangent plane to E is w12, then:

r is geodesic. The surface normal coincides with the principal normal to r
for points along r.

If the angle between F" and the tangent plane to E is zero, then:
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r is asymptotic. The surface normal coincides with the normal to nl for
points along r, and furthermore, the Gaussian curvature of E for points
along r is zero.

These two solutions, geodesic and asymptotic, form the basis for constraining the relation between

the contour generator and the surface. Given general position and planarity, we also have an

important restriction on E in the case of parallel surface contours (C):

{Fi } are parallel lines of curvature and E is a cylinder. Furthermore, if the
contouf generators are geodesics, they are lines of greatest curvature; if
asymptotics, the surface degenerates to be planar.

And finally, a derivative of the cylinder restriction may apply in the case of a single surface

contour, if the corresponding contour generator is a line of greatest curvature and the surface is

cylindrical, by the following restriction:

E is opaque. The image of an individual line of greatest curvature on a
cylinder allows some restriction on the shape of the surface.

Surface contours are often weak sources of information about the surface shape when analyzed

individually, primarily because it is difficult to deduce the shape of the contour generators on an

individual basis. The more important case probably involves the geodesic restriction on a

collection of parallel contours taken together. Then the parallelism may be used to advantage in

constraining the shape of both the contour generators and the surface on which they lie. Before

pursuing the utility of these constraints any further, it is important to gain some insight into their

validity.
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3. WHEN ARE THE CONSTRAINTS VALID?

Do the contour generators in the real world meet these restrictions? In some situations it is valid to

assume that a contour generator is, say, planar and geodesic, as we shall see. But there are also

instances where the same assumptions are not valid -- the real world does not necessarily constrain

the curves on surfaces to comply with any of the various ideal geometries. How often are the

restrictions met in actuality? This is the issue of "ecological validity" discussed by Gibson,

Brunswick, and others (c.f. [Gibson, 1950; Postman & Tolman, 1959]). We start with considering the

validity of assuming general position.

3.1 General position

General position implies that the viewpoint is representative -- that the image taken from this

position does not mislead us by accidental alignments. Two examples of viewpoints that are not

general position may be imagined for a cube: In one instance the cube is positioned so that its

silhouette is a regular hexigon. Equally misleading would be a cube positioned so that its

silhouette is a perfect square.

When the assumption of general position is correct we may make valid deductions, in

particular, deductions about contour generators. Two examples of these deductions which we shall

pursue are the following: If a surface contour is smooth, the corresponding contour generator is

smooth, and if surface contours are parallel, their contour generators are also parallel.

The contour generator need not be smooth simply because its projection is smooth: a

discontinuity in tangent along a contour generator might be hidden from the given viewpoint -- the

plane containing the discontinuity might also contain the line of sight so that the discontinuity

would not be apparent. But if the distribution of spatial orientations of planes relative to the

viewer is uniform, the likelihood of such an accidental alignment would be insignificant. Similarly,

some non-parallel curves may be constructed such that they appear parallel from certain viewpoints,

but the probability of achieving a viewing position that allows this alignment becomes insignificant

as the curves diverge from parallelism in 3-space. I

I. Implicit in the above argument is the reasonable expectation that the instances of actual parallelism,
straightness, and so forth, are more probable than accidental alignments.

.. . ... ...... .. ... - , , . ,,' . : . ,i , , L_' . .. i-
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3.2 Geometrical properties of structural contours

In general, the geometry of structural contours is not strongly constrained because the processes that

cause them are varied and often random. There are, however, some types of physical markings

that are well constrained.

The clearest examples, perhaps, involve synthetic objects. With reference to the objects about

you, observe that the smooth surfaces of man-made objects are usually comprised of either (a)

planar surfaces, (b) singly curved surfaces, in particular cylinders, or (c) surfaces of revolution. In

general, the boundaries between surfaces are planar, primarily for reasons of fabrication. Again,

because of convenience in manufacturing as well as utility, curved surfaces are usually sliced by

normal sections. Thus joints between surfaces of an object comprise geodesics on one or the other

of the joining surfaces. The end of a "tin can" would be an example. Surface markings other than

seams or joints are often geodesics as well, particular when the markings are on cylinders. When

the markings are also planar, they additionally constitute lines of curvature. This combination of

properties, planarity and geodesic, is particularly common.

Markings on surfaces of revolution usually follow either the axis or some cross section. Hence

these seams, edges, ridges, and pigmentation markings are lines of curvature, geodesic, and planar.

(A notable exception can be found in the spiral seams on cardboard tubes. They are geodesic but

nonplanar.)

Flexible surfaces, both natural and synthetic, tend to be noncompressible hence developable, and

are therefore cylinders when not subjected to torsion. Wrinkles produced by compression tend to be

lines of curvature.

Many biological forms may be approximated as being composed of generalized cones [Marr,

1976b. These surfaces often have markings that follow cross sections and meridians on the surface,

and therefore are also lines of curvature, geodesic, and planar. Biological objects are often

bilaterally symmetric, such as leaves. Their axes of symmetry are often evidenced by physical

markings, and symmetric patterns are usually arranged across that axis. The symmetry may be

used to advantage to restrict the possible orientations that would be consistent with the 3-D form

being symmetric.
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3.3 Geometrical properties of illumination oontours

3.3.1 Cast shadows

The edge of a shadow cast across a surface is a fortuitous source of information about surface

shape. We are familiar with the effectiveness of the shadow a fence post cast upon snow in
indicating the undulations in the surface. But to accurately analyze the surface from the image of

the cast shadow, a number of variables must be known. There are essentially two projections

involved: the projection of the shadow onto the surface (the edge of which becomes the contour

generator r) and the subsequent projection of r onto the image plane (as contour C). Thus the

contour C in the image depends on (a) the shape of the physical shadow-casting edge, (b) the

position of the light source -- together they specify the bundle of rays that will be cast upon the

surface -- and (c) the position of the shadow-casting edge relative to the surface, and finally (d) the

shape of the surface itself.

To appreciate the complexity of shadow interpretation in the general case, consider again the

image of a tree trunk shadow cast on snow. Suppose there is a kink along the shadow edge. Is

that due to a sharp depression in the snow (for instance, is the shadow falling across a footprint) or

is it due to a kink in the tree (and the snow itself is flat)? If analyzing the shape of the surface is

attempted prior to knowing the above factors, some assumptions are necessary. In the approach

suggested here, the assumptions are two:

the contour generator is Planar and geodesic.

In terms of this example, the above translate into assuming the edge casting the shadow is straight

and that its profile (determined by the sun position and the trunk) intersects the ground at a right

angle. Then if there is an apparent kink in the shadow edge it will be attributed to the surface, not

to the tree. (Incidentally, it is informative to observe the shadow cast on the flat ground by a young

tree which has a crooked trunk. The ground often appears to undulate according to the curves in

the cast shadow.)

So we should discuss how the planarity and geodesic restrictions help the shape analysis. First

note that if the shadow-casting edge is straight the contour generator (the shadow edge cast across

the surface) constitutes a planar section of that surface. That is, the contour generator lies in the

plane defined by the straight shadow-casting edge and the point light source. In this case, we may

already determine qualitative information about the surface shape. Given general position, if the
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contour in the image corresponding to the shadow edge is straight, the surface is flat; if it is

curved, the surface is curved. To determine more quantitative shape information requires that (a)

the relation between the contour generator r and the surface be known, and (b) the orientation of

the plane of r be known. Hence we introduce the geodesic assumption. That is to say, the shadow

edge across the surface is assumed to be a normal section of the surface. Weak justification for this

assumption derives from considering shadows cast on the ground: Since shadow-casting edges are

usually vertical (e.g., tree trunks, building edges, telephone poles, fences), the edge of the shadow

amounts to a normal section, i.e., the shadow edge is roughly geodesic.

When do multiple, parallel sections occur in real situations? We may disregard the shadow of a

picket fence as being artificial, but notice that two parallel sections would result from the shadow

edges cast on some surface by a relatively narrow object such as a tree trunk. Another possibility

concerns motion: successive views of a moving shadow edge. Successive positions of a shadow

edge that sweeps across a surface in translatory motion would constitute parallel sections of the

surface. Does the visual system take advantage of this fact? Is our ability to analyze parallel

surface contours a derivative of an ability to analyze moving shadows? This hypothesis would be

supported if we could perceive a surface defined only by a sintic moving contour that scans across

an otherwise invisible surface. In fact, this ability may be demonstrated by a motion sequence of a

single contour on a CRT, where each frame presents only a single curve. Note that the moving

curve might be interpreted simply as a flexible wire that bends as it translates, or more literally, as

a curve in the plane of the screen that changes shape as it moves. But, in fact, there are instances

when we interpret the moving contour as a shadow edge sweeping across a 3-D surface (e.g., when

the individual curves in figure I are presented in succession).

3.3.2 Specular reflections: gloss contours and highlights

Gloss contours, like shadows, are fortuitous, i.e., useful but not necessarily present. They are present

only under directional lighting conditions on specular surfaces, when the surface normal lies in the

plane defined by the point light source, surface point, and viewer and bisects the angle defined by

that configuration. This configuration (the specularity condition) is rarely met with planar surfaces

but Is commonplace for curved surfaces, especially when viewed indoors with multiple lights

Illuminating the surface. The specularity condition may be met only at an isolated point, causing a

highlight, or met along a curve, causing a gloss contour.

For a doubly curved patch of surface the specularity condition is met at only a point, if at all,
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and would only produce a highlight in the image. A gloss contour cannot occur on a surface with

nonzero Gaussian curvature in orthographic projection given a point light source.! For a gloss

contour to occur -- for the specularity to appear not as a point but as a curve -- the specularity

condition must be met aong a continuous curve on the surface. With orthographic projection and

distant light source it is necessary that the contour generator (the locus along which the specularity

condition is met) be planar. That plane corresponds to the tangent plane to the surface along the

contour generator. Now two results in differential geometry are useful:

A curve is asymptotic if it lies in a plane everywhere tangent to the surface
along the curve.

If the angle between a planar curve and the tangent plane of the surface is
constant, then that curve is a line of curvature.

Using the above, we may conclude that the curve across the surface that corresponds to the gloss

contour is asymptotic and a line of (least) curvature. Since the asymptotic curve follows a path of

zero Gaussian curvature, we have information about the intrinsic geometry in the vicinity. Of

importance is the following which hold subject to general position:

If the gloss contour is curved, the surface is planar. This is true in
orthographic projection with distant light source. (With nearby objects
and perhaps nearby illumination, the surface would not be strictly planar.
But in general the surface curvature measured along the contour generator
will be small, much less than that measured across the contour generator.)

If the gloss contour is straight, the surface is cylindrical when either (a)
gloss contours from successive viewpoints are parallel, or (b) if there are
multiple light sources (as is common In interior scenes) and multiple gloss
contours are parallel.

Thus the specular reflections in the image can tell us not only something of the reflectance

1. In real situations we have two ways in which gloss contours may arisc. First, extended light sources
(such as fluorescent lights, bright windows) will extend point reflections into images of the light sources,
which appear as gloss contours if compressed because the two principle curvatures are very different.
Secondly, in perspective projection we may have that as the line of sight sweeps across the surface (the
projection is not parallel) the angle between the line of sight and the surface stays relatively constant due
to curvature of the surface, such as when viewing the inside surface of a cup from nearby. Then if the
specularity condition is met at one point in that vicinity, it would be met along a locus. Thus in
perspective projection highlights may spread into gloss contours as well.



Richards & Stevens - 23 - Surface contours

properties of the surface, that the surface is specular [Beck, 1972), but also something about the

surface shape, namely, that the Gaussian curvature is nonzero in the vicinity of a highlight and

zero in the vicinity of a gloss contour. The shape of the gloss contour also specifies the intrinsic

shape of the developable surface.1 This does not strictly hold when the surfaces or light sources are

near by, and especially when the light comes from an extended, rather than a point, source.

Nonetheless, it is instructive to observe the gloss contours on specular surfaces -- they almost

invariably follow the least curvature paths on actual surfaces.

3.3.3 Shading contours and terminators

The previous discussion assumes bright, directional light sources. However the specular surface not

only reflects the light sources as a highlight or gloss contour, but also acts as a mirror -- the various

glossy reflections comprise an image of the surrounds distorted by the geometry of the surface.

This is the extreme case of mutual illumination which makes "shape from shading" difficult. The

incident illumination is an intractably complex function of the surrounds. But without

understanding this illumination, the shape of the surface cannot be solved from the shading. 4

With the addition of a matte component, the fine details in the reflections are lost, and the gloss

contours become less definite. In the limit case of a Lambertian surface there is no specular

component and the shading is only a function of the surface orientation relative to the various

sources of illumination. For this reason one would expect that the surface orientation would be

computed from shading most feasibly, however the illumination is still determined by the surrounds

and is still quite unconstrained. Consequently, the computation of shape from shading (where

"shape" means local surface orientation) is quite difficult.

Most surfaces are neither totally matte nor glossy so their images present weak highlights and

gloss contours -- the distinction between shading and gloss becomes vague. One may postulate,

therefore, that shading only constrains the local surface geometry in the manner just described -

the local surface orientation is not computed directly from the shading. Instead, the local surface

orientation would be smoothly interpolated between those tangential contours and surface contours

along which surface orientation can be solved. The interpolation would be subject to the constraint

1. Furthermore, the surface normal coincides with the normal to the plane containing the gloss contour,
but so utilize that fact the 3-D curve corresponding to the gloss contour must be determined. That is
the topic of section 4.1.



Richards & Stevens 24 - Surface contours

on intrinsic surface geometry provided by the gloss and shading contours. This constraint is

naturally described in terms of Gaussian curvature: A highlight indicates positive Gaussian

curvature in the vicinity. Similarly, a gloss contour.indicates a locus of zero Gaussian curvature.

Constraint on intrinsic geometry is also provided by the shading contours known as terminators,

surface contours which correspond to paths on the surface along which the light grazes the surface

so that points on one side of the contour are illuminated, points on the other side are in shadow.

(A terminator is analogous to a tangential contour seen from the light source position.) A strong

restriction on the surface shape is provided wherever the terminator is straight in the image: the

surface is locally developable (again, assuming general position) and therefore the terminator

indicates a locus of zero Gaussian curvature.

iI
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4. HOW THE CONSTRAINTS ARE USEFUL

Thus far we have discussed a number of geometrical properties that may be useful in constraining

the analysis of shape from surface contours. Instances in which these properties hold in real scenes

were described. What remains is to become more specific about why these properties are

computationally useful.

4.1 The relation between a surface contour and its contour generator

The current problem is to determine the contour generator r in 3-space on the basis of its

projection, the surface contour C. To make this problem graphic, observe the 3-D shape of the

curve in figure 4. We are asking how that shape may be determined.

The projection will be restricted to be orthographic. This restriction would hold whenever the

dimensions of the curve in space are small relative to the distance from the curve to the viewer.

Orthographic projection is linear, hence some useful geometrical properties are preserved, notably

parallelism.

Now, in determining the shape of contour generators in 3-space we are confronted with a

problem wherever the tangent to the contour (its slope) is discontinuous: Is that discontinuity the

projection of a discontinuity in tangent along the contour generator, or is the discontinuity due to

the adjoining of distinct contour generators on the surface? Since this cannot be answered locally

without a priori knowledge of the specific surface, we follow the principle of least commitment

[Marr, 1976b] and partition the surface contours in an image into their smooth segments.

4.1.1 General position

A number of constraints will be consequences of assuming general position -- that the viewpoint is

such that images from nearby viewpoints would not present significant differences in the geometry

of the projected contours. By this we rule out viewpoints that cause accidental alignments which

mislead. For instance, if a contour C is straight from viewpoint V, then assuming general position,

it would be straight from a similar viewpoint -- it is not the case that the contour generator r is

curved in a plane but that plane is viewed "edge on" so that the image of r is foreshortened into a

straight line. General position allows one to infer properties of contour generators on the basis of

their images, such as smoothness, continuity, and parallelism.

Our first application of general position Is as follows. Since the contour C Is smooth and
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Figure 4. The curve appears to have a specific 3-D shape, as if planar and foreshortened by the
slant of the plane relative to the viewer. How is this interpretation derived?
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continuous, r is smooth and continuous.I Furthermore, in general position, nearby and distinct

points on r project to nearby and distinct point on C. That is, there are no kinks or loops in r

hidden by the particular viewpoint. in short, assuming general position allows us to consider r as

a smooth wire in 3-space. Now we consider additional constraints which allow us to determine its

shape.

4.1.2 The planarity restriction

If the contour generator r is constrained to be planar, the shape of r would be completely

determined by the equation of the plane containing the curve given its orthographic projection C.

Hence the planarity restriction reduces the problem of determining r to that of finding the spatial

orientation of the plane l containing r.

Since the contour generator r is determined once 11 is specified, one approach is to impose an a

priori choice of 1, then examine the shape of r that results. That is, one assumes a particular

spatial orientation for the plane containing the contour generator. But there do not appear to be

any reasonable choices for H, except for the ground plane, i.e., the horizontal plane defined by

gravity. However it is not feasible to assume that all surface contours are projections of horizontal

contour generators.

Alternatively, one may make a priori assumptions about the shape of F in the same spirit as

assuming that F is planar. Then H would be a consequence of C and those restrictions on F.

What restrictions can be reasonably placed on r, and how are those restrictions to be phrased? I

shall consider two -- symmetry and minimum curvature variation.

4.1.3 Symmetry

Bilateral symmetry is commonly found in nature and usually preserved, at least indirectly, in

orthographic projection. We are interested in symmetry, for evidence of symmetry in an image will

provide constraint on the shape of F. We start with the usual definition of a bilaterally symmetric,

planar curve as comprising two loci of points that are reflections of each other across a straight line,

the axis of symmetry (figure 5a). The symmetric points are equidistant across the axis, the line

connecting any two symmetric points is perpendicular to the axis, and all such lines are therefore

I. We would like to say something about the smoothness of the surface directly under the contour
g nerator on the basis of the surface contour being smooth, but unfortunately that does not follow from
general position as stated. The smooth contour generator may lie along a sharp ridge, for instance.
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parallel.

In any orthographic projection of this curve, the image of symmetric points are equidistant

across the image of the axis, the correspondence lines connecting those points are parallel, but the

correspondence lines are no longer perpendicular to the image of the axis in general (figure 5b).

This configuration has been aptly termed "skewed symmetry" by Kanade and Kender [1979]. If a

unique line can be found that behaves, in this sense, as the image of an axis of symmetry, then by

general position we will assume that the planar curve in space is bilaterally symmetric. That is, we

have criteria for detecting bilateral symmetry. When these criteria are satisfied in an image we may

assume that it is not coincidental, that it would also be satisfied in an image taken from a different

viewpoint -- hence due to actual symmetry. The problem that remains is to detect the images of

symmetric pairs of points.

Orthographic projection is linear, hence a number of properties are preserved by the L
transformation including midpoints, points of inflection, and convexity and concavity Marr, 1976b].

Marr has shown, in the context of finding the axes of generalized cones, that axial symmetry can be

efficiently detected by the qualitative symmetry between convex and concave segments, rather than

on a point-by-point basis. This extends to the detection of bilateral symmetry, where the

correspondence lines between qualitatively symmetric segments would be parallel. The line defined

by the midpoints of the correspondence lines would be the image of the axis of symmetry.

Returning to the problem of constraining the shape of the contour generator, the symmetry

detected in C constrains r to be symmetric and this in turn constrains the orientation of the plane

fl containing r. Specifically, ri must be oriented relative to the viewer such that, given C, r would

be symmetric if lying on 1.

This constraint is simply expressed in terms of the correspondence angle, the angle in the image

between the correspondence line and the projected axis of symmetry (figure 5b). Since the

correspondence angle is the image of a right angle on the surface, the magnitude of the

correspondence angle 0 constrains the possible spatial orientations for the tangent plane at that

point (see figure 6).

In short, r is presumed symmetric If an axis of symmetry can be reconstructed from the

midpoints of parallel correspondence lines, where the correspondence lines are constructed between

qualitatively symmetric segments of C. The correspondence angle then constrains the spatial

orientation of the plane containing r.
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Figure 6. The oblique angle 0 formed by the projection of a right angle provides some constraint
on both the slant a and tilt r components of surface orientation relative to the viewer. The
possible values of slant and tilt are shown as cross-hatched for correspondence angle 0 varying
from 'rI2 to rt Tilt r is measured relative to one of the contours in the image, and varies from
parallel (r - 0) to perpendicular (r 70w2).
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4.1.4 Minimum curvature variation

The curvature of C encodes information about the orientation in space of the contour generator r,
if r is planar and some other restrictions hold. Witkin [1979] has shown that the orientation of the

plane 17 containing r may be estimated on the basis of the curvature along C if we assume that

systematic variations in the curvature that resemble foreshortening are due to foreshortening. Then

one may choose that plane n that maximally accounts for the variation in curvature in terms of

foreshortening. The following assumptions are sufficient to allow this analysis:

(a) the possible surface orientations of rI are equally likely.

(b) the tangents to the contour generator are arbitrarily aligned relative to
the viewer (they are independent of slant a and tilt r), and

(c) the curvature along the contour generator is independent of a, 'r, and
the orientation relative to the viewer of the tangent to the contour
generator r.

The constraint on r that results is roughly equivalent to assuming that the variation in curvature

along r is minimum [Witkin, 1979]. Then the variation in curvature along its projection C may be

attributed primarily to foreshortening, whereupon the degree of foreshortening -- hence the

orientation of the plane rI containing F -- may be estimated. To introduce this, consider the case

when r is a circle, a planar curve with constant curvature. The orthographic projection C is an

ellipse; the curvature along the ellipse varies according to the foreshortening of the corresponding

segment of the circle. One may derive from the variance in curvature an estimate of the

orientation of the plane containing r.

This constraint has been phrased in terms of minimum curvature variation, but Witkin

describes it more generally as a problem of signal detection. The "waveform" that we consider is

the contour in the image (parameterized in terms of contour curvature). The curvature at any

point on the contour consists of two components, one being the curvature of the contour generator

at each corresponding point, the other being a "projective component" which increases or decreases

the apparent curvature according to the orientation of the given segment of the contour generator

relative to the viewer (in the circle example, where the tangent lies parallel to the image plane, the

curvature on the ellipse is minimum; where the tangent to the circle is oriented away from the

viewer the curvature is greatest). The curvature of the contour generator is treated as noise; the

projective component is the signal. Since the projection Is orthographic and the contour generator



Richards & Stevens - 32 - Surface contours

is planar. the projective component will be regular.

The problem of determining the orientation of the plane containing F" may be recast as that of

estimating the amplitude and phase of a signal of known waveform (the projective component) in

the presence of noise (the unknown shape of ). The problem can then be solved by seeking to

account for as much as possible of the variance in the surface contour in terms of the projective

component. The constraint stems from the fact that the processes that determine the shape of

contour generators on actual surfaces usually do not impose the same kind of systematic regularity

as that imposed by orthographic projection. t

4.2 The relationship between a contour generator and the surface

Given the contour generator r is a planar 3-D curve, how does the surface E lie under r? in terms

of the wire and ribbon, a primary question concerns whether the ribbon may twist along the wire.

More formally, if the plane containing r is 1i, does the angle between E and n' vary along r?
A result in differential geometry is that given a curve r defined by the intersection of a plane

11 and a surface E, if the angle between E and 1 is constant along r, r is a line of curvature (see.

e.g., [O'Neill, 1966, p. 224]). Thus if the contour generator is planar, and that plane intersects the

surface with a constant angle, the contour generator is a line of curvature. The next issue is to

determine the angle between 171 and E.

4.2.1 The geodesic and asymptotic restrictions

If the plane ri containing the contour generator r is perpendicular to E, ie.. r is a normal section,

then r is geodesic. Consequently the surface normal along r everywhere coincides with the

principal normal to r. In essence, the contour generator follows a path on the surface which locally

indicates where the greatest curvature occurs. The binormal to the contour generator, being

perpendicular to both the principal normal and the tangent, coincides with the direction of least

curvature. However all such binormals are parallel, for the tangent and normal along r only rotate

in the plane 1. Consequently all lines of least curvature are parallel; equivalently, the strip of

surface under the contour generator is a cylinder.

The previous discussion considered the case where the contour generator is geodesic; where the

angle between 1i and E is w/2. If that angle is everywhere zero, then i coincides with the tangent

plane of E and the surface normal along r coincides with the normal to 11. As mentioned earlier if

a curve lies in a plane everywhere tangent to the surface along the curve, that curve is asymptotic,

.. . . . ... .. ... . . .. .. ... ,.. . .. ...:, ::- ' i ,i i " - ..' % : '" ' . .
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i.e., a locus of points of zero Gaussian curvature. The importance of the asymptotic restriction is

found in gloss contours. The contour generators corresponding to gloss contours in the image

correspond to asymptotic curves on the surface. Hence where gloss contours appear we know that

the surface is locally developable (likewise, where point specularities occur we also know that the

surface must be doubly curved). To some extent we may further understand the surface geometry

simply on the basis of the shape of the contour in the image without determining the particular 3-D

shape of its contour generator. If the contour is a straight line in the image we cannot tell much,

for the surface may be either cylindrical or twisting (like a spiraling piece of paper). But if it is any

smooth curve in the image the surface is roughly planar since the contour generator is restricted to

be planar and asymptotic.
I.

4.2.2 Parallelism

The discussion thus far has concerned the analysis of surface shape from a single surface contour.

This analysis requires that the contour generator r may be determined from its image, however the

constraint afforded by planarity, general position, symmetry, and constant curvature will not always

allow a strong determination of r. It is perhaps not coincidental that, in fact, our perception of

surface shape from a single, unfamiliar contour is weak when compared to the vivid impression V
afforded by multiple, parallel contours (figure ). The basis for the apparently greater constraint

from parallel contours will now be discussed; further comments on the psychology of surface

contours are given in [Stevens, 1979].

If surface contours are parallel in the image, then by the of general position, their contour

generators are parallel. The fundamental issue now concerns the behavior of the surface between

the contour generators. In the absence of independent sources of information about the surface

such as shading or texture we must make some a priori assumption about the nature of the surface

between the contour generators. A conservative assumption would be that the surface extends in a

"simple manner" between them. This can be formalized by a second form of general position: that

the particular positions of the contour generators on the surface are not critical, that if shifted

slightly, the contour generators would project qualitatively the same. This is equivalent to assuming

that the surface is a cylinder between the contour generators.

We now use the geodesic-asymptotic restrictions from the previous section, and consider two

interpretations for the cylindrical surface: Either the surface is (a) curved and the contour

generators are parallel geodesics, or (b) flat and the contour generators are asymptotic curves. To
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Figure 7. The contours seem to be interpreted as the image of asymptotic curves on a planar
surface.



Richards & Stevens -35- Surface contours

aid in visualizing these two cases, compare figure I (geodesic interpretation) and figure 7

(asymptotic interpretation). These effects are discussed in (Stevens, 1979]. Note that in the latter

case of asymptotic curves, the parallelism does not provide additional constraint on the surface

solution -- the contour generators lie in the same plane. Nor does the shape of each contour

generator in the plane; it is as if the curves are merely arrayed on a flat surface. The interpretation

of parallel contour generators as geodesics, however, constrains both the local surface orientation

and the shape of the contour generators.

4.2.3 Computing parallel correspondence

Recall that the angle between the plane containing the contour generator and the surface is

restricted to be constant, hence the contour generator is a line of (greatest) curvature. Also, the lines

of least curvature on a cylinder are straight, parallel, and perpendicular to the lines greatest

curvature. If a line qf least curvature were reconstructed in the image, the angle of intersection that

it would make wij a surface contour (a line of greatest curvature) would be the projection of a

right angle. This angle constrains the local surface orientation, as already demonstrated with

regard to bilateral symmetry. In fact, the lines of least curvature can be reconstructed.

in the orthographic image of a cylinder the lines of least curvature would project as straight

and parallel, and each would intersect successive surface contours at a constant angle (since the

contour generators are parallel). This is illustrated in figure 8. Note that we attempt to reconstruct

only the projections of the lines of least curvature. This may be achieved by identifying points on

adjacent contours whose tangents are parallel and connecting those points by straight lines that are

parallel. This may be thought of as bringing points on adjacent contours into parallel

correspondence. The constructed line representing the image of a line of least curvature will be

termed a correspondence line. Note that if the surface contours are straight for a portion of their

length (figure 9a) the tangent to a point P on one contour may be parallel to various tangents on

the adjacent contour, however only one choice would result in a correspondence line that is parallel

to the other correspondence lines between curved portions of adjacent surface contours (figure 9b). I

This correspondence is unique In general, and therefore may be used as a constructive criterion

1. Selection of that choice may be accomplished by a local, parallel algorithm similar to that in [Stevens,
1978]
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Figure 8. in the orthographic image of a cylindrical surface the lines of least curvature project as
straight and parallel, and each intersect successive surface contours at a constant angle. IdentifyingI, points on adjacent contours whose tangents are parallel and connecting those points with lines thiac
are parallel establishes piarallel correspondence, one basis for postulating that the underlying surface
is a cylinder (subject to general position).
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Figure 9. If the surface contours are straight for a portion of their length, as in a, the tangent to a
point P on one contour may be parallel to various tangents on the adjacent contour, however only
one choice would result in a correspondence line that is parallel to the other correspondence lines
between curved portions of adjacent contours, as in b.

4U!
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I

Figure 10. The cylinder restriction is only local, for the parallel correspondence need only be
established between adjacent surface contours, and the parallelism between reconstructed lines of
least curvature is defined only locally. Consequently the local cylinder restriction may be applied to
the surface contours above although the global surface is not cylindrical.

bi
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for detecting parallelism between surface contours and for postulating that the surface is a cylinder.1

An important consequence of the parallel correspondence is that the surface orientation is

necessarily constant along the lines of least curvature (in orthographic projection, as we have been

assuming). Thus if the surface orientation were determined along the contour, it can be simply

propagated along the correspondence lines to provide a complete, interpolated solution to the

surface orientation across the cylindrical surface between parallel surface contours.

We have seen that assuming that the contour generator r is planar and that the angle between

the plane containing r and the surface is constant along r restricts the surface under r to be a A

cylinder. Also, for parallel surface contours the two forms of general position together restict the

surface to be a cylinder. Consequently, the curvature of the surface is attributed entirely to the

curvature of the contour generator, that being a line of greatest curvature.

Note that the cylinder restriction is only local, for the parallel correspondence need only be

established between adjacent surface contours, and the parallelism between reconstructed lines of

least curvature is defined only locally. Consequently, the cylinder restriction may be applied, for

example, to the surface contours in figure 10, where the surface may be approximated locally by

patches of cylinders while the global surface is not cylindrical.

4.2.4 Opacity

We now consider the constraint afforded by restricting the surface to be opaque. In general, opacity

does not significantly restrict the shape of the underlying surface. However the opacity restriction is

important if, as before, the contour gen rator is assumed to be a line of greatest curvature and the

surface under the contour generator is assumed cylindrical. In the following, a geometrical

construction will be described that shows how these restrictions constrain the range of orientations

to which the parallel lines of least curvature would project. The angle between those lines and the

tangent to the surface contour is, again, the projection of a right angle. Thus the opacity restriction

is useful in constraining local surface orientation in the same manner as skewed symmetry and

parallel correspondence. The restriction imposed on slant and tilt as a function of this angle is

shown in figure 6.

1. Note that the correspondence is not unique if, for instance, the parallel surface contours are periodic,
as in figure 1. One solution in that case is to choose the parallel solution which results in the shortest
correspondence lines.
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The constraint follows from the fact that if a line of curvature is continuously visible from a

given viewpoint, so must an adjacent line of curvature. This can be described geometrically in the

following way: The correspondence lines (the projections of lines of least curvature) that connect

adjacent surface contours would make no intersections with the surface contours except at their

terminations. That is, the situation in figure Ila would be disallowed. (Note that in figure 1, where

this does not arise, the surface may be transparent nonetheless.) Now, given a single surface

contour (the image of a line of greatest curvature on a cylinder) we have some constraint on where

an adjacent line of curvature would project, and this in turn constrains the local surface shape.

This constraint is conveniently represented by the Gauss map (see, for example, [Hilbert &

Cohn-Vossen, 1952]). A Gauss map is a simple representation of the range of orientations of

tangents along a curve. The given curve is mapped to an arc on a unit semi-circle where each

point on the curve maps to the point on the semi-circle whose radius is parallel to the tangent to

the curve. This is illustrated in figure lib. Observe how tangents at various points P map to

corresponding points on the semi-circle.

The next step is to use the Gauss map to represent the range of possible orientations of the

correspondence lines. Let that orientation be c, which maps to a single point P on the semi-circle

(that point P whose radius has the orientation a). In figure 12 three choices for a are shown which

are consistent with the surface being opaque. Now, the constraint that the correspondence lines not

intersect the surface contours equates to the restriction that the point P (the mapping of orientation

a) not lie on the arc of the semi-circle already covered by the surface contour. The degree of

constraint imposed by the opacity restriction depends on the surface contour. In figure 13a the

shallow contour maps to only a short arc, and the correspondence lines could have a large range of

orientations. But in figure 13b the correspondence lines are restricted to a narrow range of

orientations.

Given that the correspondence lines are the projections of lines of least curvature which on a

cylinder are Identically the binormals to the plane containing the lines of greatest curvature, the

orientation to which the correspondence lines projects provides us with the tilt component of surface

orientation for the plane containing the given curve.

4.3 Criteria governing the tangential/surfaoe oontour deoision

Earlier we discussed the distinction between tangential contours (silhouette boundaries along which

the line of sight grazes the surface) and surface contours, noting that surface contours include

[ •
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Figure II. The opacity restriction disallows the correspondence lines (the projections of lines of least
curvature) that connect adjacent surface contours to intersect the surface contours except at their
terminations. That is, the situation in a is disallowed. Opacity provides some constraint on the
relation between a contour generator and the underlying surface. Towards representing this
constraint, we represent the surface contour by its Gauss map onto a semi-circle, as in b.
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Figure 12. The surface underlying the contour (heavy line) is assumed to be a cylinder, and the
problem is to determine the orientation a to which the lines of least curvature would project.
Three examples of ot are shown above. The opacity restriction places some constraint on a.

"i-K................................
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Figure 13. The image of the tines of least curvature map to a single point on the Gauss map. If
opaque, that point cannot already be occupied by the mapping of the surface contour. In a the
surface contour is a shallow curve which maps to a small arc on the Gauss map. This does not
strongly constrain the possible orientations of the correspondence lines (the projected lines of least
curvature). But in b the curve covers much of the Gauss map, hence the orientation of the lines of
least curvature is strongly constrained. One choice of that orientation is shown, and the position of
an adjacent, parallel surface contour is drawn. The opacity restriction then provides constraint on
surface orientation by the oblique correspondence angle.
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silhouette boundaries that are not tangential contours. Marr (1976b] has delineated properties of

the silhouettes of generalized cones (whose boundaries are tangential contours) -- surfaces whose

shape can be recovered from their silhouettes. The silhouette of a generalized cone exhibits

qualitative symmetry; where the correspondence lines connecting symmetric segments of the contour

would be perpendicular to the axis of symmetry. For Instance, the symmetric silhouette in figure 2a

is generally interpreted as a vase-like object, and the contours are seen as tangential contours.

Similarly, geometrical criteria can be given which indicate that a contour is a surface contour.

(Note that non-geometrical means also exist, e.g., determining that the corresponding contour

generator is a shadow edge, or a gloss contour or a discontinuity in surface texture) Two

geometrical criteria are suggested by the preceding discussion. First consider qualitative symmetry

where the correspondence lines are not perpendicular to the axis of symmetry (as just discussed in

the case of bilateral symmetry) but oblique to the axis (as in figure 5b). When achieved, this skewed

symmetry suggests a surface contour, as opposed to a tangential contour, interpretation. Secondly, if

parallel correspondence between contours can be achieved, as in figure 3b, those contours can be

interpreted as surface contours.
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5. SUMMARY

I. The analysis of the shape of a surface from surface contours may be decomposed into two
problems: reconstructing the corresponding 3-D curves (the contour generators) and determining
their relation to the surface. This decomposition separates the problem of determining the
projective geometry from that of determining the intrinsic geometry.

2. The first problem is constrained by general position, planarity, symmetry, and minimum
curvature variation.

3. The second problem is reduced by assuming the angle between the surface and the plane
containing the contour generator is constant. Then if that angle is a right angle, the contour
generator is geodesic; if the angle is zero, the contour generator is asymptotic. In either case the
contour generator is also a line of curvature. Since it is also planar, the surface is locally a cylinder.

4. We also arrived at the cylinder restriction in the case of parallel surface contours, given the two
forms of the principle of general position. The opacity restriction is also useful, given the planarity
and geodesic restrictions, in understanding how the surface lies under a contour generator.

5. We have considered instances when the various constraints are valid. Surface markings on
synthetic and biological objects and the edges of cast shadows are often geodesic and planar. Gloss
contours are asymptotic and planar, at least in the case of distant light sources and orthographic
projection. Hence if the contour generator can be reconstructed as a curve in 3-D, the surface
orientation along the curve can be computed subject to either the geodesic or asymptotic
interpretations.

6. Constraints on the intrinsic geometry are also provided by surface contours even if the contour
generator is not well determined in space: Gloss contours, highlights, and shading edges tell us of

the local Gaussian curvature in some cases.
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PART I: TRANSPARENCY

Whitman Riohardu and Andrew P. Witkin

1. INTRODUCTION

1.1 The problem

The intensity of light reaching a point in an Image such as the retina depends upon many

parameters of the scene. These include the strength of illumination, reflective properties of the

viewed surface, and the orientation of the surface with respect to the viewer and the illuminant. To

interpret an image, these confounded factors must be sorted out. Important steps in this direction

have been taken by Land and McCann [1971] and by Horn [1975]. Land and McCann have

developed a method for differentiating the contributions of illumination and reflectance for simple

scenes, while Horn has shown how to isolate the contribution of surface orientation.

For natural scenes, still another factor may confound the interpretation of image intensities:

when a partially transparent object occludes the scene behind, then the resultant image is a

combination of the properties of the transparent object as well as its background. How can the

object and its background be isolated from the available image intensity distributions? Such

situations occur frequently, not only when scenes are viewed through haze, rain, or dirty windows,

but also when a tree or bush Is interposed between the object of interest and the eye. In such

situations, the image content on the retina then becomes a projection of both the transparent

occluding medium and the scene behind. How can these two components of the image be separated

so that the true scene content can be deduced?

1.2 Extending the definition of transparenoy

When viewed at a distance, a dust cloud appears to be a homogeneous partially transparent

medium. But if we get close enough to resolve the individual dust particles, we find that at is

composed of opaque elements suspended In a completely transparent medium. Does this mean that

the cloud is no longer partially transparent beyond the point at which its structure can be resolved?

Clearly any collections of opaque suspended elements -- I.e., *screens" -- become transparent media

whenever the elements cannot be resolved. The distinction between a "screen" and the classical
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transparent "film" is merely one of the scale of resolution. The general form of transparency,

therefore, includes the separation of such "screens", e.g. trees or rain, from their backgrounds. The

homogeneous film is merely a special limiting case.

A general definition of transparency Is therefore as follows:

A surface (or medium) will be said to be transparent if the projected
image content depends both upon the medium as well as its partially I
occluded background. ',

This definition allows for the spatial (or temporal) frequency content of the image to be altered

by interposing a transparent object or medium, as well as alterations by intensity, color, or contrast

changes. Quite simply, a transparent medium is a filter that passes some of the more distant scene

content, as well as contributing to the scene. The general problem is to assess the properties of this

filter and its background from image information alone.

1.3 Historical: When can transparenoy be deduced from image

information?

Early experimenters readily recognized that perceptual transparency does not correspond to physical

transparency [Metelli, 1970]. For example, air is physically transparent, but we do not see air as a

transparent medium unless it is a misty day. A clear pane of glass is another example of a

physically transparent medium that will not be "seen" as transparent unless the pane has a dirty

film or a reflection on it. Thus, physical transparency is not a necessary condition for perceptual

transparency. Nor is it sufficient, for consider the years of successful experimentation on

transparency using opaque cardboard cut-outs or printed illustrations as in Figure I [Metelli, 1974).

Does this mean therefore that physical transparency cannot explain perceptual transparency?

Although air (or aqueous humor) is physically transparent, and not seen, should this

observation exclude us from considering the perception of transparency as an attempt to determine

whether a filter has been interposed between retina and a portion of the external scene? Obviously

a clear pane of glass will not appear transparent because no information about the presence of the

glass is available in the retinal image. Clearly, if transparent media are to be "seen" by a visual

system, then information about transparency must be available in the retinal image. Understanding

the perception of transparency must therefore begin by understanding what information is

potentially available in the image. Such an analysis Is a first step toward developing a

S.
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Figure 1. A typical transparency arrangement.
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computational theory of transparency (see Marr & Poggio, 1977).

2. BEGINNING A COMPUTATIONAL THEORY

2.1 Measures of 'transparency"

Although the basic problem is to deduce and describe the nature of a transparent medium from
image information alone, a first step is to determine how we are to characterize the properties of the
transparent medium. Relevant descriptions include the spatial frequency content, the color, the V
reflectance, and the transmittance of the medium. Our analysis will be restricted to untangling the

reflectance and transmittance of the transparent medium from the reflectance of its occluded

background. Spectral information will also be considered, but in a subsequent section.

2.2 Relations between image intensities, refleotances and

transmittance

If no texture or temporal information is available in a region of an image, then

transparency cannot be deduced solely from image intensities lying only within the transparent

region. Under these conditions, the region (such as P in Figure i) will be totally homogeneous.

Under uniform illumination, we can designate the image intensity in the region (P) as ,,-I p. This

average intensity image will be determined by the reflectivity p. of the transparent medium (P) and

its transmittance, r. Because some light from the background B also contributes to the observed

image intensity in region P, we must consider its intensity I, which will be the product of the
reflectance of the background po and the illumination E common to all surfaces in the scene. The

combined intensities I.v seen be the viewer will then be

leg - E.Ps (I-D) + E'D..pg (I)i

where D is the areal density of the transparent regions of the medium and (i-D) is the density of

the reflecting particles of the medium. Thus, if the medium is considered as a screen, the fraction

of the screen that reflects light is (I-D), whereas D is the fraction of the screen that is occupied by
"holes" and is completely transparent. Of course, as the scale of the screen becomes finer and finer,
eventually both the reflecting particles and the holes between them become invisible to the observer,

who will see only a homogeneous medium.

L _.. .. . .. . ... .. .. .. _ _. .. . ... ... .,,, € W, , - --
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Returning now to equation (I), the problem is to determine the reflectance Ps and

transmittance -r of the medium P (which may be a fine screen). However, in region P. the only

information available in the projected (retinal) image is I,,. Clearly we cannot recover the

reflectance ps and transmittance r from a single equation of one known (layg) and the five

unknowns ps. -, E, 1) and pB.

The next obvious option is to consider two adjacent regions, such as P and B in figure I. If it

were known that B is indeed the "background" alone, while P is the mixture of background and

an interposed screen (or some other medium), then the image intensity 18 - E.pe is known for this

region B and we now have:

Iavg - E.p,(I-D). D-'.IB (2)

where the first term on the R.H.S. is the light reflected off the surface of P and the second term is

the light from B transmitted through P. Since l1, and I are now known, only D, pg. E and r

remain as unknowns. However, it is still impossible to solve for Ps and r and thus the properties

of P still cannot be separated from its background B. Thus, two homogeneous regions, one of

which is known to be the background still do not provide enough information to determine

whether the adjacent region (P) is transparent or opaque.

If, however, the areal density of the "holes" in P can be estimated independently (such as by a

higher resolution process), then presumably the image intensity I - p,.E of the opaque portion of

the screen can also be measured by the same process. Thus,

lavg" Is(I D) , DrI B  (3)

and since D, I,, , and Is are available from the image, the transmittance of the region P can be

deduced (but not its reflectance!):

lavZ -1(i-D)-r -M B' (4)

In many cases, higher spatial resolution may not be available to provide independent measures

of the hole density D and the intensity i of the opaque portion of the screen. (This is the limiting

condition where the "screen" is seen as a transparent film or filter.) Metelli [1974] has noted that for

this condition, two independent backgrounds are needed to assess the transmittance of the

transparency. As In figure I, let A be the second background whose image intensity is measured as
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IA and let QObe the region of the transparent medium lying over A, with image intensity 10. Then

if P .9, is indeed a physically homogeneous transparent region, both D, p. and 'r will be constant

over P.. We thus have two equations with four unknowns, E, po, D and r:

IF - E'ps(I-D) + D'rIB

I0,"= E~p-D), D.-.I A  (5)

However, by treating the product D.-* as one unknown, we see that the remaining unknowns cancel

to yield:

D'r -T - B1  (6A)

where D.r-. is the average apparent transmittance of the medium P O. Note that as before,

extended illumination has been assumed in the derivation of the relation (6A). If the lower surface

B.A is diffuse and is illuminated through the transparency P.+Q then the true average

transmittance is the square-root of the R.H.S. of (6A), since in that case the light reaching the

viewer has passed through the transparent medium twice. Considering this uncertainty about the

illuminant, the true value of the transmittance r cannot be determined. Recognizing however that

,r lies between 0 and I, we note that a weaker condition for P.Q being transparent is

_> T a 0 (6B)

Metelli [1974] proposes that whenever equation 6B is satisfied, then P.Q will appear transparent.

In summary, if high spatial resolution is not available, then the calculation of the average

transmittance of a "region" in the image requires the inspection of four mutually adjacent regions in

the image. This is the minimum configuration, which reduces to a local "x intersection for

homogeneous fields. In this case, the average (relative) reflectance p. of the screen can also be

deduced and is found to be

p, - p,.D - 111sB.A. (7)

Note that only relative reflectance of the transmitting surface can be found because the

iluminant strength E is still undetermined.

4:J
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2.3 Apparent transmittance, ,and contrast

Equations (4) and (6) gave two different values for transmittance, depending upon whether the scale

of the image measurement is smaller (equation 4) or much larger (equation 6) than the hole size of

the screen. Clearly where the image scale is finer than the hole size, then the transmittance will

equal that of the hole, r-, whereas when the image grain is coarse, then the observed transrittance

will be the average -. What, then, is the appropriate measure for the intermediate case?

As a screen becomes finer and finer, so its holes cannot be resolved (as if the observer had

moved away), then the transmittance goes from - to 7, with the latter corresponding to the case

where the screen becomes a homogeneous transparent film. Clearly, the criterion for deciding

whether the region P Q should be considered a screen or a film depends upon whether the "holes"

are visible or not. Such visibility depends upon the convolution of the image operator with the

image values, but can be simply regarded as the effective contrast of the step across the edge of an

opaque element to the "hole" in the image. Let AH be the true intensity change across this border,

and AH" be the image value (i.e., the result of convolution with the transfer function of the

imaging process). Then the apparent transmittance r* can be defined as .

- * : - (8)
&LH AH

Equation (8) can be rearranged to the form:

ALI
- (i-D) (9)

Because of resolution losses in the imaging system, AH* <&H. Therefore as the contrast between

the elements and "holes" in the screen goes to zero either by resolution losses or by AH-.0. the

apparent transmittance r* will approach the average transmittance; described by equation (6).

2.4 Imposing natural oonstraints: Joints and "oraoks"
I',

Although at least four contiguous regions as in Figure I are required for deducing transparency

from homogeneous fields using image intensity alone, the configuration is not yet minimal. If the

two backgrounds A and B are different structures (as opposed to region A being merely a painted

portion of B), then there may often be a crack or Joint between A and B where they abut. Of

course, this "crack" will continue into the region P*., creating the boundary between the

- _ II I
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transparent overlay. The crack itself, therefore, is a third intensity profile available in the image,

and its image intensities can be used instead of region A (or B).

The computational advantage of such "cracks" when they appear is that, usually, almost no

light escapes them. This means that a "crack" seen through a transparent medium gives

approximately the pure reflective component of the medium, with negligible transmitted

contribution from the background. That is, intensity profiles of most "cracks" and joints approach

a contrast step of 100% for widths that are small in relation to the depth of the crack into the

surface. Such cracks can generally be identified in the image by their intensity profiles. Once

isolated, then the contrast step in the background AC can be taken reliably as near 1.0. This useful

natural constraint upon images may be exploited if the transmittance and reflectance relations for

the transparent medium (equations 6 and 7) are recast in terms of contrast.

Let AC,:, be the apparent contrast across the AB border:

IBIA (10A)SAC"AS (1A
IA.I B

and AC,:,p be the corresponding contrast for PQ_..

AC,:,pO 2 (lOB)=IpIQ.

Substituting (10A and B) into equation (6) we find the average "film" transmittance to be

= ACAs  IBA(iAor

Tm (11A)
I&C*AB. 'A(i IB

Recasting equations 10 in terms of I/Ip and IAII 8 and substituting In the above:

(iACAB) 'P 0bB)

AC,AB (l+ACp 0 T B

For highly transmitting media, such as "thin" films, haze, smoke or rain, equation (IIA) is useful

because as [p-1is, the transmittance is determined by the contrast reduction alone. In particular, for

a "crack", &C*As=l and

-- ~



Richards & Stevens -.54- Transparency

a27 - ,po/(IAC*p0) (12)

or to a crude first approximation (since AC*pQ also approaches 1) the transmittance equals the

maximum contrast in the region P.Q. Thus, for a textured background (that include "cracks"

where &C,:,AB-l) and a homogeneous transparency, the measured distribution of contrasts can be

used to estimate transmittance. Clearly because transparency of necessity must reduce the contrast

in the scene, the distribution of gray levels must become narrower. Equation (12) is just a special

instance of this result.

Equations (10) can also be combined with equations (6) to determine the relation between the

average reflectance of the transparent medium and apparent contrast in region P.Q."

PPG - (iA-Cp)lp/E (13)

Note again, that without some estimate of the illuminant strength E, the absolute reflectance of P.Q,

cannot be calculated from image intensities. However, if evidence is available that a region B has

maximum reflectance of i, then since IB-pB.E, with pg-l the reflectance PpQ of P.Q. can be

estimated. Two properties of images can aid in this estimate: 1) the spectral reflectance of B and

the maximum intensity adjacent to the perimeter of P.Q. provided tMat this intenityfalls upon the

expected distribution for gray levels.

3. TRANSLUCENCY

In a still more general case of achromatic transparency. the screen or film will have internal scatter.

creating a translucent surface If the holes of the screen are not visible in the image. Clearly the

scattered light will reduce contrast. If the translucent medium lies on top of a background of

reflectance Ps, then the apparent reflectance of the translucent surface will be

Pf * (14)-o I-Po.Pe

where r is the internal scatter of the translucent medium and po is the reflectance of the medium

with a completely absorbing background [Kubelka-Munk, 1931, 19541. The image intensity ip will

now be

Ip - EPo+Er2 p1(l-p8p9 )
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Figure 2. Transparency arrangements used in the present experiments. The upper configuration
was used to test Metelli's proposal. The lower configuration illustrates the local nature of
transparency judgements. As long as distance s exceeds about one-half degree, the panels P + Q
and PI + Q! can be made to appear transparent although the Intensity relation violate the rules for
physically transparent objects.

WALiO'_44A
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A similar equation for regions Qand A yield the following solution for r 2:

r 2  (1pIQ) (I-pOPB) (I-PoPA)
0 0(IOA-IA08)

Although Ip, 18 and IA are available from the image, Po, P. and PA are not. Hence r 2 cannot be

determined. (However, note that for all p's, the quotient always satisfies the relation 0<r2<1 for a

transmitting medium.) In the special case where po-0, then r 2 -(lp-IoI(Ie-IA) as before.

Now consider the possibility that a "crack" or edge can be identified in the image (either by

occlusion or by the distribution of gray scale values in region P). Then PA- 0 and IA,0, simplifying

(15) to

IIA2z . PpB) (16A)

This can be recast in terms of the contrast ACpo. For small ACP(0 values, P-0_and

2  2p0.-pope) (16B)

An especially interesting case of (16B) is when ps- and where the translucent medium is
"white". Then the absorption is trivial and r.(i-p) and ]p-IB. Substitution in equation (16B)

yields

r*,AC ,pn (16C)

Thus, the apparent translucence yields twice the image contrast. This is the case when a piece of

white onion-skin paper lies over a black line on a surface (or if one views a printed sheet from the

back side). Note that equation (6C) is the same as equation (12) for low contrasts between P and Q

Films of low transmittance can therefore appear equivalent to translucent surfaces, with the

transmittance approximated by twice the maximum image contrast provided that Ip roughly equals

IB•

To determine an upper bound on the validity of equation (16C), consider the case of a

translucent surface with its backing removed. Then Pe may approach I for a "white" sheet and

extended illumination that includes back illumination of the translucency. Letting the reflectance of

the medium be p. as before, Ip-po'E and IB-E, and equation (16C) becomes

- 2"AC*p' po(l-po). (16D)
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(The exponent for - is omitted because light passes through only once.) Because AC:,p0 l and

because 0_%p(I-p,).25, the maximum possible value of r is 0.5 if Ps is a "white" medium. Equation

(16C) thus cannot be valid if it yields a transmittance greater than 0.5. A conservative position for t

its useful upper bound will be to make inferences from equation (16C) only if the apparent

transmittance comes to less than 0.25.

4. ACHROMATIC SUMMARY

Transparency and translucency impose different relations between transmittance and image

intensities, even if the illumination conditions are the same and known. However, for both

transparency and translucency in the limiting case where maximum contrast can be estimated in the

region overlaid by the transparency (or translucency), the average transmittance of a homogeneous

film will approximate the maximum contrast for highly transmitting media. Haze, smoke, rain or

mist meet these conditions. A reasonable image measure for transmittance is thus the apparent

contrast reduction. This is our counterproposal to Metelli's theory of transparency. The contrast

reduction measure offers a simple approximation to the exact physical solution. It holds exactly for

highly transmitting media and offers close approximations for such natural transparencies as haze

and rain, which approach those limiting conditions. For media with low transmittances (below 25%),

twice the maximum contrast reduction will provide a crude estimate of translucency or

transmittance.

Unfortunately, the absolute reflectance of the transparent (or translucent) medium cannot be

easily estimated from image information alone, without some knowledge of the illuminant strength.

If, however, the reflectance of only one portion of the adjacent background can be estimated

(Richards, 1979], then the reflectance of the transparent overlay can be determined.

5. SPECTRAL CONSIDERATIONS

Under achromatic conditions, a most reasonable estimate of transmittance, based upon image

intensities alone, is to determine the maximum contrast and set this equal to the transmittance.

This determination can be reinforced by evidence obtained from "scratches" or cracks" that cross

the occluding border. Such a solution is based upon the assumption that both the translucent or

transparent media as well as their backgrounds have flat spectral distributions over wavelengths for

4.
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both reflectance and transmittance. In the natural world, however, this is an uncommon occurrence.

How then are the transmittance and reflectance of a screening surface affected when spectral factors

are considered?

5.1 Why prediotions based upon additive mixtures fail

If P+Q. is a screen, and if the illuminant is extended, with a flat spectral distribution, then the

chromatic content of (P.Q) will be merely the mixture sum of the light reflected off (P.Q) plus the

light transmitted through the "holes" coming from the surfaces B and A below (,r is now assumed V
to have a flat spectral transmittance over wavelength). If the colored image is assessed by a

trichromatic system similar to man's, then the color content of P and Q can easily be deduced from

the fact that all mixtures of two lights might be on straight lines in a chromaticity diagram

[Wysecki and Stiles, 1967].

In figure 3a, let the x,y (chromaticity) coordinates of the reflecting surface (P.QJ be at point p.

locations B and A respectively corresponding to the two backgrounds (if A-0, then its location is

W.) Then all mixtures of transmitted and reflected light will be on the two loci pB and pA, at least r
for the case where the "holes" in the screen have an flat transmittance function over wavelength.

Thus P and Qmust lie on those loci, with their distance from p proportional to D/(l-D) times their

tristimulus sums where D is the hole density.

The outer contour in the CIE diagram denotes the spectral limits of all physically realizable x,y

values. Thus p, B, and A must all lie within the enclosed boundary. This constraint does not

preclude the possibility, however, that P and Q can both occupy positions on the opposite side of

white (W) from B and A. For example, P and Qmight be greenish blue and bluish green, while B

and A would be yellowish green and orange. Since such stimuli are seen as four opaque regions,

rather than as a transparent situation, we know that the human observer does not consider

homogeneous transparent surfaces as screens that obey additive color mixture laws.

Perhaps one obvious explanation for the human's failure to treat transparencies as screens

under extended illumination is that such an interpretation will fail seriously if the illuminant must

first pass through the screen to reach B and A below. In this case, the filtered light reaching B

and A will have a strong chromatic component from P.Q which with even minimal diffusion will

seriously alter the spectral content of the light reflected back through P.Q. Because the spectral

characteristics of P and B (or Qand A) are assumed selective and different, the reflected light will

be reduced depending upon the extent of overlap of the two spectral reflectance functions PpK()

.. *,
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-W Q A
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P 0
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A

Figure 3. Upper figure shows the standard CIE spectrum locus in chromaticity coordinates x and y.
According to classical color mixture laws, if P* Q., is a transparent overlay above regions A and B,
then the chromaticity of the reflective component of P . ~must lie at p. The lower figure shows

* that the additive mixture rule can lead to imaginary chromaticities.
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and pe(h) (or PA(A) for A). The transmittance of P (and Q will therefore always be underestimated

and will appear to be zero when pp(A) and pe(') do not overlap at all, for example.

The same argument applies even more forcefully if P.Q is a film (either transparent or

translucent). In this case, the spectral intensity P() in the image will always be less than the

expected mixture sum calculated from an average transmittance r and reflectance p:

P(X) - E(X).r().p(X) - E(X).pO,) < IB(*)r - E(h).p (17)

Depending upon the overlap in the relevant spectral distributions, the mixture estimates of

transmittance can be either too high or too low. For example, referring to equation (6) the

difference (]e-IA) can be made small, but (Ip-I0) can be made very large by letting the spectral

reflectance of p not overlap with that of A, but with considerable overlap with Ps of surface B.

Finally, imaginary reflectances can result. Consider figure 3b, where two yellowish surfaces P.Q are

superimposed upon a yellow-green surface B and an orange surface A. (As shown in the next

section, this condition arises when a spectral filter of no reflectance is placed over A and B.)

Observers have no trouble seeing such a configuration as transparent, yet the mixture rule predicts

an imaginary spectral reflectance function that lies outside physically realizable surfaces (Bolt, et. al.,

1977).

Additive color mixture rules are therefore inappropriate for evaluating the transmittance of

screens or films, where subtactive effects must occur. Since Metelli's scission theory Is essentially an

additive mixture theory of transparency, it fails when spectral factors are considered.

5.2 Subtractive color mixtures

The introduction of a transparent film in front of a reflecting surface will always decrease the

spectral bandwidth of the transmitted light, thereby increasing its purity. The farther apart the

bandpass characteristics of the filter -(h) and the background reflectance pg(h), the greater the

increase in purity of the transmitted light and the less its magnitude. Under the common condition

where the chromaticities of r(h) and pe(h) lie on complementary sides of the "white" point, then the

product of their bandpassed values rh.pe(h) will approach zero as purity increases. In the limiting

case, then, the reflectance of ph of the film will be the sole determinant of the spectral content of P

and 0, P will then equal , and P.Qmust be considered opaque because no hint of the difference

B-A has been passed.

,It • ,,,,D J.. , '. ,,,- : -3 -- .,,.- I-
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In order for the film to pass some c ility of B and A, the spectral transmittance rA of the film

must lie near or within the triangle WBA (figure 4A). (Quantitative specifications for ideal filters

can be made, relating the maximum transmittance possible for any rh'ps(h) combination. The

locus for this product exceeding 10% is not too distant from point W.) Now consider a film of zero

reflectance and spectral transmittance rX, with rA lying within WBA. Depending upon the

strength of -X and the reflectances pe and PA for surfaces B and A, the imaged chromaticities of B

and A (i.e., P() and O4X)) must move from location rh away from locations B and A to new

positions B'-P and A',Q_ But the greater the movement toward increasing purity, then the less the

net light transmitted. Saturation changes will thus always be correlated with the net change in

image intensity. If this rule is violated, the region P+Qcannot be a film.

Note that in this case where the film has no reflectance and its transmittance lies within WBA,

the backgrounds seen through the film must become more saturated, with the color difference

decreasing (see figure 4A). This is just the configuration that leads to imaginary reflectances for

additive mixtures, as illustrated in figure 3B. Thus, if imaginary reflectances are predicted by the

relative positions of P,B and (LA, the correct interpretation is of a film with zero reflectance, with

the shift in chromatic positions being due solely to the transmittance of the film. Given the image

intensities of P, Q, B and A, together with their chromaticities, it is possible (in principle) to solve

for the location of r assuming ideal filters.

Finally, it should be obvious by now that if the film has a reflective component qo, then it is

not generally possible to find unique reflectances and transmittances of the transparency (Fig. 4B).

Let BW) be the spectral reflectance of the background, p(h) and r() be the transmittance of the

film, EO() the illuminant and c1(h) the spectral sensitivity function of one of the color mechanisms

(i-,3) then the light transmitted from the background (assuming extended illumination) and

detected by the i1h color mechanism is

TiB -JBW)r (X))ci(X)dX

Similarly, the strength of the response to the reflected light is:

Ri -f 0)'(,)-c1,dX

In region P, the stimulus to the ith color mechanism Pi then becomes:

Pi "D'TIB#(l-D)Ri, i-1,3 (18)

L-Id
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A
(Film case)

W e .... A , IW 
-

A 
_

B
(Translucent or
normal transparency
case)

, A

Figure 4. The effect of subtractive color mixture upon transparency is shown in the upper diagram
(a). The interposition of a filter r, must change the chromaticities of the backgrounds A and B3 to
A' and 13i as illustrated by the arrows. If the transparency has a reflective component, A, then
additive mixture laws apply to P. B , andI At to constrain the color appearance of P and 0. as
shown in the lower diagram. The calculation of the positions of -r and p solely from P. .and A. B
Is Impossible in most cases.
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which is analogous to equation (i), where D is the hole density. For two backgrounds A and B and

two transparency regions P.Q we now have twelve stimulus strengths (scalar) altogether. The

unknowns are five functions of ): E(), B(0). A) p(h), -r(h). Unless some constraints can be

imposed upon the form of these functions, it is not generally possible to recover their values from

only twelve scalars. (Beck's 1978 claim that additive and subtractive mixtures yield equivalent

transparency solutions is incorrect because it ignores both X and the illuminant.)

5.3 Imposing natural oonstraints

A. "Crack" constraint: In the achromatic case, the instance where region A was a "crack" was

helpful. For color transparency, the "crack" imposes the constraint that

ai - (I-D)R i

because the transmitted component is zero. Thus

P- - D-T8 - DJBA-()EA-jAd (19)

Now let -'o be the achromatic transmittance (compute by taking the maximum value of r()). Then

T(A):.r o , and

Tiro'liB - fo(X)(X)ci(X)dX

and

Pi-<- D.T- b_ D.T-IolB 1-3. (20)

where IjB is the image intensity for region B seen by the i1h color channel. Since D.v"o is the

average maximum transmittance r., we can recast equation (20) in terms of chromatic contrast

similar to the achromatic case (equation 12):

70>'i " 2.ACpQ((l.AC*pQ) (21)

where AC'e g is taken as 1, and a thin "film" is assumed. The change in chromatic contrast in any

of the three color channels in the region of the "crack" can thus not exceed the maximum

transmittance of the film. Note that this rules does not Imply that the change in chromatic contrast

. ..... .T"
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across P and Qmust always be less than the change across B and A. For example, if B is greenish
yellow and A is a reddish yellow of a non-overlapping spectral function, the interposing a
blue-green filter can cause Q(over A) to become black while leaving P (over B) light.

B. Saturation Rule for Transparency: By extending equations (10)-(12) to the chromatic case, it can
be shown that the change in chromatic contrast (in each color channel) due to transparency must be

less than the change in contrast in the background (such as in the presence of a "crack"). This fact

immediately constrains the relations between P and q in the (idealized) chromaticity diagram. In
Figure 5A, the location of the blue primary 0 is given and rays are drawn to background regions B
and A. The crosshatched area then shows the maximum change in the blue channel (&0) possible
in the transparent region. (Ideally, logarithmic coordinates should be chosen.) In figure 5B, the
maximum chromatic contrast for the red channel is illustrated. A similar rectangle can also be

constructed for the green channel. Figure 5C shows the size of the limiting polygon. Its position

can be moved within an approximate chromaticity diagram based on logarithmic coordinates.

C. Complementary Color Constraint: Imagine now that the allowable polygon for P.Q in figure
6A moved to the opposite side of "white" (W) as shown by the dashed outline in figure 6A. The
colors are then complementary to those of the background, and no hint of the background colors is

apparent. Although such a transparent medium is physically possible, transparency cannot be
proven from image information alone. The more conservative procedure would thus be to require

that transparent medium reveal at least a hint of the background colors A and B. This constraint
would then limit the range of P.Q to colors lying on the same side of "white" as the background, as

shown by the various positions of the polygon outline in figure 6B.

6. PRELIMINARY PSYCHOPHYSICS

6.1 Aohromatio measurements

Using a "Texture Display" driven by a DEC PDP-il [Richards, 1978], a pattern consisting of four
regions similar to figure I was generated. To test for the general validity of equation (6A), all

possible combinations of gray level arrangements were examined for transparency using four gray
levels: .2, .4, .6, and .8 contrast. (This yielded 64 non-redundant arrangements.) Transparency was

seen in all cases where equation (6A) was satisfied and was never seen when equation (6A) was not
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/w
A

B

0. A

Figure 5. Saturation rule for transparency is illustrated in the upper diagram. The blue primary is
located at the intersection of the dashed lines. The cross-hatched region shows schematically the
maximum allowable change in the relative value of this primary due to interposing a transparency
that acts to degrade contrast. In the lower diagram, maximum allowable change for the relative
strength of the red primary is illustrated.
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A

B

B

W

A

Figure 6. By combining the saturation constraints illustrated in Fig. 5, a polygon about the
background chromaticities A and B can be constructed. The net result is illustrated in the upper
diagram. In an ideal color coordinate system, the displacement of this polygon to any region sets a
limitation on the distance between P and Q .n any transparent overlay. In the lower diagram the
possible positions of the polygon are limited to the same side of the white point, w, as the
background A and B. This restriction is imposed by the rule that some hint of the color of both A
and B must appear in P and O excluding P and Qvalues that are complementary to A and B.

a
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satisfied.

Such measurements, however, do not test the hypothesis that contrast is used to assess

transparency, because no subjective estimates of the transmittance were required. As a preliminary

test for equation (11) and (16) thin neutral density (Wratten) filters were placed over four pairs of

gray-white backgrounds of reflectance ranging from .07 to .90 with a contrast step of approximately

0.2. Figure 7 shows the transmittance estimates for two observers averaged over the four

background conditions. Note that estimated transmittance for most of the range follows a power

relation with an exponent of about 1/1.5. This solution is intermediate to the case where the

illumination is extended (predicted slope is 1.0) and where the illuminant must pass through the

filter twice--once to illuminate the background and once again to be seen by the viewer (predicted

slope is 1/2). The human observer's estimate is thus a compromise between these two common cases;

the result is most likely due simply to the compressive transformation of image intensity into a

lightness scale. In other words, if transmittance is estimated using apparent contrast, a result like

Fig. 7 would be expected.

6.2 Chromatio meaaurements

Using an Apple 11 computer, various combinations of colors were painted in the regions P, Q0, B,

and A of figure I. Although only 15 colors were available for any one setting of the TV color

control knob, by adjusting the tints over the full range, a wide assortment of color combinations

could be examined. The principal findings were:

1) Transparency was never seen if the overlay (P+Q) did not contain at
least some hint of the background colors (B*A). (This is the
complementary color constraint introduced in section 5.3c.)

2) The overlay (P.Q) also was required to have a common color for
transparency to be seen.

3) The intensity relations should roughly (but not exactly) satisfy equation
(A).

These preliminary findings regarding the spectral factors used by man in assessing transparency

verify the major set of constraints upon the positions of P.Q. in the chromaticity diagrams outlined

in the earlier sections. However, there appears to be a considerable relaxation in the allowable

positions of P and Q. in the rectangular region defined by B, A, and W for P+. (see figure 8).
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Figure 7. Transmittance estimates for two observers (WR, AW) for this films having essentially no
reflective component. The data fall intermediate between the assumption of extended illumination
(lower dashed line) and the illumination of the background by light that must first pass through
the filter (upper dashed line). In the actual experiment, the illumination was extended.
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Figure 8. The cross-hatched region shows the empirical observation of the range of allowable
chromaticities; for the appearance of transparency given the two background chromaticities A and
S. To appear transparent, the overlay must reveal some hint of the underlying background colors.
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Perhaps by a closer scrutiny of the relations between the achromatic and chromatic factors in both

transparency and translucency, the reason for the relaxation of the constraints can be determined.

6.3 Dependence of perceived transparency on local processes

The psychophysical investigation of perceptual transparency revealed an unexpected local

component in the human observer's transparency computation. As discussed earlier in section 2.2,

two regions P and B do not determine a unique transparency solution. Four regions P,OJA,B are

sufficient to determine either a unique transmittance and relative reflectance, if a solution exists, or

to determine that P.Q cannot be a homogeneous transparent medium. If two additional regions, P'

and O are added, the equations are over-determined. It is therefore possible to arrange the

intensities of the six regions so that any combination of four (P-0_-A-B, P'-Q.-A-B, or A-0 02-B)

determine a unique solution, but all the regions taken together are inconsistent.

Surprisingly, the human observer is entirely insensitive to such inconsistency, unless the

inconsistency can be discovered by examining some single region of the image subtending less than

about one degree. For example, in Fig. 2B set the image intensities of P-P' but let QOand I. differ.

Then A cannot be physically transparent, yet it will still appear as a homogeneous transparent filter

unless local evidence of the inconsistency is available. Only the spatial relations separating P and

P' need to be changed to alter the perception of transparency. When S is large, then local

simultaneous comparison of all six regions is not possible, and transparency is perceived. When the

regions are moved closer, the inconsistency is detected, and perceptual transparency is lost. This

effect demonstrates that perceived transparency depends at least in part on a process of local

comparison of intensities.

7. SUMMARY

With uncertainty in the exact illuminant conditions, the most useful cue for assessing the

transparency of a medium is contrast reduction--either achromatic or chromatic. For many

instances of transparency or translucency (haze, fog, or rain) the maximum contrast in the scene is a

useful measure of the transmittance.

Spectral Information can provide further support for achromatic deductions of transparency.
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Man appears to use spectral information conservatively, however, and his rules exclude many

instances where transparency is possible. The principal rules for transparency are that 1) a portion

of the background color must "leak through" and 2) the transparent medium must possess at least a

hint of the one color throughout the region of the transparent overlay, These rules favor the

assessment of 'whitish" transparent media such as haze, fog or rain.
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