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HELICALLY DISTORTED RELATIVISTIC ELECTRON BEAM EQUILIBRIA FOR
FREE ELECTRON LASER APPLICATIONS
Ronald C. Davidson
Plasma Fusion Cefiter

Massachusetts Institute of Technologi/
Cambridge, Massachusetts 02139

and

Science Applications Inc.
Boulder, Colorado 80302

Han S. Uhm

Naval Surface Weapons Center
White Oak, Silver Spring, Maryland 20910

ABSTRACT

The purpose of this paper is to develop a self-consistent kinetic
description of helically distorted relativistic electron beam equilibria
for free.electron laser applications. In particular, radially confined
equilibria are considered for a helically distorted electron beam prop-
agating in the combined transverse wiggler and uniform axial guide
fields described by §0=B0gz+ég-Bogz-6Bcoskozgk-GBsinkozgy, where Bo-
const., SB=const., and Ao-Zﬂ/ko-const. is the axial wavelength of the
wiggler field. It is assumed that the beam density and current are
sufficiently small that the equilibrium self fields can be neglected
in comparison with EO‘ In this context, it is found that there are
three useful (and exact) invariamnts (Cy,C;,C,) associated with single-
particle motion in the equilibrium field Boéz+6k. These invariants
are used to construct radiglly confined Vlasov equilibria fg(CL,Ch,Cz)
for an intense relativistic electron beam propagating primarily
in the z-direction. Examples of both solid and hollow beam equilibria
are considered, and it is shown that the transverse wiggler field can

have a large modulational influence on the beam envelope, depending

on the size of 68/80.
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I. INTRODUCTION

1-3 gnd expetimenta16’7

There have been several theoretical
investigations of the free electron laser which generates coherent
electromagnetic radiation using an intense relativistic electron beam
as an energy source. With few exceptions, theoretical studies of the
free electron laser instability are based on highly simplified models
which neglect the influence of finite radial geometry and beam
kinetic effects, or make use of very idealized approximations in
analyzing the matrix dispersion equation. The purpose of this paper
is to develop a self-consistent kinetic description of helically
distorted relativistic electron beam equilibria for free electron laser
applications. In particular, we consider radially confined Vlasov
equilibria for a helically distorted relativistic electron beam
propagating in the combined transverse wiggler and uniform axial guide

fields described by [Eqs. (1) and (2)]

BO=Byg,+oR

-Bogz-GBcoskozgx—ﬁBsinkoz%y s

where By=const., §B=const., and l0=2ﬂ/k0-const. i{s the axial wavelength
of the helical wiggler field. Both solid and hollow beam equilibria
are considered, and it is assumed that the beam density and current

are sufficiently small that equilibrium self fields can be neglected

in comparison with go. Within the context of this assumption it is
found that there are three useful (and exact) invariants (CL'Ch’C;)
associated with single-~particle mgtion in the equilibrium field Bogz+6§.
These invariants can be used to construct radially confined Vlasov

equilibria fg (CL.Ch,Cz) for an intense relativistic electron beam
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propagating in the z-direction, including the important modulational

! % influence of the transverse wiggler field on the beam envelope.
A
4 The three exact invariants derived in Sec. II and Appendix A
are given by the perpendicular invariant C, [Eq. (4)],
|
ZeBO

2, 2 : 2e
c*.pr+p0+ cko (pz-ybmvb)+ :E; R B -

B i

the helical invariant Ch [Eq. (5)],
C, =P +-l— (p_-y,mV )+ sE—GBsin(e-k 2)
h o ko z b b cko - 0 ’

and the axial invariant Cz defined by [Eq. (6)]
2 2
eBo eBo } 2e ° -5£
X ol Y P1i ’
o/ %o

Cz— cko =P ck

where 3 = (pr,pe,pz) = YRv is the mechanical momentum, Pe=r(pe-e30r/2c)
is the canonical angular momentum, ybmc2=const. is the characteristic
directed energy of the electron beam, and V. =const. is the characteristic

b

mean axial velocity. In the expressions for C; and Ch’ we have subtracted

the constant terms proportional to mevb without loss of generality.

Moreover, for 6B=0, we note from Eq. (6) that the axial momentum P, is

e e i Ay et TR

a constant of the motion, and that Eqs. (4) and (5) yield the familiar

invariants, pi+pg-const. and Pe-const., for a charged particle moving

in a uniform axial field Bo.

The striking feature of the present analysis is the fact that the

2
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exact invariants (lech,Cz) can be used to construct helically
distorted relativistic electron beam equilibria fg (C&,Ch,cz) of

experimental interest for free electron laser applications. Generally

N A T

i speaking, the two classes of relevant beam equilibria can be charac-

terized as (a) solid beam equilibria, and (b) hollow beam equilibria.

For example, equilibrium distribution functions of the form [Eq. (10)]

s ot A W
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fg-l-‘l(c,_-hbmubCh)G(Cz) ,

where G(Cz) is strongly peaked around cz-ybmvb, correspond to a solid
electron beam with non-zero density on axis (r=0). On the other hand,

the class of beam equilibria described by [Eq. (11)]
£2=F, (C,)8(C, -C,)G(C,)
p T2(C)8(G-CyICIC,)

where Co=-(eBo/2c)Rg=const., corresponds to a slowly rotating annular
electron beam with characteristic mean radius RO' Of course, it is
found that the detailed spatial dependence of beam equilibrium prop-
erties (density profile, temperature profile, etc.) depends on the
specific functional form of G(Cz), FZ(CL) and Fl(CL—Zmewbch)' It

is also found that the radial envelope of the beam can be strongly
modulated by the transverse wiggler field, depending on the size

of GB/B0 [Sec. III].

As a general remark, one of the most appealing features of the
recent free electron laser stability analyses by Davidson and Uhm.3
Sprangle and Smith,5 and Bernstein and Hirshfield‘ for a relativistic
electron beam with uniform density and infinite cross-section is the
fact that the influence of the transverse wiggler field is contained
in a fully self-consistent manner in the equilibrium distribution
function fg-n06(Px)6(Py)Go\pz). That is, when carrying out the stability
analysis, the excited electromagnetic and electrostatic fields are
treated as small-amplitude perturbations about a self-consistent
equilibrium that includes the full nonlinear influence of the equilibrium
wiggler field. We believe that the present equilibrium investigations
form an important first step in formulating a self-consistent
Vlasov description of the free electron laser instability that includes

the effects of finite radial geometry and also correctly incorporates




the nonlinear influence of the transverse wiggler field on the beam
equilibriym.

The organization of this paper is the following. In Sec. II,
we discuss the basic equilibrium configuration and assumptioms.
Specific examples of helically modulated relativistic electron beam
equilibria are analyzed in Sec. III, both for solid ([Sec. III.A] and

hollow [Sec. IXII.B] electron beams.
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II. EQUILIBRIUM CONFIGURATION AND BASIC ASSUMPTIONS

% We consider the class of helically modulated relativistic electron
$ beam equilibria propagating in an externally applied magnetic field
0
B -Bogzﬂsg , (1)

where Bo-const. is the axial magnetic field, and

Gk-—GBcosk —GBsinkozgy . (2)

0*%x
: is the transverse helical wiggler field with axial wavelength AO

| In the present analysis, we assume that SB=const. is a good approximation

=2ﬂ/k0.
over the radial extent of the beam. In cylindrical polar coordinates
(r,6,2), Eq. (2) can also be expressed as

LN ELKN

--GBcos(6-koz)§lr+GBsin(e-koz)ge , 3)

where ét and %e are unit vectors in the r- and 6-directions, respectively.

T

It is assumed that the beam density and current are sufficiently

low that the influence of the equilibrium self electric and self

D T

magnetic fields, Eg(g) and kg(ﬁ)’ on the particle trajectories

can be neglected in comparison with the Xxgo force associated

with the applied magnetic field in Eq. (1).

Within the context of the above assumptions, there are three useful and
exact invariants (CL,Ch,Cz) associated with single-particle motion in
the equilibrium field Bogz+6g. These invariants can be used to

construct cylindrical Vlasov equilibria fg (CL,Ch,Cz) for an intense

relativistic electron beam propagating in the z-direction, including

the important modulational influence of the transverse wiggler field
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on the beam envelope. As outlinad in Appendix A, for relativistic
electron motion in the applied magnetic field defined in Eqs. (1) and
(2), the three exact invariants are given by the transverse invariant
C, [Eq. (A.12)],

2 2, 2eB

Compiipt —2 (p_ —y.mV, )+ 22 p.es )
+"Pr'Pe" ek, Pz Yp™'b)T kg Re R

the helical invariant Ch (Eq. (A.7)],
1 edB
Ch-Pe+-E; (pz-ybmvb)+-zia rsin(e-koz) . (5)

and the axial invariant Cz defined by [Eq. (A.11)],
2
eBO eBO

C-—|= - — ] -

z ck P, cko ZE; g‘.sk * (6)

In Eqs. (4)-(6), E-(pr,pe,pz)-ymx is the mechanical momentum, Po=

r(pe-eBor/2c) is the canonical angular momentum associated with the

axial field B, ymcz-(m2c4+czgz)1/2

is the relativistic electron energy,
-e is the electron charge, m is the electron rest mass, ybmcz-const.

is the characteristic directed energy of the electron beam, and Yb-
const. is the characteristic mean axial velocity. Moreover, R

is the transverse momentum, and R*'BE can be expressed as 21'62"
-prGBcos(e—koz)+pednsin(e-koz). Note in Eqs. (4) and (5) that

we have subtracted the constant terms proportional to ymeb without

loss of generality. For B _=const. and éB=const., we reiterate that

0
Css Ch’ and Cz are exact constants of the motion for arbitrary
wiggler amplitude $B.

In the limit of zero wiggler amplitude, &éB»0, Eqs. (4)-(6)
reduce to

2eB
2, 2 0
CE'P +pgt &, (pz-meVb)-const.,

9
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O-P + l'—-( -y, mV. Y=const (8)
% Pet kg ™ .
Con = t (9)
.~P,-const.

For $B=0, we note from Eq. (9) that the axial momentum P, is a
constant of the motion, and Eqs. (7) and (8) yield the familiar
invariants, p§+p:-const. and Pe-const., for a charged particle
moving in a uniform axial field Bo.

There are two classes of helical beam equilibria fg(CL,Ch,Cz)
of experimental interest for free electron laser applications.
Generally speaking, the two classes can be characterized as (a) solid
beam equilibria, and (b) hollow beam equilibria. For example,

equilibrium distribution functions of the form
0
fb Fl(CL—ZmembCh)G(C:) , (10)

where G(Cz) is strongly peaked around Cz-ybmvb, corresponds to a
solid electron beam with non-zero density on axis (r=0). In Eq. (10),
mb=const. is related to the mean angular rotation of the beam [Sec. III]}.

On the other hand, the class of beam equilibria described by

0

£p=F, (C1)8(Ch-Cy)G(C,) (1

where Co--(eBo/Zc)Rg-const., corresponds to a slowly rotating annular
electron beam with characteristic mean radius Ro. Of course, the
detailed spatial dependence of the beam equilibrium properties (e.g.,
density profile, temperature profile, etc.) depends on the specific
functional form of G(Cz), Fl(CL-Zybmwah) and FZ(CL). In this regard,
specific examples of helical beam equilibria are discussed in Sec. III.
As a general remark, it is found that the radial extent of the beam

can be strongly modulated by the transverse wiggler field, depending

" i . 3 T % 4 N o A . -
e omprppsemev=ir e ynasam -SSR s S8 i " . . N 2 . X . . ik i AN
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on the size of GB/BO.

While it is true that beam equilibrium properties can be calculated
from Eqs. (10) and (11) making use of the exact invariants in Eqs. (4)-
(6), there are useful approximations that can be made in simplifying

the expression for Cz [Eq. (6)]) in the regimes of practical interest

AR

for free electron laser applications. We now discuss these approximatioms,
which will be used in the detailed equilibrium examples presented in
Sec. III.

First, in the regimes of practical interest, the characteristic
transverse momentum p, of a beam electron is small in comparison

with the characteristic directed axial momentum meVb%pz, i.e.,

lRal << vymvy - (12)

Second, we assume that the beam axial motion is far removed from cyclotron

resonance. Specifically, referring to Eq. (6), it is assumed that

- 2
1 ®Bo| . 2e
{ meVb- —cro- >> -c—k—o |R1-6'%| s (13)

or equivalently,

éB
2 ,3-'- R
: lwgmw,|7>> 20w . . (14)
5 0 "¢ c O ymeb Bo
where wo and w, are defined by
eBo
wo-kovb and w = T mc (15)

b

To assure radial confinement of the beam electrons, the present analysis
of course assumes By #0. Making use of the inequality |p,| << YV,
(Eq. (12)], the striking feature of the present analysis is that

the inequality in Eq. (14) is easily satisfied even for large wiggler

amplitude (GBmBO, say), both in the limits of weak axial field




10

(wi<<m§) and strong axial field (wz>>wg). For example, if w§>>w§,

then Eq. (14) reduces to

w P 62
C
1>>2 —_— . 2 ’ (16)
W ymeb Bo

which is readily satisfied in the parameter regimes of experimental
interest. In any case, within the context of the inequalities in
Eqs. (12) and (13), the exact axial invariant Cz defined in Eq. (6)

can be approximated by

.—e .
cko'el SR
P T es, an

z cko

where we have taken the positive square root in Eq. (6), which

corresponds to Cz and P, having the same polarity. Equation (17)

is an excellent approximation to Cz in the parameter regimes of practical
interest for free electron laser applications. Moreover, for G(Cz) ’
strongly peaked about Cz=ymeb, with characteristic half-width
ACz<<ymeb, the denominator on the right-hand side of Eq. (17)
can be approximated by pz—eBo/cko=ybmvb—eBo/cko. Equation (17)
then reduces to

w 5&

[+
C =p = = -~ pl s =, (18)
z 2 Wo~W, v BO

which is the approximate form of the axial invariant used in Sec. III.




I11. EXAMPLES OF HELICALLY MODULATED RELATIVISTIC

ELECTRON BEAM EQUILIBRIA

There is clearly a wide variety of helically modulated relativistic
electron beam equilibria that can be analyzed within the context of the
equilibrium formalism described in Sec. II. The relevant choice of
fg (CL,Ch,Cz) of course depends in detail on injection geometry,
beam quality, etc. For our purposes here, we consider two simple
examples of solid and hollow beam equilibria that clearly illustrate
the strong influence of the transverse wiggler field in modulating
the beam envelope. 1In both cases, for simplicity, we assume that

the axial distribution G(Cz) is cold, i.e.,

G(Cz)-d(cz-ybmvb)
(19)
W, 6%
=§|p,~Y, 0V, - ——— p1* F_ ’
z b b wy~w, R BO
where use has been made of Eq. (18). The analysis can be extended in a

straightforward manner to distribution functions G(C,) with a small

spread about Cz-ymeb.

A. 8Solid Beam Equilibria

As an example of a helically modulated solid electron beam, we

consider the case where fg(cl,ch,cz) has the form [Eq. (10)]

92 20 ¢ com2y m € ~2y,mly)
b7 1= 2y, My G -2y eIy

(20)

x6 ( cz-mevb )

where (, and Cj are defined in Eqs. (4) and (5), C, is defined in

Eq. (18), and Ngr Gyo and il are positive constants. Equation (20)
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is a straightforward generalization of the uniform density beam

0 2,2 -
equilibrium fb (nO/")G(pr+pe-2me“bPe-27me*)6(Pz-mevb) previously
discussed by Davidson8 for the case §B=0. Evaluating Cl—zybmwbch

for Cz=ymeb, and rearranging terms, we find that

[Ca-2vpmu, Gyl

| PRl
i
-, 2 2
W =W, W=
| e [“0™% e [“0™“b
| =[p+ 4 [——=] 6B | +|p,-v,mu r+ =——[—=1} 6B
3 T ck0 wy~w, r 8 'b b cko w0, ]
+y§m2w(r,e-koz) R (21)

where w0=k0Vb, wc=eBO/mec, GBr=-GBcos(6-koz), GBe-GBsin(e-koz), and

the effective potential w(r,e—koz) is defined by

w(r.e-koz)'(wbwc-mi)rz

w - (P w
+2wc“h(wc—w E %2 sin(6-kgz)- wo_::b —; (%) V: .
0 ¢/ OO0 0 ¢ Wy 0

We now evaluate various macroscopic properties of physical

interest for the choice of distribution function in Eq. (20). For

example, making use of Eqs. (20) and (21), it is readily shown that the

i equilibrium density profile ng(r,e,z)sjd3p fg(CL,Ch,Cz) corresponds
to a constant-density beam with sharp radial boundaries, i.e.,
R, w(r,e—koz)QZTL/ybm ,

0
nb(r,e-koz)- ) (23)
o, w(r,e-koz)>2'r,,/ybm ’

where y is defined in Eq. (22). Moreover, making use of 'R*|<<mevb'

the mean equilibrium velocity of the electron beam can be approximated by
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(24)

R NN TR NS R
e (Ja'p g £)/(Ja%p £)) ,

and the transverse temperature profile can be appro::imated by

Tgb(ﬁ)"% (Idapl(Pt“?r>)(vr—<vr>)+(Pe'<Pe>)(ve-<ve>]fg}/(fd3pfg)
(25)
_ 1 3 en e NZuge o 2960y 43¢0
"5 ([P L~ 22 4 (g 9622160 1 (fapeD)
where 13>-(Id3ppjfg)/(Jd3pfg), and use has been made of Y=Yy
Substituting Eqs. (20) and (21) into Eq. (24), the mean macroscopic

velocity components of the electron beam can be expressed as

0 “e [“0™"b \ 5B
Vrb(r,e-koz)=vb-;3 g0, E;-cos(e—koz) . (26)

w [w. -
;E <;Q:§E '§§ sin(e-koz) s (27)
0\"0 "¢/ 70

0 e e
Veb(r,B koz)—wbr Vb
and

ng(r,e-koz)=v , (28)

in the region of configuration space where ng(r,e~koz) is non-zero.
In obtaining Eqs. (26) and (27), use has been made of GBr--GBcos(e-koz)

0
and GBe-SBsin(e-koz), and the contribution to V., Oof order ‘g1>-cg/ybmvbno

has been neglected in obtaining Eq. (28). Finally, making use of Egs.
(20), (21), and (25), the transverse temperature profile can be

expressed as

w(r,e-koz)
] (29)

oy o kperey 10 S0
Yo
in the region of configuration space where ng(r.a-koz) is non-gero,

vg [Eq. (23)].

"

i.e., where y < ZQL/me




oy vy

W Wi W

= s wleii

e

e S Ty -

14

Evidently, from Eq. (23), the outer radius Rb(e-koz) of the electron
beam is determined self-consistently from the solution to the "envelope"
equation W(Rb,e-koz)=2T1/me = vé. Making use of Eq. (22), we find

that the physically allowed value of Rb(e-koz) is given by the expression

R, (0-k2)=0R, sin(0-kyz)+[ (AR, )?s1n? (6-ky2) +R2 211/2 (39

where R, and ARb are defined by

0 2 )
v [ 2 ) S (8
wy~W, m2 Bo b
2 0
Ro= , (31)
2
(wbmc_wb)
and
“c B
k ARb= ——_—w— Bo . (32)

Moreover, the equilibrium density profile in Eq. (23) can be expressed as

o g, o 0 <r < Rb(e-koz) ,
nb(r, e—koz)’ (33)
0, r > Rb(e-koz)
In addition, after some straightforward algebraic manipulation that

makes use of Eqs. (29)-(32), the transverse temperature profile can

be expressed as

[1+ =— - sin(e-koz)]
0, (x, e-koz)=rf{‘b Rb (34)
(1- R sin(e-koz)]

where Rb(e-koz) is defined in Eq. (30), and TTb is the maximum, on-axis

(r=0), transverse temperature defined by

e+ o wo mb ( )ZVIZ, . (35)

As a simple reference equilibrium, for ¢B=0, we note from

Eqs. (30) and (31) that the beam radius Ry reduces to the familiar

. "

i
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resu1t8 Rb-Rn-vol(ubwc—mg)llz, and that ARb-O, which corresponds to
zero modulation of the beam envelope. In addition, for 6B=0, it follows
that ng-o (Eq. (26)], ng-ubr [Eq. (27)], and rfb-i,(1-r2/ng)
[Eqs. (34) and (35)]. That is, for zero wiggler amplitude, Egs. (30)-
(35) reduce to the familiar results8 corresponding to an electron beam
with uniform density, constant beam radius, rigid-rotor angular velocity
profile, and parabolic transverse temperature profile.

In the case where 6B#0, we note from Eqs. (30)-(32) that the outer
envelope of the beam is modulated by the transverse wiggler field.
Moreover, for existence of the equilibrium, R% > 0 is required

[Eq. (31)] so that wy must lie in the range
0 <w <u, , (36)

for radially confined equilibria. From Eq. (30), the maximum (Rg)
and minimum (R;) radial excursion of the beam envelope occurs for

6-kyz=(20+1)7/2, 0=0, 1, £2,..., with ng and R} defined by

RS=|ARb|+[(ARb)2+R(2)]1/2 .

and (37)
Ri=-|aR, | +{ (aR ) 24+R2)1/2

where RO and AR.b are defined in Eqs. (31) and (32), respectively.

Defining the average beam radius by ib-(RS-R;)/Z gives
Ro-((or ) 2+r211/2 (38)

Moreover, defining the peak amplitude of the radial modulation by

Aﬁ‘-(Rg-R:)/Z gives
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We now parameterize the equilibrium properties within the context
of the basic assumptions enumerated in Sec. II. First, the transverse

(r,6) motion is assumed to be nonrelativistic [Eq. (12)]}. Making use of

T . % o
(RS S

0

Wes Wy 6B, etc. are required to satisfy

IV | << ¢, we find from Eqs. (26) and (27) that the quantities

? V., w (w )
! b c 0 Y’ 8B
| e by Goga) By| < 1 “wo
and
2=2
wb:b «<1, (41)

c
where wg and w, are far removed from cyclotron resonance [Eq. (14)].

For a weak axial field with wy >> w; > w Eq. (40) reduces to

b Y o8

<1, (42)
c @ BO

which is easily satisfied even for moderate wiggler amplitudes with

| |63/Bo| N 1. On the other hand, for a strong axial field with wy << We» {

Eq. (40) reduces to

<« 1, 43

which requires a small wiggler amplitude with |53/Bo| << 1., Here we
have assumed wy > Wpe Finally, for present purposes, we estimate

uﬁiﬁ/cz v uskglcz N w:vg/wbwcczlﬁq. (31)]. The inequality in Eq. (41)

then becomes

== <«< 1, (44)

PR, R
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which is easily satisfied since wy <o, [Eq. (36)] and the
transverse thermal motion is nonrelativistic (vg << cz).

It is also interesting to determine the characteristic size of
dehb, the normalized maximum radial excursion of the beam envelope.
From Eq. (39), for uy >> w_, ve find kdR = I(wc/mo)(GB/Bo)l <«< 1
[Eq. (42)] for weak axial magnetic field. Moreover, for wg << W, i
we find kozhb = |63/Bo| << 1 [Eq. (43)]) for strong axial magnetic

field. That 1is,

kozhb «<1, (45)

follows consistently from the assumption of nonrelativistic transverse

motion in both the weak field [Eq. (42)] and strong field [Eq. (43)]

regimes.
We also determine the characteristic size of koRo. Estimating
Rg x vglwbwc [Eq. (31)] gives
wz v2
2.2 0 "0
k. R = —_— (46)
00 Wy, V2 ’
b
where mo-kovb and W, <w, [Eq. (36)]. The regime of most interest
experimentally is kgké > 1, which requires sufficiently slow beam
rotation satisfying [Eq. (46)]
2 2
w Wy v
b 00
i (47
c w
c b

As a numerical example, in Fig. 1 we show a plot of the normalized
radius koRb of the beam envelope [Eq. (30)] versus e-koz for several
values of GB/BO and the choice of equilibrium parameters mo-bme,

mb-o.l Wes vg/c2-0.04, yb-3 and V:/c2-8/9. In this case,




& St tum, V1.

i
|
t
|

i Al grmcn
0

koARb' ’

1
k2r2-8(1+ 3 (19.5/9)%(68/8)%] (49)

follow from Eqs. (31) and (32). Substituting Eqs. (48) and (49) into
the expression for R.b in Eq. (30) gives the results shown in Fig. 1
for 63/30-1/4 [Fig. 1(a)}; GB/BO=0.5 [Fig. 1(b)] and 63/30-1 [Fig. 1(c)].
We note from Eqs. (38), (39), (48), (49), and Fig. 1 that the normalized
average beam radius koﬁb and maximum modulation amplitude kOZhb
increase from (koib,kozkb)-(2.83,0) for CB/BO-O,to (kois,kOZkb)-
(5.185, 0.333) for GB/BO=1.

We conclude this section by emphasizing that the theoretical model
developed here can be used to calculate the equilibrium properties
of a helically modulated solid electron beam propagating in an
equilibrium magnetic field prescribed by Eqs. (1) and (2) for a dbroad
range of system parameters wys Wy Wo» vg/cz, 53/30, etc. The major
approximations relate to the assumptions that the transverse particle
motion is nonrelativistic [Eq. (12)] and that the axial motion 1s

far removed from cyclotron resonance [Eq. (14)].
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B. Annular Electron Beam

As an example of a helically modulated annular electron beam,

we consider the case where fg(c‘,ch,cz) has the form [Eq. (11)]

RnY, MV 2 i
o "o0'p "0 2222 2 :
fb- 2. U[(C;—me vo) -€ ]G(Ch-co)G(Cz-ymeb) . (50) i

2
where Co--eBORO/anconst., and ng, Ry Vg, and € are positive
constants. In Eq. (50), U(x) is the Heaviside step function defined
by U(x)=1 for x > 0, and U(x)=0 for x < 0. Evaluating Cp-Cq and

C,_-(ybmvo)2 at C =y, mV,, and rearranging terms, we find

_ 1 “ SB '
[Ch—CO]Cz=meVb-[r+ 179 wg-o_ By sin(e-koz)]Pe

(51
w

1l _c 8B - " _
P cos (8 koz)pr F(x,® koz) .

0 Yo~ Bo

e ot e B

and

2 02 02 32,2
[cj_-(mevo) ]Cz-mevb Pr +Pe (me) vo ’ (52

where

w
€ 22 cos(o-ky2) (53)
Yo% “o0

'- -
P"Py mevb

Wo 6B
'. ‘, ——— m—— -
Pg™Pg ™' wyw, Bo sin(6 ka) ’

and F(r,e-koz) is defined by
fg Ye &B

— sin(6-k.2)
wy Wy~ Bo 0

2
1/ % §B\2

* 35 (agmaz ) (35) | -
0 \“0 % 0

1 Y 2 .2
F-ybmvb{i-;; ko(r -R0)+r
(54)
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It is convenient to introduce the quantities f and g defined by

b O 52 s S

']
f= 3= —2— 2B 4n(6-kg2) o

 { kg wymw, By

(55)
W

6B
g= —— —=— cos (6-k.z) .
ko mo.mc Bo 0

| Furthermore, evaluating C‘,_-(mevo)2 at Ch==C0 and Cztybmvb, we find

from Eqs. (51), (52), and (55) that

3 2 1 1+(2)2 0,2
1 [c.l.- (mevo) ]Cz=ybmvb"[l+(r+f) ] (Pr'Pr)

2 ¥
-((mev('))z- ——Lz——z] ’
(r+f£)“+g ]

where pg is defined by 1

2. 2 |
© (x+£) “+g“~F/yv, mV, k :
8
O a,con oy o 2B [ Rl 0] . (s7)
0 c0 (r+f)"+g

As a simple example, we consider the limit of zero perpendicular

energy spread in Eq. (50). Making use of the identity

222 22,2 2
2 _e]s

1

we find from Eqs. (50), (51), and (56) that the electron density

profile ng(r,e,z)-f:’dprffmdper:“dpz fg(C_L,ch,Cz) can be expressed as

| e [(2::::::31’2 [,dp:‘s("'r'z’“ ’ (59
i where pi=(1+[g/ (#1212 (p %), and ¥ 1s defined by
?; 2 F2 |
; w(r,e-koz)- ((ybmvo) - m] . (60)
|

Carrying out the p'r' integration in Eq. (59), the density profile

can be expressed as

. bk amie
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noRov0

w1+ 2g?1-(rry, m %)

C Ry D s

? o »
1/2 v

0
nb(r,e-koz)- (61)
0, otherwise .
In the subsequent analysis it is useful to introduce the effective

radial variable R defined by

i bR ¥4

2
2 ( 1 Ye 8B
R'=|r+ =~ ——— — sin(6-k z)]
ko Wy, By 0
. (62)
;; + —5 oo ( ) [1- sin (e-koz)] s
, ko
. and the constant quantities rL,I-{,R:, and R; defined by
_ Y%
rL— ";— s (63)
¢
=2 _2 1_(2“’0 1) ( We )2 1 63)2
R w W, 2.2 (3— : (64)
' c 0 ¢ koRo ¢]
i + 2 1/2 (65)
g R rL+(R +r ) :
]
|
? 2,1/2
. Rbs-r +(R +r ) . (66)
L
: Making use of Eqs. (61)-(66), and the definition of w(r,e-koz)
E in Eq. (60), we find that the density profile in Eq. (61) can be
| 1 expressed in the equivalent form
¥ . 2. (v,/vl) _
L ) 0 L*0' 0 , Rb <R < R: ,
; +2 .2
-R
! ap(r,0-k )= { (R TEY S 67)

0 , otherwise .

From Eqs. (61) and (67), note that the normalization of ng is such that

e T R

ng-no-const. for r-Ro and §B=0. In addition, note from Eq. (67) that

the beam density is singular at the inner (R-R;) and outer (RPR;)
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boundaries of the electron beam. This is a consequence of the singular
form for the perpendicular energy distribution function assumed in

(58). For small but finite €, the beam density remains finite
and varies smoothly throughout the annulus.9 We emphasize, however,
that the beam density profile in Eq. (37) is integrable in. the sense

o

that the number of electrons per unit axial length, Nb=0I2“d6 Lodr r ng is
finite. 1In any case, the equilibrium example in Eq. (67) is adequate
for present purposes of describing the helical modulation of the inner
and outer beam envelopes by the transverse wiggler field.

Making use of Eqs. (62), (65), (66), and (67), the outer boundary
(r-r:) and inner boundary (r=rg) of the annular electron beam are

determined from

w
+ 1 c__¢6B
T = ig';;:;— B sin(6- kyz z)
(68)
2,1/2,2 1 [ © > 5512 2 L2
+ |l +(R +r ) / ] - =3 ;rfir- (EE) [1-sin (e-koz)]
0 0 "¢ 0
and
- 1 % B
r=-———-—sin(ekz)
b k0 Wo~We Bo
« 2 1/2
2,1/2.2 1 &B - _
[r+(R+) ] - k(z, ——wo_w)(n)[lsin(ekz)] ,
(69

where r -volw and R is defined in Eq. (64). In the special limiting
case where §B=0, it follows from Eqs. (63) and (64) that . /w

and R!Ro, and Eqs. (68) and (69) reduce to the familiar'resultsg

(rb)6B 0 (R +r )1/2+rL . (70)

and

- 2, 2,1/2_
(ry) gpmg™ (RFep) -y - 1)
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That is, for 8B=0, the average beam radius and beam thickness are

constant, with ﬁbs(r;+r;)/2=(R§+r )1/2 R, (for r2

L << R ), and

ARB:r Ty -2r

For the choice of equilibrium distribution function in Eq. (50)

ik 3
E VUV Wts A0 SRS TP

with ¢ » 0+, Eqs. (68) and (69) give very precise predictions for the
inner and outer boundaries of the annular electron beam for §B#0,
within the context of the assumptions enumerated irn Sec. II.

In the remainder of this section, we make use of Eqs. (68) and (69)
to examine the helical modulation of the beam envelope in the general

case where 6B is non-zero, assuming in addition that the dimensionless

quantities
ri/iz <1, (72)
and
w W 2 2
1 0 c 8B <1 (73)
22w \w,~w B >
k-R. ¢ 0 0

?} can be treated as small parameters. In Eq. (72), R is defined in

(64), and r =2v6/wc, where vb is defined fn Eq. (33). 1In the

L
regime of experimental interest kg g 1. In this regard, we note that

the inequality in Eq. (73) is readily satisfied even for moderate
wiggler amplitudes with IGB/BOI & 1. This is true both for weak

4 axial fields (wc << mo) and strong axial fields (wc >> Taylor

0)'
expanding the expressions for rg in Eqs. (68) and (69), and retaining
terms to order (ri/ﬁz) and (GB/BO)Z, we obtain the approximate

expressions

(74)
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1 Evidently, from Eq. (74), the beam thickness ARb-r:-rb is given by

15 2v6

‘! Anb= er- w—- ’ (75)
g c

correct to order (rLlﬁ)2 and (63/30)2. In Eq. (75), v6 is defined

in Eq. (53). Moreover, the average beam radius §b-(r:+r;)/2 is given
by

= 1 Y sB
Rb=§ ;l— e e B sin(e—koz)i
0

2 (76)

w

2
2
1= 3 L 1 c 6B 2
+ 3R = - S e )(5) [-sin®(6-kp2) ]|
2 &2 kgRZ ) “’c)(Bo) 0

correct to order (rLlﬁ)2 and (GB/BO)Z. We note from Eq. (76)
that the leading-order modulation of the average beam radius ﬁb %

is linear in 6B. Therefore, making use of Eq. (64), the expression

for ib in Eq. (76) can be approximated by

w
R =R{1- L —= % sin(6-ky2) | , (77) |
koR 0 c 0

correct to lowest order in GB/BO.

As a numerical example, in Fig. 2 we show a plot of the normalized

average beam radius k.R_ (dashed curve) versus 6-k.z obtained from
0 0

Eq. (77) for several values of GB/B0 and the choice of equilibrium

2,2 0
parameters w =4, volc =0.04, kORo-3/2, korlfkovolwc-I/ZO, yb-3 and

Vi/c2-8/9. In this case !

200 (58 Y

4 koARb-0.1[1+ m Bo)] . (78)
f’ and

Kok, =koR- %‘;—Z sin(o-kyz) , (719)

1/2

’ follow from Egqs. (53), (75), and (77). Here, koi-koaom(za/u)(sn/no)zl

follows from Eq. (64). Equations (78) and (79) yield the results shown




L T S e ]

LM, e

25

in Fig. 2 for 63/30-1/4 (Fig. 2(a)], GB/BO-O.S {Fig. 2(b)] and 63/30-1
[Fig. 2(c)]. From Eq. (79), we define the peak amplitude of the radial
modulation by dehb = |(1/3)(GB/BO)|. We note‘from Fig. 2 and

Eqs. (78) and (79) that the normalized beam thickness k,Rpy and
maximum modulation amplitude dekb increase from (koARb, dekb)-

(0.10, 0) for 6B=0, to (kAR , k,AR )=(0.19, 0.33) for §B/By=1.

In concluding this section, we emphasize that the theoretical
model developed here can be used to calculate the equilibrium properties
of a helically modulated annular electron béam propagating in the
equilibrium magnetic field Bogz-GBcoskozéx-GBsinkozéy for a broad
range of system parameters w_, wg, vglcz, GB/BO, kono, etc. As in
Sec. II.A, the major approximations relate to the assumptions that

the transverse electron motion is nonrelativistic [Eq. (12)] and that

the axial motion is far removed from cyclotron resonance [Eq. (14)].
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IV. CONCLUSIONS

In this paper we have developed a self-consistent Vlaéov descrip-
tion of helically distorted relativistic electron beam equilibria
for free electron laser applications. In particular, we have considered
radially confined equilibria for a helically distor;ed relativistic
electron beam propagating in the combined transverse wiggler and uniform
axial guide fields described by Eqs. (1) and (2). Assuming that the
beam density and current are sufficiently small that equilibrium self
fields can be neglected in comparison with Boéz+6k, it is found that
there are three useful and exact invariants (CL,Ch,Cz) associated with
single-particle motion in the equilibrium field configuration. These
invariants are used to construct radially confined Vlasov equilibria
fg(cl,ch,cz) for an intense relativistic electron beam propagating
primarily in the z-direction. Specific examples of solid [Eq. (20)]
and hollow [E:. (50)] beam equilibria are analyzed in Sec. III, and it
is shown that the transverse wiggler field can have a large modulational
influence on the beam envelope, depending on the size of GB/BO. Ve
believe that the present equilibrium investigations form an important
first step in formulating a self-consistent Vlasov description of
the free electron laser instability that both includes the
effects of finite radial geometry and correctly incorporates the non-

linear influence of the transverse wiggler field on the beam equilibrium.
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1 FIGURE CAPTIONS :
; Fig. 1 Plot of kyR [Eq. (30)] versus 6-kyz for wy=bw ., w=0.1 w_,
3 vg/¢2-0.04, yb-3, vlz,/cz.g/g and (a) 53/30-1/4, () 53/30.1/2’
and (c) 63/30-1.

Fig. 2 Plot of koib [Eq. (77)] versus O-koz for wo-lowc. vg/cz-o.olo,
rv Yp=3» V§/c2-8/9, k0R0-3/2. korg-llzo, and (a) 53/30-1/4,
(b) 8B/By=1/2, and (c) 6B/By=1.
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APPENDIX A

SINGLE-PARTICLE CONSTANTS OF THE MOTION

In this appendix, we consider the motion of an individual electron

in the applied magnetic field

0 . . A o
B -Bosz-GBcoskozgx-GBsinkoz%y

=B§,~0Bcos (8-k,z)§ +6Bsin(0-ky2)&, »

where Bo-const. is the uniform axial field, 6§=-63cos(e-koz)%t+GBsin(e—koz)ge
is the transverse helical wiggler field expressed in cylindrical
polar coordinates, SB=const. is the wiggler amplitude, and A0-2n/k0 is

2c2)1/2

the wavelength. Making use of y'-(1+g'2/m =const., the equations

of motion for the particle orbits r'(t'), 0'(t') and z'(t') can be

expressed as

2
L (& L do'
Y ﬂ[dt' dt') dc’ f
(A.1) '
€88 i ony gvy 420
+= sin(6 koz ) ac’
1 ]
y'm(r' '+2( ) (de ] co g:, + 5 cos(e'-koz') %%T (A.2)
dt
dzz' edB '  eéB de'
y'm —z - sin(e'-koz') rrulre cos(e'-koz')r' ek (A.3)
de’

Conservation of energy (y'=const.) of course implies that
'“4p! +p'2-const (A.4)
Py 0 z .y

where p;-y'mdr'/dt', pa-y'mr'de'/dt' and p;-y'mdz'/dt'. Moreover,




multiplying Eq. (A.2) by r' and making use of Eq. (A.3) gives

. 1 eB
& (o 32

] eS8 r cos(e'-k z )dt'

2
d [eGB ' y'md-z'
- — r sin(o _k z )] —_—,
de’ cko ko dt,2

Integrating Eq. (A.5) with respect to t' gives the helical invariant

P'+ — + ok eGB r sin(e'-koz )=const., (A.6)

e ko cky,
where p;-y'mdz'/dt', and Pé-r'(pé-enor'/ZC) is the canonical angular
momentum associated with the applied axial field Bo. Subtracting
ymeb/ko-const. from Eq. (A.6), where mecz is the characteristic
directed beam energy and V,, is the characteristic mean axial velocity

of the beam electrons, gives

1 eéB
Ch-Pé+-E; (pz YV, )+ —E; r sin(e'-koz )=const., (A.7)

which is the form of the helical invariant used in Secs. II and III
[Eq. (5)].

To determine the axial invariant associated with Eqs. (A.1l)-
(A.3), we consider the quantity I, defined by

2 2By | g6

- ' - L L
Iz (pz) cko pz cko prGBcos(O koz )

_2e

P
ko e

GBsin(e'-k z') ,

where p;-y'mdz'/dt', p;-y'mdr'/dt' and pa-y'nr' de'/de’'.
Differentiating Eq. (A.8) with respect to t' and making use

of Eq. (A.3) gives




eB
B __ o v_ __0)esB 'y gty 9T
28 ok 20) Bancr e 85

[ ]
L ey 48] | 2e Pr 'y e
+cos (8’ k )r dt'] + Cko GB[:t, cos (6 koz )
dl

- ?1':'?' s1n(0'~kyz')-psin(8'-kyz') ( de_

0 e’

_pecos(e'-k z') (dt' ~kg EET ] .

Substituting Eqs. (A.1l) and (A.2) into Eq. (A.9) and combining terms

gives
di

Ef' =0, (A.10)

which implies that Iz-const. is an exact single-particle invariant.

Adding (eBolck 2 to Eq. (A.8) implies that

0
eB
( " _) 1__ Gnlpésin(ev_ko:')-p;col(e'-kol')]
0

z cko
2
= - :EQ =const
z cko e

which is the form of the exact axial invariant used in Secs. II and

I11 [Eq. (6)]. For 6B -+ 0, we note from Eq. (A.1ll) that C. reduces

to the axial momentum p;.
Finally, subtracting I:+2(enolcko)ybmvb-conot., from Eq. (A.4)
gives

c 240 2 2!30 ¢ avl)
.I.P e O PYbb

2—--p GBcol(B'-k ')+ --p GBsin(e'-k z)=const.,
cko r 0 e

which is the form of the exact perpendicular invariant used in Secs. II

and 1II1 [Eq. (4)].
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