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HELICALLY DISTORTED RELATIVISTIC ELECTRON BEAM EQUILIBRIA FOR

FREE ELECTRON LASER APPLICATIONS

Ronald C. Davidson
Plasma Fusion Cefiter

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

and

Science Applications Inc.
Boulder, Colorado 80302

Han S. Uhm
Naval Surface Weapons Center

White Oak, Silver Spring, Maryland 20910

ABSTRACT

The purpose of this paper is to develop a self-consistent kinetic

description of helically distorted relativistic electron beam equilibria

for free electron laser applications. In particular, radially confined

equilibria are considered for a helically distorted electron beam prop-

agating in the combined transverse wiggler and uniform axial guide

0oe, Bse an +6-Boz-6BcoskOZf-6Bsnkozy , where B

const., dB-const., and XO-2/ko-const. is the axial wavelength of the

wiggler field. It is assumed that the beam density and current are

sufficiently small that the equilibrium self fields can be neglected

in comparison with In this context, it is found that there are

three useful (and exact) invariants (CJ,Ch,Cz) associated with single-

particle motion in the equilibrium field B0 z+6k. These invariants

are used to construct radially confined Vlasov equilibria fO(CAC,CZ)

for an intense relativistic electron beam propagating primarily

in the z-direction. Examples of both solid and hollow beam equilibria

are considered, and it is shown that the transverse wiggler field can

have a large modulational influence on the beam envelope, depending

on the size of 6B/BO.
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I. INTRODUCTION

There have been several theoretical
1- 5 and experimental

6'7

investigations of the free electron laser which generates coherent

electromagnetic radiation using an intense relativistic electron beam

as an energy source. With few exceptions, theoretical studies of the

free electron laser instability are based on highly simplified models

which neglect the influence of finite radial geometry and beam

kinetic effects, or make use of very idealized approximations in

analyzing the matrix dispersion equation. The purpose of this paper

is to develop a self-consistent kinetic description of helically

distorted relativistic electron beam equilibria for free electron laser

applications. In particular, we consider radially confined Vlasov

equilibria for a helically distorted relativistic electron beam

propagating in the combined transverse wiggler and uniform axial guide

fields described by [Eqs. (1) and (2)]

~0

Ii~- 6B~-Bcoskozkx-6fsinkozy '

where B0=const., 6B-const., and XO=2r/k0 =const. is the axial wavelength

of the helical wiggler field. Both solid and hollow beam equilibria

are considered, and it is assumed that the beam density and current

are sufficiently small that equilibrium self fields can be neglected

0in comparison with B . Within the context of this assumption it is

found that there are three useful (and exact) invariants (CLCh,CZ)

dssociated with single-particle motion in the equilibrium field B+ .

These invariants can be used to construct radially confined Vlasov

equilibria f (CL.Ch,Cz) for an intense relativistic electron beam

t b



propagating in the z-direction, including the important modulational

influence of the transverse wiggler field on the beam envelope.

The three exact invariants derived in Sec. II and Appendix A

are given by the perpendicular invariant C1 [Eq. (4)],

2 2 2eB0  2c" Pe+ c Pk 0 _bmVb+ cke

the helical invariant Ch [Eq. (5)],

ch-Pe+ o (pzybmVb)+ W0 Bsin(_k0 z)

and the axial invariant C defined by [Eq. (6)]

( B \ eBO \2I-
z- cko 'J- 'ckJ y ck 0

where p = (p = ykv is the mechanical momentum, P-r(Po-egorl2c)
2

is the canonical angular momentum, Ybmc -const. is the characteristic

directed energy of the electron beam, and Vb=const. is the characteristic

mean axial velocity. In the expressions for C1 and Ch, we have subtracted

ii the constant terms proportional to YbmVb without loss of generality.

1*Moreover, for 64-0, we note from Eq. (6) that the axial momentum p is

a constant of the motion, and that Eqs. (4) and (5) yield the familiar

2 2
invariants, pr+pe=const. and Peiconst., for a charged particle moving

in a uniform axial field BO.

The striking feature of the present analysis is the fact that the

exact invariants (Cv ,Cz) can be used to construct helically

distorted relativistic electron beam equilibria fb (C I 'C ) of

experimental interest for free electron laser applications. Generally

speaking, the two classes of relevant beam equilibria can be charac-

terized as (a) solid beam equilibria, and (b) hollow beam equilibria.

For example, equilibrium distribution functions of the form (Eq. (10)]

- - . -.



b 1 (C-2b=%b)G(Cz) ,

where G(C ) is strongly peaked around CzmybmVb, correspond to a solid

electron beam with non-zero density on axis (r-0). On the other hand,

the class of beam equilibria described by [Eq. (11)]

£o -Fb 2 (C±)6(C-CO)C(Cz)

2where Co=-(eB0 /2c)R6-const., corresponds to a slowly rotating annular

electron beam with characteristic mean radius RO . Of course, it is

found that the detailed spatial dependence of beam equilibrium prop-

erties (density profile, temperature profile, etc.) depends on the

specific functional form of G(Cz), F2 (CL) and Fl(C±-2ybmbCh). It

is also found that the radial envelope of the beam can be strongly

modulated by the transverse wiggler field, depending on the size

of 6B/B 0 [Sec. III).

As a general remark, one of the most appealing features of the

3
recent free electron laser stability analyses by Davidson and Uhm,

Sprangle and Smith,5 and Bernstein and Hirshfield 4 for a relativistic

electron beam with uniform density and infinite cross-section is the

fact that the influence of the transverse wiggler field is contained

in a fully self-consistent manner in the equilibrium distribution

function f -n06(Px)6(P )GOkpz). That is, when carrying out the stability

analysis, the excited electromagnetic and electrostatic fields are

treated as small-amplitude perturbations about a self-consistent

equilibrium that includes the full nonlinear influence of the equilibrium

wiggler field. We believe that the present equilibrium investigations

form an important first step in formulating a self-consistent

Vlasov description of the free electron laser instability that includes

the effects of finite radial geometry and also correctly incorporates
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the nonlinear influence of the transverse wiggler field on the bern

equilibrium.

The organization of this paper is the following. In Sec. II,

we discuss the basic equilibrium configuration and assumptions.

Specific examples of helically modulated relativistic electron beau

equilibria are analyzed in Sec. III, both for solid [See. III.A) and

hollow [Sec. III.B] electron beams.

II

.1:

K|
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II. EQUILIBRIUM CONFIGURATION AND BASIC ASSUMPTIONS

We consider the class of helically modulated relativistic electron

beam equilibria propagating in an externally applied magnetic field

0O-BoAZ+6k 1

where B0-const. is the axial magnetic field, and

6B--6Bcoskoz# -6Bsink Zy , (2)

is the transverse helical wiggler field with axial wavelength X0=2w/k0.

In the present analysis, we assume that 6B-const. is a good approximation

over the radial extent of the beam. In cylindrical polar coordinates

(r,0,z), Eq. (2) can also be expressed as

6B-6B i +6B

--6Bcos(e-koz)fr+6Bsin(e-koz) e , (3)

where k and t. are unit vectors in the r- and e-directions, respectively.

It is assumed that the beam density and current are sufficiently

low that the influence of the equilibrium self electric and self

magnetic fields, ks( ) and toW on the particle trajectories

0can be neglected in comparison with the vxB force associated

with the applied magnetic field in Eq. (1).

Within the context of the above assumptions, there are three useful and

exact invariants (C.L,ChC) associated with single-particle motion in

the equilibrium field B0 dz+6k. These invariants can be used to

0construct cylindrical Vlasov equilibria fb (CLChCZ) for an intense

relativistic electron beam propagating in the z-direction, including

the important modulational influence of the transverse wiggler field

- -
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on the beam envelope. As outlined in Appendix A, for relativistic

electron motion in the applied magnetic field defined in Eqs. (1) and

(2), the three exact invariants are given by the transverse invariant

C. [Eq. (A.12)],

2 2 2eB 0  2e (4)
CLP +p + -0 (P -yb(Vb)+ 4)

0 0

the helical invariant Ch (Eq. (A.7)],

1 eBB

Ch=Pe+ t (pz-YbmVb)+ - rsin(e-k0 z) , (5)

and the axial invariant C defined by [Eq. (A.11)],

eBO eBO 2*0 L6B. (6)

In Eqs. (4)-(6), ]=(pr,Po,pz)=ymv is the mechanical momentum, PB=

r(p -eB0r/2c) is the canonical angular momentum associated with the

2. 2c4+ 21/2
axial field B0, ymc2 (m c +c2 ) is the relativistic electron energy,

-e is the electron charge, m is the electron rest mass, ybmc 2 const.

is the characteristic directed energy of the electron beam, and Vb=

const. is the characteristic mean axial velocity. Moreover, t

is the transverse momentum, and kj.6k can be expressed as k-6

-pr6BCOS(e-koz)+pe6Bsin(e-koz). Note in Eqs. (4) and (5) that

we have subtracted the constant terms proportional to ybmVb without

loss of generality. For Bo-const. and 6B-const., we reiterate that

CL, Ch, and Cz are exact constants of the motion for arbitrary

wiggler amplitude 6B.

In the limit of zero wiggler amplitude, 6BO, Eqs. (4)-(6)

.1 reduce to

0 2 2 2eB0CLWP r+Pe+ -ko (pz-YbmVb)const., (7)



I8

S'P 0+ 1 (pz-Ybmvb)const., ()

Coa.pzconst. (9)

For 6B-0, we note from Eq. (9) that the axial momentum p is a

constant of the motion, and Eqs. (7) and (8) yield the familiar

2 2invariants, pr+pe-const. and Pe-const., for a charged particle

moving in a uniform axial field B0.

There are two classes of helical beam equilibria fo(CIC,Cz)

of experimental interest for free electron laser applications.

Generally speaking, the two classes can be characterized as (a) solid

beam equilibria, and (b) hollow beam equilibria. For example,

equilibrium distribution functions of the form

fbiFl(CL-2ybmwbCh)G(C) , (10)

where G(C ) is strongly peaked around Cz-YbmVb , corresponds to a

solid electron beam with non-zero density on axis (r-0). In Eq. (10),

bconst. is related to the mean angular rotation of the beam [Sec. III].

On the other hand, the class of beam equilibria described by

0
fb-F 2 (C.)6(Ch-C0)G(Cz)
2

where C0--(eBo/2c)R0-const., corresponds to a slowly rotating annular

electron beam with characteristic mean radius RO . Of course, the

detailed spatial dependence of the beam equilibrium properties (e.g.,

density profile, temperature profile, etc.) depends on the specific

functional form of G(C ). P (C -2Ybmab ) and F2(CJ). In this reard,

specific examples of helical beam equilibria are discussed in Sec. III.

As a general remark, it is found that the radial extent of the beam

can be strongly modulated by the transverse wiggler field, depending
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on the size of 6B/B.

While it is true that beam equilibrium properties can be calculated

from Eqs. (10) and (11) making use of the exact invariants in Eqs. (4)-

(6), there are useful approximations that can be made in simplifying

the expression for Cz [Eq. (6)] in the regimes of practical interest

for free electron laser applications. We now discuss these approximations,

which will be used in the detailed equilibrium examples presented in

Sec. III.

First, in the regimes of practical interest, the characteristic

transverse momentum R of a beam electron is small in comparison

with the characteristic directed axial momentum YbmVb pZ, i.e.,

I L < YbmVb (12)

Second, we assume that the beam axial motion is far removed from cyclotron

resonance. Specifically, referring to Eq. (6), it is assumed that

eBo 2e
ymV>--- >-0 I 6B, (13)
Yb b- ck0  c 0 'A

or equivalently,

I~WcWOWC 2 >2 w , (14):c 0 b mV b  B 1

where w0 and wc are defined by

eB0

0 =koVb andwc= --ybmc . (15)
Ybm

To assure radial confinement of the beam electrons, the present analysis

of course assumes B 0 0. Making use of the inequality I1kj << YbmVb

(Eq. (12)], the striking feature of the present analysis is that

the inequality in Eq. (14) is easily satisfied even for large wiggler

amplitude (6BdB0, say), both in the limits of weak axial fieldL _____
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(2  2 2 2 Frexmei 2 2

(W2<<W0) and strong axial field (w2>>w2 For example, if w 2

then Eq. (14) reduces to

1>>2 bmVb "0 (16)

which is readily satisfied in the parameter regimes of experimental

interest. In any case, within the context of the inequalities in

Eqs. (12) and (13), the exact axial invariant C defined in Eq. (6)
z

can be approximated by
e

Czp B 0  , (17)
PZ- "B

where we have taken the positive square root in Eq. (6), which

corresponds to C and p2 having the same polarity. Equation (17)
z

is an excellent approximation to C zin the parameter regimes of practical

interest for free electron laser applications. Moreover, for G(C )

strongly peaked about Cz=ybmVb, with characteristic half-width

ACz<<ybmVb, the denominator on the right-hand side of Eq. (17)

can be approximated by p z-eB0/ck "bmVb-eB0/ck0. Equation (17)

then reduces to

C P c r V
(p-W "  o (18)

which is the approximate form of the axial invariant used in Sec. III.



III. EXAMPLES OF HELICALLY MODULATED RELATIVISTIC

ELECTRON BEAM EQUILIBRIA

There is clearly a wide variety of helically modulated relativisticI electron beam equilibria that can be analyzed within the context of the

equilibrium formalism described in Sec. II. The relevant choice of

0
fb (C,,ChCz) of course depends in detail on injection geometry,

beam quality, etc. For our purposes here, we consider two simple

examples of solid and hollow beam equilibria that clearly illustrate

the strong influence of the transverse wiggler field in modulating

the beam envelope. In both cases, for simplicity, we assume that

the axial distribution G(C z) is cold, i.e.,

G(Cz )6(C z-YbmVb )

(6 Pz ybmb - a) c ) kow ^

where use has been made of Eq. (18). The analysis can be extended in a

straightforward manner to distribution functions G(Cz) with a small

spread about Cz-YbmVb .

A. Solid Beam Equilibria

As an example of a helically modulated solid electron beam, we

0
consider the case where f(C±,,ChCz) has the form [Eq. (10)]

b . no

(20)

x6(C -YbmVb)

where C, and Ch are defined in Eqs. (4) and (5), C2 is defined in

Eq. (18), and n0 , wb, and T, are positive constants. Equation (20)
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is a straightforward generalization of the uniform density beam

equilibrium fO n /i)6(pp2  2equltb b. 0n/W r (pP-2y bmwbP -2ybmT') 6(pz-ybmVb) previously

discussed by Davidson8 for the case 6BO. Evaluating CI- 2 ybmwbCh

for Cz YbmVb, and rearranging terms, we find that

[C.-2ybmwbCh ] Cz=YbmVb

j + e (oOb\ 6B+p r+ e Ob e12

[pr ck0  _O-c ii/ r pe-ybb ck0 O- ej

+Yb2m 2 (r,e-k 0z) (21)

where w=koVb, C-eBo/Ybmc' 6B=-6Bcos(e-k0 z), 6Be=Bsin(e-koz), and

the effective potential *(r,e-koz) is defined by

*(r, e-kz) 22)

z)(wbwc-wbr

I w w-/ 2 2 (22)
twiwb 6B I" 0 ' W 622+2c cF \0 O- c/0w b

We now evaluate various macroscopic properties of physical

interest for the choice of distribution function in Eq. (20). For

example, making use of Eqs. (20) and (21), it is readily shown that the

equilibrium density profile n b(r,e,z)=fd 3 P f b(C.,ChCz) corresponds

to a constant-density beam with sharp radial boundaries, i.e.,

no , *(r,e-koz)._2T,/Ib

n 0(r, e-koz)- 0 Ybm ' (23)

0 , *(re-koz)>2TI.Ybm

where p is defined in Eq. (22). Moreover, making use of -Lc "bVb,

the mean equilibrium velocity of the electron beam can be approximated by
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V;( fd P(t/ym fbI/ (fdp b~

(24)

1~ U ~ ij 3 0 3 0___(fd p k fbO)/(fd p fbO

Yb
m

and the transverse temperature profile can be appro;:imated by

"Tib( ) {fd<p((Prr>)(vr-Vr>)+ e-<e>)(ve- > ]fOI (d 3pf ° )

(25)
2 Ybm 3pe Pe>)2 ]fO)/(fd3pf)

{jb Pr<> b b

where 4pj>=(fd 3ppjfO)/(fd3PfO), and use has been made of

Substituting Eqs. (20) and (21) into Eq. (24), the mean macroscopic

velocity components of the electron beam can be expressed as

I_ ((O ) 6B

VOrb '-ko b . 0 - cOs(O-koz) ' (26)

Veb (r Bkz)=.Vb B (0J~b\

V 0b(r'\-koz)f=br-Vb B0 sin(e-koZ) ' (27)

and

0 (8V zb (r,-kOz)=Vb (28)

0in the region of configuration space where nb(re-koz) is non-zero.

In obtaining Eqs. (26) and (27), use has been made of 6Brw- 6 Bcos(e-koz )

and 6Be- 6Bsin(6-k z) and the contribution to V0 of order' -~b fode >.-R/ybmVbB0

has been neglected in obtaining Eq. (28). Finally, making use of Eqs.

(20), (21), and (25), the transverse temperature profile can be

expressed as

v0

in the region of configuration space where no(r,e-koz) is non-zero,

i.e., where 2TL/Ybm v2 [Eq. (23)].

I0
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Evidently, from Eq. (23), the outer radius Rb(O-koz) of the electron

beam is determined self-consistently from the solution to the "envelope"
2

equation *(,e-koz)=2Tj./ybm- v0 . Making use of Eq. (22), we find

that the physically allowed value of Rb(6-koz) is given by the expression

2 2 2 1/2 (0Rb(O-k0z)=ARbsin(8-k0z)+[(ARb) sin2(6-k0z)+R 0 ] , (30)

where R0 and Ab are defined by

0 2 c 6B 2b
[v6+ (do) W2 2B0V

- 0 (31)

and

kOA= c 6B (32)k0A-b= "wO-wc B0O (2

Moreover, the equilibrium density profile in Eq. (23) can be expressed as

(n0 , 0 <r_< R.(e-kOz),

nO(r, O-k0 z) n (33)

1 0 r > Rb(e-kOZ) .

In addition, after some straightforward algebraic manipulation that

makes use of Eqs. (29)-(32), the transverse temperature profile can

be expressed as

0 ek~z=Tb (~ j')(.11 R~ -j.sin(e-koz)]
T.b (r, 0-k0 z) -TLb (34)1l- 2"x  sin(e-k0,)

b
where Rb(e-koz) is defined in Eq. (30), and Tb is the maximum, on-axis

(r-0), transverse temperature defined by

2 2
b-ALB (0 -  ) B V2 (35)

As a simple reference equilibrium, for 6B-0, we note from

Eqs. (30) and (31) that the beam radius R reduces to the familiar



15

result 8 Rb% vO/(w,,,c-w2) / , and that ALD-0, which corresponds to

zero modulation of the beam envelope. In addition, for 6B-0, it follows
00 0 - 2 2

that Vb-0 (Eq. (26)], V eb-wbr [Eq. (27)], and Tib-Tl(l-r /Rj)

[Eqs. (34) and (35)]. That is, for zero wiggler amplitude, Eqs. (30)-

(35) reduce to the familiar results corresponding to an electron beam

with uniform density, constant beam radius, rigid-rotor angular velocity

profile, and parabolic transverse temperature profile.

In the case where 6B#0, we note from Eqs. (30)-(32) that the outer

envelope of the beam is modulated by the transverse wiggler field.

Moreover, for existence of the equilibrium, 2 > 0 is required

[Eq. (31)] so that wb must lie in the range

0 < b < c 
, (36)

0for radially confined equilibria. From Eq. (30), the maximum

and minimum (V) radial excursion of the beam envelope occurs for
0 an

e-k0z-(2n+l)/2, n=O, ±1, ±2,..., with % and defined by

N= .R~ Ibi+((AR b) +R2]1 1/2

and (37)

Pr-A Rb 1 + (AR b) +R~]"

where R0 and ARb are defined in Eqs. (31) and (32), respectively.

Defining the average beam radius by %-%)/2 gives

R.[ (AR 2+R1/2 (38)

Moreover, defining the peak amplitude of the radial modulation byI -

~~~~ivells" ".
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A -JARb

(39)

.11 'O 6B I
o0 -WCcB

We now parameterize the equilibrium properties within the context

of the basic assumptions enumerated in Sec. II. First, the transverse

(re) motion is assumed to be nonrelativistic [Eq. (12)). Making use of

IVOI, IVebI -" c, we find from Eqs. (26) and (27) that the quantities

WcI w D 6B, etc. are required to satisfy

O(WOW < B1 i , (40)

and 2-
(% 2 , 

(41)2
c

where w and w are far removed from cyclotron resonance [Eq. (14)].

For a weak axial field with w0 >> Wc (>wb, Eq. (40) reduces to

c~ cLB <1 ,(42)

which is easily satisfied even for moderate wiggler amplitudes with

6B/BOJ 1. On the other hand, for a strong axial field with w << wc'

Eq. (40) reduces to

IVb LSBI
c B01<< 1,(43)

which requires a small wiggler amplitude with I6B/Bo[ << 1. Here we

have assumed wO > wb. Finally, for present purposes, we estimate
-2 2_2 2 2.v/~wc(q

S [R0 /C (31)]. The inequality in Eq. (41)

then becomes

2(44)

*!! -0--1
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which is easily satisfied since wb < wc [Eq. (36)] and the

transverse thermal motion is nonrelativistic (v
2 << C2).

It is also interesting to determine the characteristic size of

kOARb , the normalized maximum radial excursion of the beam envelope.

From Eq. (39), for w >> w , we find k0XR = J(wc/wO)(6B/B0) << 1

[Eq. (42)] for weak axial magnetic field. Moreover, for w << wc ,

we find k0 Ab = 16B/Bo << 1 [Eq. (43)] for strong axial magnetic

field. That is,

k AR , (45)

follows consistently from the assumption of nonrelativistic transverse

motion in both the weak field [Eq. (42)] and strong field [Eq. (43)]

regimes.

We also determine the characteristic size of k0R0 . Estimating

R2 . 20 ' vo/wbwc [Eq. (31)] gives

2 2

,0 0 (46)

b
* where wokoVb and wb < wc [Eq. (36)]. The regime of most interest

experimentally is k22; > 1, which requires sufficiently slow beam

rotation satisfying [Eq. (46)]

2 2
wb w0 v0w 2 V.2 (47)

2
.1c 

) b

As a numerical example, in Fig. 1 we show a plot of the normalized

radius k0R of the beam envelope [Eq. (30)] versus e-koz for several

values of 6B/BO and the choice of equilibrium parameters wO=4w€,

2/2. 22
wb0- we', v/C -0.04, Yb-3 and yb/c -8/9. In this case,
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1 6B (48)
k0 Rb" 3 B

and
22 1

kOR;8[1+ ! (19.5/9) 2 (6B/B )2](49)2 0

follow from Eqs. (31) and (32). Substituting Eqs. (48) and (49) into

the expression for Rb in Eq. (30) gives the results shown in Fig. 1

for 6B/B0-/4 [Fig. l(a)], 6B/BO00.5 [Fig. 1(b)] and 6B/B0=i [Fig. l(c)].

We note from Eqs. (38), (39), (48), (49), and Fig. 1 that the normalized

average beam radius k0Kb and maximum modulation amplitude k0ARb

increase from (koPb,kA-R-b)-(2.83,0) for tB/B 0 O,to (koRb,ko'Rb)-

(5.185, 0.333) for 6B/B 0=1.

We conclude this section by emphasizing that the theoretical model

developed here can be used to calculate the equilibrium properties

of a helically modulated solid electron beam propagating in an

equilibrium magnetic field prescribed by Eqs. (1) and (2) for a broad
2 2

range of system parameters wb , Wc "0 9 v0/c , 
6B/Bo' etc. The major

approximations relate to the assumptions that the transverse particle

motion is nonrelativistic [Eq. (12)] and that the axial motion is

far removed from cyclotron resonance [Eq. (14)].

i.
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B. Annular Electron Beam

As an example of a helically modulated annular electron beam,

we consider the case where f0 , has the form [Eq. (11)]

fO=n00m U[(C. m Cyb mv2)2 ]6(Ch-C0)6(C (50)

2

where CO--eBoRo/2c-const., and no, R0 , vo, and c are positive

constants. In Eq. (50), U(x) is the Heaviside step function defined

by U(x)=l for x > 0, and U(x)-O for x < 0. Evaluating Ch-CO and

C±-(ybmVO)2 at Czb and rearranging terms, we find

[.-]=(r+ 1 c -s in(- g)P[n-CO]Cz=ybmVb YI WO-c Bo s oZ)J p

(51)

~1 c 6B cos(8-k z)p'-F(r,6_k z)
ko W 0 -c B0  r 0

and

[ 2. = ,2 ,2 2_ m)2v2 (52)
[C±-(bmv0) =bmb PrP -Yb) v0

where

S,2 2 2 2

W c 5B(1; - -C-) c o

prPrbmb W c BO cos(O-koz) , (53)

r c 6B sin(0_k Z),
P0"Pe+ybmVb ti0-wc B

and F(r,0-k z) is defined by

(1 b c ko(r 2R)+r c j- sin(-koZ)F= bY^ W0 WO ;O-c O0

1 2 2, (54)

k0 0



20

It is convenient to introduce the quantities f and g defined by

fk O sin(e-koz)

(55)

1hr v a i gB cos(e-koZ).g= k0 wO-wc B0  o

Furthermore, evaluating C±-(ybmvO) 2 at Ch=COand Cz=¥bmVb, we find

from Eqs. (51), (52), and (55) that

zbb (56)
ChUCO2

2 F 2 2-((,fbmv;)2 2~bO (r+f) 2+g2

0where pr is defined by

2 2
W c ((r+f) +g -F/YbmVbko

rOYbmVbcos(8koz) WOc B0  (r+f) 2+g 2  (5"

As a simple example, we consider the limit of zero perpendicular

energy spread in Eq. (50). Making use of the identity

2 22 1 2 2 22 2.

6 (C±.-Ybm vo)=lim _L U[(Cl-ybm v O) - J , (58)

we find from Eqs. (50), (51), and (56) that the electron density

profile n(r,6,z)=j._dprtdpet4 _,dpz fb(C. ,Ch,Cz) can be expressed as

nO (r, e-kOZ)W n0ROYbmvO fdp;6 (p 2-) (59)
nb 0eozi 2 2 1/ 2 (59)r

[(r+f)2+g ]

where p"={1+[g/(r+f)]2 )1/2(p -pO), and * is defined byr r r

*(r, e-koz) (Ybmv) 2 F 2  
. (60)

Carrying out the p" integration in Eq. (59), the density profiler

can be expressed as
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n0R~v0

nb(re-koZ
)=  (v)2 [(r+f) 2+g2 ]-(F/ybm) 

2 1/2 
(61)

0, otherwise

In the subsequent analysis it is useful to introduce the effective

radial variable R defined by

' Wc 1B 2
R2 _ r+ _o - sin"O- O

rk0 w0- c 0 ek~

1 \ 2 [2l-s" (62)
+ - W ) [k 2in (-k oz)]

, 
0 (Z0

-  B0

and the constant quantities rLR, and Rb defined by

0
rL=w ' (63)

c

2 W 2
i2R21(1 " -',0 C 1 / 6B-(0 ) (W-W 2.2 B (6o) ,4),

c 0 c koR0  0

Rb I rL+ (R,+r2) 12(65)

+ -2 2 1/2 (5

-- rL+(R2+r 2) (66)

Making use of Eqs. (61)-(66), and the definition of *(r,e-k Z)

in Eq. (60). we find that the density profile in Eq. (61) can be

expressed in the equivalent form

noR0 2rL (vO/vo) +

0-+2 z) 2  2 -2 - 1/2 b R c b
D O )= [ R )(R -Rb )(67)

0 , otherwise

From Eqs. (61) and (67), note that the normalization of nb is such that

n-noconst. for r-Ro and 6B-0. In addition, note from Eq. (67) that

the beam density is singular at the inner (R-R) and outer (R-%+)
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boundaries of the electron beam. This is a consequence of the singular

form for the perpendicular energy distribution function assumed in

Eq. (58). For small but finite E, the beam density remains finite

and varies smoothly throughout the annulus. 9 We emphasize, however,

that the beam density profile in Eq. (i7) is integrable in the sense

that the number of electrons per unit axial length, NbX d6 dr r is

finite. In any case, the equilibrium example in Eq. (67) is adequate

for present pprposes of describing the helical modulation of the inner

and outer beam envelopes by the transverse wiggler field.

Making use of Eqs. (62), (65), (66), and (67), the outer boundary

(r-rb) and inner boundary (r=rb) of the annular electron beam are

determined from

r+ 1 __ _ BsnOkZrb'- k0 W0-Wc B0 sn(e-k0z) (68)

r (-2 +2 )/2 2 1 / c W 2 6B 221/

+ r R [r+R+r ) 2  -.c)2 T l-sin2 (e-k Z)]F'

and

- W c 6B

r b'O [o-s-wn B2 sin((-k) Z)

ko \O-Wc/ (69)

where rL-vm/wc and A is defined in Eq. (64). In the special limiting

case where 6B-0, it follows from Eqs. (63) and (64) that r o/W

9and R-RO , and Eqs. (68) and (69) reduce to the familiar results

(rb ?.2 2.1/2
(r6BO (R2+rL )  + r

L  (70)

and

(r;) -2 2 1/2b6B-O (R0+rL) rL (71)
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That is, for 6B-0, the average beam radius and beam thickness are
S+ - 2 2 1/2 R0 r R2

constant, with ' (rb+rb)/2=(R0+rL) R (for r << ), and
+ -AR r -rb =2rL.

For the choice of equilibrium distribution function in Eq. (50)

with c - 0+, Eqs. (68) and (69) give very precise predictions for the

inner and outer boundaries of the annular electron beam for 6B#O,

within the context of the assumptions enumerated in Sec. II.

In the remainder of this section, we make use of Eqs. (68) and (69)

to examine the helical modulation of the beam envelope in the general

case where 6B is non-zero, assuming in addition that the dimensionless

quantities

r2/R2 <, (72)
L

and

21 0 'B <J , (73)
kR 0

can be treated as small parameters. In Eq. (72), R is defined in

Eq. (64), and r= 2v;/wc, where v; is defined in Eq. (53). In the
2 2

regime of experimental interest k0R > 1. In this regard, we note that

the inequality in Eq. (73) is readily satisfied even for moderate

wiggler amplitudes with 16B/Bol Pd 1. This is true both for weak

axial fields (w << w0 ) and strong axial fields (wc >> w0). Taylor

expanding the expressions for r! in Eqs. (68) and (69), and retaining
b

terms to order (r2/R2 ) and (B/B) 2, we obtain the approximate

expressions

;+ R r+ EL-  1 Wc 6Bsn(kz)
r R + R - - sin(e-k Z)Ib. k 0. Ro O-Wc B 0 0

2  
(74)r L 1 'c 

6
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Evidently, from Eq. (74), the beam thickness ARb-r+-rb is given by

2v;
ARb= 2 rL 2w (75)

C

correct to order (rL/R)2 and (6B/B0)2. In Eq. (75), v is defined

in Eq. (53). Moreover, the average beam radius R-(r+rr)/2 is given

by

=, 11 i C~c 6Bsneko)
_ Oc B0' -sin

rLb k0  i w 0 (ic (76)

2+ ~~ -o R ' (- o0.)
2~ i2 k 2i2  B0)[-

0

correct to order (rL/R)2 and (6B/B 0 )2. We note from Eq. (76)

that the leading-order modulation of the average beam radius

is linear in 6B. Therefore, making use of Eq. (64), the expression

for Rb in Eq. (76) can be approximated by

=i - I  -- j- 6- I sin(e-koz) (77)
k0R 0-c 0

correct to lowest order in SB/B
0*

As a numerical example, in Fig. 2 we show a plot of the normalized
average beam radius kop (dashed curve) versus 8--koz obtained from

Eq. (77) for several values of 6B/B0 and the choice of equilibrium

parameters w e4wc, v0/c 0.04, k0R0-3/2, kOrL kovo/wcI/ 2 0, Yb= 3 and

2 2Vb/c -8/9. In this case

k OARbO .1 1+ 20 (B) (78)

and

ko bkO-- -3 sin(O-koz) , (79)
0'b' 3 B0

follow from Eqs. (53), (75), and (77). Here, k o-k 0 R0[l+(28/81)(6B/B0 )
2 ]1 /2

follows from Eq. (64). Equations (78) and (79) yield the results shown
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in Fig. 2 for SB/B 0 l/4 [Fig. 2(a)], 6B/B 0-O.5 (Fig. 2(b)) and 6B/Bo-1

[Fig. 2(c)]. From Eq. (79), we define the peak amplitude of the radial

modulation by kORb = I(1/3)(6B/B0 )I. We note from Fig. 2 and

Eqs. (78) and (79) that the normalized beam thickness k0ARb and

maximum modulation amplitude koTRb increase from (ko&Rb, koch)-

(0.10, 0) for 6B=0,to (koARb, kjR)=(0.19, 0.33) for 6B/Boi.

In concluding this section, we emphasize that the theoretical

model developed here can be used to calculate the equilibrium properties

of a helically modulated annular electron beam propagating in the

equilibrium magnetic field B for a broad

2 2
range of system parameters wcl 01, Vo/C , 6B/Bo, k0oR0, etc. As in

Sec. II.A, the major approximations relate to the assumptions that

the transverse electron motion is nonrelativistic [Eq. (12)] and that

the axial motion is far removed from cyclotron resonance [Eq. (14)].

'4 ..
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IV. CONCLUSIONS

In this paper we have developed a self-consistent Vlasov descrip-

tion of helically distorted relativistic electron beam equilibria

for free electron laser applications. In particular, we have considered

radially confined equilibria for a helically distorted relativistic

electron beam propagating in the combined transverse wiggler and uniform

axial guide fields described by Eqs. (1) and (2). Assuming that the

beam density and current are sufficiently small that equilibrium self

fields can be neglected iv comparison with B0 z+6k, it is found that

there are three useful and exact':nvarlants (C,,ChCz) associated with

single-particle motion in the equilibrium field configuration. These

invariants are used to construct radially confined Vlasov equilibria

f0(CCh,Cz) for an intense relativistic electron beam propagating

primarily in the z-direction. Specific examples of solid [Eq. (20)]

and hollow [E:. (50)1 beam equilibria are analyzed in Sec. III, and it

is shown that the transverse wiggler field can have a large modulational

influence on the beam envelope, depending on the size of 6B/B O. We

believe that the present equilibrium investigations form an important

first step in formulating a self-consistent Vlasov description of

the free electron laser instability that both includes the

effects of finite radial geometry and correctly incorporates the non-

linear influence of the transverse wiggler field on'the beam equilibrium.
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FIGURE CAPTIONS

Fig. 1 Plot of koR b [Eq. (30)] versus 6-k0 for w0-4mc, U-=0.1 we'

v2/c 20.04, b=3, b/C2.8/9 and (a) 6B/Bo-1/4, (b) 6B/B0=1/2,

and (c) 6B/B0=1.

Fig. 2 Plot of k0% [Eq. (77)] versus O-koz for w 0
4w , v 0/c 20.04,

Yb= 3 , V~bC2'8/9, koR0-3/2, k0rO1/20, and (a) 6B/Bo-1/4,

(b) 6B/Bo!-1/2, and (c) 6B/Bo-1.

II



29

APPENDIX A

SINGLE-PARTICLE CONSTANTS OF THE MOTION

In this appendix, we consider the motion of an individual electron

in the applied magnetic field

0

=B~k2 -6Bcos (8-k 0z)kr+6Bsin(e-k 0z)k

where B 0 const. is the uniform axial field, Q76ts k0ztr6snOkzk

is the transverse helical wiggler field expressed in cylindrical

polar coordinates, tB-const. is the wiggler amplitude, arnd X0-2w/ko is

the wavelength. Making use of Y,_(l4R,2 /m2c2 1/2_os. the equations

of motion for the particle orbits r'(t'), 0'(t') and z'(t') can be

I expressed as

[ (A.1)
e6B dz'

dtdt

-~' 2+ 6 c(')r oz' (A.2)

dt' 2  c t t c t c(8-kr

Conservation of energy (y'-const.) of course implies that

,2 ,2+f2 (.4
0:' -pconst.,(A4

where pl-Y 'mdr'/dt', p '.mY mr'do'/dt' and p;umy'mdz'Idt'. Moreover,



30

multiplying Eq. (A.2) by r' and making use of Eq. (A.3) given

d ~ (r e6-0B r'cos d6-k z'-L

(A. 5)d eBrsnOC e) Y l-
4f ck0  0 k0  dt' 2

Integrating Eq. (A.5) with respect to t' gives the helical invariant

P+- + eB r'sin(e'-k~z')-const.. (A.6)
8ko cko

where pz-y'mdz'Idt', and P;r'p;eBr'/2c) is the canonical angular

momentum associated with the applied axial field B 0. Subtracting

YbmVb/kO const. from Eq. (A. 6), where Ybmc 2is the characteristic

directed bean energy and Vb is the characteristic mean axial velocity

of the beam electrons, gives

ChumP;+ lk- (Pl-ybmVb)+ -- r'sin(e'-k~z')-const. * (A. 7)
0 ck0

which is the form of the helical invariant used in Secs. II and III

[Eq. (5)].4 To determine the axial invariant associated with Eqs. (A.l)-

(A.3), we consider the quantity 12 defined by

I~k z c. 0 ckr
(A.8)

-p'Osin(01-k z')I

where p'-y'mdz'Idt', p',-y'mdr'/dt' and p;-Y far' dO'Idt'.

Differentiating Eq. (A.8) with respect to t' and making use

of Eq. (A.3) gives
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d3 do etL'sin(O dr')  '-kok'

+co('-ko')r' dj + cos(e'-koz')

(A.9)
d d8' dz'

-Pr sin(e-k 0z')pd
- sin(e'-kO z') (7-r -ko -r)

-pe ~ ~ ~ d ca 8- tr-o-t

Substituting Eqs. (A.1) and (A.2) into Eq. (A.9) and combining terms

gives
dI 0 (A.10)

which implies that I -const. is an exact single-particle invariant.
2

Adding (eBo/ck)2 to Eq. (A.8) implies that

/ 0) ck0

I C- I -2conat.cK/,(. )

which is the form of the exact axial invariant used in Secs. II and

III [Eq. (6)]. For 6B - 0, we note from Eq. (A.11) that C reduces

to the axial momentum pz.

Finally, subtracting Iz+2(eB0 /ck O)YbnVb=conSt., from Eq. (A. 4)

gives

C"Pr2+P;)2+  (Pz'-YeVb)

(A. 12)

2eL p 6Bcos(O,_koz,)+.- pO63sin(e,-koz)-const.,

cko r 0 k

which is the form of the exact perpendicular invariant used in Seca. I1

and III [Eq. (4)].
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