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1. INTRODUCTION

In various signal processing problems, signals arise

which contain pulses or events that must be located or

detected. Problems of this type include RADAR and SONAR

rangefinding, speech pitch detection and seismic data

analysis. All of these fields share the need for a signal

processing technique which can compress events occuring in the

raw data into shorter events in the processed data. This type

of processing can reduce the overlap between successive events

leading to improved detectability and by increasing the

impulsiveness of each event make locating the events easier.

Such a signal processing procedure, which reduces the duration

of events in an input sequence without changing their relative

separations, is an event compression algorithm. Examples

include homomorphic deconvolution, matched filtering, linear

predictive deconvolution.

Let us illustrate the application of event

compression. Consider the problem of finding the range of

multiple targets with RADAR or SONAR. To reduce peak power

requirements in transmission, the source pulses are dispersed

in time. In addition, the reflection functions of the targets

may cause the returns to be spread out even more. Therefore

the events in the received signal must be compressed if the

targets are to be located accurately.
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Surface seismograms are created by generating a

disturbance at the surface of the earth, either with a

mechanical vibrator or with an explosion, and recording the

subsequent seismic vibrations with an array of geophones also

located at the surface. As waves propagate into the earth,

they are partially reflected at boundaries between differing

layers and ideally the recordings made at the surface can be

used to locate the depths of these boundaries and their

reflectivities. As in the RADAR situation, the duration of

the source pulse and the extension of that duration by the

individual reflection functions leads to the need for event

compression of the data.

One approach to vocal pitch estimation is to measure

the time between successive glottal pulses. However, since

these pulses are filtered by the vocal tract impulse response

before emanating from the lips, the speech waveform does not

offer well defined points at each cycle from which to measure

the period to the next cycle. It is therefore necessary to

compress the pulses of the speech waveform without changing

their positions for this scheme to be effective.

Another example is the problem of sonic well logging

which motivated this thesis. The procedure for generating a

sonic well log is to lower a tool, shown schematically in

figure 1.1, down an oil well and then raise it at a fixed rate
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*1back to the top of the well. During its ascent the ultrasonic

transmitter located at the bottom of the tool is pulsed

(roughly once for every foot of well depth) and the pressure

waveform at the receiver in the top of the tool is recorded

for later analysis.

In a very simplified model of the physics of this

*problem, there are three paths for the ultrasonic energy to

* take in getting from the transmitter to the receiver, each of

which has a characteristic velocity. The slowest path is that

of a pressure wave traveling up the mud with which the well is

packed (to prevent collapse); the medium velocity path is that

* of a shear wave coupled to the rock wall, and the fastest path

is for the compression wave traveling up the rock wall. The

quantities of interest to geologists are the velocities of the

shear wave and compression wave, which couldi be determined by

knowing their times of arrival. To ascertain the arrival

times of these waves it is necessary to compress the

individual events in the source data since the overlap between

them is considerable.

1.1 Previous Work

Approaching the problem of event compression typically

entails modeling the physical situation in an appropriate

fashion and then designing an algorithm which is expected to

solve the problem for data which fits that model. Subsequent

AM '~
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investigation of the performance of the algorithm in a

realistic environment may then lead to alterations in the

model, the algorithm or both.

For example, (Young,1965] analyzes the problem of

detecting events in the context of RADAR. His data model is

that events are separated by some minimum distance and that

they are each some unknown linear combination of a set of

known exponentials (the set is determined by the source

waveform). In addition, he requires knowledge of the data's

noise statistics. From these assumptions he derives a

likelihood ratio for the beginning of an event at each point

in his data (this being the event compressed signal).

Unfortunately, in some situations (in particular sonic well

logging) either the noise statistics are not known, detailed

information about the events is not available or the number of

available exponentials from which they could be composed is

large making this formulation inappropriate.

A common approach to the problem of compressing

seismic data is made by assuming the data was generated by

convolving a fixed source wavelet with an impulsive seismic

reflector series. By acquiring an accurate estimate of the

source wavelet it would be possible to deconvolve and recover

the reflector series (or something close to it).

[Ulrych,19711 and [Tribolet,1977] have used Homomorphic
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techniques to estimate the wavelet and reflector series and

(Peacock,1969] used linear prediction to estimate the wavelet.

Similar work has also been done on the speech pitch estimation

problem [Markel,1972] by assuming that the speech signal is

the convolution of a vocal tract response and a glottal

excitation impulse series. The nature of these methods is

that a single deconvolution operator is applied to the data in

order to recover an impulsive or nearly impulsive sequence.

As such these techniques will only be effective if the events

in the data have similar spectra.

In this thesis we apply a recursive least square (RLS)

adaptive linear prediction algorithm to event compression,

using synthetic data from a data model based on an abstraction

of the sonic well logging problem. Because the events in this

data have independent spectra, event compression by linear

time invariant filtering would not be effective (the inverse

filter for each arrival would have to be different). By using

an adaptive algorithm we perform time varying event

compression on the input data sequence.

To implement event compression we derive two signals

from the RLS algorithm, one is the post-adaption prediction

error at each point and the other is a measure of the changes

in the prediction coefficients as the data is processed. The

two signals are compared experimentally using synthetic data
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corrupted with white gaussian noise. To illustrate the impact

of other processing on event compression, some experiments

include prefiltering the data, decimation of the data and

postfiltering the error signal.

The next chapter is an analytical presentation of the

equations and issues involved in linear prediction. It starts

with a discussion of linear prediction and describes the

covariance method of linear prediction (Makhoul,1975]. The

following section presents a derivation of the Recursive Least

Squares algorithm (from the covariance method equations) and

the last section of the chapter examines the problem of proper

initialization of the recursion. The third chapter offers an

experimental comparison of the two event compression signals

mentioned above, and the thesis concludes with a discussion of

the important results of these experiments and some

suggestions for future work on this problem.

I°
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2. LINEAR PREDICTION

Linear prediction attempts to answer the following

question: Given a sequence of data, what is the best set of p

coefficients for predicting the value of each sample of the

sequence with a linear combination of previous samples?1 This

formulation is presented in equation (2.1)

p

~ csk~n(2.1)
n=1

where {s ) is the data sequence, {a}are the predictions and

*the c are the coefficients of the predictor. The criterion

for determining which coefficients are best is the total

squared prediction error over the chosen error region.

Specifically

2E= ( -k k Q (2.2)
k

and the coefficients are chosen to minimize the total squared

error E.

1. In the general case one could use an arbitrarily chosen
set of previous samples, but this discussion assumes that they
are the p contiguously previous samples to the one to be
predicted.
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The choice of the error reg ion Q is what

differentiates between the two most common methods of linear

prediction. If Q extends from _ to + (the data sequence is

padded with zeroes or extrapolated in some other way) the

resulting set of equations describe the Autocorrelation Method

of linear prediction. In this case solving for the ck

involves inverting a Toeplitz matrix of autocorrelations and

is usually done by some variation of Levinson's Inversion (see

for example (Makhoul,1975)).

The other common method in use is the covarlance

method of linear prediction. As described in the next

section, it requires that only the available data sequence be

used to generate the predictor. Therefore the limits of Q are

set by requiring that all the sk mentioned in eqs. (2.1) and

(2.2) lie in that finite set of available signal points.

2.1 The Covariance Method

The equations defining the Covariance method are:

p
-nskn(2.3)

n= 1
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k
e

E- (s ~k.4k )2 minimum (2.4)
k-k 5

Here, p is the number of predictions coefficients and k5 and

kare the endpoints of the prediction region Q.By defining

the following structures

S (2.5)

s . .
-1 5k-pe e

PS

k s

* (2.6)

Sc

ke
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ci

A (2.7)

cp

the covariance method can be formulated as the following

matrix projection problem.

S c a s (2.8)

Where the desired solution is that coefficient vector c which

minimizes the distance between Sc and s. The solution is any

vector c which solves the normal equations

s T S C S T s. (2.9)

If the matrix S S is invertible then the solution is unique.

c = (STS)-I sTs (2.10)

If there is no unique solution to eq. (2.9) (S TS is singular)

then some restriction must be placed on c to make the answer

unique (e.g. the order of the predictor p could be lowered
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reducing the number of unknowns).

The covariance method generates a single predictor

with the minimum possible total squared error over the finite

prediction region Q. The RLS method is a means for

calculating a sequence of covariance method predictors over

successively longer prediction regions {Q. It offers a

computational savings compared to directly calculating the

covariance method predictor for each Q The derivation of

this algorithm is presented in the next section.

2.2 Recursive Least Squares

The RLS algorithm finds a sequence of optimal

predictors {c[k 0 ]) for an input signal by minimizing the total

squared error from a fixed starting sample sk up to Sko. For
s 0

a signal {sk } and a p coefficient predictor c, the error

sequence produced by the koth predictor is given by

p
ektko]=sk-  E Skncnko] k € Q (2.11)

n=

and the quantity to be minimized is
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k 0

E(ko] = ek (2.12)
k=kk

Fs
This calculation could be performed by inverting a

matrix for each desired predictor (see eq. 2.10). Instead,

RLS does an iterative calculation which uses the previous

predictor c[k0 -l] together with a state matrix and the new

data point s to calculate the new predictor c(k 0] and the

new state matrix. The advantage of this method for

calculating successive predictors, over using the covariance

method directly on each new prediction region, is that this

calculation only requires O(p ) operations per predictor.

Whereas the covariance method would need O(p 3 ) operations per

predictor for each matrix inversion.

The derivation of the iteration can be shown in matrix

form as follows. Let the signal be formed into a vector and a

matrix as before,

[! S

S(k 0 ] . .[k 0 l . (2.13)

s k 0-1 Sk0-P ik0 "

0_
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Then the error vector is

eks(k 0
S

e[k0 ] = . , sk 0 ]-S[kolc[k 0 ]  (2.14)

ek Ik0 ]
0

with

'c ]k I

1 k0

c[k - . (2.15)

0
,Cp(k 0 ]

In this notation, the total error is

E[k 0 ] A eT [k0 ]e[k 0 ] (2.16)

and the optimal choice for c[k 0 ] is

c[k0 ] , (ST k0]Sk0])-lST(k 0 (s[k01 2.17)

(k 0 ]S(k 0 ]s~ti
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The derivation of the RLS iteration from eq. (2.17) is

performed by substituting k0+l for k0 and using information

available at the k0th point to evaluate c[k 0+l] in an

efficient manner. The new terms in the equation after the

substitution are

s(k0 +1] ={ - (2.18)

and

S[k o ]

S[k0 +l] = (2.19)

Sk 0 . .".k 0- p+l

and

C +] T + 1

c[k0 +l] = {sT(k 0 +1] S[k0 +1]} S [k 0 +1]s[k0 +1] (2.20)

By introducing

F .
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Sk

Ak

r (2.21)

k0 -p+1

one can substitute for terms in eqs. (2.20) using eq. (2.18)

and (2.19) to get

c[k0 +l=(sTk 0lSCk 0 l+rr T (ST (k 0 lsk 0 ] +rsk +1) (2.22)

At this point introduce the following matrix identity:

For any symmetric invertible matrix V and any

vector r with the same size as a column of V,

(V- +) = V -. (2.23)l~Tr

Now let

V- I sTik 0 ]S[k 0 ] (2.24)

and
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C1 c~k 0+1] (2. 25a)

V V(k +1]=(S T [kI~ rT) (2.25b)

5o s 0+1 (2. 25c)

By leaving out the indices from eq. (2.22) one can write

C= (V - VrrTV ) (ST s+rs') .(2.26)

1+r y r

Rearranging terms and combining with eq. (2.17) leads to an

expression which describes how to update the predictor.

C,= C + 'r (sl-~r C) (2. 27)
l+r TYr

The other RLS equation is derived by combining eqs. (2.23),

(2.24) and (2.25b) and it shows how to update the state matrix

V.

T
V = V - r (2.28)

Tl+r Yr
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The full RLS iteration procedes as follows:

Starting with V and c from the previous iteration and the

vector of previous signal points

Sk0

r (2.29)

Sk o -p+l

use the new signal point to calculate the new predictor

C = c + Vr (s-rTc) . (2.30)

l+r yr

Finally, calculate the new state matrix

V' = V - VrrT V (2.31)
l+rT Vr
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2.2.1 Initialization of RLS

The RLS algorithm offers a means to efficiently extend

the error region of a covariance method predictor by one

point. Thus, given an initial set of prediction coefficients

C0 and an initial state matrix V 0 , one can recursively

calculate the coefficients of the predictors of all possible

error region extents up to the end of the data. However,

calculating the initial covariance predictor normally involves

a matrix inversion which can be computationally costly. In

addition, to perform both an initial matrix inversion for a

small data interval and then execute the RLS iteration for the

remaining data would involve a large amount of program code,

since those two tasks involve fundamentally different

calculations. It was desirable to find an alternative means

for initializing the RLS algorithm which did not involve an

initial covariance predictor calculation. Examining a first

order case suggests a solution.

For a first order (single coefficient) predictor, the

main variables have the following form:

c[k 0] = c 1 Ik 0 ] (2.32a)
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-k1

S~k]=. (2. 32b)

0S

k-1

S0

S

s1k0 . (2.32c)

0S

I0

and the predictor which solves the cvrac ehdeuto

(eq. 2.22) is given by

k-i1
0

0I S S ~
k=k -

ando (231 are33
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C, c + yr {s'-rc} (2. 34a)
1+r 2v

or2

C9+ rss
c' V (2. 34b)

22

=I V -v r (2. 35a)

or

ve 2 (2. 35b)

V

where

r s k(2. 36)

and

k0-
V- ST [k] S [k] s 2 (2.37)

0 0 ~ - k
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Suppose one started the iteration of equations (2.34)

and (2.35) at the first point in the error region (i.e.

k0 +l=ks). By assigning the initial values v=vinit C=Cinit we

have

V k i (2.38)k0-

1__ + s 2
vinit k=k s-1

Clearly, for this iteration to conform to the

requirement of eq. (2.37), vinit=. Given that result, the

successive values of c are

k o-
it+ Z 5 k~k+l

vinit k-k -1 (2.39)
C[ko= s (2.39)

0  k0 _ -

+ s 2
Vinit k-k -l

s

Therefore, given vinit=, the subsequent values of c solve eq.

(2.33) making them identical to the equivalent covariance

method predictors (irrespective of the initial value of c).

This behavior is shown experimentally in figure (2.1). The

data comes from exciting a 1-pole linear system with an

impulse at n-10. The system function and time response were
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ii H (z) =
1.98

z

s[n] = U 1 (n-10] (. 9 8 ) n - 1 0

The covariance method in the absence of noise should

predict this signal exactly when given more than one point of

its impulse response in the chosen error region. As can be

seen from the figure, RLS also predicts the response for every

point after the first. This method of initialization is an

effective means for matching the RLS predictors to tnose

generated by the covariance method.

2.2.2 Higher Order Initialization

When a multicoefficient predictor is used, the

mathematical approach used in the previous section to find

Vinit and cinit is not fruitful since the vector matrix

products do not commute and cancel in the fashion of eqs.

(2.34) and (2.35). One reason for the difficulty of choosing

the initial values of c and V in this circumstance is that the

covariance predictor for which we aim is not uniquely

specified until the error region is at least p points in

length; and even then only if the data sequence requires at

OWN..M
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least a p pole model to describe it. Consider the covariance

matrix definition

R ST S (2.40)

The iteration for R is

R[k+l] = R~k] + r[k] r T[k] kk s-1 (2.41)

R~k -1] = 0 (2.42)
S

therefore,

ko -l1

R[k 0 ] = L rr T  k0>k (2.43)k=k -1
s

Now consider the iteration for V along with Vinit=Ia as an

approximation for R. If R=V then given equation (2.25b)

TR[ksl - I + r(k s-1] r (ks-l] (2.44)

and in general
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R(k0 ] = 1 I+kk r[k]rT (k] (2.45)0k=ks-
1

Therefore setting a=- will make R=R aitd as in the first order

case the RLS predictor will correspond to the covariance

method predictor.

In the first order case the initial c was irrelevent.

Ultimately, the same is true in the multidimensional case as

well since c solves

R c = ST s (2.46)

and once R is invertible, the value for c is fully determined.

However, for the first few points of the iteration, R is

singular and the trajectory followed by c depends on the data

values and the value ofc init. As an example, figures 2.2 and

2.3 show a 4-pole impulse response beginning at sample 20

which was processed by a 4-coefficient predictor with the

initialization
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= i1010 1

0

0
C init

0

0

The predictor used in figure 2.2 is started at ks=10; the one

in figure 2.3 is started at ks=30 (thus these examples use

different initial data values) . As can be seen, both

predictors reach the same value after 4 steps into the

non-zero data, but their trajectories differ. To illustrate

the dependence of trajectory on Cinit, figure 2.4 presents a

4-coefficient predictor started with

Vii 10 10 1

Cinit= I0
V init =I

0

. .

ii
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k s = 10

Again the same predictor value is reached after 4 steps into

the data, but the trajectory differs from the previous cases.

J
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2.2.3 Numerical Considerations

The initialization derived in the last section offers

potential numerical problems. The first few iterations of

these equations have great potential for numerical error since

the associated R matrix is clearly singular. In our initial

work we discovered a threshold of about 10 10 for the value of

a in eq. (2.44) above which the iteration would not cause any

change in the coefficients as the data was processed. Since it

is necessary to choose 1/aL so that the smallest non-zero

eigenvalue of R is large in comparison, it is undesirable to

require that the value for a be much. smaller than 1010

Fortunately, by using double precision arithmetic we were able

to succesfully use values exceeding 10 20 for initialization.

Subsequent comparisons of the direct covariance method

calculation with the RLS algorithm initialized at

V init 10 10I

in it 0

showed coefficient differences well under one part in 10- for

data lengths up to 1024. That accuracy was deemed sufficient

for this work, but for a more critical application it would be
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wise to determine specifically how the roundoff error of the

computer affects the initialization of the algorithm.

2.3 Discussion

This chapter has presented the basic mathematics

behind the RLS algorithm including some simple examples of its

behavior. For more information on the topic of linear

prediction the reader is invited to examine [Makhoul,1975] and

the references he cites. More information about RLS in

particular can be found in [Eykoff,19741 and more recent

ladder forms of recursive linear prediction are illustrated in

(Satorious, 19791.
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3. EVENT COMPRESSION WITH RLS

The previous chapter described the RLS method of

linear prediction and how it can be initialized and used to

generate a series of predictors from an input data sequence.

This chapter examines how RLS can be used to compress events.

We begin by proposing a model for multiple event signals which

is a very simple abstraction of the sonic well log situation

described in the introduction. We then describe two event

compressed signals which can be extracted from the RLS

iteration and finally experiments are performed to illustrate

the performance of these signals.

The concept behind using an adaptive prediction

algorithm like RLS for event compression is the following.

Consider the series of predictors created by the RLS algorithm

as a single time-varying predictor which minimizes the total

prediction error energy over an expanding region. When

processing an input sequence containing distinct events, one

expects the predictor to make errors at the beginning of each

event since the beginning of the event will not be predictable

by the algorithm. This error burst will be accompanied by a

change in the predictor coefficients as the algorithm adapts

to predict the event. Hopefully, after the first few points

of the event have passed, the error pulse will die away and

the predictor will stop changing. If that is the case, then
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the prediction error and the coefficient changes would both

respond to the events in a way that could be used to perform

event compression of the input data.

3.1 The Data Model

This thesis was motivated by the problem of sonic well

logging which was presented in the introduction. The signals

present in a real well log are very complex do to the geometry

of the well. Rather than attempting to accurately model the

well log data (a complicated task in itself) we chose to

fabricate synthetic data which had the appearence of a well

log and exhibited what we felt was an important feature of

well logs; namely that the signal contain multiple bursts with

independent spectra. The data model for the signals used in

this study is shown in figure 3.1. A single impulse is fed to

each of three delays DI-D 3 . Their outputs drive the

discrete-time all-pole systems H1-H3 generating three delayed

pulses which are added to produce the signal s[k]. We chose a

three pulse model because the problem of seismic well logging

can be considered a three pulse problem.

To make it possible to compare the various figures

presented later, a small set of representative signals was

chosen from the data model given above to perform the

experiments. Most use either a signal labeled Burstl or some
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combination of its component pulses Burstla, Burstlb or

Burstic. The parameters used to generate Burstl were:

Burst la:
G

D = 50 points H= -
1-3.73z- 1+5.4z-2 3.58z-3+.92z

-4

Burstlb:

G2
D2 = 150 points H- 2

2 1-3.89z -1+5.74z- 2-3.81z- 3 +.96z -4

Burstlc:

G3D3 =250 points H3- 12
1-1.92z -+.98z 2

where the gains were chosen to give the component arrivals

peak powers of 1, .5, and .2 respectively. Figures 3.2

through 3.5 show the time response and log magnitude spectra

for these signals.

The first two bursts have 2 superimposed pairs of

complex poles as indicated by their gradual build up in

amplitude. Whereas the third burst is due to a single pair of

1. The graphs in these figures and in most of those
following have been linearly interpolated.

Mot.%. .,
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complex poles giving it a much sharper onset. These choices

were made to give the data the appearance of a sonic well log.

In particular, the slow growth of the second burst is a common

feature of well logs and makes finding it either by event

compression or by eye a difficult task.

7.

i
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3.2 Event Compression Signals

There are three signals available from the RLS

iteration which we examined for potential use in event

compression. These are the predictor coefficient vector c,

the prediction error at the new point before the update eb,

and the prediction error at the new point after the update e

In terms of the equations for the update given in the last

chapter (eqs. 2.30 and 2.31) these error sequences are defined

as

T

eb[ko+l] = s[k 0 +l] - r c (3.1)

and

ea[k0 +l] = s[k0 +l ] - rTc (3.2)

Of the two error signals we chose only to work with the post

update prediction error ea  because it contained more

compressed events as illustrated in figures 3.6 and 3.7. The

data sequence for these figures was a single pole burst and as

expected both error signals have pulses at the first point of

the burst (the first point of the burst can not be predicted

with RLS since the previous points are all zero). However,

though the second point of the burst is predictable from the

first, only ea is zero for that point since eb is calculated

a~
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before updating the predictor. This effect leads to longer

error bursts in eb at events in the data and led to our choice

to use ea for our work. All further references to the RLS

error or the prediction error in this thesis are to e a unless

otherwise noted.

One final point should be noted about this error

signal, particularly when compared to the error sequence

generated by the covariance method on data of this type. The

covariance method error sequence comes from applying a single

predictor to the entire signal, whereas the RLS error comes

from applying a different predictor to each point in the

signal. Because the RLS predictor need only minimize the error

energy to the left of the predicted point and not over the

entire sequence (as is the case with the covariance method),

the RLS error sequence will almost always have lower total

energy than the error sequence of the covariance method for

the same predictor order. As a matter of observation, we have

found that this reduction in energy takes the form of shorter

error bursts at the events in the data; though as yet we have

not proven that this must be the case.

In addition to the prediction error signal, we

examined the changes in the predictor coefficients as a means

of generating an event compressed signal. This idea stemmed

from observing how rapidly the prediction coefficients settled
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after a new event occurred.

Figure 3.8 demonstrates the behavior of a 12

coefficient RLS predictor on the signal Burstl defined in the

last section (some of the coefficients are omitted due to the

lack of space). The first event (burst) at point 50 causes a

single non-zero error point and a rapid change in the

predictor. This behavior is expected since the signal as of

the first event is all-pole. The second event (point 150)

causes very little error or coefficient change (presumably

because of the similarity between the first and second

bursts). But note the activity at the third event (point

250). Both the error and the coefficients settle in a short

time compared to the burst, despite the fact that the signal

is no longer all-pole. The rapid settling time of the

coefficients led us to formulate a signal based on them which

could be used for event compression.

A coefficient change signal was generated by low pass

filtering each c i k ] with a single pole low pass filter to

produce the vector e[k] and measuring the distance

Jlc~k]-[k]t. Small random variations in c[k] about a fixed

value are reflected in the coefficient change signal as noise,

with each sample having a height equal to the radial distance

from the average predictor C(k] to the instantaneous predictor

c[k]. However, when c[k] jumps to a new value due to an event

i t
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in the data, the coefficient change signal will contain an

exponentially decaying pulse whose initial height is equal to

the distance between the old and new values of c[k] and whose

decay time is set by the low pass filters used to generate e.

In effect the motion of the predictor is being high-passed

filtered to create the coefficient change signal. One

drawback of this scheme is that slow changes in the predictor

will be reduced in amplitude due to the high-passed nature of

the coefficient change signal.

The RLS error and the coefficient change signal were

use to perform the event compression in all remaining figures.

Figure 3.9 shows how they behave on the signal burstl. In

this case the 50% decay time of the filters used to generate

the change signal was 4 points. We empirically found p/3

(where p is the order of the predictor) to be an effective

choice for this parameter. Much shorter decay times led to

multiple peaks in the change signal at each event and longer

times reduced the resolvability of closely spaced events.

3.3 EXPERIMENTAL RESULTS

The last section presented the behavior of the RLS

error and coefficient change signals on noiseless data

containing all-pole events. In practice noiseless data is

rarely available and it is quite possible that preprocessing
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(e.g. filtering) could have added zeroes to the events in the

data if they were not already present. The following

experiments are intended to give the reader some insight as to

what to expect from these event compression signals when the

input data is not ideal.

3.3.1 Additive Noise

The example of event location given in the last

section used noiseless data. Figure 3.10 shows what happens to

that example when white gaussian noise is added to the input

sequence Burstl (the standard deviation of this noise is

0=.001 giving the first burst a S/N of 60db). Two important

features appear in this figure: the pulse in the coefficient

change signal where the algorithm is started (point 0), and

the substantial difference between the coefficient response to

the second burst (point 150) and the first (point 50). Both

the starting transient (in the coefficients) and the large

coefficient response to the first event are implied by the

structure of the RLS update equations.

Recall that the algorithm is trying to adjust c to get

the least square error E in the equation

E Ilell = I Is-Scll 2 (3.3)

o .. .-... --- -- -- -- - -



LER .312 /DIVBURSTI SIGMR=.001

VER ~~v ' v.54E0 /OIV vL ~R(2CE

OAc 50.0 PTS/DIV

E 21 /DVRLS COEFFICIENT CHANGE -

Figure 3.10



-58-

Each new point adds a row to the matrix S and new points to

the vectors s and e giving

e = = { c' (3.4)

and the new predictor c' minimizes E'=11eI1 2 +e'2 . By

separating the components of the new error E' into the

contribution from previous points Ep and the contribution from

the current point E and by introducing the vector d to

represent the change in the predictor coefficients (i.e.

d=c'-c) one has the following relations:

2 2E = Hell + uISd1 (3.5)

= E + d TRd

S = I1sl-rTc' 11 2 (3.6)

The term dTRd represents the error "cost" of changing the

predictor in terms of poorer prediction of previous points. At

each new point the algorithm trades off that cost with the

benefits of improved prediction of the current point
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(reduction in Ec) that a change might permit. Therefore, if
4c

the cost of changing the predictor is low (e.g. the

eigenvalues of R are small) , the predictor will be very

responsive to the data and the values of E (and consequently

the RLS error) will be small. This is the cause of both the

starting transient in the coefficient change signal and the

sensitivity of the coefficients to the first event.

To illustrate the impact that the starting transient

has on the event compressed signals a series of 9 figures

(3.11a through 3.13c) was prepared using the Burstl signal

offset to the right 300 points. Each group of three has

additive noise at a different level (i.e. a=.001 , .01 and .1)

and within each group the RLS algorithm was started at three

different points ( point 0, point 200 and point 300).

The starting position of the iteration has a small but

noticeable effect on the compressed events. For the RLS error,

the sooner the arrival occurs after the starting point of the

iteration, the smaller the event will be. Exactly the

opposite is true for the coefficient change signal. Equation

(3.5) indicates that the longer the interval between the start

of the iteration and a given arrival the more linear equations

the predictor has to fit and the less it can afford to adjust

itself too the new points. Since the data values generating

these additional equations are noise, tne equations are

m''i
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j independent and each one puts more of a constraint on the

predictor c (That would not be true if the data were all zero

or came from a noiseless all pole arrival). In effect, the

added points desensitize the predictor leading to less

predictor change and, consequently, more prediction error.

Fortunately, this effect is grtrdual and does not appear to

change the character of the compressed events. Therefore, the

exact starting point of the iteration is not crucial as long

as the starting transient itself does not obscure the first

arrival.

In certain situations the existence of this starting

transient may be a problem due to the lack of "eventless" data

at the start of some signals. In that case, some means of

initializing the RLS iteration to reduce or eliminate the

starting transient would have to be found.
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To eliminate the starting transient from all the

following event location examples, the predictor was started

500 points to the left of the visible data and consequently

the starting transients do not appear. .This has no effect

other than slightly changing the sizes of the events in the

compressed signals.

The noise itself has little effect on the coefficient

change signal at a level of -60db (figs. 3.11), but at -40db

(figs. 3.12) the size of the third event in the change signal

is severely reduced and at -20db (figs. 3.13) only the first

event is visible (note the change in scale factor over those

three examples). As was noted previously, increasing the noise

level in the region before an event reduces the sensitivity of

the coefficients to that event leading to a smaller

coefficient change.

The RLS error degrades in a different fashion; the

most prominent feature being the apparently magnified noise in

the RLS error signal. If one views the problem from a

filtering standpoint the equation

S C e(3.7)

{s~s}7+ 7*
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must be solved to minimize e 12 or, equivalently, make e

orthogonal to the rows of

{fS} (3.8)

In the frequency domain this corresponds to whitening or

flattening the spectrum. Examination of the spectrum of the

signal Burstl (in section 3.1) indicates that the flattening

will consist largely of raising the high frequency portion of

the spectrum. This high boost leads to the noise in the RLS

error signal.

The other apparent effect on the RLS error signal of

increasing the noise is the increased size of the compressed

events. Here again, because increasing the noise reduces the

sensitivity of the predictor (thereby lessening the extent to

which it adapts to new points); the error that the predictor

makes at each new point is larger. Unfortunately, in practice,

this magnification of the events in the RLS error fails to

keep pace with the noise as the noise is increased. Therefore,

this effect does not appear to be a useful means for enhancing

the events in the RLS error.

The preceding figures in this section were created

LL
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using a pseudo random noise generator which produced exactly

the same noise pattern on every graph. Since there may be some

question about whether the exact noise pattern has a

substantial impact on the appearance of the events in the

compressed signals, the last three figures (figs. 3.14a-c)

show a fixed noise pattern with the Burstl signal shifted to

three different positions. These figures illustrate that the

precise noise pattern has little impact on the characteristics

of the events in the location signals.

I _ _ _ _ _ _ _ _ _ .-- - - - - . - - ..- *-,i
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3.3.1.1 Effects of Predictor Length

Figures 3.15a through 3.17c show four, eight and twelve pole

predictors acting on the Burstl signal at various noise

levels. There are two characteristics of event location with

RLS visible in this series of figures: first, increasing the

noise lengthens the time for the predictor to settle; second,

increasing the predictor length (up to a point) decreases the

predictor settling time.

The signal covariance matrix R (see eq. 3.5) scales in

proportion to the noise level. Thus the error energy cost of

modifying the predictor at a new point d TRd increases with the

noise level. On the other hand the reduction in error energy

at the current point (Ec from better prediction of the event

is independent of the noise level. Therefore, the predictor

adapts less to the events in the data as the noise increases

and consequently the compressed events in the RLS error and

coefficient change signals have longer duration as the noise

level increases.

The reason that the predictor settles faster when 8 or

12 coefficients are used rather than 4 is probably because the

events in the data contain four poles. Once the second event

occurs, a 4 pole model is inadequate. Note that there is very

little change in the predictor settling time between the 8 and
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12 coefficient predictors when the noise level is the same.

1. In all the experiments which were run, increasing the
predictor length beyond 12 coefficients did not improve the
location events. However, these signals contained at most
three events and the events themselves contained only four
poles (at most) each. Situations involving larger numbers of
events or very complex events may benefit from larger
predictor lengths.

.... .....
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3.3.2 Interevent Interference

As discussed in the last section, the data preceding

an event in part determines how the predictor will react to

it. Given a two event situation, the more similar the first

event is to the second, the less the prediction error will be

at the second event, so the less the predictor will change to

adapt to it. Figures 3.18 and 3.19 demonstrate this fact with

data consisting of Burstla as the second event and either

Burstla or Burstlb as the first.1 Figure 3.19 (the one with

differing events) clearly shows a larger coefficient change

and a longer prediction error disturbance at the second event

reflecting the larger difference between the two arrivals.

1. To make the details of the second event more apparent
these graphs have been magnified causing some of the
compressed events to go off scale.
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The next twelve figures (nos. 3.20a through 3.22d)

demonstrate the effect that spacing has on interevent

interference. Within each group of four figures (3.20, 3.21

or 3.22) a fixed predictor length (4, 8 or 12 coefficients)

was used to compress events in data containing two instances

of the Burstla pulse at four different spacings. These

figures illustrate how the event compressed signals behave

versus event spacing and predictor length.

The compressed events for the four coefficient

predictor appear different at all spacings up to 150 points.

These differences include changes in size and shape.

Examining figure 3.20d reveals a small disturbance in the

error sequence after the first event which extends at least

150 points beyond it. The duration of this disturbance

appears to determine the zone over which the position of the

second compressed event will influence its shape or size. The

8 and 12 coefficient predictors have a much shorter error

disturbance, and they generate compressed events which are

similar in size and shape for all spacings above 25 points.

This led us to believe that the longer the predictor takes to

model a given event, as indicated by the time taken for the

error disturbance to die away, the further the next event must

be to remain unaffected.

This postulation was tested by the following
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experiment: signals were generated with Burstic starting at

point 50, Burstlb at point 200, and Burstla at various

positions between 100 and 350 points; then event compression

1
was performed. The results are presented in figures 3.23a-h.

As can be seen from the figures, the compressed events for the

last two bursts only interfere if the predictor does not have

time to settle between them. The question of what determines

this settling time is a possible topic for future

investigation.

1. Burstlc was used to desensitize the predictor and it
produces a large event simply because it is first. To make
the details of the remaining events clearer, the RLS error and
coefficient change graphs were magnified causing the first
compressed event to go off scale.

- . -.
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3.4 Linear Filtering

It should be evident from the preceding sections that

noise degrades these event compression signals. To try

enhancing the quality of these signals (on noisy data)

experiments were performed using linear filtering as a pre-

and post-process to event compression with RLS. Three

questions were examined:

Does prefiltering the data to reduce noise
improve the quality of the observed compressed
events?

Is all-pole filtering preferable to FIR
filtering for this application?

Will postfiltering the RLS error make events
in it more visible?

We decided to prefilter the data because we thought

that reducing the high frequency noise in the data might allow

the predictor to adapt more quickly to the events and thereby

produce sharper events in the coefficient change signal and

faster settling in the RLS error. The spectra of the Burstl

signal with three different noise levels are shown in figures

3.24a-3.24c. It is evident from these figures that the
frequency band from .lf to .5f is dominated by

sample sampleisdmntdb
noise. We thought that reducing the noise in this band would

reduce the error energy cost d TRd of changing the predictor

(see eq. 3.5) and thereby permit more responsiveness to the

events in the data.
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Two filters were designed for the purpose of reducing

the noise power in the frequency band extending from .lfsampie

to 5fsample* Figure 3.25 illustrates the time response and

spectrum of a 50 point FIR lowpass filter designed with the

Parks-McClellan algorithm [McClellan et. al.,1973]. Figure

3.26 shows the denominator coefficients and inverse spectrum

of a 6 point purely recursive (all-pole) filter generated by

the minimum p criterion IIR filter design program

[Deczky,1972]. Figures 3.27a-c demonstrate the effect of FIR
1

prefiltering on the event compressed signals. Figures

3.28a-c show the effects of IIR (purely recursive) filtering.

The first FIR filtered example contains extended

events in the compressed signals due to inadequate prediction.

FIR filtering convolves the input sequence with the sequence

given in figure 3.25 . The convolution adds 49 zeroes to each

of the bursts making them difficult to model via an all-pole

technique such as RLS. This causes the 50 point long bursts

in the RLS error and coefficient change for the low noise

examples. (Surprisingly, the event corresponding to the

second burst seems unaffected.) The fact that this effect is

not apparent in the noisy examples is currently not

1. These figures have been adjusted to position the events
in the same places as those in the IIR example. That is, they
have been left shifted 25 points.
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understood.

The IIR filtering process does not introduce a large

number of zeroes to each burst, instead it adds 5 poles-.

Thus, the resulting data is more easily modelled by the..RLS

algorithm than in the FIR case (since it is an all-pole

modelling technique) and therefore the event location signls

are better behaved.

Unfortunately, comparison of these figures with figure

3.17 indicates that prefiltering by either FIR or all-pole

filters does not improve the quality of the RLS error signal

events; and both types of filtering cause an undesirable

increase in the noise of the coefficient change signal. The

reason for this increase in predictor activity may be that

after filtering, the noise can be more effectively predicted

because of its increased correlation, and the coefficients

change more in trying to predict it. In any case, this method

of enhancement seems to be inneffective.

The noise in the RLS error signal obscures the

location events therein. To try removing it (and thereby

enhance the events) the FIR filter shown in figure 3.25 was

applied to the RLS error signal. The results are given in

figure 3.29 for various noise levels. In comparison with the

unfiltered RLS error signal presented in figure 3.17, there is

some reduction of the noise level, but the events themselves
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are smeared. Possibly a matched filter could be designed to

compress the events in the RLS error, but at this time the

characteristics of those events are not known well enough to

design such a filter.

4:- M
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3.5 Decimation

The band-limited nature of the burstl signal suggests

another possible approach to enhancement of the event

compressed signals. The regions of the spectrum which have

low energy (i.e. .lf sample to .5fsaple are amplified,

compared to the high energy regions, in the process of linear

prediction (due to the whitening mentioned in the last

section). Decimating the data would reduce the relative size

of the low energy region of the spectrum possibly reducing the

impact that the noise in that region had on the event

compressed signals and allowing the predictor to expend more

"effort" predicting the events and less predicting the noise.

Figures 3.30a-c and 3.31a-c show 2/1 decimation of the

Burstl signal with and without all-pole prefiltering to reduce

aliasing. Figures 3.32a-c and 3.33a-c show the same examples

but with 4/1 decimation.
1

Comparison of these figures with the undecimated

examples (figs. 3.17 and 3.28) show that the coefficients

change more at each event with increasing decimation ratios,

but neither the unfiltered nor the filtered decimation methods

offers substantial improvement in the quality of the data. In

1. All-pole filtering was chosen over FIR filtering because
it smears the events less.
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fact since the settling time of the predictor seems to be

independent of the decimation ratio, and since decimation

lowers the interevent spacing, interevent interference is more

likely if the data has been decimated.

If",

!I



ER 0312 /DIV BURSTI SIGMR-.0O1, DECIM 211

OR 25.0 PTS/0[V

ER O321 /D1IV RLS ERROR (12 COEF'S)

IR 25.0 PTS/DIV

ER 0.995 /DIV ALS COEFFICIENT CHANGE

-#OR 25.0 PTS/OIV

Figure 3.30a



AER 0.309 Di1v SURSTI SIGMR-.01. DECIM 211

ER 0.64E-01/DIV LSMERROR (12 COEF5J)

OR 25.0 PTS/DIV

ER 0.359 /IV RLS COEFFICIENT CHARNCE

OR0 25.0 PTS/0!V

Figure 3.30b



ER0.328 /DIV BuRSTI SIGMR=.1. DECIM 2/1

OR 25.0 PTS/DIV

EA 0. 168 /DIV RLS ERROR 112 COEF-S)

TOR 25.0 PTS/OIV

ER 0.733E-01 /IV RLS COEFFICIENT CHARNGE

IOR 25.0 PTS/OIV

Figure 3.30c



A 0.300 /DIV BURSTI SIGMi~.001. 5 POLE LPF, DEC1?M 2/1

'R 25.0 PTS/DIV

ER 0.296E-02 /IVl RLS ERROR (12 COEF*S]

ORR 25.0 PTS/DIV

ER 25.7 /DIV RLS COEFF!CIENT CHANGE

ROR 25.0 PTS/OIV

Figure 3.31a



ER0.298 /IV BURSTI SIGMA-.01. 5 POLE LPF, DECIM 2/1

OR 25.0 PTS/OIV

ER 0.31SE-02 /iv ALS EAROA (12 COEF'S3

ROR 25.0 PTS/DIv

ER 3.'&1 /oIV ALS COEFFICIENT CHANGE

TOR 25.0 PTS/Dlv

Figure 3.31b



ER .33 /I U STSGMR.. 5 POLE LPF, DECIM21

+OR 25. 0 PTS/0!V

ER 0.i130E-01 /IV RLS ERROR (12 COEF-S)

IBM 25.0 PTS/0lY

Figure 3.31c



AEM 0.307 /OIV BURSTI SIGMR.001. 0ECIM 4/1

ER 0.849E-01 /IVl ALS ERROR (12 COEF'S)

OR 12.5 PTS/DIV

Figure, 3.32a



*U ER0309 /DIV BURSTI SIGI"A-.01. DEC1IM L(/1

-he 12.5 PTS/DIV

ER 0.917E-01 /01V RLS ERROR (12 COEF'S)

ER 0.563 /IV RLS COEFFICIENT CHANGE

Ion 12.5 PTS/OIV

Figure 3.32b



ER 0. 328 /IV BURST! SIGMA.. OECII 14/1

TOR 12.5 PTS/DIV

R 0.178 /DIV FigRe 112 COF



A~ 0.297 /DIV BURSTI SIGMAw.001. S POLE LPF. DECIM 4/1

jn

.4- 
-- v .- .*



ER 0.298 /IV BURSTI SGIA-.01. 5 POLE LPF, DEC114 4/1

TOR 12.5 PTS/OIV

*ER 1.410 /IV ALS COEFFICIENT CHANGE

l. R 12.5S PTS/OIV

Figure 3.33b



ER 0.303 /DIV BURSTI SIGMR.I, 5 POLE LPF. DECIM 4/1

R 12,5 PT$/OI¥

ER 0.818E-01 /DIV RLS ERROR (12 COEF'S$

toR 12.5 PTS/OIV*1

ER 0.2115 /OIV RLS COEFFICIENT CHANGE

ICA 12.5 PTS/O!V

Figure 3.33c



-144-

3.6 Summary

The preceding examples indicate that both of these

event compressed signals (the RLS error and the coefficient

change signal) provide a means for locating the positions of

events when those positions are not apparent in the input

data. If the SIN ratio exceeds 40db, the compressed events

are visible and despite the severe overlap of the input

pulses, the compressed events are well separated. In

addition, the duration of the compressed events is on the

order of the predictor length and appears to be fairly

independent of the existance or nature of previous events.

The following are some of the important results of

these experiments.

The startin§ location of the RLS iteration
appears to only affect the sizes of the
compressed events. However, there is a large
initial pulse in the coefficient change signal
due to the sensitivity of the algorithm to the
first few data points. This means that the
data must have several predictor lengths of
noise preceding the first event if the
coefficient change signal is to be used *for
event compression.

Additive noise in the data does not have a
substantial effect on the pulse shape of the
compressed events. However, it does cause
noise in the RLS error and coefficient change
signals, which seems to be in proportion to
the noise level in the data. Unfortunately,
there is a large variation in the size of
compressed events with this technique; making
it difficult to establish a SIN criterion for
event compression.
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Compressed events do not influence each other
substantially if the predictor has time to
settle between them, even though the bursts
which cause them may be severely overlapped.
Figures 3.23a-h showed this by changing the
relative position of the second and third
bursts in an input sequence. The resulting
compressed events had constant shape so long
as they did not overlap. Therefore, the
faster the predictor settles, the closer
events can be to one another and still be
resolved. This also means that events
containing large numbers of zeroes (as In the
FIR filtering examples) will not compress well
with this technique unless they are widely
separated. Note that a burst containing a
large number of zeroes does generate a
compressed event, but the event has longer
duration than it would if the zeroes were not
present.

While filtering the data may be necessary to
reduce aliasing, w~t found that it did not
improve the quality of the event compressed
signals. If filtering must be performed,
all-pole filtering should be used since the
zeroes introduced by FIR filtering tend to
lengthen the compressed events.

We found that decimation does increase the
responsiveness of the predictor to each event,
but the relative event to noise ratios in the
location signals do not improve. In addition,
the predictor settling time becomes a larger
fraction of the event spacing, thereby
increasing the likelihood of interevent
interference. Consequently, decimation should
be avoided; and in fact over-sampled data is
likely to provide higher quality compressed
events.
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4. CONCLUSIONS

In this thesis we have developed an event compressio.

technique based on the RLS algorithm, which can effectively

compress events of differing spectra; provided they fit the

model assumed by the RLS method (i.e. all-pole events). We

examined the RLS prediction error as an event compressed

signal and in addition developed the coefficient change signal

for event compression. Our experiments indicate that this

technique is effective only if the S/N ratio is high (e.g. >

40db) , but that variations in the event ordering, event

positions or starting position of the algorithm have only

minor effects on the compressed events. Therefore, this

technique should be useful in those situations where the

events are close to all-pole and the noise level is not high.

This thesis was an initial investigation into the

feasability of using the RLS algoritm for locating events with

differing spectra. When we began this work we wanted to

discover if the technique had any value and if it did, where

should further work be done. Given that need, the best course

seemed to be to use the algorithm on a large number of

synthesized examples, where we knew the number and positions

of the events in the data. These examples indicate that

RLS is indeed a viable means for performing event compression.

However, there are many questions touched upon in the course
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of this thesis which need more detailed investigation.

One of the most important results of this thesis is

that the events in the data cannot be spaced closer than the

predictor settling time, if they are to be resolved from each

other. The issue of what determines this settling time

remains unsolved. Our experiments indicate that it increases

with noise level, decreases with predictor length (up to a

point) , and figures 3.23a-h indicate that It Is not strongly

dependent on the position of previous events. Also, the

settling time for a given event is strongly dependent on the

"character" of that event. More investigation of the

dependence of the predictor settling on the event

characteristics would be useful; insofar as it provides a

means for decreasing the settling time of the predictor,

thereby reducing the necessary separation between events.

Another possible avenue of investigation is that of

alternatives to the RLS algorithm as presented in this thesis.

Some variations of this adaptive algorithm exist which use a

moving region 0 over which the total squared energy E is

minimized, rather than an expanding region as was done here.

Still other methods involve exponentially weighting the past

data. These modifications would allow the algorithm to be

used over large amounts of data without the predictor becoming

totally insensitive to the new points (as the error region
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grows the predictor tends to become less sensitive). In some

applications that capability might be essential; more

importantly, reducing the amount of previous data to be

predicted might allow the algorithm to more readily adapt to

new events, thereby reducing the settling time. Our own

feeling is that a means for dynamically changing the region of

error minimization might be more effective than simply

expanding or moving the region at each iteration, since that

would permit the region of error minimization to be reduced at

a new event to shorten the settling time, and then lengthened

between events to reduce noise.

We found the coefficient change signal to be useful

for event compression, but our signal used equal weights for

all the coefficients and a fixed decay time for the filters.

Is the.- an optimum choice for the weights of the coefficients

in the change signal? Could Kalman filtering be used to track

the coefficients more effectively? Perhaps there is a better

alternative than simply high passing the coefficients. For

example an adaptive decay time for the coefficient change

signal might make the compressed events for the second burst

in the Burstl signal more visible.

Finally, there is no substitute for experiments on

real data. The original motivation for this work was to find

a means for compressing sonic well log data, Unfortunately,
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subsequent study of the well logging problem revealed that the

structure of the signals recorded in that situation does not

fit the model that was assumed for this work. Experimentally

we found that this technique did not compress those signals,

but given their complicated structure, that was not

surprising. Therefore, the application of this method of

event compression to data which more closely corresponds to

the assumed model Is needed. We hope to perform experiments

using acoustic cardiac data in the near future.

II
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