AD-A089 785  MASSACHUSETTS INST OF TECH CAMBRIDGE RESEARCH LAB OF==ETC F/6 17/9
EVENT COW’RESSXON USING RECURSIVE LEAST SQUARES SIGNAL PROCESSI-—E"CH
JUL 80 WP N00015-75'C'09
UNCLASSIFIED ‘I’R-‘O92




ks J2s jos

"I"_IE_O S g
= Kk U=
L & B
flL

B s s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




AR
S 25 AU L




"Event Compression Using Recursive Least
Squares Signal Processing"

Webster Pope Dove

TECHNICAL REPORT 492
July 1980 -~

Massachusetts Institute of Technology
Research Laboratory of Electronics
Cambridge, Massachusetts 02139

o——

DISTAUYTON STATERGRT K

Approved for public relecse;
Distribution Unlimited

This work was supported in part by the Advanced Research Projects
Agency monitored by ONR under Contract N00014-75-C-0951-NR 049-328
and in part by the National Science Foundation under Grants
ENG76-24117 and ECS79-15226.

-
e i B ikt S innlcinon S it i i s i ol




e,

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)
R S
REPORT DOCUMENTATION PAGE Bsyoﬁ‘;"ggﬁ,{fgﬁ;}g’;ow
T. lt’oai NUMBER 2. GOVY ACCESSION NO.{ 3. RECIPIENT'S CATALOG NUMBER

YYPE OF REPORT & PERIOD COVERED

D-Ho8Z 7
4. TITLE (and Subtitle)

[EVENT gp MPRESSION USING BECURSIVE LEAST (V_ Technical Réport
iQUARE SIGNAL PROCESSING o { & PERFORMING ORG. REPORT NUWSER

‘éé

Webster P,

!Dove /S |Nggg1a-75-C ﬁ951/,,2:——;_m

3. PERFORMING ORGANIZATION NAME AND ADDRESS ] RAeoRr CCENENT FNEIEES
Research Laboratory of Electronics
Massachusetts Institute of Technology <~ | NR 049-328

Cambridge, MA 02139

"§11. CONTROLLING OFFICE NAME AND ADDRESS :
Advanced Research Projects Agency (A/z Julp h9807

v

13. NUMBER OF PAGES

1400 Wilson Boulevard

Arlington, Virginia 22217 151

T, MONITORING AGENCY NAME & ADDRESS(/! differant from Contralling Office) | 15. SECURITY CLASS. (of this report)
Office of Naval Research 27— 1 | Unclassified
Information Systems Program ’«e_{ 5 1/ ]
Code 437 [18a. DECL ASSIFICATION/ DOWNGRADING |
Arlington, Virginia 22217 — ——— | 7" sewesite .

g v fe o]

P t———— — ————————
16. DISTRIBUTION STATEMENT (of this Report)

(jfbxﬁ4avfl*rh,43§6‘
%ﬂtiﬁ““—‘fimited”

Approved for public release; distri n un

@7’7’/‘?—#/,6/

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

recursive least squares
event compression
linear prediction:

20. ABSTRACT (Continue on reverae side If necessary and identify by dlock number)

see other side

DD , 5387 1473 5¢ f/ a5 ¢ ~ UNCLASSIFIED
_SECURITY CLASSIFICATION OF THIS PAGE

—— e e e i e




_UNCLASSIFIED

. SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

/jﬂt:JAbstract

This work presents a technique for time compressing the
events in a multiple event signal using a recursive least
squares adaptive linear prediction algorithm. Two event
compressed signals are extracted from the update equations
for the predictor; one based on the prediction error and the
other on the changes in the prediction coefficients as the
data is processed.

Using synthetic data containing three all-pole events,
experiments are performed to illustrate the performance of
the two signals derived from the prediction algorithm. These
experiments examine the effects of initialization, white
gaussian noise, interevent interference, filtering and
decimation on the compressed events contained in the two
signals. e

N\

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dote Entered)




ey - s
Bhad 2 Bys o o RS

EVENT COMPRESSION USING RECURSIVE LEAST SQUARES
SIGNAL PROCESSING

by
Webster Pope Dove

Submitted to the Department of Electrical Engineering and
Computer Science, on 15 July 1980, in partial fulfillment of
the requirements for the Degree of Master of Science in
Electrical Engineering. '

ABSTRACT

This work presents a technique for time compressing
the events in a multiple event signal using a recursive least
squares adaptive linear prediction algorithnm. Two event
compressed signals are extracted from the update equations for
the predictor; one based on the prediction error and the other
on the changes in the prediction coefficients as the data is
processed.

Using synthetic data containing three all-pole events,
experiments are performed to illustrate the performance of the

two signals derived from the prediction algorithm. These
experiments examine the effects of initialization, white
gaussian noise, interevent interference, filtering and

decimation on the compressed events contained in the two
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1. INTRODUCTION

In various signal processing problems, signals arise
which contain pulses or events that must be located or
detected. Problems of this type include RADAR and SONAR
rangefinding, speech pitch detection and seismic data
analysis. All of these fields share the need for a signal
processing technique which can compress events occuring in the
raw data into shorter events in the processed data. This type
of processing can reduce the ove;lap between successive events
leading to improved detectability and by increasing the
impulsiveness of each event make locating the events easier.
Such a signal processing procedure, which reduces the duration
of events in an input sequence without changing their relative
separations, is an event compression algorithm. Examples
include homomorphic deconvolution, matched filtering, 1linear

predictive deconvolution,.

Let us illustrate the application of event
compression. Consider the problem of finding the range of
multiple targets with RADAR or SONAR. To reduce peak power
requirements in transmission, the source pulses are dispersed
in time. In addition, the reflection functions of the targets
may cause the returns to be spread out even more, Therefore
the events in the received signal must be compressed if the

targets are to be located accurately.
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Surface seismograms are created by generating a
disturbance at the surface of the earth, either with a
mechanical vibrator or with an explosion, and recording the
subsequent seismic vibrations with an array of geophones also
located at the surface. As waves propagate into the earth,
they are partially reflected at boundaries between differing
layers and ideally the recordings made at the surface can be
used to locate the depths of these boundaries and their
reflectivities. As in the RADAR situation, the duration of
the source pulse and the extension of that duration by the
individual reflection functions leads to the need for event

compression of the data.

One approach to vocal pitch estimation is to measure
the time between successive glottal pulses. However, since
these pulses are filtered by the vocal tract impulse response
before emanating from the lips, the speech waveform does not
offer well defined points at each cycle from which to measure
the period to the next cycle. It is therefore necessary to
compress the pulses of the speech waveform without changing

their positions for this scheme to be effective.

Another example is the problem of sonic well logging
which motivated this thesis. The procedure for generating a
sonic well log is to lower a tool, shown schematically in

figure 1.1, down an oil well and then raise it at a fixed rate
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back to the top of the well. During its ascent the ultrasonic

transmitter located at the bottom of the ¢tool is pulsed
(roughly once for every foot of well depth) and the pressure
waveform at the receiver in the top of the tool is recorded

for later analysis.

In a very simplified model of the physics of this
problem, there are three paths for the ultrasonic energy to
take in getting from the transmitter to the receiver, each of
which has a characteristic velocity. The slowest path is that
of a pressure wave traveling up the mud with which the well is
packed (to prevent collapse); the medium velocity path is that
of a shear wave coupled to the rock wall, and the fastest path
is for the compression wave traveling up the rock wall. The
quantities of interest to geologists are the velocities of the
shear wave and compression wave, which could be determined by
knowing their times of arrival. To ascertain the arrival
times of these waves it 1is necessary to compress the
individual events in the source data since the overlap between

them is considerable.
1.1 Previous Work

Approaching the problem of event compression typically
entails modeling the physical situation in an appropriate

fashion and then designing an algorithm which is expected to

solve the problem for data which fits that model. Subsequent
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investigation of the performance of the algorithm in a
realistic environment may then lead to alterations in the

model, the algorithm or both.

For example, ({[Young,1965] analyzes the problem of
detecting events in the context of RADAR. His data model is
that events are separated by some minimum distance and that
they are each some unknown linear combination of a set of
known exponentials (the =set 1is determined by the source
waveform). In addition, he requires knowledge of the data's
noise statistics., From these assumptions he derives a
likelihood ratio for the beginning of an event at each point
in his data (this being the event compressed signal).
Unfortunately, in some situations (in particular sonic well
logging) either the noise statistics are not known, detailed
information about the events is not available or the number of
available exponentials from which they could be composed is

large making this formulation inappropriate.

A common approach to the ©problem of compressing
seismic data is made by assuming the data was generated by
convolving a fixed source wavelet with an impulsive seismic
reflector series. By acquiring an accurate estimate of the
source wavelet it would be possible to deconvolve and recover

the reflector series (or something close to it).

[Ulrych,1971] and [Tribolet,1977] have used Homomorphic
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techniques to estimate the wavelet and reflector series and
(Peacock,1969] used linear prediction to estimate the wavelet.
Similar work has also been done on the speech pitch estimation
problem [Markel,1972] by assuming that the speech signal is
the convolution of a wvocal tract response and a glottal
excitation impulse series. The nature of these methods is
that a single deconvolution operator is applied to the data in
order to recover an impulsive or nearly impulsive sequence.
As such these technigques will only be effective if the events

in the data have similar spectra.

In this thesis we apply a recursive least square (RLS)
adaptive linear prediction algorithm to event compression,

using synthetic data from a data model based on an abstraction

of the sonic well logging problem. Because the events in this

data have independent spectra, event compression by 1linear
time invariant filtering would not be effective (the inverse
filter for each arrival would have to be different). By using
an adaptive algorithm we perform time varying event

compression on the input data sequence.

To implement event compression we derive two signals
from the RLS algorithm, one is the post-adaption prediction
error at each point and the other is a measure of the changes
in the prediction coefficients as the data is processed. The

two signals are compared experimentally using synthetic data
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corrupted with white gaussian noise. To illustrate the impact
of other processing on event compression, some experiments
include prefiltering the data, decimation of the data and

postfiltering the error signal.

The next chapter is an analytical presentation of the
equations and issues involved in linear prediction. It starts
with a discussion of 1linear prediction and describes the
covariance method of linear prediction ([Makhoul,1975]. The
following section presents a derivation of the Recursive Least
Squares algorithm (from the covariance method equations) and
the last section of the chapter examines the problem of proper
initialization of the recursion. The third chapter offers an
experimental comparison of the two event compression signals
mentioned above, and the thesis concludes with a discussion of
the important results of these experiments and some

suggestions for future work on this problem.
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. 2. LINEAR PREDICTION i
Linear prediction attempts to answer the following |
i ‘
2 question: Given a sequence of data, what is the best set of p
§ coefficients for predicting the value of each sample of the §
i :
% sequence with a linear combination of previous samples?1 This
formulation is presented in equation (2.1) f
!
1 P J
8= 2 S Syk_n (2.1) :
n=1 !
where {sk} is the data sequence, {ék} are the predictions and ;
!
the c are the coefficients of the predictor. The criterion {
| for determining which coefficients are best 1is the total ;
; squared prediction error over the chosen error region. ;
? Specifically |
| ;
|

k € Q (2.2)

and the coefficients are chosen to minimize the total squared

E | error E.

1. 1In the general case one could use an arbitrarily chosen
set of previous samples, but this discussion assumes that they
are the p contiguously previous samples to the one to be
predicted. '
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ﬂ The <choice of the error region Q is what

;! differentiates between the two most common methods of linear

ﬁ prediction. If Q extends from -« to += (the data sequence is

padded with zeroes or extrapolated in some other way) the

resulting set of equations describe the Autocorrelation Method

of 1linear prediction. In this case solving for the S
involves inverting a Toeplitz matrix of autocorrelations and
is usually done by some variation of Levinson's Inversion (see

for example {Makhoul,1975}).

The other common method in use 1is the covariance

method of 1linear prediction. As described in the next

section, it requires that only the available data sequence be
used to generate the predictor. Therefore the limits of Q are
set by requiring that all the Sk mentioned in egs. (2.1) and

(2.2) lie in that finite set of available signal points.

2.1 The Covariance Method

The equations defining the Covariance method are:
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E= | (s,-28,)2% = minimum (2.4) :
k "k I
k=k ,
s !
'; a
1 i
; Here, p is the number of predictions coefficients and ks and ;
ke are the endpoints of the prediction region Q. By defining
? the following structures |
: 4 . . . 3 !
s s !
ks-l ks P
s8¢ . . L (2.5) !
| Sk -1~ Sk -p ) L
by e ;
i |
: ] ) l
f s i
‘; k) ]
s&) . L (2.6) |
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the covariance method can be formulated as the following

matrix projection problem.

Sces (2.8)
Where the desired solution is that coefficient vector ¢ which
minimizes the distance between Sc and s. The solution is any

vector ¢ which solves the normal equations

T

8§'S ¢ = ST s. (2.9)

If the matrix sTs is invertible then the solution is unique.

c = (sTs)™! sTs (2.10)

If there is no unique solution to eq. (2.9) (sTs is singular)
then some restriction must be placed on ¢ to make the answer

unique (e.g. the order of the predictor p could be lowered

e o gy g 1w A PP
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reducing the number of unknowns).

The covariance method generates a single predictor
with the minimum possible total squared error over the finite
prediction region Q. The 'RLS method is a means for
calculating a sequence of covariance method predictors over
successively longer prediction regions {Qi}. It offers a
computational savings compared to directly calculating the
covariance method predictor for each Q;. The derivation of

this algorithm is presented in the next section.

2.2 Recursive Least Squares

The RLS algorithm finds a sequence of optimal
predictors {c[ko]} for an input signal by minimizing the total
squared error from a fixed starting sample sks up to sko. For
a signal {sk} an@d a p coefficient predictor ¢, the error

sequence produced by the koth predictor is given by

P
e [kol=s, ~ nzlsk-ncn[kol k ¢ Q (2.11)

and the quantity to be minimized is

ET

ooy e

B~
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ko

Elkgl = [ ei[ko]. (2.12)

k=ks

This calculation could be performed by inverting a
matrix for each desired predictor (see eq. 2.10). Instead,
RLS does an iterative calculation which uses the previous
predictor c[ko-l] together with a state matrix and the new
data point sko to calculate the new predictor c[ko] and the
new state matrix. The advantage of this method for
calculating successive predictors, over using the covariance
method directly on each new prediction region, is that this
calculation only requires O(pz) operations per predictor.
Whereas the covariance method would need O(p3) operations per

predictor for each matrix inversion.

The derivation of the iteration can be shown in matrix

form as follows. Let the signal be formed into a vector and a

matrix as before,
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Then the error vector is

4

e, [k ]‘
ks 0

elk,] 4 T L = s(kyl-Skylclk,] (2.14)

with

clkyl & T . \ (2.15)

\cp[koll .
In this notation, the total error is
T
Elky] 2 e [kolelky] | (2.16)
and the optimal choice for c[kO] is

T -1
clkyl = (8T (kyIS [k,

T
S [kO]s[kol (2.17)

L




\

:
:
g
%
2
3
%

- 20 -

The derivation of the RLS iteration from eq. (2.17) is
performed by substituting k0+1 for k0 and using information
available at the koth point to evaluate c[k0+1] in an
efficient manner, The new terms in the equation after the

substitution are

s[kO]
s[k0+l] 2} ———e- (2.18)
[
k0+1
and
S[kol
S[k0+1] = | m—mmme e m - (2.19)
sko. . ‘Sko-p+l
and
T -1l q
c[ko+1] = {s [k0+1] S[k0+1]} S [ko+1]s[ko+1] .. (2.20)

By introducing
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(s )
ko
A
r = T . ) ’
S
) ko’p+1 /

one can substitute for terms in eqgs. (2.20) using eq.

and (2.19) to get

-1
c[ko+1]=(sT[k0]S[k0]+rrT) (ST[kols[kO] +rsk0+l]

At this point introduce the following matrix identity:

For any symmetric invertible matrix V and any
vector r with the same size as a column of V,

-1

v3+reh =v - VvV

Now let

-l A T
v =S [kOJS[ko]

and

(2.21)

(2.18)

(2.22)

(2.23)

(2.24)
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c' = c[k0+1] (2.25a)
T m L
V' = V[ko+l]=(s [kolSikyl+rr ) (2.25b)
s' = s . (2.25c)
ko*l

By leaving out the indices from eq. (2.22) one can write

T |
c' = (v - NeE V3 gTg pgry | (2.26)

l+tTVr

Rearranging terms and combining with eq. (2.17) leads to an

- expression which describes how to update the predictor.

c' = ¢ + ——!%——{s'—rTc) (2.27)
l+r"Vr

The other RLS equation is derived by combining egs. (2.23),

(2.24) and (2.25b) and it shows how to update the state matrix
v.

V' =V -.!Ilth
1+4r°'Vr

(2.28)
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The full RLS iteration procedes as follows:

Starting with V and ¢ from the previous iteration and the

vector of previous signal points

s )
ko
r A ﬁ . & [4 (2029)
\ sko-p+l,

use the new signal point to calculate the new predictor

. (2.30)

Finally, calculate the new state matrix

T
V' =V - ‘Z;ﬁrY_ . (2.31)
l+r' Vr




2.2.1 1Initialization of RLS

The RLS algorithm offers a means to efficiently extend
the error region of a covariance method predictor by one
point. Thus, given an initial set of prediction coefficients
S, and an initial state matrix Vo, one can recursively
calculate the coefficients of the predictors of all possible
error region extents up to the end of the data. However,
calculating the initial covariance predictor normally involves
a matrix inversion which can be computationally costly. In
addition, to perform both an initial matrix inversion for a
small data interval and then execute the RLS iteration for the
remaining data would involve a large amount of program code,
since those two tasks involve fundamentally different
calculations. It was desirable to find an alternative means
for initializing the RLS algorithm which did not involve an
initial covariance predictor calculation. Examining a first

order case suggests a solution.

For a first order (single coefficient) predictor, the

main variables have the following form:

elkyl = ¢ [kg) (2.32a)
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Sik,] = { . | (2.32b)

s[kO] ¢ . \ | (2.32c)

and the predictor which solves the covariance method equation

(eq. 2.22) is given by

c)lkgl = —=— (2.33)

Because the variables ¢, v and r are now one

dimensional, the equations for the RLS iteration from (2.30)

and (2.31) are
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and

or

where

and

c' = Y u— (2.34b)

Ly g2
v
2.2
vt =y - X g (2.35a)
1+r®v
v' = ——J——E (2.35b)
.l.+r
v
A
réds (2.36)
Ko
Ko-1
-1 A
vt 2 8Tikyl Skl = ] s? (2.37)
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Suppose one started the iteration of equations (2.34)
and (2.35) at the first point in the error region (i.e.
k0+l=ks). By assigning the initial values v=v
have

13 3 : 3
init ¢ cimt we

v = 1 (2.38)

Clearly, for this iteration to <conform to the

requirement of eq. (2.37), v ®, Given that result, the

init™

successive values of ¢ are

kg1
Casa
—init . ] s.s
kSk+1
(kal Jinit K7kgl 2.39
%o Ko-1 (2.39)
1 + 7 si

Therefore, given v,

init =" the subsequent values of ¢ solve eq.

(2.33) making them identical to the equivalent covariance
method predictors (irrespective of the initial value of ¢).
This behavior is shown experimentally in figure (2.1). The
data comes from exciting a 1-pole 1linear system with an

impulse at n=10. The system function and time response were
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The covariance method in the absence of noise should
predict this signal exactly when given more than one point of
its impulse response in the chosen error region. As can be

seen from the figure, RLS also predicts the response for every

point after the first. This method of initialization is an !
| effective means for matching the RLS predictors to thnose

$ generated by the covariance method.

2.2.2 Higher Order Initialization i

When a multicoefficient predictor is used, the
mathematical approach used in the previous section to £find i

v

and c, is not fruitful since the wvector matrix

init init

products do not commute and céncel in the fashion of egs.
(2.34) and (2.35). One reason for the difficulty of choosing
the initial values of ¢ and V in this circumstance is that the
covariance predictor for which we aim 1is not uniquely

specified until the error region is at least p points in

L i R Lt ms w2

length; and even then only if the data sequence requires at

s e e T

!
"
]
!
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least a p pole model to describe it. Consider the covariance

matrix definition

R4sTs | (2.40)
The iteration for R is
R{k+l] = R{k] + r[k] rT[k] k>k -1 (2.41)
R(k 1] = 0 (2.42)
therefore,
Kg-1
- T :
R[k.] = ) rr kA >k (2.43)
0 K 0" s
=k -1

Now consider the iteration for V along with vinit
-1

approximation for R ~. If R=V—1 then given equation (2.25b)

=Ia as an

ﬁ[ksl =L+ eik-11 Tk -1] (2.44)

and in general
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) k-1
b Rk =11+ | rikleiik (2.45)
B @ k=k_-1

Therefore setting a=« will make R=R aud as in the first order

case the RLS predictor will correspond to the covariance

method predictor.

In the first order case the initial ¢ was irrelevent,

Ultimately, the same is true in the multidimensional case as

well since ¢ solves

Rec=S8"s (2.46)

and once R is invertible, the value for ¢ is fully determined.

However, for the first few points of the iteration, R |is

singular and the trajectory followed by c depends on the data

values and the value °f°init' As an example, figures 2.2 and

2.3 show a 4-pole impulse response beginning at sample 20
4 which was processed by a 4-coefficient predictor with the

{ initialization




0
€init =J L

The predictor used in figure 2.2 is started at ks=10; the one
in figure 2.3 is started at ks=30 (thus these examples use
different 1initial data wvalues). As can be seen, both
predictors reach the same value after 4 steps into the
non-zero data, but their trajectories differ. To illustrate

the dependence of trajectory on c¢ figure 2.4 presents a

init’
4-coefficient predictor started with
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Again the same predictor value is reached after 4 steps into

the data, but the trajectory differs from the previous cases.
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2.2.3 Numerical Considerations

The initialization derived in the last section offers
potential numerical problems. The first few iterations of
these equations have great potential for numerical error since
the associated R matrix is clearly singular. In our initial
work we discovered a threshold of about 10lo for the wvalue of
a in eq. (2.44) above which the iteration would not cause any
change in the coefficients as the data was processed. Since it
is necessary to choose 1/q so that the smallest non-zero
eigenvalue of R is large in comparison, it is undesirable to
require that the value for g .be much smaller than 1010.
Fortunately, by using double precision arithmetic we were able

to succesfully use values exceeding lO20

for initialization.
Subsequent comparisons of the direct covariance method

calculation with the RLS algorithm initialized at

- 10
init

init

5 for

showed coefficient differences well under one part in 10
data lengths up to 1024, That accuracy was deemed sufficient

for this work, but for a more critical application it would be
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wise to determine specifically how the roundoff error of the

computer affects the initialization of the algorithm.

2.3 Discussion

This chapter has presented the basic mathematics
behind the RLS algorithm including some simple examples of its
behavior. For more information on the topic of 1linear
prediction the reader is invited to examine [Makhoul,1975] and
the references he cites. More information about RLS in

particular can be found in [Eykoff,1974] and more recent

ladder forms of recursive linear prediction are illustrated in

(Satorious,1979].
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3. EVENT COMPRESSION WITH RLS

The previous chapter described the RLS method of
linear prediction and how it can be initialized and used to
generate a series of predictors from an input data seéuence.
This chapter examines how RLS can be used to compress events.
We begin by proposing a model for multiple event signals which
is a very simple abstraction of the sonic well log situation
described in the introduction. We then describe two event
compressed signals which can be extracted from the RLS
iteration and finally experiments are performed to illustrate

the performance of these signals.

The concept behind wusing an adaptive prediction
algorithm 1like RLS for event . compression is the following.
Consider the series of predictors created by the RLS algorithm
as a single time-varying predictor thch minimizes the total
prediction error energy over an expanding region. When
processing an input sequence containing distinct events, one
expects the predictor to make errors at the beginning of each
event since the beginning of the event will not be predictable
by the algorithm. This error burst will be accompanied by a
change in the predictor coefficients as the algorithm adapts
to predict the event. Hopefully, after the first few points

of the event have passed, the error pulse will die away and

the predictor will stop changing. 1If that is the case, then

b5 RS Pl i e A B Al LR ' P T Sy
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the prediction error and the coefficient changes would both
respond to the events in a way that could be used to perform

event compression of the input data.

3.1 The Data Model

This thesis was motivated by the problem of sonic well
logging which was presented in the introduction. The signals
present in a real well log are very complex do to the geometry
of the well. Rather than attempting to accurately model the
well log data (a complicated task in itself) we chose to
fabricate synthetic data which had the appearence of a well
log and exhibited what we felt was an important feature of
well logs; namely that the signal contain multiple bursts with
independent spectra. The data model for the signals used in
this study is shown in figure 3.1. A single impulse is fed to
each of three delays Dl—D3. Their outputs drive the
discrete-time all-pole systems Hl-ﬂ3 generating three delayed
pulses which are added to produce the signal s[k]. We chose a

three pulse model because the problem of seismic well logging

can be considered a three pulse problem.

To make it possible to compare the various figures
presented later, a small set of representative signals was

chosen from the data model given above to perform the

experiments. Most use either a signal labeled Burstl or some
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B 5o e 1ot Vi b

combination of its component pulses Burstla, Burstlb or |

Burstlc. The parameters used to generate Burstl were:

|
JOPUII W, .

Burstla:

G
D, = 50 points H,= 1
1 13,7327 45.4272-3. 58273+, 92274
Burstlb:
Gy
D, = 150 points Hy= I =2 3 =2
1-3.892z “+5.74z “-3.81z °+.962
Burstlc:
P ! G3
; D3 = 250 points 33- o =
1-1.92z ~+,982

where the gains were chosen to give the component arrivals
peak powers of 1, .5, and .2 respectively. Figures 3.2
through 3.5 show the time response and log magnitude spectra

for these signals.l

The first two bursts have 2 superimposed pairs of
complex poles as indicated by their gradual build up in

amplitude. Whereas the third burst is due to a single pair of

L { . 1. The graphs in these figures and 1in most of those
' following have been linearly interpolated.




A s Yl Vb -

- 43 -

complex poles giving it a much sharper onset. These choices
were made to give the data the appearance of a sonic well 1log.
In particular, the slow growth of the second burst is a common

feature of well logs and makes finding it either by event

compression or by eye a difficult task.
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3.2 Event Compression Signals

There are three signals available from the RLS
iteration which we examined for potential use in event
compression. These are the predictor coefficient vector ¢,
the prediction error at the new point before the update ey s
and the prediction error at the new point after the update e, -

In terms of the equations for the update given in the last

chapter (egs. 2.30 and 2.31) these error sequences are defined

eb[ko+l] s[k0+1] - tTc (3.1)

and

e lkg+l] = slky+l] - t'l.‘c' (3.2)

Of the two error signals we chose only to work with the post
update prediction error e, because it contained more
compressed events as illustrated in figures 3.6 and 3.7. The
data sequence for these figures was a single pole burst and as
expected both error signals have pulses at the first point of
the burst (the first point of the burst can not be predicted

with RLS since the previous points are all zero). However,

though the second point of the burst is predictable from the

first, only e

a is zero for that point since ey is calculated
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before updating the predictor. This effect leads to longer
error bursts in e, at events in the data and led to our choice
to use e, for our work. All further references to the RLS
error or the prediction error in this thesis are to e, unless

otherwise noted,

One final point should be noted about this error
signal, particularly when compared to the error sequence
generated by the covariance method on data of this type. The
covariance method error sequence comes from applying a single
predictor to the entire signal, whereas the RLS error comes
from applying a different predictor to each point in the
signal. Because the RLS predictor need only minimize the error
energy to the left of the predicted point and not over the
entire sequence (as is the case with the covariance method),
the RLS error sequence will almost always have lower total
energy than the error sequence of the covariance method for
the same predictor order. As a.matter of observation, we have
found that this reduction in energy takes the form of shorter
error bursts at the events in the data; though as yet we have

not proven that this must be the case,

In addition to the prediction error signal, we
examined the changes in the predictor coefficients as a means

of generating an event compressed signal. This idea stemmed

from observing how rapidly the prediction coefficients settled
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} after a new event occurred. é
;: Figure 3,8 demonstrates the Dbehavior of a 12 :

coefficient RLS predictor on the signal Burstl defined in the é
last section (some of the coefficients are omitted due to the
lack of space). The first event (burst) at point 50 causes a
single non-zero error point and a rapid change in the
predictor. This behavior is expected since the signal as of

the first event is all-pole. The second event (point 150)

PO

causes very little error or coefficient change (presumably

because of the similarity between the first and second
bursts) . But note the activity at the third event (point
250) . Both the error and the coefficients settle in a short
time compared to the burst, despite the fact that the signal
is no 1longer all-pole. The rapid settling time of the
coefficients led us to formulate a signal based on them which

could be used for event compression.

A coefficient change signal was generated by low pass

filtering each ci[k] with a single pole low pass filter to

pETr—— A v o e -
A g T AP e A PP T S B YT S e——

produce the vector &k} and measuring the distance
11elk)-&[k)1]. Small random variations in c([k] about a fixed

value are reflected in the coefficient change signal as noise,

v

with each sample having a height equal to the radial distance
from the average predictor &(k] to the instantaneous predictor

i , c(k]. However, when c([k] jumps to a new value due to an event
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in the data, the coefficient change signal will contain an
exponentially decaying pulse whose initial height is equal to
the distance between the o0ld and new values of cl[k] and whose
decay time is set by the low pass filters used to generate ¢&.
In effect the motion of the predictor is being high-passed
filtered to create the coefficient change signal. One
drawback of this scheme is that slow changes in the predictor
will be reduced in amplitude due to the high-passed nature of

the coefficient change signal.

The RLS error and the coefficient change signal were
use to perform the event compression in all remaining figures.
Figure 3.9 shows how they behave on the signal burstl. 1In
this case the 50% decay time of the filters used to generate
the change signal was 4 points. We empirically found p/3
(where p is the order of the predictor) to be an effective
choice for this parameter. Much shorter decay times led to
multiple peaks in the change signal at each event and longer

times reduced the resolvability of closely spaced events.

3.3 EXPERIMENTAL RESULTS

The 1last section presented the behavior of the RLS
error and coefficient change signals on noiseless data
containing all-pole events. In practice noiseless data |is

rarely available and it is quite possible that preprocessing
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(e.g. filtering) could have added zeroes to the events in the
data if they were not already present. The following
experiments are intended to give the reader some insight as to
what to expect from these event compression signals when the

input data is not ideal.

3.3.1 Additive Noise

The example of event 1location given in the 1last
section used noiseless data. Figure 3.10 shows what happens to
that eiample when white gaussian noise is added to the input
sequence Burstl (the standard deviation of this noise 1is
0=,001 giving the first burst a S/N of 60db). Two important
features appear in this figqure: the pulse in the coefficient
change signal where the algorithm is started (point 0), and
the substantial difference between the coefficient response to
the second burst (point 150) and the first (point 50). Both
the starting transient (in the. coefficients) and the large
coefficient response to the first event are implied by the

structure of the RLS update equations.

Recall that the algorithm is trying to adjust ¢ to get

the least square error E in the equation

E=llell?=|Is-Sc|l® . (3.3)
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Each new point adds a row to the matrix S and new points to

the vectors s and e giving

e S S
e' = ——==) = {===) = (——=) ¢ (3.4)
e! s' rT
and the new predictor ¢' minimizes E'=llellz+e'2. By

separating the components of ¢the new error E' into the
contribution from previous points Ep and the contribution from
the current point EC and by introducing the vector 4 to

represent the change in the predictor coefficients (i.e.

d=c'-c) one has the following relations:

(5]
"

llell? + |isall? (3.5)

E + d'R4

E = [|s'-rTe’ |2 (3.6)

The term d R4 represents the error "cost"™ of changing the
predictor in terms of poorer prediction of previous points. At

each new point the algorithm trades off that cost with the

benefits of improved ©prediction of the <current point
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(reduction in Ec) that a change might permit. Therefore, if
the cost of <changing the predictor is 1low (e.g. the
eigenvalues of R are small), the predictor will be very
responsive to the data and the values of Ec {(and consegquently
the RLS error) will be small. This is the cause of both the
starting transient in the coefficient change signal and the

sensitivity of the coefficients to the first event.

To illustrate the impact that the starting transient
has on the event compressed signals a series of 9 figures
(3.11a through 3.13c) was prepared using the Burstl signal
offset to the right 300 points. Each group of three has
additive noise at a different level (i.e. 0=,001 , .01 and .1l)
and within each group the RLS algorithm was started at three

different points ( point 0, point 200 and point 300).

The starting position of the iteration has a small but
noticeable effect on the compressed events. For the RLS error,
the sooner the arrival occurs after the starting point of the
iteration, the smaller the event will be. Exactly the
opposite is true for the coefficient change signal. Equation
(3.5) indicates that the longer the interval between the start
of the iteration and a given arrival the more linear equations
the predictor has to fit and the less it can afford to adjust
itself too the new points. Since the data values generating

these additional equations are noise, tne equations are
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independent

or came from a noiseless all pole arrival).

predictor

change the character of the compressed events.

exact starting point of the iteration

as the starting transient

arrival.

at the start of some signals. In that case,

initializing the RLS iteration to reduce or

starting transient would have to be found.

In effect,

change and, consequently, more prediction error.

is not crucial as long

itself does not obscure the first

In certain situations the existence of this starting

transient may be a problem due to the lack of "eventless" data

and each one puts more of a constraint on the

predictor ¢ (That would not be true if the data were all zero

the

j added points desensitize the predictor 1leading to less

Fortunately, this effect is graddual and does not appear to

Therefore, the

some means of

eliminate the

Ry e
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To eliminate the starting transient from all the
following event location examples, the predictor was started
500 points to the left of the visible data and consequently
the starting transients do not appear. - This has no effect
other than slightly changing the sizes of the events in the

compressed signals.

The noise itself has little effect on the coefficient
change signal at a level of -60db (figs. 3.11l), but at -40db
(figs. 3.12) the size of the third event in the change signal
is severely reduced and at -20db (figs. 3.13) only the first
event is visible (note the change in scale factor over those
three examples). As was noted previously, increasing the noise
level in the region before an event reduces the sensitivity of
the coefficients to that event 1leading to a smaller

coefficient change.

The RLS error degrades in a different fashion; the
most prominent feature being the apparently magnified noise in
the RLS error signel. If one views the problem from a

filtering standpoint the equation

it e i e
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must be solved to minimize Ilell2 or, equivalently, make e

orthogonal to the rows of

-s!S (3.8)

In the frequency domain this corresponds to whitening or
flattening the spectrum. Examination of the spectrum of the
signal Burstl (in section 3.1) indicates that the flattening
will consist largely of raising the high frequency portion of
the spectrum., This high boost leads to the noise in the RLS

error signal.

The other apparent effect on the RLS error signal of
increasing the noise is the increased size of the compressed
events. Here again, because increasing the noise reduces the
sensitivity of the predictor (thereby lessening the extent to
which it adapts to new points); the error that the predictor
makes at each new point is larger. Unfortunately, in practice,
this magnification of the events in the RLS error fails to
keep pace with the noise as the noise is increased. Therefore,
this effect does not appear to be a useful means for enhancing

the events in the RLS error.

The preceding figures in this section were created

EPTONY
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k2
IR

using a pseudo random noise generator which produced exactly
the same noise pattern on every graph. Since there may be some

question about whether the exact noise pattern has a

- S

substantial impact on the appearance of the events in the
compressed signals, the 1last three figures (figs. 3.l4a-c)
show a fixed noise pattern with the Burstl signal shifted to
three different positions. These figures illustrate that the
precise noise pattern has little impact on the characteristics

of the events in the location signals.
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3.3.1.1 Effects of Predictor Length

Figures 3.15a through 3.17c¢ .show four, eight and twelve pole
predictors acting on the Burstl signal at various noise
levels. There are two characteristics of event location with
RLS visible in this series of figures: first, increasing the
noise lengthens the time for the predictor to settle; second,
increasing the predictor length (up to a point) decreases the

predictor settling time.

The signal covariance matrix R (see eq. 3.5) scales in
proportion to the noise level. Thus the error energy cost of
modifying the predictor at a new point dTRd increases with the
noise level. On the other hand the reduction in error energy
at the current point (Ec) from better prediction of the event
is independent of the noise level. Therefore, the predictor
adapts less to the events in the data as the noise increases
and consequently the compressed events in the RLS error and
coefficient change signals have longer duration as the noise

level increases.

The reason that the predictor settles faster when 8 or
12 coefficients are used rather than 4 is probably because the
events in the data contain four poles. Once the second event
occurs, a 4 pole model is inadequate., Note that there is very

little change in the predictor settling time between the 8 and
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12 coefficient predictors when the noise level is the same.l

1. In all the experiments which were run, increasing the
predictor length beyond 12 coefficients did not improve the
location events. However, these signals contained at most
three events and the events themselves contained only four
poles (at most) each. Situations involving larger numbers of
events or very complex events may benefit from larger
predictor lengths,
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Xen

3.3.2 Interevent Interferenge

As discussed in the last section, the data preceding

an event in part determines how the predictor will react to

it. Given a two event situation, the more similar the first

event is to the second, the less the prediction error will be

at the second event, so the less the predictor will change to

adapt to it. Figures 3.18 and 3.19 demonstrate this fact with

data consisting of Burstla as the second event and either

1

Burstla or Burstlb as the first. Figure 3.19 (the one with

differing events) clearly shows a larger coefficient change

and a longer prediction error disturbance at the second event

reflecting the larger difference between the two arrivals.

l. To make the details of the second event more apparent
these graphs have been magnified «causing some of the
compressed events to go off scale.
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The next twelve figures (nos. 3.20a thrbugh 3.224)

demonstrate the effect that spacing has on interevent

[ S EREN

interference. Within each group of four figures (3.20, 3.21

L et A ks

or 3.22) a fixed predictor length (4, 8 or 12 coefficients)
was used to compress events in data containing two instances
of the Burstla pulse at four different spacings. These

figures illustrate how the event compressed signals behave

versus event spacing and predictor length.

o caci

The compressed events for the four coefficient
predictor appear different at all spacings up to 150 points.
These differences include <changes in size and shape.
Examining figure 3.20d reveals a small disturbance in the
error sequence after the first event which extends at least ;
150 points beyond it. The duration of this disturbance 3
appears to determine the zéne over which the position of the

second compressed event will influence its shape or size. The

8 and 12 coefficient predictors have a much shorter error
disturbance, and they generate compressed events which are
similar in size and shape for all spacings above 25 points.
This led us to believe that the longer the predictor takes to
model a given event, as indicated by the time taken for the
error disturbance to die away, the further the next event must

be to remain unaffected.

—— =

This postulation was tested by the following
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experiment: signals were generated with Burstlc starting at
point 50, Burstlb at point 200, and Burstla a%t various
positions between 100 and 350 points; then event compression
was performed. The results are presented in figures 3.23a-h.1
As can be seen from the fiqures, the compressed events for the
last two bursts only interfere if the predictor does not have

time to settle between them. The guestion of what determines

this settling time is a possible topic for future

investigation.

1, Burstlc was used to desensitize the predictor and it
produces a large event simply because it is first. To make
the details of the remaining events clearer, the RLS error and
coefficient change graphs were magnified causing the first
compressed event to go off scale,
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3.4 Linear Filtering

It should be evident from the preceding sections that
noise degrades these event compression signals. To try
enhancing the quality of these signals (on noisy data)
experiments were performed using linear filtering as a pre-A"

and post-process to event compression with RLS. Three

questions were examined:

Does prefiltering the data to reduce noise

improve the quality of the observed compressed
events?

Is all-pole filtering preferable to FIR
filtering for this application?

Will postfiltering the RLS error make events

in it more visible?

We decided to prefilter the data because we thought
that reducing the high frequency noise in the data might allow
the predictor to adapt more quickly to the events and thereby
produce sharper events in the coefficient change signal and
faster settling in the RLS error. The spectra of the Burstl
signal with three different noise levels are shown in fiqures
3.24a-3,24c. It is evident from these figures that the
frequency band from .1f

.5f is dominated by

sample sample

noise. We thought that reducing the noise in this band would
reduce the error energy cost dTRd of changing the predictor

(see eq. 3.5) and thereby permit more responsiveness to the

events in the data.




e g e £ =

- 113 -

Two filters were designed for the purpose of reducing

the noise power in the frequency band extending from ’lfsample

to .5f Figure 3.25 illustrates the time response and

sample®
spectrum of a 50 point FIR lowpass filter designed with the
Parks-McClellan algorithm ({McClellan et. al.,1973]. Figure
3.26 shows the denominator coefficients and inverse spectrum
of a 6 point purely recursive (all-pole) filter generated by
the minimum p criterion IIR filter design pfogram
[Deczky,1972]). Figures 3.27a-c demonstrate the effect of FIR

prefiltering on the event compressed signals.1 Figures

3.28a-c show the effects of IIR (purely recursive) filtering.

The first FIR filtered example contains extended
events in the compressed signals due to inadequate prediction.
FIR filtering convolves the input sequence with the sequence
given in figure 3.25 . The convolution adds 49 zeroes to each
of the bursts making them difficult to model via an all-pole
technique such as RLS. This causes the 50 point long bursts
in the RLS error and coefficient change for the 1low noise
examples. (Surprisingly, the event corresponding to the
second burst seems unaffected.) The fact that this effect is

not apparent in the noisy examples 1is currently not

1. These figures have been adjusted to position the events
in the same places as those in the IIR example. That is, they
have been left shifted 25 points.

WP
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understood.,

The IIR filtering process does not introduce a large
number of zeroes to each burst, instead it adds 5 poles.
Thus, the resulting data is more easily modelled by the, RLS
algorithm than in the FIR casé (since it 1is an all-pole
modelling technique) and therefore the event location signgls

are better behaved.

Unfortunately, comparison of these figures with figure
3.17 indicates that prefiltering by either FIR or all-pole
filters does not improve the quality of the RLS error signal
events; and both types of filtering cause an undesirable
increase in the noise of the coefficient change signal. The
reason for this increase in predictor activity may be that
after filtering, the noise can be more effectively predicted
because of its increased correlation, and the coefficients
change more in trying to predict it. In any case, this method

of enhancement seems to be inneffective.

The noise in the RLS error signal obscures the
location events therein. To try removing it (and thereby
enhance the events) the FIR filter shown in figure 3.25 was
applied to the RLS error signal. The results are given in
figure 3.29 for various noise levels. In comparison with the

unfiltered RLS error signal presented in figure 3.17, there is

some reduction of the noise level, but the events themselves
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are smeared. Possibly a matched filter could be designed to
compress the events in the RLS error, but at this time the
characteristics of those events are not known well enough to

design such a filter,.
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3.5 Decimation

The band-limited nature of the burstl signal suggests
another possible approach to enhancement of the event
compressed signals. The regions of the spectrum which have
to .5f

low energy (i.e. .1f ) are amplified,

sample sample

compared to the high energy regions, in the process of linear
prediction (due to the whitening mentioned in the last
section). Decimating the data would reduce the relative size
of the low energy region of the spectrum possibly reducing the
impact that the noise in that region had on the event
compressed signals and allowing the predictor to expend more

“"effort" predicting the events and less predicting the noise.

Figures 3.30a-c and 3.3la-c show 2/1 decimation of the
Burstl signal with and without all-pole prefiltering to reduce
aliasing. Figures 3.32a-c and 3.33a-c show the same examples
but with 4/1 decimation.l

Comparison of these figqures with the undecimated
examples (figs. 3.17 and 3.28) show that the coefficients
change more at each event with increasing decimation ratios,
but neither the unfiltered nor the filtered decimation methods

offers substantial improvement in the quality of the data. 1In

1. All-pole filtering was chosen over FIR filtering because
it smears the events less.
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‘f fact since the settling time of the predictor seems to be
f independent of the decimation ratio, and since decimation §
“ lowers the interevent spacing, interevent interference is more ;
s |
-

likely if the data has been decimated.
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3.6 Summary

The preceding examples indicate that both of these
event compressed signals (the RLS error and the coefficient
change signal) provide a means for locating the positions of
events when those positions are not apparent in the input
data. If the S/N ratio exceeds 40db, the compressed events
are visible and despite the severe overlap of the input
pulses, the compressed events are well separated. In
addition, the duration of the compressed events is on the
order of the predictor 1length and appears to be fairly

independent of the existance or nature of previous events.

The following are some of the important results of

these experiments.

The starting 1location of the RLS iteration
appears to only affect the sizes of the
compressed events. However, there is a large
initial pulse in the coefficient change signal
due to the sensitivity of the algorithm to the
first few data points. This means that the
data must have several predictor 1lengths of
noise preceding the first event if the
coefficient change signal is to be used for
event compression.

Additive noise in the data does not have a
substantial effect on the pulse shape of the
compressed events, However, it does cause
noise in the RLS error and coefficient change
signals, which seems to be in proportion co
the noise level in the data. Unfortunately,
there is a 1large variation in the size of
compressed events with this technique; making
it difficult to establish a S/N criterion for
event compression.
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Compressed events do not influence each other
substantially if the predictor has time to
settle between them, even though the bursts
which cause them may be severely overlapped.
Figures 3.23a-h showed this by changing the
relative position of the second and third
bursts in an input sequence. The resulting
compressed events had constant shape so long
as they did not overlap. Therefore, the
faster the predictor settles, the closer
events can be to one another and still be
resolved. This also means that events
containing large numbers of zeroes (as in the
FIR filtering examples) will not compress well
with this technique unless they are widely
separated. Note that a burst containing a
large number of zeroes does generate a
compressed event, but the event has longer
duration than it would if the zeroes were not
present.

While filtering the data may be necessary to
reduce aliasing, we found that it did not
improve the quality of the event compressed
signals. If filtering must be performed,
all-pole filtering should be used since the
zeroces introduced by FIR filtering tend to
lengthen the compressed events.

We found that decimation does increase the
responsiveness of the predictor to each event,
but the relative event to noise ratios in the
location signals do not improve. In addition,
the predictor settling time becomes a larger
fraction of the event spacing, thereby
increasing the 1likelihood of interevent
interference. Consequently, decimation should
be avoided; and in fact over-sampled data is

likely to provide higher quality compressed
events.




4. CONCLUSIONS

In this thesis we have developed an event compressior
technique based on the RLS algorithm, which can effectively
compress events of differing spectra; provided they fit the
model assumed by the RLS method (i.e. all-pole events). We
examined the RLS prediction error as an event compressed
signal and in addition developed the coefficient change signal
fof event compression. Our experiments indicate that this
technique is effective only if the S/N ratio is high (e.g. >
40db) , but that variations in the event ordering, event
positions or starting position of the algorithm have only
minor effects on the compressed events. Therefore, this
technique should be useful in those situations where the

events are close to all-pole and the noise level is not high.

This thesis was an initial investigation into the
feasability of usiné the RLS algoritm for locating events with
differing spectra. When we began this work we wanted to
discover if the technique had any value and if it did, where
should further work be done. Given that need, the best course
seemed to be to use the algorithm on a 1large number of
synthesized examples, where we knew the number and positions
of the events in the data. These examples indicate that

RLS is indeed a viable means for performing event compression.

However, there are many questions touched upon in the course
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of this thesis which need more detailed investigation.

- I ..

- 1 One of the most important results of this thesis is
1 that the events in the data cannot be spaced closer than the
predictor settling time, if they are to be resolved from each
other. The issue of what determines this settling time
remains unsolved. Our experiments indicate that it increases
with noise 1level, decreases with predictor length (up to a
point), and figures 3.23a-h indicate that it is not strongly %
dependent on the position of previous events. Also, the
settling time for a given event is strongly dependent on the
"character" of that event. More investigation of the
dependence of the predictor settling on the event
characteristics would be useful; insofar as it provides a
means for _decreasing the settling time of the predictor,

thereby reducing the necessary separation between events.

Another possible avenue of investigation is that of |
alternatives to the RLS algorithm as presented in this thesis. El
Some variations of this adaptive algorithm exist which use a
moving region Q over which the total squared energy E is

minimized, rather than an expanding region as was done here.

SRS R IS

Still other methods involve exponentially weighting the past
data. These modifications would allow the algorithm to be
used over large amounts of data without the predictor becoming

totally insensitive to the new points (as the error region

t
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grows the predictor tends to become less sensitive). 1In some
applications that ~capability might be essential; more
importantly, reducing the amount of previous data to be
predicted might allow the algorithm to more readily adapt to
new events, thereby reducing the settling time. Our own
feeling is that a means for dynamically changing the region of
error minimization might be more effective than simply
expanding or moving the region at each iteration, since that
would permit the region of error minimization to be reduced at
a new event to shorten the settling time, and then lengthened

between events to reduce noise.

We found the coefficient change signal to be useful
for event compression, but our signal used equal weights for
all the coefficients and a fixed decay time for the filters.
Is the.~ an optimum choice for the weights of the coefficients
in the change signal? Could Kalman filtering be uéed to track
the coefficients more effectively? Perhaps there is a better
alternative than simply high passing the coefficients. For
example an adaptive decay time for the coefficient change
signal might make the compressed events for the second burst

in the Burstl signal more visible.

Finally, there is no substitute for experiments on

real data. The original motivation for this work was to find

a means for compressing sonic well log data. Unfortunately,

Y
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subsequent study of the well logging problem revealed that the
structure of the signals recorded in that situation does not

fit the model that was assumed for this work. Experimentally

we found that this technique did not compress those signals,
but given their <complicated structure, that was not
surprising. Therefore, the application of this method of
event compression to daéa which more closely corresponds to
the assumed model is needed. We hope to perform experiments

using acoustic cardiac data in the near future.
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