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Abstract

The vast majority of reliability analyses assume that

components and system are in either of two states: functioning or

failed. In many real life situations one is capable of distinguishing

between various "levels of performance" for both the system and its

components. For such cases, the existing dichotomous model is a

gross oversimplification of the real situation and models representing

multistate systems and components are more adequate.

In the present paper, a survey is made of the recent papers

which treat the more sophisticated and more realistic situations

in which components and systems may assume many states ranging from

perfect functioning to complete failure. The present survey updates

j and complements a previous survey given by El-Neweihi and Proschan.<
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1. Introduction

The theory of binary coherent systems has served as a

unifying foundation for a mathematical and statistical theory of

reliability. In such models systems and components are assumed

to be in one of two states: functioning or failed. In many real-

life situations, however, the systems and their components are

capable of assuming a whole range of levels of performance, varying

from perfect functioning to complete failure. In order to describe

more adequately the performance of such "degradable" systems and

components we need to develop the theory of multistate coherent

systems.

Until recently, little work has been done on this more

general problem of multistate systems. However, a growing interest

in this area is indicated by the increasing number of research

papers written on this subject. In this paper a survey is made of

the recent treatments of multistate models included in the work

that has been performed by Barlow and Wu (2], Block and Savits (3],

El-Neweihi, Proschan and Sethuraman [4), El-Neweihi [6], Griffith

(7] and Ross [10]. This survey updates and complements a previous

one given by El-Neweihi and Proschan (5].
fe We now summarize the contents of this paper. Our formulation

and treatment are similar to that of Barlow and Proschan [1] for

the binary case. In section 2 we present the notation and

terminology used throughout the paper. In section 3 deterministic

models of multistate systems are presented. For the system and
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for each of its components we can distinguish among different

"levels of performance" represented by a totally ordered set S

called the state space. The vector x = (x1,...,xn) representing

the states of the n components takes its values in Sn, where

Sn  is the n h cartesian power of S. The state of the system

is determined by a function # :S -> S. Various choices of

state space S, and various definitions of the structure function

* presented in the different treatments of multistate models are

then discussed and compared.

In section 4, the states of the n components are assumed

to be random and are consequently represented by the random vector

X = (X1 ....,Xn). The random variable *(X) represents the state

of the system itself. Stochastic relationship between the per-

formance of the system and the performances of its components are

studied. For instance, system performance is, as expected, a

monotone increasing function of component performances. Bounds

on system performance are provided when the exact value of system

performance is difficult to determine.

Finally in section 5, we survey dynamic aspects of multi-

state system. The stochastic processes (Xi(t), t > 0), i = 1,...,n

(4'.,(X)), t > 0) describe the states of the components and system

at different points in time. Classes of decreasing stochastic

processes generalizing know classes of life distributions are

introduced. -Closure of such classes under formation of multistate

coherent systems are introduced.



3.

2. Notation, Definitions and Terminology.

The vector x ~u(x1 , ...,x denotes the vector of states

of components 1,.,n.

C = (l,...,n} denotes the set of component indices.

e ( .*.XiiJXi+P ,... ixn) where - lOI,...,M.

I (.x_) xl ,  xn),I. "X( 4,-.-,J.

x means that yi K x l,...,n.

y < x means that Yi K xi, i = l,...,n and Yi < Xi

for some i.

ci = (ao, l,...,aM) is a probability vector means that
M

03 , =0 ,...,M and =..... J=o J
st

a K a' where both a, a' are probability vectors means
K M

that V 0 , = 0,i ,M

A subset U cRn is said to be an upper set if x e A

and x K y implies that y e A.

A subset Lc Rn is said to be a lower set if x e L and

i x implies I e L.

x v y denotes max(x,y).

X V y, (XlVYl,*oX..Xnvyn).

x A y denotes min(x,y).

X A y (X1Ayi,''',xnAYn)"
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"Increasing " is used in place of "nondecreasing" and

"decreasing" is used in plac'e of "nonincreasing". When we say
f(x,...,x n ) is increasing we mean f is increasing in each

argument.

Given a univariate distribution F, its complement 1-F

is denoted by '.

Given a set S, Sn denotes its nt  Cartesian power. As

usual R denotes the set of real numbers.

3. Deterministic Models for Multistate Coherent Systems.

First let us recall the definition of a binary coherent

system of n components. The vector x = (x1 ,...,xn) represent

the states of the n components where each xi is either o or

1, i = 1,...,n. The state of the system is determined by a

structure function *:(o,l)n - > (o,lj. The structure function

I satisfies certain conditions that represent intuitively

reasonable properties of systems encountered in practice. The

following two conditions are required for a binary system to be

a coherent structure (1,Def.2.1,p.6]:i
(i) The function #(x) is increasing.

(ii) For each i there exists a vector (.i,x) such

that *(li,x) p *(oi,x). This means that the function 4 is not

constant in any of its arguments i, I = 1,,,,,n,

Condition (i) expresses the reasonable assumption that
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improving component performances should not harm the system

performance. Condition (ii)"asserts that each component is

relevant to the system performance, thus eliminating from con-

sideration components which have no effect on system performance.

It follows from (i) and (ii) that

(Iii) *(i) = 1 and #(o)= 0.

The binary model however, is an oversimplification in

describing a situation in which both the system and its components

are capable of a whole range of levels of performance varying from

perfect functioning to total failure. For such case a larger state

space S is needed to describe the situation more adequately. Also

axioms defining multistate structure functions should also be

presented to serve as a unifying foundation for a mathematical and

statistical theory of reliability in the multistate case.

Most of the earlier treatments that dealt with multistate

situations investigated only very special applications. (See for

example Hirsch et al (8] and Postelnicu (9]).

More recent and more comprehensive research in multistate

systems has been performed by Barlow and Wu (2], Block and Savits

(3], El-Neweihi, Proschan and Sethuraman [4] (hereafter referred

to as EPS (4]), Griffith (7] and Ross (10]. The definition given

by Barlow and Wu [2] for the multistate structure is set-theoretical

based on the concept of min path sets and min cut sets of binary

coherent structures. Consider a system of n components. Assume

* that the state space for each of the components as well as for the

system is the set S - (o,1,...,M), where o denotes the failed
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state and M denotes the perfect state. Let Pl#@O''Pr be non-
r

empty subsets of C such that U P - C and Pi Pi £ 3.

The structure function # :Sn -> S is defined by

(x) i max r x (3.1)- lVJr UEPj

where x e S n  is the vector representing the states of components

1,2,...,n. In the binary case the structure function given in (3.1)

is the most general coherent structure [1,Ch.1], and the sets

P1.''0P r are called the min path sets of the system. Let 4'

be the binary coherent structure associated with Pl..., r* The

multistate coherent structure * specified in (3.1) can then be

expressed in terms of *' as follows: For each i 1 1,...,n, let

an"et{ 1 if x i >_

ij 0 O.W.

and let yj = (yj,...,ynj), j o,l,...,M. It is fairly easy to

see that *(x) J iff #'(yj) = 1, and

M
*,(x) = Z *'(j). (3.2)

- J=l

Thus the multistate coherent structure given by Barlow and Wu (2],

is very closely related to a corresponding binary coherent structure.

Exploiting this relationship makes it easy to extend results from

the binary case to the multistate case.

*=
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A more general approach has been taken by EPS [1] to define

multistate coherent structures. The common state space for each of

the components and the system is taken to be the set S = (o,1,...,MJ.

The structure function #:Sn - S is assumed to satisfy three

conditions.

Definition 3.1. A system of n components is said to be a

multistate coherent system (MCS), if its structure function

satisfies:

(i)' is increasing.

(ii)' for level J and component i, there exists a

vector (-i,x) such that *(Ji,x) = J while 4(4i,x) 91 J for

t 91 J, i = l,...,n and J = 0,...

(iii)' *= J for j = ,1,...,M.

Note that conditions (i)' and (ii)' generalized conditions (i) and

(ii) in the binary case. Condition (iii)' is automatically satisfied

in the binary case, but is not implied by (i)' and (ii)' in the

present multistate case. The structure function specified in (3.1)

is an MCS. However the class of MCS's is much larger than the

one specified by (3.1).

In definition 3.1, condition (ii) is referred to as the

relevance condition for the components of the system. This lends

to a type of coherence which is called by Griffith [7], strong

coherence. The following two successively weaker types of coherence

have been introduced by Griffith [7]:
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(ii)' for any component i and state J ; 1, there exists

x such that #((J-l)i~x) < (Ji,x).

(U) m for any component 1, there exists x such that

1(oitx) < #(Mi~x).

A structure function 4 that satisfies (ii)' is called coherent,

and that which satisfies (ii)ff is called weakly coherent. Let

1n

(x) = L i~i xij, where (o] is the greatest integer function.

It is easy to verify that #(x) is coherent but not strongly

coherent. Also consider 4(x) defined by : *(o,o) = o, #(1,o) =o

#(2,0) = 2, #(2,1) = 2, 4(2,2) = 2, 4(1,2) = 1, #(0,2) = 1, 6(o,1) = 1,

*(o,o) = o, #(1,1) = 1. Then it easy to verify that 4 is weakly

coherent but not coherent. Thus the classes specified by (ii)',

(ii)', and (U) m are successively larger.

The definition given by Ross (10] for a multistate system

is less structured than the ones given by Barlow and Wu (2],

EPS (4] and Griffith (7]. The state space S is taken to be

[o,e) and the structure function 4 is any increasing function

from [o,.)n into [o,-). Ross (10] concentrates on the stochastic

properties of his model when observed either at a fixed point in

time, or when observed at different points in time (dynamic models).

Results of this type will be surveyed in the next two sections.

In the remainder of this section we present various struc-

tural properties of the multistate structures given by Barlow and
WWu (2], EPS [It] and Griffith (7]. These properties extend
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well-known results in the binary case (1,Chapter 1] to the more

general multistate case .

Theorem 3.1. Let * be the structure function of a weakly coherent

system of n components. Then

min xi < *(x) < max x (3.3)

Theorem 3.1 states that a parallel system yields the best

performance of a weakly coherent system, and a series system yields

the worst performance.

The following lemma in EPS (4], gives a decomposition identity

useful in carrying out inductive proofs. It holds for any multistate

structure.

Lemma 3.1. The following identity holds for any n-component

structure function *:

M
.(x)- 1 6(J1,x)IxJ, for 1 = 1,...,n (3.4)

where 1 if x=

0 o~w

As in the binary case, one can define a dual structure for

each multistete structure.
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Definition 3.2. Let * be the structure function of a multistate

system. The dual structure function #D  is given by:

*D(x) = M - *(M - xl,...,M - xn). (3.5)

It is easy to verify that the dual inherits the same type

of coherence possessed by the original structure.

Design engineers have used the well-known principle that

redundancy at the component level is preferable to redundancy at

the system level. This principle is presented by EPS (4] in

mathematical form in (i) of the following theorem; (ii) is a dual

result. Extension of this result to the class of coherent

structures is given by Griffith (7].

Theorem 3.2. Let 4 be the structure function of a coherent system.

Then

. ~ (1 (EvY )_  4 ,(E)_ V 4(Y)

(ii) #(XA) (x) ().

Equality holds in (i) ((ii)) for all x and all y iff the system

is parallel (series).

Parts (i) and (ii) of theorem 3.2 are also proved by Barlow

and Wu [2].

In binary coherent structures the concepts of minimal path

vectors and minimal cut vectors play a crucial role. The analogue

in MCS theory is the concept of critical connection vectors. This

concept is defined by EPS [4] in the following:I
'A
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Definition 3. A vector x is said to be a connection vector

to level if 7(x) = , =M

Definition 3.4. A vector x is said to be an upper critical

conncection vector to level _, if *(x) - a and y < x implies

4(Y) < a, a -

A lower critical connection vector to level j can be

defined in a dual manner, j = o,...,M-1.

The existence of such critical connection vectors is

guaranteed by the conditions of definition 3.1.

For j = ,....,M, Let ', be the upper critical

connection vectors to level J, where =a (Ylr' r-a)'

1 K r K n . The following theorem by EPS [4], expresses the state

of an MCS using its upper critical connection vectors.

Theorem 3.3. Let * be the structure function of an MCS. Let
l't "" 9'Y be its upper critical connection vectors to level J,

j = 1,...,M. Then 4(x) j iff x y forsome < t M

and some 1 < <nt -

4. Stochastic Properties of Multistate Coherent Systems.

Having discussed some deterministic aspects of multistate

systems, we now turn to the probabilistic aspects. In this section

we survey important relationships between the stochastic performance

of the system and the stochastic performances of its components which
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are assumed to be statistically independent.

Let Xl denotes the random state of component i, i 1...,n.

Let X = (Xl,...,Xn) be the random vector representing the states

of components 1,...,n. Then #(X) is the random variable

representing the state of the system. In the models described by

Barlow and Wu (2], EPS [4] and Griffith [7], the random variables

Xl,..., n and #(X) assume their Values in S = (o,l,...,M, with

P(Xi = 3] = Pij P[(X) = J] = Pi ('.)

P[Xi j] = Pi(J) , PI(X) ] =P(j)

for J = o,l,...,M and i = l,...,n. (P) represents the

performance distribution of component i (system). Clearly;.

a
=i(J) r' , Pi(M) = 1,

for i = 1,...,n. Similar relationships hold for P. Let
h = E(4(X)); we may express h as follows: h u h(Pl,...pn),

since h is a function of the PI'''"Pn" Alternatively, we may
Sexpress h as follow h u h(kl,...,pn ), where Ri = (Piot ...P~iM)

for i - 1,...,n,

Using lemma 3.1, EPS [4], expresses the performance function

h of a system of n components in terms of performance functions

of system of n-1 components.

Lemma 4.1. The following identity holds for h:
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M

h(kjO*Pk~) E Piah(aipjp***ppn)p i 1 l,,,,,n, (14.2)

where h(Ji,P 1,..., ) = E s(JiX).

The following theorem due to EPS (4] show that h is

strictly increasing in each pij, j > o. This property generalizes

the well known property of h in the binary case.

Theorem 4.1. Let h( I, ... ,n) be the performance function of an

MCS. Let o < Pij < 1, for i = l,...,n, j = o,1,...,M. Then

h(Pl, ... ,n) is strictly increasing in pij, i = l,,,,,n,
.3 = I..M

Properties of h as a function of PI.... Pn are also

investigated by Barlow and Wu (2], EPS (4] and Griffith (7]. The

following theorem due to EPS (4], shows that h(Pl,...,Pn) is

increasing with respect to stochastic ordering. A similar result

is proved by Barlow and Wu (2] for their subclass using a different

proof. The same property is also proved by Ross [10] for his

multistate model.

Theorem .4.2. Let Pi,P* be two performance distribution for
component i, i = l,...,n. Assume Pi(J) ;> P(J) for j = 0,...,M,

i = 1,...,n. Let P (P') be the corresponding system performance

distribution. Then

(i) P(a) k P'(J) for j ,
(4.3)

(ii) "h(Pl,...Pn ) (P
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Griffith [7] shows that the above results hold for the

classes of coherent and weakly coherent systems. He also introduces

the concept of a utility function which is simply expressed as

Ef(#(X)) where f is a nonnegative increasing function representing

a "reward" associated with various levels of performances.

The concept of upper connection critical vectors introduced

* by EPS [4] is exploited to obtain further bounds on P and h.

Let Yj,'''', be the upper critical connection vectors to level

J, 3 = I,...,M. Let Ar denote the event (X yr], r =1,...,n

By Theorem 3.3 nM tt
t

P(X) J]=P ( U U A ).t=3 r=l

Now using the well known inclusion-exclusion principle the authors

establish upper and lower bounds on P(*(X) > J]. Note thati:'+ '+I I n j-
SP(A r ) - P[2[ yr j PEXi yir ] for 1 i r n and j - l,...,M.

An interesting generalization of the Moor-Shannon Theorem

(1,Theorem 5.4] is obtained by Barlow and Wu (2]. In view of (3.2),

it is easily verified that

P[ (_) > a] E E (Y3) h' (), (4.5)

where .j (qlj,...,qnj) and qij = 3 Pikv i 1,...,n.

Recall that Moore and Shannon show that if all components have

the same reliability p, then either h(p) > p or h(p) p for

all o p 1, or there exists o < Po < 1 such that h(p) < p

for o p po while h(p) I p for 1>p Barlow and

af,- ~r
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Wu (2] give a natural generalization of this result to the multistate

case with respect to stochastic ordering.

Theorem 4.3. Let ( a = (o,... ,c) for i = 1,...,n. Assume

h'(po) =Po (0 < Po < 1) Let a*= (1-Po,.., op ) Then
st st

ii _u _ implies that p _

st st
a; K a implies that p >1z,

where p= (Po p )P = P[(_ - i], i = o,...,M.

Note that (4.5) is central to the proof of the above theorem.

Finally, in the model proposed by Ross [10], Xi, i = 1,,,,,n

and #(X) are nonnegative random variables with distribution

functions Fi , i = 1,...,n, and F respectively. The function

is defined by r(l,...,n) = E ().

Using an extension of Lemma 2.3, of Barlow and Proschn [1],

Ross (10] proves the following:

Theorem 4.4. If * is a binary increasing function then

'ir .. ) ar ,.. n] (4.6) I

for all o a 1.

As a consequence of the above theorem, Ross (10] proves:

Corollary 4.1. Let Xl , ...,Xn be independent IFRA random

variables. Then
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n
EXi is IFRA (a)i-i

{,Xj 7n}Tp Xi~},oc (b)

Observe that part (a) of Corollary 4.1 represents the well

known property of the closure of the IFRA distribution under the

convolution operation.

5. Dynamic Models for Multistate Coherent Systems.

In the binary reliability models, the length of time during

which a component or system functions is called the lifelength of

the component or system; these lifelengths are nonnegative random

variables. Classes of lifelength distributions based on various

notions of aging have been introduced and studied. See, e.g., [1].

1, Two of the important classes of life distributions are the increasing

failure rate average (IFRA) class and the new better than used

(NBU) class. Closure of these classes under basic reliability

operations, such as convolution of distributions and formation of

coherent systems, have been established. The counterparts of

these concepts in the multistate case have been first investigated

by Barlow and Wu [2], EPS [4], and Ross [10]. More recently,

Block and Savits [3] and El-Neweihi (6] introduced general multi-

variate versions of these concepts.

Lot (Xi(t),t > o) denote the decreasing and right continuous

stochastic process representing the state of component i at time
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t, where t ranges over the nonnegative real numbers for

1 l,...,n. The processes X(t), t I , i - l,...n, are

assumed to be mutually independent. The stochastic process

f6(X(t)), t > o} is also decreasing and right continuous and

represents the corresponding system state as time varies, where

X(t) = (Xl(t),**.Xn(t)), t Z o.

In the model of Barlow and Wu [2] the state space is

(o,1,...,MJ. Let us call (J,J+l,...,MJ the "good" states. Assume

1/t
that [P(XL(t) > J)] is decreasing in t > o for fixed J,

l/t
i l,...,n. It is easily verified that [P($(X(t)) > J)] is

decreasing in t > o for fixed J. Thus the above result states

that if the length of time spent by each component in the "good"

states is an IFRA random variable, then the corresponding length

of time spent by the multistate system in the "good" states is

also an IFRA random variable. In the binary case this represents

the so-called IFRA closure (under formation of binary coherent

systems) theorem.

The following definition is due to Ross [10].

I Definition 5.1. The stochastic process (X(t), t > o) is said

to be an IFRA process if T = infft:X(t) K a) is an IFRA random

variable for every a > o.

Having introduced this definition, Ross [10] then proves

the following generalized IFRA closure theorem.



18.

Theorem 5.1. Let [Xi(t),t o), 1 1,...,n be independent

IFRA processes and * a multistate structure function. ThenI-(x(t)), t > o} is an IFRA process.

The crucial tool in proving the above theorem is theorem

4.4.

Ross (10] also defines an NBU process and proves a generalized

NBU closure theorem (under formation of multistate structures).

Another definition of an NBU process is given by EPS (4],

and then a simple characterization for this NBU process is derived.

Using their characterization, they give a simple proof of a

generalized NBU closure theorem. The EPS definition of an NBU

process is as follows:

Definition 5.2. The stochastic process (Xi(t),t o )i is an

NBU process if Ti,a = inf(t:X,(t) < J) is an NBU random variable

for j = o,....,M and i = 1,...,n.

Recall that the state space for the EPS (4] model is the

set (o,....,M).
The following lemma gives a simple characterization of an

NBU process.

Lemma 5.1. The stochastic process (Xi(t), t > o} is NBU if

and only if for all e > o, t > o,

st
X1(S+t) min(XV(s), X*(t)),

I• . _, .-
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where XI(s) and X(t) are two independent random variables

having the same distributions as Xi(s), Xi(t) respectively.

Using their lemma 5.1, EPS [4], prove the following

generalized NBU closure theorem.

Theorem 5.2. Let * be the structure function of an MCS having

components and (Xi(t), t k oj 4be the il- component per-

formance process, i = 1,...,n. Let (Xi(t), t oJ, i = 1,.,.,n

be independent NBU processes. Then (*(X(t), t o} is an

NBU stochastic process.

The various generalizations that have been presented so far

in this section have been obtained under the assumption that the

components of the system are independent. However in many real

life situations the components are subjected to common stresses

which make them stochastically dependent. In recent papers by

Block and Savits (3] and El-Neweihi [6], the authors introduce

multivariate classes of stochastic processes that describe the

joint performance of the n components of a system without insisting

on the statistical independence of these components.

Now let (X(t) a (Xl(t),...,Xn(t)), t > o) be a vector-valued

stochastic process. Assume that X(t) is nonnegative, decreasing

and right-continuous.

The following definition is due to Block and Savits [3].

Definition 5.3. ((t), t > 0) is said to be a (vector-valued)

IFRA process if and only if for every upper and open set U c Rn,

the random variable

i .............
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T- inf (t: X(t) le U)

is IFRA.

Among several results, Block and Savits prove the following

closure theorem

Theorem 5.3. If * is a multistate monotone structure function

and [X(t), t > oJ is an IFRA process, then (6(x(t)), t >o) is

an IFRA process.

The following definition is due to El-Neweihi [6].

Definition 5.4. The vector-valued stochastic process (X(t), t oj

is said to be MNBU process if and only if the random variable

T0 - inf(t: X(t) e C)

is NBU, for every lower closed set Cc Rn.

The following generalized NBU closure theorem is then proved

by El-Neweihi [6].

Theorem 5.4. Let (X(t), t 0) be MNBU process. Let * be

decreasing left-continuous and nonnegative function. Then

(X(I(t)), t o) is NBU process.
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