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ut as a combination of collocation and weighted residual methods. An example
of a different kind shows the character of perturbations as one approaches the
sonic line. A rationale for the choice of weight functions can be obtained by
relating them to the Green's function. In two-dimensional problems, one can
improve the cancellation of long distance effects of truncation errors by
choosing characteristics as element boundaries.
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SUMMARY

The report analyzes by means of examples the applicability

of the finite element concept to hyperbolic equations. One of
the aims is to provide an appreciation of the basic phenomena.
The elements chosen are quadrangles with bilinear, biquadratic

or bicubic shape functions. The equation discussed most is
the two-dimensional wave equation. Variational approaches are
rejected because they refer to problems that are not well posed;

instead the method of weighted residuals with rather general
weight functions is adopted. The equation of convergence which

poses difficulty if an extremum formulae exists, has particular
importance for hyperbolic problems because the exact solutions
are not damped and truncation errors may cause a neutrally stable

solution to become unstable. Besides stability the question of

accuracy is explored. It determines, for a stable method, the
admissible element size. Hyperbolic problems have equal wavi-

ness in the space and in the time direction. Therefore, one
has, from the point of view of accuracy, a natural limitation

of the Courant number to 1, even if this limitation is not
needed for stability reasons. First a number of semi-discretized

approaches (discretized in space but not in time) are investigated.

The solutions always have dispersive character (no damping, but

wave velocities different from the actual one). The ratio of
the wave velocities obtained from the original partial differen-
tial by the numerical approach provides criterion for accuracy.

The error in the wave velocity for long waves is much smaller

for quadratic and cubic shape functions, even if one takes the
fact into account that for quadratic and cubic shape functions
the number of elements needed to give the same resolution in
Fourier components is only one-half of that for linear wave

functions. (The number of parameters describing the solutions
at a given time is the same for the same resolution.) Short

wave errors are nearly the same for different approaches. In

a semidiscretized method one is led to a system of ordinary

iv



lifferential equations (in implicit form). The solution

must proceed in small steps because of the latent presence
of particular solutions of the homogeneous system with a

short wave length. Implicit procedures do not automatically
insure the applicability of large time steps. Short waves

(which in any case are inaccurate) can be suppressed if one

works with third degree splines rather than cubic weight

functions, which permit discontinuities in the second
derivatives at the grid points. Next the time integration

by finite elements is discussed. (It can be separated from

the space discretization if one deals with bilinear, biquadratic

or bicubic elements.) For linear elements the time dependence

can be treated in the same manner as the space dependence.
For Courant number 1, the discretization errors for time and

space cancel each other. The method becomes unstable if the

Courant numiber exceeds one. From a heuristic point of view

such an approach is somewhat suspect, for it does not quite

fit the idea of a marching procedure (which can always be
carried out in hyperbolic problems). An analyogous approach

for third degree elements is always unstable. A modified

approach for linear elements which avoids this heuristic dis-

crepancy gives stable but strongly damped particular solutions.

From the point of accuracy, one would therefore need rather

small elements. A similar approach for third degree shape
functions converges for Aill Courant numbers and gives tolerable
results up to Courant number one, if one takes constant weight

throughout the new time interval in combination with a colloca-

tion condition for the new time point. An example discusses

the choice of the mesh if , in a steady flow field, the Mach

number approaches one at a certain line. Even then, one can

always find a mesh which guarantees stability. In the example

under discussion the particular solutions belonging to the

highest frequencies (which are prone to cause instability) are

of importance only in the immediate vicinity of the sonic line.

A rational basis for the choice of weight functions can be
v



obtained by relating them to the Green's functions. It is

possible to find weight functions which suppress the dominant

long distance effect of a residual. For the Helmholtz equa-
tion this is only approximately correct and requires that the
elements be sufficiently small. For the hyperbolic problem

this cannot be done because the hyperbolic distance is zero

for points which lie on the same characteristic. A better

cancellation of long range effects in two-dimensional problems

can be obtained if one chooses characteristics as element

boundaries. The weight functions should then be constant

in one of the characteristic directions. The idea cannot

be carried over directly to the three-dimensional problem.
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SECTION I

INTRODUCTION

This report discusses the application of the finite

element concept to hyperbolic problems. Some of the

observations are probably familiar to those who have been

working in this area; nevertheless the author hopes that the

fairly systematic discussion carried out here has some value

in so far as it clearly shows certain inherent difficulties.

An attempt to develop a general intuitive background

for this problem area will be made in Section X. In the

introduction we restrict ourselves to one general observation

which motivates the choice of the approaches to be studied.

In the classical applications of the finite element method to

elliptic equations, the problem is governed by an extremum

principle. This gives a guarantee of convergence, provided

that the numerical process imitates the search for an

extremum. (of course the distance definition with respect

to which convergence is obtained need not coincide with the

error characterization desirable for an engineering application

of the results.) For the hyperbolic problem no extremum

formulation exists. In the classical examples one can

define a functional which is stationary if oze imposes

suitable boundary conditions. But these boundary conditions

are not identical with those of a well posed hyperbolic

problem. For practical work a mere variational formulation

has only limited usefulness to begin with .(because of the

absence of guaranteed convergence), but here the variational

formulation does not even apply to the problem at hand.

Reddy * has found a variational formulation for some hyperbolic

equations in which the boundary conditions are properly taken

into account. A simple example is shown in Appendix I, but

• (1) Reddy, J. N., A Note on Mixed Variational Principles
for Initial-Value Problems, Quarterly Journal Mech. Appl.
Math., Vol. XXVIII, Pt. 1, 1975, pp' 123-132.
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because of the lack of an extremum property even this for-

mulation does not seem useful from a numerical point of view.
Sections II through V study, for the wave equation,

different approaches by semi-discretization; that is, the
finite element concept is applied only to the spatial

direction. This leads to systems of ordinary differential
equations with the time as independent variable. It is

assumed that this system is solved by an accurate integration
method. In Section VI the finite element concept is applied
also in the time direction. This discussion becomes fairly

simple because of the special choice of bilinear, biquadratic

or bicubic shape functions. The results show the importance

of the Courant number. Sometimes the occurrence of large

Courant numbers is unavoidable. Section VII gives details
for a simple example of this kind. Section VIII tries to
provide a rationale for the choice of the weight functions by
relating these to the Green's function. In Section IX the

finite element concept is combined with the idea of
characteristics. The concluding Section X develops an

intuitive picture of the problem area. In addition, it
summarizes the specific results obtained.

A number of detailed studies are included in the form
of appendices. We already mentioned that Appendix I gives

an example for the variational formulation of Reddy.

Appendix II, following an idea of Soliman, shows that rather

general boundary conditions (except for Dirichlet conditions)
fit smoothly into the concept of weighted residuals. Appendix
III gives a number of results which can serve to check certain
formulae which occur in the main body of the report. Appendix

IV shows that the study of integration methods (including those
based on the finite element concept) for systems of ordinary
differential equations can be reduced to the discussion of
a single scalar equation. Appendix V discusses Green's

functions for the wave equation in two and three dimensions.

2



The present study therefore applies the finite element
N concept in the form of a method of weighted residuals. In

a variational formulation the weight functions which are

applied to the residuals are always identical with the shape

functions used to represent the solutions (if not directly,

then at least implicitly). In the absence of an extremum

formulation this choice loses its usefulness. We shall

admit weight functions of greater generality. (The term

shape functions will be restricted to expressions which serve

to represent the solutions, the word weight function is

self-explanatory.) In classical applications the weight

functions have finite support. They are C or C for

partial differential equations of order two or four, respectively.

This holds in particular at the edges of the region of support.

This latter continuity requirement will no longer be imposed.

In the integration by parts needed in order to treat

derivatives of generalized functions correctly, certain

additional terms outside of the integrals at the element

boundaries are encountered. With the traditional choice

of the weight functions (and of the shape functions), these

terms will vanish. With the present more general choice of

weight functions these terms must be taken into account.

In the author's upinionpthis is a technicality which should

not preclude the use of such general weight functions.

By their very nature, hyperbolic equations lend themselves

to a marching procedure. The solution at a certain time is

not influenced by what happens at a later time. We have limited

our discussion to approaches which can be interpreted in this

sense. The procedures obtained in this manner need not be

stable. A major part of the present work is the study of the

stability ( and of the accuracy) of different methods in a

simple sample problem. In most of the report we deal with

rectangular elements and bilinear, biquadratic or bicubic

shape functions.

L~o3



SECTION II
EQUATIONS OBTAINED BY SEMIDISCRETIZATION

In the examples of this report we shall study the wave

equation

0yy - Ott = 0

(If one replaces tt by oxx then one obtains the linearized

equation of two dimensional supersonic flow at a free stream
Mach number J.) Practically in all cases one restricts

stability discussions to equations with constant coefficients

on the basis of the argument that in a restricted region and
for a very fine mesh the coefficients are practically constant.

The choice of such a simple equation is therefore not more
restrictive then the usual stability discussions. We assume

that the region extends in the y direction from -- to +-.

In the t direction the solution is to be determined for a
finite interval. In this section an approach by semidiscretization

is investigated; the differentiation with respect to the t

direction is retained while one uses a finite element

representation for the y dependence. Such an approach is

frequently used for problems with two or three space

dimensions.

In this section we shall write down the resulting
systems of ordinary differential equations for different

choices of the (solution) shape functions and of the weight
functions, and also for a semidiscretized finite difference

approach. The following problems will be treated.

1. The y derivative is replaced by a finite difference

approximation.
2. * is approximated by a piecewise linear function,

0 is continuous

a. the weight functions are identical with the shape
functions

4



b. the weight functions are constant over intervals
of a length of the gridsize which straddles the
points where the first derivatives are
discontinuous

3. 4)is approximated by piecewise third order
polynomials, 4) and 4) are continuous

y
a. the weight functions are identical with the

shape functions
b. and c. the weight functions are constant over

intervals of a length equal to half of the
grid size. Cases b and c differ by the position
of these intervals.

4. 4)is approximated by piecewise second degree

polynomials, 4) is continuous.
a. the weight functions are related to the shape

functions
b. the weight functions are constant over intervals

of a length equal to half of the grid size.
5. 4)is approximated by third degree polynomials,

4) ),and 4) are continuous (spline approximation)
y yy

a. the weight functions are related to the shape
functions

b. the weight functions are constant over an
interval equal to the grid size.

6. 4)is approximated by piecewise second degree
polynomials, 4) and 4)are continuous

y
a. linear weight function

b. constant weight function

7. $is approximated by third degree splines, and a

collocation method is applied.

As usual the solutions are represented by a combination

Of shape functions, defined for the individual intervals
(elemental shape functions). The formulae arising by this

standard procedure are listed below for the convenience of

a reader who wants to check the details. They are readily

tested by the requirements that they give exact representations

of the operators involved, for polynomials of a degree equal

to that of the shape functions. This is done in Appendix Ill.



The interval in the y direction is h. The value of

y at the k th grid point is denoted by Yk- For the vicinity

of the point Yk (usually for the interval Yk- < y - yk+l we

set

Ay = y - Yk (2)

The elemental shape functions are written as functions of

(Ay/h). A prime denotes the derivative with respect to

(Ay/h). Furthermore, let

The elemental shape functions are given by the following

expressions.

Linear elemental shape functions (Figure 1)

/ - l
(4)

They satisfy
N.'o,). 0 ,., O
N . ; '()=O

Quadratic elemental shape functions (Figure 2)

A(Y/A) /3(i'6 *2(MI

4 % yI,) = - /l6) - (4y/A~t4 (5)

They satisfy

AI(0,) = ( //, ) = o ,=o

r "/!0 ' • ,)'



Third degree elemental shape functions (Figure 3)

(A3(ay/h Z (,dY/h)"

Aj (6lb)) =  - ( ~ ]1 (6)

Al (l/ = -((.I/bt

They satisfy

,V 0)n A, N,(o 0)

N0) 0 . o N,4 (o) = 0, ,t '') /v;- (I) ¢ =, 0, 4'(i) - 0

A )- 0 , A'(o) . 0, = o , ,'i) ,

With these characterizations one readily obtains the following

identities which can be used for checking purposes.

Linear elemental shape function

At

Quadratic elemental shape functions

Third degree shape functions

Ay/hA AtP'$*

(iy/*)

7



The solutions are characterized:

in the linear case by the values of k(t),

in the quadratic case by the values of Ok(t) and Ok + 1/2(t)'

in the third degree case by the values of Ok(t) and 0 (t)

The values of k range in our examples from -- to +- .

Notice that one has two parameters per interval for the

quadratic as well as the third degree case.

Let w(Ay/h) be one of the weight functions. Then one

obtains an approximating equation

f~ A'0 yh dg'tfi W(Aly)/4)P (7)

For each choice of k and each weight function we obtain

one condition. Here one must substitute for 0 the approximations

listed above. The weight functions w have finite support

(that is they are different from zero only over a finite

interval) and the integrations are only needed for finite

intervals. For linear and quadratic shape functions the

term 0yy will lead to delta functions at the grid points,

the integrals must then be evaluated in the sense of

generalized functions.

Case 1. Finite difference approximation.

One obtains

(B)

Case 2. Linear shape functions
The shape function belonging to the point Yk is given by

Figure 4.

(It is understood that the elemental shape functions Ni are
zero, unless their argument lies between zero and one.)

Accordingly, N1 (Ay/h) is different from zero only for

8



V

Yk< y < Yk+l' N2 is different from zero only for Yk-l 
< y < Yk"

One has in the interval Yk-i < y  Yk+l

0 04, c 1(t N. (AY/h)

Case 2a

The weight function belonging to point Yk is given by

(Figure 4)

or

w(y/h) 4./0+ [4"1) '" Y*4, < Y (V (10)

Otherwise they are zero.

One obtains

For a test see Appendix III.

Case 2b
The weight function belonging to point Yk is given by

(Figure 5)

(.r2 ~(12)

One obtains

For a test see Appendix III.

9



Case 3 Third degree elements

The shape functions belonging to point Yk are (Figure 6)

and
A(dy/* I 1', # sl)+

In the interval Yk-1 < y < Yk+l one has

+ (t) k lA 6fh) # € :/') A (iy/6) (14)

Case 3a
The weight functions belonging to point Yk are (Figure 6)

aiy.al - ANq/b) -t NA(y/] + ) (15a)

and

wv(fay/*) (yA 6'/h))
(1Sb)

One obtains the following differential equations (two for
every value of k)

(16a)

10i

TelJ

(16b)

• --0
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Case 3b

The weight functions are given by (Figure 7) 0

. -f ( /,A /(17a)

4YA e 1)(17b )

otherwise they are zero. These weight functions are obviously

equivalent to

wu/j~ 0",Y/*(i and 4 ',a 0

One obtains

-4 ', (18a)
1 72 ;7 ' - -",4 1"4,,), ' 'f, -5 J= 0

(18b)

Case 3c

The weight functions are given by (Figure 8)

I / y(19)

otherwise they are zero.

One obtains

jr 4



and

Case 4. Second degree elements

In the interval Yk-1 <  < k+ one has the following

representation for *

+ 4., All (w,, I)+J+ p ,I
#6i

Case 4a

The weight functions are given by (Figure 9)

WAY4) (21a)

S Nbl ) - 4 (,yl) 4 " - dAy*a
(21b)

Notice that the weight function wI is a linear combination of

elemental quadratic shape functions. This choice has been

made to avoid negative weights.

One obtains

d *l i - - =(22a)

and

[ad4 #1441 -ft •~ ~

(22b)

12



Case 4b

The weight functions are given by (Figure 8)

' r,# (23a)

Tr (23b)

One obtains

¢(p / # t - 6,1 '. 4 -,)f (24a)

0- 0- k < s
-- + + -+(24b)

e=< 4 < +

Case 5. Third degree shape functions with continuous second
derivatives

The jump of the second derivative with respect to Ay/h

at a point y =Yk is given by the left side of the following

expression

Wllh, 'a''rA~)- (25)

It is not difficult to devise a test for the correctness of

this expression similar to the tests derived in Appendix III.

This expression is now combined with Eqs. (16a) pertaining

to the weight function eq. (15a) and with Eq. (18a) pertaining

to weight functions Eq. (17a). Now one has the systems of

equations.

Case 5a- "0' -LA 0'(4 O
~' ~/ ( A,,h#) 41 4 fg)IJ (26a)

13



and

Case 5b

L!

+ ("I" A - -'" 2 + # 4Vol- '- (27b)

- <4<,D

The weight functions of the case 3c are unsuited to such an
approach.

In practical applications there are always a finite

number of values k and Ok'" Then one can express the values

of k' in terms of the values of 4, by means of the second

equation. One thus obtains a system of equations for the

Ok'S only. For the present discussions this is not practical.

Case 6.

Quadratic shape functions studied in case 4 allow the

first derivatives to be discontinous. It might be a

simplification if one imposes the condition of continuity

of the first derivatives. The jump of the first derivative

at the point y = Yk is given by the left hand side of the

following equation

-' - (#h, + -,) + 4 fA, +  ~ o (28)

Case 6a. (linear weight functions)

We use this condition in combination with Eq. (22a)

which holds for the weight functions Eq. (21a), Figure 9a.

14



One then obtains

'T (29a)

Case 6b. Constant weight function

The expression Eq. (23a) is not suitable as sole weight

function because it fails to cover the whole interval. We use,

instead, the weight Eq. (17a) (Fig. 7a) and obtain

74- Z411A 3a

-,"#+ - + ,-t o

4
..(-

Case 7.

The second derivative is defined everywhere if one

deals with third degree polynomials and continuous first

and second derivatives. It is then possible to use such

an approximation in order to define the second derivatives

at the*grid points and to apply a collocation method. For

yy at point Yk one obtains from the interval Yk< y < Yk+l

correspondingly

Eq. (28) guarantees that these expressions be the same.

For the sake of symmetry we write yy(yk ) as the average

of these values. Then one obtains from Eq. (1) (with a

change of sign)

15
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(31a)

* together with

<0 (31b)
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SECTION III

STABILITY TESTS FOR THE SEMIDISCRETIZED PROBLEM

A stability analysis can be carried out in the usual

manner. The interval in the y direction is assumed to go

from -- to +=. Alternatively, one might assume periodicity

conditions. Then one sets

a 45Ag, 6e~,,6h t(32a)

and if needed

and computes the values of v in dependence upon V. The method

is stable, if v is real or has a positive imaginary part.

If V is small (long waves), then one expects that v = + U.

In a precise solution of the original problem this result

should be found for all values of V. In an approximate

method this relation will be satisfied only approximately.

This gives an insight into the errors introduced by

different approaches.

One obtains with Eqs. (32)

~A-~ 7~~ C t*,* ( fW&(4/L (33)

OIL 9e- A, C ~5 *'-k)sJ,4/'2go & ) (34)

4-4 1'4) 4=6-1 (35)

-/-& u ~ (2J ~ iA (36)

17



One obtains:

Case 1. (finite differences, Eq. (8))

., ,. I.( / M, . (36)

Case 2a. (linear shape functions, linear weight functions
Eq. (11))

/(-/,

Case 2b. (linear shape functions, constant shape functions,
Eq. (13))

PL 44L (38)

Case 3a. (third degree shape functions, weight functions
derived from shape functions Eqs (16))

(/4/0o) ,,C'I(S ) (/ I' 0

In order for this system of equations to have a nontrivial

solution for the vector [C, C]+, its determinant must

vanish. This gives a quadratic equation for v2h2. For

the numerical evaluation this determinant is a suitable

starting point.

18
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Case 3b. (third degree shape functions, constant weight
functions Eqs. (18))

[6 Aift&(hA4)

(40)

Case 3c. (third degree shape functions, constant weight
functions Eqs. (20))

0

( ) (7/L ~ g,'u~4/) ~(41)

II

Case 4. Quadratic shape functions

We set

(42)

19
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Case 4a. (weight functions derived from shape functions,
Eqs. (21))

Case 4b. (constant weight functions, Eqs. (23))

4 -,- ,,j, /2C( hL,4,, II/1( ,4/, J
A) (4o)s~c(4)

Case 5. (third degree shape functions with continuous (44)

second derivatives)

Eq. (25) which introduces continuity of the second derivatives,

combined with Eqs. (32) gives

., , (45)

Case 5a. (weight function related to shape function)

One obtains from the first of Eqs. (39)

' ,~~ (±4k /) "'[ 1 ) (i - 4/j)j' l*/l)/ - t,/4) j )

This can be simplified to

IIPL

Case 5b. (weight function constant)

One obtains from the first row in the determinant Eq. (40)

20



This simplifies to

42 z(~4 A4-4.a44/A) (47)

Case 6. (quadratic shape functions with continuous first
derivatives

The condition(28) for continuity of the first derivatives

in combination with Eq. (42) gives

eps
Case 6a. (linear weight function)

One obtains from the first row in the determinant Eq. (43)

JL6 m _ t'//.( A .h/) (48)

Case 6b. (constant weight function)

The result is derived from Eq. (30a)

( ___ /_ _ (49)

Case 7. (third degree splines combined with collocation)

Here the condition (45) (continuity of second derivatives)

applies again. One obtains from Eq. (31a)

/("21(50)
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SECTION IV

DISCUSSION OF THE RELATIONS DERIVED IN SECTION III

The relations between vh and ph derived in the preceding

section have been evaluated numerically. The information
so obtained is valid only if one solves the systems of

ordinary differential equations which are written down in

Section II precisely. In reality, one must apply some

approximation also for this purpose. Some observations regarding
such integrations are made in the next s1*ction. The formulae

in Section III are based on the hypothesis (32a) (supplemented

by other expressions of a similar form) that is

which corresponds to an approximate particular solution

The wave speed in this approximation is then + v/p, the wave
speed for exact solutions of the original differential

equation is ± 1.

In the approximations discussed so far, the wave speeds

are real for all values of V; there is no damping. (one
would speak of a dispersive method because waves with different

wave lengths do not remain together.) Because of the error

in the wave speeds, one obtains a phase error in the wave

after some time has elapsed, which is given by

In the graphs the value of v/p is shown, the phase error

decreases more rapidly with V~ than V/p - 1, because of the
factor p which occurs in the last expression. The contribution

of a certain wave length to the solution becomes meaningless

if the phase error exceeds some fairly small number (perhaps

7r/6 or smaller). one must make the grid size h small

22
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II

enough so that for the time for which the solution is

required, the phase error for the significant wave lengths
IIstays small.

For the cases 1 and 2, one obtains only one value of
2(vh) for each choice of (ph). For cases 3 and 4, one

2
obtains a quadratic equation for (vh)2. This requires an

explanation.

Consider expressions which assume at the grid points,

the following values:

or 4(51)

These expressions can be rewritten in the form

< ~C j ' Y ( ( u h #k = -- +r, ( 5 2 )

Except for a trivial change of sign (in the sine function),

one obtains the same values at the grid points y = kh, if

one replaces p by -p and or changes ph by a multiple of

2n. The above expressions can originate from waves of

the fotm
! #. c J/y

2n 21
where Pl = p mod - , or u1 = -p mod -.

This is the well known phenomenon of aliasing. For the

evaluation of the formulae of the previous section, it is

therefore sufficient if 0 < p < w.

23



In general one will, of course, associate the values

of vh obtained from these formulae with the smallest possible

values of p which are admissible according to the above

formulae. But in principle, there is no reason to disregard
other values of p right from the start. Of course one will

consider only values of p for which the pertinent values

of v give tolerable approximations to the wave speed.

In evaluating vh for quadratic and third order shape

functions, one obtains two values of v2h 2 for one value of

ph. One will surmise that one of these values vh belongs

to ph, while the second one belongs to 2-ph. This is borne

out by the graphs. For an analytical explanation consider

the case p = 0. Then one has for p1 = p = 0

hence

and for (A r lit

hence

4'~~ , JmtcrlU,4) 44)

The first expression *k = 1 is exactly represented by

= 1 which is a third degree polynomial. The second

expression gives within one interval the expression

It is shown in Figure 10, together with the function

sin (21y) .

24
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This result is not surprising. For second and third

order degree shape functions, one has twice as many parameters

per grid point than for first degree shape functions.

Accordingly, one can approximate functions with a wave

length one half of that which can be approximated by first

degree shape functions.

The amount of numerical work to solve a system of

equations with double the number of unknowns is, of course,

at least twice as large. To compensate for this fact, one

will take the interval in the y direction for second and

third order shape functions twice as large as for linear

shape functions. The scale of ph for second degree shape

functions has therefore been chosen 1/2 of the ph scale for

first degree shape functions.

Figure 11 gives the results for v/p versus ph for the

cases 1 and 2. Curve a pertains to a finite difference

semidiscretization, curve b belongs to case 2a (linear shape

functions, linear weight functions), curve c to case 2b

(linear weight functions, constant shape functions). Ideally,

one should obtain 1 for all values of ph. The finite element

approximations are somewhat better than the finite difference

approximation, the region of values ph for which the v/i is

neaily correct is rather limited. Incidentally, curve b

is also obtained in case 7 (third order shape functions with

a collocation method).

Figures 12 and 13 give results for third degree shape

functions. Notice that in these cases ph ranges from zero

to 2n and that at ph = 7 one has a break. The reason is

explained above. Curve 12a and 13a give the result for

case 3a, weight functions derived from shape functions, curve

12b shows the result for case 3b, curve 13b gives the result

for case 3c, both have constant weights but they are shifted

with respect to the grid. In this case, weight functions

25



derived from shape functions are superior. It is rather

disconcerting that a small change of the weight function

as it occurs between Figures 12b and 13b, gives a rather

significant difference in the results.

It is conceivable that under slightly changed

circumstances the results would be different. Under the

present circumstances the procedure of case 3a gives the

best results, but the author is not sure whether or not the

same behavior can be expected for more complicated problems.

We explained above, why the region 0 < ph < 2T for the third

degree shape functions is considered as equivalent to the

region 0 < ph < ff for linear functions. For shorter wave

lengths the error in the wave speed is about the same for

linear and third order shape functions. However, the values

of ph for which long waves are adequately represented, that

is where v/p is close to 1 is considerably enlarged for

third degree elements.

Summarizing, one can say by taking third degree shape

functions with twice the grid size instead of first order

shape functions, one is able to represent in both cases the

same waviness with respect to the y direction. The wave

speed for short waves is falsified by about the same amount

in either case. Long waves are less falsified for third

degree elements than for first degree elements.

If one uses such a procedure, one must always take

the mesh fine enough, so that the behavior of all the waves

that are important for the solution is adequately represented.

Third degree order elements then make it possible to use a

far larger mesh (ultimately to work with fewer unknowns)

than first degree elements. Because of rounding errors, one

must expect shorter wave lengths to appear in the solutions, the

propagation of short waves is falsified by the procedure. Such

errors do not die out (as they would in an elliptic problem): but
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at least their amplitude does not increase. Moreover,

if such waves are due to rounding errors, then they are

likely to have a random character so that they cancel in the

average. The discretization error is already taken into

account in the falsification of the wave speed.

Since short waves are wrongly represented for third

degree shape functions, it might be desirable to suppress

them altogether. This can be done by replacing one set

of conditions which arise by the use of a certain weight

function by the requirement that the second derivative be

continuous. In this manner one connects the 4' 's with the

ks In other words, one uses a third order spline
representation. The results are shown in Figures 14 and 15.

The requirement of continuity of the second derivative is

a restriction of the space of functions that is available

for the representation of the solution, therefore, one

expects some deterioration in the wave speed. This is indeed

the case. Figure 14 compares the case 3a (third degree

shape functions, weight functions derived from the shape

function) with a case 5a where one of the weight functions

is replaced by the requirement of continuity of the second

derivative. Figure 15 gives the same comparison for the

case 3b constant weight functions with case 5b. one has

indeed a deterioration of the result for shorter waves.

(In these curves the maximum value of pih is w. A comparison

with Figure 11 shows that this procedure is indeed much

better than for first degree shape functions.

In third degree splines, the second derivative is defined

everywhere. It is then possible to use a collocation

method, in which the differential equation is satisfied for

the grid points y = kh (case 7). The results agree with

curve c in Figure 1. A comparison of different third

degree formulae is shown in Figure 16. Cases 5a and 5b
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(third degree splines give nearly identical results which

are fairly acceptable). A collocation method based on third

degree splines is not an improvement over first degree

functions.

The results for second degree shape functions, cases

4a and 4b, are shown in Figure 17. In Figures 18 and 19

the cases 4a and 4b (second degree shape functions) are

compared with cases 6a and 6b (second degree splines).

Second degree splines are very inferior.

Figure 20 shows a comparison between the results for

third degree shape functions (case 3b) and a quadratic shape

function (case 6b). The comparison is between a moderately

good case for third degree shape functions and the best

case for second degree shape functions. In the overall

picture the two methods are about equivalent, for short

waves the second degree method gives better results. However,

for long waves which are the more important ones, the third

degree method gives a better approximation to the wave speed

(v/p = 1) over a wider range of values ph. The amount of

labor in solving the system of ordinary differential equations

is the same for third and second degree shape functions.

One concludes that the use of third degree shape functions,

or the use of third degree splines, is preferable. However,

this conclusion is not generally correct because it disregards

the labor to set up the system. This seems to hold in particular

for elliptic equations.

28
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SECTION V

REMARKS ABOUT THE NUMERICAL SOLUTION OF THE SYSTEMS OF
DIFFERENTIAL EQUATIONS DERIVED IN SECTION II

The discussion of Section IV presuppose that one

solves the systems of differential equations which arise by

various methods of semidiscretization perfectly. In reality,

one applies also for this purpose some numerical approach.

We shall see that the error incurred in the solution of the

differential equations for the time dependence combine

with the errors due to the semidiscretization. Under

favorable conditions they may cancel each other. These

phenomena will be discussed later. At the moment we discuss

the application of finite difference techniques to the systems

of differential equation s of Section II. One might think of

some carefully written code with provisions for error control.

Most of these methods make use of information generated at

several preceeding points in time.

One notices that all formulae based on the finite

element approach fail to give explicit expressions for the

time derivatives d2 k/dt 2 or d2 /dt2 . To obtain these

derivatives in terms of the value of the functions Ok and

0 , one must solve a system of linear equations. For one

space dimension this task is not too time consuming. One

then obtains a banded matrix and the system of equations can

be solved very efficiently. The problem becomes cumbersome for

more than one space dimension. For two space dimensions, one

obtains a block tridiagonal matrix where the size of the

blocks depends upon the number of grid points in one space

direction, thus the individual matrices may be rather large.

An iterative solution of these systems may be possible in

the cases 1 and 2 (Eqs. (11) and (13)) and also in Eqs. (37)

and (38). This amounts to replacing the denominators (which

come from the time derivatives) by the series

29
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The series converges for the values of a which occur in

these formulae. The author has not explored the question
for more than one space dimension.

One is tempted to use implicit methods for the solution
of the differential equations. Implicit methods are

particularly useful for stiff differential equations; that
is, for equations in which the matrix governing the
linearized system (after it has been resolved with respect

to the derivatives) has eigenvalues with large negative real
parts. If one solves such systems by the Runge Kutta method,
or one of the predictor corrector methods, then the step in

the t direction is limited for reasons of stability to about
the reciprocal of the largest eigenvalue. A suitable implicit

method removes this limitation. The step which is automatically
chosen by the routine on the basis of an accuracy check I
is determined by the requirement that within the current
step the solution can be represented with a desired accuracy

by a polynomial of a chosen order. This allows the method to
proceed in large steps in regions where the solution is
smooth. Unfortunately, these preconditions are not met under
the present circumstances. The eigenvalues are imaginary.

One cannot expect to obtain smooth functions 4k(t) since

the eigensolutions pertaining to large eigenvalues (short
waves) do not die out.

Here one might make the following argument: If a small
step is needed in the y direction to express the solution
with sufficient accuracy, then one needs in principle a

corresponding small step in the t direction. Otherwise, one
will disregard information which has been considered as
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essential in the initial conditions. From the point of view

of accuracy, one cannot permit in implicit methods a time

step which is much larger than the one permissible in explicit

procedures, but the same limitation will probably be

encountered also from the point of view of stability of

the numerical integration procedure.

The implicit method requires the solution of a linear

system of equations at each time step, even if the differential
equation gives the derivatives explicitly. But, under these

circumstances it is not necessary to have the derivatives
in an explicit form. To show this in a schenutic manner,

let us consider the system of first order equations

where y and r are vectors and L and M are matrices. In an
implicit scheme one ultimately arrives at an equation

where u is a known vector determined from the values of y
and y at preceeding points in time and on the value of r(t).

The specific form of the equation depends upon the integration

method. One obtains by multiplying this equation from the

left with L

L ~ cowl-6 Z Lf(t *42 L a

(L jdl - o Ns')y1' 4.4) eow b-

In order to obtain y(t + h), one must therefore solve

a system with the matrix L - const. h M. If the derivatives
are explicitly available, then L is replaced by the identity

31
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matrix. If one wants to use this idea, it may be necessary

to rewrite existing routines for the implicit integration of

differential equations.

According to an idea of So.liman et al., the inversion

of the operator L in multidimensional problems is facilitated

if the weight functions and the shape functions have a

special form. In the two dimensional problems, one will

introduce a two-dimensional grid (say a rectangular grid)

with grid points characterized by two subscripts. To the

point i,k there belongs a shape function N ikand also a weight

function. Assume that the shape function and the weight

functions appear in the form

The inversion of the matrix L can then be reduced to the

repeated solutions of one-dimensional problems. The

price for this simplification is the restriction

in the choice of shape and weight functions. Practically

only very simple shapes are possible; for instance,

piecewise linear functions in a rectangular grid. Even

then, a direction inversion of the matrix (L - const hM) is

not possible. If the second term is small enough, an

additional iteration would be applicable. This restriction

of flexibility (which to some extent contradicts the basic

philosophy of the finite element approach) may be worthwhile

for multidimensional problems where the solution of a large

system of equations is a very time consuming element.
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SECTION VI
TIME DEPENDENCE

In the preceding sections the original partial differ-
ential equation has been reduced to a system of ordinary

differential equations (in our particular example with

constant coefficients). Appendix IV derives the familiar

fact that the results of the treatment of this system by
finite difference or finite element methods remains unchanged

if one first makes a transformation which brings the system

into its diagonal form. It is therefore possible to con-
sider one component at a time. The following discussions

are therefore restricted to the equation

where u is a scalar quantity; the constant v stands for one

of the values of v computed in Section III as a function of

the reciprocal of the wave lenght (except for a factor of 2R).
In practice one does not make such a diagonalizing transforma-

tion, the values of v never appear, and the shape functions

and weight functions used in solving the system are independent

tof V.

In Section II shape functions for the y direction have

been used. The parameters upon which they depend are functions

of time, which are now represented individually by shape

functions of the same character. The scalars u in Eq. (54)

are linear combinations of such parameters. One arrives at

shape functions in the y,t plane of considerable complexity

in spite of the fact that the discussion is carried out for

one-dimensional problems. Familiar forms are bilinear,

biquadratic and bicubic shape and weight functions in a

rectangular grid.
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We distinguish between steps h and h in thes ti th
space and time directions respectively, The stability of

2 22 2the time integration depends upon v h t The maximum of vt. 2

which occurs in a specific problem depends upon the step h
in the space direction. Sometimes it may be desirable to
have a method which is stable even if vht is large.

Hyperbolic problems, by their very nature, are initial
value problems; at an initial value of t the values of u and
du/dt in Eq. (54) are prescribed. The solutions can there-
fore be obtained by a marching procedure. We shall restrict
ourselves to methods which can be interpreted in this

manner.

The application of finite difference methods has been
discussed in general terms in Section IV. Here we discuss
a specific approach which is sometimes advocated. One writes
Eq. (54) as a system of first order equations

• "(55)

We use dots to indicate differentiation with respect to time.
In Section II differentiations with respect to y/hs have been
denoted by prime.

We use equidistant points in time

tk = kht

and set
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Let e be a constant; 0 <9e<1. Then one obtains in a familiar
manner

or

u~~j~= 4]t Jz(56)

II H

From this system one finds u and u in terms of uk and
k+l ;k+lk

' k|Let * Tosute ao stability< e1.Teontas intrdcean ml faina

factor p.

[ (57)

This leads to the equation

~4O[ (58)

J-
Hece ph a. 
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One has

oh/a

The method is stable for 0 4 1/2. One also has

AY /GY (1 (60)

A single wave, defined by its value at the grid points is

given by

Cos~ ~ AI I (
CS'IL4k$f) kt/$IP&X5 b

(61)

If there were no phase error the factor of tk in the last

term, namely

would be equal to u.

Depending upon the specific form of the differential

equations derived in Section II and upon the choice of h

one has different relations between v and V. Ultimately,

one is interested in the relation between V and quantities

characterizing the amplification factor. For some values

of h /h and for some values of p a cancellation of thest
discretization errors may occur.

-he relations between V and v for cases 1 and 2, Eqs.

(36), (37), and (38) can be written as:

36



&hL 4 .tdSP (~W/4')

with a = 0, 2/3, and 1/2, respectively. For these values
of a and for different values of the Courant number 8 =
ht/hs, the following expression is shown in Figs. 21, 22, and
23.

This expression arises from Eq. (61) for 8 = 1/2. In this

case IJp = 1 and one has no damping. Ideally this expression
ought to be 1 for all values of Us. The phase errors which
arise are by no means small. The curves shown in Fig. 31
supplement these figures. They give the results for Courant
number 0. In all cases Courant number 1/2 gives about the
best results, particularly in conjunction with method 2b.
The results deteriorate considerably with increasing Courant

number.

Next we study cases in which the discretization applied
in Section II for the space direction are used also for the

time direction. We restrict ourselves to cases 1 through 3.
In actual computations 0(y. , tk-l), (ykt k ) and in cases 3
also *'yt,tk-l) and 01y., tk) are known. Here tk refers to
the time for which the computation has just been completed,
t ranges over all stations in the y-direction. The procedure

then computed (Yz'tk+l) and in cases 3, also *TY,tk+l)"
According to the observations made at the beginning of this
section it suffices if one studies Eq. (54). Then one
determines Uk+l from Ukl and uk and, in cases 3, uk l and
uk+l from uk I Ukl, uk, and u'. One obtains indeed a

37
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marching procedure.

Case 2a gives

In the present context v is given as a function of hs
The formulae are found in Section III. Particular solutions

of this equation are found by the hypothesis

where i is unknown. One then obtains

Hence, for case 2a, after substitution of Eq. (37)

* ~ ~,84~44*S) ~ JL~~4)(62)

For ht/h s = 1 (Courant number 1) one obviously has

This means that the wave speed is correct. The errors due

to the discretization for the t direction cancel the errors

of the y discretization. In the interval 0 < vht w the

expression on the right of Eq. (62) is a monotonically

increasing function of sin 2 (v1ht/2), its maxium is 12.

If the left hand side exceeds this value, then the value of

V for which this equation is solved cannot be real. From

the two conjugate complex solutions which will then appear,

one will give waves whose amplitudes increase with time.
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For ht/h s  I 1 one has a real value of v for each choice

of ui; the method is stable for Courant numbers smaller than

1. The cancellation of discretization errors for Courant
number 1 has no counterpart in elliptic equations.

The procedure for third degree shape functions can be

carried out in analogous manner. However, one encounters a
significant difference. Consider case 3a. The relation

between p and v is given by Eq. (39). It has been obtained

from Eq. (16) by setting

k+l = *k exp (ijhs).

For the present discussion is it preferable if we write

Ok+l = k (63)

where p is some point on the unit circle in the complex plane.

Then one obtains instead of Eq. (39)

-o - (64)

For p on the unit circle, this equation gives real values of

v2h8. Now we apply a discretization analogous to case 3a to

Eq. (54). The results can be written down, by making appro-

priate modifications in Eq. (16).
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Setting 1'& , 0

Uk+l Uk- P1 Uk+l =Uk'Pl

and changing all signs one arrives at

(65)
This equation must be solved for pI. It can be

rewritten in terms of an unknown

v 1 /2 - -1/2 (66)

One has specifically

- '. f,"1. V'*

i .,4I v,,/A . - v(v~t4) '/

Thus, from Eq. (65)

I V

70 23 4))

This is a quadratic equation for v2 . Eq. (65) can be obtained

from Eg. (64) by replacing p by p, and hs byh t  For a

further discussion it sufficies if one sets h. = ht. Then

one has obviously

40
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j~~ 7  ZJ~6~w4)(67)

These values of p1 lie on the unit circle in the complex
plane. The value of v pertaining to these solutions is

But there exists a second solution for v. We shall see
that among values of p, belonging to this second solution.
there is always one which gives an unstable solution. It
follows from Eq. (65) that the product of the two roots for

Pis always 1. All nonincreasing particular solutions
must have values of p 1 lying on the unit circle, for there
belongs to each root which lies inside the unit circle
another one outside. If one chooses p1 as a point of the

2 2unit circle then one can evaluate Eq. (65) for v h t
(This is the evaluation which led to Fig. 12 curve a, but
now we consider Ipht and vh t as coordinates.) To each
value of ph t one obtains two values of .vh t, each a monotonic
function of p~h t; these two functions do not overlap. It
follows that for these curves (which exhaust all possibilities
for p being on the unit circle) one obtains for each choice
of vh tone value of p.ih s(and consequently one value of v2)

Teslope of these curves does not vanish, accordingly there
are no double roots. It follows that the 'second root for v 2

gives values of p 1 off the unit circle, one of them pertains
to an unstable solution. The same argument can, of course,
be made if h t/h5 s 1.

This observation can be connected to a phenomenon which
arises if one solves ordinary differential equations by
integration techniques in which one uses information generated
for preceding points in time. One then deals in principle
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with difference operators which are of a higher order than

the differential operator occurring in the differential

equation that is to be solved. This procedure introduces

spurious particular solutions. In order for such a scheme

to be stable, these spurious solutions must be damped. If

one uses third degree shape functions in a manner analogous

to case 2a to solve the differential equation for the time

dependence, then one uses information for uk, u , Uk I and

Uk i. To define an initial value problem for the

differential equations the values of uk and ui are sufficient.

One recognizes that this form of discretization will introduce

spurious particular solutions and because of the complete

symmetry which exists between the positive and the negative

time direction, there exists for each solution which is

damped another one which is excited (that is, damped in the

negative time direction).

Because of this observation, higher order elements of

the character discussed in cases 2 and 3 must be rejected.

For first order elements this phenomenon does not

occur, but even then one might have reservations because

of the choice of the weight functions. In a marching

procedure one considers the solution as known up to a point

tk, and continues it through the interval between tk and

t k+I  This step has no influence on the solution in the

preceding interval. However, the weights used in cases 2

and 3 take into account the residuals between the points

tk-l and tk as well as those between the points tk and

t k+. The solution in the interval between tk and tk+ 1

is chosen in such a manner that its residual counteracts

the effect of the residual in the preceding interval, over

which one has no control. One observes, on the other hand,
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that according to the above stability anAlysis this has no

obvious undesirable effect. For Courant number I the methods

even give a cancellation of the discretization errors in

time and space directions.

Let us now consider procedures for which this objection

does not hold.

First we discuss shape functions which are

piecewise linear in space as well as in time. In

the choice of the weights for the space direction one

will observe the symmetry which exists between positive and

negative values of y. Regarding the time direction a

corresponding symmetry is not required. For higher order

elements it is even undesirable (because of the occurrence

of spurious solutions, as we have seen above). Specifically

we choose, for piecewise linear shape functions

kh I (Wb4A~ -,e. Z>) 0$ e,'/ /, 4r ' "i ,' ,/ ,f * '-

The weight function straddles the point tk but not the point
t This is necessary because one will have a jump of u
k+lV
at the point tk which generates a 6 - function when one forms

d2y/dt2 . One has

A4 -S

Furthermore

A~.4 -U 47(t%
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One thus obtains

*11/ (68) 2

Again, we introduce an amplification factor

S , (69)

This leads to

(' + - ,, .0( - (&I J )J o (70)

1/, 1 (p, "4 16-,-) (71)

For small values of vht the roots are conjugate complex.

The absolute value can be computed from the last formula.

It can be obtained more simply by a comparison of the first

and the last term in Eq. (70). One obtains

/j'/= I/ ij(,'4,Y)' (72)
2

A double root is obtained for (vht) = 16. This gives

2

For (vh ) > 16 one obtains two real values of p. The

particular solutions are always damped if I p < 1.

We examine for which values of vht one will have

IpI 1. One obtains from Eq, (70)
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and

The particular solutions are damped for all finite values of

vht. As vht tends to infinity one obtains particular solutions

which alternate between positive and negative with little

change of amplitude. Fig. 24 shows exp(iph t ) and a curve

p(vht) in the complex plane for 0 < pht 1 7r. Corresponding

points are connected with each other. The useful range for

values of pht is rather limited to about 0 p 1ht n/2. Beyond

this point one obtains strong damping and a considerable

phase error. The method can be used even if vht is large,

because such waves do not create an instability, but the

contributions of waves for large values of pht are meaningless.

Now we study again Eq. (54) but represent the unknown

in the interval from k to k + 1 by third degree polynomials

They are determined by the known quantities uk and Uk and

by the unknown quantities uk+ 1 and u" . By this characteriza-
k+l

tion continuity of the first derivates at the grid points is

guaranteed. The functions u represent the coefficients of

the eigenfunctions which arise from a representation of *
(in the original partial differential equation) along lines

t = constant in terms of piecewise third degree polynomials

in y. They are therefore expressible in terms of * and

at the grid points. The continuity of the derivatives u"
therefore implies continuity of *t and 4yt not only at the

grid points but along lines t = const. If'the function t

is given along a line t = constant (which is the case in a

properly set initial value problem) then one can determine

from it also 4yt ; it does not contradict the notion of a

properly formulated initial value problem, if we initially

assign the value of i. If one takes triangular elements

and third-degree polynomials (with the powers of y and t
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counted together) then one has agreement of the gradient

in adjacent intervals only At the grid points, In the
present formulation we have piecewise bicubic elements and
then continuity of the gradient is guaranteed everywhere

along the element boundaries.

The weight functions are to be applied only to the

interval from k to k + 1. No overlap over the grid point

is needed, because of the continuity of the first derivatives.
In each interval we have two unknowns, uk+l and uj+ I . One

therefore needs two weight functions. We choose

w = 1 for tk < t < tk + c ht (0 < c < 1) and

(73)
w = 1 for tk + c ht _ t < tk+l

or equivalently,

w = 1 for tk < t < tk+ 1

w = 1 for tk < t < tk + ch

In representing the space dependence of we have also

considered examples in which the weight functions were formed

by linear combinations of the elemental shape functions.

Something similar can be done here. One could for instance

choose

w = 1 N 3

and

w N N2 + N4

where the functions Ni  are given by Eq. (6) with Ay

replaced by At. The first of these weight functions is 1.
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This possibility has not been discussed. The results

would probably be of the same character as those for the
weight functions defined above. Let

At = t - tk'

Then, using Eq. (61 one has the following representation for
u in the interval between tk and tk+ I .

412 t- A i
dz a. i{ ai~ '-/ /4e 4 /-*~~ 2~ ~

tt

Substituting these expressions into Eq. (54), multiplying

de -t

by the weight function 1 and integrating over from 0 to

c, one obtains after multiplication by ht2

l 9L :- c -0 6.',' , /c"I- 2.c

h*-C-jt, 
- : Ne (-74)

=0
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-u-6 ,'u2A(74)

JJ

I 
Continued

The second equation is obtained by setting c = 1. Let

22

ht

Then one obtains the following system of equations which

connects the vectors (Uk+l, Uj4+l)+ and (uk + u) + -

a, 4,~/

(75)

with

a = -6c + 6c2  c1 = 6c - 6c2

a2 = -4c + 3c2  c2 = -2c + 3c
2

bl _ = _ - + 7c d 1 = c3 14 (76)

b 1 2 23 1 4 d 1 c 3-+1c

The amplification ratio p defined by
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is determined by the following equation

This quadratic equation for p must be solved for different

values of X and c. The amplification ratio has either two

real or two conjugate complex roots. Eq. (77) evaluated in

detail gives

# A (-.,- - c(-c) + A-,,i-c(-)).9 (78)

#[-6' !'(- C I(/_C) -~i 0

This equation must be solved for different values of c and X.

The factor c(l-c) is of course unimportant. One notices that the

coefficient of p2 and the coefficient of the constant terms

are interchanged if one replaces c by (1-c) and that the

coefficient of p remains the same, Accordingly, if c is

replaced by (1-c), then a solution of p is replaced-by p-

For c = the product of the roots p is 1. In this case

the solution is stable only if the roots are conjugate

complex. The discussion for c - 1 best goes back to the1
original determinant Eq. (77). Setting c = and taking twice

the second row minus the first row, one generates the effect
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.1

of a weight function which is symmetric with respect to
At/h = . One obtains

M -o
(1

Hence

i'0 (79)

For X small one obtains

i1 e

and hence

p = 1 ± i,ht

(as expected). The right hand changes signs for X = 48,
= 12, and A= 9.6.

p is complex for 0 < A < 9.6 and 12 < X < 48

p is real for 9.6 < A < 12 and 48 < X.

The values of (arg p)A-/ 2 versus 1/2 for 0 <X A1/2 = vht
< 9.6 are shown in Fig. 25. One sees that in this stable
range the ideal value 1 is fairly well approximated. The

1method is unstable for c = and p real.
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one has, from Eq. (78) for general c and two con-

jugate complex roots of p

(80)

The first two terms in the numerator and in the denominator

are the same; for 0 < c < 1 they are positive. The last

terms show that IpI < 1 for c > . we restrict our

attention to this region 1/2 < c < 1. Fig. 26 shows for

c =3/4 the curves in the complex p plane which arise if X

is varied. They consist of arcs in the complex plane which

are symmetric to the real axis. According to Eq. (80) these

arcs lie within the unit circle if 1/2 < c <1. They end

in branch points which lie on the real axis and are connected

by pieces of the curve for which p is real. These portions

may pass through the unit circle. This can happen only for

p=+ 1. one obtains from Eq. (76) for p 1

-c(l-c) - 6X 0.

2

1: Hence

X= 0

and (81)

12

The first value represents the beginning of the curve. The

last value is a second transition through the point 1. Only

for c -1 will this point lie at X
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one obtains for p =-1

Hence

andIl

These points coincide for c =1; that is, the p-curve reaches

the unit circle at p =-1 but reun,irmediately. The

arrows in Fig. 26 give the direction of increasing values

of X. The curve starts with X = 0 at p = 1 and moves along

two branches through the complex plane to a branch point

on the negative real axis. It is continued along the real

axis in the positive and negative directions. The branch

extending in the negative direction passes through the unit

circle. Both branches double back and meet at a branch point

along the negative real axis. From there the curve is con-

tinued through the complex plane in two branches which meet
at a branch point along the positive real axis. The final

continuations follow the real axis in positive and negative

directions. one of the branches passes through the unit

circle (at p = 1). For AX these two branches end at

points of the positive real axis. For c = 1 (Fig. 27) one

of the endpoints lies on the unit circle.

According to the above analytical discussions the curves

for different values of c have the same character. All have

unstable regions dIpI> 1), except if c = 1. Stability for

c 1 can be guaranteed by limiting the Courant number

(A < 12/(1 + c(l-c). For c =1/2 this limit is X < 12.
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2 2
Notice that these values are close to X = (vh t) 7T

If one imposes such A limitation then the choice c -1/2
seems to be preferable; according to Fig. 25 it gives a good

approximation to the propagation velocity of different waves.

In comparison to linear shape functions the approxi-

mation by third degree shape functions is much better even

for other values of c. This is seen by comparison of

Figs. 26 and 27 with Figure 24, but as we mentioned, one

must limit the Courant number.

It is clear from the outset that for Courant numbers

that are considerably above 1 the solution of Eq. (54) will

be inaccurate. The Green's function, which describes the

propagation of errors, is an oscillating function. We have

imposed an averaging procedure for the residuals without

taking this property of the Green's function into account.

One is therefore resigned to the fact that from a certain

value of vh ton the results will be meaningless. one hopes,

however, that such solutions will vanish automatically,

because they are damped. The above analysis shows that this

is not the case for third degree shape functions except

for c = 1. In this limiting case one has as one of the

weight functions constant weight throughout the interval

and as second weight function a 6 function at the point

t k+l; this amounts to a combination of weighted residual

method and a collocation method. Of course, a collocation

method has much in common with a finite difference approach.

We notice in passing that an implicit method does not

automatically lead to a stable procedure.
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SECTION VII

A MORE COMPLICATED SAMPLE PROBLEM

In the preceding sections we have seen that in many

methods stability can be achieved by limiting the Courant

number. There are methods which are stable even for very

large Courant numbers, but this entails a considerable loss

of accuracy even for fairly long waves.

In a problem with variable coefficients it is possible

to satisfy a Courant number limitation throughout the whole

field provided that the discriminant which determines whether

the problem is elliptic or hyperbolic is bounded away from

zero. If the step in the space direction is fixed, one

simply makes the time step sufficiently small. Of course,

for certain parts of the field the Courant nutber will then

be unnecessarily small and the progress in the t direction

unnecessarily slow. At first glance it seems that this is

no longer possible if this discriminant vanishes locally as

it happens in the transonic problem. (In the present

discussion which is restricted to hyperbolic equations, this

can happen only at the boundary of the field.) We study a

simply example of this kind.

Consider the partial differential equation

a o- 0 (83)

with boundary conditions

-0 for J 0 (84)

m for m

The discriminant vanishes at the boundary y = 0 of the field.

In a transonic problem, x is the downstream direction. It

corresponds to t in the previous examples.
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V

For a comparison we shall treat the wave equation also

?V it a1 (85)

with the same boundary conditions.

For simplicity a semidiscretized difference method with

L + 1 equal intervals in the y direction (L intermediate

points) is chosen. Then one has

(86)

Let

(87)

The semidiscretized finite difference approximations to

Eqs. (83) and (85) are, respectively

-~ ~ )-'o(88)
40.(transonic equation)

and

Z 'Of* y 24 (89)

(wave equation)

Setting

(x.) 2 6 £,X1'0X) (90)

one obtains the following eigenvalue problems

a (a (91)

with

h (92)

(transonic equation)

and

" to,* ax O -'" (93)

with

(94)
(wave equation)
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The n th eigenvector for the wave equation has the elements

= Io(95)

Then one has

42 f £ ) (96)

The largest eigenvalue is obtained for n = L. If L is

increased, then one obtains more eigenvalues but within the

same interval 0 < X (n) < 4.

For the transonic problem one has a generalized matrix

eigenvalue problem

-2 1 71 a

1 -2 1 2 a21 -2 13a 3
+ , . =0o (97)

1 -2 1 LI aL-1
1 -2 L aL

This problem has been solved for L = 8, L = 12 and L = 20

by means of a routine available in the EISPACK library. The

eigenvalues are listed in Table 1.

For the wave equation as well as for the transonic

equation there exists a maximum eigenvalue (X = 2.4 and X = 4,

respectively). For the integration with respect to time (in

which the question of stability is decided) one must consider 3

the value of v which is connected to X by Eqs. (92) and (94),

respectively. In the preceding section we found as a

stability limit for approximation of the time dependence by

third order polynomials
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TABLE 1

EIGENVALUES FOR DIFFERENT VALUES OF L

IN THE TRANSONIC CASE

L =8 L =12 L =20

2.3880 2.3880 2.3880

1.0900 1.0900 1.0900

.70560 0.70566 .70566

.51691 .52166 .52166

.37290 .41367 .41376

.22900 .34015 .34284

.00672 .27464 .29267

.025700 .20644 .25531

.13978 .22632

.081353 .20215

.036374 .17847

.0085800 .15318

.12699

.10112

.076658

.054498

.035403

.019995

.0087602

.0020425
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TABLE 2

THE VALUES OF ,k 1 1... 8 (FOR THE
LARGEST EIGENVALUE OF'THE TRANSONIC EQUATION

k L 8 L12 L L 20

1 1.00000 1.0000000 1.000000

2 -. 38801545 -. 38801545 -. 038801545
3 .077142863 .77142863 .077142863

4 -.1035388 -.010353876 - .010353876

5 .0010502475 .0010502475 .0010502475

6 -.000085665 -.000085665 -.000085665

7 .0000058444 .0000058449 .0000058449
8 -.000000341697 -.00000034273133 -.00000034273133
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TABLE 3

THE VALUES OF a k = 1...8, FOR THE SECOND
LARGEST EIGENVAE OF THE TRANSONIC EQUATION

w L = 8 L = 12 L = 20

1 -.85928478 -.85928475 -.85928475

2 -.78197087 -.78197083 -.78197083

3 1.000000 1.0000000 1.000000

4 -.48795330 -.48795340 -.48795340

5 .15152046 .1512073 .15152073

6 -.034773134 -.034773974 -.034773974

7 .0063442942 .0063478456 -.0063478456

8 -.0009411981 -.00096327439 -.00096327439

TABLE 4

THE VALUES OF a , k = 1...8 FOR THE FOURTH
LARhEST EIGENVALUE

w L=8 L=12 L=20

1 .67082316 .67489092 .67489121

2 .99489036 .99772005 .99772028

3 .29041777 .27961324 .27961259

4 -.86441535 -.87608045 -.87608122

5 -.2319448 -.20371902 -.20371726

6 1.0000 1.0000000 1.0000

7 -.86952195 -.9262249 -.92622843

8 .40721511 .52975421 .52976194
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To improve the accuracy one may choose a somewhat lower limit.

Substituting Eqs. (92) and (94) into this condition and using

the respective maximum values of X one obtains

6 L,~~43(98)

(transonic equation)

(99)

(wave equation)

Important are the powers of h (3 for the transonic equation,y
2 for the wave equation). One must, of course, reduce hx
as one reduces hy, but more strongly for the transonic

problem than for the wave equation. But even here, a mesh

for which the time integration converges can always be found.

One observes that in the transonic example the largest

eigenvalues for different values of L agree nearly perfectly.

This does not happen for the wave equation. Also the
(n)components ak of the eigenvectors (normalized by the require-

ment that the largest component of the vector with components

an) be one) agree surprisingly well for different valuesak

of L. (See Table 2 for the largest eigenvalue,

Table 3 for the second largest and Table 4 for the fourth
(n) o hs

largest.) For large values of k the components ak of these

vectors become extremely small, therefore only the components

for k = 1 to k = 8 are included in these tables. One sees

that the effect of the eigenvectors pertaining to the largest

eigenfunctions is restricted to the immediate vicinity of the

parabolic line. As L is increased and the interval hy becomes

smaller, the region where the largest eigenvalues are of

importance contracts because close agreement of the eigenvectors

occurs if one compares the same values of k (not of y = k h
y

This analysis shows that the Courant number limitations

are not as serious as one might assume at a first glance.

If the contributions belonging to the largest eigenvalues
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should become unstable, then this instability will be

confimed to the immediate vicinity of the parabolic line
y = 0.

The eigenvectors have been found by direct computation.
The is probably the most practical way even if one does not
use the EISPACK routine, which is somewhat oversophisticated

for the present simple problem. The eigenfunctions can be

expressed in terms of Bessel functions. This may be useful

if one wants to understand their asymptotic properties, for

instance, the fact that the largest eigenvalues are nearly

identical.

The system Eq. (97) can be regarded as a three point
recurrence relation

4-, 4,t/

It resembles the recurrence relation for Bessel functions

Z (x)

where Z represents a linear combination of J and N with
p p p

coefficients that are independent of p. We set

Then one has

, + -/ -) o o(100)

To identify the two relations one must postulate

The order p must increase by 1 as k is increased by 1.
Therefore,

a

and, using this result

Thus, one finds that

(101)
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satisfies the recurrence relation Eq. (100). The eigenvalue

A is determined by the boundary conditions

Accordingly, one must determine A and the linear combination
between J and N in such a manner that

p p
~ (A/ u 0 (102)

and

42 (/a) 0 (103)

If L is very large, then the order L = 1 -(2/X) is very large
in comparison to the argument (2/X) of the Bessel functions.

Bessel's equation reads
2 2, - " '/ + - 04"

If the order is very large in comparison to the argument,
then (except for a constant) Z = Xtp . It then followsp
from Eq. (103) that Z is, in essence, given by Jp = const. XP

while the contribution of N is very small (except for k ~ L).

This explains why the eigenfunctions are so close to each
other for small values of k.
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SECTION VIII

A RATIONALE FOR THE CHOICE OF THE WEIGHT FUNCTIONS

So far we have chosen the weight functions on intuitive

grounds and then examined their effect on the tstability.

In this section the attempt is made to provide for a more

rational basis.

We ask for the best possible choice of a weight function

for the differential equation Eq. (54) assuming that v has

a fixed value. As usual, we replace u by some approximation

using shape functions which are related to certain data

within the flow field; in our case these are the values of

u and u' at the grid points. The approximation so obtained

is denoted by a. With weight functions w1 and w21 one

obtains the following equations, from which the values of

Ua and Q are determined.
k k

+4) W,7 d die (104)

The specific choice, to be justified presently, is

ew iV (1~ms~('a~ 05)

Then one has the condition

2Y7Z ,~ (106)

Let Au be the difference between the exact solution u and

the approximation 6

One obtains, by substituting this expression into Eq. (54)

with
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Hence, provided that for Au 0, Au =0 for t = tk

t t

(107)

Hence, with Eqs. (106)

One sees that with the choice Eq. (105) of the weight function

the errors in u and u" vanish at the grid point tk+l, and by

induction at all subsequent grids points.

The argument is slightly different for the space

dependence. The starting point is the equation

We compare an exact solution and an approximation which have

the same dependence upon time. The exact solution is given

by

One has specifically

, 6'r .,/t'' k) ( o108)

The factor h- 1 in uk' occurs because by our original definition,

the prime denotes the derivative with respect to t/h. The

function u satisfies the equation
d~ul ''- >- o

The approximation is assumed to have the form
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Now it is assumed that Miy) is given by piecewise third

degree polynomials with continuity of the function and of

the first derivative. Let

and Z'4

With tentative weight functions wi (Ay) one finds as conditions
from which akand E~ kIare determined

i g.; 0 0 J,/yr (109)

Previously we proceeded as follows. Particular solutions
are obtained by setting

£4~41, 61~(4)

This leads to a homogeneous system for C and C.The elements
of the governing matrix depends upon p. The vanishing of its
determinant establishes a relation between ys and v (no matter
how the weight functions are chosen). We set

one then obtains

Then

4tv 4V

(110)
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Now we impose the condition that the errors in Au and Au'

vanish at the grid points in the y-direction the left sides

of the last equation vanish. In order for the right side to

vanish, it is necessary that the integrals vanish separately.

4

These conditions are identical with Eqs. (109) if one chooses

4'. - i* 1 , )

If these conditions are satisfied, one obtains because of

Eq. (108)

e%. - .-(

4, 4Y4fAII J

and then it follows that a(y) is periodic iwy with period
vh It does not matter how a(y) is related to k and u

provided, of course, that if

then

The initial data will, in reality, contain linear
combinations of waves exp(ivy) with different values of v.

The weight functions sin(vAy) and cos (vAy) are perfect only
for one of them; for all other wave lengths some error will

occur. At beat, it is possible to tune the weight functions to

a certain wave length, then it will be nearly correct for
adjacent frequencies. The weight function for very long

waves are given by
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A
Ai.~ e#4(P Ay)/

and

Figure 28 is similar to Figures 12 and 13. It shows

for third degree weight functions the wave speed for

different wave lengths with this choice of the weight functions.

For short waves (large values of V or v) the result is

certainly not better than the weight functions on which

Figures 12 and 13 are based. It might be preferable to

attune the weight function to a value of v somewhat larger

than zero.

The Duhamel solution of the inhomogeneous problem

used in Eqs. (107) can be regarded as a representation of

the Green's function for the ordinary differential equation (54)

The Green's function for the wave equation can be

obtained by a Fourier analysis with respect to the y and t

directions. The circular frequency v will then vary from

0 to infinity. The weight functions which one would obtain

by applying the above rationale are w1 = 1, w2 = At, w3 = Ay

and w4 = Ay At. They give equations for , y It and yt

at each grid point. These weight functions are attuned to

the low frequency components of the Fourier decompositon.

The Green's function for the Laplace equation is
given (except for a constant) by log(r-r'). One then obtains

as the effect of a residual R(r')

From this expression one can derive weight functions by the

requirement that the long distance effect of the residual

from each element be small. Let the element center be at

r= r0 with coordinates x = x o  Y = Yo Then,
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r- rolis small in comparison toI - 7 01. One obtains, by a

development of log( ' - ) with respect to (x' - xo ) and
(y' yo)

/e,,,# e/eiv,,,

he- /7d4j ,e/

This suggests three weight functions for each element, namely,

w= 1, w2 = Ax and w 3 = Ay. (One remembers that for the

Laplace equation and bicubic elements one expresses the

solution in terms of x, and y for each grid point.)

The number of weight functions obtained by the above reasoning

is correct. There is, of course, a question whether one should

use these weight functions instead of those which arise from

an extremum formulation. The same approach can be used to

obtain weight functions for the three dimensional Laplace

equation.

In a corresponding manner one can discuss the choice

of the weight functions for the three dimensional Helmholtz

equation. There one has as effect of a residual (except for

a constant)

/ . / P ' - P A I

The weight functions are obtained from an approximate

representation of the Green's function

I'-*I I 1 - ,' 1""//-
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I
The expression appearing in the second line dies out only

as /(r-r'), while that in the first line dies out as 1/(r'- ' 2

(Either x - x0 or y - y0 is of the same order as r.) The

above form suggests weight functions w1 = 1, w2 = Ax,

w3 = Ay, w4 = Az, but strictly speaking the goal of suppressing
long range effects is achieved only if u(x'-x 0 ), i(y'-y 0 ) and

l(z'-z6) are small within the element under consideration.
The size of admissible finite volumes must be smaller than

the wave length.

The idea of making long range effects small fails for
hyperbolic equations. The effect of a residual is given by

The square root vanishes at the characteristic cone through

the point t', y', z', and for this vicinity a development
of this expression is no longer feasible. It is impossible

to supress long range effects. Some further insight is

obtained if one considers the finite element concept in
conjunction with the idea of characteristics.

69



SECTION IX

FINITE ELEMENT AND CHARACTERISTIC COORDINATES

The presence of characteristics imposes a d~finite

structure to hyperbolic equations; one expects that

this fact has some bearing on the implementation of the

idea of weighted residuals. Perturbations (for instance the

effects of a residual) propagate along characteristics.

In Appendix VI the Green's function belonging to a two

dimensional problem has been studied. A local source in a

flow with a Mach number v'r gives a perturbation in the velocity

only along the characteristics emanating from the point

at which the source is located. Along these characteristics

one has a step in the potential. The perturbation velocity

has the direction normal to them; it is given by a 6 function.

Also the perturbation in the mass flow vector is given by

a delta function; it has the direction of the characteristics.

The effect of such a source does not die out with distance.

In choosing weight functions for elliptic equations, one can

use a plausibility argument. The long range effect of

truncation errors can be reduced by postulating that within

small regions the residuals counteract each other. This

argument cannot be applied here: the effect of two sources

which lie on different characteristics will not die out with

distance (although it is confined to a narrow region). We

study here to which extent this state of affairs can be

taken into account by the choice of the element shape and

of the weight functions.

Consider plane and axisymmetric flows at a Mach number

/.Then one has, respectively

1' 0 (112)
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If small values of r are excluded, then it is practical to

introduce in the axisymmetric case

;- "L (114)

Then one obtains
- _ '+ -! ." 44-- 0

OX a 4 r- -  +r2- (115)

Introducing characteristic coordinates

atI X*Y

or (116)
1= x -tr
t= X--

one obtains

a-O in the two dimensional case, (117)

and

or f.A (118)

in the axisymmetric case (119)

The axisymmetric case has been included because simplicity

of the plane problem might lead to faulty generalizations.

Now we consider the equation

6 t /(1 t)(120)

where f(E,n) is either considered as known or given as a

function of and its lower derivatives.

Assume that the element boundaries are characteristic

lines. This means that we deal with a rectangular grid in

the &,n plane. The solution in one quadrangel element is

completely determined if one knows the values of 0 along
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two adjacent sides. From the characteristic conditions one

then obtains the values of 4,T and 4 along the other sides

(T1 along the side for which const, 4 along the side

for which n = const). The potential is obtained by

integrations. The effect of the residual can be judged by

considering the falsification of 4 (or of 4, and 4 ) along the

newly computed sides of the quadrangle. This criterion is

preferable to an evaluation of the residual at infinity

because the errors do not die out. If the function f(E,n)

is known, then one has by a direct integration,

The values of E ( =l) and 4,( ,n = nI ) (and the values

of 4 which arise from them by an integration) is the only

information needed in order to continue the computation

in adjacent elements. Actually, one must approximate 4 by

means of a finite number of parameters. Equations for these

parameters are obtained by applying weight functions. But

since only the data along the element boundaries = i and

= nI are needed it is sufficient to use weight functions

wi (n) along the segment E = Ci = const and wj( ) along the
segment n = = const. One therefore obtains

0

and similarly for the second equation.

Hence, in an obvious manner

7 .~/ (jj) /4 4Wd=0(121)
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This is a weighted residual expression (The integration is

extended over the whole element). The weight wj depends only

upon n~. In the other case one obtains weights which depend

only upon ~

In the axisymmetric cases we derived two forms of the

differential equation depending upon which form one chosses

one has as weight functions either

wi q ) or N
as 

' -o

It is assumed that the residual is formed for the original

differential equation (113) in each case. There is still

some arbitrariness in the choice of the weights. For large

values of r the difference is unessential. one has very

little variation in one of the characteristic directions

while in the other direction the choice of the weight function

depends upon what kind of details one is willing to

disregard.

In principle, the errors so admitted do not die out

with distance. The reason for disregarding them is that they

express unessential details. A finite element representation

depends, as always, on a certain smoothness of the function

that is to be represented. Discontinuities of the derivatives

are admissible along the characteristics. (They might be

introduced by discontinuities in the boundary conditions.)

Such discontinuities at the characteristic element boundaries

are compatible with the present formulation and if they

are present, a finite element procedure based on the elements

bounded by characteristics may give better results than the

finite element procedures discussed in the preceding sections.

To see which steps one has to take we consider the differential

equation + n f(E,n) = 0 and assume that in a characteristic

quadrangle the function 0 is represented by bicubics. This
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requires that one knows at each of the four corners 4,
T1 and o .)n is given by the differential equations.

Known are the data along the lines 1, 2, and 1, 3 (See Figure

29).

Specifically, *i' 0 ,i' r,1' 02' ,2' c 3 ' 4n,3

unknown are T1,2' 4) ,3' 4),4' 
4)f,4' and 04

Accordingly, one can use five weight functions. One of them

is obviously the constant, which depends neither on & or n,

for the other weight functions one will choose two which depend

solely upon C, and two which depend solely upon n. Further

details are omitted. Some modifications are required along

a line for which initial conditions are given. This line must

coincide with a characteristic, and one deals with triangular

elements.

The stability analysis in all previous discussion has

been carried out for the wave equation. In the present case

one then considers particular solutions of

n = 0

which are given by

For bicubic shape functions one has as representation in one

element

where the gi's and hk's are polynomials of the third degree.

Among expression of this form, there are some of the form

f (M)and f2 (n). This means that the differential equation

will be exactly satisfied. It follows that the method is

stable in the same sense as one speaks of stability for the

methods examined in preceding sections. Here we have neither

damping nor dispersive errors; the only inaccuracies arise in

satisfying the boundary conditions.

74

. h 4 ~



Of course the characteristics are not fixed a priori

in nonlinear problems. Accordingly, one loses control over

the shape of the elements. This will probably make programming

more cumbersome.

An analogous approach to the three-dimensional problem

leads to serious difficulties. In three dimensions one has

characteristic surfaces which can be chosen in a great variety

of ways. To generate such surfaces, one can, for instance,

choose in an initial value plane, a two-dimensional mesh

consisting of quadrangles and then construct the characteristic
surfaces which emanate from these mesh lines. one obtains

two surfaces for each line. If the lines are straight, one
would obtain two characteristic planes for each line. By

forming the lines of intersection of these planes with a

noncharacteristic plane nearly perpendicular to them, one

obtains a pattern similar to those for the two-dimensional

characteristic method. But one has two families of lines

in the initial value plane and thus, one obtains four

different families of characteristic surfaces. The finite

volumes bounded by such surfaces are not well suited for a

computation. Moreover, these surfaces depend upon the choice
of the original grid and a great number of choices are

possible.

The characteristics in two dimensions and in three

dimensions are lines or surfaces along which discontinuities

may propagate. (Such discontinuities are introduced either

by the initial or by the boundary conditions.) In the

two-dimensional problem, characteristics along which

singularities (or also steep gradients) propagate are readily

found, they are members of the family of characteristics by

means of which the computations are carried out. In the

three-dimensional case it would be necessary to orient

characteristic surfaces according to the discontinuities (and
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steep gradients) as they are introduced by the initial or

boundary conditions. This may make it necessary to change
the definition of the elements as one goes along.

In a typical three-dimensional finite volume approach

one might consider it as desirable to build up the whole

flow field from finite volume elements which are bounded by

characteristic surfaces in a manner which takes the regions

of dependence into account. This is very difficult, if not

impossible. Assume for instance that one has a rectangular

grid in a noncharacteristic initial plane. The characteristic

surfaces described above form four-sided pyramids which lie

wholly in the region of influence of the data assigned within

an initial quadrangle. However, one needs very complicated

elements in order to fill during the next step the spaces

between these pyramids.

A finite difference formulation based on the idea of

characteristic surfaces is better able to cope with this

problem because it defines the approximation only at the

grid points.

In the two-dimensional problem a finite element procedure

combined with the method of characteristic can also be

motivated by considering the Green's function (see Section Ix) .

The Green's function of the three-dimensional problem has a

very complicated singularity along the characteristic cone.

This makes it difficult, if not impossible, to derive from

it, forms of the weight functions which are well fitted to

the problem.

The singularity becomes more managable (in fact, it

becomes rather close to the Green's functions for the two-

dimensional problem), if along certain lines, the residuals

are smooth functions and one carries out an integration over

these lines.
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One feasible method of approach can be described as

follows. One introduces in an initial plane one family of

nonintersecting curves. In a plane problem these would be

straight lines in the direction in which 0 and the velocities

do not vary. In an axisymmetric problem they would be circles

in a plane normal to the axis of symmetry. Then one forms

characteristic surfaces which emanate from these lines. To

be specificat each point of one of these lines one constructs

the characteristic cone. The characteristic surfaces mentioned

above are the envelopes of these cones. The lines along which

the characteristic surfaces are tangent to the cones are

called bi-characteristics. One thus obtains elongated

subvolumes with triangular or quadrangular cross sections

in the initial elements, and quadrangular cross sections in

subsequent elements. These cross sections lie approximately

in planes determined by the bi-characteristics. In the plane

case, these subvolumes are rods with appropriate triangular

or quadrangular cross sections, in the axisymmetric case they

are rings. The characteristic conditions contain only

derivatives within a characteristic surface, one of the

directions in which derivatives are formed is that of the bi-

characteristic, the other one in the lengthwise direction of

the rods or rings mentioned above.

The elements to be used in a finite element approach

are cut out from these subvolumes by planes approximately

determined by bi-characteristics. In the plane and axisymmetric

case this leads directly to the familiar characteristic

conditions. More general problems can probably be treated

too, provided that the characteristic surfaces are oriented

so that they coincide with surfaces where singularities

of strong gradients occur. If this condition is not

satisfied, then singularities or strong gradients will

probably express themselves in the same manner as in the
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usual finite difference methods, namely by oscillations

around the correct values. If strong gradients are detected,

then it is probably best to make a transition to a different,

more suitably oriented set of characteristic surfaces.

The author has not been able to study the practical

aspects of such a procedure.
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SECTION X

GENERAL OBSERVATIONS AND SUMMARY OF
SPECIFIC RESULTS

*It was already mentioned in the introduction that the

attempt to derive a finite element method for hyperbolic

problems from a variational formulation is not likely to be

useful; at best the idea is unnecessarily confining. In

this report the method of weighted residuals is advocated

instead.

We add that the idea of gaining an extremum formulation

by postulating that the sum of the squares of the residual

be minimized is of doubtful value. Interpreting this

method in terms of weighted residuals, one finds that the

weight is proportional to the residual. But the long

distance effect of residuals is linear, no matter how large

or small they are. Therefore, the weight should be independent

of the magnitude of the residual. Minimizing the sum of the

squares of the residuals suppresses short waves (because they

give larger residuals at equal amplitude), but the method is

fairly insensitive to long wave errors.

Hyperbolic problems differ from elliptic problems by the
fact that the-solutions do not automatically smooth out.

in an elliptic problem the waviness of the solution at some

distance from the boundary reflects the local waviness of

the inhomogeneous term. In a hyperbolic problem the waviness

is determined by the initial conditions the boundary conditions

and the inhomogeneous part in all of the characteristic

forecone pertaining to the point under consideration. Therefore,

one cannot count on the smoothness of the solution.

One observes that solutions which are wavy in the space

direction are also wavy in the time direction. Even short

waves will not be damped. This fact is directly connected
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with the existence of characteristic surfaces. Along such

surfaces singularities may propagate; their attenuation

with distance is only small. Assume that by the initial

conditions a discontinuity (in the second derivatives, say)

is introduced in the space direction. In order to represent

such initial data by a Fourier analysis one needs all wave

length including the very shortest ones. At a later time

this singularity will still be present, although in a

different position. If short waves were more strongly

damped than long ones such singularities would vanish.

This explains why stability is particularly critical

in hyperbolic problems. In essence, the individual

particular solutions have neutral stability (neither damped

nor excited). The error introduced by an approximation may

change neutral stability into instability. In elliptic

problems where the particular solutions die out with distance,

the same kind of error will falsify the rate of attenuation,

but it is unlikely that an exact solution which is stable

will change into one that is unstable. The situation is

particularly favorable because the contributions of those

particular solutions which are strongly falsified are small

to begin with and furthermore, because they are most strongly

damped.

The finite difference as well as the finite element

method presupposes that the solutions are smooth enough so

that they can be approximated within the inidividual elements

by simple standardized expressions. in elliptic, as in

hyperbolic problems, one must choose a grid which is suitable

to represent the essence of the desired solution but disregards

short wave roughness. In elliptic equations the mesh size

satisfying this requirement is mainly determined by the

boundary data. In principle, one might use a larger grid

at some distance from the boundaries. In hyperbolic problems

the same waviness is to be expected throughout the field.
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The discussions carried out in this report show the

effect of truncation errors. Let us confine our attention

to the semi-discretized methods investigated in Sections II

through VII. If the wave speeds -re reproduced

with sufficient accuracy for the range of wave lengths

which is important, then the truncation error remains within

acceptable bounds. Shorter waves in the initial data and in

the inhomogeneous part are falsified because of truncations

errors, but it is assumed that these components are initially

small. They will remain small unless the method is unstable

for these wave lengths. For high accuracy machines rounding

errors are usually very small. In addition, they have a

random character. Accordingly, one will obtain acceptable

solutions even though short waves are not damped. This

optimistic assessment may not hold for nonlinear problems.

The primary reason that the Courant number for explicit

finite difference methods applied to hyperbolic equations must

be smaller than 1 is stability. However, this restriction is

also needed from the point of view of accuracy, because

the solutions have the same waviness in the space and in the

time directions. If one admits Courant numbers greater than

1, then one loses information contained in the approximation

to the initial conditions. There may, however, be problems

where a mesh finer than required for reasons of accuracy is

used in the space direction.

The latent presence of short waves makes itself felt

in the semidiscretized approach during the integration of the

resulting system of ordinary differential equations. In

an explicit predictor corrector method the stability limit

is about the reciprocal value of the largest eigenvalue.

Usually this limits the step size even if the initial con-

ditions do not contain particular solutions pertaining to the

large eigenvalues which cause instability because such

particular solutions are excited by the truncation errors of
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the integration scheme. Implicit methods are sometimes

regarded as a panacea, but this is not entirely correct.

Basically, one deals with stiff differential equations.

- Familiar solvers for stiff differential equations are

effective for problems in which the large eigenvalues which

are responsible for the stiffness have large negative real

parts while the imaginary part is fairly small. Under these
conditions they allow the use of large integration intervals

in regions where the solution is sufficiently smooth.

Usually, they are not stable if the real part of the critical

eigenvalues is small and the imaginary part is large. This

is the present situation.

our discussions have been restricted to rectangular

elements and bilinear, biquadratic or bicubic shape functions.

(This makes it possible to discuss space and time dependence

independently.) The accuracy of a method is judged by the

falsification of the wave speed (and, if necessary, also of

the amplitude) for different wave lengths. Results of this

kind are shown in a number of graphs. If one uses quadratic

or cubic instead of linear shape functions, then one has

for the approximation of the solution in the space direction

twice as many parameters per grid point. Each discretization

process suppresses waves in the space direction. By doubling

the number of parameters per grid point one admits wave

lengths down to one half of the original limiting wave length.

In this sense, a representation by quadratic or cubic shape

function is equivalent to one by linear shape functions with

half of the grid size. The computational effort depends

approximately upon the overall number of parameters. We

have used the accuracy of the wave speeds as a criterion for

a comparison of different methods. The mesh size for linear

shape functions is chosen one half of that for quadratic or

cubic shape functions; then linear and cubic elements include
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* bicubic shape functions. If one uses bilinear shape functions

and weight functions of the same kind for space and time,

then the truncation errors cancel if the Courant number is 1.

The method is unstable if the Courant number exceeds one.

(An exact integration of the differential equations for the

time dependence corresponds to Courant number zero,) The

favorable results obtained with Courant number one have

their counterpart in finite difference methods.

occasionally, particularly in the development of

computational procedures for the transonic problem, it is

emphasized that one must use a difference procedure which

reflects the marching direction. A scheme of the kind just

sketched does not have this property; a marching direction is

defined by the way in which the initial conditions are

prescribed.

Seen under the point of view of weighted residual

procedure the method just described is somewhat unsatisfactory.

In computing the potential at a new tim~e station it considers

not only the residual in the time interval that is newly

computed, but also in the preceding interval~ over whichx one

no longer has any control.

A method using linear shape functions has been investigated

in which the weight function is constant through the interval

for which the computation is carried out (say ftmm t k to t k+l
with an infinitesimal overlap into the region t kl to t k' The

overlap is needed in order to take into account the delta

function in the second derivatives which arises at the point

t k because of a jump in the first derivatives which is

unavoidable with linear shape functions. one obtains a

method which is stable for all Courant numbers, the solutions

for shorter waves are rather strongly damped and one is

forced into rather small time intervals in order to obtain

an acceptable accuracy.
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It is impossible to use the same weight functions for

the space and the time directions for third degree shape

functions for the method becomes unstable at all Courant

numbers. The reason is rather interesting. For third degree

shape functions one obtains the solutions at time tk+l; that

is, the values of uk+ 1 and u+ from equations which contain
k+ k+l

the (known) values of uk , u , Uk_ and u _. In order to

solve the differential equation in the interval between

t and t it suffices if one known uk and u. Speaking

in the language of numerical integration techniques for

ordinary differential equations one would say that the

present approach includes spurious solutions. These are

particular solutions of the homogeneous discretized system

which are not related to particular solutions of the original

ordinary differential equation. In the present case there

are two such spurious solutions and one of them is always

undamped even if one keeps the Courant number below one.

(For the other particular solutions one has again a cancellation

of truncation errors for space and time if the Courant number

is one.)

One can devise a procedure based on cubic shape functions

in which no spurious solutions are encountered. As before,

one makes the transition from point tk to point tk+l by third

degree polynomials, but the weight functions are now confined

to this interval. This eliminates the objection regarding

the use of the residual in a preceding interval to determine

the solution in the interval under investigation. We have

studied this procedure using a weight function 1 over an

initial part of the interval, namely, tk < t<tk+c(tk+l - tk) ,

0 < c < 1, and again over the remaining part

tk + C(tk+ 1 - tk ) < t < tk+ I . All particular solutions are

unstable for c < 1/2. For c = 1/2 and a limited Courant number

the method is stable, the eigenfunctions are undamped. There

are, however, Courant numbers (somewhat exceeding one) for

which unstable particular solutions exist. For c > 1/2 and
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II

a Courant number limited approximately to a value below

1 the method is stable. The particular solutions are slightly

damped. But for certain higher Courant numbers there are
always unstable particular solutions. The procedure is

stable for all Courant numbers in the limit c = 1. Then
the weight is constant throughout the interval and in
addition one has a delta function weight at the end of the

interval. This amounts to a mixture of finite element method
and collocation method. Even in this limit the falsification

of long waves is not too large.

It was mentioned above that from the point of accuracy

Courant numbers larger than one are without interest; at
least if the shortest wave lengths which are included by the
discretization in space direction are of significance. Cases

where one will admit large Courant numbers occur in transonic

problems because they include the vicinity of the sonic line.
In Section VII a simple problem is discussed in which the
Mach number assumes the value one at one boundary of the

region. In the direction normal to the flow direction an

evenly spaced mesh is used. For each length of the interval

one obtains a maximum value of V. One can therefore always

choose an interval in the downstream direction small enough

to guarantee stability. If the mesh size in the direction
normal to the flow is multiplied by a factor a and one wants
to maintain the same Courant number, then the mesh size in

the downstream direction is multiplied by a factor a3/2. In
this particular problem it is possible to find particular

solutions by a product hypothesis. From the ordinary
differential equation which arises for the direction normal

to the flow, one obtains an eigenvalue problem as well for

the ordinary differential equation as for its discretized
form. For long waves, the eigenfunctions for the differential

equation and for its discretized form are, of course, very

similar. The short wave eigenfunctions are, however, entirely
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unrelated. For the differential equation they Are, in

essence, given by Airy's functions. For the finite difference'I formulation the highest eigenfunctions are nearly zero (and
oscillatory) at some distance from the boundary which

corresponds here to Mach number 1. These particular solutions

are significant only at the first few mesh points. As

contributions to the solutions of the original partial

differential equation problems these particular solutions are,

of course, meaningless. If one fails to observe proper

Courant number restrictions, then these particular solutions

may increase as one moves downstream. The falsification so

introduced will manifest itself in some roughness in the

vicinity of the line corresponding to Mach number 1, but at

some distance from it the error will be very small.

In the examples considered up to this point the weight

functions had been chosen on intuitive grounds, either

because of their resemblance to the shape functions or, for

reasons of simplicity as constants. Section VIII considers

a scalar differential equation with a fixed value of v (in

essence the reciprocal of the wave length). Then one can

discuss the effect of a residual by writing down the solution

of the inhomogeneous differential explicitly. We have considered

such a solution in the form of the Duhamel's integral. This

can be regarded as a solution in terms of the Green's function

belonging to this particular one dimensional problem. The

integrals occurring here have the form of weighted residual

expressions. For this particular problem one obtains exact

expressions at the grid points if the solutions of the

homogeneous problems are taken as weight functions. In reality,

one deals, of course, simultaneously with a whole spectrum of
values of V'. At best, one can choose weight functions which

are close to ideal within some range of values of U'. But the

fact is of interest that one can attune the weight functions
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to a certain frequency. In an example we have chosen V = 0

for this value. The weight functions are then given for

each interval by a constant and by a linear function. From

our numerical results we cannot claim that this method is

superior to the method discussed earlier, but the author

believes that the theoretical insight is valuable. A wider

frequency could probably be covered if one does not attune

the method to frequency zero. In the elliptic region one

might start directly from the Green's function and impose

the requirement that the lowest order terms in the development

of the Green's functions with distance vanish. For the

Laplace equation this gives linear weight functions. For the
Helmholtz equation there are always some contributions of

the lowest order terms which vanish with distance owly weakly.

They become small only if the mesh is sufficiently fine.

The same idea applied to hyperbolic problems fails,

for the hyperbolic distance is zero for points that lie on

the characteristics through the points where the residuals

occur. The weight functions for hyperbolic problems used

in the preceding analysis are suitable for long waves in time

and space. Short waves are treated inaccurately, at best.

A finite element of this kind is therefore unsuited to treat
discontinuities which propagate along characteristics.

For two dimensional problems it is possible to combine

the idea of finite elements with the concept of characteristics.

This is done in Section IX. The shape functions are then

defined in characteristic quadrangles. Important is the

result that the weight functions should be constant in one

of the characteristic directions. With this choice it

becomes possible that contributions of residuals which lie

on the same characteristic cancel each other. The desirability

of this form of weight functions becomes obvious again if one

considers the Green's function of this problem. A finite
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element method carried out in this manner differs only
slightly from the method of characteristics. Within an

element discontinuities are suppressed, but along the element
boundary discontinuities are admitted because they do not
contribute to the residual.

A The method of characteristics is not easily carried
over to three dimensions and no conclusions in this
direction have been reached.

The picture that emerges from these discussions ist

somewhat discouraging. A Courant number limitation always
exists, if not for reasons of stability then for regions
of accuracy. Higher (third) order elements are advantageous)
because they give for long wave lengths a much better
representation of the wave speed igian linear elements.

The use of third order splines is probably advantageous
because it suppresses short waves which have an undesirable

effect on the time integration and still give a good
representation for long waves. The method of characteristics
possibly in combination with the finite element concept may

still prove a superior alternative.

The report goes somewhat further than an evaluation of
* different methods by means of sample problems. It relates

the results that could be found in this manner to the
behavior of particular solutions of the approximating

equations. In this manner certain inherent difficulties

directly connected with the nature of hyperbolic equations

become obvious. The approaches discussed here may not be
the last word in this problem area. Other more ingenious

approaches may well exist, but even they will encounter the
same obstacles and then a familiarity with these phenomena

may be valuable.
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APPENDIX I

THE VARIATIONAL FOJRNULATION OF R~EDDY

A variational formulation for some hyperbolic problems

which include the boundary conditions in a proper manner has

been given by Reddy (Ref. 1). The author believes that a

variational principle by itself (in contrast to an extremum

principle) is not particularly useful for numerical work.

The present appendix shows in a simple example the essence of

Reddy's formulation. Consider the one-dimensional problem

(Al

with initial conditions of the type encountered in a hyperbolic

problem

(A2)

The independent variable is t, the derivative of a function with

respect to its argument is denoted by prime. Let the final

value of tbe t0 > 0.

Now consider the functional

Ad)-i4ijt) 1 s/[j A,4~ ~ (A3)

We form the variation of *p(u), postulating that the functions

u in competition satisfy eqs. (M2). Then one has

c~u~~imo, S'c.'(,JO(M4)

one obtains to

L A,
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One obtains by carrying out an integration by parts in the first

two terms of the integrand

Is& A/k ) WCt)U, -

) 4'a.) /(% -v t- -r) -- r-j

In the first and third terms of the integrand the umbral variable

t is replaced by to - T. In addition, we evaluate the terms

outside of the integral

.- u44 / ( e ) -P0k ot' l1 - S'idn". /J ,* - )o .:o (]

The terms outside of the integral vanish because of the boundary

conditions Eqs. (A2) and (A4). By the requirement that the

variation of 6f(u) vanish one obtains indeed Eq. (Al).

The last expression can be interpreted as a weighted

residual formulation. The weight functions are n(t) = 6u(to-t).

Let the shape functions be restricted to some subspace of the

space of admissible functions. Strictly speaking one cannot

maintain that the shape functions n(t) belong to the same

function space, for the shape functions and their first

derivatives vanish for argument 0, the shape functions and

their derivative vanish for argument to. The property

characteristic of the usual variational formulations, namely

that weight functions and shape functions are taken from the

same subspace no longer applies. The method would probably

encounter difficulties if one uses an uneven grid in t. One

notices furthermore that the procedure requires that

p(t) = P(t0-t) (in our example we have assumed p0 = const).

These are obstacles to the application of Reddy's formulation

to numerical work.
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APPENDIX Il

OBSERVATIONS REGARDING THE TREATMENT OF
BOUNDARY CONDITIONS IN THE METHOD OF WEIGHTED RESIDUALS

The observations made in this appendix arose from dis-
cussions which I had with Dr. Soliman about the method of

weighted residuals. Although they do not refer specifically
to hyperbolic problems they are included here because they serve
to round out the knowledge about the method of weighted

residuals. The essential idea is already seen in a one-
dimensional problem. Consider the differential equation

-9(x f(* C) fx)w- 0 (A6)

with boundary conditions

(o) = 0 (7010,)- 0(A7)

0A fe (A8)

Including the second boundary condition in a weighted residual
formulation we write

L i + Cf¢:LS(A9)

where * is a Veight function and C is a single weight. The

I. functions * in competition are assumed to satisfy the boundary
condition

41o .0

We postulate' (o)

The requirement of existence of second derivatives in

* can be relinquished if one carries out an integration by

parts. One obtains, after substitution of the boundary conditions

(AIO)

91Ihz?



If one chooses C independent of the weight function *p, then

one obtains directly the condition Eq. WA) ; the admissible

functions must satisfy the boundary conditions at x = L as

well as x =0.

According to Soliman, one can simplify the problem by
choosing

(All)

with this choice *'(L) vanished in Eq. (A10). This may well

be worthwhile particularly in multidimensional problems

because it obviates the need to evaluate the derivative in

the direction of the conormal to the boundary.

To justify this special choice we rewrite Eq. (A9)

expressing C by Eq. (All). Then one has 2~ 7 J

(A12)

Here the term generated by the boundary condition is included

in the integral by means of the delta function 6(x, L-c).

The 6 singularity approaches the point x = L from the insideV of the interval as e -* 0. One sees that the failure to satisfy
the boundary condition at x = L appears in the weighted

integral for the residual in the form of a delta function.

is allowed to have delta singularities, these are points where

0' has jumps. The special choice of C in Eq. (All) therefore

has the effect of balancing the failure to satisfy the boundary

conditions against other residuals caused in the differential

equation by the approximation to *.This is, of course legitimate.

The situation is similar for multidimensional problems. The

boundary terms in Eq. (A12) are then replaced by integrals

over the boundary surface.
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The factor by which the delta function is multiplied

tends to infinity if c2 tends to zero. Then this approach

must be abandoned. In this case the functions f must

satisfy the boundary conditions at x = L exactly.

In the problem at hand one has also a variational

formulation, namely

-# U/ V ~)

In the case c2 = 0, that is, if the value of 0 is

prescribed at the boundary, one can proceed in different

ways. In one formulation one postulates

//[il #A"IffA'I"t6r)dX 0 (A13)

and postulates that the admissible functions f satisfy the

boundary conditions at x = 0 and x = L. Alternatively, one

can introduce the boundary conditions at x = L by means of a

Lagrange multiplier and disregard the boundary condition at

x = L during the variations. This formulation is discussed

because it has some similarity to Eq. (A10). However, we shall

see that the two formulations are different in principle.

One has

(A14)

Hence

and

4 PW (A15)

The variation vanishes if one solves the original differential

equation with the boundary conditions f(0) = 0 and *'(L) = -
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This can be done for any value of X. The desired solution

is obtained if one determines ? so that the original boundary

condition

is satisfied.

In a weighted residual approach one would write

and

c4Ui - 51 o (A16)

Eqs. (A16) and (A15) are not identical. In the approach with

Langrange multipliers one computed in principle a family of

solutions which satisfy a different boundary condition specified

by the choice of X. From this family one then selects the

one which satisfies the boundary condition actually prescribed.

In a weighted residual approach, the boundary conditions are

introduced directly.

Functions 4 which fail to satisfy the boundary conditions
give approximations with a jump of 0 at the boundary. Such a

jump could be accommodated by means of the derivative of a

6 function. But such derivatives cannot be dealt with by a

method of weighted residuals. This is important in multi-
dimensional problems where it is frequently impossible to

find shape functions 4 which satisfy the boundary conditions

exactly. It is preferable to consider the error introduced

by the failure to satisfy the boundary conditions, by itself,
rather than to attempt to include it in an overall weighted

residual formulation.
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APPENDIX III

CHECK EXPRESSIONS FOR SOME FORMULAE OF SECTION II

The Eqs. (11) and (13) of cases 2a and 2b respectively

can be checked by substituting the values of k-l' Ok and

Ok+l for three piecewise linear functions. For such

functions the operator on the left of these equations must

give the expressions which one obtains by substituting them

and the chosen weight functions into Eq. (7).

The following expressions will be chosen

(Al7a)

= C1{) (Al7b)

(Al7c)

In Case 2a the weight functions are given by Eq. (10). One

obtains by substituting Eqs. (10) and (Al7a) into Eq. (7)

/,V/ de[
We - de (A18)

The expression (Al7b) substituted into Eq. (7) gives zero
2 2because a and a 2 are antisymmetric and w(Ay) is symmetric

at a
The expression (Al7c) substituted into the first term

of Eq. (7) gives

ee

The second term must be evaluated in the sense of generalized

functions / A

Ck)6'4/4
=C8).'4 /g, 7j' 'd~i'~"
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One obtains, therefore, for case (2b) with the "test" function

Eq. (Al7c)

h - - (A19)

One finds from (Al7c)

~dj6 o, ~=O, ,,=(~)(A20)

One obtains the expression (A19) if one substitutes Eq. (A20)

into Eq. (11).

Case 2b.

With the weight given by Eq. (12) one obtains in the

same manner

d2 C/dt 2  for Eqs. (A.17a) and (12)

0 for.Eqs. (A..17b) and (12)

d 2C/dt 2 - h- 2C for Eqs. (A.17c) and (12)

Cases 3.

In the resulting formulae, Eqs. (16), (18) and (20)
there appears six unknowns, k 1(t), .k-(t) , k(t), k'(t),

Ok+l (t) and ck+ (t) For a check of these equation one needs

six independent functions 4, which are piecewise of third

degree and continuous in function and first derivative. One

notices that the first and second equations of the equation

pairs (16), (18) and (20) are automatically satisfied if 4
is antisymmetric and symmetric, respectively with respect to

the point y = Yk"

A convenient choice of the test functions is

* = C(t) (A21a)

* = C(t) Ay/h (A21b)
2

C(t)(Ay/h) (A21c)

* = C(t)(Ay/h)3  (A21d)
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(C(t) (Ay/h)3  Ay/h < 0

I ~ )( y h 3  Ay h > 0(A2le)

(-C(t) (Ay/h) 2 y/h > 0

,~ 1 2(A2lf)

L C(t) (Ay/h) Ay/h > 0

Case 3a.

Substituting the expression (A21) together with the weight

functions (15) into the operator on the left of Eq. (7), one

obtains

2 2/d for Eqs. (A2la) and (15a)

d foC/dtA2a ad(1b

0 for Eqs. (A2la) and (15b)

2/1 2 / for Eqs. (A2lb) and (15b)

2/15 d2 2 -d 2h- 2  for Eqs. (A2lc) and (15a)

0 for Eqs. (A21c) and (15b)

o for Eqs. (A2id) and (15a)

2 dC -- 2 for Eqs. (A2ld) and (15b)
dt

14 - th C for Eqs. (A2le) and (15a)
dt

0 for Eqs. (A2le) and (15b)

0 for Eqs. (A2lf) and (15a)

1 d2C - 2  for Eqs. (A2lf) and (15b)
3dt7

These results can be used to check Eqs. (16)
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Case 3b.
The weight functions are given by Eqs. (17), the test

functions by Eqs. (A21). The following results are obtained

by substitution into Eq. (7)

2 2d2C/dt for Eqs. (A21a) and (17a)

0 for Eqs. (A2la) and (17b)

0 for Eqs. (A21b) and (17a)

1 2 2
T d2C/dt for Eqs. (A21b) and (17b)

1 d2C/dt 2  2h-2C for Eqs. (A21c) and (17a)

o for Eqs. (A2lc) and (17b)

0 for Eqs. (A21d) and (17a)

- d2C/dt 2 - 3- h-2C for Eqs. (A21d) and (17b)

1 d2C/dt - 3 h- 2 C for Eqs. (A21e) and (17a)
o for Eqs. (A2le) and (17b)

0 for Eqs. (A21f) and (17a)

i d2C/dt2 - 2h-C for Eqs. (A21f) and (17b) I
These results can be used to check Eqs. (18).

Case 3c.

The weight functions are given by Eqs. (19). The test
functions are given by Eq. (A21). The following results are

obtained by substitution into Eq. 7.

1 dC/dt 2  for Eqs. (A2la) and (19a)

d2C/dt for Eqs. (A21a) and (19b)
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0 for Eqs. (A2lb) and (19a)

1. d 2C/dt 2  for Eqs. (A2lb) and (19b)

962 C/dt 2 h2 C for Eqs. (A2lc) and (19a)

13 d2 C/dt 2  -2 C for Eqs. (A2lc) and (19b)

o for Eqs. (A2ld) and (19a)

d~ dC/dt2  -f h hC for Eqs. (A2ld) and (19b)

52 dC/dt 2.(3/8)h -2C for Eqs. (A2le) and (19a)
523

5- d2 C/dt 2 3h-2C for Eqs. (A2le) and (19b)

o for Eqs. (A2lf) arnd (19a)

13_ 2 h-296 C/dt -hCfor Eqs. (A2lf) and (19b)

These rm'sults are used to check Eq. 20.

Cases 4.

The resulting formulae, Eqs. (21) and (23) are correct

for continuous piecewise quadratic functions. In Eqs. (22)I and (24) there appear five different functions. Therefore,
one needs five test functions. The following expressions
are suitable.

*=C(t) (A22a)

*=C(t) Ay/h (A22b)

*=C(t) (tiy/h) 2(A22c)

-C(t) Ay/h -1 < Ay/h < 0 (2d

~C(t) Ay/h 0 < Ay/h < 1
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-C(t) (AY/h) -1 < AY/h < 1

2 =(A22e)

C(t) (Ay/h) 0 < Ay/h < 1

There is no need to examine the test function Eq. (A22e)

separately. Weight functions (21a) and (23a) gives zero

for reasons of symmetry, for weight functions Eqs. (21b)
and (23b) it coincides with case (A22c) because the weights
are identically equal to zero outside of the region
0 < Ay/h < 1. The following results are obtained by
substitution into Eq. (7).

Case 4a.

The weight functions are given by Eqs. (21) the test

functions by Eqs. (A22). The following results are obtained
by substitution into Eq. (7).

d2C/dt 2  for Eqs. (A22a) and (21a)
d 2C/dt for Eqs. (A22a) and (21b)

0 for Eqs. (A22b) and (21a)

. d2C/dt2  for Eqs. (A22b) and (21b)

1 d2C/dt 2 - 2h-C for Eqs. (A22c) and (21a)

d2C/dt2 _ 4 h 2 C for Eqs. (A22c) and (21b)

T d2C/dt2 - 2C for Eqs. (A22d) and (21a)

d. dC/dt2  for Eqs. (A22d) and (21b)

The results are used to check Eq. (22).
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Case 4b.

The weight functions are given by Eqs. (23) and the

test functions by Eqs. (A22). The following results areI obtained by substitution into Eq. (7).

d d2C/dt 2  for Eqs. (A22a) and (23a)

12 2

Y d C/dt2  for Eqs. (A22a) and (23b)

0 for Eqs. (A22b) and (23a)

I d2 C/dt 2  for Eqs. (A22b) and (23b)

1 d2 c/dt 2 _-2 for Eqs. (A22c) and (23a)

13 d'2C/dt' 2 -h 2 C for Eqs. (A22c) and (23b)
96

16 d 2C/dt 2 _ 2h-2 C for Eqs. (A22d) and (23a)

1 d 2C/dt 2  for Eqs. (A22d) and (23b)

The results are used to check Eq. (24).
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APPENDIX IV

DIAGONAL FORM OF A SYSTEM OF
ORDINARY DIFFERENTIAL EQUATIONS

The system of differential equaLions whose stability

is studied is given by

Z /F (A23)

Here y and f denote respectively the dependent variable

and a known vector with n components. L and M are n by

n matrices. It is assumed that the determinant of L does

not vanish. In writing our equations we consider the

vectors as n by 1 or 1 by n matrices. The dot denotes

differentiation with respect to the independent variable t.

The matrices L and M are independent of t. (This assumption

is always made in stability discussions. Heuristically, it

is justified by the fact that for an arbitrarily fine mesh

in an equation with variable coefficients one can carry out

a considerable number of integration steps before the matrices

L and M change appreciably.) We associate with Eq. (23) the

generalized eigenvalue problem

(A24)

and its adjoint

0I- (A25)

where Tk is a n by 1 matrix (i.e. a column vector) and S£ is

a 1 by n matrix (a row vector), Xk and X are respectively
th ththe k and P, eigenvalue. Proceeding in a familiar manner

one has

Hence
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Let T and S be n by n matrices; the kth column of T is given

by Tk, the th row of S by S Assume that S and T are
normalized so that

6L7 .,. (A26)

where I is the n dimensional identity matrix. Then one
obtains from Eq. (A24)

J117 -(A27)

where A is a diagonal matri: whose kth element is Xk' Now

set

(A28)

where u is a column vector with n components. Then one

obtains from Eq. (A23) and by premultiplication with S and

by using Eqs. (A26) and (A27)

e * A 1& /(em 0 (A29)

This is a system of single equatitns, for 4 is a diagonal
matrix.

This fact allows one to discuss the stability of the
system in terms of the stability of a single scalar equation.

Specifically, we shall derive the fact, familiar from the
theory of inbegration process, that one obtains the same

result if one first diagonalizes the system of equations and

then applies a predictor corrector method or first applies

the predictor corrector method and then diagonalizes. The

-same holds for a finite element procedure applied to the
time.•

In a predictor corrector method, no matter which specific

scheme one applies, one always has as predictor formula
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The values of the vector y after the Z th corrector iteration

is characterized by a superscript. The values of y and y" at

the point i and preceding points are fixed, therefore no
reference to an iteration step is needed. One has in the
corrector step

The ails, ails, 6.'s and d.'s are constants independent of

i. In addition, one has Eq. (A23) to be satisfied at the

individual grid points. Substituting Eq. (A28) into the

last two equations and premultiplying by T - , one obtains

the same expressions but with y and y' replaced by u and u'.

In addition, one has Eq. (A29). In the resulting equations

the vectors uj and u'j are multiplied by constants or by the

diagonal matrix A. The system can therefore be decomposed

into its individual components. The further discussion can

therefore be carried for each component in Eq. (A29) separately

each with only one independent variable. The argument for

implicit methods is the same.

To apply a finite element method to the solution of

Eq. (A23) one multiplies this equation with scalar weight

functions wm(t) (usually of finite support) and integrates

with respect to t.

MJV 41
Now we substitute Eqs. (A28), premultiply the resulting

equation by S and apply Eqs. (A26) and (A27). One obtains

(,A t)1, 4 e /*,WA /,,.)t4 -Il (A30)

This expression is identical with the one which one would

have obtained by applying the weight function wm (t) directly

to Eq. (A29). Since A is a diagonal matrix, one can discuss

each component of u separately. This result is the basis of

the analysis in Section VI.
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APPENDIX V

FUNDAMENTAL SOLUTIONS AND RELATED SUBJECTS

In this appendix the wave equation is regarded as

the linearized equation for a supersonic flow at Mach

number /2. We consider accordingly

"0 (A31)

The perturbation velocities are then given by the vector

grad *. We determine, also, the perturbation of the mass

flow vector. In the nonlinearized problem the mass flow

vector is given by p grad *, where p depends upon grad 0.

Specifically, one has from Bernoullis, equation

W/ -' detA 74$/r4 - 0
and therefore, with the sound velocity "a" given by

Now the total potential tb is given by

Hence, for the x component in the perturbation of the mass

flow

and for the y component

Here p0 is the density in the unperturbed flow. One therefore

obtains for the x and y components of the perturbation of

the mass flow vector at Mach number /a, respectively -P00 x

and p0 . (Important is the negative sign in the x component.)

The potential equation in the form

expresses the conservation of mass. By the usual integration

by parts (Gauss' theorem) one obtains

a (A32)
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p

where one travels along the path of integration in the

direction for which the region R is to the left.

Assume that some portion of the contour is given by a

left going characteristic y =c + x .Then the correction

to the mass flow through this part of the contour is given

by A

where ds is the line element. In this case

Thus, one obtains as a correction to the mass flow passing

through a left going characteristic

(A33)
Analogously, for a right going characteristic

(A34)

Eq. (A31) is solved by

To a a .,x.J ,, A
To obtain a fundamental solution we postulate that * - 0 for

x < 0 and that at x = 0, 0 x is given by the negative of a

delta function at the origin. The requirement * = 0 at x = 0

is satisfied by choosing

Then one has

It follows that

Thus, one finds for x > 0 as the potential caused by a source

at the origin

0 y<-x

-1/2 -x < y < x x > 0 (A35)
=0 y>x
4 0 x< 0
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If one crosses the right going characteristic y = -x along

a left going characteristic, then the correction to the

mass flow is according to Eq. (A33) (i/2)p0 . The same result

is obtained if one corrects the characteristic y = x. A

fundamental solution gives a correction to the mass flow
vector along the characteristics through the origin in the
direction of the characteristics in the form of a delta

function of intensity 1/2p0 . Everywhere else the correction
is zero (Figure 30.). The gradient of the velocities is

perpendicular to these characteristics. The perturbation

does not die out with distance.

Except for a constant, the fundamental solution for

the Laplace equation is given by log(x 2 + y 2). The corresponding

expression for the wave equation is given by log(x 2 - y 2).

For x # 0, y # 0 and x # IYI this expression certainly satisfies

the partial differential equation, but obviously it does not

give the desired fundamental solution.

Also of interest is the perturbation caused in an

axisymmetric flow by a source at the origin. It provides the

fundamental solution for the three dimensional wave equation.

The linearized equation for three dimensional supersonic flows

for Mach number /7is given by

I#tx" -"Jy A) (A36)

where f(x,y,z) is the local source strength. One obtains,

by integration over a volume R

The right hand sides gives the combined strength of the

sources within the volume R. Now we assume axial symmetry

and introduce cylindrical coordinates
i .;-X -- X [

One then obtains

7a 2-/r/a) - fl.%' -Y/S ) (A37)
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It is convenient to introduce coordinates oriented according

to the directions of the characteristics (Fig. 31)

!X

with the restriction

The x axis is given by .= .
One obtains for the Jacobian of the transformation

d(r,x)

Moreover

' - w -X 1

Thus, one obtains the following expression for the total

mass flow.

.,-- ,' - 2) ) ,/. (A38)_

In these coordinates the original equation for the

perturbation potential, namely

assumes the form

- T #(A39)

Here one has the particular solution
€.- .' {x-I / "i' " ~o

01 (A40)

This is easily verified.

The expression Eq. (A38) can be transformed into a contour

integral

The integrand vanishes at the x axis ( = r).
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To determine the total source strength we choose for

R a region bounded by the x axis (F=n), by a line

and closed to the left by some arbitrary curve. Then one

finds 4-l

Substituting the specific ex 3'ession for *,Eq. (A40) one
obtains

-it 
0

Notice that the result is independent of Cl- Since the

differential equation is satisfied inside of the cone

S> n~ there are no sources inside of this Mach cone and

since the result is independent of Cthere are no sources

at the Mach cone.

The expression 11

gives the total outflow of mass due to the perturbation

through the portion of the surface lying between q1 = -c and

T) = . The total outflow of mass up tends to infinity as
+0. (For the two dimensional case one has a concentrated

finite additional outflow along the corresponding characteristic.)

For larger values of n the total additional outflow becomes

smaller, at C l it reaches the value 1. The perturbation

of the mass flow vector inside the cone therefore causes

inside a reduction of the outflow. The expression (A40) is

the fundamental solution for the three dimensional problem.

Its form is, of course, too singular to serve as the

basis for a numerical procedure. The singularity is brought

into a less severe form if one considers source distributions

and carries out some of the necessary integrations beforehand.

Consider a three dimensional problem and assume that

the source strength is constant along the z axis. In this

manner one will obtain the two dimensional potential. Using

Eq. (A40) one computes
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This is indeed the result Eq. (A35).

To see what happens if the source density in the y

direction is not constant, we consider an example with a

periodic source density in the z direction. Consider first

the elliptic problem

Periodicity of the source density in the y direction implies
periodicity of the potential. Accordingly, we set

One obtains

and in polar coordinates

Now we set

Then one obtains

This equation is solved by a linear combination of H(l lir)
(2) 0

and o~ kr). For r + the solution must tend to zero;
0

obviously the effect of sources periodically distributed
along the z axis will cancel at a large distance from the

z axis. Hence

The constant is determined by the local source density at

r = 0.

The supersonic problem is treated analogously. One

has - 1 -

and with r =x - y2 and =F(r)
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This equation is solved by

Considerv 9. r)
Consider this expression at a fixed x. The argument of J

varies between 0 for the Mach cone and x for the x axis.

The variation is small if x is small. The jump of

at the characteristic r = 0 is the same for all values of

x; namely Jo(0). For large values of x, the expression is

an oscillatory function of y. This result has obvious

implications for the choice of a grid in three-dimensional

problems.
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complex p-plane

Figure 24. Amplification Factor p in the Complex p Plane
and Corresponding Values of exp(iuh ), for Linear
Shape Functions and Constant Weight Between
tk-e and tk+l-c.
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i!i

:1 P-PLANE

Figure 26. Amplification Factor in the Complex Plane for
Different Values of J /=2 ht. The arrows givethe direction of increasing vht. In part of the
figure the points p are connected with the ideal
values exp(ivht). Third degree shape functions,
weight functions constant for 0 -At < cht and
cht < At < ht, c =3/4.
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+11

Figure 27. Amplification Factor p in the Complex Plane for
Different Values of A1/2 vht. The arrows give
the direction of increasing vht. In part of the
figure the points p are connected with the ideal
values exp(ivht). Third degree shape functions,
weight functions constant for 0 < At < cht and
cht < At < ht, c = 1.
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34

]Figure 29. Characteristic ouadrangle.
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~y I/

AX

Figure 30. Characteristic Coordinates and Corrections to the
Mass Flow Vector for Two-Dimensional FundamentalI

Solutions in Linearized flow with It =r.

r

17
Figure 31. Characteristic Coordinates and region R in the

&In-plane for an Axisymmetric Linearized Flow
with Mm /.
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~E

Figure 32. Region R for tWhich the Total Source Strength is
Evaluated.
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