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SUMMARY

The report analyzes by means of examples the applicability
of the finite element concept to hyperbolic equations. One of
the aims is to provide an appreciation of the basic phenomena.
The elements chosen are quadrangles with bilinear, biquadratic
or bicubic shape functions. The equation discussed most is
the two-dimensional wave equation. Variational approaches are
rejected because they refer to problems that are not well posed;
instead the method of weighted residuals with rather general
weight functions is adopted. The equation of convergence which
poses difficulty if an extremum formulae exists, has particular
importance for hyperbolic problems because the exact solutions
are not damped and truncation errors may cause a neutrally stable
solution to become unstable. Besides stability the question of
accuracy is explored. It determines, for a stable method, the
admissible element size. Hyperbolic problems have equal wavi-
ness in the space and in the time direction. Therefore, one
has, from the point of view of accuracy, a natural limitation
of the Courant number to 1, even if this limitation is not
needed for stability reasons. First a number of semi-discretized
approaches (discretized in space but not in time) are investigated.
The solutions always have dispersive character (no damping, but
wave velocities different from the actual one). The ratio of
the wave velocities obtained from the original partial differen-
tial by the numerical approach provides criterion for accuracy.
The error in the wave velocity for long waves is much smaller

for quadratic and cubic shape functions, even if one takes the
fact into account that for quadratic and cubic shape functions

f the number of elements needed to give the same resolution in

H Fourier components is only one-half of that for linear wave

‘: functions. (The number of parameters describing the solutions
| at a given time is the same for the same resolution.) Short
wave errors are nearly the same for different approaches. 1In
a semidiscretized method one is led to a system of ordinary

iv
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differential equations (in implicit form). The solution
must proceed in small steps because of the latent presence
of particular solutions of the homogeneous system with a
short wave length. Implicit procedures do not automatically
insure the applicability of large time steps. Short waves
(which in any case are inaccurate) can be suppressed if one
& works with third degree splines rather than cubic weight
functions, which permit discontinuities in the second
derivatives at the grid points. Next the time integration
by finite elements is discussed. (It can be separated from
the space discretization if one deals with bilinear, biquadratic

P

or bicubic elements.) For linear elements the time dependence
can be treated in the same manner as the space dependence.

For Courant number 1, the discretization errors for time and
space cancel each other. The method becomes unstable if the
Courant number exceeds one. From a heuristic point of view
such an approach is somewhat suspect, for it does not quite
fit the idea of a marching procedure (which can always be
carried out in hyperbolic¢ problems). An analyogous approach
for third degree elements is always unstable. A modified

5 approach for linear elements which avoids this heuristic dis-
crepancy gives stable but strongly damped particular solutions.
From the point of accuracy, one would therefore need rather
small elements. A similar approach for third degree shape
functions converges for all Courant numbers and gives tolerable
results up to Courant number one, if one takes constant weight

throughout the new time interval in combination with a colloca-
tion condition for the new time point. An example discusses
the choice of the mesh if , in a steady flow field, the Mach
number approaches one at a certain line. Even then, one can
always find a mesh which guarantees stability. In the example
under discussion the particular solutions belonging to the
highest frequencies (which are prone to cause instability) are
of importance only in the immediate vicinity of the sonic line.
! 5. A rational basis for the choice of weight functions can be

v




obtained by relating them to the Green's functions. It is

possible to find weight functions which suppress the dominant
long distance effect of a residual., For the Helmholtz equa-~
tion this is only approximately correct and requires that the
elements be sufficiently small. For the hyperbolic problem
this cannot be done because the hyperbolic distance is zero
for points which lie on the same characteristic. A better
cancellation of long range effects in two-dimensional problems
can be obtained if one chooses characteristics as element
boundaries. The weight functions should then be constant

in one of the characteristic directions. The idea cannot

be carried over directly to the three-dimensional problem.
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SECTION I
INTRODUCTION

This report discusses the application of the finite
element concept to hyperbolic problems. Some of the
observations are probably familiar to those who have been
working in this area; nevertheless the author hopes that the !
fairly systematic discussion carried out here has some value

in so far as it clearly shows certain inherent difficulties.

An attempt to develop a general intuitive background
for this problem area will be made in Section X. 1In the
introduction we restrict ourselves to one general observation
which motivates the choice of the approaches to be studied.
In the classical applications of the finite element method to
elliptic equations, the problem is governed by an extremum
principle. This gives a guarantee of convergence, provided
that the numerical process imitates the search for an
extremum. (Of course the distance definition with respect
to which convergence is obtained need not coincide with the
error characterization desirable for an engineering application
of the results.) For the hyperbolic problem no extremum
formulation exists. 1In the classical examples one can
define a functional which is stationary if one imposes
suitable boundary conditions. But these boundary conditions
are not identical with those of a well posed hyperbolic
problem. For practical work a mere variational formulation
has only limited usefulness to begin with .(because of the
absence of guaranteed convergence), but here the variational
formulation does not even apply to the problem at hand.
Reddy * has found a variational formulation for some hyperbolic
equations in which the boundary conditions are properly taken
into account. A simple example is shown in Appendix I, but %

* (1) Reddy, J. N., A Note on Mixed Variational Principles
for Initial-Value Problems, Quarterly Journal Mech. Appl.
Math., vVol. XXVIII, Pt. 1, 1975, pp. 123-132.
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bacause of the lack of an extremum property even this for-
mulation does not seem useful from a numerical point of view.

Sections II through V study, for the wave equation,
different approaches by semi-~discretization; that is, the
finite element concept is applied only to the spatial
direction. This leads to systems of ordinary differential
equations with the time as independent variable. It is
assumed that this sgystem is solved by an accurate integration
method. In Section VI the finite element concept is applied
also in the time direction. This discussion becomes fairly
simple because of the special choice of bilinear, biquadratic
or bicubic shape functions. The results show the importance
of the Courant number. Sometimes the occurrence of large
Courant numbers is unavoidable. Section VII gives details
for a simple example of this kind. Section VIII tries to
provide a rationale for the choice of the weight functions by
relating these to the Green's function. 1In Section IX the
finite element concept is combined with the idea of
characteristics. The concluding Section X develops an
intuitive picture of the problem area. In addition, it
summarizes the specific results obtained.

A number of detailed studies are included in the form
of appendices. We already mentioned that Appendix I gives
an example for the variational formulation of Reddy.
Appendix II, following an idea of Soliman, shows that rather
general boundary conditions (except for Dirichlet conditions)
fit smoothly into the concept of weighted residuals. Appendix
III gives a number of results which can serve to check certain
formulae which occur in the main body of the report. Appendix
IV shows that the study of integration methods (including those
based on the finite element concept) for systems of ordinary
differential equations can be reduced to the discussion of
a single scalar equation. Appendix V discusses Green's
functions for the wave equation in two and. three dimensions.
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The present study therefore applies the finite element

. IV

concept in the form of a method of weighted residuals. 1In

.

a variational formulation the weight functions which are

applied to the residuals are always identical with the shape
functions used to represent the solutions (if not directly,
then at least implicitly). In the absence of an extremum
formulation this choice loses its usefulness. We shall

admit weight functions of greater generality. (The term
shape functions will be restricted to expressions which serve
to represent the solutions, the word weight function is
self-explanatory.) 1In classical applications the weight

(1) (2) £0or

functions have finite support. They are C or C
partial differential equations of order two or four, respectively.
This holds in particular at the edges of the region of support.
This latter continuity requirement will no longer be imposed.

In the integration by parts needed in order to treat

derivatives of generalized functions correctly, certain
additional terms outside of the integrals at the element
boundaries are encountered. With the traditional choice

of the weight functions (and of the shape functions), these

terms will vanish. With the present more general choice of
weight functions these terms must be taken into account.

In the author's oupinion,this is a technicality which should

not preelude the use of such general weight functions.

By their very nature, hyperbolic equations lend themselves
to a marching procedure. The solution at a certain time is
not influenced by what happens at a later time. We have limited
our discussion to approaches which can be interpreted in this
sense. The procedures obtained in this manner need not be
stable. A major part of the present work is the study of the
stability ( and of the accuracy) of different methods in a
simple sample problem. In most of the report we deal with
rectangular elements and bilinear, biquadratic or bicubic

! shape functions.
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SECTION II
EQUATIONS OBTAINED BY SEMIDISCRETIZATION

In the examples of this report we shall study the wave
equation

(If one replaces $ee by $ yex then one obtains the linearized
equation of two dimensional supersonic flow at a free stream
Mach number v2.) Practically in all cases one restricts
stability discussions to equations with constant coefficients
on the basis of the argument that in a restricted region and
for a very fine mesh the coefficients are practically constant.
The choice of such a simple equation is therefore not more
restrictive then the usual stability discussions. We assume
that the region extends in the y direction from -« to +w,.

In the t direction the solution is to be determined for a
finite interval. 1In this section an approach by semidiscretization
is investigated; the differentiation with respect to the t
direction is retained while one uses a finite element
representation for the y dependence. Such an approach is
frequently used for problems with two or three space
dimensions.

In this section we shall write down the resulting
systems of ordinary differential equations for different
choices of the (solution) shape functions and of the weight
functions, and also for a semidiscretized finite difference
approach. The following problems will be treated.

1. The y derivative is replaced by a finite difference
approximation.

2. ¢ is approximated by a piecewise linear function,
¢ is continuous

a. the weight functions are identical with the shape
functions




b. the weight functions are constant over intervals
of a length of the gridsize which straddles the
points where the first derivatives are
discontinuous

3. ¢ is approximated by piecewise third order
polynomials, ¢ and ¢, are continuous

a. the weight functions are identical with the
shape functions

b. and c¢. the weight functions are constant over
intervals of a length equal to half of the
grid size. Cases b and ¢ differ by the position
of these intervals.

4. ¢ is approximated by piecewise second degree
polynomials, ¢ is continuous.

a. the weight functions are related to the shape
functions

b. the weight functions are constant over intervals
of a length equal to half of the grid size.

5. ¢ is approximated by third degree polynomials,
¢, ¢.., and ¢yy are continuous (spline approximation)

y
a. the weight functions are related to the shape
functions

b. the weight functions are constant over an
interval equal to the grid size.

6. ¢ is approximated by piecewise second degree
polynomials, ¢ and ¢y are continuous

. r a. linear weight function
% b. constant weight function
' 7. ¢ is approximated by third degree splines, and a
collocation method is applied.
As usual the solutions are represented by a combination
of ghape functions, defined for the individual intervals
(elemental shape functions). The formulae arising by this
standard procedure are listed below for the convenience of
- a reader who wants to check the details. They are readily

tested by the requirements that they give exact representations
P of the operators involved, for polynomials of a degree equal
b to that of the shape functions. This is done in Appendix III.
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The interval in the y direction is h. The value of
Yy at the kth grid point is denoted by yx. For the vicinity

set
AY=Y"Yk (2)

The elemental shape functions are written as functions of

(Ay/h) . A prime denotes the derivative with respect to
(Ay/h) . Furthermore, let

@ t) = By,
B 0t) = b o4, )/ 3y )

The elemental shape functions are given by the following
expressions.

Linear elemental shape functions (Figure 1)
K (agfh) = 1 = aylh

/K[A}’/b) - 4]/6
They satisfy
Nlo) =1 ; N(1)=o0

Mlo) =0 ; HO) =1

(4)

Quadratic elemental shape functions (Figure 2)
N (ag/b) = | -3 (aghh) + 2(ay/h)
N (ag/h) = -(aplh) * 20ey/b) (5)
N laylh) = wayh) - +lyth)

They satisfy
No) =1, N(p)=0, H0)=0
41”%”'65 4{(»42 = 0, AﬁdU =/
M(o) = 0, M) =1 , M) = o

of the point y, (usually for the interval y, ; <Y £ ¥y, We

ey, st v - g TR

< e e e D
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Third degree elemental shape functions (Figure 3)

N (sylh)= 1 -3l + 2 (aylh) ;
H, (ay/h) = J(aylb)” - 2 (aylh)’ |
A, (ay/h) = (aylh) - 2(aylb)” + (agth) (6)

Wy (aylh) = - (ay/h)* 4 (ay/él"

They satisfy

M{0)=/ , A;/o)so,
mlo)=0 | N'lo) =20, A

Aé[o)=0l ”J'{O) = /) /Y}(/) = 0 Aé’(/) = 0
H(o)= 0 Ni(0) =0, H, N = 1

()= 0 ﬁlll[/).ra

)

-~

[/) =1 %I{/) =0

)

With these characterizations one readily obtains the following
identities which can be used for checking purposes.

Linear elemental shape function
/! = M + A/,_
ay/h = 4,
Quadratic elemental shape functions
/= N+ N+
dy/‘)-’ A‘, k4 M/&
(ay/h )= My +H4/%
Third degree shape functions

/ = M + N,
aylh = M, + 4 +4%,
(ay/h) b= W, + 2Ny

(ay/h) }a M, 1 3M,
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The solutions are characterized:

in the linear case by the values of ¢k(t)

in the quadratic case by the values of ¢k(t) and $r + 1/2(t)’
in the third degree case by the values of ¢k(t) and ¢k(t)
The values of k range in our examples from -« to +» .

Notice that one has two parameters per interval for the
quadratic as well as the third degree case.

Let w(Ay/h) be one of the weight functions. Then one
obtains an approximating equation

_/ ¢ w(ay/h)d (ayth) -f‘3 E w(ay/h)d(ay/b) = © (7)

For each choice of k and each weight function we obtain
one condition. Here one must substitute for ¢ the approximations
listed above. The weight functions w have finite support
(that is they are different from zero only over a finite
interval) and the integrations are only needed for finite
intervals. For linear and quadratic shape functions the
term ¢YY will lead to delta functions at the grid points,
the integrals must then be evaluated in the sense of
generalized functions.

Case 1. Finite difference approximation.
One obtains

A -2
arf ~b A h, )0 ek (8)

Case 2., Linear shape functions
The shape function belonging to the point Yi is given by
Figure 4.

N (aylh) + K, (lay/h}+7)

(1t is understood that the elemental shape functions N; are
zero, unless their argument lies between zero and one.)
Accordingly, N, (Ay/h) is different from zero only for

E
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‘ Y <Y < Yy Ny is different from zero only for Yoy <Y € ¥y-
E One has in the interval y, _, <Y < ¥y

Bly,t) = 4_re) Nty ) + gote) [4 llag/b)+1) + X (ay/hV] )
# ¢¢ OXA (ay/h)
| Case 2a
$ The weight function belonging to point Yy is given by
(Figure 4)

wlaylh) = N (ag/h) + K, (Gay/h) +7)

wayh) = 1+ (aylh) ;g4 ¢y <y

(10)
wiay/h) = 1 - (k) B <Y <Hss
Otherwise they are zero.
One obtains
d -
/ - - - =
;%{"b* =%, 29%*5‘4*/)]' 4 lf?‘t-/ 24, *9‘4*'} 0 (11)
For a test see Appendix III.
Case 2b
The weight function belonging to point Yy is given by
(Figure 5)
- v(aglh) =1 ; -f <(4ylh) < £ (12)
3 One obtains
o* L4 -2 ) -[?d -2 ja=o (13)
;/F[S‘b'Th-l ﬂ*#‘ﬂf (Y ‘*éw/

For a test see Appendix III.
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Case 3 Third degree elements
The shape functions belonging to point y) are (Figure 6)

/2/{”41 + K ((ay/h)+1)

and

4, (ay//r) * Ny (ayft) +1
In the interval Yg-1 €Y < ¥y, One has

$ht) -92.,/&/4' Aaylh) +1) # 9‘(_: () K flag/h) +1)
+ ¢4 )N, /fay/é )+ H lay//r_)/f %’/t}[ ﬁ,ﬂ ffoslh+1) + K, tay/h)]
B, () BL2915) + 4, ) 8, laghh) (14)

Case 3a

The weight functions belonging to point Yy are (Figure 6)

m(aylh) = N(aylt) + N, (lay/h) +1) (15a)

and

w (aylh) = M, (aylh) + Y (tay/h)+ 1)
{15b)

r,

One obtains the following differential equations (two for
every value of k)

c%; [9{3 f;g' (8., 2% +dhe) - #zo /éw é-v)j ek e
2 b -"-/f“., “20 o) * 35 (Hyy ~Blf =0 (16a)
7 2 #zo /#‘4/ #h-) "/ 270 #A' M’& /A-f ‘%' 9‘” )'/;

)= Ch ¢oo

P T Bher ) 1 [E8~ 35 Bes -29, )] =

g

(16b)




Case 3b

The weight functions are given by (Figure 7)

wlaylh)st ;-3 caylh c+ih

- . -2 ¢ ayh o
'4/‘.9'//:/-{ AR XA

'y j o <‘ﬁdb ¢ #

otherwise they are zero. These weight functions are obviously
egquivalent to

wal; 0 <dylh ¢£ and ve /. ~£cayth

One obtains

t‘[% Ty /‘ét-/ %"‘#M”) I;-z &w ft-v)}
;- <4 ¢o (18a)
*/'./'.zi/%-/ 24y P+ 7 /%,, é.,)} o

o’t‘l/Jz /¢M/ #4-/)+[/6 ¢4 /?—/A -zﬂb"hﬂ)]} ~ewhin

(18Db)

’ ”-[',23‘/7‘4.4/‘4-/) $ D39+ F R -2 ¢ fagi)]h =0

Case 3c

The weight functions are given by (Figure 8)
mlaylh)=1 ; <ifp < aylh <y
wo(aylh) = i ify < aylh <o

otherwise they are zero.
One obtains

Julih + o Coes2th R - S Ghs, - Ao
L F Bt s SR, 4 ) mo

-w b

11
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Case 4. Second degree elements

In the interval Ygay € ¥ < ¥4 One has the following
representation for ¢

Bl t)= B )N (layfh)+1) +B,08) [ (ayhh) + B, (layh) #) + § () K leyh)
+h_ () M) +h (eIN, (ay/h)

Case 4a

The weight functions are given by (Figure 9)
s + lay/h) 5 =~/ < ay/h <o

/-Caylh) ; o <ayth </ (21a)

v, (ag/h) = {

W, (ay/h) = N (sy/h) = 4tag/h) - 4 (ay/h)*
(21b)

Notice that the weight function Wy is a linear combination of
elemental quadratic shape functions. This choice has been
made to avoid negative weights.

One obtains

a4 ¢ -2
E/—F/Té *f/ffl,-{_ *%*{_)f'ﬁ{%-/'zﬁ*éﬂf'o (22a)

- (4 ™

and
gt ¢4 =
L A AN S SN e A WA W

~®»<¢hco

(22b)




Case 4b

The weight functions are given by (Figure 8)

k=t - caylh ¢+ ¢ (232)

[RPEP V. I SR i Boeiimilhiill

W=t , 5 ¢ ayfh < ¢

One obtains
Ly

Gl b Rt bl e d )

PPt 2 (Byog + B y)f =0 ,-mchcm

(24a)

/‘ / / -2
gl 55 (% ¢ 400) + ﬁ-,&‘,i}Q«/’/-z@i,%,) # b0 0 (24b)

-%<h ¢ %

Case 5. Third degree shape functions with continuous second
derivatives

The jump of the second derivative with respect to Ay/h

at a point y = Yi is given by the left side of the following
expression

6 (4, 4.0 44 -2 (#er + 4.) = © (25)

e e HE g A Y 3 B S A R NN L

It is not difficult to devise a test for the correctness of
this expression similar to the tests derived in Appendix III.
This expression is now combined with Egs. (l16a) pertaining

to the weight function eq. (15a) and with Eq. (l18a) pertaining

to weight functions Eq. (l7a). Now one has the systems of
equations.

Case 5a
Tl 55 24 o)~ 5 o~ )
s 67 E G2 ) 7o (v -t} = ©
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and
s~ 4hs) =2t ~2 Gy # 4, ) > 0 (26b)
~w < 4 <o
Case 5b
i J S ’ /
e {4&"37/"4-/-1#4 "‘fj.«/)‘ 797@,, _é-,)f (27a)

+h {- j"(ﬁ.,-zﬁ *rbsri)t 7/{' [%ﬂ' '#t:/)f

5/7’!1‘/'%-// "f‘/@"‘/}éé"%.’,) =0 (27b)

- w <4 ¢
The weight functions of the case 3¢ are unsuited to such an

approach.

In practical applications there are always a finite
number of values ¢k and ¢k'. Then one can express the values
of ¢k' in terms of the values of ¢2 by means of the second
equation. One thus obtains a system of equations for the
¢k's only. For the present discussions this is not practical.

Case 6.

Quadratic shape functions studied in case 4 allow the
first derivatives to be discontinous. It might be a
simplification if one imposes the condition of continuity
of the first derivatives. The jump of the first derivative
at the point y ='yk is given by the left hand side of the
following egquation

- 6% - (bri*%.,) * 4‘/3’%*1 *%J‘ 0 (28)

Case 6a. (linear weight functions)

We use this condition in combination with Eq. (22a)
which holds for the weight functions Eq. (2la), Figure 9a.

14
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One then obtains

d‘ / / -3
Eff%*f@og*é.i)f"' /4, 2 * Fiss | = 6 (29a)

- 64 s Byrs) * 4/¢¢+§*é-i)'o (29b)

~0 ¢k (o
Case 6b. Constant weight function

The expression Eg. (23a) is not suitable as sole weight
function because it fails to cover the whole interval. We use,
instead, the weight Eq. (17a) (Fig. 7a) and obtain

4% .

ZZ_"LJ/'L{%" 2’4‘/4'%,»/ *4.,) *Ji@-‘g *4-5/} (30a)
-8B % B f = 0

-é4 -/41*,-»‘44)*#/_‘2?,4%_;,)-0 (30b)

Case 7.

The second derivative is defined everywhere if one
deals with third degree polynomials and continuous first
and second derivatives. It is then possible to use such
an approximation in order to define the second derivatives
at the'grid points and to apply a collocation method. For

¢yy at point Yy one obtains from the interval Vi< Y < Yy
byl =hTl-b4 v é4 -44'-24" )
Ar/ 4 #
e
correspondingly

Bylhc = 40~ by 4 64, + 4/ #24,] )

Eq. (28) guarantees that these expressions be the same.
For the sake of symmetry we write wyy(yk) as the average
of these values. Then one obtains from Eg. (1) (with a

change of sign)

15
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(31a)

together with ‘

' a
6[75&/ '}ﬁl-/) "d’?‘bl“z(?bl/ *?i.:/ =0 ;

~w (R <™ (31b) 4
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SECTION III
STABILITY TESTS FOR THE SEMIDISCRETIZED PROBLEM

A stability analysis can be carried out in the usual

manner. The interval in the y direction is assumed to go
from -« to +», Alternatively, one might assume periodicity
conditions. Then one sets

%(t) = € exp /a'(wé/x} exp (cyt) (32a)

and if needed
d(t) = il exp (ipuhh) exp(ivt ) (32b)

and computes the values of v in dependence upon u. The method
is stable, if v is real or has a positive imaginary part.
If y is small (long waves), then one expects that v = + u.
In a precise solution of the original problem this result

- Ut

should be found for all values of u. In an approximate
method this relation will be satisfied only approximately.
This gives an insight into the errors introduced by
different approaches.

R P

One obtains with Egs. (32)
bt 2y thps = C axp (uhh) ep(ivt) (—4) S fuh/2) (33)
Ut =Fo-1 = C oxp (k) exp (ivt) 20 aonfuch) (34)
#i -2 ;4; ’%J, =C Uﬁ/‘é“*‘“)ﬂf{t'»’é)ﬁﬁ) L' (b2 ) (35) i
Bros =l = C opp (k) explivt) (-2 ) timpurh) (36

17
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One obtains:
Case 1. (finite differences, Eq. (8))

Vhle f”"v’/gvb/t) (36)
Case 2a. (linear shape functions, linear weight functions
Eq. (11))
pryrn HInGuhl) (37)
/-/z/sm"édrlz)
Case 2b. (linear shape functions, constant shape functions,
Eq. (13))
prhte _Yuwnluhle)
7 = ofe) W a2 (38)
Case 3a. (third degree shape functions, weight functions
derived from shape functions Egqs (16))
(24(5) arfublz) ~(1/s) smpah
[1/8) Jew /601/7) (/S) * /&//J)Ja'w‘éué/z ) (39)
-l Sonuh /2 13/2/0) e J ¢
e 1 - (18/38) m//,/,/) (13/210) som (puh o

(3/200) simpnh)  (ifsto) ¢ (a5 )aWgutte) | | E

In order for this system of equations to have a nontrivial
solution for the vector [C, é]+, its determinant must
vanish. This gives a quadratic equation for vzhz. For
the numerical evaluation this determinant is a suitable

starting point.

18
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case 3b. (third degree shape functions, constant weight
functions Eqgs. (18))

é nhféwﬁﬁ) ’ﬂh/ahzbb

- 3 dirfiuh) 3 - ro'w‘é««’v/i)

(40)
/-(GAILubJé?uhh) /37?6)ﬂizuﬁ
vt =0
@/16) simpph)  (16)# (p8) i fubte)
Case 3c. (third degree shape functions, constant weight
functions Egs. (20))
ﬁVi)‘W"??“®&) -KS@thwéué)
o 41»4?«AA2)
(R) - (7/728) .rz-,,a-é«,/y/z) (/3//5'3():4}{»&) ' (41)
- p..é 2 P o
(/) cos b /2 ) (/196 ) tinfuubia)
Case 4. Quadratic shape functions
We set
é = C Lap(pwkh ) xp(ivt)
(42)

S‘h‘{ = ¢ m[;}vaq}ﬁ ) .u,b/c'vt')

19
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Case 4a. (weight functions derived from shape functions,

;; Egs. (21))

:; 4 donYuhfe) 0 1/3 J

! o o (a/8) cot fuhs) »

; -(%6R) w:éd/z) %/3 L/i5) cas (uhte) &/ (43)

Case 4b. (constant weight functions, Egs. (23))

4 -4 cosfuhke) ,: (724) # (fe) scxiguhte) (Sow Jeosjuh/2)
- % cos édr/a ) 4 " Yok caré«.é/z ) /X
=0

Case 5. (third degree shape functions with continuous
second derivatives)

Eg. (25) which introduces continuity of the second derivatives,
combined with Egs. (32) gives

(44)

’ 4/
Z- J&w{é" (45)

s Ty

:i Case 5a. (weight function related to shape function)
One obtains from the first of Egs. (39)
JyL HS)IW b ) - ) anfetlt)) - 0fc) awigeh)
(1 (1f35) S (uhs )] (1 (2/2)in" Y 2. )) # (Rfeso) ']

This can be simplified to

pipt, Famigitz) - (/s )oen?fpehte)
(! = (98/105) 5w’ (b)) + (1efp0S) simS gpatte ) (46)

Case 5b. (weight function constant)

One obtains from the first row in the determinant Eq. (40)

20
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b sirl(puhfe ) (1 = 12/3) EWYH2)) ~ (k) 1 fpuhr )

b"é z:

(1 - (48) &g )) (1 (afy i b))  (Sh6)an'pch )

This simplifies to

2 4 Ln’(puhs2) -za’;féu&/g} )
»4°a
/- (/6 /J”WA ) +/11%) J(,'u,éuj/a. )

Case 6. (quadratic shape functions with continuous first
derivatives

The condition(28) for continuity of the first derivatives

in combination with Eq. (42) gives

a2 (2] sen'fuhf2)
eos (puh/t)

Case 6a. (linear weight function)

One obtains from the first row in the determinant Eq. (43)

4 a;wa'W/z )

yb*a (48)
I = (fs ) ainiGehte)
Case 6b. (constant weight function)
The result is derived from Egq. (30a)
i (i /f2) 49
RN X/ nead (49)

/ - (,/6 )M‘W/&) . : '

Case 7. (third degree splines combined with collocation)

Here the condition (45) (continuity of second derivatives)
applies again. One obtains from Eq. (3la)

b 2 an* (hfs) (1~ 63 Jaw'ifuih)) + 2 Jt'ki@u L ¢ K> bk )

! = (2f3 )sinfufs) 1=13/3)sinigudfs) (50)




SECTION IV
DISCUSSION OF THE RELATIONS DERIVED IN SECTION III

The relations between vh and ph derived in the preceding
section have been evaluated numerically. The information
so obtained is valid only if one solves the systems of
ordinary differential equations which are written down in
Section II precisely. In reality, one must apply some
approximation also for this purpose. Some observations regarding
such integrations are made in the next section. The formulae
in Section III are based on the hypothesis (32a) (supplemented
by other expressions of a similar form) that is

Bo(t) = € axp(cphh)exp(t vt ]
which corresponds to an approximate particular solution
Ié(y,t) - C’u/:/:d'u-‘y) expf2evt) = C,explcd'u.[y # [pé‘/t)

The wave speed in this approximation is then + v/u, the wave
speed for exact solutions of the original differential
equation is + 1.

In the approximations discussed so far, the wave speeds
are real for all values of u; there is no damping. (One
would speak of a dispersive method because waves with different
wave lengths do not remain together.) Because of the error
in the wave speeds, one obtains a phase error in the wave
after some time has elapsed, which is given by

C«w(v - {%éu{}f
In the graphs the value of v/u is shown, the phase error
decreases more rapidly with u than v/u - 1, because of the

factor y which occurs in the last expression. The contribution
of a certain wave length to the solution becomes meaningless

if the phase error exceeds some fairly small number (perhaps
n/6 or smaller). One must make the grid size h small

22
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enough so that for the time for which the solution is
required, the phase error for the significant wave lengths

stays small.

]
;;
L

For the cases 1 and 2, one obtains only one value of
(vh)2 for each choice of (uh). For cases 3 and 4, one
obtains a quadratic equation for (vh)z. This requires an

explanation.

e A o NN

Consider expressions which assume at the grid points,
the following values:

fo = Ceosgpuhh? (51)
S = c mg«éél

These expressions can be rewritten in the form

or

dy = C cosfpuh + 28m)k) = Ceos (b »28m) k)
(52)

¢é/ - (,mv/éwb +2Bw)h) = = Cn'»/-ﬂ »200)%)

Except for a trivial change of sign (in the sine function),
one obtains the same values at the grid points y = kh, if
one replaces u by -y and or changes uyh by a multiple of
21. The above expressions can originate from waves of

the fotrm
¢- C“J/d“;y)
¢=:{C‘Jiﬁvg‘75’) (53)

where =¥ mod %% » Or Uy = -u mod %g.

This is the well known phenomenon of aliasing. For the
evaluation of the formulae of the previous section, it is
therefore sufficient if 0 < u < .
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In general one will, of course, associate the values

of vh obtained from these formulae with the smallest possible

values of u which are admissible according to the above
formulae. But in principle, there is no reason to disregard
other values of T} right from the start. Of course one will
consider only values of y for which the pertinent values

of v give tolerable approximations to the wave speed.

In evaluating vh for quadratic and third order shape
functions, one obtains two values of vzhz for one value of
uh. One will surmise that one of these values vh belongs
to ph, while the second one belongs to 2n-yh. This is borne
out by the graphs. For an analytical explanation consider
the case y = 0. Then one has for My = 0w o= 0

é= catfiy) =/
hence
¢b =/
#' =0
and for Zu«, = (28/h) - « Z/H/
@ = wnfz/nly
¢5“‘§!'¢“W&¢%%y/

hence

?ﬁf Jon ((284)44) = O

%’ = 24 cor ((28/444) = 1

The first expression ¢k = 1 is exactly represented by
¢ = 1 which is a third degree polynomial. The second
expression gives within one interval the expression

B=20(H+H,) =20 (ay/h)(! - (as/V(7-2(ay/k)

It is shown in Figure 10, together with the function
sin (2ny).
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This result is not surprising. For second and third
order degree shape functions, one has twice as many parameters
per grid point than for first degree shape functions.
Accordingly, one can approximate functions with a wave
length one half of that which can be approximated by first
degree shape functions.

The amount of numerical work to solve a system of
equations with double the number of unknowns is, of course,
at least twice as large. To compensate for this fact, one
will take the interval in the y direction for second and
third order shape functions twice as large as for linear
shape functions. The scale of yh for second degree shape
functions has therefore been chosen 1/2 of the uh scale for
first degree shape functions,

Figure 11 gives the results for v/u versus uh for the
cases 1 and 2. Curve a pertains to a finite difference
semidiscretization, curve b belongs to case 2a (linear shape
functions, linear weight functions), curve ¢ to case 2b
(linear weight functions, constant shape functions). Ideally,
one should obtain 1 for all values of ph. The finite element
approximations are somewhat better than the finite difference
approximation, the region of values uh for which the v/u is
nearly correct is rather limited. Incidentally, curve b
is also obtained in case 7 (third order shape functions with
a collocation method).

Figures 12 and 13 give results for third degree shape
functions. Notice that in these cases pyh ranges from zero
to 27 and that at ph = m one has a break. The reason is
explained above. Curve l12a and 13a give the result for
case 3a, weight functions derived from shape functions, curve
12b shows the result for case 3b, curve 13b gives the result
for case 3¢, both have constant weights but they are shifted
with respect to the grid. 1In this case, weight functions

25
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derived from shape functions are superior. It is rather
disconcerting that a small change of the weight function
as it occurs between Figures 12b and 13b, gives a rather
significant difference in the results.

It is conceivable that under slightly changed
circumstances the results would be different. Under the
present circumstances the procedure of case 3a gives the
best results, but the author is not sure whether or not the
same behavior can be expected for more complicated problems.
We explained above, why the region 0 < uh < 27 for the third
degree shape functions is considered as equivalent to the
region 0 < ph < 7 for linear functions. For shorter wave
lengths the error in the wave speed is about the same for
linear and third order shape functions. However, the values
of uh for which long waves are adequately represented, that
is where v/u is close to 1 is considerably enlarged for
third degree elements.

Summarizing, one can say by taking third degree shape
functions with twice the grid size instead of first order
shape functions, one is able to represent in both cases the
same waviness with respect to the y direction. The wave
speed for short waves is falsified by about the same amount
in either case. Long waves are less falsified for third
degree elements than for first degree elements.

1f one uses such a procedure, one must always take
the mesh fine enough, so that the behavior of all the waves
that are important for the solution is adequately represented.
Third degree order elements then make it possible to use a
far larger mesh (ultimately to work with fewer unknowns)
than first degree elements. Because of rounding errors, one
must expect shorter wave lengths to appear in the solutions, the
propagation of short waves is falsified by the procedure. Such
errors do not die out (as they would in an elliptic problem)lbut
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at least their amplitude does not increase. Moreover,

teEad

if such waves are due to rounding errors, then they are
likely to have a random character so that they cancel in the
' average. The discretization error is already taken into
o] account in the falsification of the wave speed.

Since short waves are wrongly represented for third
degree shape functions, it might be desirable to suppress
them altogether. This can be done by replacing one set

of conditions which arise by the use of a certain weight
function by the requirement that the second derivative be
continuous. 1In this manner one connects the ¢i 's with the
¢k's. In other words, one uses a third order spline
representation. The results are shown in Figures 14 and 15.
The requirement of continuity of the second derivative is

a restriction of the space of functions that is available

for the representation of the solution, therefore, one
expects some deterioration in the wave speed. This is indeed

the case. Figure 14 compares the case 3a (third degree 3

shape functions, weight functions derived from the shape
function) with a case 5a where one of the weight functions !

St

is replaced by the requirement of continuity of the second
derivative. Figure 15 gives the same comparison for the
case 3P constant weight functions with case 5b. One has
indeed a deterioration of the result for shorter waves.

{In these curves the maximum value of pyh is 7. A comparison

R A P T

with Figure 11 shows that this procedure is indeed much
better than for first degree shape functions.

In third degree splines, the second derivative is defined
everywhere. It is then possible to use a collocation
‘ method, in which the differential equation is satisfied for :
k the grid points y = kh (case 7). The results agree with i
curve ¢ in Figure 1. A comparison of different third
degree formulae is shown in Figure 16. Cases 5a and 5b

PR e
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(third degree splines give nearly identical results which
are fairly acceptable). A collocation method based on third
degree splines is not an improvement over first degree

functions.

The results for second degree shape functions, cases
4a and 4b, are shown in Figure 17. 1In Figures 18 and 19
the cases 4a and 4b (second degree shape functions) are
compared with cases 6a and 6b (second degree splines).
Second degree splines are very inferior.

Figure 20 shows a comparison between the results for
third degree shape functions (case 3b) and a quadratic shape
function (case 6b). The comparison is between a moderately
good case for third degree shape functions and the best
case for second degree shape functions. 1In the overall
picture the two methods are about equivalent, for short
waves the second degree method gives better results. However,
for long waves which are the more important ones, the third
degree method gives a better approximation to the wave speed
(v/u = 1) over a wider range of values ph. The amount of
labor in solving the system of ordinary differential equations
is the same for third and second degree shape functions.

One concludes that the use of third degree shape functions,

or the use of third degree splines, is preferable. However,

this conclusion is not generally correct because it disregards
the labor to set up the system. This seems to hold in particular

for elliptic eguations.

e et - T
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SECTION V

REMARKS ABOUT THE NUMERICAL SOLUTION OF THE SYSTEMS OF
DIFFERENTIAL EQUATIONS DERIVED IN SECTION II

The discussion of Section IV presuppose that one
solves the systems of differential equations which arise by

various methods of semidiscretization perfectly. 1In reality,
one applies also for this purpose some numerical approach.

We shall see that the error incurred in the solution of the
differential equations for the time dependence combine

with the errors due to the semidiscretization. Under
favorable conditions they may cancei each other. These
phenomena will be discussed later. At the moment we discuss
the application of finite difference techniques to the systems
of differential equation s of Section II. One might think of
some carefully written code with provisions for error control.
Most of these methods make use of infarmation generated at
several preceeding points in time.

One notices that all formulae based on the finite
element approach fail to give explicit expressions for the
2 or d2¢£/dt2. To obtain these
derivatives in terms of the value of the functions ¢k and

time derivatives d2¢k/dt

¢i, one must solve a system of linear equations. For one
space dimension this task is not too time consuming. One
then obtains a banded matrix and the system of equations can
be solved very efficiently. The problem becomes cumbersome for
more than one space dimension. For two space dimensions, one
obtains a block tridiagonal matrix where the size of the
blocks depends upon the number of grid points in one space
direction, thus the individual matrices may be rather large.
An iterative solution of these systems may be possible in
the cases 1 and 2 (Egs. (11) and (13)) and also in Egs. (37)
and (38). This amounts to replacing the denominators (which

come from the time derivatives) by the series
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The series converges for the values of a which occur in
these formulae. The author has not explored the question
for more than one space dimension.

One is tempted to use implicit methods for the solution
of the differential equations. Implicit methods are
particularly useful for stiff differential equations; that
is, for equations in which the matrix governing the
linearized system (after it has been resolved with respect

to the derivatives) has eigenvalues with large negative real A

parts. If one solves such systems by the Runge Kutta method,

or one of the predictor corrector methods, then the step in .

the t direction is limited for reasons of stability to about
the reciprocal of the largest eigenvalue. A suitable implicit
method removes this limitation. The step which is automatically
chosen by the routine on the basis of an accuracy check

is determined by the requirement that within the current

step the solution can be represented with a desired accuracy
by a polynomial of a chosen order. This allows the method to
proceed in large steps in regions where the solution is
smooth. Unfortunately, these preconditions are not met under
the present circumstances. The eigenvalues are imaginary.

One cannot expect to obtain smooth functions ¢k(t) since

the eigensolutions pertaining to large eigenvalues (short
waves) do not die out.

Here one might make the following argument: If a small
step is needed in the y direction to express the solution
with sufficient accuracy, then one needs in principle a
corresponding small step in the t direction. Otherwise, one
will disregard information which has been considered as
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essential in the initial conditions. From the point of view
of accuracy, one cannot permit in implicit methods a time

step which is much larger than the one permissible in explicit
procedures, but the same limitation will probably be
encountered also from the point of view of stability of

the numerical integration procedure.

S

The implicit method reguires the solution of a linear
system of equations at each time step, even if the differential
equation gives the derivatives explicitly. But, under these
circumstances it is not necessary to have the derivatives
in an explicit form. To show this in a schemutic manner,
let us consider the system of first order equations

[]'4 1‘7‘7=7"

where y and r are vectors and L and M are matrices. In an
implicit scheme one ultimately arrives at an equation

yl(trh) + const b §(t4h)m u

] % where u is a known vector determined from the values of y

1 and y‘at preceeding points in time and on the value of r(t).
The specific form of the equation depends upon the integration
method. One obtains by multiplying this equation from the
left with L

Ly(trh) 4 comst b Ly(trh) = Lu

([ ~ tonsth ﬂ}y/t-fé) e Ly ~ const b

In order to obtain y(t + h), one must therefore solve
a system with the matrix L - const. h M. If the derivatives
are explicitly available, then L is replaced by the identity




matrix. If one wants to use this idea, it may be necessary

to rewrite existing routines for the implicit integration of
differential equations.

According to an idea of Soliman et al., the inversion
of the operator L in multidimensional problems is facilitated
if the weight functions and the shape functions have a
special form. In the two dimensional problems, one will
introduce a two-dimensional grid (say a rectangular grid)
with grid points characterized by two subscripts. To the
point i,k there belongs a shape function N..

ik
function. Assume that the shape function and the weight

and also a weight

functions appear in the form

/‘{;L{%t) = 4ly) £ (¢)

The inversion of the matrix L can then be reduced to the
repeated solutions of one-dimensional problems. The

price for this simplification is the restriction

in the choice of shape and weight functions. Practically
only very simple shapes are possible; for instance,
piecewise linear functions in a rectangular grid. Even
then, a direction inversion of the matrix (L - const hM) is
not possible. If the second term is small enough, an
additional iteration would be applicable. This restriction
of flexibility (which to some extent contradicts the basic
philosophy of the finite element approach) may be worthwhile
for multidimensional problems where the solution of a large

system of equations is a very time consuming.element.
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SECTION VI
TIME DEPENDENCE

In the preceding sections the original partial differ-
ential equation has been reduced to a system of ordinary
differential equations (in our particular example with
constant coefficients). Appendix IV derives the familiar
fact that the results of the treatment of this system by
finite difference or finite element methods remains unchanged
if one first makes a transformation which brings the system
into its diagonal form. It is therefore possible to con-
sider one component at a time. The following discussions
are therefore restricted to the equation

du/dt? 4+ v*u = o (54)

where u is a scalar quantity; the constant v stands for one
of the values of v computed in Section III as a function of
the reciprocal of the wave lenght (except for a factor of 2m).
In practice one does not make such a diagonalizing transforma-
tion, the values of v never appear, and the shape functions

and weight functions used in solving the system are independent
of v.

In Section II shape functions for the y direction have
been used. The parameters upon which they depend are functions
of time, which are now represented individually by shape
functions of the same character. The scalars u in Eq. (54)
are linear combinations of such parameters. One arrives at
shape functions in the y,t plane of considerable complexity
in spite of the fact that the discussion is carried out for
one-dimensional problems. Familiar forms are bilinear,
biquadratic and bicubic shape and weight functions in a
rectangular grid.
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We distinguish between steps hs and ht in the
space and time directions respectively. The stability of
the time integration depends upon vzhtz. The maximum of v2
which occurs in a specific problem depends upon the step hs
in the space direction. Sometimes it may be desirable to

have a method which is stable even if vht is large.

PR

Hyperbolic problems, by their very nature, are initial
value problems; at an initial value of t the values of u and ;
du/dt in Eq. (54) are prescribed. The solutions can there- }
fore be obtained by a marching procedure. We shall restrict i

ourselves to methods which can be interpreted in this
manner.

The application of finite difference methods has been
discussed in general terms in Section IV. Here we discuss
a specific approach which is sometimes advocated. One writes
Eq. (54) as a system of first order equations

3 -— - =0
; ¢

/“. + V‘-u - 0

We use dots to indicate differentiation with respect to time.
In Section II differentiations with respect to y/hs have been
denoted by prime.

We use equidistant points in time

and set
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uf(b@) = u/;

Iet 6 be a constant; 0 < & < 1. Then one obtains in a familiar

manner
(i, =) -4 (05 +0-005, )= 0

(w,;, - ) + Vh (O +(1-6)% )= 0

or

/ "4t(/"€) U -1 '@0 “% _0(56)

bet!
+ =

ho-6) 1 |yl | e 1 ||a

From this system one finds Uy ,q and “E;l in terms of u, and
ug. To study the stability one introduces an amplification
factor p.

“htr “p (57)
L ] = 9 -
Wpsr “
This leads to the equation
~l4 @ -At[ﬂ-»f//—&}j 0

v“/rt [6+el-6)] - -1+p (58)

Hence (,P"’)‘ . P‘A;'/ﬂ-f!(/“oy&' 0

12 h) S
(& E (o )(1-8)

f-
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One has

/ /-// v /Vét)a.&‘ A
075 lonp e (59)

o e il

The method is stable for 6 € 1/2. One also has

, ,+(h,) 6" .
byo - bf asaar L UTH LY RO o)

A single wave, defined by its value at the grid points is
given by

¢ - cosfuy) Re(e’)
~ s fuy) Re {xp (8, ;tﬁ Lyp)f
= foyp (%, 51- Ly lpl)] cmgpy) cosfs, é [ty (vh,8) + arcty (44,0-60)f

(61)

If there were no phase error the factor of tk in the last
term, namely

- ey (54,8) + e (R 0-0)]

would be equal to u.

Depending upon the specific form of the differential
equations derived in Section II and upon the choice of hs
one has different relations between v and y. Ultimately,

one is interested in the relation between y and quantities
characterizing the amplification factor. For some values
of hs/ht and for some values of y a cancellation of the

discretization errors may occur.

mhe relations between u and v for cases 1 and 2, Egs.
(37), and (38) can be written as:

(36),
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with a = 0, 2/3, and 1/2, respectively. For these values
of o and for different values of the Courant number 8 =

ht/hs' the following expression is shown in Figs. 21, 22, and
23.

C‘-‘,—;—e—ﬁm?(v@éh anty (h(-8))] '47;; . /_JL [2 arcty 2]

This expression arises from Eq. (61) for B = 1/2. 1In this
case |p| = 1 and one has no damping. Ideally this expression
ought to be 1 for all values of Mg The phase errors which
arise are by no means small. The curves shown in Fig. 11
supplement these figures. They give the results for Courant
number 0. In all cases Courant number 1/2 gives about the
best results, particularly in conjunction with method 2b.

The results deteriorate considerably with increasing Courant
number.

Next we study cases in which the discretization applied
in Section II for the space direction are used also for the
time direction, We restrict ourselves to cases 1 through 3.
In actual computations d(y,, & 1), ¢(y,,t) and in cases 3
also ¢ly,,t,_;) and ¢ly,, t,) are known. -Here t, refers to
the time for which the computation has just been completed,

2 ranges over all stations in the y-direction. The procedure
then computed ¢(y2,tk+1) and in cases 3, also ¢1y2'tk+1).
According to the observations made at the beginning of this
section it suffices if one studies Eg. (54). Then one
determines U from u and U, and, in cases 3, uk+l and

k-1 .
Uy from Up_y uk-l' U, and u, . One obtains indeed a
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marching procedure.
Case 2a gives

VTuy g 05,242 D]+ (g, 2 ) -0

In the present context v is given as a function of uhs.
The formulae are found in Section III. Particular solutions
of this equation are found by the hypothesis

I‘I‘ - pr{c'yéé)

where v, is unknown. One then obtains

1

A ¥A
(»/:t)‘//—ffm’(%*)/ -4;,,,,/_'2_*/.0

Hence, for case 2a, after substitution of Eq. (37)

"t 2 4%(‘“}") 4 oin” M

("3 /-5 % ‘[4‘-5 } /- J—"‘rm‘/fj‘ﬁ“/

(62)

For ht/hs = 1 (Courant number 1) one obviously has

- 2

This means that the wave speed is correct. The errors due
to the discretization for the t direction cancel the errors
of the y discretization, In the interval 0 < vh <m the
expression on the right of Eq. (62) is a monotonically
increasing function of sin? (vlht/2), its maxium is 12,

If the left hand side exceeds this value, then the value of
1 for which this equation is solved cannot be real. From
the two conjugate complex solutions which will then appear,
one will give waves whose amplitudes increase with time.

Y
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For ht/hs 5 1 one has a real value of vy for each choice
of u; the method is stable for Courant numbers smaller than
1. The cancellation of discretization errors for Courant
number 1 has no counterpart in elliptic equations.

The procedure for third degree shape functions can be
carried out in analogous manner. However, one encounters a
significant difference. Consider case 3a. The relation
between 1 and v is given by Eq. (39). It has been obtained
from Eq. (16) by setting

Sp41 = P €xP (luhy).

For the present discussion is it preferable if we write

where p is some point on the unit circle in the complex plane.
Then one obtains instead of Egq. (39)

-.i/f-z +¢') o (-2
/ -/ P ’ -,
“wlt-f) § g lere? (54)
9 sp-246 - B g
!+ (P28 720 (0-¢) o
-’Lé). )
s /3 - A
720 (-5 ‘,_,—5'7;‘7/? 2045 )

For p on the unit circle, this equation gives real values of
vzhs. Now we apply a discretization analogous to case 3a to
Eq. (54). The results can be written down, by making appro-
priate modifications in Eq. (16).
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4 /5 /‘fﬂ Z”H‘ﬁ') (”lﬂ a‘,)f*v‘l’w g /‘2 e R 410 b v )

ﬂ . = 0
; ‘ At ?.JE'/“tw i) - [3“& Jo ﬁﬁﬂ z"h"u‘)]'w L!lzo (ﬁﬂ %1/ *z/o %~ ko ﬁ&
! ! Setting -Z“b *“ij I

= [ = ]
Y4l T Uk Ppr Yggy T Yol

and changing all signs one arrives at

-Flg-2118) S G -8) 1o 0-24)

2/ &
’ ! ! - —(p —fo-') 4{':' (s, -7 z/a m/f “26)
-7l6-%) T 3T 0
=0
(65)
This equation must be solved for py- It can be
rewritten in terms of an unknown
- 172 _ -1/2
v =0 Py (66)
One has specifically ’
g2+ g -t ; 5
- th Hhysh -t 2 Y ]
-0 = @G UG-G ) = v (70 g
)]
Thus, from Eq. (65) 1
4 ”
~ b2 1 i) 2, B s
| Lyiries)t F- 5t © s vvseft Lo L 3
i 70 $ e 2c 210 /70 3
!

This is a quadratic equation for v2. Eq. (65) can be obtained

: from Eg. (64) by replacing p by Py and hs by ht . For a
l, further discussion it sufficies if one sets hs = h Then

t.
i one has obviously
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These values of Py lie on the unit circle in the complex
plane. The value of vz pertaining to these solutions is

y )
Vie ~ 4 Jdu‘(-"g—-’}

But there exists a second solution for v2. We shall see
that among values of Py belonging to this second solution.
there is always one which gives an unstable solution. It
follows from Eq. (65) that the product of the two roots for
Py is always 1. All nenincreasing particular solutions
must have values of PL lying on the unit circle, for there
belongs to each root which lies inside the unit circle
another one outside. 1If one chooses p, as a poigt gf the
unit circle then one can evaluate Eq. (65) for v ht .
(This is the evaluation which led to Fig. 12 curve a, but
now we consider uht and vht as coordinates.) To each
value of uht one obtains two values of »ht, each a monotonic
function of uh,_; these two functions do not overlap. It
follows that for these curves (which exhaust all possibilities
for Pl being on the unit circle) one obtains for each choice
of vht one value of uhs (and consequently one value of vz).
The slope of these curves does not vanish, accordingly there
are no double roots. It follows that the 'second root for v2
gives values of P1 off the unit circle, one of them pertains
to an unstable solution. The same argument can, of course,
be made if ht/hs # 1,

This observation can be connected to a phenomenon which
arises if one solves ordinary differential equations by
integration techniques in which one uses information generated

for preceding points in time. One then deals in principle
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with difference operators which are of a higher order than
the differential operator occurring in the differential
equation that is to be solved. This procedure introduces
spurious particular solutions. In order for such a scheme
to be stable, these spurious solutions must be damped. 1If
one uses third degree shape functions in a manner analogous
tc case 2a to solve the differential equation for the time
dependence, then one uses information for up . ui, g and
ui_l. To define an initial value problem for the
differential equations the values of u, and uﬁ are sufficient.
One recognizes that this form of discretization will introduce
spurious particular solutions and because of the complete
symmetry which exists between the positive and the negative
time direction, there exists for each solution which is

damped another one which is excited (that is, damped in the
negative time direction).

Because of this observation, higher order elements of
the character discussed in cases 2 and 3 must be rejected.

For first order elements this phenomenon does not
occur, but even then one might have reservations because
of the choice of the weight functions. In a marching
procedure one considers the solution as known up to a point
tyr and continues it through the interval between ty and
tk+1' This step has no influence on the solution in the
preceding interval. However, the weights used in cases 2
and 3 take into account the residuals between the points
tea1 and t, as well as those between the points ty and
tk+1‘ The solution in the interval. between tk and tk+l
is chosen in such a manner that its residual counteracts
the effect of the residual in the preceding interval, over

which one has no control. One observes, on the other hand,
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that according tc the aboye stability analysis this has no

obvious undesirable effect. For Courant number 1 the methods
even give a cancellation of the discretization errors in

time and space directions.

Let us now consider procedures for which this objection
does not holad.

First we discuss shape functions which are
piecewise linear in space as well as in time. 1In
the choice of the weights for the space direction one
will observe the symmetry which exists between positive and
negative values of y. Regarding the time direction a
corresponding symmetry is not required. For higher order
elements it is even undesirable (because of the occurrence
of spurious solutions, as we have seen above). Specifically
we choose, for piecewise linear shape functions

Wal, for éét-é‘ L s lbri) -5, >0, £0
The weight function straddles the point ty but not the point
tyes1 This is necessary because one will have a jump of u

at the point ty which generates a § - function when one forms
d2y/dt2. One has

tr. %4, -

(k#1)h, -8 2 Cenlf ¢ /at-( 4 -&

/A
[ vieygadt -/ gk - 7

Z‘-‘-tz" z‘.%_e t;%-;
- -1 .
=4 /‘%ﬂ -%) ~he (-, ) = '% ,/'ﬁﬂ_a‘l *4,)
Furthermore
i)y -2 bu (ht1 )y

lwm ' Wi
‘,_,0/ wdt = / ndt ""%_j/t
t-é&t-t te b4,
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One thus obtains

N
U -2u +& vhe AN . p
Rt % "% T 2 (68)

Again, we introduce an amplification factor

4., = 0% (69

This leads to

1+ 5 h)) —(2-F0h))p + /=0 (70)

= / _; 2 . _ 2%
£ 1+ 74> [ -304S 2 b fr- 7 04)]7 (71)

For small values of Vht the roots are conjugate complex.
The absolute value can be computed from the last formula.
It can be obtained more simply by a comparison of the first
and the last term in Eg. (70). One obtains

1k
lpl= 11 #3477 (72)

A double root is obtained for (vht)2 = 16. This gives

/

¢ J
For (\)ht)2 > 16 one obtains two real values of p. The
particular solutions are always damped if |p| < 1.

We examine for which values of vht one will have
fp| = 1. One obtains from Eq., (70)
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(vét)‘- 0 for gat

and
: >
_” Pht) s 0o 767 P:—/
» The particular solutions are damped for all finite values of
f' \)ht.
) which alternate between positive and negative with little

As vht tends to infinity one obtains particular solutions

change of amplitude. Fig. 24 shows exp(iuht) and a curve
p(nht) in the complex plane for 0 < wh, < 7. Corresponding
points are connected with each other. The useful range for
values of uht is rather limited to about 0§1HH; m/2. Beyond
this point one obtains strong damping and a considerable

phase error. The method can be used even if why is large,
because such waves do not create an instability, but the
contributions of waves for large values of uh, are meaningless.

Now we study again Eq. (54) but represent the unknown
in the interval from k to k + 1 by third degree polynomials

They are determined by the known quantities u, and ui and

k

by the unknown guantities u and u° . By this characteriza-

tion continuity of the first+éerivate; at the grid points is
guaranteed. The functions u represent the coefficients of

the eigenfunctions which arise from a representation of ¢

(in the original partial differential equation) along lines

t = constant in terms of piecewise third degree polynomials

in y. They are therefore expressible in terms of ¢ and ¢y i
at the grid points. The continuity of the derivatives u’ !
therefore implies continuity of ¢t and ¢yt not only at the
grid points but along lines t = const. If the function ¢t
is given along a line t = constant (which is the case in a ]
properly set initial value problem) then one can determine

from it also ¢ it does not contradict the notion of a

yt’
properly formulated initial value problem, if we initially
assign the value of u. If one takes triangular elements

and third-degree polynomials (with the powers of y and t
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counted together) then one has agreement of the gradient
in adjacent intervals only at the grid points, 1In the
present formulation we have piecewise bicubic elements and
then continuity of the gradient is guaranteed everywhere
along the element boundaries.

The weight functions are to be applied only to the
interval from k to k + 1. No overlap over the grid point
is needed, because of the continuity of the first derivatives.
In each interval we have two unknowns, and u, ,,. One

Yk+1 k+1
therefore needs two weight functions. We choose

w=1fort <tc<t +ch (0 <c <1) and

k

(73)
w=1fort +ch <t tesl

or equivalently,

w l for t, < t < t

k k+1

1l for t

3
il

Kk < t < tk + ch

In representing the space dependence of ¢ we have also
~onsidered examples in which the weight functions were formed
by linear combinations of the elemental shape functions.
Something similar can be done here. One could for instance
choose

%
]

N1 + N3
and

w = N2 + N4

where the functions N, are given by Egqg. (6) with Ay

replaced by At. The first of these weight functions is 1.
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This possibility has not been discussed. The results
would probably be of the same character as those for the
weight functions defined above. Let

Then, using Eq. (6} one has the following representation for

u in the interval between t, and ¢

k k+1°

wlt)= w, [7- 3{‘t‘+1./;,‘£/’ U ["/’t -z/t/’]

At
. ¢ ¢ tz 2
CBALE RS G b R 7]

2

¢
T K6 el v LS 5]
ru K4 6 @Y ru b2 #603Y)]

Substituting these expressions into Egq. (54), multlplylng

by the weight function 1 and integrating over K_ from 0 to

c, one obtains after multiplication by ht2

TR SO

— e
oo

[ [-6c+ 6] +u [bec-6c']
4 “’k: A [-4c+3c* + %’,,6 [-2c+3c']f (74)
+ VP lsz, [c-c¢ +-—C’]+ [C"- —CV

s hy [FLet-5c3 ;’c"] Pl ho[-4+ fc'/f

= 0

47

K > \

i ST R o) ISP At A PRI <o e 8 4t L A e e Sin ¢ i s e
! -




(R O 5 A 00 12,800 b S50, 5 i R e R I

x
. o
g
A
. . (74)
i ~N/6 + U A
| &z A Continued
X
- a2 [y d ’,* /7,
RN S LW Ry LY EX
The second equation is obtained by setting ¢ = 1. Let
2 2
v ht = A.
Then one obtains the following system of equations which
- + ‘+
connects the vectors (“k+1’ uk+1) and (uk, uk) .
A -+ A A
| T (=15 (| 5 (/--/é_-) “ss
.? + J =0
L 'S [N
a+i& 4+ b | \uhl | gHd G AG K4
[ (75)
with
a, = ~-6c + 6c2 c, = 6¢c - 6c2
1l 1
a2=-4c +3c2 c2=-2c+3c2
_ . _ 3,14 _ 3 _14 (76)
bl-c c +2-c dl—c »C
_12_23_ 14 _ 13,14
by =3¢ -3¢ *+7° d, =3¢ *+ 3¢
The amplification ratio p defined by
l
|
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w,

& “4s ’ %
X ul.fl 6‘£ “Lét
’3 is determined by the following equation
: -
Y ( /4 -”_L) -f— (r- ﬁ-) i
(@ +14,) (@, +14,) (6 +4d)) (¢+4d) (77)

This quadratic equation for p must be solved for different
values of A and c. The amplification ratio has either two
real or two conjugate complex roots. Eq. (77) evaluated in
detail gives

c(r-c)f [-6 +A(-F + Fcli=c))- :}zzj,,z

f R+ A(-5 =cl-c)+ L+ ycf-0)]p (78)

4 (16 (-4 » fetrme))- TLET) w0

This equation must be solved for different values of ¢ and ).

The factor c(l-c) is of course unimportant. One notices that the
coefficient of p2 and the coefficient of the constant terms

are interchanged if one replaces c by (1-c) and that the
coefficient of p remains the same. Accordingly, if c is !
replaced by (l-c), then a solution of p is replaced by p-l.

For ¢ = % the product of the roots p is 1. In this case

the solution is stable only if the roots are conjugate
complex, The discussion for ¢ = % best goes back to the
original determinant Eq. (77). Setting ¢ = i and taking twice :

2
i the second row minus the first row, one generates the effect
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of a Welght function which is symmetric w1th respect to
At/l& . One obtains

Atisg) (-1+ A )r-¢)
(-3 + j52)-¢) (-4 +3-a)rp)
Hence

(1-9)" All- 37 =1)

/
{/'*f)" 4 (/- /‘)//_ “—!‘,—))

(79)

For A small one obtains

/-9 =.‘(’_al/&
/+ P - -t

and hence
p =14 J.'\ht

(as expected). The right hand changes signs for )\ = 48,
A =12, and A= 9.6,

p is complex for 0 < A

A

9.6 and 12 < X < 48

p is real for 9.6

A
>
A

< 12 and 48 < ).

The values of [arg p)A"l/z versus Al/z for 0 < Al/z = vh,
< 9.6 are shown in Fig. 25, One sees that in this stable
range the ideal value 1 is fairly well approximated. The
method is unstable for c = % and p real.
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& One has, from Eq. (78) for general ¢ and two con-

jugate complex roots of p

L b rA(F —Felc)e NG ref
/el = (80)

/ / 2/ .2
6§ + A(F - gclte)# A 5c

The first two terms in the numerator and in the denominator
are the same; for 0 < c < 1 the{ are positive. The last
terms show that |e¢] < 1 for c > 5 . We restrict our
attention to this region 1/2 < ¢ < 1. Fig. 26 shows for

¢ = 3/4 the curves in the complex p plane which arise if A
is varied. They consist of arcs in the complex plane which
are symmetric to the real axis. According to Eq. (80) these
arcs lie within the unit circle if 1/2 < ¢ < 1., They end

in branch points which lie on the real axis and are connected
by pieces of the curve for which p is real. These portions
may pass through the unit circle. This can happen only for
o = + 1. One obtains from Eq. (76) for p =1

#

3 c(l-c) - 6X = 0.

g‘ Hence

81
and (81)

12

The first value represents the beginning of the curve. The
last value is a second transition through the point 1. Only
’ . for ¢ = 1 will this point lie at A = =,
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- One obtains for p = -1

- '2:["'5(’-0] +#A[4+2¢(1~c)] -24=0

Hence

J e /2

/2
T 14cl7-¢)

A

These points coincide for ¢ = 1l; that is, the p-curve reaches
the unit circle at p = -1 but returns, immediately. The
arrows in Fig. 26 give the direction of increasing values

of A. The curve starts with A = 0 at p = 1 and moves along ﬁ}
two branches through the complex plane to a branch point :
on the negative real axis. It is continued along the real
axis in the positive and negative directions. The branch

extending in the negative direction passes through the unit .
circle. Both branches double back and meet at a branch point
along the negative real axis. From there the curve is con-
tinued through the complex plane in two branches which meet

_ at a branch point along the positive real axis. The final

2 continuations follow the real axis in positive and negative

[ directions. One of the branches passes through the unit
circle (at p = 1), For A » « these two branches end at

}
)
points of the positive real axis. For ¢ = 1 (Fig. 27) one }
’ L
of the endpoints lies on the unit circle. §
}

According to the above analytical discussions the curves
for different values of ¢ have the same character, All have
unstable regions (|p|> 1), except if ¢ = 1. Stability for
c # 1 can be guaranteed by limiting the Courant number

! (A < 12/(1 4 c(l-c)., For c = 1/2 this limit is A < 12.
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Notice that these values are close to X = (vht)z = "2'

If one imposes such a limitation then the choice c = 1/2
seems to be preferable; according to Fig. 25 it gives a good
approximation to the propagation velocity of different waves.

In comparison to linear shape functions the approxi-
mation by third degree shape functions is much better even
for other values of ¢. This is seen by comparison of
Figs. 26 and 27 with Figure 24, but as we mentioned, one
must limit the Courant number.

It is clear from the outset that for Courant numbers
that are considerably above 1 the solution of Eq. (54) will
i be inaccurate. The Green's function, which describes the
propagation of errors, is an oscillating function. We have
r imposed an averaging procedure for the residuals without
taking this property of the Green's function into account.
One is therefore resigned to the fact that from a certain
value of vht on the results will be meaningless. One hopes,

however, that such solutions will vanish automatically,
because they are damped. The above analysis shows that this
is not the case for third degree shape functions except

for ¢ = 1. In this limiting case one has as one of the
weight functions constant weight throughout the interval
and as second weight function a § function at the point
tk+17 this amounts to a combination of weighted residual
method and a collocation method., Of course, a collocation

method has much in common with a finite difference approach.

We notice in passing that an implicit method does not
automatically lead to a stable procedure.




o —— -

SECTION VII
A MORE COMPLICATED SAMPLE PROBLEM

In the preceding sections we have seen that in many
methods stability can be achieved by limiting the Courant
number. There are methods which are stable even for very
large Courant numbers, but this entails a considerable loss

of accuracy even for fairly long waves.

In a problem with variable coefficients it is possible
to satisfy a Courant number limitation throughout the whole
field provided that the discriminant which determines whether
the problem is elliptic or hyperbolic is bounded away from
zero. If the step in the space direction is fixed, one
simply makes the time step sufficiently small. Of course,
for certain parts of the field the Courant nuiber will then
be unnecessarily small and the progress in the t direction
unnecessarily slow. Af first glance it seems that this is
no longer possible if this discriminant vanishes locally as
it happens in the transonic problem. (In the present
discussion which is restricted to hyperbolic equations, this
can happen only at the boundary of the field.) We study a
simply example of this kind.

Consider the partial differential equation

oz 2%
- 5—% # a‘y{ -0 (83)

with boundary conditions

p =0 for y= 0 (84)
F= 0 for Y=/
The discriminant vanishes at the boundary y = 0 of the field.
In a transonic problem, x is the downstream direction. It
corresponds to t in the previous examples.
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For a comparison we shall treat the wave equation also

L A
—_— = 0
2x*> =

with the same boundary conditions.

(85)

For simplicity a semidiscretized difference method with

L + 1 equal intervals in the y direction (L intermediate

points) is chosen. Then one has

Let

gou) =g éé)

The semidiscretized finite difference apgproximations to

Egs. (83) and (85) are, respectively

JZ ~2
44 o “4 Bor- 2, * %)= 0
(transonic equation)
and

Mo sk, -2
- 3w *Y Gy 2 +g =0
(wave equation)
Setting
%(x{ = & exp(ivx)

one obtains the following eigenvalue problems

.)éa; # /azﬂ-za‘faz_,ﬂo

with 2
a
A= {7,
(transonic equation)

and

Ay + (a4, -20¢ +a, )= 0

. 2

with Jd = y‘éy

(wave equation)
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(86)

(87)

(88)

(89)

(90)

(921)

(92)

(93)

(94)




The nth eigenvector for the wave equation has the elements

) . nby
a a JUn (95)
A AW,
Then one has
o/
3™ b ) (96)

L+

The largest eigenvalue is obtained for n = L. If L is
increased, then one obtains more eigenvalues but within the

same interval 0 < A(n) < 4.

For the transonic problem one has a generalized matrix
eigenvalue problem

B . M T 7 .
1 -2 1 2 a;
1 -2 1 3 2
v - : =0 (97)
1 -2 1 L-1 a
L 1 -2_ L L Lal‘l-

This problem has been solved for L = 8, L = 12 and L = 20
by means of a routine available in the EISPACK library. The
eigenvalues are listed in Table 1.

For the wave equation as well as for the transonic
equation there exists a maximum eigenvalue (A = 2.4 and A = 4,
respectively). For the integration with respect to time (in
which the question of stability is decided) one must consider
the value of v which is connected to A by Egs. (92) and (94,
respectively. In the preceding section we found as a
stability limit for approximation of the time dependence by
third order polynomials

(ﬁ‘y/‘-v 96




TABLE 1

EIGENVALUES FOR DIFFERENT VALUES OF L

IN THE TRANSONIC CASE

L=28 L =12 L =20
2.3880 2.3880 2.3880
1.0900 1.0900 1.0900

.70560 0.70566 .705€6

.51691 .52166 .52166

.37290 .41367 .41376

.22900 .34015 .34284

.00672 .27464 .29267

.025700 .20644 .25531

.13978 .22632
.081353 .20215
.036374 .17847
.0085800 .15318
.12699
.10112
.076658
.054498
.035403
.019995
.0087602
.0020425
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THE VALUES OF

TABLE 2
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LARGEST EIGENVALUE OF THE TRANSONIC EQUATION

k L=28 L = 12 L = 20

1 | 1.00000 1.0000000 1.000000

2 | -.38801545 -.38801545 -.038801545

3 .077142863 .77142863 .077142863

4 | -.1035388 -.010353876 -.010353876

5 .0010502475 .0010502475 .0010502475

6 | -.000085665 -.000085665 ~.000085665

7 .0000058444 .0000058449 .0000058449

8 | -.000000341697 | -.00000034273133 | -.00000034273133
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THE VALUES OF ab,
E

LARGEST EIGENVAL

TABLE 3

k =1...8, FOR THE SECOND
OF THE TRANSONIC EQUATION

w L =28 L =12 L =20
1 -.85928478 ~.85928475 -.85928475
2 -.78197087 ~-.78197083 -.78197083
3 1.000000 1.0000000 1.000000
4 -.48795330 -.48795340 -.48795340
S .15152046 .1512073 .15152073
6 -.034773134 -.034773974 -.034773974
7 .0063442942 .0063478456 -~.0063478456
8 -.0009411981 -.00096327439 -.00096327439
TABLE 4
THE VALUES OF a,, k = 1...8 FOR THE FOURTH
LARGEST EIGENVALUE
w L =28 L =12 L =20
1 .67082316 .67489092 .67489121
2 .99489036 .99772005 .99772028
3 .29041777 .27961324 .27961259
4 ~-.86441535 -.87608045 -.87608122
5 -.2319448 -.20371902 -.20371726
6 1.0000 1.0000000 1.0000
7 -.86952195 -.9262249 -.92622843
8 .40721511 .52975421 .52976194
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To improve the accuracy one may choose a somewhat lower limit.

Substituting Egs. (92) and (94) into this condition and using
the respective maximum values of A one obtains

t 3

/’x = 423 (98)
(transonic equation)
{99)
a ~ 2
HE Z'l*.é; (wave equation)

Important are the powers of hy (3 for the transonic equation,
2 for the wave eguation). One must, of course, reduce hX

as one reduces hy' but more strongly for the transonic
problem than for the wave equation. But even here, a mesh
for which the time integration converges can always be found.

One observes that in the transonic example the largest
eigenvalues for different values of L agree nearly perfectly.
This does not happen for the wave equation. Also the

components a]:n)

of the eigenvectors (normalized by the require-
ment that the largest component of the vector with components
aén) be one) agree surprisingly well for different values
of L. (See Table 2 for the largest eigenvalue,

Table 3 for the second largest and Table 4 for the fourth

én) of these

vectors become extremely small, therefore only the components

largest.) For large values of k the components a

for k = 1 to k = 8 are included in these tables. One sees
that the effect of the eigenvectors pertaining to the largest
eigenfunctions is restricted to the immediate vicinity of the
parabolic line. As L is increased and the interval hy becomes
smaller, the region where the largest eigenvalues are of

importance contracts because close agreement of the eigenvectors

occurs if one compares the same values of k (not of y = k hy)

This analysis shows that the Courant number limitations
are not as serious as one might assume at a first glance.
If the contributions belonging to the largest eigenvalues
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should become unstable, then this instability will be
confiued to the immediate vicinity of the parabolic line
y = 0.

The eigenvectors have been found by direct computation.
The is probably the most practical way even if one does not
use the EISPACK routine, which is somewhat oversophisticated
for the present simple problem. The eigenfunctions can be
expressed in terms of Bessel functions. This may be useful
if one wants to understand their asymptotic properties, for
instance, the fact that the largest eigenvalues are nearly
identical.

The system Eq. (97) can be regarded as a three point
recurrence relation

a"-’ + 4 /6) '&}%so

%)
It resembles the recurrence relation for Bessel functions
" - L
Z_,00 Z.,0(0) -2 % F=0
where zp represents a linear combination of Jp and Np with
coefficients that are independent of p. We set

4 .
¢4, =) %
Then one has
~ ~ d
Ty * %, ~(R1-2)G =0 (100)
To identify the two relations one must postulate
232 - 2%

The order p must increase by 1 as k is increased by 1.
Therefore,

4-2/‘

and, using this result

ﬁ- 4-1/2
Thus, one finds that .

% « %_m/‘/J)

(101)
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1 satisfies the recurrence relation Eq. (100). The eigenvalue
A is determined by the boundary conditions

-

(4 ~
4=0, alrl.a

Accordingly, one must determine A and the linear combination
between Jp and NP in such a manner that

-

5/,\ (2/a) = 0 (102)
and
Z 2/1)= 0
s 2A /1) (103)

If L is very large, then the order L = 1 ~(2/)) is very large
in comparison to the argument (2/)) of the Bessel functions.
Bessel's equation reads

AR R

If the order is very large in comparison to the argument,

then (except for a constant) Zp = ti. It then follows

from Eq. (103) that Z is, in essence, given by Jp = const. xP
while the contribution of Np is very small (except for k ~ L).
This explains why the eigenfunctions are so close to each
other for small values of k.
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SECTION VIII
A RATIONALE FOR THE CHOICE OF THE WEIGHT FUNCTIONS

So far we have chosen the weight functions on intuitive
grounds and then examined their effect on the :stability.
In this section the attempt is made to provide for a more
rational basis.

We ask for the best possible choice of a weight function

for the differential equation Eqg. (54) assuming that v has

a fixed value. As usual, we replace u by some approximation
using shape functions which are related to certain data

within the flow field; in our case these are the values of

u and u’ at the grid points. The approximation so obtained

is denoted by u. With weight functions Wy and Wy, One

obtains the following equations, from which the values of

and 4, are determined.

k
1§n¢r~ _
//75 +V'Z) M.(at) It =0,  c=f2 (104)

Uy

The specific choice, to be justified presently, is

# = cufyat) ;M- vese (vat ) (105)

Then one has the condition
Zis cos (v a6)

/ t;fv»)/ (v at,) It =0 (106)

Th
Let Au be the difference between the exact solution u and
the approximation a

U = & +ol

One obtains, by substituting this expression into Eq. (54)

(dou)/dt* + viau ¢ R(t)=0
with

Rt )= @'&)0t* 4 V&




ol s Tk i e

K

.

. e m—.

Hence, provided that for Au = 0, Au’ = 0 for t = t,

¢ ¢
du(t) = if@zq»agoﬁezt)x&4@4t7at *JQV0UtJ/ceﬂvan(bat7dﬁ/
% 7

A (

] -4
awlt) = + in(va t)/zl‘t'/.b'w(paz‘}a’&' + m(pat}/,e(t)m[vaz'}o’tj
% %

(107)
Hence, with Egs. (106)

ault,)=0, ault, )=o
One sees that with the choice Eq. (105) of the weight function
the errors in u and u° vanish at the grid point tk+1' and by
induction at all subsequent grids points.

The argument is slightly different for the space
dependence. The starting point is the equation
ot* >

We compare an exact solution and an approximation which have
the same dependence upon time. The exact solution is given
by

Flyt)=tly)exp(2evt) = eaplivy)exp(2eivt)

ﬂ‘?/}'/ t) = diefdy exp(tcve) = dp.ex,e[z'ry/ap/zt'vt)

One has specifically
Ly - exp(cvéh )
108
wA’/ - é.’b'y -&Xﬁ[[l’éé) ( )

The factor h—l in uk' occurs because by our original definition,
the prime denotes the derivative with respect to t/h. The
function u satisfies the equation

d%u)fdt> 3 v'e = o

The approximation is assumed to have the form

zZ(y} exp(cvt)
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Now it is assumed that {i{y) is given by piecewise third
degree polynomials with continuity of the function and of
the first derivative. Let
& = Zlkh)
and w
) - Ok )
& =4 ;ifbb
With tentative weight functions wi(Ay) one finds as conditions
from which ﬁk and ﬁk' are determined
Jars a&'v
@& > -
//3?- + vuly)) v (ay) dy = 0 (109)
N/

Previously we proceeded as follows. Particular solutions
are obtained by setting

lz" = C 4)'}/%‘4"'5)

&' = CCexp (cpkh)

This leads to a homogeneous system for C and C. The elements
of the governing matrix depends upon p. The vanishing of its
determinant establishes a relation between u and v (no matter

how the weight functions are chosen). We set
awnly)=uly)-€ly)

One then obtains

2
ﬁ/i’ ay +vau + R=o

R = %;é: 0@
Then Jees o
alky -ak s n '/w.s[pdj'{/ R ) xm(vay) dy - Ia-'»/uy// Ry) cos (vay)dy]
Je S
. S S/
. 4‘6" =~uw@ay [ Rly)anayidy -cos(vey) [ R(y) cas(vay) %y
Ju Jh

(110)
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Now we impose the condition that the errors in Au and Au'

vanish at the grid points in the y-direction the left sides
of the last equation vanish. 1In order for the right side to
vanish, it is necessary that the integrals vanish separately.
t/ ar
’/‘»z
(

% ovi) dim(vay) dy = 0
J&

," > o
/l(i.f:,pp‘t&'j cos(vay)dy = ¢
%

These conditions are identical with Egs. (109) if one chooses

b = Snlvay)
(111)
4, = cot(vay)
If these conditions are satisfied, one obtains because of
Eg. (108)

Uy = & = exp(cyhh)

“
W, w15y = h7ev exp (cvh4)

and then it follows that iG(y) is periodic iwy with period

%%. It does not matter how d(y) is related to ﬁk and ﬁi

provided, of course, that if
ol A ot 4
“ly) = f0G,5)
~ ~ ~ /
Zlyrh) '//%U“.'bﬂ)
The initial data will, in reality, contain linear

combinations of waves exp(ivy) with different values of v.
The weight functions sin(vAy) and cos (vAy) are perfect only

then

for one of them; for all other wave lengths some error will
occur. At best, it is possible to tune the weight functions to *
a certain wave length, then it will be nearly correct for

adjacent frequencies. The weight function for very long

waves are given by




: m K

L Ay

Liwe co.\(vay)- /
Y=
X and

.‘ Liny (View(vay) = ay
1 ! b0 { 1
. Figure 28 is similar to Figures 12 and 13. It shows

for third degree weight functions the wave speed for

different wave lengths with this choice of the weight functions.

For short waves (large values of u or v) the result is

certainly not better than the weight functions on which

Figures 12 and 13 are based. It might be preferable to

attune the weight function to a value of v somewhat larger

than zero.

The Duhamel solution of the inhomogeneous problem
used in Egs. (107) can be regarded as a representation of
the Green's function for the ordinary differential equation (54)

The Green's function for the wave eguation can be
obtained by a Fourier analysis with respect to the y and t
directions. The circular frequency v will then vary from
0 to infinity. The weight functions which one would obtain
by applying the above rationale are w, = 1, w, = At, Wy = Ay
and Wy = Ay At. They give equations for ¢, ¢y' ¢t and ¢yt
at each grid point. These weight functions are attuned to

the low freqllency components of the Fourier decompositon.

The Green's function for the Laplace equation is
given (except for a constant) by log(?—?‘). One then obtains
as the effect of a residual R(r')

ad(¥) = // R(F) Lyg/r-7! e’

From this expression one can derive weight functions by the
requirement that the long distance effect of the residual

from each element be small. Let the element center be at

2 = ;o with coordinates x = Xyr ¥ = Y- Then,

e 2
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IT' - ?olis small in comparison tolT - ?OL One obtains, by a
development of log(r' - r) with respect to (x' - x,) and
(y' - y,) ;
[ RC) dyg [r-r1dv'dy’ = dogfr-nt [ R (7)dX'ey

element o/eowent
/;, "‘) //’t/i'//r )JX'&(/-#-—- /e/ )y, ) 'y’

/~) -O/
e/ement elewent

4 A@Mrr¢nv@r terme

This suggests three weight functions for each element, namely,
w, = 1, W, = Ax and Wy = Ay. (One remembers that for the
Laplace equation and bicubic elements one expresses the

solution in terms of ¢, ¢_ and ¢y for each grid point.)

The number of weight funczions obhtained by the above reasoning
is correct. There is, of course, a question whether one should
use these weight functions instead of those which arise from ?3
an extremum formulation. The same approach can be used to

obtain weight functions for the three dimensional Laplace

7 v

equation.

In a corresponding manner one can discuss the choice §

of the weight functions for the three dimensional Helmholtz f
equation, There one has as effect of a residual (except for ﬂ
a constant) '
/P-7/ !

J) Rt Ty My i

The weight functions are obtained from an approximate 3

representation of the Green's function

i plPoT) eosflPnt) sl R, 1t
o T T IR P -r 0 Gl

/F-nl)
- & ;:é:} “ [1X=%) (3" ~K) # (7 3 )3 36V

# hlgher ovdey Terms
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The expression appearing in the second line dies out only

as 1/(;-?'), while that in the first line dies out as 1/(?—?')2.
(Either x - Xg OT ¥ ~ ¥, is of the same order as r.) The

above form suggests weight functions w, = 1, W, = Ax,

Wy = Ay, W, = Az, but strictly speaking the goal of suppressing
long range effects is achieved only if u(x'—xo). u(Y'-Yo) and
u(z'-zé) are small within the element under consideration.

The size of admissible finite volumes must be smaller than

the wave length.

The idea of making long range effects small fails for
hyperbolic equations. The effect of a residual is given by

[ 841 8) 620 Gpg'r- ca-2rT P syl
The square root vanishes at the characteristic cone through
the point t', y', z', and for this vicinity a development
of this expression is no longer feasible. It is impossible
to supress long range effects. Some further insight is
obtained if one considers the finite element concept in

conjunction with the idea of characteristics.




SECTION IX
FINITE ELEMENT AND CHARACTERISTIC COORDINATES

The presence of characteristics imposes a dwfinite
structure to hyperbolic equations; one expects that
this fact has some bearing on the implementation of the
idea of weighted residuals. Perturbations (for instance the
effects of a residual) propagate along characteristics.
In Appendix VI the Green's function belonging to a two
dimensional problem has been studied. A local source in a
flow with a Mach number v2 gives a perturbation in the velocity
only along the characteristics emanating from the point
at which the source is located. Along these characteristics
one has a step in the potential. The perturbation velocity
has the direction normal to them; it is given by a § function.
Also the perturbation in the mass flow vector is given by
a delta function; it has the direction of the characteristics.
The effect of such a source does not die out with distance.
In choosing weight functions for elliptic equations, one can
use a plausibility argument. The long range effect of
truncation errors can be reduced by postulating that within
small regions the residuals counteract each other. This
argument cannot be applied here: the effect of two sources
which lie on different characteristics will not die out with
distance (although it is confined to a narrow region). We
study here to which extent this state of affairs can be
taken into account by the choice of the element shape and
of the weight functions.

Consider plane and axisymmetric flows at a Mach number
Y2Z. Then one has, respectively

'é\'x 49!,,: o (112)

~Frx * Frr *EFr (113)
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If small values of r are excluded, then it is practical to

introduce in the axisymmetric case

~ V‘
g=r'd (114)
Then one obtains
) 'a‘f‘ T I = (115)
Introducing characteristic coordinates
f=xXty
2 - X "y
or (116)
&’: X+r
% = X=-r
one obtains
2e_
= 0
&0 in the two dimensional case, (117)
and
>
% -ty
%#0r  2le-v
or _/za,'* ,..-% { (118)
T TR 7/ 2
in the axisymmetric case (119)

The axisymmetric case has been included because simplicity
of the plane problem might lead to faulty generalizations.

Now we consider the equation

;5}’2 ~ A% (120)

where £(£,n) is either considered as known or given as a
function of ¢ and its lower derivatives.

Assume that the element boundaries are characteristic
lines. This means that we deal with a rectangular grid in
the £,n plane. The solution in one quadrangel element is
~completely determined if one knows the wvalues of ¢ along
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two adjacent sides. From the characteristic conditions one
then obtains the values of ¢n and ¢£ along the other sides
(¢n along the side for which & = const, ¢€ along the side

for which n = const). The potential is obtained by
integrations. The effect of the residual can be judged by
considering the falsification of ¢ (or of ¢nand ¢€) along the
newly computed sides of the quadrangle. This criterion is
preferable to an evaluation of the residual at infinity
because the errors do not die out. If the function £(&,n)

is known, then one has by a direct integration,

‘6 -~
By (£=5,n) -4 (¢4, %) }/;z/g:wf -0

Y
Bltr=0) -8 G 1-0)- [ G315 = o
%.

The values of ¢n(£ = El,n) and ¢g(£,n = nl) (and the values
of ¢ which arise from them by an integration) is the only
information needed in order to continue the computation

in adjacent elements. Actually, one must approximate ¢ by
means of a finite number of parameters. Equations for these
parameters are obtained by applying weight functions. But
since only the data along the element boundaries § = El and
n=n, are needed it is sufficient to use weight functions
w. (n) along the segment £ = El = const and wj(g) along the

1

segment n = = const. One therefore obtains

n
/2 . : . & i o
B0 A 08 T 2E51dE} 45 = o

and similarly for the second equation.
Hence, in an obvious manner
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This is a weighted residual expression (The integration is
extended over the whole element). The weight vy depends only
upon n. In the other case one obtains weights which depend
only upon §&.

In the axisymmetric cases we derived two forms of the
differential equation depending upon which form one chosses
one has as weight functions either

wig) or i
as

v.(y) or %-lz/"’/)'
It is assumed that the residual is formed for the original
differential equation (113) in each case. There is still
some arbitrariness in the choice of the weights. For large
values of r the difference is unessential. One has very
little variation in one of the characteristic directions
while in the other direction the choice of the weight function
depends upon what kind of details one is willing to
disregard.

In principle, the errors so admitted do not die out
with distance. The reason for disregarding them is that they
express unessential details. A finite element representation
depends, as always, on a certain smoothness of the function
that is to be represented. Discontinuities of the derivatives
are admissible along the characteristics. (They might be
introduced by discontinuities in the boundary conditions.)
Such discontinuities at the characteristic element boundaries
are compatible with the present formulation and if they
are present, a finite element procedure based on the elements
bounded by characteristics may give better results than the
finite element procedures discussed in the preceding sections.
To see which steps one has to take we consider the differential
equation ¢En + £f(£,n) = 0 and assume that in a characteristic
quadrangle the function ¢ is represented by bicubics. This
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requires that one knows at each of the four corners ¢, ¢€,

¢n and ¢Eﬂ' ¢En is given by the differential equations.
Known are the data along the lines 1, 2, and 1, 3 (See Figure
29).

Specifically, ¢y ¢g,1'-¢r,l' b ¢£,2, ¢/ ¢n,3
unknown are ¢n,2' ¢g’3, ¢g’4r ¢n,4’ and ¢,

Accordingly, one can use five weight functions. One of them

is obviously the constant, which depends neither on § or n,

for the other weight functions one will choose two which depend
solely upon £, and two which depend solely upon n. Further
details are omitted. Some modifications are required along

a line for which initial conditions are given. This line must
coincide with a characteristic, and one deals with triangular
elements.

The stability analysis in all previous discussion has
been carried out for the wave equation. In the present case
one then considers particular solutions of

¢En=°

which are given by
$=A0) Ay

For bicubic shape functions one has as representation in one

P =2 G0, 0)

where the gi's and hk's are polynomials of the third degree.

element

Among expression of this form, there are some of the form
fl(E) and fz(n). This means that the differential equation
will be exactly satisfied. It follows that the method is
stable in the same sense as one speaks of stability for the
methods examined in preceding sections. Here we have neither
damping nor dispersive errors:; the only inaccuracies arise in
satisfying the boundary conditions.
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Of course the characteristics are not fixed a priori
in nonlinear problems. Accordingly, one loses control over
the shape of the elements. This will probably make programming
more cumbersome.

An analogous approach to the three-dimensional problem
leads to serious difficulties. In three dimensions one has
characteristic surfaces which can be chosen in a great variety
of ways. To generate such surfaces, one can, for instance,
choose in an initial wvalue plane, a two-dimensional mesh
consisting of quadrangles and then construct the characteristic
surfaces which emanate from these mesh lines. One obtains
two surfaces for each line. If the lines are straight, one
would obtain two characteristic planes for each line. By
forming the lines of intersection of these planes with a
noncharacteristic plane nearly perpendicular to them, one

obtains a pattern similar to those for the two-dimensional
characteristic method. But one has two families of lines

in the initial wvalue plane and thus, one obtains four
different families of characteristic surfaces. The finite
volumes bounded by such surfaces are not well suited for a
computation. Moreover, these surfaces depend upon the choice
of the original grid and a great number of choices are
possible.

The characteristics in two dimensions and in three
dimensions are lines or surfaces along which discontinuities
may propagate. (Such discontinuities are introduced either
by the initial or by the boundary conditions.) In the
two-dimensional problem, characteristics along which
singularities (or also steep gradients) propagate are readily
found, they are members of the family of characteristics by
means of which the computations are carried out. In the
three-dimensional case it would be necessary to orient
characteristic surfaces according to the discontinuities (and
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steep gradients) as they are introduced by the initial or
'}. boundary conditions. This may make it necessary to change
the definition of the elements as one goes along.

In a typical three-dimensional finite volume approach
one might consider it as desirable to build up the whole
flow field from finite volume elements which are bounded by
characteristic surfaces in a manner which takes the regions
of dependence into account. This is very difficult, if not
impossible. Assume for instance that one has a rectangular
grid in a noncharacteristic initial plane. The characteristic
surfaces described above form four-sided pyramids which lie
wholly in the region of influence of the data assigned within

an initial quadrangle. However, one needs very complicated
elements in order to £ill during the next step the spaces
between these pyramids.

A finite difference formulation based on the idea of
characteristic surfaces is better able to cope with this
problem because it defines the approximation only at the
grid points.

In the two-dimensional problem a finite element procedure
combined with the method of characteristic can also be
motivated by considering the Green's function (see Section IX).
The Green's function of the three-dimensional problem has a
very complicated singularity a2long the characteristic cone.
This makes it difficult, if not impossible, to derive from
it , forms of the weight functions which are well fitted to

the problem.

The singularity becomes more managable (in fact, it
becomes rather close to the Green's functions for the two-
dimensional problem), if along certain lines, the residuals
are smooth functions and one carries out an integration over ,f

these lines.
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! One feasible method of approach can be described as
follows. One introduces in an initial plane one family of

SO . SR

nonintersecting curves. In a plane problem these would be

straight lines in the direction in which ¢ and the velocities
do not vary. In an axisymmetric problem they would be circles

in a plane normal to the axis of symmetry. Then one forms
characteristic surfaces which emanate from these lines. To

be specific, at each point of one of these lines one constructs
the characteristic cone. The characteristic surfaces mentioned
above are the envelopes of these cones. The lines along which
the characteristic surfaces are tangent to the cones are
called bi-characteristics. One thus obtains elongated
subvolumes with triangular or quadrangular cross sections

in the initial elements and quadrangular cross sections in
subsequent elements. These cross sections lie approximately
in planes determined by the bi-characteristics. In the plane
case, these subvolumes are rods with appropriate triangular

or quadrangular cross sections, in the axisymmetric case they

are rings. The characteristic conditions contain only
derivatives within a characteristic surface, one of the E
directions in which derivatives are formed is that of the bi-
characteristic, the other one in the lengthwise direction of i3
the rods or rings mentioned above.

The elements to be used in a finite element approach
are cut out from these subvolumes by planes approximately
determined by bi-characteristics. In the plane and axisymmetric

case this leads directly to the familiar characteristic

conditions. More general problems can probably be treated
too, provided that the characteristic surfaces are oriented :
so that they coincide with surfaces where singularities }
of strong gradients occur. If this condition is not '
satisfied, then singularities or strong gradients will E

probably express themselves in the same manner as in the
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usual finite difference methods, namely by oscillations
around the correct values. If strong gradients are detected,
then it is probably best to make a transition to a different,
more suitably oriented set of characteristic surfaces.

The author has not been able to study the practical
aspects of such a procedure.
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SECTION X

GENERAL OBSERVATIONS AND SUMMARY OF
SPECIFIC RESULTS

It was already mentioned in the introduction that the
attempt to derive a finite element method for hyperbolic
problems from a variational formulation is not likely to be
useful; at best the idea is unnecessarily confining. 1In
this report the method of weighted residuals is advocated
instead.

We add that the idea of gaining an extremum formulation
by postulating that the sum of the squares of the residual

be minimized is of doubtful value. Interpreting this

method in terms of weighted residuals, one finds that the
weight is proportional to the residual. But the long
distance effect of residuals is linear, no matter how large
or small they are. Therefore, the weight should be independent
of the magnitude of the residual. Minimizing the sum of the
squares of the residuals suppresses short waves (because they
give larger residuals at egqual amplitude), but the method is
fairly insensitive to long wave errors.

Hyperbolic problems differ from elliptic problems by the
v fact that thes solutions do not automatically smooth out.

’ In an elliptic problem the waviness of the solution at some
distance from the boundary reflects the local waviness of

the inhomogeneous term. In a hyperbolic problem the waviness
is determined by the initial conditions the boundary conditions
and the inhomogeneous part in all of the characteristic

forecone pertaining to the point under consideration. Therefore,
one cannot count on the smoothness of the solution.

One observes that solutions which are wavy in the space
direction are also wavy in the time direction. Even short
waves will not be damped.

This fact is directly connected
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with the existence of characteristic surfaces. Along such
surfaces singularities may propagate; their attenuation
with distance is only small. Assume that by the initial
conditions a discontinuity (in the second derivatives, say)
is introduced in the space direction. 1In order to represent
such initial data by a Fourier analysis one needs all wave
length including the very shortest ones. At a later time
this singularity will still be present, although in a
different position. If short waves were more strongly
damped than long ones such singularities would vanish.

This explains why stability is particularly critical
in hyperbolic problems. In essence, the individual
particular solutions have neutral stability (neither damped
nor excited). The error introduced by an approximation may
change neutral stability into instability. 1In elliptic
problems where the particular solutions die out with distance,
the same kind of error will falsify the rate of attenuation,
but it is unlikely that an exact solution which is stable
will change into one that is unstable. The situation is
particularly favorable because the contributions of those
particular solutions which are strongly falsified are small
to begin with and furthermore, because they are most strongly
damped.

The finite difference as well as the finite element
method presupposes that the solutions are smooth enough so
that they can be approximated within the inidividual elements
by simple standardized expressions. 1In elliptic, as in
hyperbolic problems, one must choose a grid which is suitable
to represent the essence of the desired solution but disregards
short wave roughness. In elliptic equations the mesh size
satisfying this requirement is mainly determined by the
boundary data. 1In principle, one might use a larger grid
at some distance from the boundaries. In hyperbolic problems
the same waviness is to be expected throughout the field.
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The discussions carried out in this report show the
effect of truncation errors. Let us confine our attention
to the semi-discretized methods investigated in Sections II
through VII. If the wave speeds are reproduced
with sufficient accuracy for the range of wave lengths
which is important, then the truncation error remains within
acceptable bounds. Shorter waves in the initial data and in
the inhomogeneous part are falsified because of truncations
errors, but it is assumed that these components are initially
small. They will remain small unless the method is unstable
for these wave lengths. For high accuracy machines rounding
errors are usually very small. In addition, they have a
random character. Accordingly, one will obtain acceptable
solutions even though short waves are not damped. This
optimistic assessment may not hold for nonlinear problems.

The primary reason that the Courant number for explicit
finite difference methods applied to hyperbolic equations must
be smaller than 1 is stability. However, this restriction is
also needed from the point of view of accuracy, because
the solutions have the same waviness in the space and in the
time directions. If one admits Courant numbers greater than
1, then one loses information contained in the approximation
to the initial conditions. There may, however, be problems
where a mesh finer than required for reasons of accuracy is
used in the space direction.

The latent presence of short waves makes itself felt
in the semidiscretized approach during the integration of the
resulting system of ordinary differential equations. 1In
an explicit predictor corrector method the stability limit
is about the reciprocal value of the largest eigenvalue.
Usually this limits the step size even if the initial con-
ditions do not contain particular solutions pertaining to the
large eigenvalues which cause instability because such
particular solutions are excited by the truncation errors of
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the integration scheme. Implicit methods are sometimes
regarded as a panacea, but this is not entirely correct.
Basically, one deals with stiff differential equations.
Familiar solvers for stiff differential equations are
effective for problems in which the large eigenvalues which
are responsible for the stiffness have large negative real
parts while the imaginary part is fairly small. Under these
conditions they allow the use of large integration intervals
in regions where the solution is sufficiently smooth.
Usually, they are not stable if the real part of the critical
eigenvalues is small and the imaginary part is large. This
is the present situation.

Our discussions have been restricted to rectangular
elements and bilinear, biquadratic or bicubic shape functions.
(This makes it possible to discuss space and time dependence
independently.) The accuracy of a method is judged by the
falsification of the wave speed (and, if necessary, also of
the amplitude) for different wave lengths. Results of this
kind are shown in a number of graphs. If one uses quadratic
or cubic instead of linear shape functions, then one has
for the approximation of the solution in the space direction
twice as many parameters per grid point. Each discretization
process suppresses waves in the space direction. By doubling
the number of parameters per grid point one admits wave
lengths down to one half of the original limiting wave length.
In this sense, a representation by gquadratic or cubic shape
function is equivalent to one by linear shape functions with
half of the grid size. The computational effort depends
approximately upon the overall number of parameters. We
have used the accuracy of the wave speeds as a criterion for
a comparison of different methods. The mesh size for linear
shape functions is chosen one half of that for quadratic or
cubic shape functions; then linear and cubic elements include
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bicubic shape functions. If one uses bilinear shape functions
and weight functions of the same kind for space and time,

then the truncation errors cancel if the Courant number is 1.
The method is unstable if the Courant number exceeds one.

(An exact integration of the differential equations for the
time dependence corresponds to Courant number zero.) The
favorable results obtained with Courant number one have

their counterpart in finite difference methods.

Occasionally, particularly in the development of
computational procedures for the transonic problem, it is
emphasized that one must use a difference procedure which
reflects the marching direction. A scheme of the kind just
sketched does not have this property; a marching direction is
defined by the way in which the initial conditions are
prescribed.

Seen under the point of view of weighted residual
procedure the method just described is somewhat unsatisfactory.
In computing the potential at a new time station it considers
not only the residual in the time interval that is newly
computed, but also in the preceding interval over which one

no longer has any control.

A method using linear shape functions has been investigated
in which the weight function is constant through the interval

for which the computation is carried out (say from tk to tk+l

k-1 t© ty- The

overlap is needed in order to take into account the delta

with an infinitesimal overlap into the region t

function in the second derivatives which arises at the point
ty because of a jump in the first derivatives which is
unavoidable with linear shape functions. One obtains a
method which is stable for all Courant numbers, the solutions
for shorter waves are rather strongly damped and one is
forced into rather small time intervals in order to obtain
an acceptable accuracy.
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It is impossible to use the same weight functions for

the space and the time directions for third degree shape
functions for the method becomes unstable at all Courant
numbers. The reason is rather interesting. For third degree
shape functions one obtains the solutions at time tk+l; that
is, the values of Uy +1 and U from equations which contain
the (known) values of u,., u,, u,_y and v, _,. In order to
solve the differential equation in the interval bhetween

tk and tk+l
in the language of numerical integration techniques for

it suffices if one known uy and ug. Speaking

ordinary differential equations one would say that the

present approach includes spurious solutions. These are
particular solutions of the homogeneous discretized system
which are not related to particular solutions of the original
ordinary differential equation. In the present case there

are two such spurious solutions and one of them is always
undamped even if one keeps the Courant number below one.

(For the other particular solutions one has again a cancellation
of truncation errors for space and time if the Courant number

is one.)

One can devise a procedure based on cubic shape functions
in which no spurious solutions are encountered. As before,
one makes the transition from point tk to point tk+l by third
degree polynomials, but the weight functions are now confined
to this interval. This eliminates the objeclion regarding
the use of the residual in a preceding interval to determine
the solution in the interval under investigation. We have
studied this procedure using a weight function 1 over an
initial part of the interval, namely, t, < t<tk+C(tk+1 - tk)r
0 < ¢ <1, and again over the remaining part
B ¥ Cltyy — B < Hyy-
unstable for ¢ < 1/2. For ¢ = 1/2 and a limited Courant number

All particular solutions are

the method is stable, the eigenfunctions are undamped. There
are, however, Courant numbers (somewhat exceeding one) for
which unstable particular solutions exist. For c¢ > 1/2 and
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E a Courant number limited approximately to a value below

1 the method is stable. The particular solutions are slightly

damped. But for certain higher Courant numbers there are

always unstable particular solutions. The procedure is

stable for all Courant numbers in the limit ¢ = 1. Then |
‘ the weight is constant throughout the interval and in

Ei addition one has a delta function weight at the end of the

. e e il

interval. This amounts to a mixture of finite element method
and collocation method. Even in this limit the falsification
of long waves is not too large.

It was mentioned above that from the point of accuracy !
Courant numbers larger than one are without interest; at
least if the shortest wave lengths which are included by the
discretization in space direction are of significance. Cases
where one will admit large Courant numbers occur in transonic
problems because they include the vicinity of the sonic line.
In Section VII a simple problem is discussed in which the

Mach number assumes the value one at one boundary of the
L region. In the direction normal to the flow direction an
evenly spaced mesh is used. For each length of the interval

one cobtains a maximum value of u. One can therefore always
choose an interval in the downstream direction small enough i
to guarantee stability. If the mesh size in the direction i
normal to the flow is multiplied by a factor a and one wants
to maintain the same Courant number, then the mesh size in

the downstream direction is multiplied by a factor a3/‘. In i

this particular problem it is possible to find particular ;
solutions by a product hypothesis. From the ordinary :
differential equation which arises for the direction normal

to the flow, one obtains an eigenvalue problem as well for

the ordinary differential equation as for its discretized
form. For long waves, the eigenfunctions for the differential
equation and for its discretized form are, of course, very
similar. The short wave eigenfunctions are, however, entirely
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unrelated. For the differential equation they are, in
essence, given by Airy's functions. Por the finite difference
formulation the highest eigenfunctions are nearly zero (and
oscillatory) at some distance from the boundary which
corresponds here to Mach number 1. These particular solutions
are significant only at the first few mesh points. As
contributions to the solutions of the original partial
differential equation problems these particular solutions are,
of course, meaningless. If one fails to observe proper
Courant number restrictions, then these particular solutions
may increase as one moves downstream. The falsification so
introduced will manifest itself in some roughness in the
vicinity of the line corresponding to Mach number 1, but at
some distance from it the error will be very small.

In the examples considered up to this point the weight
functions had been chosen on intuitive grounds, either
because of their resemblance to the shape functions or, for
reasons of simplicity as constants. Section VIII considers
a scalar differential equation with a fixed value of y (in
essence the reciprocal of the wave length). Then one can
discuss the effect of a residual by writing down the solution

of the inhomogeneous differential explicitly. We have considered

such a solution in the form of the Duhamel's integral. This
can be regarded as a solution in terms of the Green's function
belonging to this particular one dimensional problem. The
integrals occurring here have the form of weighted residual
expressions. For this particular problem one obtains exact
expressions at the grid points if the solutions of the
homogeneous problems are taken as weight functions. 1In reality,
one deals, of course, simultaneously with a whole spectrum of
values of u. At best, one can choose weight functions which
are close to ideal within some range of values of u. But the

fact is of interest that one can attune the weight functions
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to a certain frequency. In an example we have chosen u = 0
for this value. The weight functions are then given for

each interval by a constant and by a linear function. From
our numerical results we cannot claim that this method is
superior to the method discussed earlier, but the author
believes that the theoretical insight is wvaluable. A wider
frequency could probably be covered if one does not attune
the method to frequency zero. In the elliptic region one
might start directly from the Green's function and impose

the requirement that the lowest order terms in the development
of the Green's functions with distance vanish. For the
Laplace equation this gives linear weight functions. For the
Helmholtz equation there are always some contributions of

the lowest order terms which vanish with distance omnly weakly.
They become small only if the mesh is sufficiently fine.

The same idea applied to hyperbolic problems fails,
for the hyperbolic distance is zero for points that lie on
the characteristics through the points where the residuals
occur. The weight functions for hyperbolic problems used
in the preceding analysis are suitable for long waves in time
and space. Short waves are treated inaccurately, at best.
A finite element of this kind is therefore unsuited to treat
discontinuities which propagate along characteristics.

For two dimensional problems it is possible to combine
the idea of finite elements with the concept of characteristics.
This is done in Section IX. The shape functions are then
defined in characteristic quadrangles. Important is the
result that the weight functions should be constant in one
of the characteristic directions. With this choice it
becomes possible that contributions of residuals which lie
on the same characteristic cancel each other. The desirability
of this form of weight functions becomes obvious again if one

considers the Green's function of this problem. A finite
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element method carried out in this manner differs only
slightly from the method of characteristics. Within an
element discontinuities are suppressed, but along the element
boundary discontinuities are admitted because they do not
contribute to the residual.

The method of characteristics is not easily carried
over to three dimensions and no conclusions in this
direction have been reached.

The picture that emerges from these discussions is
somewhat discouraging. A Courant number limitation always
exists, if not for reasons of stability then for regions
of accuracy. Higher (third) order elements are advantageous
because they give for long wave lengths a much better
representation of the wave speed than linear elements.

The use of third order splines is probably advantageous
because it suppresses short waves which have an undesirable
effect on the time integration and still give a good
representation for long waves. The method of characteristics
possibly in combination with the finite element concept may
still prove a superior alternative.

The report goes somewhat further than an evaluation of
different methods by means of sample problems. It relates
the results that could be found in this manner to the
behavior of particular solutions of the approximating
equations. In this manner certain inherent difficulties
directly connected with the nature of hyperbolic equations
become obvious. The approaches discussed here may not be
the last word in this problem area. Other more ingenious
approaches may well exist, but even they will encounter the
same obstacles and then a familiarity with these phenomena
may be valuable.




I

db. i s wins.

q
g
|

|

i

|
L+

APPENDIX I
THE VARIATIONAL FORMULATION OF REDDY

A variational formulation for some hyperbolic problems
which include the boundary conditions in a proper manner has
been given by Reddy (Ref. 1). The author believes that a
variational principle by itself (in contrast to an extremum
principle) is not particularly useful for numerical work.

The present appendix shows in a simple example the essence of
Reddy's formulation. Consider the one-dimensional problem

"
with initial conditions of the type encountered in a hyperbolic
problem

’ '
ulo) =w ; w(o) =u (A2)

The independent variable is t, the derivative of a function with
respect to its argument is denoted by prime. Let the final
value of t be t, > 0.

Now consider the functional
2o
ple) = - w)ult,) s [[5 @) (t,-1) +£ ¢, 1et)lty -2 (A3)

)
.2/?gkbﬁ;-zzld?

We form the variation of y(u), postulating that the functions

u in competition satisfy eqs. (A2). Then one has

Suf)=0 , dufo)=o (A4)

One obtains

d] Ylw) = —~wte) St + / [ LI @I -2) e gl didre,-T)

+£ 0, 1l (t,-¥) + £ g ult)Prelte=)
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One obtains by carrying out an integration by parts in the first
two terms of the integrand 2.4

Syt) = -610) fuully) + £ [Prte)ify-2)- «re)dult-2]
‘ ] [l (%8 + § W) fuly-2)
+ 4 0o JUll)rgy[to ~) + } g, 1(T) dic (t,-B) - f10) ity X))

C=o

! In the first and third terms of the integrand the umbral variable
1 is replaced by tyg - T In addition, we evaluate the terms
outside of the integral
Tytu) = -1to) Pu (t,) + {Bulty)iilo) - Slo)i'lle) - Jutoyull) i i ro)]

4o

4 / (&) + putt) -f 0] T (ty-2) o2 a5)

The terms outside of the integral vanish because of the boundary
conditions Eqs. (A2) and (A4). By the regquirement that the
variation of 6yp(u) vanish one obtains indeed Eq. (Al).

The last expression can be interpreted as a weighted

; residual formulation. The weight functions are n(t) = 6u(to-t). :i
Let the shape functions be restricted to some subspace of the ‘
space of admissible functions. Strictly speaking one cannot

maintain that the shape functions n(t) belong to the same

function space, for the shape functions and their first

"y g

' ‘ derivatives vanish for argument 0, the shape functions and ;'
&i ‘ their derivative vanish for argument to. The property %
characteristic of the usual variational formulations, namely o)
| that weight functions and shape functions are taken from the
; same subspace no longer applies. The method would probably i
encounter difficulties if one uses an uneven grid in t. One
‘ notices furthermore that the procedure requires that
t? ) p(t) = p(to-t) (in our example we have assumed Po = const) .
These are obstacles to the application of Reddy's formulation

to numerical work.
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APPENDIX II

OBSERVATIONS REGARDING THE TREATMENT OF
BOUNDARY CONDITIONS IN THE METHOD OF WEIGHTED RESIDUALS

The observations made in this appendix arose from dis-
cussions which I had with Dr. Soliman about the method of
weighted residuals. Although they do not refer specifically
to hyperbolic problems they are included here because they serve
to round out the knowledge about the method of weighted
residuals. The essential idea is already seen in a one-
dimensional problem. Consider the differential equation

¥
-G lx) +p0Px) +fw =0 (26)
with boundary conditions
@lo) = © (A7)
)
cpu)+ 4)r g =0 (a8)

Including the second boundary condition in a weighted residual

formulation we write

4 [
/[-,J&) * ptgta) + fn)] ptodx + Cledt) #g )+ ¢]) =0 (A9)
o

where y is a weight function and C is a single weight. The
functions ¢ in competition are assumed to satisfy the boundary

condition
;‘,;/o}l o
We postulate
y/o}.' 0
The requirement of existence of second derivatives in

¢ can be relinquished if one carries out an integration by
parts. One obtains, after substitution of the boundary conditions

f (9t ¥') +eUP M + fropiefen - Pyl +ClG )+ apte)rg)
’ = 0 ) (Al0)




If one chooses C independent of the weight function ¢, then
one obtains directly the condition Eq. (A8); the admissible
functions ¢ must satisfy the boundary conditions at x = L as
well as x = 0. A i

According to Soliman, one can simplify the problem by
choosing 1]

[C; = y/‘)

(All)

with this choice ¢'(L) vanished in Eq. (Al0). This may well
be worthwhile particularly in multidimensional problems
because it obviates the need to evaluate the derivative in

the direction of the conormal to the boundary.

To justify this special choice we rewrite Eqg.
expressing C by Eq. (All). Then one has

L Le e o @
/-4 &) + popi) + £13) +£1_o"o; a1 Le)f ?f-' bty + pi+ z?—]j pwds = 0
[

&r0 (A12)

(A9)

Here the term generated by the boundary condition is included
in the integral by means of the delta function §(x, L-¢€).

The § singularity approaches the point x = L from the inside

of the interval as € + 0. One sees that the failure to satisfy

the boundary condition at x = L appears in the weighted

integral for the residual in the form of a delta function.

fé There are other points within the interval where the residual

i is allowed to have delta singularities, these are points where

;? ¢' has jumps. The special choice of C in Eq. (All) therefore

4 has the effect of balancing the failure to satisfy the boundary
conditions against other residuals caused in the differential

| equation by the approximation to ¢. This is, of course legitimate.
The situation is similar for multidimensional problems. The
boundary terms in Eq. (Al2) are then replaced by integrals

over the boundary surface.

TR T T T A i A it 4 gt s
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The factor by which the delta function is multiplied
tends to infinity if <, tends to zero. Then this approach
must be abandoned. 1In this case the functions ¢ must
satisfy the boundary conditions at x = L exactly.

In the problem at hand one has also a variational

formulation, namely

¢ . X .
J/f[{—d?xh -z—'—g,{x)/a) 4/&)’{(4/0 + 5 -t-fl¢/zj + -a’-#/‘(/. P

In the case cy = 0, that is, if the value of ¢ is
prescribed at the boundary, one can proceed in different
ways. In one formulation one postulates

L
J,/[f ¢;K})f {&[l&[:} #/6[)%[‘}]4‘ = 0
[}

and postulates that the admissible functions ¢ satisfy the
boundary conditions at x = 0 and x = L. Alternatively, one
can introduce the boundary conditions at x = L by means of a
Lagrange multiplier and disregard the boundary condition at

x = L during the variations. This formulation is discussed
because it has some similarity to Eq. (Al0). However, we shall
see that the two formulations are different in principle.

One has

7 2
f///f#?xf;ff/l)#ﬂ) 4//;)/5,)//, *Jfﬁ/l)- _‘?]/;_ 0

Hence

/ (4% +ptOf ) + Jr)dptodx + (Fl)+3)0P(t) =0

and
—g'm) +em gy * fa) =0 A15)
¢ﬂ}+4ca
The variation vanishes if one solves the original differential
equation with the boundary conditions ¢(0) = 0 and ¢'(L) = =X
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This can be done for any value of A. The desired solution
is obtained if one determines A so that the original boundary

condition a
- 3
%/L/' c,

is satisfied.

In a weighted residual approach one would write

/ ( 'f"hf/ $ 000 Bla )+ ) gty dx = o
[

and
c‘/ﬁ/z}- 6/) =0 (A16)

Egs. (Al6) and (Al5) are not identical. In the approach with
Langrange multipliers one computed in principle a family of
solutions which satisfy a different boundary condition specified
by the choice of A. From this family one then selects the

one which satisfies the boundary condition actually prescribed.
In a weighted residual approach, the boundary conditions are
introduced directly.

Functions ¢ which fail to satisfy the boundary conditions
give approximations with a jump of ¢ at the boundary. Such a
jump could be accommodated by means of the derivative of a
§ function. But such derivatives cannot be dealt with by a
method of weighted residuals. This is important in multi-
dimensional problems where it is frequently impossible to
find shape functions ¢ which satisfy the boundary conditions

exactly. It is preferable to consider the error introduced
by the failure to satisfy the boundary conditions, by itself,
rather than to attempt to include it in an overall weighted
residual formulation.
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APPENDIX III
CHECK EXPRESSIONS FOR SOME FORMULAE OF SECTION II

The Egs. (11) and (13) of cases 2a and 2b respectively
can be checked by substituting the values of ¢k-1' ¢k and

¢k+1 for three piecewise linear functions. For such

functions the operator on the left of these equations must
give the expressions which one obtains by substituting them
and the chosen weight functions into Eg. (7).

The following expressions will be chosen
¢<%£) = C(t) (Al7a)

, 8y <0

¢(Zt) = /a,/é ck) ay >0 (Al7¢c)

In Case 2a the weight functions are given by Eg. (10). One
obtains by substltuting Egqs. (10) and (Al7a) into Eq. (7)

/ v(aylh) dfeyfh) - / 0 wlaylh)d(ay/h) = 7—; (a18)

The expres51on (A17b) substituted into Eg. (7) gives zero
because a g and a ¢ are antisymmetric and w(Ay) is symmetric
ot

The expression (Al7c) substituted into the first term
of Eq. (7) gives

2, ) P y
;t—f Jlay/h) B fayh) diayh) = ;{}I /ﬁyﬂ)//—kl/a;jdm/éj - 7 7_2;

The second term must be evaluated in the sense of generalized

functlons

cte) / 7 w{ay/l,/a’/ayﬂ )= (R /‘7@% . Wlaylh) dlag/$ )

o-&

2 C/t/é [ dgih) Uﬁy//:// /_L_ Y Jraghh)] « ClO4 ﬁ'AM) -Cth

2 ly/h) dlayA)
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One obtains, therefore, for case (2b) with the "test" function
Eq. (Al7c)

1 /t -+ )
_ - Al9
- 7 h Clt ( )
One finds from (Al7c)
- - A20
4., =0, b -0, &, =Cclt) (A20)

One obtains the expression (Al9) if one substitutes Eq. (A20)
into Eq. (1l1).

Case 2b.

With the weight given by Eq. (12) one obtains in the
same manner

ac/at? for Eqs. (A.17a) and (12)

0 for Egs. (A.17b) and. (12)

a2c/at? - n~%c for Egs. (A.17c) and (12)

Cases 3.

In the resulting formulae, Eqs. (16), (18) and (20)

there appears six unknowns, ¢, _,(t), oy _,(t), ¢ (), ¢y (t),
¢k+1(t) and ¢ﬁ+l(t)' For a check of these equation one needs
six independent functions ¢, which are piecewise of third
degree and continuous in function and first derivative. One
notices that the first and second equations of the equation
pairs (16), (18) and (20) are automatically satisfied if ¢

is antisymmetric and symmetric, respectively with respect to

- -

the point y = Yy

A convenient choice of the test functions is

$
6 = C(t) (A21a) i
¢ = C(t) Ay/h (A21b) §
6 = C(t) (by/h) > (a21c)
¢ = c(t) (Ay/h) 3 (A214)
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-c(t) (Ay/h)3 Ay/h < 0
¢= 3 (A21e)
C(t) (Ay/h) Ay/h > 0
~C(t) (Ay/h) > Ay/h < 0
¢= { 2 (A21f)
C(t) (Ay/h) Ay/h > 0
Case 3a.

Substituting the expression (A2]l) together with the weight
functions (15) into the operator on the left of Egq. (7), one

obtains
dzc/dt2 for Egs. (A2la) and (15a)
0 for Egs. (A2la) and (15b) g
% 0 for Egs. (A2l1b) and (15a) ;v
1/15 a2c/at? for Eqs. (A2lb) and (15b) g

2/15 a%/at? - 2n™%c  for Eqs. (A2lc) and (15a)

0 for Egs. (A21c) and (15b)
0 for Eqs. (A21d) and (15a)
2 4
2 d°¢c_ -2,-2 ‘
IE ;2- 5 h C for EqS. (A21d) and (15b) | ‘
L a’c _ 9,-2, for Eqs. (A2le) and (15a) 1
iz d—z- 5 or kgs. e) a a l »
t !
0 for Eqs. (A2le) and (15b) ’
0 for Egqs. (A21f) and (1l5a) }
2 f
1 dc _1,-2 ;
35 E:Y 3h C for Egs. (A21f) and (15b)

These results can be used to check Egs. (16)




Case 3b.

The weight functions are given by Egs. (17), the test
functions by Eqs. (A2l1). The following results are obtained
by substitution into Eq. (7)

a%c/at? for Eqs. (A2la) and (17a)
0 for Egqs. (A2la) and (17b)
0 for Egs. (A2l1lb) and (1l7a)
1d2 2 i
I c/dt for Egqs. (A2lb) and (17b) '
|
4
35 a’c/at? - an7%c for Eqs. (A2lc) and (17a) f
o
]
i

0 for Egs. (A2lc) and (17b)

0 for Egs. (A21d) and (17a)

gf acsat? - % h~2c for Eqs. (A21d) and (17b) 4
3 alc/at? - % h~2c for Eqs. (A2le) and (17a) -
0 for Eqs. (A2le) and (17b) :
0 for Eqgs. (A21f) and (17a) ’
1 42 2 -2 5

15 c/dt® - 2h “C for Egs. (A21f) and (17b)

These results can be used to check Egs. (18).

Czse 3c.

The weight functions are given by Eqs. (19). The test
functions are given by Eq. (A2l). The following results are
obtained by substitution into Eq. 7.

1 a’cyat? for Eqs. (A2la) and (19a)

L alc/at? for Eqs. (A2la) and (19b)




0 for Egs. (A2l1b) and (l9a)
1 d2 2

vy c/dt for Eqs. (A21lb) and (19b)
éﬁ a%c/at? - n"%c for Eqs. (A2lc) and (19a)
%% a%csat?® - n"% for Eqs. (A2lc) and (19b)
0 for Egqs. (A21d) and (19a)
& a%csat? - 3 n7% for Eqs. (A21d) and (19b)

1 d2 a 2 -2
3%} c/dat” - (3/8)h “°C for Egqs. (A2le) and (19a)
é% dzc/dt2 - % h2c for Egs. (A2le) and (19b)
0 for Eqs. (A21f) and (19a)
%% dzc/dt2 - h-zc for Egs. (A21f) and (19b)
These results are used to check Eq. 20.

Cases 4.

The resulting formulae, Egs. (21) and (23) are correct
for continuous piecewise quadratic functions. In Eqgs. (22)
and (24) there appear five different functions. Therefore,
one needs five test functions. The following expressions
are suitable.

¢ = C(t) (A22a)
¢ = C(t) Ay/h (A22b)
¢ = C(t) (ay/n)> (A22c)
e -C(t) Ay/h -1 < Ay/h < 0
g = { (a22d)
i’ c(t) Ay/h 0 <Ay/h <1




~c(t) (Ay/m? -1 < Ay/h <
¢ = (A22e)

C(t)(Ay/h)2 0 < Ay/h < 1

A
-

There is no need to examine the test function Eq. (A22e)
separately. Weight functions (2la) and (23a) gives zero
for reasons of symmetry, for weight functions Egs. (21b)
and (23b) it coincides with case (A22c) because the weights
are identically equal to zero outside of the region

0 < Ay/h < 1. The following results are obtained by
substitution into Eq. (7).

Case 4a.

The weight functions are given by Egs. (21) the test
functions by Egs. (A22). The following results are obtained
by substitution into Eq. (7).

aZc/at? for Eqs. (A22a) and (21a)
2 d2 2

3 a°c/dt for Eqs. (A22a) and (21b)
0 for Egs. (A22b) and (21la)
1 d2 2

3 a°c/dt for Eqs. (A22b) and (21b)
1 d2 2 -2

T c/dt” - 2h °C for Egs. (A22c) and (2la)
g a%crat? - 4 n%c for Eqs. (A22c) and (21b)
1 dZ 2

3 c/dat” - 2C for Eqs. (A22d) and (21la)
1l .2 2

3 a“c/dat for Eqs. (A22d) and (21b)

The results are used to check Eg. (22).

L
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Case 4b.

¥

The weight functions are given by Egs.

(23) and the

test functions by Egs. (A22). The following results are

obtained by substitution into Eq.

. -

2

a%c/at?

2

ac/at?

N - N T

1 ,2 2 -2
3¢ d“c/dt® - h “c

13 .2 2 -2
3¢ d"c/dt” - h “°C

1 .2 2 -2
Ig»d c/dt” - 2h “C

L g2

2
1 c/dt

The results are used to check Eq.
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(7).

(24).

for

for

for

for

for

for

for

for

Egs.

Egs.

Egs.

Eqs L4

Egs.

Eqs L]

Egs.

Egs.

(A22a)

(A22a)

(A22b)

(A22Db)

(A22c)

(A22¢)

(A224)

(A224)

and

and

and

and

and

and

and

and

(23a)

(23b)

(23a)

(23b)

(23a)

(23b)

(23a)

(23b)

e kst s i e e A e
s I 3 :




L aren, AT a e s A = A e - RSB

B Y S

APPENDIX IV

b DIAGONAL FORM OF A SYSTEM OF
- ORDINARY DIFFERENTIAL EQUATIONS

The system of differential equaiions whose stability
is studied is given by
A W+ flo =0 (a23)
Here y and f denote respectively the dependent variable
and a known vector with n components. L and M are n by
n matrices. It is assumed that the determinant of L does
not vanish. 1In writing our equations we consider the
vectors as n by 1 or 1 by n matrices. The dot denotes
i differentiation with respect to the independent variable t.
| The matrices L and M are independent of t. (This assumption
is always made in stability discussions. Heuristically, it
is justified by the fact that for an arbitrarily fine mesh
in an equation with variable coefficients one can carry out
a considerable number of integration steps before the matrices
L and M change appreciably.) We associate with Eq. (23) the

_ generalized eigenvalue problem

i [ -3L)7 =0 (a24)
3; and its adjoint

E Je'//y-.at/./ =0 (a25)

where T is a n by 1 matrix (i.e. a column vector) and S2 is
a 1l by n matrix (a row vector), Ak and Ag are respectively
the kth and zth eigenvalue. Proceeding in a familiar manner
one has

L 4% 48T =0

LT - 4glT =0 ~

Hence :
{;ZZ;-a

4,54
‘&fﬁ;-a 2
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Let T and S be n by n matrices; the kth column of T is given

by Tk' the zth row of S by Sz. Assume that S and T are :g
normalized so that »i

SLT « 7 (A26)

where'In is the n dimensional identity matrix. Then one
obtains from Eq. (A24)

SHT = A (A27)
where /] is a diagonal matri: whose kth element is \k' Now
set 7
= /a
J'. . (A28)
Jy - 7'(‘

where u is a column vector with n components. Then one
obtains from Eq. (A23) and by premultiplication with S and
by using Eqs. (A26) and (A27)

& tAw +J’//t/= 0 (A29)

This is a system of single equatiiuns, for 1 is a diagonal
matrix.

This fact allows one to discuss the stability of the
system in terms of the stability of a single scalar equation.
Specifically, we shall derive the fact, familiar from the
theory of integration process, that one obtains the same
result if one first diagonalizes the system of equations and
then applies a predictor corrector method or first applies
the predictor corrector method and then diagonalizes. The
same holds for a finite element procedure applied to the
time.

In a predictor corrector method, no matter which specific
scheme one applies, one always has as predictor formula
r0)

Yoo =t ol # Gty e Gl Al e
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The values of the vector y after the zth corrector iteration

is characterized by a superscript. The values of y and y° at
the point i and preceding points are fixed, therefore no
reference to an iteration step is needed. One has in the
corrector step

1) o/t v
y )‘-,4' *f,t'f *J,ji 'y b ? -/-’9-/* "'y-.r. " Sa ?
The aj's, Bj's, Gj's and dj's are constants independent of
i. 'In addition, one has Eq. (A23) to be satisfied at the
individual grid points. Substituting Eq. (A28) into the
last two equations and premultiplying by T-l, one obtains
the same expressions but with y and y° replaced by u and u”.
In addition, one has Eq. (A29). In the resulting equations
the vectors uj and u‘j are multiplied by constants or by the
diagonal matrix A. The system can therefore be decomposed
into its individual components. The further discussion can
therefore be carried for each component in Eq. (A29) separately
each with only one independent variable. The argument for
implicit methods is the same.

To apply a finite element method to the solution of
Eq. (A23) one multiplies this equation with scalar weight
functions W (t) (usually of finite support) and integrates
W1th respect to t.

*-/t’/ ) ot ’ %./t/"/yﬂ/aff +/l/ (t) fle)dt = ©
S

Now we substltute Egs. (A28), premultlply the resulting
equation by S and apply Egs. (A26) and (A27). One obtains

(A30)
%
This expression is identical with the one which one would

have obtained by applying the weight function wm(t) directly
to Eq. (A29). Since A is a diagonal matrix, one can discuss
each component of u separately. This result is the basis of

the analysis in Section VI.
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APPENDIX V
FUNDAMENTAL SOLUTIONS AND RELATED SUBJECTS

In this appendix the wave equation is regarded as
the linearized equation for a supersonic flow at Mach
= A number /2. We consider accordingly

3 ~Pex * dyy =0 (A31)
’ The perturbation velocities are then given by the vector
grad ¢. We determine, also, the perturbation of the mass

flow vector. 1In the nonlinearized problem the mass flow
vector is given by p grad ¢, where p depends upon grad ¢.

Specifically, one has from Bernoullis, equation
dp + ¢ dBE+4) =0
and therefore, with the sound velocity "a" given by
a*~ ap/dp
dp= - &0l e +BdH)
3 . Now the total potential ¢ is given by
;ﬁ | 55 - Ur *5#

& Hence, for the x component in the perturbation of the mass

flow N
f5f&/9‘ U/fa*) ]
and for the y component f
f5¢& ]
Here o is the density in the unperturbed flow. One therefore
obtains for the x and y components of the perturbation of
the mass flow vector at Mach number /2, respectively -po¢x
and p0¢y. (Important is the negative sign in the x component.)
The potential equation in the form
S(~bry *fyy/' o i
expresses the conservation of mass., By the usual integration ]
by parts (Gauss' theorem) one obtains

! [0 (~hx +hy 11y = - 8o Fihdy + o) a32)
L. R 2R

- —
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where one travels along the path of integration in the
direction for which the region R is to the left.

Assume that some portion of the contour is given by a
left going characteristic y = c + x . Then the correction
to the mass flow through this part of the contour is given

by
-6 7/% 4?;}2&1/:

&
where ds is the line element. 1In this case

s ot g4 _ ¥~

,75*4:,7; X ¥ b/ e 2l
Thus, one obtains as a correction to the mass flow passing
through a left going characteristic

4
F 4 -
_‘e°.r,/7g'/‘ < flf) (A33)
Analogously, for a right going characteristic
K,
- F //7‘: -4 ) L5 = ot -#6) (A34)
s,

Eq. (A31f is solved by

B flyrn # Ay
To obtain a fundamental solution we postulate that ¢ = 0 for
x < 0 and that at x = 0, ¢x is given by the negative of a
delta function at the origin. The requirement ¢ = 0 at x = 0
is satisfied by choosing

f=-k=r

be = Flwnr # Flp-0)
It follows that

fle)=0 for2(o

fla)=-f Fvz>e

Thus, one finds for x> 0 as the potential caused by a source

Then one has

at the origin

$ =0 y < =X

o = =-1/2 -X <y <X x>0
¢ =20 Yy > x

$ =0 x <0
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If one crosses the right going characteristic y = -x along

a left going characteristic, then the correction to the

mass flow is according to Eq. (A33) (1/2)p0. The same result
is obtained if one corrects the characteristic y = x. A
fundamental solution gives a correction to the mass flow
vector along the characteristics through the origin in the
direction of the characteristics in the form of a delta
function of intensity 1/2p0. Everywhere else the correction
is zero (Figure 30.). The gradient of the velocities is
perpendicular to these characteristics. The perturbation

does not die out with distance.

Except for a constant, the fundamental solution for
the Laplace equation is given by 1og(x2 + yz). The corresponding
expression for the wave equation is given by log(x2 - y2).
For x # 0, y # 0 and x # |y| this expression certainly satisfies
the partial differential equation, but obviously it does not
give the desired fundamental sclution.

Also of interest is the perturbation caused in an
axisymmetric flow by a source at the origin. It provides the
fundamental solution for the three dimensional wave equation.
The linearized equation for three dimensional supersonic flows
for Mach number vZ is given by

~dix *Hy *Hea = FOU4 ) (A36)

where £(x,y,z) is the local source strength. One obtains,
by integration over a volume R

S box by s )dyde = ) Fog200 18y
The right hand sides gives the combined strength of the
sources within the volume R. Now we assume axial symmetry

and introduce cylindrical coordinates
xX—> X
rie yiera*

One then obtains

Ta2t //4;- (rdy) - ,%—/r/,)//rb -2K ',///4; ridxdy (a37)
2
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It is convenient to introduce coordinates oriented accorxding
to the directions of the characteristics (Fig. 31)

f- r+ X
‘z:-r*x
.2
X = 'L*—k

z
with the restriction

*I0, £O%
The x axis is given by £ = n.
One obtains for the Jacobian of the transformation

d(&,n) -
r,X) 2

Moreover

2 .2 _2 . 2.2 ,2

R R IR
Thus, one obtains the following expression for the total
mass flow.

7=-2Jlf ;—?—[/f-z) ;f/ * 5—;—[4#-2) g// iy (A38)
R

In these coordinates the original equation for the
perturbation potential, namely

- ax (7hh) # G )=o
assumes the form

?
3%[({-2) 33{/ * 32[/1‘2)3% = (A39)
Here one has the particular solution
Y/ -ty =t
a2l /1‘—7') ,“ - —'f “L (A40)
I 2

This is easily verified.
The expression Eq. (A38) can be transformed into a contour
integral

7ev$ VE, & (-4 4t
The integrand vanishes at the x axis (£ = n).
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To determine the total source strength we choose for
R a region bounded by the x axis ({ = n), by a line § =
and closed to the left by some arhitrary curve. Then one
finds

I--v [(-2) —f/z ’r};‘/f,v/ ’ 'fz D'é/’r

g€
Substituting the specific exaiession for ¢, Eq. (A40) one

-t -l 73
T- 88 g+ 2 § éz{z oy -
’a

Notice that the result is independent of £;- Since the

obtains

differential equation is satisfied inside of the cone

£ > n there are no sources inside of this Mach cone and
since the result is independent of El there are no sources
at the Mach cone.

The expression

-Z/a' WLy 45 L8R

glves the total outflow of mass due to the perturbation

Y -t

through the portion of the surface lying between n = -¢ and

n = n. The total outflow of mass up tends to infinity as

n + 0. (For the two dimensional case one has a concentrated
finite additional outflow along the corresponding characteristic.)
For larger values of n the total additional outflow becomes
smaller, at £ = El it reaches the value 1. The perturbation

of the mass flow vector inside the cone therefore causes

inside a reduction of the outflow. The expression (A40) is

the fundamental solution for the three dimensional problem.

Its form is, of course, too singular to serve as the
basis for a numerical procedure. The singularity is brought
into a less severe form if one considers source distributions
and carries out some of the necessary integrations beforehand.

consider a three dimensional problem and assume that
the source strength is constant along the z axis. In this
manner one will obtain the two dimensional potential. Using

Eq. (A40) one computes

e

bt ety
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This is indeed the result Eq. (A35).

a4

H To see what happens if the source density in the y
= direction is not constant, we consider an example with a
periodic source density in the z direction. Consider first ,
the elliptic problem ‘
Prx *¢yy Ffaa =0 4
Periodicity of the source density in the y direction implies ]
periodicity of the potential. Accordingly, we set

¢n=é?4pnﬁvz)
;;x ! y!-p‘¢-o

and in polar coordinates

#rr*ij; ..y/,a

;/»;19) = Ftv)
Then one obtains _

$ry+9’¢r-"'ﬁ'° ’
This equation is solved by a linear combination of H(élivr)
and H(gkivr). For r - =« the solution must tend to zero;
obviously the effect of sources periodically distributed
along the z axis will cancel at a large distance from the
z axis. Hence

g = const #ow{z'yf)

The constant is determined by the local source density at |
r = 0.

One obtains

Now we set

The supersonic problem is treated analogously. One
has ~ ~ L7
—ﬂ‘“ 7‘@"”%-0
2 2 2 ~ 1
and with r“ = x° - y° and ¢ = (1)

é;r +4d, r¥ gm0

110




This equation is solved by
U
& = Jevr) = dvie-ri)
Consider this expression at a fixed x. The argument of Jo
varies between 0 for the Mach cone and x for the x axis.

The variation is small if x is small. The jump of ¢
at the characteristic r = 0 is the same for all values of
X; namely JO(O). For large values of x, the expression is
an oscillatory function of y. This result has obvious
implications for the choice of a grid in three-dimensional
problems.
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Figure 4. Shape Function and, in Case 2a, Weight
Function Belonging to Point y = Yy
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Ficure 5. Weiocht Function Belonging to Case 2b.
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Figure 7. Weicght Functions for Case 3b. Figure 7a is also
the Weight Function for Cases 5b and 6b.
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Figure 8. 'leight Functions for the Cases 3c and 4b.
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xact function

inite element
approximation

+ <

-11(

Figure 10.

Approximation for ¢ obtained for u = 0 by ¢k = 0,

¢k' = ] and exact function ¢ for u =
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Figure 24.

complex p-plane

Anmplification Factor p in the Complex p Plane

and Corresponding Values of exp(iuht), for Linear
Shape Functions and Constant Weight Between
tk-e and tk+1-e.
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Figure 26.

¥
3
b
!

COMPLEX
P-PLANE

Amplification Factor f in the Complex Plane for
Different Values of Al/2 = yh,. The arrows give
the direction of increasing vhy. 1In part of the
figure the points p are connected with the ideal
values exp(ivhy). Third degree shape functions,
weight functions constant for 0 <At < cht and
ch, < At < h,, c = 3/4.
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Figure 27,
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i
Amplification Factor E in the Complex Plane for
Different Values of A1/2 = vh¢. The arrows give
the direction of increasing vh¢. In part of the
figure the points p are connected with the ideal
values exp(ivhy). Third degree shape functions,

weight functions constant for 0 < At < chy and i
chy < At < ht’ c =1,
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Figure 29. Characteristic Nuadrangle.
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Figure 30. Characteristic Coordinates and Corrections to the

Mass Flow Vector for Two-Dimensional Fundamental
Solutions in Linearized flow with M = /2.
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Figure 31. Characteristic Coordinates and region R in the
£yn-plane for an Axisymmetric Linearized Flow
with M = /7,




Figure 32,

Region R for "hich the Total Source Strength is
Evaluated.
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