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THEORY OF FREE ELECTRON LASER INSTABILITY IN A RELATIVISTIC

ANNULAR ELECTRON BEAM

Han S. Uhm
Naval Surface Weapons Center
White Oak, Silver Spring, Md. 20910

Ronald C. Davidson
Plasma Fusion Center

Massachusetts Institute of Technology
Cambridge, Mass. 02139

and

Science Applications Inc.

Boulder, Colorado 80302

A self-consistent theory of the free electron laser instability is

developed for a hollow electron beam propagating through an undulator

(multiple mirror) magnetic field. The stability analysis is carried

out within the framework of the linearized Vlasov-Maxwell equations.

It is assumed that the beam is thin, with radial thickness much smaller

than the mean beam radius, and that V/Yb << 1, where v is Budker's

2parameter and ybmc is the characteristic energy of the electron beam.

The dispersion relation describing the free electron laser instability

in a hollow relativistic electron beam is obtained for an equilibrium

distribution function in which all electrons have same value of trans-

verse energy and the same value of canonical angular momentum, and a

Lorentian distribution in axial momentum. It is shown that the influence

of finite radial geometry plays a critical role in determining detailed

stability behavior. Moreover, the growth rate and bandwidth of the

instability can be expressed in terms of Budker's parameter v, instead

of the plasma frequency as in the case of a uniform density beam.

Furthermore, it is found that free electron laser stability properties

exhibit a sensitive dependence on axial momentum spread.



I. INTRODUCTION

In recent years, there has been a growing interest in the free

electron laser instability 1- 7 in connection with intense radiation

generation. For the most part, previous theoretical analyses of

this instability have been carried out for an electron beam with

uniform density, neglecting the influence of finite radial geometry.

Although this is a reasonable first approach to the problem, for

detailed application to present experiments it is necessary to inves-

tigate the important influence of finite radial geometry on stability

properties. In this regard, in the present analysis we investigate

free electron laser stability properties for an annular electron

beam propagating through an undulator (multiple mirror) wiggler field,

including the full influence of finite radial geometry.

Equilibrium and stability properties are calculated for the choice

of equilibrium beam distribution function [Eq. (19)]

f 0(H ) - K6(P- Po)F( p )G(p ,

where H is the energy, P8 is the canonical angular momentum, p.L

(p 2 + p i/2 is the transverse momentum, p is the axial momentum,
r e z

and K is a normalization constant. The present analysis is carried

out within the framework of the linearized Vlasov-Maxwell equations,

assuming that the beam thickness is much less than the mean beam

radius R0 , and that v/Yb << 1, where v is Budker's parameter.

It is also assumed that the electron beam propagates through an

undulator (multiple mirror) magnetic field and that the

amplitude B of the wiggler field is small in comparison with the average

field BO.
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The basic assumptions and equilibrium properties are discussed

in Sec. II... The formal stability analysis for azimuthally symmetric

perturbations (a/a0 = 0) is carried out in Sec. III for general

2transverse and longitudinal distribution functions, F(p) and G(pz).

The matrix eigenvalue equation (65), when combined with Eq. (67),

constitutes one of the main results of this paper and can be used to

investigate stability properties for a broad range of distribution

functions corresponding to a thin annular electron beam.

In Sec. IV, the dispersion relation for the free electron laser

instability is obtained for the specific choice of equilibrium

distribution function in which all electrons have the same value of

transverse momentum, and a Lorentzian distribution in axial momentum

[Eq. (69)]

G(P) z r( Pz -Pb ) 2 + A 2

Here, A is the characteristic axial momentum spread about the mean

value pb YbmVb" One of the most important consequences of finite

radial geometry is the fact that the maximum instability growth rate

occurs for a value of beam radius R0 satisfying [Eq. (97)]

Ro/R c  1 O/aOs

where Rc is the radius of outer conducting wall, 0OL is the Lth root

of JO(O)= 0, and aOs is the sth root of Jl (Os) - 0. Moreover,

the growth rate and instability bandwidth can be expressed in terms
P A

of Budker's parameter v and the amplitude of the wiggler field B. It

is found that the maximum growth rate increases with increasing

beam intensity (v).

....
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The dependence of stability properties on the axial momentum

spread (A) is also investigated in Sec. IV. It is shown that the

maximum growth rate of the instability decreases as the axial momen-

tum spread A is increased. However, the instability bandwidth increases

with increasing A. We conclude that free electron laser stability

properties exhibit a sensitive dependence on axial momentum spread A.



II. EQUILIBRIUM CONFIGURATION AND BASIC ASSUMPTIONS

A. Basic Assumptions

The present analysis assumes an intense annular electron beam

with characteristic thickness 2a and mean radius R0 propagating in

the z-direction (Fig. 1). We introduce a cylindrical polar coor-

dinate system (r,e,z) with z-axis along the axis of symmetry; r is

the radial distance from the axis of symmetry, and 6 is the polar

angle in a plane perpendicular to the z-axis. To make the analysis

tractable, the following simplifying assumptions are made.

(a) The thickness of the annular electron beam is much smaller

than its mean radius, i.e.,

a/R0 << 1. (1)

(b) It is assumed that the beam density and current are suffi-

ciently small that equilibrium space charge effects are negligibly

small, and the equilibrium self magnetic field can be neglected in

comparison with the applied magnetic field B0 . That is, we approxi-
IXF

mate:

- B , (2)

where E0 and 0 are the equilibrium electric and magnetic self fields,

respectively.

(c) Consistent with Assumption (b), it is assumed that

V/Yb << 1, (3)

Ybmc2 is the characteristic electron energy, and v - b e2where i n
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is Budker's parameter. Here, -e is the electron charge, c is the

speed of light in vacuo, m is the electron rest mass, and Nb

027r fodr r nb (r,z) is the number of electrons per unit axial length.

For a thin annular electron beam with radial thickness 2a and constant

density no , the inequality in Eq. (3) can be expressed in the equivalent

form

2p10/c/ << R0 /a, (4)

where 02 4 n e2/ybm is the relativistic plasma frequency-squared.

(d) It is assumed that the electron beam propagates through an

undulator (multiple mirror) magnetic field. The azimuthal component

0
of vector potential A0 (r,z) for the equilibrium magnetic field can

be expressed as

0( 2 R-1A0 (r,z) f B0  r - o- i (k0rcosk z (5

where X = 21r/k0 is the periodicity length, Ii(x) is the modified

Bessel function of the first kind of order unity, and R = B z(r = 0,

k0z - ±7)/B z(r - 0, k0z - 0) is the mirror ratio. Here, the equilibrium

magnetic field components are given by B r 0 and B = r1 (3/Ir)(rA ).

(e) We further assume that

k a << 1 (6)

where a is the half-thickness of the annular beam. Defining the charac-

teristic wiggler amplitude by

A I(k0R)

B 2R! -l 1 0 0'
B 0 R+l koR0



the equilibrium vector potential (Eq. (5)3 can be expressed in the

L equivalent form

0 1 [ ~R0  11(kor) 0
Ae6(r~z) -Bor r 1j- 1(kR cosk 0z (7)

From Eq. (7), the components of the equilibrium magnetic field

0B B + B i are given by

B r(r,z) j (r z

1 1(kor)(8
2 O01 I (k0R0) 0ikz 8

Brsinkoz,

where

B I-kRk-B )-,
r 2 00R' BOR+l 1

and

B0 (r, z) -a 0A rz

I (k r)
M B0  2 0R 0 ( 0R0  cosk z(9

B -A coskz)

where
1 0(ko) 0RRl

Bt 0OO 0 1 (k0R0) B0 R+l 10(k0R0).

Note from Eq. (9) that B. is equal to the average axial magnetic field

(averaged over the periodicity length X0 2 rk 0). Note also that the

approximate expressions for B Orand B0  given in Eqs. (8) and (9) are

valid over the radial extent of the beam (R0 - a < r < RO+ a) within

the context of the assumption that kOa << 1 [Eq. (6)]

ALM-,
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(f) From Eq. (9), there is an oscillatory (wiggler) contribution

to the axial magnetic field proportional to - (Bz/B0) cosk0z. Throughout

the present analysis, it is assumed that the amplitude of the wiggler

field is small, i.e.,

B
<< «1. (10)

B0

The inequality in Eq. (10) assures that the axial modulation of the

equilibrium beam envelope is small. Equally important,

Eqs. (1) and (10) assure that the axial momentum pz = ymvz' where

Y = (I + 2/m 2c2 ) / 2 , is a good approximate single-particle invariant

to lowest order. In Appendix A, we present a detailed investigation

of the electron trajectories in the equilibrium fields described

by Eqs. (2), (8), and (9), assuming that the axial motion is non-

resonant with

kv2 2 2 
(11)

koz c

Here vz = pz/ym is the axial velocity of a typical beam electron, and

Wc = eBo/ymc is the relativistic electron cyclotron frequency.
2 2 2For example, in the strong-magnetic-field limit (2c >> kOVz) it is

shown in Appendix A that Pz const. whenever the inequalities

[Eqs. (A.20) and (A.21)]

laBRI a B (k 0 R 1 , (12)

and

4 2 (k0R0) Vz / . , (13)

0 0
are satisfied. From Eqs. (1) and (10), the inequalities in Eqs. (12)

and (13) are straightforward to satisfy in the parameter regimes

of experimental interest.
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(g) Finally, in the stability analysis (Sec. III), it is assumed

that the waves are close to resonance with

1W - (k + nko)Vb << k0 Vb, w (14)

where w is the complex oscillation frequency, k + nk is the excited
0

wavenumber, and Vb = fd 3 pvzf 0 is the mean axial velocity of the

electron beam.

In summary, the present equilibrium and stability analysis is

carried out within the context of the inequalities in Eqs. (1), (2),

(4), (6), and (10) - (14). Moreover, the vector potential for the

equilibrium magnetic field is approximated by Eq. (7).

B. General Equilibrium Properties

Within the context of Assumptions (b), (e), and (f) in Sec. II.A,

the equilibrium (a/at = 0) beam distribution fO(r,z,k) is generally a

function of the single-particle invariantsII corresponding to particle

energy,

2 4 2 21/2
H - (m c +c2) , (15)

canonical angular momentum,

Pe = r[Pe - 0 (r,z)] , (16)

and axial momentum

Pz (17)

where A (r,z) is defined in Eq. (7), and - (p ,p ,pz) is thee r z

mechanical momentum. In Eqs. (15) - (17), we have neglected

wig
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equilibrium self-field effects and assumed that the wiggler

amplitude B is sufficiently small [Eqs. (10), (12), and (13)] that

Pz is an approximate invariant. In this regard, we also conclude

that the transverse momentum

2 2 2 2 2 1/2
P. (H/C -m c -Pz) (18)

is also an approximate invariant. Here, the particle velocity % is

related to the momentum k by v . -/ym where y = H/mc2 = (1 + 2/m2 c 2)/2

is the relativistic mass factor.

In the present analysis, we consider the general class of annular
11

electron beam equilibria described by

f0(r,z,k) = K6(P - P )F(p2)G(p , (19)
be P0)Fp±Gz

where K is a positive normalization constant, P0 = const. is defined by

P 1 eB0o 2 (20)

and the transverse and longitudinal momentum distribution functions

are normalized according to

f= dp F(p.)= 1 , Jdpz G(pz) = 1. (21)

Defining rL = cp1/eBo, and carrying out some straightforward

algebraic manipulation, the electron distribution function in El. (19)

can be expressed in the equivalent form

0 N Nb 2 *[(r-rl1 )(r 2-r)]
b(rz,) -2 F(p)G(pZ) 2 2 2 2 1/2

7r [(r rl) r2-r (22)

x [6(- i) + 6(0 - W + )] ,

. . . . . . . . . . . . . .



rF 11

where = sin 1(p/p), and (for B / << 1) the quantities r1  r2 and

00 can be approximated by

2 r2  11/2r
r 1z) - R6+ r )2,J L

1~ - cask 1 -I- - cosk 1: If- cos z)
( BO AB 0  0o

(23)

r2 W) - r (Z) + - 2 rL (24)

(i o -cosk z

and r2 1- B coskoz)

0 sin 2rrL J . (25)

In Eq. (22), O(x) is the Heaviside step function defined by

I, x>0,
O(x) (26)

0, x <0,

and Nb is the number of electrons per unit axial length defined by

Nb - 2v 10 c drr 0 d$ f dp.p, E dp fb(rzk) . (27)

Here, R is the radius of the grounded cylindrical conducting wall.

Several equilibrium examples of the general form given by Eq. (22)

have been discussed previously in the literature11 in the absence of

wiggler field (i-0).

i~
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III. LINEARIZED VLASOV-HAXWELL EQUATIONS

A. General Formulation

In this section, we develop the general formalism to investigate

stability properties for perturbations about the class of beam equilibria

described by Eqs. (19) and (22). Expressing the beam distribution

0
function as fb( ,,t) = fb + 6fb(kokt), and neglecting equilibrium

self-field effects [Sec. II.A], the linearized Vlasov equation

can be expressed as

+ v a x x B 0

(28)

e e(V60 - 6A+ - x_ 2 6) fo(~~)(8= e96 -c at FV c "k b

where X = k/ym is the particle velocity, the equilibrium magnetic

0field components B Orkr + Bozkz are given in Eqs. (8) and (9),

and use has been made of the Lorentz gauge to express the perturbed

magnetic field as 6k(k,t) - X x 6k(kt), and the perturbed electric

field as 6k( ,t) - - V60( ,t) - (1/c)(a/at)6q(k,t), where

•. 6( ,t) + (1/c)(a/3t)6*;(,t) - 0. The corresponding linearized

Maxwell equations that determine the evolution of 6A and 60 self-

consistently are given by

L2 12 - we d 3p v 6fb (29)c 2 at 2 6k - ' fd 6

and(:
2 a2 2 2 6 = -4we d3p 6fb a (30)

where the perturbed current -efd 3p V 6fb and perturbed charge density

-efd 3p6fb are calculated from Eq. (28). In the present analysis, we

assume azimuthally symmetric perturbations with
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3/ae - 0 , (31)

but a az and a/ar generally non-zero. The components of the perturbed

magnetic and electric fields can then be expressed as

la

6B - -- A6 Ar ar e8

6 . 6A 6A (32)e az r ar z (2

6SBZ- (r6A)

and

6E = _ L 6 1 6A

r a c a t r6E = - 6a.A ,(33)

z a ct z

and the Lorentz gauge condition V * 6A + (l/c)a o/at - 0 becomes

rar (r6Ar) +  6A + 0 .(34)

In the subsequent analysis, we assume that all perturbation

quantities have time and spatial variations of the form

6*(r,z,t) - 6e(r,z)exp(-iwt)

where 1mw > 0, and 60(r,z) is the amplitude of the perturbation.

Using the method of characteristics, the linearized Vlasov equation

(28) can be integrated to give

A _____CAW

.~~~~. . *... ..
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6fb( ,k,t) =e dr' -V'6 (W,t') 1a 6k(k',t')
b-E c at'

v' ( t(35)
V k a I ,

+ c ak fb( II) '

where d '/dt' - X' and dk'/dt' - 0 x and the particle

trajectories ( ', ') in the equilibrium field configuration satisfy

the "initial" conditions k'(t' - t) - and k'(t' - t) - k (Appendix A).

We now simplify the right-hand side of Eq. (35). Without loss

of generality, the perturbation amplitudes are expanded according to

6W(r,z) = Jn(r)exp[i(k+nk0 )z] , (36)
n

etc. The particle orbits ( ', ') are calculated in detail in

Appendix A for the case of small wiggler amplitude (B /B << 1)
z 0

assuming that the axial and cyclotron motions are far removed from

cyclotron resonance [Eq. (11)], i.e.,

22 2
k0vz Wc

where vz = pz /ym is the axial velocity and wc - eB0/ymc is the

relativistic cyclotron frequency. To lowest order, the

axial motion is free-streaming [Eq. (A.8)]

Pg
z' -z +- (t' - t) , (37)ym

and the radial orbit [Eq. (A.13)] and azimuthal orbit [Eq. (A.17)]

contain oscillatory contributions proportional to cosw T, sinwcT ,

sin(k0z + kovz-) and cos(k 0 z + k0vzt), where - t' - t. For present

purposes, in the t' - integration on the right-hand side of Eq. (35),

we retain terms proportional to

- (k + nko)pz/ym] ,

- .;.Ir
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and assume that the value of [w - (k + nk0 )pz/ym] is well removed

from resonance with the cyclotron motion and the beam motion [Eq. (14)], i.e.,

1w - (k + nko)pz/Ym << W c kovb

Within the context of Eqs. (1) and (14), Eq. (35) can be approximated

by

6fb,)- -e d~x(-iwT) 2 iw(6 -. v k
e {(38)

z a a pfb1
_f 0

b
ap z

where y - H/mc2 - (1 + k2 m2 c 2) 1/2. Moreover, within the context of

Eq. (14), only those contributions to v; and v; proportional to sin(kOZ + k0VzT)

and cos(k 0z + k0V7 ) are retained, i.e., on the right-hand side of

Eq. (38), we retain contributions to v' and v ' of the form
r 0

2

vr R2 2  kovzsin(koz + kovzT), (39)

0c Ovz
2 22
w kov

__ _ - cos(k z + k0vzT) (40)
O W2 22 wz

where v z -p zym, Wc 
= eB0 /ymc, and use has been made of Eqs. (A.13)

and (A.17). Finally, since the oscillatory modulation of the

radial orbit is small-amplitude [Eq. (A.13)], we approximate

rl - r in the arguments of the perturbation amplitudes on the right-

hand side of Eq. (38), i~e., £6(:',t') u 6f(r,z'), 6A (',Z') = 0k (r,a'),

etc.

Substituting Eqs. (36), (37), (39), and (40) on the right-hand

side of Eq. (38), and making use of the various approximations

enumerated above, we find after some straightforward algebra that
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6fb can be expressed as

exp[i(k + nk0 )zlf / -v

b n w - (k + nk 0)v~ zA~Wk n~ - - '

R0 22 2v 2
c 0 Oz (X nl(k,,,k)A B,n-1 + X n+l (k,k)AB O J~

4c B0 o2 2 T -Wn~
0Wc -~ koz c

+tR0 w c k n X (k, ,k)Ar~+ kA~_4c B0 W 2 22 20V - n-n-iI )
c 2 z

(41)

where the function An,(, ,k) is defined by

0 a 0

21ymw - (k + n'k)p] + (k + nbko)  (42)

n0zap 2 az

Evidently, An, (k,w,k) is an even function of vr - pr/ym. Therefore,

it follows from Eq. (41) that

-e f d3p vr 6 fb(,k - O . (43)

That is, the perturbed radial current is equal to zero. The radial

component of Eq. (29) then gives

2

arar A (k + nk0 ) 2A + - Arn = 0 , (44)

for the perturbation amplitude Ar, n(r). Without loss of generality,

for the TE mode polarization, we assume

Ar,n(r) - 0, (45)

in the subsequent analysis. The Lorentz gauge condition in Eq. (34)

then gives the simple relation between A z,n(r) and n(r)

(k + nk0)A (r) - (r) (46)

Making use of Eqs. (45) and (46), ffb(t, ) can then be expressed as
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exp[i(k + nko)z ] 
17(. c

6f w - (k + nko)V5  'n-c (k + nko)c 0n

2 22 (47)
't _ _C k0vz }

4c B0 2 22 w n-lken-1 +nAen+ "
c v-koV

B. Eigenvalue Equations

The linearized Maxwell equations are obtained in this section

within the context of Eqs. (1) and (14). For convenience in the

subsequent analysis, we define the dimensionless potentials as

Vi
mc -(r) - Vb A ( (48)

and

_n (r) = A'.A(r) . (49)
mc

Moreover, we also introduce the dimensionless parameters

2V2

a - 2 2 (50)
Wc -ktov

eiRO
A " 29' (51)

4Ybmc

and the effective susceptibility

Q) 2 3 Xni (k' w'k)(Yb/Y)J

Xn,n(w,k) e2 -4 c rdr f d3p (52)
(w - (k + nk0)vS]

where pnw,k) is defined in Eq. (42), and weBYbC in Eq. (50).
2

In Eq. (51), b is the relativistic mass factor defined 
by b =

(1 -V/c 2) 1 . Noting that the azimuthal velocity at t"= t is given

by [Eq. (A.17)]

ve  -(2cyb/Y)Acoskoz , (53)

I4
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and making use of Eqs. (42) - (52), the Maxwell equations (29) and (30)

can be expressed in the approximate form,

{I~rL6(r -2 o) o~
--ri (k +nko)2} (r) -- (rR n,n n

+ A + (54)
W,n-1 n-i n,n+1'~~

I a 1 2 21~ ( 0

5-r ar 2 + L-( +n (r)-A
i3r r r 2 c 20 0 'n+l R

(1) (2) (2)

)(n,n n - Xnn-1 An-i + X nn+i'n+l~f (55)

r 3r r 2 c20 0Jn-l1r

* { X1 nn A a(Xn(2- A 1~ + (2 n A1 J}.~l (56)

for a thin annular beam satisfying Eq. (1).

Since the right-hand side of Eq. (54) vanishes except at r R- .

Eq. (54) can be expressed as

r--+P2 () 0 ,(57)

for r Ro. In Eq. (57), the parameter p is defined by

2n . W/C (k +nk 0)
2  (58)

The solution to Eq. (54) is given by

*(r) -P J3(r) +BN0 (Pr) R R0 - r -cRc

#n (r \cJ (pnr) 0 c, O < R ()

where J (x) and N (x) are Bessel functions of the first and second

.......
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kind, respectively, of order L, and Rc is the radius of the conducting

wall (Fig. 1). In Eq. (59), the constants A, B, and C are determined

by the boundary conditions that the effective potential in(r) vanishes

at r - Rc, and that *n(r) is continuous at r - %. Multiplying

Eq. (54) by r and integrating from R0 (1-e) to R0 (l+e) with c 4 0+,

we obtain after some straightforward algebra,

r -(wk)U ( j) (-Xn,nn(R0 ) + A _iAn_l(R0) + x 1An+I(Ro)]},
2yb (60)

where the dielectric function rn ,n(w,k) is defined by

r n (pnRc)/nIJn (pnR0)(6
n ,n ( w' k ) =  Jn, (PnR0)Nn , (PnRc) - Jn' (PnRc)Nn'(PnR0 ) (61)

and use has been made of the Wronskian identity,

Jn (x)dNn I(x)/dx - N n (x)dJ n(x)/dx - 2/wx . (62)

Similarly, making use of Eqs. (55) and (56), we obtain

rin (w,k)A (R) - A {x2 ,(RO) - A a [ Y~~nl(O + Xi +~~ oI

(63)

and

W- - (R ( n n (2) "+ (2)r1,n-l('k)An-l(R0) i ^ Xn,nn 0(R) n,n-1 -l(RO) + Xnn+lAn+l(R)] 1 .

(64)
In Eq. (63), rlin+ is a function of p2 W 2/c2 _ (k + nk + 2

lc ( nk 0  k0

defined in Eq. (58). From Eqs. (60), (63), and (64), we obtain the

matrix equation relating An+i(R)' An-i(Ro)' and #n(R0)

nn 2(2) 2 (2 (2) (1)
1,1+1 2 A*n,n+l P 2 A *Xn,n.. 2 n,n n+1(O

IA2 OX(2) +1 r +I A 2 ax(2) 'AL ' (1
2 nn ' l,n- 2  Xn,n 1 , - 2 Xn,n A nO,(RO) 0,

Aa\ - !
(

.
) A ' (1) r + 7r (0)

2b u~~' 2 n O'n 2 ~ n *(R) (65)2y +1 2Yb2;n-Ilko- .,
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which is similar in general form to the matrix equation obtaineL by

Davidson et al.1 for the free electron laser instability in a uniform

density electron beam. The dispersion relation can be obtained

from the condition that the determinant of the matrix in Eq. (65)

vanish.

Evidently, from Eq. (65), an explicit evaluation of the susceptibility

X(J), defined in Eq. (52) is required for a detailed stability analysis.n,n

Substituting Eqs. (22) and (42) into Eq. (52) gives

X Q) - 2vmc2 dp2  dpZ2[ymw (k + n'k0)pz] p2 Gn~n 0 Oz ap 2

G(Yb/Y) 
(66)

+(k + n'k0)F } [w - (k + nk0 )vz]

where v - Nbe2/mc2 is Budker's parameter defined in Eq. (3), and use

has been made of the identity

f RC drr *(r 2 - r2)(r - r1 )]

JO [(r 2 r2)(r2  rl)]

In obtaining Eq. (66), the p, derivatives of 01(r 2 - r)(r - r1)]
2_2 2 _ )2-1/2

x [(r2 r1)(r 2  r2) and 6(6 - f0) + 6(O - W + 0 ) have

been neglected, since the corresponding corrections are of order

Iw - (k + nko)Vbll, c + kOVbI << 1, or smaller. Equation (66) can

be further simplified by integrating by parts and making use of

F(O) - F(-) - G(-) - G(-") - 0

Within the context of Eqs. (3) and (14), we obtain

y1+1
() . Lv [.2 (k + nko)(k + n' k)c 2] dp2 dp(!k)
n,n Tb 2 0ro

X: -F(p2)G(p Z)
w x , (67)[w - (k + nk0)Pz/ymJ2
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after some straightforward algebra. Equations (65) and (67) describe

stability behavior for general choice of equilibrium distribution function

2F(p.)G(pz ), and can be used to investigate stability properties for a

broad range of system parameters.

I



22

IV. STABILITY PROPERTIES

A. General Dispersion Relation

As an example, in this section we investigate free electron laser

stability properties for an electron beam with perpendicular distribu-

tion function,

F(p2 6(p2 2

F) W 1 O) (68)

where Po = const. is related to the radial thickness of the beam.
1 1

Moreover, in order to investigate the influence of axial momentum

spread on the free electron laser instability, we assume an axial

momentum distribution function of the form

G(p)= +A2 (69)O~z)  Aff (Pz - Pb)2 + A 2 '69

where A is the characteristic momentum spread about the mean

momentum p ff= YbmVb. We further assume that the momentum spread A is

small in comparison with the directed momentum pb' i.e.,

A -- Pb" (70)

For small values of 6 Pz = Pz - P b consistent with Eq. (70), we can

approximate the term p z/ym in Eq. (67) by

Pz P b + z (71)

y7m bm  
Ybm

2 2 21/2
where b -(l+ pb/m c )

Substituting Eqs. (68) - (71) into Eq. (67), we obtain

(J) (0) 2v [W 2 _ (k + nk0 )(k + n'k0 )c 
2  (

Xnn1 Xn'n' Tb [w - (k + nk0)Vb + ilk + nk0IA/y m]
2 (72)
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within the context of Eq. (14). Equation (65) can be simplified

considerably by making use of Eq. (72). The condition for a non-

trivial solution to Eq. (65) is that the determinant of the

matrix vanish. This gives the general dispersion relation

+ (0)1rln+lrl,n-ltron + 2 Xn,n)

b (73)

aA2_[ (0) +r v(0) ]r ,- - .! 2 [r ,n+lXn,n-1 + 1,n-lXh,n+l 0,n

which can be used to determine the complex eigenfrequency w in terms of

k + nk0 , k0 , v, A, and A. What is most remarkable is that Eq. (73)

is very similar in general form to the result obtained by Davidson et al.

for a uniform density electron beam.

Consistent with Eqs. (3) and (14), the elgenfrequency w can be

approximated by w = (k + nko)Vb. We therefore approximate pn and

Pn+l in Eq. (58) by

Pn = iq - i(k + nko)/ b (74)

and

2+ 2 1/2
Pn+1 - iqn+1 , t[q + 2k0 (k + nk0) + k] . (75)

Making use of Eqs. (74) and (75), the dielectric functions rl,n+l

and ro,n can be expressed as

r N 1 1l(q n+l R )/l(q n+iR0) (6
l,n+ 1 2 I1 (qn+1Rc)K1 (qn+1) - II(qn+Ro)(qn+R c)  (76)

and

SI 0 (qnR )/I 0 (qnR0 )
O,n 0 h(% 0 )= I(qnRc)K(qnR) _ I(qnR0)K0(qnR))

for k + nk0 > 0. In Eqs. (76) and (77), I(x) and K (x) are modified
I

Bessel functions of the first and second kind, respectively, of order 1,
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and h(qnR0 ) is the effective electrostatic wave admittance, Note from
Eqs. (76) and (77) that the dielectric functions r ,n and P l,n+

are generally nonzero monotonic increasing functions of qnR0 and

qn+iR 0
, respectively. In this regard, for small wiggler amplitude

(A << 1), we investigate free electron laser stability properties

for w and k + nk0 near the simultaneous zeroes of the transverse

dispersion relation rl,n 1 = 0, and the longitudinal dispersion

relation r0n + (rr/2y2)X( 0 n = 0. The general dispersion relation in

Eq. (73) can then be approximated by the simplified form

r L (r(0)) O 2X (0) r (78)
rl,n- rOn + w2 xnj = - . aAXn.nlr0n "(8

2
b

Equation (78) is the form of the dispersion relation used in the

remainder of Sec. IV.

B. Linear Eigenmode Properties

For very small wiggler amplitude (A - 0), or for very low beam

density (v - 0), it is evident from Eq. (78) that the linear dispersion

relation for transverse electromagnetic perturbations is given by

rl,n-l(w,k) - 0 * (79)

and the linear dispersion relation for longitudinal perturbations is

given by

r0n (w,k) + T x) . 0. (80)
2y

b

Here, we assume k + nk0 ! 0, and the eigenfrequency w satisfies

w (k + nko)Vb for a low-density beam. Equation (79) can be expressed

in the ecuivalent form
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22

2 2 0
-- (k +nk 0 -ko) 2(1

cR!

where aOs is the s'th root of J1(c0s) ( 0, and use has been made of

the definition in Eq. (61). Equation (81) is the familiar vacuum

waveguide electromagnetic dispersion relation. For future reference,

Taylor expanding the electromagnetic dielectric function rinI

in Eq. (61) about [w 2/C2 (k + nk k0)2]R2 = 2- 0  c a0s, it is straight-

forward to show that r l,n1 can be approximated by

rR 2  2 a2 (j(ac 2 Os) (J2 (c1s) 12

rln (w ,k) = - - - (k + nk0  k0 ) 2 _ O )

c R2  J o/Rc)
c (82)

Moreover, making use of Eqs. (72) and (77), it can also be shown that

the effective longitudinal dielectric function is given by

_(0)

1 +-,2 n,n
2r

21 -[ (k + nk0)2c
2 

- 2] (8

Syh [w - (k + nk0)Vb + ilk + nk0JA/Y3m]2

The expression for the electrostatic wave admittance h(qnRo) in Eq. (77)

can be simplified in several limiting cases. These include:

(a) Long wavelength perturbations with q R0<< 1. In this case,
0

h(q nRO ) can be approximated by

h(q nR) = [n(Rc/RO) -
1 .

(b) Large conducting wall radius (i.e., Rc/R 0 -4i). In this case

h(qnR0 ) - [I0(qnR0 )K0 (qn R)1

.i nisiw~,7 ~ -
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(c) Short wavelength perturbations with q2R2 >> 1. In this case,
nO0

h(qnR0) can be approximated by

h(qnR0 ) - qnR0 [l + cothqn(Rc-R0 )]

It is instructive to examine the longitudinal linear dispersion

relation in Eq. (80) for perturbations with long axial wavelength

and A - 0. Keep in mind that A- 0 corresponds to a cold axial distribu-

tion function G(p Z) = 6(pz - PO' Making use of Eq. (83) in the

cold-beam limit, we find that Eq. (80) can be approximated by

2= 2v 2 2 2[w - (k + nk0)V b -3 ((k + nk0 )2c - w 2]n(Rc/R 0 (84)
Yb

which is identical to the dispersion relation obtained by Briggs
1 2

for space-charge waves in a thin annular electron beam.

To further orient the reader and illustrate the interaction

wavenumbers and frequencies characteristic of the free electron

laser instability, we consider a tenuous electron beam with v - 0 and

A - 0, and determine the simultaneous solutions to Eqs. (79) and (80).

Evidently, making use of Eq. (83), the longitudinal dispersion relation

in Eq. (80) reduces to

w= (k + nk)Vb (85)

for v - 0 and A - 0. Solving Eqs. (81) and (85) simultaneously, we

obtain the interaction frequency

0Vb2 {I ± [I - (1 - ,2 22 2 1 2  (86)

where w and w represent the upshifted and downshifted frequencies,

respectively. In the limit of short wiggler wavelength 3atisfying
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2R2 2 + +
k 0R >>Os, the upshifted frequency w and wavenumber (k + nk0 ) can

be approximated by the familiar results

+ - (1 + Bb)YbkOVb , (87)

(k + nk0 )+ - (1 + 0b)Ybk0

obtained in free electron laser theories neglecting geometric effects.

For sufficiently long wiggler wavelength, however, it is evident from

Eq. (86) that geometric effects play a significant role in determining

the characteristic frequency and wavenumber.

Finally, for small but finite wiggler amplitude and beam density,

we make use of Eqs. (72), (82), and (83), to simplify the full dispersion.

relation in Eq. (78). This gives

-J(k + nk 0 - k0 ) 2 _1 O w (k + nk)V b + nkOj 2

22o~ Os (k (1830

-4°c YbR LRJ(as2vc 2 2 osm (88)

Y h R .
b cj

2 ~Os2 fJ (OL0R0/R))2
-4a4 2 VC (k0(k + nk0  k) Os 1J LRm).

cb R c 2'Os)

where use has been made of Eq. (81) to simplify the right-hand side of

Eq. (88). Equation (88) is the form of the nonlinear dispersion

relation used in the numerical studies in Sec. IV.C.

C. Numerical Analysis of the Dispersion Relation

In this section, we summarize the results of a numerical analysis

of the dispersion relation in Eq. (88) for a broad range of system

parameters v, Yb' A/Ybmc, Os/k0Rc and

- ( ) 2  (89)

Yb m o
c

. -
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Defining the normalized Doppler-shifted eigenfrequency by

= [w - (k + nko)Vb]/koc , (90)

the dispersion relation in Eq. (85) can be expressed as

Q2+2(k + nk O)Vb S1 + ~ 2 + 1(k + nko)A + ~ 0
( 2 + 2 kc ) + + 2i - +/

k 0 c y3 mk c
(91)

where

k 2/k 2 2  a2  k2R2

2(k + nk0)/k0 - (k + nk0 ) 2/k0b - 1 - a0 , (92)

S2.2. 62.22 3 2 -2 2
(k + nk0) A /yb

m k0c + (2v/Y h)[2 (k + nko)/k 0 - a 2/k0 R 1] ,
0 b 0b 0 0 Os 0 c

(93)

and

E0 v(LORO/R 
) 2

4Yb\ I2 k~ 2 /Rc J(a 0

A careful examination of Eqs. (91) and (94) shows that the maximum

coupling between the electromagnetic and electrostatic modes occurs at

the value of R /R satisfying
0Oc

J (a 0 R0 /R ) + (aOsR0/Rc)Ji(a0sR0/R c) = 0 , (95)

where the prime (') denotes dJ (x)/dx. Making use of the identity

JI(x) = J0(x) - J(x)/x, Eq. (95) can be expressed in the equivalent

form

10 (a 0 sR0 /Rc) = 0 . (96)

In this context, we find that the maximum growth rate occurs for the value

of R0/Rc given by

R0 /R c = 0/aos , (97)

where a is the tth root of J0(B 0 satisfying 0 < aOs.
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Figure 2 shows a plot of the electrostatic wave admittance h

versus normalized axial wavenumber (k + nk0 )/k0 for Yb - 5, k0R - 5,

and -/Rc - 01l/aol - 0.65. We note from Fig. 2 that the wave admittance

h is proportional to the axial wavenumber (k + nk0 ) for wavenumbers

satisfying (k + nko)/k 0 > 5. For short axial wavelengths with (Rc - %)

x (k + nk0) " b' it is readily shown from Eq. (77) that the wave

admittance h can be approximated by

kRc )k + nk0  (98)h=2Yb ko .(8

For free electron laser applications characterized by axial wavenumber
2

k + nk0 = (1 + Bb)Ybk0, Eq. (98) constitutes an excellent approximation.

Shown in Fig. 3 for e - -0.1, and in Fig. 4 for e - + 0.1,are plots

of (a) normalized growth rate Pi - lmQ and (b) Doppler-shifted real

frequency Or = Reg versus the normalized axial wavenumber (k + nko)/ko,

obtained from Eq. (91) for A - 0 and parameters otherwise identical to

Fig. 2. In Figs. 3(b) and 4(b), air is plotted only for the range of

wavenumber (k + nko)/k 0 corresponding to instability (Qi > 0). Evidently,

from Figs. 3(a) and 4(a), the maximum growth rate and the range of

(k + nk0) corresponding to instability, increase with increasing

value of beam intensity. It is also evident from Figs. 3(a) and

4(a) that the instability occurs at values of axial wavenumber satisfying

(k + nk /k < 2y2 for E <0 , and (k + nk0)/k > 2-y2 for c > 0.
(k + nk0)1k0  b 0 0  b

Moreover, the normalized Doppler-shifted eigenfrequency satisfies

101 << 1, which is consistent with Eq. (14).

The dependence of stability properties on the axial momentum

spread (A) is illustrated in Fig. 5(a) for c - -0.1, and in Fig. 5(b)

for c - + 0.1, where the normalized growth rate fl is plotted versus

:i(k + nk0)/k 0 for V/yb =0.05, several values Of A/YbmC, and parameters

.. .. ... . ... . .'
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otherwise identical to Fig. 2. Several features are noteworthy from

Fig. 5. First, the maximum growth rate decreases as the axial momentum

spread is increased. Evidently, the growth rate is reduced substantially

by introducing a very small amount of momentum spread. From Eq. (91),

this feature represents a general tendency for all radial mode numbers s.

Second, the instability bandwidth, i.e., the range of (k + nk 0 )/k 0

corresponding to instability, increases as AIYbmc is increased. Third,

for a specified value of c, the maximum growth rate occurs at approximately

the same value of axial wavenumber, regardless of the momentum spread

(e.g., at kc + nk0 - 45.3 kc for e = -0.1, and at k + nk0 = 53 kc for

c- 0.1). Finally, we also note that a sign change of the parameter E

shifts the unstable region in (k + nk 0) space. Moreover, for a given

value of A~, the maximum growth rate for E: = -0.1 is slightly larger

than that for c 0.1. In general, we conclude that free electron

laser stability properties exhibit a sensitive dependence on the axial

momentum spread A.
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V. CONCLUSIONS

In this paper, we have formulated a self-consistent theory

of the free electron laser instability for an annular beam propagating

through an undulator magnetic field. The stability analysis has been

carried out within the framework of the Vlasov-Maxwell equations. The

equilibrium properties and basic assumptions were summarized in Sec. II,

and the formal stability analysis for azimuthally symmetric perturbations

(W/ae - 0) was carried out in Sec. III, including the important influence

of finite radial geomety. In Sec. IV, the dispersion relation

was obtained for perturbations about an annular beam equilibrium

in which all electrons have the same value of transverse momentum

and the same value of canonical angular momentum, and a Lorentzian

distribution in axial momentum. One of the most important features of

the analysis is that the maximum growth rate occurs for -/R. =Ot/Os.

Moreover, the growth rate and instability bandwidth can be expressed in

terms of Budker's parameter v, instead of the beam plasma frequency

as in the case of a uniform density beam. In Sec. IV, it was

shown that stability properties exhibit a sensitive dependence on axial

momentum spread A.
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FIGURE CAPTIONS

Fig. 1 Equilibrium configuration and coordinate system.

Fig. 2 Plot of electrostatic wave admittance h versus (k + nk0 )/k0

for 5b , 5 koR - 5, and R0 /Rc - 0O1/-O 0.65.

Fig. 3 Plots of (a) normalized growth rate Al and (b) Doppler-shifted

real frequency Or versus (k + nk0 )/k0 [Eq. (91)] for c - -0.1,

A - 0 and parameters otherwise identical to Fig. 2.

Fig. 4 Plots of (a) normalized growth rate fi and (b) Doppler-shifted

real frequency 0 versus (k + nko)/k0 [Eq. (91)] for c - 0.1,

A - 0, and parameters otherwise identical to Fig. 2.

Fig. 5 Plots of normalized growth rate ai versus (k + nk0 )/k0 [Eq. (91)]

for v/Yb - 0.05, (a) e - -0.1, (b) e - 0.1, several values of

A/ybmc, and parameters otherwise identical to Fig. 2.

- - - -- -

.
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APPENDIX A

ELECTRON TRAJECTORIES IN AN UNDULATOR MAGNETIC FIELD

In this appendix, we determine the particle trajectories

(r', 0', z', p;, p;, pz) that pass through the phase-space point

(r, 0, z. pr '9 e z at time t' =t for an electron moving in the

undulator wiggler field described by [Eqs. (8) and (9)],

0 1
Br 2 0 0 inkoz, (A.1)

0
B = B 0 B zcask 0Z_(A.2)

where A 0 = 2rrk 0 is the wiggler wavelength, Bz = const. is the

amplitude, and BO= const. is the average axial magnetic field.

Kaking use of P0 = P0 = -eB R /2c = const., and Ymc2 =m 2C+c P12/

= const., the exact equations of motion can be expressed as

d -r r (de')2 r(JdO') eBO [ B -z 0]' (A.3)

[2 A 1 k~'
de, e 0 R0 _BR Il -r coskoz , (A.4)

d '2ymc Ir' ZJIi k O

d 2zI eB 0  B O
2k -- R I r, de -sink Z"(.5

dt'2 2ymc 00 /t B 0  0(A)

where v; p'/Ym -dr'/dt', v' - p'IYm = r'dO'/dt'. v' -p'/Ym
r r 0 Z z

0
dz'/dt', and use has been made of the expression for A (r', z') in Eq. (7).
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We now examine solutions to Eqs. (A.3) - (A.5) that pass through

the phase space point (r,O,z~p r*Pp.Pz) at time t' - t, assuming that the

wiggler amplitude Is small with

B I0(kOz _ 1 kR 0 R) B « . (A.6)
BO 2 0 0 1 1 (k 00 ) B0 -

Moreover, in the subsequent analysis we denote the small radial excur-

sions about r' -R 0 by the radial coordinate

P1 r' - R0  (A.7)

To lowest order in BB, we find from Eq. (A.5) that the axial motion

is free streaming with

p

P; p *z (A. 9)

Substituting Eq. (A.4) into Eq. (A.3) and making use of Eq. (A.7),

the radial equation of motion can be expressed as

2_ R 0 B' 1 1 (k0R0  kop')
12ymc1O j (R0+ p0 ) + (k0R0) sk

dt 2  R0+p'c 0, TOs 1 zk0R0

R ; +2 + 1R0 11(k0 R 0+ k pt)
X+1 - +p 1( 0  coskoz' (A.10)

__ k0 10 k0R0) coak z'
D00
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Expanding the right-hand side of Eq. (A.10) for B < B0 and Ip' << R0

and making use of Eq. (A.8), we find to lowest order

d + 2, " 1 wRO cSkz + kO (t' - t) (A.lt)dt ' 2 cO , 0 0Y

where w = eB0/ymc is the relativistic cyclotron frequency. The

radial motion determined from Eq. (A.11) exhibits a strong resonance

whenever k0vz = Wc where v = p z/ym is the axial velocity. In the

present analysis, we assume that the values of ko, Wc, and the

characteristic axial velocity are such that resonance does not occur,

i.e.,

22 W 2 (A.12)
oz c

Integrating Eq. (A.11) subject to the boundary conditions (p',pr) =

(p,pr ) at time t' = t, the radial motion is described by

rP

=P cosw T + sinw T

c ymWc cc

21 B (cock k
+2 R0B 2 -2 2 cos(k z + k0 V T) (A.13)

c kz

cosk 0zcosw T + Oz sink zsinwcT),

r0 c c0

p; "PrCOSwcT -ymwcpsinwCT

2

+ 1 Ym RO 2 c [-kovzsin(koz + kovZT) (A.14)2 B 0 W2 k'2 v2 0 0
c - oz

+ (w ccosk zsinw c - kOvzsinkozcOsWC ) ],

cA0

.. . . - ,- -
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where vz - pz/ym and T = t' - t. Note from Eq. (A.13) that the radial

excursions about r = R0 remain small amplitude as long as

2
W c .L (A.15)

B 2 2 R'c -k6z

where 2a is the characteristic radial thickness of the annular electron

beam. Finally, for the O-motion, we expand Eq. (A.4) for B < B0

and Ip'I c< %. To lowest order, this gives

do' P 1 i (A.16)dt- ' M W c R - T 'c i0- cosk0z'

Substituting Eq. (A.13) into Eq. (A.16), we obtain

dO' Pr

-' _ WcCOSW"T + cs sinwcT
dt" R c c ymO c

2l B __c_ (1[
2B 2 22 cosk 0zcos

c T (A.17)
2O 0W2 -k2v 2 (c 0 c

c 0Oz
22

k0v zsink0 zsinw cT -kvz cos(kk0vz + k0VzT)

c O

In addition, the azimuthal momentum is readily determined from p

ymr'de'/dt' -ymwcP' - (YmWcR0/2)(B/B)cosk0 z', where p' and z' are

defined in Eqs. (A.13) and (A.8), respectively.

We conclude this appendix by noting that Eq. (A.5) can be used

to calculate corrections to the lowest-order z-motion in Eqs. (A.8) and

(A.9). Expanding the right-hand side of Eq. (A.5) for I0'I << R0

and B << B0 , and making use of Eq. (A.16) gives

d ' - - 1 w
dt' Pz 2 wc(k0R0)(ymwcR0 ) Bi

(A.18)

( - osk)zi)sinko ,
R 2 To 0 0k'
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where pi = ymdz'/dt'. Substituting the expressions for z' [Eq. (A.8)]
z

and p' [Eq. (A.13)] into the right-hand side of Eq. (A.18) and integrating

with respect to t', we find

P z 4,C (k0R0 )(ymw R0) B

0

(,. 2
IIp lB cosk 0 z 1
R0 2 B0  2 22 2 2 2

- kVz z k0Vz

x (wc(cos(koz + k0vz2 )coswc- cosk 0z)

+ k0vzsin(k 0z + k0v z )sin (A.19)

mW R 2 B0  2 22 01)W 2 2 2
ecQ- k0V z - k 0Vz

X (.c(Sin(koz + k0Vzr)COScT - sink0z)

- k0vz cos(k0z + k0Vz)sinw-r)

8 B0 -2 _ k2 2 [cos(2k0z + 2k0vzt) - cos2k0 z]'
B c - kOV2

where T - - t, vz  /ym, and p; - Pz at time t' = t.

Note from Eq. (A.19) that the oscillatory corrections to pZ = Pz

[Eq. (A.9)] are small whenever the wiggler amplitude B is sufficiently

small in comparison with B0. Expressing Eq. (A.19) as p; P. + 6p',

the inequality 16p;j << JpZ1 is hardest to satisfy in the strong
2 2 2  2 >> k2~,w dfomagnetic field limit where wc >> 22z" Forw 22 we find from

Eq. (A.19) that f6p;I << 1pz provided the inequalities
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law R

and 1 i2  (wCR) 1 A.
4 2 (k0R0), v, (A.21
B0  z

are satisfied. In obtaining Eq. (A.20), we have estimated the

characteristic value of p by p % a, where 2a is the thickness of

the annular electron beam. The inequalities in Eqs. (A.20) and

(A.21) are straightforward to satisfy for experimental parameters

of interest. Note also that p, = P whenever-Eqs. (A.20) and (A.21)
z

are satisfied, and the axial momentum p is a good (albeit approximate)

invariant.
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