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THEORY OF FREE ELECTRON LASER INSTABILITY IN A RELATIVISTIC
ANNULAR ELECTRON BEAM
Han S. Uhm
Naval Surface Weapons Center
White Oak, Silver Spring, Md. 20910
Ronald C. Davidson
Plasma Fusion Center
Massachusetts Institute of Technology
Cambridge, Mass. 02139

and

Science Applications Inc.
Boulder, Colorado 80302

A self-consistent theory of the free electron laser instability is
developed for a hollow electron beam propagating through an undulator
(multiple mirror) magnetic field. The stability analysis is carried
out within the framework of the linearized Vlasov-Maxwell equations.

It is assumed that the beam 1s thim, with radial thickness much smaller
than the mean beam radius, and that v/yb << 1, where v is Budker's
parameter and ybmc2 is the characteristic energy of the electron beam.
The dispersion relation describing the free electron laser instability
in a hollow relativistic electron beam is obtained for an equilibrium
distribution function in which all electrons have same value of trans-
verse energy and the same value of canonical angular momentum, and a
Lorentian distribution in axial momentum. It is shown that the influence
of finite radial geometry plays a critical role in determining detailed
stability behavior. Moreover, the growth rate and bandwidth of the
instability can be expressed in terms of Budker's parameter v, instead
of the plasma frequency as in the case of a uniform density beam.

Furthermore, it is found that free electron laser stability properties

exhibit a sensitive dependence on axial momentum spread.
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I. INTRODUCTION

In recent years, there has been a growing interest in the free

1-7

electron laser instability in connection with intense radiation

generation.s_lo For the most part, previous theoretical analyses of
this instability have been carried out for an electron beam with
uniform density, neglecting the influence of finite radial geometry.
Although this is a reasonable first approach to the problem, for
detailed application to present experiments it is necessary to inves-
% tigate the important influence of finite radial geometry on stability

properties. In this regard, in the present analysis we investigate

free electron laser stability properties for an annular electron

beam propagating through an undulator (multiple mirror) wiggler field,
including the full influence of finite radial geometry.
Equilibrium and stability properties are calculated for the choice

of equilibrium beam distribution function [Eq. (19)]

0 2
£,(H, P, p,) = K§(Ry - P)F(P)G(p ),

where H is the energy, Pe is the canonical angular momentum, p, =

2 2,1/2
0% + p2

is the transverse momentum, P, is the axial momentum,
and K is a normalization constant. The present analysis is carried
out within the framework of the linearized Vlasov-Maxwell equations,
assuming that the beam thickness is much less than the mean beam
radius RO’ and that v/yb << 1, where v is Budker's parameter.

It is also assumed that the electron beam propagates through an
undulator (multiple mirror) magnetic field and that the

amplitude B of the wiggler field is small in comparison with the average

field Bo.

2 Pt s S ke 6 e it PR i



The basic assumptions and equilibrium properties are discussed
in Sec. II.. The formal stability analysis for azimuthally symmetric
perturbations (3/36 = 0) is carried out in Sec. III for general
transverse and longitudinal distribution functions, F(pf) and G(pz).
The matrix eigenvalue equation (65), when combined with Eq. (67),
constitutes one of the main results of this paper and can be used to
investigate stability properties for a broad range of distribution
functions corresponding to a thin annular electron beam.

In Sec. IV, the dispersion relation for the free electron laser
instability is obtained for the specific choice of equilibrium
distribution function in which all electrons have the same value of

transverse momentum, and a Lorentzian distribution in axial momentum

(Eq. (69)]

G(p,) = & ! °

2 2
(Pz - Pb) + A

w

Here, A is the characteristic axial momentum spread about the mean
value pb -'ybmvb. One of the most important consequences of finite
radial geometry is the fact that the maximum instability growth rate

occurs for a value of beam radius R0 satisfying [Eq. (97)]
RO/Rc = B02/°0s i

where Rc is the radius of outer conducting wall, 801 is the 2th root

of J ) = 0, and G0g is the sth root of Jl(aos) = (0. Moreover,

0 6og
the growth rate and instability bandwidth can be expressed in terms
of Budker's parameter v and the amplitude of the wiggler field B. It

is found that the maximum growth rate increases with increasing

beam intensity (v).
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The dependence of stability properties on the axial momentum
spread (A) is also investigated in Sec. IV. It is shown that the
maximum growth rate of the instability decreases as the axial momen-
tum spread A is increased. However, the instability bandwidth increases

with increasing A. We conclude that free electron laser stability

properties exhibit a sensitive dependence on axial momentum spread A.




II. EQUILIBRIUM CONFIGURATION AND BASIC ASSUMPTIONS

A. Basic Assumptions

The present analysis assumes an intense annular electron beam
with characteristic thickness 2a and mean radius Ro propagating in
the z-direction (Fig. 1). We introduce a cylindrical polar coor-
dinate system (r,0,z) with z-axis along the axis of symmetry; r is
the radial distance from the axis of symmetry, and 6 is the polar
angle in a plane perpendicular to the z-axis. To make the analysis
tractable, the following simplifying assumptions are made.

(a) The thickness of the annular electron beam is much smaller

than its mean radius, i.e.,
a/R0 << 1.

(b) It is assumed that the beam density and current are suffi-
ciently small that equilibrium space charge effects are negligibly
small, and the equilibrium self magnetic field can be neglected in
comparison with the applied magnetic field Eo. That is, we approxi-

mate:

0.0
Esogs, (2)

where 22 and E: are the equilibrium electric and magnetic self fields,

respectively.

(c) Consistent with Assumption (b), it is assumed that

\’,Yb <«< 1,

where mecz is the characteristic electron energy, and v = Nbezlnc2
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is Budker's parameter. Here, -e is the electron charge, ¢ is the
speed of light in vacuo, m is the electron rest mass, and Nb =

2w f;odr T ng (r,z) is the number of electrons per unit axial length.
For a thin annular electron beam with radial thickness 2a and constant

density ny» the inequality in Eq. (3) can be expressed in the equivalent

form

& R2/c2

b o’c

<< Ro/a, (4)

where m: = 4nn0e2/Y is the relativistic plasma frequency-squared.

b
(d) It is assumed that the electron beam propagates through an
undulator (multiple mirror) magnetic field. The azimuthal component

of vector potential Ag(r,z) for the equilibrium magnetic field can

be expressed as
0 1 2 R-1 :
Ae(r,z) 3 Bo (r - ko RFL Il(kor)coskoz), (5)

wvhere Ao = ZTr/k0 is the periodicity length, Il(x) is the modified
Bessel function of the first kind of order unity, and R = Boz(r = 0,

k.z = iﬂ)/Boz(r = 0, k.2 = 0) is the mirror ratio. Here, the equilibrium

0 0

magnetic field components are given by Bor = -aAg/Bz and B, = r_l(a/ar)(rAg).

0Oz

(e) We further assume that
koa << 1 (6)

where a is the half-thickness of the annular beam. Defining the charac-

teristic wiggler amplitude by

r-1 I1(KgRg)
R+1 k.R ’

B
B " 2

0 00




the equilibrium vector potential {Eq. (5)] can be expressed in the

equivalent form

~ R, I (k.r)
8 %o
BT Il(ko R coskyz |- 1O

0 1
Ae(r,z) =3 Bor R "

; . From Eq. (7), the components of the equilibrium magnetic field
0

B = BOrﬁ: + BOzgz are given by
BOI(r,z) = - -g—z Ao(r,z)
1 1 (kor)
== koROB -i-—?-]?——)- sink z (8)
0 Ry
% 2 - Btsinkoz,
where
o) 1 'y R l
B, = 7 koRoB = By re1 I3 (gRp)»
and
Boz(r,z) = -1~g— [rAg(r.Z)]
1 (k r)
1 0
By - 3 BkgR, 1 L (koRe) coskyz ®
sz
x Bo 1 - -% coskoz ’
where
1 (k R )
A 1 R-1
B, = 3 koRoB a (ko o) By &e1 Lo(koRp)-

Note from Eq. (9) that Bo is equal to the average axial magnetic field
(averaged over the periodicity length >‘0 = Zﬂ/ko). Note also that the
approximate expressions for BOr and BOz given in Eqs. (8) and (9) are
valid over the radial extent of the beam (R0 ~a<rc«< Ro + a) within

the context of the assumption that koa << 1 [Eq. (6)]

e
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(f) From Eq. (9), there is an oscillatory (wiggler) contribution
to the axial magnetic field proportional to - (ﬁz/Bo) coskoz. Throughout
the present analysis, it is assumed that the amplitude of the wiggler

field is small, i.e.,

- -4

Z <« . 10
5, 1 (10)
The inequality in Eq. (10) assures that the axial modulation of the
equilibrium beam envelope is small, Equally important,
Eqs. (1) and (10) assure that the axial momentum p, = Yymv_, where

v = @+ il

» 1s a good approximate single-particle invariant
to lowest order. In Appendix A, we present a detailed investigation
of the electron trajectories in the equilibrium fields described
by Eqs. (2), (8), and (9), assuming that the axial motion is non-
resonant with

K22 4wl (11)

Here v, = pz/ym is the axial velocity of a typical beam electron, and

w, = eBO/ymc is the relativistic electron cyclotron frequency.

For example, in the strong-magnetic-field limit (mi >> kgv:), it is

shown in Appendix A that pz = const. whenever the inequalities

[Eqs. (A.20) and (A.21)]

~ R
la B wc 0
> 5 (kRO —— <<1, (12)
2R0 Bo 00( vz>
and
~2 w R
1B
3 ~2 (kRp) 30)« 1, (13
Bo z

are satisfied. From Egqs. (1) and (10), the inequalities in Eqs. (12)
and (13) are straightforward to satisfy in the parameter regimes

of experimental interest.

[P RS-
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(g) Finally, in the stability analysis (Sec. III), it is assumed

that the waves are close to resonance with
lw - (k + nk )V | << koVp» @ (14)

where w is the complex oscillation frequency, k + nko is the excited
wavenumber, and Vb = fd3pvzfg is the mean axial velocity of the
electron beam.

In summary, the present equilibrium and stability analysis is
carried out within the context of the inequalities in Eqs. (1), (2),

(4), (6), and (10) - (14). Moreover, the vector potential for the

equilibrium magnetic field is approximated by Eq. (7).

B. General Equilibrium Properties

Within the context of Assumptions (b), (e), and (f) in Sec. II.A,
the equilibrium (3 /3t = 0) beam distribution fg(r,z,g) is generally a

function of the single-particle invariantsll corresponding to particle

energy,
2

H= (m A+ czgz)ll2 , (15)
canonical angular momentum,

P = rip_ - E-A.o(r z)] (16)

8 8 c e

and axial momentum

P2 a”n

0
where Ae(r,z) is defined in Eq. (7), and R" (pr,pe,pz) is the

mechanical momentum. In Eqs. (15) - (17), we have neglected
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equilibrium self-field effects and assumed that the wiggler
amplitude B is sufficiently small [Eqs. (10), (12), and (13)] that
P, is an approximate invariant. In this regard, we also conclude

that the transverse momentum

2
py = (827 - m?? - pH1/2 (18)

is also an approximate invariant. Here, the particle velocity M is

RZ/mZCZ 1/2

related to the momentum R by v = R/Ym where y = H/mc2 = (1+
is the relativistic mass factor.
In the present analysis, we consider the general class of annular

electron beam equilibria described by11

0 2
£, (r,z,p) = K&(P, - Po)F(py)G(p,) (19)
where K is a positive normalization constant, P0 = const. is defined by

eBo
c

Py = -

[T

2
Ry > (20)

and the transverse and longitudinal momentum distribution functions

are normalized according to

IO dp? F(pd) = 1, J dp, G(p,) = 1. (21)

Defining = cpl/eBO, and carrying out some straightforward
algebraic manipulation,11 the electron distribution function in Eq. (19) |
can be expressed in the equivalent form

N ®[(r-r.)(r,-r)]
0 b 2 172
f (r,z’ ) = F(P )G(P )
b : 2T [(rz—ri)(rg-rz)]

1/2

(22)

x [6Gh - 8 + 8G3 -1 + 4],




e

.
2
A
A

11

where 8 = sin-l(pe/pl), and (for Sz/BO << 1) the quantities r, r, and
»

~

¢0 can be approximated by

2 2 1/2
Ro r r
l(z) - l TJ - i [ ]
@.- cosk. ) (1 - coskoz) (1 - BO coskoz)
(23)
2rL
r,(z) = r.(2) + (24)
2 1 (1 - B cosk z)
and 2(, B 2
r'{l1 - =— cosk,z) -
. - ( B, “°*%0 ) - %
¢0 = gin 7rr . e (25)
L
In Eq. (22), €(x) is the Heaviside step function defined by
1, x>0,
o(x) = (26)
0, x<0,
and Nb is the number of electrons per unit axial length defined by
Rc 27 o 0
Np = 2= f drx f d3 jn dp,p, J dpz fb(r,z,g) . @n”n
0 0 0 -=

Here, Rc is the radius of the grounded cylindrical conducting wall.
Several equilibrium examples of the general form given by Eq. (22)

have been discussed previocusly in the literat:ure11 in the absence of

wiggler field (BE=0).
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III. LINEARIZED VLASOV-MAXWELL EQUATIONS

A. General Formulation

In this section, we develop the general formalism to investigate

2

stability properties for perturbations about the class of beam equilibria

described by Eqs. (19) and (22). Expressing the beam distribution
function as fb(E'R't) = fg + 5fb(¥’2’t)' and neglecting equilibrium
self-field effects [Sec. II.A], the linearized Vlasov equation

can be expressed as

2 2 m"ko 2
‘a—t—:-!'x'-a—x--e S .ﬁ Gfb(;\s,g,t)
4
(28)
v x ¥ x GQ
- of-vep - L3 TR 2 DA L
_e(V6¢ c 5t 5é+ - ) a2 fb(r,z,g) R
where v = E/ym is the particle velocity, the equilibrium magnetic
0 "

field components B = BOrEr + BOzéz are given in Eqs. (8) and (9),
and use has been made of the Lorentz gauge to express the perturbed
magnetic field as Gk(k’t) = X x 6@(&,:), and the perturbed electric
field as GE(x,t) = - V5¢(§,t) - (1/c)(3/8t)6e(§,t), where
¥ © SAGx,t) + (1/c)(3/3at)é4(x,t) = 0. The corresponding linearized
Maxwell equations that determine the evolution of A and 6¢ self-
consistently are given by

Lol ). dme (3 (29)

2.2 A c Py SE

¢ at
and

1 32 2 3

S5 - V" )8¢ = ~4ne | d”p Sf, , (30)

2 2 b
¢ at

where the perturbed current -efd3p v Gfb and perturbed charge density
-efd3p6£b are calculated from Eq. (28). 1In the present analysis, we

assume azimuthally symmetric perturbations with

A A T

P

———
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3/3e =0, (31)

but 3/3z and 3/3r generally non-zero. The components of the perturbed

magnetic and electric fields can then be expressed as

GBr - -3z 6Ae ’
3 3
GBe = 32 6Ar ~ 3T GAz s (32)
13
an “Toar (rGAe) ’
and
9 13
6E. = - 3r %% ~Cac 4, »
13
GEe ~ -3t GAG R (33)
9 . 13
SE; = - 3z ¢ ¢ at 6Az ’

and the Lorentz gauge condition § - 6A + (1/c)3 6¢/3t = O becomes

1a_ 3 13 .
T 5T (xsA) + 5z 0A, + T 5T %¢ 0. (34)

In the subsequent analysis, we assume that all perturbation

quantities have time and spatial variations of the form
§y(r,z,t) = 6{(r,z)exp(-iut) ,

where Imw > 0, and Gﬁa(r,z) is the amplitude of the perturbation.

Using the method of characteristics, the linearized Vlasov equation

(28) can be integrated to give
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t
Gfb(ﬁ’gtt) = e f_¢ dt'[‘V'6¢(¥',t') - %g_t"— 6&(%”:')

(35)

; A e %%‘»t')] 2
c 82'

E where dﬁ'/dt' = x' and dg'/dt' = -ex' x ko(x')/c, and the particle

0, v v
fb(§ 98) ’

trajectories (x',p') in the equilibrium field configuration satisfy
the "initial" conditions ﬁ'(t' =t) = X and R'(t' =t) =p (Appendix A).
We now simplify the right-hand side of Eq. (35). Without loss

of generality, the perturbation amplitudes are expanded according to
S¢(r,2z) = Z¢n(r)exp[i(k+nko)z] . (36)
n

etc. The particle orbits (E',R') are calculated in detail in

Appendix A for the case of small wiggler amplitude (ﬁz/B0 << 1)
assuming that the axial and cyclotron motions are far removed from

cyclotron resonance [Eq. (11)], i.e.,

kv

2 2
0z

fo o,

[«

where v, = pzlym is the axial velocity and w; = eBO/ymc is the
relativistic cyclotron frequency. To lowest order, the

axial motion is free-streaming [Eq. (A.8)]
z' =z +~E§ (t' - t) 37)
ym ’

and the radial orbit [Eq. (A.13)) and azimuthal orbit [Eq. (A.17)]
contain oscillatory contributions proportional to coswct, sinwct,

% sin(koz + k0v21) and cos(koz + kOVzT), vhere t = t' - t. TFor present
purposes, in the t' - integration on the right-hand side of Eq. (35),

we retain terms proportional to

[ = (k + nkp)p_/yal ™,

en - eiatin o s ekt
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and assume that the value of [w - (k + nko)pz/ym] is well removed

from resonance with the cyclotron motion and the beam motion [Eq. (14)], i.e.,
|m - (k + nko)pz/ym| «<uw, , kovb .

Within the context of Eqs. (1) and (14), Eq. (35) can be approximated

by

- 0 .1 R
Sfb(;\g,g) = -e Lmdtexp(-iwt) 2[ymim (5¢ -3 x. . 6@)

(38)
3 1 3 2y 1 3 .-
- — -— — '."— A —— —— A-— "—
pz(az 66 - ¢ X 9z GQ) 2 +(az S¢ c X oz GA)
apy
0
.be
]
apz
where y = H/mc2 = (1 + Rzlmzcz)llz. Moreover, within the context of

Eq. (14), only those contributions to vy

]
and Vo proportional to sin(koz + kovzr)v
and cos(koz + kovz1) are retained, i.e., on the right-hand side of

Eq. (38), we retain contributions to v; and vé of the form

- 2
v' = -1 B Ye k.v_sin(k.z + k_v_t) (39)
r™ "2 %3, 7 _ 22 %'t lo? ¥ Kove T
Ye 0"z
AT R .
v__l. .ﬁ— < 0z N
vi=3 Ry B 2 57 cos (kgz + kyv 1) , (40)

c kovz ¢

where v, " pz/ym, w, = eBo/ymc, and use has been made of Eqs. (A.13)
and (A.17). Finally, since the oscillatory modulation of the
radial orbit is small-amplitude [Eq. (A.13)], we approximate
r' = r in the arguments of the perturbation amplitudes on the right-
hand side of Eq. (38), i.e., 5@(:',:') = 5;(:,:'), 5Re(t'.:') = aAe(t;:').
etc.

Substituting Eqs. (36), (37), (39), and (40) on the right-hand
side of Eq. (38), and msking use of the various approximations

enumerated above, we find after some straightforward algebra that
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GEb(E’R) can be expressed as

- exp[i(k + nko)z]
Gfb(ﬁ’a) - e E w~ (k + nk

v
An(g.w.k)(tbn - c—z Az’n)

O)vz
_ B “ Kvs A . (p,w,k)A + 2 (p,w,k)A
4c B, 2 .22 w n-1'R2@2 %% 51 T Ane1'Re9 X% a1
0w - k.v ¢
c 0z
iR 3 “i
+ 4c 3; 2 2.2 kOvz[An+l(g’m’k)Ar,n+1 - An-l(g’w’k)Ar.n—l] ’
mc - kovz
(41)
where the function An.(g,w,k) is defined by
afg 2y
= - ' —_— ] 4
An.(g,w,k) 2[yow - (k + n ko)pz] 3p2 + (k+n ko) 3Pz (42)
1

Evidently, An,(g,w,k) is an even function of Ve = pr/Ym' Therefore,

it follows from Eq. (41) that | 1
-e [ &3 v_ 8E (x,p) = O (43)
P r bR *

That is, the perturbed radial current is equal to zero. The radial

component of Eq. (29) then gives

2
3 13 - 2 _ -
A ) - Hak)®A |+ % A ,=0, (44)

for the perturbation amplitude Ar n(r). Without loss of generality,

for the TE mode polarization, we assume

Ar,n(r) =0, (45) o

in the subsequent analysis. The Lorentz gauge condition in Eq. (34)

then gives the simple relation between Az n(r) and ¢n(r)

(k + nk)A, ((r) = 2 4, (x) . (46)

Making use of Eqs. (45) and (46), Gfb(k’g) can then be expressed as
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exp[i(k + nk )z] v, "
&f pR) = e E w= (k + nk )v {xn[l "t (k+ nko)c) )
2 2 2 47
_Sop Y o' (A .A +2 A )
be Bo 2 _ k2 2 w, n-1"8,n-1 nt+lo,n+l | °
Ye 0'z

B. Eigenvalue Equations

The linearized Maxwell equations are obtained in this section
within the context of Eqs. (1) and (14). For convenience in the

subsequent analysis, we define the dimensionless potentials as

Vb
b () = 25 [¢ - 24 <r)] , (48)
Illc
and
a e
Ah(r) - ;:5 Ae'n(r) . (49)

Moreover, we also introduce the dimensionless parameters

2 2
""'—Ob_z_z’ 0
= ko'
eB
A= Roz ’ (1)
4ybmc

and the effective susceptibility

h|
R A |( ’w’k)(Y /Y)

xéj).(m,k) - hyel f € rdr f d3p n' R b s (52)
0 0 [w- (k + nko)v:]

where An,(g,m,k) is defined in Eq. (42), and w, = eBo/ybmc in Eq. (50).
In Eq. (51),yb is the relativistic mass factor defined by yﬁ =
(1 - V:/cz)'l. Noting that the azimuthal velocity at t" = t is given

by [Eq. (A.17)]

Ve = -(ZcYb/y)Acoskoz . (53)

DERRTRICURTP S TN ¥ SR OWESINE MRTIOS Y. PP
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and making use of Eqs. (42) - (52), the Maxwell equations (29) and (30)

can be expressed in the approximate form,

2 §(r - R,)
l1a 93 _w _ - .. 0 (0) -
{r 57 Tar ¥ 2 - (k+ k) }’n“’ 7 {-xn,n%
c Y R
b0
1 (1 ; -
+ Aa[xn,n-lAn-l + Xn’n+1An+1 R (54)
2 - §(r - R,)
13 3 _1 .o _ 2 L 0
{r ar Tar - 2t 7 (ktnkytiky) }An+1(r) Ry
r c
. (1)‘ - (2) 2 (2) -
{xn,n¢n Aa[xn,n-lAn-l + xn,n+1An+1]} , (55)
2 - 8(r - R.)
13 3 _1 ,w _ _ 2 - - 0
{r 57 Tar - 3t 3~ (k+nky - ky }An_l(r) —— A
r [ 0
B ¢S L ) - (2) -
{xn,n¢n Aa xn,n-lAn--l + xn,n+1An+1] }’ (56)

for a thin annular beam satisfying Eq. (1).
Since the right-hand side of Eq. (54) vanishes except at r = RO’

Eq. (54) can be expressed as

(

for r ¢ Ry. In Eq. (57), the parameter p: is defined by

"=
IQJ

3 24\~
rip e i@ =0, (57)

@

Tr

pi = u2re? - (k4 akp? . (58)

The solution to Eq. (54) is given by

. AJ . (p.r) + BN.(p r) , R, <r <R_,
On(t) - 0*"n 0'n 0 c (59)
cJo(pnr) , 0 <r < Ro .

where Jl(x) and Ng(x) are Bessel functions of the first and second
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kind, respectively, of order %, and Rc is the radius of the conducting
wall (Fig. 1). 1In Eq. (59), the constants A, B, and C are determined
by the boundary conditions that the effective potential Sn(r) vanishes
atr =R, and that an(r) is continuous at r = R,. Multiplying

Eq. (54) by r and integrating from Ro(l-s) to Ro(l+e) with e + 0,

we obtain after some straightforward algebra,

To,n(@sk)é, (Ry) = ;:—z g ) *halxg) A @) + Xayattne )11
b (60)
where the dielectric function P ', (w,k) is defined«by
|(P R )/J (p RO)
Tt 0@ = TG R B R - T (5 EON R ) (61)
and use has been made of the Wronskian identity,
Jn.(x)dNn.(x)/dx - Nn.(x)dJn,(x)/dx = 2/%x . (62)

Similarly, making use of Eqs. ( 55) and (56), we obtain

1, @ 3 2
Py, u @ 0R 4 Re) = F8 0 8 Ry - Aali’ A R) + 7 A (R)T)

(63)
and |
Iy a1 (@A 3 (R = 7 {Xm" n(Rp) - Aa[xl'(lzt)l a1 Ry + xt(121)1+16n+1(R0)]}
(64)

2
nt+l

defined in Eq. (58). From Eqs. (60), (63), and (64), we obtain the

2,2 2
In Eq. (63), rl,n+1 is a function of p = ¢/e” - (k + nk, + ko)

matrix equation relating £h+1<RO)' A -1(Rg), and an(RO)‘

2 (2) 2 (2) 1) p
N Py,aer 2 A axp,ne1 * 2 A *Xn,n-1 ° 2 Axg,n A1 (Rg)
2 (2) 2 (2) 2. i
%'A p,n+l * T1,m-1 Y 2 A oXn,n-1 ° 2 AXp,n A-1(Rg) [= O, :
- u Aoy D) _ ___ Ay o s LI (1)) -
- Xa mb1’ Xa,n-1°  ‘o,n 272 Xn,n 0, (R))/ (65)

I3
E:
iié~
Ty el e § ey
’, i
o
|
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which is similar in general form to the matrix equation obtainec by
Davidson et al.1 for the free electron laser instability in a uniform
density electron beam. The dispersion relation can be obtained
from the condition that the determinant of the matrix in Eq. (65)
vanish.

Evidently, from Eq. (65), an explicit evaluation of the susceptibility
x(j). defined in Eq. (52) is required for a detailed stability analysis.

n,n

Substituting Eqs. (22) and (42) into Eq. (52) gives

Xé{l’ - 2onc’ Jo 2} Jj, dpz{z[ym“ - (k+n'kyp, ] zfi G
* (66)

+ (k + n'k

o'F

3¢ } (Yb/Y)j
3p, {0~ (k + nko)vz] ’

where v = Nbezlmcz is Budker's parameter defined in Eq. (3), and use

has been made of the identity

dr r

IRC 6[(r, - r)(r - 1))]
0 [e? - Ha? - o)

=X
/72 2 °

In obtaining Eq. (66), the p, derivatives of 0[(1'2 -r)(r - tl)]

x (G2 - Dk - /2

and 6(8 - 60) + 6(3 -7+ 60) have

been neglected, since the corresponding corrections are of order

|w - (k + nko)V’blllwc + koVbI << 1, or smaller. Equation (66) can ;

be further simplified by integrating by parts and making use of
F(0) = F(») = G(=) = G(-=) = 0 .

Within the context of Eqs. (3) and (14), we obtain

' 2 ~ b
xii’z‘, - %;-’ w? = (k + nkg) (k + n'kpde 1[2 ap? L‘ dpz(T) |

F(pf)c(pz) ]
x 3 s (67) i
[w- (k + nko)pzlvml
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after some straightforward algebra. Equations (65) and (67) describe

stability behavior for general choice of equilibrium distribution function

TTN T T T A T

F(pi)c(pz), and can be used to investigate stability properties for a

broad range of system parameters.
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IV. STABILITY PROPERTIES

A. General Dispersion Relation

As an example, in this section we investigate free electron laser
stability properties for an electron beam with perpendicular distribu-

tion function,

F(p2) = 8(p2 - p0), (68)

where p;g = const. is related to the radial thickness of the beam.11

Moreover, in order to investigate the influence of axial momentum
spread on the free electron laser instability, we assume an axial

momentum distribution function of the form

A 1
G(p,) =~ ’ (69)
z n (pz _ pb)Z + A2

where A is the characteristic momentum spread about the mean
momen tum pb= ymeb. We further assume that the momentum spread A is

small in comparison with the directed momentum Py i.e.,
4 << pb. (70)

For small values of § P,= P, - Py consistent with Eq. (70), we can

z

approximate the term pzlym in Eq. (67) by

p p §p
et (1)
Y Yb me

2,2 2.1/2

where Yp ™ 1+ pb/m c
Substituting Eqs. (68) - (71) into Eq. (67), we obtain

L@ 2y [w? = (k + nkp) (k + n'kg)e? ]

n' n,n' 3 (72)
n, ’ b [w~ (k +nk,)V. + 1]k + nk,|4a/yLm]
0°'b 0 b

2 s

o e
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ii ‘ within the context of Eq. (14). Equation (65) can be simplified
considerably by making use of Eq. (72). The condition for a non-
trivial solution to Eq. (65) is that the determinant of the

matrix vanish. This gives the general dispersion relation

=x_ (0
r1,n+1r1,n--l[r0,n + 2Y2 xn,n]
b (73)
- T 2 (0) ()
2 ah [rl,n+lxn,n-1 + rl,n—lxn,n+1]r0,n ’

which can be used to determine the complex eigenfrequency w in terms of

k + nko, ko, v, 4, and A. What is most remarkable is that Eq. (73)

1

is very similar in general form to the result obtained by Davidson et al.
for a uniform density electron beam.

Consistent with Eqs. (3) and (14), the eigenfrequency w can be
approximated by w = (k + nko)Vb. We therefore approximate P, and

Pn+l in Eq. (58) by

Py, = 1q, = ik + nko)/yb R (74)
and

. a2 2,1/2
Pre1 iqn+1 i[qn + ZkO(k + nko) + kO] . (75)

Making use of Eqs. (74) and (75), the dielectric functions Iy ol
’

and ro can be expressed as
"
] 1 21094 Red/ T (g Re) a6
Latl 2 15(q 4 RIK (9,5Re) = 13094 RyI% (g 4q R
and

I.(q R)/I.(q_R,)
- X -2 0 ne 0 'm0
To,n = 2 M4Ro) = 2 T (@ RIK; (g R)) - Tg(q KK (e Ry * 77

for k + nko > 0. In Eqs. (76) and (77), Iz(x) and Kl(x) are modified

Bessel functions of the first and second kind, respectively, of order %,

ot sl i 27 ot B st Al
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and h(ano) is the effective electrostatic wave admittance. Note from

Egqs. (76) and (77) that the dielectric functions rC,n and rl’n+1

are generally nonzero monotonic increasing functions of anO and

qn+1RO’ respectively. In this regard, for small wiggler amplitude
(A << 1), we investigate free electron laser stability properties

for w and k + nko near the simultaneous zeroes of the transverse

dispersion relation T = 0, and the longitudinal dispersion

1l,n-1
2) (0) _ o

relation Fo’n + (u/ZYb xn,n

The general dispersion relation in

Eq. (73) can then be approximated by the simplified form

a0y _ _=n 2 (0)
I‘l,n—l[ro,n + 2Y2 xn,n] 2 oh xn.n-lro,n ‘ (78)
b

Equation (78) is the form of the dispersion relation used in the

remainder of Sec. IV.

B. Linear Eigenmode Properties

For very small wiggler amplitude (A > 0), or for very low beam
density (v + 0), it is evident from Eq. (78) that the linear dispersion

relation for transverse electromagnetic perturbations is given by

Fp pp (k) =0, (79)

and the linear dispersion relation for longitudinal perturbations is

given by
o 0
ro’n(m,k) + 272 xn,n 0. (80)
b

Here, we assume k + nko > 0, and the eigenfrequency w satisfies

w= (k + nkO)Vb for a low-density beam. Equation (79) can be expressed

in the eaquivalent form
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2
2 2 a
3 Y k4, - k)E D8, (81)
-_ ) 0o~ ko 2
f.- ¢ Re

where 89g is the s'th root of Jl(uos) = 0, and use has been made of
) the definition in Eq. (61). Equation (81) is the familiar vacuum
| waveguide electromagnetic dispersion relation. For future reference,
Taylor expanding the electromagnetic dieleqttic function rl,n—l
2

in Eq. (61) about [m2/c2 - (k + nko - ko)zlki = ay.» it is straight-

forward to show that T .1 can be approximated by

1,n
2 2 2
R 2 a J,(a, )
2 Os 2'°0s
r _(w,k)=--—c-[w——(k+nk-k) - ][ ]
1,n-1 4 c2 0 0 Ri Jl(aosROIRc)
(82)

Moreover, making use of Eqs. (72) and (77), it can also be shown that

the effective longitudinal dielectric function is given by

0
T n,n
1+ 2T
ZYb O,n 83
2 [(k + nko)zc2 - wZ]
= 1 - »

Y:h [w- (k + nko)Vb + ik + nkolA/Y:m]z

The expression for the electrostatic wave admittance h(anO) in Eq. (77)

can be simplified in several limiting cases. These include:

(a) Long wavelength perturbations with q2R3<< 1. 1In this case,

h(ano) can be approximated by
h(q Ry) = [2a(R /RDI™T .

(b) Large conducting wall radius (i.e., Rc/RO'*“ﬂ). In this case

h(a Ry) = [To(a Rp)Ko(a R ™" .
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(c) Short wavelength perturbations with q

2
n

2
R0>>1. In this case,

h(anO) can be approximated by
h(anO) = anO[l + cothqn(Rc-Ro)] .

It is instructive to examine the longitudinal linear dispersion
relation in Eq. (80) for perturbations with long axial wavelength
and 4 + 0. Keep in mind that A+ 0 corresponds to a cold axial distribu-~
tion function G(pz) = <S(pz - pb). Making use of Eq. (83) in the

cold-beam limit, we find that Eq. (80) can be approximated by

2 _2v 22 2
[w - (k + nkO)Vb] = =3 ((k + nko) c W ]ln(Rc/RO) , (84)
b
which is identical to the dispersion relation obtained by Briggsl2

for space-charge waves in a thin annular electron beam.

To further orient the reader and illustrate the interaction
wavenumbers and frequencies characteristic of the free electron
laser instability, we consider a tenuous electron beam with v + 0 and
A + 0, and determine the simultaneous solutions to Eqs. (79) and (80).
Evidently, making use of Eq. (83), the longitudinal dispersion relation

in Eq. (80) reduces to

w = (k + nko)V (85)

b ]
for v > 0 and A - 0. Solving Egqs. (81) and (85) simultaneously, we

obtain the interaction frequency

w=w - Y;’;kovb 1+{1-Q- ugs/kgki)/vglllzl , (86)

where w+ and w represent the upshifted and downshifted frequencies,

respectively. In the limit of short wiggler wavelength satisfying
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kgkz >> °gs' the upshifted frequency w' and wavenumber (k + nko)+ can 1

be approximated by the familiar results
o =+ 8 vk, (87)
b’ b 0"Db *
+ 2

obtained in free electron laser theories neglecting geometric effects.

For sufficiently long wiggler wavelength, however, it is evident from

Eq. (86) that geometric effects play a significant role in determining
the characteristic frequency and wavenumber.

Finally, for small but finite wiggler amplitude and beam density,
we make use of Eqs. (72), (82), and (83), to simplify the full dispersion.

relation in Eq. (78). This gives
2

2 2 % [k + nkg|a 2
Ef - (k + nko - ko) -3 [w - (k + nko)Vb + 1 ————5————J
c R Y

(3
2
2 a
- 2ve ok (k + nk.) - k2 - 98 (88)
3h 0 0 0 R2
b ¢
2 2
2 a J, (e R./R )
2 ve Os 1'"°0s 0" "¢
= —4al Yy [ko(k + nko - ko) - R2 ] [ RZJ ) ] .
c c 2" 0s

where use has been made of Eq. (81) to simplify the right-hand side of
Eq. (88). Equation (88) is the form of the nonlinear dispersion

relation used in the numerical studies in Sec. IV.C.

C. Numerical Analysis of the Dispersion Relation

In this section, we summarize the results of a numerical analysis

of the dispersion relation in Eq. (88) for a broad range of system

parameters v, v, A/ybmc, GOS/kORc and

2
c = a(—“—i) . (89)
ybmkoc
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Defining the normalized Doppler-shifted eigenfrequency by
Q= [w- (k + nko)Vb]/koc , (90)

the dispersion relation in Eq. (85) can be expressed as

(k + nk,)V (k + nk,.)A
(92+2 0b9+§](92+21——-—-0—9—n +1=0,

knC 3
0 mk,.C
Ypuko (o1
where
£ = 2k + nkp)/ky - (k + nky) /koyb 1- /kzn2 , (92)
n = (k + nko)zAz/ygmzkgc + (2v/ybh)[2(k + nko) [y - of /sz2 -1,
(93)
and
k + nk (a R /R )
e 0 0\ 71 o
;-4Yb(————ko 1- )[( L)L 0 e J(a ] . (94)

A careful examination of Eqs. (91) and (94) shows that the maximum
coupling between the electromagnetic and electrostatic modes occurs at

the value of RO/Rc satisfying
M -
Jl(QOSRO/Rc) + (GOSRO/Rc)Jl(aOSRO/Rc) 0, (93)

where the prime (') denotes dJl(x)/dx. Making use of the identity
Ji(x) = Jo(x) - Jl(x)/x, Eq. (95) can be expressed in the equivalent
form

To(ageRo/R) = 0 . (96)

In this context, we find that the maximum growth rate occurs for the value

of RO/Rc given by
RO/Rc = 802/003 s (97)

where Bog is the 2th root of JO(BOI) = 0 gatisfying 80y < %sg"

i
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Figure 2 shows a plot of the electrostatic wave admittance h
versus normalized axial wavenumber (k + nko)/ko for Y - 5, koRc =5,
and ROIRc = 801/u01 = 0.65. We note from Fig. 2 that the wave admittance
h is proportional to the axial wavenumber (k + nko) for wavenumbers
satisfying (k + nko)/ko > 5. For short axial wavelengths with (Rc - Ro)
x (k + nko) >> yps it is readily shown from Eq. (77) that the wave

admittance h can be approximated by

kR k + nk
h = (2 0 e 59) L (98)

“w R/ K

For free electron laser applications characterized by axial wavenumber
k + nko = (1 + Bb)yiko, Eq. (98) constitutes an excellent approximation.
Shown in Fig. 3 for € = -0.1,and in Fig. 4 for € = + 0.1, are plots
of (a) normalized growth rate 2, = lmQ and (b) Doppler-shifted real
frequency Qy = ReQ versus the normalized axial wavenumber (k + nko)/k s
obtained from Eq. (91) for A = 0 and parameters otherwise identical to
Fig. 2. In Figs. 3(b) and 4(b), Qr is plotted only for the range of
wavenumber (k + nko)/k0 corresponding to instability (ﬂi > 0). Evidently,
from Figs. 3(a) and 4(a), the maximum growth rate and the range of
(k + nko) corresponding to instability, increase with increasing
value of beam intensity. It is also evident from Figs. 3(a) and
4(a) that the instability occurs at values of axial wavenumber satisfying
(k + nko)/k0 < 27% for ¢ <0, and (k + nko)/k0 > Zyi for ¢ > 0.
Moreover, the normalized Doppler-shifted eigenfrequency satisfies
IQ[ << 1, which is consistent with Eq. (14).
The dependence of stability properties on the axial momentum
spread (A) is illustrated in Fig. 5(a) for ¢ = -0.1, and in Fig. 5(b)
for ¢ = + 0.1, where the normalized growth rate ni is plotted versus

(k + nko)/k0 for vlyb = 0.05, several values of A/ybmc, and parameters




otherwise identical to Fig. 2. Several features are noteworthy from
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Fig. 5. First, the maximum growth rate decreases as the axial momentum
spread is increased. Evidently, the growth rate is reduced substantially
by introducing a very small amount of momentum spread. From Eq. (91),
this feature represents a general tendency for all radial mode numbers s.

Second, the instability bandwidth, i.e., the range of (k + nko)/k0

corresponding to instability, increases as A/mec is increased. Third,
for a specified value of ¢, the maximum growth rate occurs at approximately
the same value of axial wavenumber, regardless of the momentum spread
(e.g., at k + nko = 45,3 ko for ¢ = -0.1, and at k + nk.0 = 53 ko for
t ¢ = 0.1). Finally, we also note that a sign change of the parameter ¢
shifts the unstable region in (k + nko) space. Moreover, for a given
value of A, the maximum growth rate for ¢ = -0.1 is slightly larger
than that for ¢ = 0.1. In general, we conclude that free electron 1

laser stability properties exhibit a sensitive dependence on the axial

momentum spread A.
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V. CONCLUSIONS

In this paper, we have formulated a self-consistent theory

E of the free electron laser instability for an annular beam propagating

, through an undulator magnetic field. The stability analysis has been
carried out within the framework of the Vlasov-Maxwell equations. The
equilibrium properties and basic assumptions were summarized in Sec. II,
and the formal stability analysis for azimuthally symmetric perturbations
(3/306 = 0) was carried out in Sec. III, including the important influence
of finite radial geometiy. In Sec. IV, the dispersion relation

was obtained for perturbations about an annular beam equilibrium

in which all electrons have the same value of transverse momentum

and the same value of canonical angular momentum, and a Lorentzian

distribution in axial momentum. One of the most important features of

the analysis is that the maximum growth rate occurs for RO/Rc = 601/008.
Moreover, the growth rate and instability bandwidth can be expressed in
terms of Budker's parameter v, instead of the beam plasma frequency §

as in the case of a uniform density beam. In Sec. IV, it was

g e s e S 4t

shown that stability properties exhibit a sensitive dependence on axial

momentum spread A.
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FIGURE CAPTIONS

Equilibrium configuration and coordinate system.

Plot of electrostatic wave admittance h versus (k + nko)/k0
for Y = 5, kORc = 5, and ROIRc - 801/a01 = 0.65.

Plots of (a) normalized growth rate 9, and (b) Doppler-shifted
real frequency nr versus (k + nko)/ko [Eq. (91)] for ¢ = -0.1,
A = 0 and parameters otherwise identical to Fig. 2.

Plots of (a) normalized growth rate 9, and (b) Doppler-shifted
real frequency Qr versus (k + nko)/k0 [Eq. (91)] for ¢ = 0.1,
A = 0, and parameters otherwise identical to Fig. 2.

Plots of normalized growth rate Q, versus (k + nko)/ko [Eq. (91)]
for v/yb = 0.05, (a) ¢ = -0.1, (b) € = 0.1, several values of

A/mec, and parameters otherwise identical to Fig. 2.
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APPENDIX A

ELECTRON TRAJECTORIES IN AN UNDULATOR MAGNETIC FIELD

In this appendix, we determine the particle trajectories
(', 0', 2', p;, pé, p;) that pass through the phase-space point
(r, 68, z, P.» Pgs pz) at time t' = t for an electron moving in the

undulator wiggler field described by [Eqs. (8) and (9)],

0_1a
B = - 3 BkoRosinkoz, (A.1)
B0 =B - B cosk.z (A.2)
z 0 z 0"’

where AO = 21r/k0 is the wiggler wavelength, ﬁz = const. is the

amplitude, and B, = const. is the average axial magnetic field.

0
Making use of P, = P_ = -eB R2/2c = const., and ymc2 = (m2c4+c2p'2)1/2
6 0 00 ~

= const., the exact equations of motion can be expressed as

A

2 2 eB B
d_ v e =t (401} 0§ - = '
= r r (dt' LA e Jme 1 B, coskoz , (A.3)

dt
2 A :
o 48 *%o EQ - {1- 2—-59 ~£l£592—1 cosk z' (A.4)
dt’ 2yme ' B, r' Il(kORO) 0 ’ )
B ~
d°z' ) , d6' } B '
o2 2vme oo (r dt') By *1M0% -3

where v; = p;/Ym = dr'/dt’', vé = pé/Ym = r'df'/de’, v; = p;/Ym =

dz'/dt', and use has been made of the expression for A%(r', z') in Eq. (7).
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We now examine solutions to Eqs. (A.3) - (A.5) that pass through
the phase space point (r,e,z,pr,pe.pz) at time t' = t, assuming that the

wiggler amplitude is small with

B I(xR) a

z 1 00" B
—_— =k R — << 1, (A.G)
Bo 2 00 Il(koko) Bo

Moreover, in the subsequent analysis we denote the small radial excur-

sions about r' = Ro by the radial coordinate

| = ! -
p r Ro. (A.7)

To lowest order in ﬁ/Bo, we find from Eq. (A.5) that the axial motion

is free streaming with

! = +-1—)-z—(t'—t) (A.8)
z z Yo ’ .
P, = P, (4.9)

Substituting Eq. (A.4) into Eq. (A.3) and making use of Eq. (A.7),

the radial equation of motion can be expressed as

2 .
2 eB R a I.(k.R+ Kk p')
dp' -( 0 )2 R 0 - (Ro+p' ) + B p 100 0 cosk,.z'

aet?  \2me oo B, 0 I,k Ry 0
R § Ry I(kgRy+ kge")
x — + 1 + 3 RAp T () coskoz' (A.10)
Ro* 0") 00 1700
B, 00 T,(kR) 0




Expanding the right-hand side of Eq. (A.10) for ﬁ << B, and |p'| << R

C 0’

and making use of Eq. (A.8), we find to lowest order

d_2£+w2._l Zki— k.z + k p—z(':'-t)

' 2 P 2 “cho B, °%|%0 0 ym ’

dt 0
where w, = eBo/ymc is the relativistic cyclotron frequency. The
radial motion determined from Eq. (A.11l) exhibits a strong resonance
whenever kovz = W, where v, = pz/ym is the axial velocity. 1In the
present analysis, we assume that the values of ko, W, and the

characteristic axial velocity are such that resonance does not occur,

i.e.,

2.2 2
kovz ¢ w, (A.12)

Integrating Eq. (A.1l) subject to the boundary conditions (p',p;) =

(p,pr) at time t' = t, the radial motion is described by

' +
o] DCOS(DCT

-f-lR—-ii S cos(k .z + k. v_1)
2 0B, 2 22 0 07z
0w - kv

c 0z

k

v

- (cosk zcosw T + 0z sink.zsinw T) ,
0 c w, 0 c

. -
pr = prcoswct mecpsinwcr

<33 [—kovzsin(koz + kovzt)
- kovz

+ (wccosk zsinwct - kovzsinkozcoswct)],

0




Note from Eq. (A.13) that the radial

where v, = pz/ym and T = t' - t.
excursions about r = R0 remain small amplitude as long as

X 2
B w 2
Pt (a.15)
0 w° - Kiv Ry
c 0z

where 2a is the characteristic radial thickness of the annular electron

Finally, for the 6'-motion, we expand Eq. (A.4) for B << Bo

beam.
and |p'| << RO' To lowest order, this gives
e’ o't 1 B .
ST =W -5 w, o cosk,z' . (A.16)
dt c R0 2 "¢ BO 0
Substituting Eq. (A.13) into Eq. (A.16), we obtain
de' = p Pr
EET RO wccoswct + meo sinmcr
R w2
- %g—- 3 < 272 (mccoskozcoswcr (A.17)
0w - k.v
c 0z
k2v2

0z ‘
+ kovzsinkozsinwcr - o cos(koz + kovzr)] .

In addition, the azimuthal momentum is readily determined from pé =
ymr'de'/de' = ymmcp' - (ymmcRO/Z)(ﬁlBo)coskoz', where p' and z' are

defined in Eqs. (A.13) and (A.8), respectively.
We conclude this appendix by noting that Eq. (A.5) can be used

to calculate corrections to the lowest-order z-motion in Eqs. (A.8) and
(A.9). Expanding the right-hand side of Eq. (A.5) for Ip'l << Ro

and B << Bo,'and making use of Eq. (A.16) gives

uluﬂ

d R
atv Py =~ 7w (kgRy) (yme Rp) "
(A.18)

coskoz')sinkoz' .

N|U>

,(L'-l
Ry 2B

e
Pt asiiny:

vy et

o b N 0



where p; = ymdz'/dt'. Substituting the expressions for z' {Eq. (4.8)]

and p' [Eq. (A.13)] into the right-hand side of Eq. (A.18) and integrating

with respect to t', we find

1 B _ . i
p; =P, +.7 wc(kORO)(YmmcRO) Bo !
) 2
w !
p__1B c 1

g <Ro T2, 7 272 °°Skoz> 7 2.2 ;
@ oYz Ye 0"z o
x [wc(cos(koz + kOVzT)COSch - coskoz) é

{ + kovzsin(koz + kOVzT)SinaET] (A.19)

x [wc(sin(koz + kovzr)cosmcr - sinkoz)

e

-k vzcos(koz + kova)Sinch]

0

18 KoYy 4
+ 5-35-75————3—5 [cos(Zka + 2k0vzr) - cos2koz] . '
“e T kOvz

where T = t' - t, v, = pz/ym, and p; = p, at time t' = ¢t E

Note from Eq. (A.19) that the oscillatory corrections to p; =p,

[Eq. (A.9)] are small whenever the wiggler amplitude B is sufficiently

small in comparison with BO. Expressing Eq. (A.19) as p; =p, + Gp;,

oy

the inequality |5p;| << lpzl is hardest to satisfy in the strong

magnetic field limit where wi >> kgvi. For wi >> kgvi, we find from

1 Eq. (A.19) that Iépél << lel provided the inequalities

2. - S ] g ek i

SRIRSTE ™ TR N ,'-"'_‘.."
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%

la B “cFo i

‘ 2 & B (kono)( v )<< 1, (A.20) |
: and !
‘ a2 @ .
n 1 o 3
i . 0 z 1

are satisfied. In obtaining Eq. (A.20), we have estimated the

characteristic value of p by p 3 a, where 2a is the thickness of
t the annular electron beam. The inequalities inm Eqs. (A.20) and
(A.21) are straightforward to satisfy for experimental parameters
of interest. Note also that p; =P, whenever Eqs. (A.20) and (A.21)

are satisfied, and the axial momentum p_ is a good (albeit approximate)
z

invariant.




40

> D2

I"‘Il"

Z ‘

o e . S———  c—

9
\ » K\ b«um-m MOTI0H
o

TIVM ONILDONANOD

| (3]
) @
\£'l
Fig. 1




41

OO0l

B R e

°% / (°u+ )
0¢

Y/

_

4 ‘G="4% ‘g=%

Fig. 2




42

()¢ *31a

ON /(OYu + o)
1S} 74 A4

0=V

¢

'O -

> (D)

—4 100




43

| 9t bb G2b
‘ 1 | 0]

— G00-




44

(e)v 814 :

O /(Ou+ ¥)
e 26

[ O

PR
R A
WAV KT T

1
N
o
Q
o)

— 100

. St s Lt T L L
Sty ? ddes




45

96

(% 8¥d

ON/(%u+y)
A

|




% 7(°Nu 4 %)

* 06 SP Ot |
_ 0
q O
200= 24 ;
—$000  ?
600°0= X
= q _q
q q
G000= M=~ G= 4
a 10-= 72
uw
. B ]
2000 = =G c00- %
_ uEnx. ADV
S/ —8000




°N /7 (OMU + )

Fig. 5(b)

000

8000




