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A Multivariate Correlation Ratio

by
*
Allan R, Sampson
Department of Mathematics and Statiatign

University of Pittsburgh
Pittsburgh, PA 15260

ABSTRACT

A brief review of the historical background and certain known
results concerning the univariate correlation ratio are given. A multi-

variate correlation ratio of a random vector Y upon a random vector X }

is defined by .
n, (T:X) = {tr (Q-ICov E(Y|X)) };’{ tr (é.IEY) }J’ ’

where A 1s a given positive definite matrix. The properties of n, are
discussed, with particular attention paid to a "correlation-maximizing"
property. A number of examples illustrating the application of n, are
given; these examples include the multivariate normal, the elliptically

symmetric distributions, the Farlie-Morgenstern-Gumbel family, and the

4 multinomial. The problem of maximizing nA(gg;i_t) over suitable matrices
| B 1is considered and the results that are obtained are related to canonical

correlations for the multivariate normal.

AMS Classification: Primary 62H20, Secondary 62305

Key Words: Correlation ratio, multivariate correlation ratio, vector
: . correlation, canonical correlation, sup-correlation, elliptically
& symmetric.
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A Multivariate Correlation Ratio

by
*
Allan R. Sampson
Department of Mathematics and Statistics

University of Pittsburgh
Pittsburgh, PA 15260

1., INTRODUCTION AND HISTORICAL BACKGROUND.

The correlation ratio, n(Y;X), of a random variable Y upon a

s o
VS

random variable X, defined by (with suitable assumptions)
n(Y;X) = {Var(E(Y|X))/var Y}k. (1.1)

was first introduced by K. Pearson in (1903, p. 304), who wrote
"n 1s a useful constant which ought always to be given for non-linear

systems...it measures the approach of the system not only to linearity

but to single valued relationship, i.e., to a causal nexus". Pearson
further discussed n 1in his papers of (1905; or sece (1948, pp. 477-528))
and (1909). 1In his 1905 paper, he wrote "the correlation ratio...is an
excellent measure of the stringency of correlation always lying numerically
between the values 0 and 1, which mark absolute independence and
complete causation respectively". He further noted, based on his con-

siderations of non-normal bivariate data, that "the ease with which

n can be calculated suggests that in many cases it should accompany, if

not replace the determination of the correlation coefficient'.

o e ——

Blakeman (1905) also introduced a criteria based on n to test

. S : for linearity of regression. Fisher (1925; pp. 257-260 of l4th Ed. (1970)),

®

The work of this author is sponsored by the Air Force Office of Scientific
Research under Contract F49620-79-C~0161, Reproduction in whole or in
part is permitted for any purposes of the United States Government.
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seemingly less enthiisiastic about n, wroté concerning the sample analogue of

n in the regression model that "as a descriptive statistic the
utility of the correlation ratio is extremely limited". It appears
that much of his concerns were based on certain distributional pro-
perties. A more recent discussion concerning n can be found in
Lancaster (1969, pp. 201-202).

Various other properties of n have been considered within the
literature which focuses on measures of association and measures of
dependence, most of this literature having been written within the
last approximately 20 years. Kruskal (1958) in his survey on ordinal
measures of association discussed n, and Rényl (1959) in his axiomatic
development of measures of dependence examined properties of n. More
recently, Hall (1970) defined the dependence characteristic function as

itY;x), where a suitable extension of n to complex-valued random

n(e
variables was given; the relative merits of the dependence characteristic
function versus the coirelation ratio were considered. Kotz and Soong
(1977) further reviewed some of the probabilistic properties of n. Hall
(1970) also noted that when X 18 vector valued; the correlation ratio
n(Y;X), defined by (1.1) now with E(Y|X) 1n the numerator, has essentially
the same properties as when X 1s a scalar random variable, Within a
specific multivariate normal setting, Johnson and Kotz (1972, p. 186)

noted that a certain multivariate beta random variable could be viewed

as a multivariate generalization of n.

The correlation ratio is in some ways connected to the sup-correlation

coefficient between random variables X and Y, defined by
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p'(X,Y) = sup p(£(X),g(Y)), : (1.2)

where the supremum is over suitable functions £ and g, and »p

is the Pearson correlation coefficient. This measure of dependence

was introduced by Gebelein (1941) and developed further by Sarmanov
(1958A), (1958B), Renyi (1959) and Lancaster (whose work is summarized
in Lancaster (1969)). Sarmanov and Zaharov (1960) extended this concept
to the multivariate case, defining p'(X,Y) = sup (£(X),8(Y)), where the
supremum is over suitable £,g, which map RP and Rq, respectively,

into Rl. We note that except in very special cases, it is difficult

to obtain an explicit evaluation of o'(X,Y).

In this paper, we consider defining the correlation ratio for the
cage vhen both Y aﬁd X are vector random variables. This extension
would, for example, accomodate the situation when we are studying the

relationship of X to xl”"'xr’ or when we are relating

r+1""’xr+s
jointly a time series Yl,...,Yc to a time series xl""’xs' The
properties of this multivariate correlation ratio are explored in light of
the properties of n(Y;X). We also examine maximizing the multivariate

correlation ratio over certain linear combinations, and study the

relationship of this concept to other multivatiatébnotions, including
the sup-correlation. A number of specific multivariate distributional H
examples are considered including the normal, elliptically symmetric 1

and Farlie-Morgenstern-Gumbel.

2. A REVIEW OF RESULTS PERTAINING TO n(Y;X).

In this section, we survey some results concerning n(Y;X) and

discuss briefly some of the implications of these results,
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Theorem 2.1, Let Y be a random variable with 0 < Var Y < «,
Let X be a p-dimensional random vector, jointly distributed with Y.
(a) Then min E(Y-g(l_g))z occurs at g(x) = E(Y|X = x), where the J
minimum is over all measurable g: RP + Rl, for which l!(‘l—g().())2 < o,

(b) Furthermore, the minimum value is (l—nz(Y X)) Var Y ,

A proof of essentially Theorem 2.1 can be found, for example,

in Parzen (1960) or Hall (1970).

Theorem 2.2, Let Y be a random variable with 0 < Var Y < o,
Let X be a p-dimen‘sional random vector jointly distributed with Y.
(a) Then max|o(Y,g(X))| occurs at g(x) = E(Y|X = x), where the
maximum is over all measurable functions g: RP » R1 for which the

correlation is defined. (b) Furthermore, the maximum value is n(Y¥;X).

Note that in Theorem 2.2 if g(x) maximizes, then «a g(x) + 8,

a ¢ 0, maximizes. A proof of Theorem 2.2 in the case X #s a scalar
can be found in Kotz and Soong (1977); the proof when X 1s a vector

is identical. This very interesting interpretation of n(Y;X), according
to Kruskal (1958), was first noted by Frechet (1933), (1934). Earlier,
Pearson (1905) had proved n(Y;X) > |p(Y,X)| and Fisher (1925) had
shown n(Y;X) > max|o(Y,g(X))].

An immediate result of Theorem 2.2 is that 0 < n < 1. From
Theorem 2.1, we observe that Y being predicted by g(X) with an
expected squared error of zero is equivalent to n(Y;X) = 1. A
further consequence of Theorem 2.2 is that n(Y;X) = 0 is equivalent
to p(Y,h(X)) = 0 for all measurable functions h, with 0 < Var h(X) < =,

This also implies that E(Y|X = x) = E(Y) a.e. for all x.

One commonly perceived deficlency of n as a measure of dependence




(e.g., Renyl (1959)) is that n = 0 does not imply Y and X are
independent. The correlation ratio being zerg may be interpreted as
being "between" independence and uncorrelated;ess {in terms of multiple
correlation) in the following sense. Independence of Y and X is
equivalent to p(£f(Y),g(X)) = 0 for all suitable £,g; and uncorrelat-
edness is equivalent to p(a1Y+81, gé§+sz) = 0 for all a 81. 2
82; while zero correlation ratio, as noted, is equivalent to
p(a1Y+Bl, gX)) = 0, for all a5 Bl’ and suitable g.

When (Y,X)' have a joint multivariate normal distribution, the
multiple correlation is defined (e.g., Anderson (1958)) by max p(Y,a'X).

o

For the multivariate normal E(Y|X) 4s linear in X, so that it follows

from Theorems 2.1 and 2.2 that n(Y;X) 4s the same as the multiple

correlation of Y with X. For the linear prediccion problem where g
in Theorems 2.1 and 2.2 is restricted to be linenr, it is more appropriate
(e.g., Parzen (1960)) to use max p(Y,a'X) than n(Y;X) for measuring
dependence. This suggests, pergaps. that whea X 1s an arbitrary random
vector, one might adopt the nomenclature, iinear multiple correlation
generalized multiple correlation, and sup-multiple-correlation, respectively
for sup o(Y,z'X), n(Y;X), and sup p(£(Y),g(X)). "For the multivariate

a

e £.8
normal these three measures are eéual.

3. A MULTIVARIATE CORRELATION RATIO.

In this section, we consider the definition of a correlation ratio
of { upon X, where ¥ isa q x1 random vector and X isa p %1
random vector. Even though Y is now a vector, it seems suitadble to

have the sultivariste cerrelatisn rastes taka scalar velues; rather than
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attempt a multiple-valued version. To motivate our definition of
the multivariate correlation ratio we first consider the multivariate

prediction problem and proceed from there.

In referring to the covariance matrix of a random vector W, we

use the notation Cov(W) and I, interchangeably. The cross-covariance

W
between random vectors S,T is denoted by Cov(S,T) = E((S-E(S)) (T-E(T))"!.

1

For (random) vectors, the notation ||g||i = X'A" X 1s employed, where

A 1s a positive definite matrix.

Theorem 3.1. Let Y: q x 1, X: p x 1l be jointly distributed
random vectors with 0 < tr §Y < »; and let A: q x q be positive
definite. Then min E||¥-g(§)||: occurs at g(x) = E(Y|X = xJ, where

the minimum is over all measurable g: RP +* Rq, for which

El[t-g® |15 < =

Proof. The result is immediate from the well-known identity

xl!g—g(g)lli - EH!—E('{P})H: + Ellg(g)-E(!lg)lli.

i Theorem 3,2. Let Y: qx1, X:px1l be Jointly distributed random
' E . vectors with 0 < tr §Y < o3 and let A: q x q be positive definite. Then

E|Y-E| D13 = era™'5) - [ee(a ™ cov BN/ Ter a7 g 1D,

| Proof, Note E||Y-EX)||Z = El|¥||2 - EflEC¥ID||2. without loss

of generality, assume EY = 0, It is readily shown that
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El[EQEI0 |12 = erta™ covect|x))], and E[[Y[|2 = era”E,), so that
the result follows.

Obaerve‘that without any knowledge of X the best expected
minimum normed predictor of Y 1s E(Y) in the sense that
min EII!—QII: - tr(é-ng) and occurs at ¢ = E(Y). Thus, Thecrem
3.2, like Theorem 2.1b, allows the measurement of the reduction in
mean normed error due to knowledge of X. This then suggests a suitable

definition of a multivariate correlation ratio.

Definition 3.1. Let Y: g x 1 and X be jointly distributed

random vectors with 0 < tr I, < . The correlation ratio of Y upon

X 1is given by

o (YK - (eracov EYIT)) 4
JALE: ez

where A 1s a positive definite q x q matrix.

In the case when Y 1s a scalar this definition clearly reduces
to the previous definition (1.1) of correlation ratio. Obvious possible

choices of A are é =] and A= EY’ when gY is nonsingular. Note
2

that n (¥;X) = (er Cov E(Y|X))/(tr L) and that n;‘:y(!;g)

- q'l tr(g;ECov E(!|§)§;%). In practice, the actual choice of A
might depend on how difficult A would be to estimate from the data for

a particular multivariate model. It may be the case that tr §Y is

easier to estimate than the entire matrix Iy» 80 that A= I should

be chosen.

Recall that when Y 418 a scalar, we have the important result that

WY3K) = max p(Y;g(X)): Whent § %» & vagtor théts is an analogous
g

v‘:{';”?t,” I

N “
"-~~'t..’. [
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result; however, we must introduce a!suitable version of "correlation"

between two vectors.

Definition 3.2, Let S:px1 and T: p X1 be two jointly

distributed random vectors with 0 < tr gs

The vector correlation between § and T 1is defined by

< o, and 0<tr§T<n,

tr -ICov

-1 =1
(er (72 )) Her (471 gy))

pA(ﬁ,I) fd

wheee A is a p x p positive definite matrix.

Note that DA(§,1') - p.A('E'§)' 'pA(§’I)I S_lo and

0, (5,-T) = ~p,(§,T). For S,T scalars, p,(S,T) = p(S,T).

Theorem 3.3. let Y: qgx 1, X: px1 be jointly distributed
random vectors with 0 < tr §Y < o3 and let A: qxq be positive
definite. Then max|p,(Y,g(X))| = n,(¥;X), where the maximum is taken
over all measurable functions g: RP » Rq, for which the vector

correlation is defined.

Proof. Without loss of generality, assume B(!) =0 and E§(§) =0,

From Theorem 3.1, it follows that

E|Y-EqID| I} < 2llY<, ]I}, 3.1

for all g and constants c_, vhich can depend on g. Expand €3.1)

8
and choose c_ = ([tr(g-ICov E(!]g))]/[tr(Q'ICOV !(5))]}2 to obtain

cov(é'lg,l(!lp) 2 ¢, Cov(g'lg.g(p)- (3.2)
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Divide both sides of (3.2) by [(tr(é-lty))(tr(é-ICW E(Y[X)) 1% to
yield

p, (TLE(Y[X)) 2 o, (T,8(X)), (3.3)

for'all measurable g. Because (3.3) holds for g and -g, and

because °A(§’.D - -pA(§.'g), (3.3) holds with the right hand side

of (3.3) in absolute values. Now

(er15)) %, (1) = (er (A7 leov ECTIT)I

- | |Ecxlm | 131

=1 .
- LE -gov E (3.4)
[tr(A “Cov E(Y|X))]

The result now follows from (3.3) and (3.4).

Corollary 3.1. Let Y: qx1, X: px1 be jointly distributed

random vectors with 0 < tr I‘Y < =»; and let A: q x q be positive

definite. Then n, (¥;X) = o, (Y,E(Y|X)).

Proof. This is the result of (3.4).

Observe that if E(Y|X) 1s linear fn X, then n,(Y;X) = max|p, (Y,ED)|,
where the maximum is taken over all matrices B: q x p.
Before considering a number of examples, we briefly discuss further

properties of the vector correlation coefficient when A=1, It 1is

easily shown that




e

vhere § = (81,...,sp)', Tw (Tl,...,Tp)'; and a, = Var sil(z Var si).
B:l = Var Til(t Var '1’1). Note O ey, 81 <1 and % a, = T 81

thus, pI(§,'§) can almost be viewed as a weighted average of the pair-
wise correlations. If Var S1 = ... = Var sp and Var 'I‘1 = ,,, = Var Tp,

then pI(s.g) - (121 p(si,'ri))/p. If Var S, >> Var S5y ® «co = Var Sp

1
and Var 'rl >> Var '1‘2 = ,,. = Var 'rp, then pI(§,'g) o °(sl’T1)’ Let
S*=IS+a, T*=[T+b, vhere T is a p x p orthonormal matrix,

and a, b are arbitrary vectors; then pI(§*,'£*) - pI(§,‘g).

Example 3.1. . Multivariate Normal.
Let (§' ,!')'-\, N(0,f), where X 48 qx1, ¥ is px 1 and

L 1is partitioned similarily, i.e.,

Ix Ixy
L= . 3.5)
1]
I
R R
Then E(X|Y) = L E" Y and Cov(E(X|Y)) IyyEy Iyxys hence,

(x Y) = {tr(zXYzY ziY)}k(tr:x)-k

and

D) - PR oo s T s YL

q
Observe that n_ (X;Y) = {q'1 ): cz(x,r) }", where C_ (X,Y) 1s the gth
Ix -C = 1777 1

canenical cortalation betwasn X, Y, 4 ® 1,044,4s If P w g, then
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1,

ppOT) = e L) (ex L) (er B}

and p, = tr(l_:;ll_:n)(p tt‘(t_:;li.:Y
X

Example 3.2, Elliptically Symmetric Distributions.

Let Z = (X',Y')' have p.d.f. «;I\gl"i 8zt 1z). (Such distributions
are called elliptically symmetric, e.g., Kelker (1970).) Let X be q x 1,

Y be px1 and suppose Y is partitioned as in (3.5), where we assume

0 <tr Cov(X)<®. Then E(X|Y) = gng;l Y and Cov(E(X|Y) = a gng;lg;u;
also Cov(X) = a ¥y, so that n, (X;Y) = {tt(!xy!;lf;n) Y(er !x)-;’ and

. - -1 - ) RN 30
ny D = (a er oy iy, ¥ lee v ),

Example 3.3. Multivariate Farlie-Gumbel-Morgenstern (FGM) Distribution.

In order to have tractable results, we consider a special four-
dimensional FGM distribution with uniform marginals. (See Johnson and
Kotz (1975) for the general multivariate distribution.) Let

fxl.xz Xq:X, (x) 0%y s%30%,) = 1+ a)5vy9 + 019713+ 094714

+ 893Va3 + %94V94 * %123%123

+ a594%124 * %1234v1234° (3.6)

vhere v,, = (1—2:1) (1-2xj), Vi ™ (1-2:1) (1-211)(1-2&), and

14 13
v, e - (1-2:1) (1-2xj)(1-2xk) (1-2:.1). Direct calculation yields that
z(xllxa,x‘) = (5 - a,,/6 -a,,/6)+ (0,4/3)X, + (a,,/3)X,, and
E(X,|Xy,X,) = (5 = 0,,/6 = 6,,/6) + (3,5/3)Xy + (a,,/3)X,. Further

calculations yleld that
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12
2 ]
@3 + oy, 813%3 * 9499,
9 9
' L]
CW(E(XI’XZ'X3’xﬁ)) o + 2 + 2 (3.7)
13%23 7 ®14%4 %23 T %94
9 9
and
[ a,. |
12
1/12 36
Cov(X, ,X,)" = . . (3.8)
12
% 1/12
Hence, for this example n_((X,,X,)';(X..X,)) = {2/3(2, + o2, 4l +a 2 3
’ P ) SR Ko MARALE T2 13 3 24

and '-’”n((xl'xz)';(x:.’x")') - {(219)(1-4u§2)'1-[.3(a§3 + aib + a§3 +a2)

- 2(a where 311'2 is given by (3.8).

]
12°13%23 * %12%14%24011
Suppose that f 1is given by (3.6), where Gigq ™ Gyop = Gyo ™ 0.

', "N - 2 2 2 2 .k
By symmetry nI((x3,x4) .(xl,xz) ) {2/3(a13 +ay, +ay, + ay) 1,
Thus, if we set G153 ™ Gy = Oyy =0y, = 0, we have (xl,xz)' and
(x3’x6)' mutually have zero correlation ratio, each upon the other;

yet (xl.xz)' and (xz,xl‘)' are not independent vectors. Very roughly

speaking, 93, Measures a "higher order” level of dependence that is

not measured in this example by g and na1 , where £y 1s given dy (3.8).
2

Example 3.4. Multinomial.

Let X = (xl....,xt)' have p.m.f.

' n-ix
t(0) = 1 LH 111 ) tapy L.

' -
1-’11" 'n Ix, )!

‘l'hcn !((xlv“lx:”(x., 1.--..11)) - n*(’i.""p*)) 'h.f. n‘ - n-(x.""l ...*XI).




13
and p} = p,/(1=(py,, + «o0 +77)), 1= 1,...,3. It follows that
Cov n((xl.....xJ)'l(xJﬂ,...,xI)) = I;.p» vhere
L, .p = {n*(p} 844 = p;p;)}, 3.9

where ij =1, 1f 4 = 3§, and = 0, otherwise. Since Cov(xl,...,XJ)' H §1
is of the same form as (3.9), with n*, p; replaced by n, Pys it follows
that “1“‘1"'"XJ)';(XJ+1""'XI)') = (n*/n) (X PI(I-Pg))/(t pi(l-Pi))o

Observe that (Cov(xl,...,xJ)')-1 - {n—l(p;16133+ Q- pk)-l)}, 80

_ 1 k=1
that np ((seeesXp '3 ®pyseen X)) = ) lrizlul-pp(p;/pi»].

vhere for {1 =J + 1, p$+1 - 1-(pi + oo + p}) and Py ™ 1—(p1 + ...+ pJ).

4., MOST PREDICTABLE LINEAR FUNCTIONS.

The multivariate correlation ratio nA(!;g) measures the amount
of predictability X has for Y for any jointly distributed random
vectors X and Y. This relational notion is, of course, directional
in that we are using the information in X 1in order to predict Y.

To further understand this predictive relationship, it is natural to
attempt to find what information in Y, that is, what function of Y,

is most predictable from X. .If we allow the consideration of all
suitable measurable functions of Y, and follow the minimum norm approach
with A = I, we are in essence, evaluating the sup-correlation p'(g,!)
and finding the appropriate maximizing functions. As noted previously,
this often is a difficult task mathematically. Consequently, we proceed

analogously to the theory of principal components and canonical correlations,

and restrict attention to linear functions of Y. The goal then is to find
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which linear functions of Y are most predictable from X and to
measure this degree of predictability,

For simplicity, we assume in the following that EY is non-
singular; however, this could be avoided by examining determinantal

equatiors.

Theorem 4.1. Let Y: qx1, X: p x1l be jointly distributed

random vectors with tr EY < o and g, nonsingular. Then

max n2(8'Y5D) = hyyy (I Cov EQIDEDD, (4.1)

where A denotes the largest eigenvalue. Furthermore, this max

MAX
occurs at B = ¢ g" SvAx’ where ¢ 1s any nonzero constant, and gmx

is an eiganvector corresponding to XMAX'

Proof.

206%:x) = var E(g8'
H;x n (8'Y;X) H;x TE?é“gjﬂ'

« Max g'Cov nglmg .

g EhS

!'E:’co' EQl!)E;"x
- H;x xlr ’

where y = ;;;’3, s0 that the result is immediate (e.g., Rao (1973, p. 62)).

An immediate implication of Theorem 4.1 is the following corollary,

whose proof is obvious.
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Corollary 4.1. Let Y: qx1, X: px1 be jointly distributed

randor vectors with tr §Y < o and §Y nonsingular. Then

§

o2 (8,800 = A, (TpCov EXIDEILD,

0 ™
3
°
+
.

and occurs at 8 = ¢ §;k euax fnd 8(x) = c ey §;&E(!|5).

The result of Corollary 4.1 is in some sense "half way" between
linear canonical correlation for arbitrary random vectors and the sup-

correlation of Sarmanov and Zaharov (1960).

For convenience, we introduce the following definition:

Definition 4.1. Li(!;§) - (Xi(g;kCGV E(!lg)g;k)}k, where xi

denotes the 1th largest eigenvalue.

When Y: qx1 and X: p x1 have a joint multivariate normal
distribution Ll(!;g) = c1(g,§), the first canonical correlation. For
Example 3.3, Li((xl,xz)?;(x3,x6)') is the largest root of the
determinantal equation |§12.34 -\ glzl -0 wheff Zyp.94 18 given

by (3.7) and ., by (3.8).

12
As in canonical correlation theory, multivariate versions of )

Theorem 4.1 could be obtained by examining uncorrelated iterations of

(4.1). Another approach which we follow is to employ Nye Suppose

Y 48 qx1 and X is p x1; let B bean r x q matrix and A

be an r x r positive definite matrix. Consider nnxigizing nA(pz;x)

over B eatisfying f, =A™\, When 4 = I, this is equivalent to

uneorraintednass amohg the eitedes of B Y.
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Theorem 4.2, Let Y: qx1, X:px1l be jointly distributed ;
random vectors with tr )_;Y < o and !_:Y nonsingular; and let A: r xr !

be positive definite. Then
max n, (BY:D) = (7! e 2.
%: rxq 1 =]
ov(ED) = A
Proof. Observe that

max ni = max tr(g.-ICov E(BY|X))/ (tx Q_lljm)
B B

- v"i
-maxtrA Cov E

B tr(A B LB'AT)

tr C z;*cov E(YIx)zY c',

where C = 5'!’ B g;? The result follows immediately (e.g., Rao (1973,

pp. 63)).

For X,Y having a multivariate nommal distribution max nA(BY'X) -r -1 { (Y
B 1-1 -
i.e., the average of the squares of the first r " canonical correlations.

An actual maximizing B in Theorem 4.2 is given by

&

b )
(eyt...te )'Ep",

B=A

vhere ¢, 1s an eigenvector corresponding to Li(!;g) and  JEXRIN B
are orthogonal vectors.

The q values, Ujl Li(!:g))”. j=1,...,q, could themselves be
viewed as measures of dependences of Y upon § and their properties
explored. Note that knowing these q values is equivaleat to knowing




the q eigenvalues, L, (Y;X), i =1,...,q.
For a fixed A, the estimation of nA(!;g) based upon n
observations would be of interest, as would the estimation of L, (Y:X).

Both the actual estimation techniques employed and the resultant

distribution theory would be dependent upon the underlying model

assumptions.
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