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ABSTRACT

A brief review of the historical background and certain known

results concerning the univariate correlation ratio are given. A multi-

variate correlation ratio of a random vector Y upon a random vector X

is defined by

- tr( ICov EY

where A is a given positive definite matrix. The properties of nA are

discussed, with particular attention paid to a "correlation-,maxinizing"

property. A number of examples illustrating the application of nA are

given; these examples include the multivariate normal, the elliptically

sy metric distributions, the Farlie-Morgenstern-Gumbel family, and the

multinomial. The problem of maximizing ; over suitable matrices

B is considered and the results that are obtained are related to canonical

correlations for the multivariate normal.
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A Multivariate Correlation Ratio

by

Allan Re Sampson

Department of Mathematics and Statistics
University of Pittsburgh
Pittsburgh, PA 15260

1. INTRODUCTION AND HISTORICAL BACKGROUND.

The correlation ratio, n(Y;X), of a random variable Y upon a

random variable X, defined by (with suitable assumptions)

n(Y;X) - (Var(E(YIX))/Var Y)]h,(I)

was first introduced by K. Pearson in (1903, p. 304), who wrote

"n is a useful constant which ought always to be given for non-linear

systems...it measures the approach of the system not only to linearity

but to single valued relationship, i.e., to a causal nexus". Pearson

further discussed n in his papers of (1905; or see (1948, pp. 477-528))

and (1909). In his 1905 paper, he wrote "the correlation ratio...is an

excellent measure of the stringency of correlation always lying numerically

between the values 0 and 1, which mark absolute independence and

complete causation respectively". He further noted, based on his con-

siderations of non-normal bivariate data, that "the sase with which

n can be calculated suggests that in many cases it should accompany, if

not replace the determination of the correlation coefficient".

Blakeman (1905) also introduced a criteria based on n to test

I' for linearity of regression. Fisher (1925; pp. 257-260 of 14th Ed. (1970)),

*

The work of this author is sponsored by the Air Force Office of Scientific
Research under Contract F49620-79-C-016. Reproduction in whole or in
part is permitted for any purposes of the United States Coveruent.
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seemingly less enthusiastic about n, wrotd concerning the sample analogue of

n in the regression model that "as a descriptive statistic the

utility of the correlation ratio is extremely limited". It appears

that much of his concerns were based on certain distributional pro-

perties. A more recent discussion conerning n can be found in

Lancaster (1969, pp. 201-202).

Various other properties of n have been considered within the

literature which focuses on measures of association and measures of

dependence, most of this literature having been written within the

last approximately 20 years. Kruskal (1958) in his survey on ordinal

measures of association discussed n, and Renyi (1959) in his axiomatic

development of measures of dependence examined properties of n. More

recently, Hall (1970) defined the dependence characteristic function as

n(etY ;X), where a suitable extension of n to complex-valued random

variables was given; the relative merits of the dependence characteristic

function versus the coirelation ratio were considered. Kotz and Soong

(1977) further reviewed some of the probabilistic properties of n. Hall

(1970) also noted that when X is vector valued; the correlation ratio

R(Y;X), defined by (1.1) now with E(YIX) in the numerator, has essentially

the same properties as when X is a scalar random variable. Within a

specific multivariate normal setting, Johnson and Kotx (1972, p. 186)

noted that a certain multivariate beta random variable could be viewed

as a multivariate generalization of n.

The correlation ratio is in some ways connected to the sup-correlation

coefficient between random variables X and Y, defined by.

'71
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0'(X,Y) - sup p(f(x),g(Y)), (1.2)

where the supremua is over suitable functions f and g, and 0

is the Pearson correlation coefficient. This measure of dependence

was introduced by Gebelein (1941) and developed further by Sarmanov

(1958A), (1958B), Renyi (1959) and Lancaster (whose work is summarized

in Lancaster (1969)). Sarmanov and Zaharov (1960) extended this concept

to the multivariate case, defining p'(,Y) - sup (f(Z),g(y)), where the

supremum is over suitable f,g, which map RP and Rq, respectively,

into R We note that except in very special cases, it is difficult

to obtain an explicit evaluation of p' (,Y).

In this paper, we consider defining the correlation ratio for the

case when both Y and I are vector random variables. This extension

would, for example, accomodate the situation when we are studying the

relationship of Xr+ 1 . r+s to X1 ,... Xr, or when we are relating
Jointly a time series Y,,...,Y, to a time series X ,...,X s . The

properties of this multivariate correlation ratio are explored in light of

the properties of r(Y;X). We also examine maximizing the multivariate

correlation ratio over certain linear combinations, and study the

relationship of this concept to other multivariate notions, including

the sup-correlation. A number of specific multivariate distributional

examples are considered including the normal, elliptically symmetric

and Farlie-Horgenstern-Gumbel.

2. A REVIEW OF RESULTS PERTAINIMI TO ii(Y;j).

In this section, we survey some results concerning n(Y;X) and

discuss briefly some of the implications of these results.
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Theorem 2.1. Let Y be a random variable with 0 < Var Y < *

Let X b a p-dimensional random vector, jointly distributed with Y.

(a)The mmE( .)O) occurs at g(:!) - E(YI~ - tt), where the

minimum Is over all measurable g: RP--R, for which E(Y-g(X)) 2

(b) Furthermore, the minium value is (1-n 2 (Y;X)) Var'1

A proof of essentially Theorem 2.1 can be found, for example,

In Parzen (1960) or Hall (1970).

Theorem 2.2. Let Y be a random variable with 0 < Var Y <

Let X be a p-dimensional random vector jointly distributed with Y.

(a) Then =mxjP(Y,gqx))I occurs at g(It) - E(Y(X - tt), where the

,maxiium is over all measurable function. g: RP-- * for which the

correlation is defined. (b) Furthermore, the maximum value is n(Y; ).

Note that In Theorem 2.2 If g~c) maximizes, then a X(x) + 0.

a 0I 0, maimizes. A proof of Theorem 2.2 in the case X is a scalar

can be found in Kotz and Soong (1977); the proof when X is a vector

Is identical. This very interesting interpretation of rn(Y;X), according

to Kruskal (1958), was first noted by Frechet (1933), (1934). Earlier,

Pearson (1905) had proved nl(Y;X) ! IP(Y'X)I and Fisher (1925) had

shown ij(Y;X) !.maxlp(Y,g(X))I.

An Immediate result of Theorem 2.2 is that 0 <n < 1. From

Theorem 2.1, we observe that Y being predicted by g(X) with an

expected squared error of zero Is equivalent to n (Y ;) -1. A

further consequence of Theorem 2.2 is that vi(Y;j) a 0 Is equivalent

to p(T,h(X) 0 for all measurable functions h, with 0 < Var h(X) < *

This also Implies that E(YIX - tt) - E(Y) &ae. for all x.

One eaftnly perceived deficiency of q as a seasure of depen~dmne
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(e.g., Ranyi (1959)) is that n - 0 does not imply T and X are

independent. The correlation ratio being zero may be interpreted as

being "between" independence and uncorrelatedness (in terms of multiple

correlation) in the following sense. Independence of Y and X is

equivalent to p(f(Y),g(X)) - 0 for all suitable f,g; and uncorrelat-

edness is equivalent to p(alY+B1 , a!X+ 2) - 0 for all al, ol. !2#

while zero correlation ratio, as noted, is equivalent to

P(alxi6 1 , g(X)) " 0, for all %1' 81, and suitable g.

When (Y,X)' have a joint multivariate normal distribution, the

multiple correlation Is defined (e.g., Anderson (1958)) by max p(Y,a'X).
0

For the multivariate normal E(YIX) is linear in X, so that it follows

from Theorems 2.1 and 2.2 that n(Y;X) is the same as the multiple

correlation of Y with X. For the linear prediccion problem where g

In Theorems 2.1 and 2.2 is restricted to be linear, it is more appropriate

(e.g., Parzen (1960)) to use max p(Ya'X) thian n(Y;X) for measurinR
a

dependence. This suggests, perhaps, that whtn X Is an arbitrary random

vector, one might adopt the nomenclature, linear multiple correlation

generalized multiple correlation, and sup-multiple-correlation, respectively

for sup p(Y,S'X) n(Y;X), and sup p(f(Y),g(X)). 'For the multivariate
a f'g

normal these three measures are equal.

3. A MULTIVARIATE CORRELATION RATIO.

In this section, we consider the definition of a correlation ratio

of upon 1, where y is a q x 1 random vector and I is a p x 1

random vector. Even though ! is now a vector, it seems suitable to

have the mltivariate cerrelation ratio take ealct Valsee, rather then

& _ _ __,.4m.
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attempt a multiple-valued version. To motivate our definition of

the multivariate correlation ratio we first consider the multivariate

prediction problem and proceed from there.

In referring to the covariance matrix of a random vector W, we

use the notation Cov(W) and E W interchangeably. The cross-covariance

between random vectors S,T is denoted by Cov(S,T) - E((S-E(S))(T-E(T))'!.

For (random) vectors, the notation I IXI I: - X'A-1X is employed, where

A is a positive definite matrix.

Theorem 3.1. Let Y: q x 1, X: p x 1 be jointly distributed

random vectors with 0 < tr y <m; and let A: q x q be positive

definite. Then min EI IY-(X)I12 occurs at 5(x) - E(YjX - x, where

the minimum is over all measurable 6: RP , Rq , for which

El I .- (X) 112 < -

Proof. The result is immediate from the well-known identity

EjIY-g(X)12 - EIIY-E(YIX)l 12 + El1g(X)-E(YjX)Ij2.

Theorem 3.2. Let Y: q x 1, X: p x 1 be jointly distributed random

vectors with 0 < tr . < -; and let A: q x q be positive definite. Then

1I!-E(YIX.)I A - tr(K 1 Z')(l-{([tr(A-1Cov E(yIX))1/[tr(AQ ;y)1).

Proof. Note EjIY-E(YX)Ij 12-_ ElIyjj2 - EIIE(.Ix)II . Without loss

of generality, assume EY - 0. It is readily shown that

I -''|

-... . . . . . . .. ..- _ .,,,- - - V , ' - 1 
:

-. . ..
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EIIZ(Tlx)ll 2 - trjA7'cov(EYIx))I, and EIII " tr(A7l!).o that

the result follows.

Observe that without any knowledge of X the best expected

minimum nomed predictor of Y is E(Y) in the sense that

min E - tr(6-lE ) and occurs at c - E(Y). Thus, Theorem

3.2, like Theorem 2.1b, allows the measurement of the reduction in

mean normed error due to knowledge of X. This then suggests a suitable

~definition of a multivariate correlation ratio.

Definition 3.1. Let Y: q x 1 and X be jointly distributed

random vectors with 0 < tr Ey < -. The correlation ratio of Y upon

Xis given by

nA(Y X;) _ tr(A Co E (Y 1 ))

where A is a positive definite q x q matrix.

In the case when Y is a scalar this definition clearly reduces

to the previous definition (1.1) of correlation ratio. Obvious possible

choices of A are A - I and A . when Z is nonsingular. Note

that n (Y;) - (tr Coy E!J ))/(tr Ey) and that chon c ofV A
- .the

might depend on how difficult A would be to estimate from the data for

a particular multivariate model. It may be the case that tr E is

easier to estimate than the entire matrix iy, so that A - I should

be chosen.

Recall that when Y is a scalar, we have the important result that

t ma p(Y;(Z))& Whatt Is a vattbt th4tl is an analogous

t

+ | + +::= : 'I
+

j= i -
+

i
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result; however, we must Introduce a suitable version of "correlation"

between two vectors.

Definition 3.2. Let S: p x 1 and T: p x 1 be two jointly

distributed random vectors with 0 < tr Z < a, and 0 < tr Z <"

The vector correlation between S and T is defined by

( tr(A1Cov(S.T))'A (tr (A'; s )))h(tr (6-1 T)) h

where A is a p x p positive definite matrix.

Note that pA(ST) - P (TS)' IpA(S,T)I .1, and

(s.-T) a -p AQ(sT). For ST scalars, PA(S.T) - p(ST).

Theorem 3.3. Let Y: q x 1, X: p x 1 be jointly distributed

random vectors with 0 < tr y <; and let A: q x q be positive

definite. Then mxI ,sA( X))I - nAY;X), where the maxim i taken

over all measurable functions j: RP * Rq, for which the vector

correlation is defined.

Proof. Without loss of generality, assume E(Y) - 0 and Eg(X) - Q.

From Theorem 3.1, it follows that

=ll!-_Z(yrjl)ll2 4 SIIT-,:s sq)ll, (3.1)

for all I and constants c€, which can depend on ;. Expand (3.1)

and choose c 8 - ([tr(A'lcov ECT(Y))I/tr(A-lCov g(X))])h to obtain

Co•(A Y,Z(YX)) ,_- c Cov(47,'., )). (3.2)

-



Divide both sides of (3.2) by [(tr(A-1 Z))(tr(A'lCov E(YIX))1 to

yield

PA(!Ey. 19x) !- PA(!'g-()), (3.3)

for ll masurable v. Because (3.3) holds for a and -j, and

because PA(Q.-) - -0A(S,!). (3.3) holds with the right hand side

of (3.3) in absolute values. Now

! ~(tr(A _lY)) nA(!.;X) - [tr(A-1Cov EqjX))]j

- (e F 112 if

= t ( J1 o I * ( I 1) -) - 3 4Th eutnwflo o ( 4(Y J)) .

Corollary 3.1. Let !: q x 1, Z: p x 1 be jointly distributed

randomvectors with 0 - tr ZY - -; and let A: q x q be positive

definite. Then nA(!;X) - PA(!,E(!IX)).

Proof. This is the result of (3.4).

Observe that if ECYIx) is linear in , then .

where the maximum is taken over all matrices f: q x p.

Before considering a number of examples, we briefly discuss further

properties of the vector correlation coefficient when I - . It is

easily shown that

l-I " -.---.



10

P(s,T) - 01 ( P)" P(SiTi) 9

II
where - (Sl,.S..,Sp)',T- (Tl,. .. ,T p ) ' ', and a, - Vat St/(E Vat S I)*

0i aVar TI/(E Var Ti). Note 0< < 1i 0
<E1 and Ea i - r BOml;

thus, pI(ST) can almost be viewed as a weighted average of the pair-

wise correlations. If Var S1 - ... f- Var S and Var 1 -. ""-Var T,

then ( T) (t! P(StT ))/P. If Var S1 >> Var S2  ... - Vat S

and Vat T1 3> Var T- ... Var Tp, then pI(S,T) a p(S 1 ,T1 ), Let

S* - S + a. T*-T + b, where f is a p x p orthonormal matrix,

and a, b are arbitrary vectors; then p (S*,T*) -p (ST).

Eample 3.1. Multiveriate Normal.

Let (X',Y')' N(O4,), where X is q x 1, ! is p x 1 and

E is partitioned similarily, i.e.,

1 iy -. (3.5)

Then E(XIY) - Y and Cov(E(xIY)) I 1-; hence,

n1 (X;Y). {tr(E, xjE E') (trtx)

and

(X;Y) -(q tr(E X E )

q

Observe that n(X;Y)  (q 1  2 (3.y)})is where C (XY) 1 the ith

ennicJl mettel~tfte beein 1 1,..,,q, If ts - qg then

4' ,-
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P1 ,Y)= (tr x EX)(tr (r E) "  and p tr(rxlE.x)(p tr(.'Iz)) "

Example 3.2. Elliptically Symmetric Distributions.

Let Z - (X',Y')' have p.d.f. cYjy-h O(z'1'lz). (Such distributions

are called elliptically symmetric, e.g., Kelker (1970).) Let X be q x 1,

Y be p x 1 and suppose ! is partitioned as in (3.5), where we assume

o <tr Co,(x)<-. The En IY) - !Xy.y and cov(E(X

also CovX) - a TX' so that nT(X;T) - (tr(Xyy;lyy)I (tr x '
- and

* (~1 ) {q- Vr(17, T-- ))
Yx x -xVY- -xy-x

Example 3.3. Multivariate Farlie-Cumbel1-Morgenstern (FGM) Distribution.

In order to have tractable results, we consider a special four-

dimensional FGM distribution with uniform marginals. (See Johnson and

Kotz (1975) for the general multivariate distribution.) Let

fXl ,X2 ,x3,x 4 (xlx2 'x3 x) - 1 + a1 2 v1 2 + a1 3 v1 3 + a1 4vl 4

+- a2 3v 2 3  + 2424 + a12 3v1 2 3

+ a124 v1 2 4 +'a12 3 4v1 2 3 4 - (3.6)

where v (1- 2xi) (1-2xj), vijk - (1- 2xi) (1-2xj) (1-2xk), and

Vijkt - (l-zxi) (l-2xj) (l-2xk ) (l-2xe). Direct calculation yields that

ZE(x1C 3 ,X4) - (h - a1316 - a14 /6) + (a13/3)X3 + (a14/3)X, and

z(x 2 1X3 ,x4 ) - (; - a236 - 024/6) + (a23 13)X 3 + (24 /3)X4. Further

calculations yield that

- .,dlL. .- .. , -- - I u, ,,- i
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OL2 + 02+aa
13 14 813823 +a 1 4 2 4

9

CoV(E(X ,X2 ix3Vx 4) )' = 2 (3.7)
813a23 + 814824 823 24

9 9

and

a~12
1/12 812

Cov(X1,X2)' = (3.8)

12

Hence, for this example ri((X,X)';(X,XY) - (2/3(a 2 + 82 + Q2 + a2 01 1(l-2(3 4))1 14 23 24
1 a2 -1 2 2 a2 

and % ((Xl.X 2)';(X 3X4)') - ((2/1)(1-4 j 2) [3( 13 + 14 + 23 +24

- 2(a12a13M2 3 + a12a14824)1 , where Z 2 is given by (3.8).

Suppose that f is given by (3.6), where 8123 - a124 a12 - 0.
2 2 2 :4 2 q

By symmetry q1 ((X3 .x4 )';(xl9x 2 )') = (2/3(a13 + a14 + 23 +2

Thus, if we set 813 = *14 = 123 = 024 " 0, we have (XI,X2)' and

(X3,X)Y mutually have zero correlation ratio, each upon the other;

yet (X1,X2)' and (X2,X4)' are not independent vectors. Very roughly

speaking, a1234 measures a "higher order" level of dependence that is

not measured in this example by ni and n, where E.2 Is given by (3.8).

I 1
lample 3.4. Multinomial.

Let X - (X1,...,X 1 )' have p.m.f.

-- E

Them ((xv.xj)03 i..x) n*(p!....,PVq w"ere A* nI 'La--+1
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and p* - pi/(l-(Pj+I + ... + pI)), I - l,...,J. It follows that

Coy E((X,...,Xj)'I(Xj+l....,XI)) ; ,-2' where

- 1.2 " P P*))' (3.9)

where 8,;, - 1, If I- J, and - 0, otherwise. Since Cov(X1,... Xj)# E-Z

Is of the same form as (3.9), with n*, pf replaced by n, p,, it follows

that,.) - (n*/n)(E p*(l-pt))/(Z pi ( 1-pi)).
i Observe that (CoV(Xl,,...,Xj)')-I - {nl ij4 k ( f - lpk)-),

that El((xl,..,xJ),; J+l,...,x, ) ' )  -

where for i - J + 1, p+l 1-(p + ... + p) and Pj+1 - 1-(Pl +  + PJ).

4. HOST PREDICTABLE LINEAR FUNCTIONS.

The multivariate correlation ratio nA(Y;X) measures the amount

of predictability I has for I1 for any jointly distributed random

vectors X and Y. This relational notion is, of course, directional

in that we are using the information in X in order to predict Y.

To further understand this predictive relationship, it is natural to

attempt to find what information in Y, that is, what function of y,

is most predictable from X. If we allow the consideration of all

suitable measurable functions of Y, and follow the minimum norm approach

with 4 - , we are in essence, evaluating the sup-correlation p'(X,Y)

and finding the appropriate maximizing functions. As noted previously,

this often is a difficult task mathematically. Consequently, we proceed

analogously to the theory of principal components and canonical correlations,

and restrict attention to linear functions of Y. The goal then is to find

.... ' -"; " ,I " --.. . n ,, . . . L . . . I Il ': ... " : "" ' ' ... .. . .q
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which linear functions of Y are most predictable from X and to

measure thin degree of predictability.

For simplicity, we assume in the following that isnn

singular; however, this could be avoided by examining determinantal

equations.

Theorem 4.1. Let 1: q xl1, X: p xlI be jointly distributed

random vectors with tr E < and nonsinguler. Then

2, . - -

max " W§YM) - )X.(EZCov E(Y~)) (4.1)

where AMXdenotes the largest eigenvalue. Furthermore, this max

ocur a B- .MAX, where c is any nonzero constant, and HA

Is an eignuvector corresponding to

Proof,

M1lax n2 (@'!x) -Max Var EQZ1fl

4E Cov E.(YI)'
imax 

P

where y- so that the result.is Immediate (e.g., Reo (1973, p. 62)).

An Immediate Implication of Theorem 4.1 Is the following corollary,

whose proof is obvious.

-ir W
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Corollary 4.1. Let Y: q x 1, X: p x 1 be jointly distributed

random vectors with tr EC and E.Y nonsingular. Then

maxq P p2 (0, g() - X (; JCov E (YIVEP),

g: RP--R

and occurs at c'Ye~xa

dc g(:!) andA

The result of Corollary 4.1 Is In some sense "half way" between

linear canonical correlation for arbitrary random vectors and the sup-

correlation of Sarmanov and Zaharov (1960).

For convenience, we introduce the following definition:

Definition 4.1.* Li (!;X) - (Xi(r-"cov E(YIX)E ))h, where X,

denotes the I th largest eigenvalue.

When 'T: q x 1 and X: p x 1 have a joint multivariate normal

distribution L1(Y;Z.) - C1(Y,X,), the first canonical correlation. For

E&ample 1.3, L 2((X1,X )'%(X 3,NY)) is the largest root of the

determinantal equation I~2~- lIU0where El*3 Is given

by (3.7) and E 2 by (3.8).

As In canonical correlation theory, multivariate versions of

Theorem 4.1 could be obtained by examining uncorrelated iterations of

(4.1). Another approach which we follow Is to mploy A . Suppose

* Is qxlI and X Is pxl1; let 3 be an r xq matrix and A

be an r x r positive definite matrix. Consider maximizing ~A~~

over flsatisfying ;Sy 4l When 4 ,this is equivalent to
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Theorem 4.2. Let Y: q x 1, Z: p x 1 be jointly distributed

random vectors with tr I < and E nonsingular; and let A: r x r

be positive definite. Then

max (BY;X- (rl L Y;!)h
:r xq -l

Proof. Observe that

I2
max Y12 max tr(A-lcov E(ByIX))/(tr A-1Z

B B BY

= max tr(A % Coy ECYIX)B'4 )

V tr(& "B EyB'A" h)

-r max tr cov E-Ix)C ,

C: CC' - I.

where C -AC B '.The result follows immediately (e.g., Rao (1973,
- - IEE

pp. 63)).

*1 For XY having a multivariate normal distribution max nIA(BY;X) - r"  C (YX
B iml

i.e., the average of the squares of the first r canonical correlations.1 An actual maximizing B in Theorem 4.2 is given by

B- A ;S(e....e) YEA.
-' -- r -Y

where a Is an eigenvector corresponding to LI(T;j) and

are orthogonal vectors.

The q values, L L (;X)) if - l,...,q, could themselves be

viewed as measures o M deendeses of upon I t heir properties

explored. Note that knowing these q values is equivalent to knowing

m |<4
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the q elgenvalues, L 1Y), i -964q

For a fixed A, the estimation of inA(1;1) based upon n

observations would be of Interest, as would the estimation of LiCT ;X).

Both the actual estimation techniques employed and the resultant

distribution theory would be dependent upon the underlying model

assumptions.
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