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EVALUATION

This effort is a part of Research Area 7, Electronics, Sub-Area 3,
Communications. The objective is to investigate the convergence
properties of adaptive algorithms for arrays with a large number of
antenna elements or weights. This research work supports RADC TPO
Sub-Thrust 4B1, Adaptive Processing for Communications. The overall
objective of this sub-thrust is to advance the state-of-the-art in
adaptive spatial processing to provide an Electronic Counter Counter-
measure (ECCM) capability for Air Force Communications Systems.

In this research effort, it was demonstrated that the judicious
placement of a few extra antenna elements provides significant
performance improvement. It was also shown that convergence rates and
beam patterns are closely related to the eigenvalues of the antenna/
signal system. A closed form expression was derived for the eigenvalues
of a general antenna array with two jammers. From this expression, the
estimated convergence rate and the optimum beam pattern are found for

particular antenna array geometries.

This is a significant step in providing the analytical expressions
enabling selecting the optimum antenna array geometry for convergence
and beam pattern shape given bounds on overall physical array dimensions
and numbers of antenna elements.

-(J, 4i LIZ-

JOHN A. GRANIERO
Project Engineer
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1. INTRODUCTION

Adaptive antenna array systems can be used to steer nulls in the

direction of arrival of interfering signal sources (janmers). Previous

analyses and simulations relating to these adaptive null steerers, have

focused attention on the nulling of a single jammer or of multiple

jammers with equal power and wide angular separation. 2 ,3,4

When two or more jammers with widely differing power levels are

involved, the time required to null all jammers can become very long in

comparison with the time required to null a single Jammer. This problem

has been pointed out by White 5 and Reed e~t at.6  Furthermore, the

antenna pattern at convergence may fail to exhibit the sharp nulls that

are needed to eliminate interference with minimal impact on desired

signals.

The purpose of the research reported in this paper is twofold.

First, the impact of surplus elements on convergence rate is explored.

Analyses and computer simulations are presented to demonstrate the

effectiveness of adding extra antenna elements to the adaptive null

steerer CANS) in order to speed up the adaptive nulling process for two

closely spaced jammers with disparate power levels. Second, the effect

of surplus elements on the converged beam pattern is considered. A

closed form expression for the optimal beam pattern is used to directly

compute the converged beam pattern. This closed form expression

provides confirmation of the simulation results and furnishes a computa-

tionally efficient means of exploring the converged beam patterns for

different element configurations.

3
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11. DEMONSTRATION OF THE PROBLEM

A. Rate of Convergence

To demonstrate the slowness in the nulling process, a mi nimal

1daptive sidelobe canceller structure (Fig. 2-1) having one primary

element and two auxiliary elements is employed to null two jammers,

designated as follows:

a Jammer I with power 100, incident
at 400, frequency = 0.231/T

=2 jammer 2 with power 1, incident
at 550 frequency 0.170/T

T-* sampling period

The array elements are spaced a quarter wavelength apart at the frequency

of 0.2/T. The angular position of J , is chosen rather arbitrarily. while

that of J2 .Is chosen reasonably close to J,. The desired signal. not

explicitly included in this simulation, was assumed to be of much lower

power level than that of either Jamer. No constraints were used in this

system to prevent cancellation of the desired signal. The intent Is to

obtain a beam pattern of unit gain in all directions except whert high

power jammers are incident. There, the gain should be very small indeed.

To focus attention on the essence of the problem it is assmed

that the jammers are narrowband signals which may be approximated by

sinusoids. Thus 900 phase shifters (instead of tapped delay lines) are

used on each auxiliary antenna element. The LN4S adaptive algorithm7

is used in a simulation involving the configuration of Fig. 2-1. After

a few adaptations the weights are frozen and the resulting antenna beam

pattern is plotted. Then the adaptive process is resumed and the

tThe beam pattern is the array response to a unit power test signal
which is swept over 3600 while keeping the adjustable weights frozen.

4
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pattern plotting procedure is repeated at frequent intervals. It may

be noted that no noise is added to the signals in order to concentrate

exclusively on the convergence problems due to the jammning signals.

Figures 2-2a through 2-2d show a time sequence of beam patterns

achieved by the above simulation as adaptation proceeds. The arrows in

the figure indicate the positions of the Jammers.

From Fig. 2-2a it is clear that the high-power jammer is nulled

quickly, but the low-power janmer is essentially unaffected at the

outset. In Fig. 2-2b the pattern has changed substantially; but it still

shows little nulling effect in the area of the low-power jammier. After

about 40,000 adapts the low-power signal begins to be nulled as shown

in Fig. 2-2c. Well formed nulls begin to occur after about 70,000

adapts. Good nulls are achieved by about 120,000 adapts. For the

purpose of this paper, convergence may be defined as the minimum number

of adapts needed to reduce the output power to below I x 10- . For the

configuration in Fig. 2-1, this occurs around 141,000 iterations. The

converged pattevn is shown in Fig. 2-2d. If the sampling rate were

1 MHz, 141,000 adapts would require 0.141 sec.

The sluggishness of the adaptive process in nulling the low-power

janmmer may be explained with the aid of the analysis presented In

section 111.

B. Final Pattern Characteristics

The converged beam pattern (Fig. 2-2d) of the minimal system is

syimmetric about 00 because a line array of antenna elements Is unable

to distinguish between positive and negative angles of arrival. The

additional nulls introduced by synmmetry are undesired since they may be

6
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in the direction of the desired signal. The broadness of the nulls

also may cause attenuation of any signal with an angular location that

is close to that of either of the symmetric nulls. A desirable pattern

would be omnidirectional with sharp nulls in only the directions of the

jammers.

The improvements in the final pattern due to restructuring of the

antenna array will be detailed in section VII.
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11. ANALYSIS RELATING TO CONVERGENCE RATE OF ADAPTIVE ARRAYS

A generalized version of the adaptive antenna array of Fig. 2-1 is

shown in Fig. 3-1. The kth auxiliary element is located at a distance

Lk (given in units of wavelengths) from the primary element at as angle

ak with an arbitrary reference axis. Two jammers (J, and J2 ) with

powers p1 and P2 (at each antenna element) arrive at angles 4,1 and q2

as shown in the figure.

Central to the analysis of the adaptive linear combiner of the type

used in Fig. 3-1 is the correlation matrix R (Widrow et a ) 7 defined by

R 0 E(,Xs) (3-1)

where E(X1 ,X3 ) is the statistical correlation between the signals

Xi and X where i, j = 1, 2, ... , 2n. The speed of convergence is

intimately related to the elgenvalues of R, as can be seen from the

following.

For stability of the U4S adaptive algorithm [see (24) of Widrow 7

the adaptation constant p must satisfy

1/Xmax 0 (3-2a)

where Xma x is defined as the maximum eigenvalue of the R matrix.

Maximum speed is obtained with

p = l/2Xma x  . (3-2b)

The dynamics of the adaptive system depend only on the nonzero

eigenvalues of R. For every nonzero eigenvalue Xi. the time constant

T of the corresponding mode is given by [see (27) of Widrow
7 ]

9
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= /2i . (3-3)

(Ti is dimensionless. It is expressed in number of adapts.)

IThe rate of convergence with a specified ij is thus bounded above by

the minimum nonzero eigenvalue k,,n" From (3-3):

'max = ll2P~m.n (3-4)

Using relation (3-2b), when adapting at the maximum rate consistent with

the requirements for stability, the time constant of the slowest mode

will be

'max m X axI min (3-5)

In practice the p is required to be small compared with lXmax to keep

the misadjustmentt within an acceptable limit. Therefore Tmax is

greater than that indicated by equation (3-5). Nevertheless, the ratio

Amax Amin in the right hand side (RHS) of (3-5) is a useful measure for

comparing speeds of convergence, as will be seen from the examples

discussed in sections IV and V.

From a detailed analysis given in Appendix A, it is shown that the

elgenvalues for the general case in Fig. 3-1 take on the values given

by the following expressions:

tUsing the definition from Reference 7:

HisadJustment M Average excess mean squared error (se)
mse obtained with optimum weight setting

11



2 (pl+p2 ) + (P-2 + P2P IUu*2 1]

2 2f(PiP2) - [n2 (P2) 2 + P2PlIUlU2I 2]

=~ I ; "n+2 = " 2

I' 0 for m (1{,2,nl,n+21

where

U j le , e ... e2 j (3-6)

j = 1, 2 (janler index)

U1  Complex conjugate transpose of U1

fkj 2wtk cos(1lj-%)

k - 19 .... n (auxiliary element index)

tk =distance of kth antenna element from the
primary antenna element (Lk given in units
of wave length)

=k Angle of kth element with respect to the
reference axis (see Fig. 3).

*i Angle of ith jammer

Pi Poe of ith jamer

12



The rat-io of maximum elgenvalue to minimum nonzero elgenvalue is

thus given by

AXmax A
A'min '

(P- 2  n1 2 (3-7)

22 2I

(p 2) 1___ 2 +1 -a--1
2 4

From the definition of U. in (3-6) it is seen that 1uUU21 varies

between 0 and n. Thus for given p, and p2 (P1 > P2), the ratio

"ax /X mi varies between p,/2and - axNin must be kept small in

order to keep T max small [see (3-5)]. Therefore the number of elements

and their geometrical arrangement in the array are to be chosen such

that the ratio Xmax/Amin is kept near p1/P2 for most *.and *2 of

practical interest. Note that *, - 2 -- *kl - k2 U 1 -b U~ 2

1U *U2  -Pn,which implies from (3-7) that ma/ Ami

To obtain a better understanding of the implications of (3-6) and

(3-7), compare two special classes, namely:

MI p - ,-P

Subsiltuting in (3-6) and (3-7) yields

X1  Anx p(n + 1U21)

AX X n+ p(n - IU~u2I (3-8)

)m-0 otherwise

13



"Max = 1 + 1u21/n (3-9)
"mtn I -IJUlUz/n

(P) I P2

Making first-order approximations in (3-6) and (3-7) it cam be

seen that

'I Xn+l nPl

A2 = n+ 2  [ n ("10

Am 0 otherwise

-max _ F 1 [ (3-11)"min P2 + ju*u I/n 1 I Iu u /n
~' 1~ 21U1U 21/nJ i

When 1U*U 21/n approaches 1 it is seen from (3-9) and (3-11) that

the eigenvalue disparity (i.e.,.the ratio Amax/"min) increases without

bound, regardless of the disparity in jammer power levels (i.e.. the

ratio pl/P 2). The elgenvalue disparity in (3-11) is approximately

0.25 pl/p2 times the eigenvalue disparity in (3-9). It may be observed

from (3-10) that the high-power jammer determines the largest elgenvalue.

This implies [according to (3-3)] that the high-power jammer is attenuat-

ed quickly. From (3-10) it is also seen that the smaller egenvalue is

determined by the low-power jammer, by the angular separation between

14
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the jammers, and by the array configuration. Thus for 1U1U21/n

approaching 1, we see that this eigenvalue becomes quite small. This

explains why the low-power jammer was attenuated very slowly in Fig. 2-2.

When IUiU 2 1/n approaches 0 it is seen from (3-8) that both the

eigenvalues are the same and hence the ratio Xmax/min approaches 1.

the same ratio in class (ii) becomes only pl/p 2 .

To summarize the above, it may be stated that the etgenvalue

disparity varies between and - as the IU u2I/n varies between 0

and 1. lUIU 2 I/n in turn depends upon the angular positions ('l, *) of

the two jammers and on the number of antenna elements and their

geometrical arrangement. For a given range of values of 1 nd *2,

the number of elements and their arrangement may be chosen such that

lU*U 21/n may be kept small, which in turn will keep the elgenvalue

disparity near the jammer power disparity.

Examples of various array configurations are examined in the next

section in order to study their effect on the eigenvalue disparity.

15
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IV. ESTIMATING RELATIVE CONVERGENCE RATES IN VARIOUS ARRAY CONFIGURATIONS

Several antenna array configurations were tried in order to study

the elgenvalue disparity for different numbers of elements and various

element configurations. One of these configurations has already been

shown in Fig. 3-1, where the element locations are shown together with

the phase shifters and the adaptive linear combiner. Other array con-

figurations are shown in the "a" parts of the figures in this section.

In these latter figures, only the element locations are shown explicitly;

phase shifting and adaptive linear combining are understood to follow the

pattern established in Figures 2-1 and 3-1.

Figure 4-1 and the "b" parts of the remaining figures in the section

are plots of the normalized eigenvalue disparity (NED), which is defined

as [max/Xmin]/)pl/P2] for the particular configuration under considera-

tion. In each case the angular position of Jammer 1, i.e., 4,, is fixed

arbitrarily at 40 while that of jammer 2, i.e., ,2' is varied between

-1800 and 1800. Normalized eigenvalue disparity is plotted as a function

of *2"

Figure 4-1 is the NED plot for the linear array with two auxiliary

elements that was used in Section 11 to show that very slow convergence

can be experienced for closely spaced jammers with disparate power

levels. The particular case that was examined involved a 550 incidence

angle for the second jammer J2 . From Figure 4-1 it can be seen that the

NED for this incidence angle is approximately 45. This large eigenvalue

disparity shows why a very long adaptation period was required for this

particular antenna/signal configuration.

16



Figure 4-1 also indicates that similar convergence problems can be

anticipated over a broad range of possible J 2 arrival angles.

Particularly difficult convergence problems are indicated at J2arrival

angles that approximate the JIarrival angle. This result runs contrary

to intuition and experience since it would be expected that a single,

slightly broadened null would form quickly and eliminate both jawners in

such cases. Appendix D examines the apparent conflict between the

results indicated by the NED plot and the results that have been observed

in practice. It is shown that, almost paradoxically, both viewpoints

have their validity and that the choice of viewpoint depends upon the

specification of initial conditions and the definition of convergence.

The NED plot for the linear configuration of Fig. 4-2a is shown in

Fig. 4-2b. This plot is very similar to that of Fig. 4-1, though the

value of NED for each 2is smaller than the corresponding value in

Fig. 4-1. At *2= 550, NED for the three auxiliary case is 17.1, which

is 2.6 times smaller than the NED in the linear configuration with two

auxiliaries. This indicates that the nulling process in the array with

three auxiliaries will be correspondingly faster than that in the array

with two auxiliaries.

A simple way to break the symmetry of the linear array is to use a

triangular array such as that shown in Figure 4-3a. Comparing Figure

4-3b with Figs. 4-1 and 4-2b, it is evident that, in the region where

1I#1 - 21 is small, the normalized elgenvalue disparity (NED) is sub-

stantially less for the triangular configuration than the NED for the

linear configurations with two or three auxiliary elements. As a

specific example, at *2 = 55 0 the NED for the triangular configuration

is 12.5, while the NED for the linear configuration (Fig. 4-1) is 45.0.

17
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Figure 4-1. NED Plot for the Linear Array with
Two Auxiliary Elements.
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Figure 4-2. Antenna Geometry and NED Plot for the
Linear Array with Three Auxiliary Elements.
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Figure 4-3. Antenna Geometry and NED Plot for the Triangular Array.
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That is, the NED in the triangular configuration is 3.6 times smaller

than the NED in the linear configuration. Using the lower bound on

Tmax [i.e., (3-5)] it is estimated that the adaptive nulling process in

the triangular configuration is about 3.6 times faster than that in the

linear configuration.

The hexagonal configuration of Fig.. 4-4a, a natural extension of

the triangular configuration just described, was also tried. In the

region -50o < g < 1100, the NED plot shown in Fig. 4-4b appears identi-

cal to that in Fig. 4-3b. In the other regions the NED is somewhat

better (i.e., smaller) than that in Fig. 4-3b. Thus the hexagonal con-

figuration may be expected to exhibit convergence behavior much like the

triangular. At *2 = 550 the NED is the same as in the triangular case

and hence the convergence rate in both cases is expected to be the same.

Next consider the configuration shown in the Fig. 4-5a, which

consists of two concentric triangles. The inner triangle is the same

as that of Fig. 4-3a. The outer triangle has its vertices at a radius

of 7.75 wavelengths (which is 30 times the radius of the inner one).

The resulting NED plot is shown in Fig. 4-5b. Except for a very small

region around 40 (the position of Jammer 1) the value of NED rarely

exceeds 10. For the example of P2 = 550, the value of NED is 1.13.

This values is approximately 11 times smaller than the corresponding NED

for the single small triangle case (Fig. 4-3b). This indicates a corre-

spondingly faster convergence rate in the two triangle case.

Comparing the two-triangle case (Fig. 4-5b) with the two-auxiliary-

element linear configuration (Fig. 4-1) the NED in the two-triangle case

is 40 times smaller than the corresponding NED in the linear case. Thus

it appears that the nulling process in the two triangle case will be 40

times faster than that in the linear case.

21
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Figure 4-4. Antenna Geometry and NED Plot
for the Hexagonal Array.

22

Mimi-



0
J2 @ 55, P2 - I, f2 .170/T

* 400 9 'P w 100,

o f- .231/T

1200 -0 0

0
v = Wavelength

ED.= Primary antenna element

a) 0 0 Auxiliary antenna element

r 4 : .. 1 0 3

o

'-I-.

Bo 102

mE

IN Position of J1
10-

€ 1 (Power 700)

(Angle 40P)

-180P - 180

Angular position of J2 * *2

b)

Figure 4-5. Antenna Geometry and NED Plot for the Array

Configured as two Equilateral Triangles.
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The reasoning which led to the selection of the two-triangle case

for study was as follows: It may be seen that elements spaced at a long

distance from the primary element experience a large time difference in

the signal. Hence i.MitiJvety a taoge Aepaaw on beboeen etementt

(a L uAge apeAattue) may tend to magni.y the appat t an9ua 4 hepaation

betueen cto.6eLy apaced jammeu. ThZ6 ragni6ica ton tend6 to teduce the

diapakity betueen eigenvatue6 o6 the adaptive ,uL ateeme&.

As a final case for examining relative convergence rates, the three-

triangle configuration of Fig. 4-6a was considered. This is an extension

of the two-triangle case; the inner and outer triangles of elements

remain unchanged. Figure 4-6b is the NED plot for this configuration.

The NED values in this case fall generally below the NED values for the

two-triangle configuration, and the strong spike at about 250 has been

suppressed. The improvement is, however, relatively small at most

angles. In particular, the NED value at i2 = 550 is 1.09, an insignifi-

cant improvement over the value of 1.13 that was obtained with the two-

triangle arrangement. It appears that convergence for the three-

triangle case will be about 41 times faster than the convergence

performance exhibited by the linear array with two auxiliaries.

The eigenvalue disparities have been discussed for various array

configurations based upon arrangements of elements in simple linear and

triangular patterns. The elgenvalue disparity is related to the time

constant Tmax of the slowest mode when adapting with the value of P

giving the highest convergence rate, in accord with equation (3-5). The

results obtained from the simulations given in the following section

confirm that the eigenvalue disparity can provide useful information

about convergence rate.
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Figure 4-6. Antenna Geometry and NED Plot for the Array
Configured as Three Equilateral Triangles.
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V. SIMULATION RESULTS

The principal thrust of this section will be the discussion of

convergence rate and a comparison of simulation results with the

estimates from the foregoing section. The beam patterns at convergence

will also be documented in this section for each antenna configuration.

Discussion of the beam patterns will, however, be deferred until

Section VII where the discussion can include material related to the

optimal beam pattern as well as the simulation results.

Simulations for the cases discussed in Section IV were conducted

in a manner similar to that described in Section 11 for the linear array

with two auxiliary elements. The same simulation program was applied

to all the arrays, and the number of adapts required to reduce output

power below I x i0- was determined for each array configuration.

Additionally, the beam pattern at convergence was plotted for each case.

Much of the data concerning convergence rate characteristics for

the different array configurations is summarized In Table 1. The

columns at the left side-of the table describe the array configurations

and give cross references to the figures that illustrate each geometry.

The center section of the table brings forward the pertinent information

from the normalized eigenvalue disparity (NED) curves of Section IV for

the particular case of interest, i.e., for jammer azimuths of 40 0 and

550* Additionally, this section shows the relative convergence rates

with the baseline configuration taken as the linear array with two

auxiliary elements. The right side of the table gives a summary of the

simulation data. The adaptation constant is shown for each case

together with the observed number of adaptations for convergence and
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an observed relative convergence rate. Once again, the relative

convergence rate is based upon the convergence rate of the linmw array

with two auxiliary elements.

Appropriate selection of the adaptation constant V was an important

consideration in conducting the simulation experiments. The major

concern was to assure that convergence times could be meaningfully

compared for the various array configurations; this was accomplished by

setting the adaptation constant experimentally for the linear array

with two auxiliary elements, and then adjusting the adaptation constant

for other cases so that the product of v and the array input poer

remained a constant. The value of V = I x 10- was selected far the

linear array with two auxiliary elements by conducting a few experimental

runs. A smaller value of Ui resulted in a slower convergence rate than

that shown earlier in Figure 2-2, with no improvement in the pattern. A

larger value of )i resulted in poor beam patterns due to Increased mis-

adjustment in the weight vector [see Widrow 8]. For other array con-

figurations listed in the table, V was set inversely proportiomal to the

number of auxiliary elements in each case. If pi were set smaller than

shown in the table, the adaptive nulling process would be slower than

that obtained with the given p, without any improvement in the beam

pattern. If p were set larger, the beam pattern would deteriorate In

comparison with that obtained with the given p

From Table 1 it is seen that the linear configuration with three

auxiliaries converged 2.8 times faster than the case in Fig. 2-I. This

is slightly faster than that estimated on the basis of eigenvalve

disparity. The converged beam pattern (Fig. 5-1) is similar to that

in Fig. 2-2d. The pattern shows similar notches in the jammer positions,

* and it is slightly better in other regions.
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For the triangular array configuration, the observed convergence

rate is 5.4 times faster than that for the linear configuration of

Fig. 2-1. It may be noted that the observed convergence rate is sub-

stantially faster than that estimated in Section IV by comparison of

the etgenvalue disparity. The converged beam pattern is shown in

Fig. 5-2.

The results of simulation of the hexagonal configuration are

essentially the same as those for the triangular. The convergence rate

is the same as for the triangular case. The beam pattern (Fig. 5-3) is

strikingly similar to that shown in Fig. 5-2.

The observed convergence rate in the two-concentric-triangle

configuration is about 34 times faster than that in the case in Fig. 2-1.

This rate is slightly lower than estimated on the basis of eigenvalue

disparity. The converged beam pattern is shown in Fig. 5-4.

The final configuration that was examined was the three-concentric-

triangle case. The estimates of convergence rate indicated that

performance would be only slightly better than that given by the two-

concentric-triangle case. In the simulation a minor improvement of 100

adaptations was obtained over the number of adaptations needed in the

two-concentric-triangle case. The beam pattern for the configuration

of three concentric triangles is shown in Fig. 5-5.
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VI. DERIVATION OF OPTIMAL BEAM PATTERN

A closed form solution for the beam pattern of the adaptive antenna

array of Fig. 3-1 will now be found.

Let W be the weight vector defined as

W = [wI w2 w3  w T (6-1)

where wi and wi+ n (i=l...n) represent the in-phase and quadrature phase

weights at element i. Let X be the vector of received signals at each

element. Then

x = [x1 x2 ... Xn ... 2nT (-2)

where the xi and x(i+n ) (i=l...n) represent the in-phase and quadrature

phase components of the signal at element i. Also let x be the signal

with power p at the primary element.

The output of the antenna array is given as

y z xo -wT.x . (6-3)

Consequently, the output power becomes

Ely 2] = - 2WTE[xoX] + WTECX.XT] W (6,4)

Define

P E[x0 .X]

and

R - E[X.X T
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Derivation of the sensitivity pattern for the array depicted in

Figure 3-1 is achieved as follows. Assume a sinusoidal plane wave of

power p and angle ip incident on the array. Then it can be shown that

E~x. XJ* x cos(Oi (6-6)

where

0 ~k = 0

~2r-tk cos(a k t <k < (6-7)

2ntk-n sin(a kfl-n n + I < k < 2n

Therefore

PIM x 0x1

P(ip) = =* E x o x2  (6-8)

P~~ x o x2n

and

x IX I 1 X 2 . .. xIx 2n

R(* E[x x. E (6-9)

x 2n I x2n'x2n

Hence, given the geometry of the array and the arrival angle of the

test signal, P and R can easily be calculated.
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In Appendix B it is shown that

LI Xk + ] jamer

where Qk is the kth eigenvector and X k is the k eigenvalue of

Rjammer' as defined ih Appendix C. Recall, also, that ON2 is the power

of the isotropic white noise incident upon every element. The vector

Pjammer' is similar in structure to the P defined in Eq. (6-8).

Specifically, it is determined by H independent jammers, in the follow-

ing manner.

M

Pjammer = P(*i ) (6-11)
it=1

where , is the arrival angle of jammer i. P('i) is defined by

Eqs. (6-5,6-6,6-7). Substituting (6-10) into (6-3) yields

Ey2] = -. pT k Q k T  (6-12)
jammer + aN2 * Pjammer

k=lk N

r Ti r Ti

+ P jammer I jkQ *R - I QkQ 2 PJae
k=1 k +aN [k=" Xk +O. a" N

Once the eigenvectors and eigenvalues are established, Eq. (6-12)

specifies the optimal beam pattern. Note that the above analysis is

true for M jammers. Appendix A derives eigenvectors and eigenvalues for

the two jammer case.
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VII. BEAM PATTERN CHARACTERISTICS

To compare the converged beam patterns of different antenna

configurations, a desired beam pattern must be established. For this

study, the desired beam pattern is unity gain in all directions except

where a jammer is incident on the array, where the gain should approach

zero.

In section VI, a closed form expression for the converged beam

pattern was derived. That expression was used to develop a program for

directly generating the converged pattern for a particular array. The

simulation results of Fig. 2-2d, took 141,000 adapts to converge. This

represents a substantial amount of computer time. The closed form

solution was used to generate the pattern of Fig. 7-la, verifying the

simulation results. Much less computer time was required to generate

this pattern than to generate the simulation results. The program using

the closed-form expression allowed quick comparison of converged beam

patterns for different array configurations.

Converged beam patterns for two basic antenna geometries, linear

and triangular, will be discussed. The linear array consists of omni-

directional antenna elements placed on a line. As mentioned previously,

a linear array results in undesired symmetric nulls. By adding additional

equally spaced elements, extra degrees of freedom are introduced into

the system. As can be seen in Figures 7-la, b, c the additional array

elements cause the nulls to become sharper, and introduce increasing

ripple into the beam pattern. The gain in the region between the two

jammers comes closer to unity as the number of elements is increased.
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The triangular arrays consist of antenna elements positioned as

shown in Figures 4-3a (3 elements), 4-9a (6 elements), and 4-6a

(9 elements). Each of the latter two figures builds upon its predecessor

by adding three additional elements. Note in Figures 7-2a, b, c that

the undesirable synmetric nulls are no longer present. As with the

linear arrays, as the number of elements is increased, the nulls sharpen,

and ripple is introduced.

Generally, increasing the number of auxiliary antenna elements

sharpens the nulls, in addition to increasing the convergence rate. A

triangular array eliminates the unwanted symmetric nulls.
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VIII. CONCLUSIONS AND DIRECTIONS FOR FURTHER STUDY

It has been demonstrated that the addition of a few surplus

auxiliary elements can effect a substantial improvement in the convergence

rate of an adaptive antenna array subjected to two closely spaced jammers

of disparate power level. A theoretical analysis showed that the

normalized elgenvalue disparity provided a good measure of adaptation

rate for any given configuration. Computer simulations confirmed the

validity of the analysis and furnished specific illustrations of array

geometries with convergence rates far better than that exhibited by a

minimal linear array. Additional work is needed to provide more specific

design guidance for arrays with goodc~ rence properties. It would

be useful to examine the question of optimal convergence rate for the two-

jammer case, given some set of constraints on array dimensions and element

count.

Considerable progress has been made in developing a technique for

studying the impact of antenna geometry on the converged beam pattern in

the two-jammer case. The closed-form expression for computation of the

beam pattern provided an efficient way to determine the pattern for any

element geometry that might be under consideration. Further work is

needed, however, to provide better insight into the synthesis of arrays

with good beam-pattern properties.

The concepts and results of this paper could also be extended to the

3-dimensional case, where jammers and array elements are no longer

coplanar. This will require techniques for representing the 3-dimensional

beam pattern in 2 dimensions. Consideration of the 3-dimensional

extensions has begun.
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Extension of these results to arrays containing many more than

three or four elements will be undertaken. New approximation methods

will be required to keep the algebraic expressions tractable and

insightful.
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APPENDIX A

The purpose of this Appendix is to obtain explicit expressions for

the elgenvalues and etgenvectors of the adaptive antenna array of Fig. 3.

Let the two Jammers arriving at i3 and *2 be sinusoids. Let the

weights attached directly to the antenna elements be labeled 1 through

n, and those attached after the -900 phase shift be correspondingly

labeled n + I through 2n. See Fig. 3.

The signal at the input to kth weight is given by

xk = 2p1 cos(wlt+e l-kl)

+ 2p2 cos(wzt+O2-k 2)

where, for i = 1, 2 we have

p1  = Jammer power i at each ant. ele.

Wi =Radian frequency of Jammer 1.

e6 = Uniformly distributed [0,2w] (Al)
random phase of the Jammer i
at the primary element.
(e1 is statistically independent

of e2.)

2wtk cos(*-%) for k = 1, ... n

*ki " 2,Lk-n cos( ti'-n) "

for k n+l, ..., 2n
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It can be seen that

E(xjxk) P1 cos(Ojl-kl) + P2 cos(Oj2-Ok2)

for j, k=l, ... , 2n (A2)

The correlation matrix R is defined by

R = [E(xjxk)J (A3)

Substituting from (AI) and (A2):

_( I D2CCI C+C 2 +(D I+D 2 )
R = I(Di+D2) .(D1+D2) (A4)

where CI , C2, DI and D2 are nxn matrices given by

[CilJk = Pi cs(Oji-Oki)

[l) = Pi s ji'ki)

1 I1, 2

j, k = I, ... , n

Using the theorem derived in Appendix C, the eigenvalues of R are

related to the eigenvalues of a complex matrix B given by

B _ CI + C2 + i[-(DI+D2 ) ]  (AS)

in the following manner: n elgenvalues (say X ,, X2, ... , Xn ) of R are

the same as those of B. The remaining n elgenvalues are related as

follows:
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Ak A k-n for k = n+l, ... , 2n (A6)

Writing B in terms of vector outer products of complex exponential

vectors:

B = Pl UIUI + P2U2U2  (A7)

where

le e"1  -io ni]

U = , , ... , j 1 2 (A8)

*

It can be seen that the rows of the Hermetian matrix U.U. are

linearly dependent. Thus U U is of rank 1, with one real eigenvalue,

and all other eigenvalues are zero. Since the columns of U U are also

all linearly dependent on U, U spans the eigenspace corresponding to

the one nonzero eigenvalue of U UJ*

Since B is a linear combination of U1UI and U 2 U2 , B will be of rank

< 2 for n > 2 with at most two positive eigenvalues. The eigenvectors

of B will be in the space spanned by U1 and U 2' Thus an eigenvector is

given by

r = Y1U1 + Y2U2 (A9)

where y, and Y2 are complex scalars to be determined from the following

derivation.

Combining (A7) and (A9),

Br - Y1 U[ 1In + 1 UU2)] + Y2 U2 2 (n + 2UU 1  . (AI)
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Since Br = Xr, for r to be an eigenvector

Y2  * YI *

p, n +-l U1 U2  = 2 n + U2U I (All)

r2.

Solving (All), a quadratic in T;

Y 1 1

_2 Y+P2) + [n(PPl)2 + P2PlIu u2 21
-- 2 .~ . (A12)

Yl PlU I U2

Substituting (A12) in (All) and using (A6),

11 2 2(O+P2 )  (PI-P2)2 + PlP2 U1U21

IN = P (p+P2 - (pl-P)2 + 1 21 2~z (A13)

Xn+l 1; "n+2 = '2

= 0 for m 1, 2, n+l, n+2}

Thus (A13) yields the eigenvalues for the configuration of Fig. 3.

By the theorem of Appendix C, the elgenvectors of R can be expressed

in terms of the eigenvectors of B, which will now be found.

Rearranging (Ag):

r -Yl(Ul +.12 U2 )
Y1
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From (A12);

let

An+[n 22+pp,~ 2b = -(P2-01 + (02-01Pz + PI P2lU1U21

corresponding to X.1 (A14)

and I

b2  2fl(pp) P j 2_p)2 + plP 2 1U*U21

corresponding to X2  " (A15)

Then

Y2 bl
= 1

for A1

and

Y2 = b2
71- 01U I U 2

for X2

Thus the two elgenvectors are

a x1( 1 + -b- U

+ b2
2 " I PlUU2Y2 • Xl 1 2-w

49
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Since the eigenvector can be linearly scaled, multiply both sides

by Y1 yielding the eigenvectors of the B matrix of (A5) as

r (PIUI*U2) U1 + b, U2  (A16)

r2  (PlUIU 2 ) U1 + 212  (All)

Applying the theorem of Appendix C, we can find the unnormalized

eigenvectors of the R matrix as:

1 L r 2) n+'I = er1)

corresponding to A1I and X - (A18)

I= [er)1 2)+2

corresponding to X 2 andXn2

(Ai8) expresses the elgenvectors for the configuration of Fig. 3-1.
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APPENDIX B

The purpose of this appendix is to derive the optimal weight vector,

Wop t, which minimizes the output power of the antenna array given in

Fig. 1.

The output power of this array (Eq. 3-3 of the main text) is:

- E[y] -- p- 2WtP + WtRW (B1)

Since 0 > , R must be positive definite or positive semidefinite.

Consequently Is minimized by finding the weight vector which satisfies

Ej . 0 (B2)

Differentiating Eq. B1 with respect to W gives

! = -2P + 2RW • (B3)
aw

Therefore,

Wopt 0 R'I • (84)

Addition of isotropic white noise of power a to the system results
in

Wop t  " ER + a2 1]-1 P . (BS)

Since R is positive samidefinite, it can be diagonalized using an

orthonormal set of etgenvectors. Let the first r etgenvalues be
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non-zero, and denote the corresponding r unit eigenvectors by

Q%' Q2- "'I Qr Choose the remaining n-r elgenvectors such that they

are orthonormal, and span the null space of R.

The matrix which diagonalizes R is

Q [Q- Q2 "'" Qr Qn]  (B6)

Note that

QtQ = QQt _ (B7)

and define

W = QtW ; =QW (B8)

QtX ; X = QX' (B9)

Let denote the white noise component of the signal on element i.

Now,

P = E[(x 0 + )(x.+ [n])
= E[x oX

= E[x oQXJ

a QE[XoX'J (810)

and define

pI s E[x X'] (811)
0

therefore,

S2 t
P. Qp P a QP# (812)
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Next, define

A adiag(A1, A 2 9. *9 A 0, O ... , 0]

a QtR XXQ

= Q tEEXxtJQ

= E[QtX (t)t

= E[X'(Xi)t (813)

= E((x!)2J (814)

For r < i < n, we have

X = 0 * E(x')] 0 (B815)

=j 0 for r <li<f n (B16)

Hence, the i th component of P' is given by

pi= E[xoxi']

. E~xO 0] for r+ I < i< n (517)

W j= 0 for r+I 1 n .(BIB)

Combining Eqs. (85,67,88) gives,

WO QtW~

Q t[R +4 a 211-1 QQ tp

0 [A + 21IPI (519)

i.N
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From Eq.(BlB), P' =0 for r +1I<1i< nl1 so

2ON)

ON)

W (820)

2
Pr'/(XrN

0

If follows from Eq. (812) that

pi~ = QIP (B21)

and so

{Q P/(Xk+ a 2 1 < k <r

= (B22)

10 r + I_ k< n

From Eqs. (86.88).
n

W > Qkwj (823)
k=1

Using the result of (B22) gives the desired expression:

r

L~~kk 1  + a24  P -(B24)

k-l QED0
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APPENDIX C

Proposition

Let S be a complex hermitian n x n matrix with elgenvalues

19x ) 2  " , n and corresponding elgenvectors E1, , E2, En . Then

a real symmetric matrix constructed as follows;

[-eIm S Re(S)J

has following elgenvalues and eigenvectors

Elgenvalues X,, "".. 9 .' *Xn

[Re CEk)]
Eigenvectors k rREk)J for k - 1, ... , n

k LUE-0
[-Im(E )

k [ e E k J for k =n+l,. .. 2n

Comments

1. Since S is hermitian (i) X,'s are all real

(ii) Es all complex

2. R is 2n x 2n symetric matrix and as expected has real elgen-

values and eigenvectors.
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Proof

R may alternatively be represented as

I .!,_'- .is + i'
R - - - - - (Cla)

= + S (C)

s S][-S - f (ClIc)

where

= ~[71-- " (C2)

Consider the eyh elgenvalue of S', At and the corresponding eigen-

vector E . Construct a 2n dimensional vector

16t i for I <t < n . (C3)
it]

The matrix product

i.e.
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[21XEj

a .t ~ (C4)

Thus Xtis the tth-eigenvalues and Gtis the eth eigenvector of J for

1 < t,< n. For (n+1) I mn < 2n we compute the eigenvalues and elgen-

vectors of as follows.

For each mn define t = r-n. Construct emas

Sma.for n +I< m <2n . (C5)

Proceeding as we did in (C4) we have

S E[Li& ~~~e i~

7 
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i.e.

'm'Ll (C6)

thus & is the mt eigenvector with

"m "mr-n

Since J is hermitian;

AA -7Ek~ Ar CE

Thus the elgenvalues of T are the elgenvalues of J, and the elgen-

vectors of 1 are the complex conjugates of the elgenvectors of

Now construct

Ok 6k+=I (C7)

where

I <k <2n

Using the definition of R in (Cic), form the matrix product R k

a AA + Jk +Jh + k~k

RQk - Akok + 'k + Jk (CS)

soI



Now consider J1 k and substitute for 4 from (C) and Wk from (C3) or (C5)

depending on value of k.

1 <k<n

- o 12c 1SEk SE k
.isEk +iSEk

n + 1 < k < 2n

-2 [-is + Ei k-:;

-0 (C9b)

Substituting results of (C9a) and (CMb) In (C8) we have

)k m kk • (CIO)

Thus k s the eigenvalue of R and Ok -
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Elgenvalues xk and Ak+n are equal, but the following argument shows

that 0k and 0 k+n are not linearly dependent.

Consider the equation

ak + b+n 0 o (C13)

If the only values (a'b) that satisfy (C13) are (0,0), then (k and

0 k+n are linearly.independent.

Using (Cll) and (C12)

!emT. ) -e (6 k n-n)+ ----
a -beR(& k

Jm(!k) el(k) nna[- -I [ 0
FIe(6k) -Im(6k)l ba

i-I

Let

Re(6k) I -Im(&6)
milk) Re(lk)

then

de k)

det I
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and

derte,) - 0Ie<Tbk,)-!-od- =
b= I t

det I

Therefore ak and a k+n are linearly independent.
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APPENDIX 0

Interpretation of the NED Plot for Small Jammer Separations

As was discussed in Section IV of this report, there is an apparent

conflict between the convergence rate indicated by the NED plot and the

convergence rate obtained in practice when the angular separation between

jammers becomes small. The values obtained from the NED plot are large,

showing that an extremely slow convergence mode exists. On the other

hand, intuition and experience indicate that two closely-spaced jamnmers

can be quickly eliminated using a single, broadened null. This appendix

examines these two viewpoints more closely and provides a resolution of

the apparent conflict.

In order to examine convergence rate in some detail, learning curves

were plotted for the three-element triangular array (Figure 4-3) using

several different jammer configurations. Figure D-1 is the learning

curve obtained with the strong jammer (Power = 100) at 400 and the weak

Jammer (Power = 1) at 410. For this 10 janmmer spacing, the error power

drops extremely rapidly to a value of less than I x 10- . This corresponds

to the rapid nulling that is intuitively expected from placing a single

notch on both signals. Once the rapid nulling has occurred, however,

the learning curve becomes essentially flat, and further reduction of

error power occurs at an extremely slow rate. This is the slow conver-

gence mode indicated by the large elgenvalue disparity. What is not

shown by the NED plot is the fact that, for the selected initial weights,

the slow mode becomes important only after error power has been reduced

to very low levels.
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Learning curves for the same array configuration and jammer powers

are shown in Figures D-2 and D-3 for the cases involving, respectively,

15 ad30 armr eprtin. h 10case is the same case that was

treated in the body of this report. The NED is 12.5, and convergence

occurs at about 26,100 adaptations. The 300 case has an associated NED

of 3.5, and convergence occurs after some 9,800 adaptations. The error

levels that are reached after the first few adaptation cycles differ by

approximately an order of magnitude, with the error in the 15 0 case

being the smaller of the two. In both cases, however, error levels after

the initial rapid adaptation remain relatively high with respect to the

arbitrarily selected convergence threshold of 1 x 10- . Convergence

along the slow mode dominates in both cases, and the NED ratio comparison

provides a rough measure of relative convergence rates:

NED Ratio = 125-

Ratio of Adaptation Times = 26,100 = 27
9,800 '

By making allowances for the differences in error levels after the

first few adaptation cycles, the NED ratio between the 15 0 and 300 cases

can be checked. Crossover of the two learning curves occurs at 3,340

adaptations. If times to convergence are compared from this point, the

NED ratio is seen to accurately reflect comparative rates of convergence

along the slow mode:

Ratio of Adaptation Times =26 100 - 3340 = 22,760 31
9.0 30 6,460 35
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71 It can be seen that the NED provides a useful measure of

convergence rate under the assumption that convergence occurs along

the slow mode. In practice, however, convergence will typically occur

along a mixture of modes, and the convergence time indicated by the NED

will overbound the true time. Further work is needed to define the

circumstances under which the estimate provided by the NED is useful and

to provide more accurate convergence measures where the estimate is

overly pessimistic. Consideration is being given to an exact solution

for the two-jammer problem. This solution will involve calculating the

optimal weights, determining the distance from the initial weights to the

optimal weights, and decomposing this distance into components along the

eigenvectors associated with the fast mode and the slow mode.
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