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EVALUATION

This effort is a part of Research Area 7, Electronics, Sub-Area 3,
Communications. The objective is to investigate the convergence
properties of adaptive algorithms for arrays with a large number of
antenna elements or weights. This research work supports RADC TPO
Sub-Thrust 4Bl1, Adaptive Processing for Communications. The overall
objective of this sub-thrust is to advance the state-of-the-art in
adaptive spatial processing to provide an Electronic Counter Counter-
measure (ECCM) capability for Air Force Communications Systems.

In this research effort, it was demonstrated that the judicious
placement of a few extra antenna elements provides significant
performance improvement. It was also shown that convergence rates and
beam patterns are closely related to the eigenvalues of the antenna/
signal system. A closed form expression was derived for the eigenvalues
of a general antenna array with two jammers. From this expression, the
estimated convergence rate and the optimum beam pattern are found for
particular antenna array geometries.

This is a significant step in providing the analytical expressions
enabling selecting the optimum antenna array geometry for convergence
and beam pattern shape given bounds on overall physical array dimensions
and numbers of antenna elements.

- /» “

JOHN A. GRANIERO
Project Engineer
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INTRODUCTION

Adaptive antenna array systems can be used to steer nulls in the
direction of arrival of interfering signal sources (jammers)., Previous
analyses and simulations relating to these adaptive null steerers have
focused attention on the nulling of a single jammer or of multiple
jammers with equal power and wide angular separation.2'3’4

When two or more jammers with widely differing power levels are
involved, the time required to null all jammers can become very long in
comparison with the time required to null a single jammer. This problem

has been pointed out by Hhite5 and Reed et aL.6

Furthermore, the
antenna pattern at convergence may fail to exhibit the sharp nulls that
are needed to eliminate interference with minimal impact on desired
signals.

The purpose of the research reported in this paper is twofold.
First, the impact of surplus elements on convergence rate is explored.
Analyses and computer simulations are presented to demonstrate the
effectiveness of adding extra antenna elements to the adaptive null
steerer (ANS) in order to speed up the adaptive nulling processAfbr two
closely spaced jammers with disparate power levels. Second, the effect
of surplus elements on the converged beam pattern is considered. A
closed form expression for the optimal beam pattern is used to directly
compute the converged beam pattern. This closed form expression

provides confirmation of the simulation results and furnishes a computa-

tionally efficient means of exploring fhe converged beam patterns for

different element configurations.




I1. DEMONSTRATION OF THE PROBLEM

A. Rate of Convergence

" To demonstrate the slowness in the nulling process, a minimal
adaptive sidelobe canceller structure (Fig. 2-1) having one primary
element and two auxiliary elements is employed to null two jammers,

designated as follows:

J‘ = Jammer 1 with power 100, incident
at 40°, frequency = 0.231/T

J2 = Jammer 2 with power 1, incident
at 55°, frequency = 0.170/T

T = sampling period .

The array elements are spaced a quarter wavelength apart at the frequency |
of 0.2/T. The angular position of J1 is chosen rather arbitrarily, while
that of Jz.js chosen reasonably close to J]. The desired signal, not
explicitly included in this simulation, was assumed to be of much lower

povier level than that of either jammer. No constraints were used in this

system to prevent cancellation of the desired signal. The inteat is to
obtain a beam pattern of unit gain in all directions except where high
power jammers are incident. There, the gain should be very small indeed.

To focus attention on the essence of the problem it is assumed

that the jammers are narrowband signals which may be approximated by
sinusoids. Thus 90° phase shifters (instead of tapped delay lines) are
used on each auxiliary antenna element. The LMS adaptive algor‘ithm7
is used in a simulation fnvolving the configuration of Fig. 2-1. After
a few adaptations the weights are frozen and the resulting antenna beam

pattern* is plotted. Then the adaptive process {is resumed and the

1:The beam pattern is the array response to a unit power test signal
which is swept over 360° while keeping the adjustable weights frozen.

4
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pattern plotting procedure is repeated at frequent intervals. It may

\ be noted that no noise is added to the signals in order to concentrate

' exclusively on the convergence problems due to the jamming signals.
Figures 2-2a through 2-2d show a time sequence of beam patterns

achieved by the above simulation as adaptation proceeds. The arrows in

the figure indicate the positions of the jammers.

From Fig. 2-2a it is clear that the high-power jammer is nulled

i o OGRS Ay ¢ F PN T R B A T e

quickly, but the low-power jammer is essentially unaffected at the
outset. In Fig. 2-2b the pattern has changed substantially; but it still
shows little nulling effect in the area of the low-power jammer. After
about 40,000 adapts the low-power signal begins to be nulled as shown
in Fig. 2-2c. Well formed nulls begin to occur after about 70,000
adapts. Good-nu11$ are achieved by about 120,000 adapts. For the
purpose of this paper, convergence may be defined as the minimum number
of adapts needed to reduce the output power to below 1 x 10°6. For the
configuration in Fig. 2-1, this occurs around 141,000 iterations. The §
converged pattesn is shown in Fig. 2-2d. If the sampling rate were
1 MHz, 141,000 adapts would require 0.141 sec.

The sluggishness of the adaptive process in nulling the low-power
jammer may be explained with the aid of the analysis presented in

section III.

B. Final Pattern Characteristics

The converged beam pattern (Fig. 2-2d) of the minimal system is
symmetric about 0° because a line array of antenna elements is unable

to distinguish between positive and negative angles of arrival. The

additional nulls introduced by symmetry are undesired since they may be




Array Response in dB to a Unit-power Test Signal
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in the direction of the desired signal. The broadness of the nulls
also may cause attenuation of any signal with an angular location that
is close to that of either of the symmetric nulls. A desirable pattern
would be omnidirectional with sharp nulls in only the directions of the

Jjammers.

The improvements in the final pattern due to restructuring of the

antenna array will be detailed in section VII.
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I1I. ANALYSIS RELATING TO CONVERGENCE RATE OF ADAPTIVE ARRAYS

A generalized version of the adaptive antenna array of Fig. 2-1 is
shown in Fig. 3-1. The kth auxiliary element is located at a distance
Lk (given in units of wavelengths) from the primary element at am angle
0 with an arbitrary reference axis. Two jammers (J] and Jz) with
powers p, and Py (at each antenna element) arrive at angles w] and wz
as shown in the figure.

Central to the analysis of the adaptive linear combiner of the type

BT SO il TN WUl MBI AR O AR 1, e

used in Fig. 3-1 is the correlation matrix R (Widrow et a£)7 defined by

R & (X, ;) (3-1)

where E(xi,xj) is the statistical correlation between the signals
Xi and xj where i, j =1, 2, ..., 2n. The speed of convergence is
intimately related to the eigenvalues of R, as can be seen from the
following.

For stability of the LMS adaptive algorithm [see (24) of Hidrow7]

the adaptation constant u must satisfy

Vg 21> 0 (3-2a)
where Xmax is defined as the maximum eigenvalue of the R matrix.
Maximum speed is obtained with

poe YD, . (3-2b)

The dynamics of the adaptive system depend only on the nonzero

eigenvalues of R. For every nonzero eigenvalue Ai. the time comstant

14 of the corresponding mode is given by [see (27) of Hidrow7]
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L 1/2;1)\i . (3-3)

(ti is dimensionless. It is expressed in number of adapts.)
The rate of convergence with a specified u s thus bounded above by

the minimum nonzero eigenvalue Amin' From (3-3):

Tmax = /gy : (3-4)

Using relation (3-2b), when adapting ai the maximum rate consistent with
the requirements for stability, the time constant of the slowest mode

will be

Tmax = Alnax“nn'n c (3-5)

In practice the uy is required to be small compared with lllnax to keep
the misadjustment* within an acceptable 1imit. Therefore Tpax is
greater than that indicated by equation (3-5). Nevertheless, the ratio
Apax/Amin 10 the right hand side (RHS) of (3-5) is a useful measure for
comparing speeds of convergence, as will be seen from the examples
discussed in sections IV and V.

From a detailed analysis given in Appendix A, 1t is shown that the
eigenvalues for the general case in Fig. 3-1 take on the values given

by the following expressions:

*Using the definition from Reference 7:

A - Average excess mean s?uared error (mse)
Misadjustment M mse obtained with optimum weight setting

n
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K 2 . 2
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M= gleytep) + (7 (0170p)" + oy [y
[ 2 ]
= N n 2 * 2
Xy = leyte,) - 7 (0y-05)" + 00 1U301°
Al T M3 T X
Am = 0 for m¢ {1,2,n+],n+2}
where
: T
s [0 s, ]
Uj - e » e J, Y e J > (3—6)
j = 1, 2 (jammer index)
U: ¢ Complex conjugate transpose of U]
¢ 4 2w, cos(y.-a, )
ki £ coslvy=oy
k=1, ..., n (auxiliary element index)
lk é distance of kth'antenna element from the
primary antenna element (lk given in units
of wave length)
o = Angle of kth element with respect to the
reference axis (see Fig. 3).
b = Angle of ith Jammer
p; = Power of jth jammer ‘)

.12
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The ratio of maximum eigenvalue to minimum nonzero eigenvalue is

thus given by

Amax - il
Amin A2
3 11
*
(0a40,) | (py=p,)2: Ju,u 12 |2
1% |2l e
.2 |3 PP T2
= = . (3-7)
PR _—
2 4
n
L -

From the definition of Uj in (3-6) it is seen that [u:uzl varfes
between 0 and n. Thus for given p, and p, (o, > p,), the ratio

A__/2

max’ “min must be kept small in

varies between py/p, and . A /Ao

order to keep T small [see (3-5)]. Therefore the number of elements

max
and their geometrical arrangement in the array are to be chosen such
that the ratio Amaxlxmin is kept near p]/pz for most ¢] and wz of

practical interest.

Note that ¥y ¥ 2> 6 ¢k2 » U] -+ 02 =
UgU,| »n,which implies from (3-7) that A, /A .+
To obtain a better understanding of the implications of (3-6) and

(3-7), compare two special classes, namely:

(i) o290 =0,
Substituting fn (3-6) and (3-7) yields
»
N A = elne 1U,0,1)

*

Am = 0

otherwise

13
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*
hax 1 1Yl (3-9)

*
Mmin 1 - |4U,|/n

(i1) p >> 0,

Making first-order approximations in (3-6) and (3-7) it cam be

seen that

>
| ]

>
n

n+l ney

luju, |2
no, |1 - ‘22 (3-10)
n

[

A = 0 otherwise

Amax = fl ] 1 (3-11)
* * * i -
Mmin P2 [V + U, I/n 1- U, l/n

When |UTU,|/n approaches 1 it is seen from (3-9) and (3-11) that

the eigenvalue disparity (i.e., the ratio A ) increases without

max/Amin
bound, regardless of the disparity in jammer power levels (f.e., the

ratio 91,92)' The efgenvalue disparity in (3-11) is approximately

0.25 p]/pz times the eigenvalue disparity in (3-9). It may be observed
from (3-10) that the high-power jammer determines the largest efgenvalue.
This implies [according to (3-3)] that the high-power jammer is attenuat-
ed quickly. From (3-10) it is also seen that the smaller efgenvalue is

L Sk

determined by the low-power jammer, by the angular separation between R




the jammers, and by the array configuration. Thus for lu;Uzlln

= Y R L T e

= R R o B AT

approaching 1, we see that this eigenvalue becomes quite small. This

explains why the low-power jammer was attenuated very slowly in Fig. 2-2.
When IU:UZI/" approaches 0 it is seen from (3-8) that both the

eigenvalues are the same and hence the ratio 2___/)

max’ “min
the same ratio in class (ii) becomes only °]/°2'

approaches 1,

To summarize the above, it may be stated that the eigenvalue
disparity varies between p]/pz and « as the IU;UZIIn varies between 0
and 1. IU;UZ|/n in turn depends upon the angular positions (w],wz) of
the two jammers and on the number of antenna elements and their
geometrical arrangement. For a given range of values of ¥ and Vas
the number of elements and their arrangement may be chosen such that
IU;UZ}/n may be kept small, which in turn will keep the eigenvalue
disparity near the jammer puwer disparity.

Examples of various array configurations are examined in the next

section in order to study their effect on the eigenvalue disparity.

15 4




IV. ESTIMATING RELATIVE CONVERGENCE RATES IN VARIOUS ARRAY CONFIGURATIONS

Seéeral antenna array configurations were tried in order to study
the eigenvalue disparity for different numbers of elements and various
element configurations. One of these configurations has already been
shown in Fig. 3-1, where the element locations are shown together with
the phase shifters and the adaptive linéar combiner. Other array con-
figurations are shown in the "a" parts of the figures in this section.

In these latter figures, only the element locations are shown explicitly;
phase shifting and adaptive linear combining are understood to follow the
pattern established in Figures 2-1 and 3-1.

Figure 4-1 and the “"b" parts of the remaining figures in the section
are plots of the normalized eigenvalue disparity (NED), which is defined
as [Amaxlxmin]/[p]/pzl for the particular configuration under considera-
tion. 1In each case the angular position of jammer 1, i.e., Vﬁ- is fixed
arbitrarily at 40° while that of jammer 2, i.e., 171 is varied between
-180° and 180°. Normalized eigenvalue disparity is plotted as a function
of wz.

Figure 4-1 is the NED plot for the linear array with two auxiliary
elements that was used in Section II to show that very slow convergence
can be experienced for closely spaced jammers with disparate power
levels. The particular case that was examined involved a 55° incidence
angle for the second jammer JZ. From Figure 4-1 1t can be seen that the
NED for this incidence angle is approximately 45. This large eigenvalue
disparity shows why a very long adaptgtion period was required for this

particular antenna/signal configuration.

16
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Figure 4-1 also indicates that similar convergence problems can be
anticipated over a broad range of possible J2 arrival angles.
Particularly difficult convergence problems are indicated at J2 arrival
angles that approximate the J] arrival angle. This result runs contrary
to intuition and experience since it would be expected that a single,
slightly broadened null would form quickly and eliminate both jammers in
such cases. Append{x D examines the apparent conflict between the
results indicated by the NED plot and the results that have been observed
: in practice. It is shown that, almost paradoxically, both viewpoints
have their validity and that the choice of viewpoint depends upon the
specification of initial conditions and the definition of convergence.

The NED plot for the linear configuration of Fig. 4-2a is shown in

Fig. 4-2b. This plot is very similar to that of Fig. 4-1, though the
value of NED for each ¥, is smaller than the corresponding value in
Fig. 4-1. At wz = 55°, NED for the three auxiliary case is 17.1, which
js 2.6 times smaller than the NED in the linear configuration with two
auxiliaries. This indicates that the nulling process in the array with
three auxiliaries will be correspondingly faster than that in the array

with two auxiliaries.

A simple way to break the symmetry of the linear array is to use a
triangular array such as that shown in Figure 4-3a. Comparing Figure
4-3b with Figs. 4-1 and 4-2b, it is evident that, in the regfon where
Iw]-w2| is small, the normalized eigenvalue disparity (NED) §s sub-
stantially less for the triangular configuration than the NED for the
linear configurations with two or three auxiliary elements. As a
specific example, at ¥, = 55° the NED for the triangular configuration
is 12.5, while the NED for the linear configuration (Fig. 4-1) is 45.0.
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That is, the NED in the triangular configuration is 3.6 times smaller
than the NED in the linear configuration. Using the lower bound on
Thax [i.e., (3-5)] it is estimated that the adaptive nulling process in
the triangular configuration is about 3.6 times faster than that in the
linear configuration.

The hexagonal configuration of Fig. 4-4a, a natural extension of
the triangular configuration just described, was also tried. In the
region -50° <y 5_110°, the NED plot shown in Fig. 4-4b appears identi-
cal to that in Fig. 4-3b. 1In the other regions the NED is somewhat
better (i.e., smaller) than that in Fig. 4-3b. Thus the hexagonal con-
figuration may be expected to exhibit convergence behavior much like the
triangular. At wz = 55% the NED is the same as in the triangular case
and hence the convergence rate in both cases is expected to be the same.

Next consider the configuration shown in the Fig. 4-5a, which
consists of two concentric triangles. The inner triangle is the same
as that of Fig. 4-3a. The outer triangle has its vertices at a radius
of 7.75 wavelengths (which is 30 times the radius of the inner one).

The resulting NED plot is shown in Fig. 4-5b. Except for a very small
region around 40° (the position of Jammer 1) the value of NED rarely
exceeds 10. For the example of ¥, = 55°, the value of NED is 1.13.

This values is approximately 11 times smaller than the corresponding NED
for the single small triangle case (Fig. 4-3b). This indicates a corre-
spondingly faster convergence rate in the two triangle case.

Comparing the two-triangle case (Fig. 4-5b) with the two-auxiliary-
element linear configuration (Fig. 4-1) the NED in the two-triangle case
is 40 times smaller than the corresponding NED in the linear case. Thus
it appears that the nulling process in the two triangle case will be 40

times faster than that in the linear case.
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Fiqure 4-5. Antenna Geometry and NED Plot for the Array
g Configured as two Equilateral Triangles.
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The reasoning which led to the selection of the two-triangle case
for study was as follows: It may be seen that elements spaced at a long
distance from the primary element experience a large time difference in
the signal. Hence {intuitively a fLarge separation between elements
(a Large aperature) may tend to magnify the apparent angular separation
between closely spaced jammers. This magnification tends to neduce the
disparity between eigenvalues of the adaptive null steerenr.

As a final case for examining relative convergence rates, the three-
triangle configuration of Fig. 4-6a was considered. This is an extension
of the two-triangle case; the inner and outer triangles of elements
remain unchanged. Figure 4-6b is the NED plot for this coenfiguration.
The NED values in this case fall generally below the NED values for the
two-triangle configuration, and the strong spike at about 25° has been
suppressed. The improvement is, however, relatively small at most
angles. In particular, the NED value at ¥, = 55° is 1.09, an insignifi-
cant improvement over the value of 1.13 that was obtained with the two-
triangle arrangement. It appears that convergence for the three-
triangle case will be about 41 times faster than the convergence
performance exhibited by the linear array with two auxiliaries.

The eigenvalue disparities have been discussed for various array
configurations based upon arrangements of elements in simple linear and
triangular patterns. The eigenvalue disparity is related to the time
constant T . of the slowest mode when adapting with the value of u
giving the highest convergence rate, in accord with equation (3-5). The
results obtained from the simulations given in the following section
confirm that the eigenvalue disparity.can provide useful information

about convergence rate.
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Figure 4-6. Antenna Geometry and NED Plot for the Array
Configured as Three Equilateral Triangles.




V.  SIMULATION RESULTS

The principal thrust of this section will be the discussion of
convergence rate and a comparison of simulation results with the
estimates from the foregoing section. The beam patterns at convergence
will also be documented in this section for each antenna configuration.
Discussion of the beam patterns will, however, be deferred until
Section VII where the discussion can include material related to the
optimal beam pattern as well as the simulation results.
Simulations for the cases discussed in Section IV were conducted
in a manner similar to that described in Section II for the linear array
with two auxiliary elements. The same simulation program was applied !
to all the arrays, and the number of adapts required to reduce output *

6

power below 1 x 107" was determined for each array configuration.

Additionally, the beam pattern at convergence was plotted for each case.

Much of the data concerning convergence rate characteristics for j
the different array configurations is summarized in Table 1. The
columns at the left side of the table describe the array configuratfions
and give cross references to the figures that illustrate each geometry.
The center section of the table brings forward the pertinent information
from the normalized eigenvalue disparity (NED) curves of Section IV for
the particular case of interest, i.e., for jammer azimuths of 40° and
550, Additionally, this section shows the relative convergence rates
with the baseline configuration taken as the linear array with two
auxiliary elements. The right side of the table gives a summary of the
simulation data. The adaptation consfant is shown for each case

together with the observed number of adaptations for convergence and

26

|
q




UO13BJ3PLSUOD udpun °613u0d 3yl 404 s3depe JO °ON 9304 32UBBADAUCD 9AJIR(I4 PIAIISID 4

*Waa ‘XN® 2 YjiM Avade Jedui| 404 sjdepe jO °ON v
uOL3eA3PLSU0D JdpUn uojIRanbLiuod 3yl 403 Q3N
sjuswa|d@ A4ep||Xne 2 y3iM Aedade 4edul| 404 GIN v 9384 2uabusAuod aajIejas pareuyIsy 4
sa|bueial
J}43U3%U0D
0°s¢ 0£0‘v g-01¥22°0 £y 60°1 6 s34yl 9-p °6)3
s9|buejay
3343U32U0d
L vE 0EL*Y g-OLXEE"O 8°6¢ gLt 9 oMt G-p°bid
v°s 068°62 ¢ _OLXEE'0 9°¢ 0s°21 9 uobexay ¢-y *614
' 00L°9z  ¢.01XL9°0 9°¢ 05°2L £ albueiay ¢~ 614
8°2 00005 ¢-01%£9°0 9°2 1Lt £ aup1 2-¢ *6u4
0t 000° L¥l ¢-0LX1 0" L 16° v 2 aupl (- 64
$goim "baaruoy  pasp tpoa%Y GG = Ch ¢ op=lh 30 sjuswa(3  sjuawdl3  "ON
43AU0) 404 43AUO0T) 0 0 AdepLpxny Adeplixny  94nbid
aALe(ay s3depy CIYELIE ku \5 \H.E_z \E__s 30 o\ 30
30 "N = 03N £1330039
S3|nsay pue ejeg uoijejnwis . Xe, o paseg uopjeanbijuo) Aeaay

sajey aduabuaauo) pajew(ls3

SNOILWYN9I4NOD AVYYY SNOIYVA 30 SIILSIYILIVHVHI 3LV 3JINIDUIANOD
I 3lqel




an observed relative convergence rate. Once again, the relative
convergence rate is based upon the convergence rate of the linear array
with two auxiliary elements.

Appropriate selection of the adaptation constant u was an important
consideration in conducting thé simulation experiments. The major
concern was to assure that convergence times could be meaningfully
compared for the various array configurations; this was accomplished by

setting the adaptation constant experimentally for the linear array

T g gl T Bt T~ T Y S BT W e R eVt S

with two auxiliary elements, and then adjusting the adaptation constant
for other cases so that the product of u and the array input power
remained a constant. The value of u =1 x 1073 was selected for the
Tinear array with two auxiliary elements by conducting a few experimental
runs. A smaller value of u resulted in a slower convergence rate than
that shown earlier in Figure 2-2, with no improvement in the pattern. A
larger value of u resulted in poor beam patterns due to increased mis-
adjustment in the weight vector [see Widrow 8]. For other array con- :
figurations listed in the table, u was set inversely proportiomal to the
number of auxiliary elements in each case. If u were set smaller than
shown in the tzole, the adaptive nulling process would be slower than
that obtained with the given u, without any improvement in the Seam
pattern. If u were set larger, the beam pattern would deteriorate in
comparison with that obtained with the given u.

From Table 1 it is seen that the linear configuration with three
auxiliaries converged 2.8 times faster than the case in Fig. 2-1. This
is slightly faster than that estimated on the basis of eigenvalee
disparity. The converged beam patteﬁn (Fig. 5-1) is similar to that
in Fig. 2-2d. The pattern shows similar notches in the jammer positions,
and it s slightly better in other fegioﬁs.
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For the triangular array configuration, the observed convergence
rate is 5.4 times faster than that for the linear configuration of
Fig. 2-1. It may be noted that the observed convergence rate is sub-
stantially faster than that estimated in Section IV by comparison of
the eigenvalue disparity. The converged beam pattern is shown in
Fig. 5-2.

The results of simulation of the hexagonal configuration are

L RNyl I s XTI T i e

essentially the same as those for the triangular. The convergence rate
is the same as for the triangular case. The beam pattern (Fig. 5-3) is
strikingly similar to that shown in Fig. 5-2.

The observed convergence rate in the two-concentric-triangle
configuration is about 34 times faster than that in the case in Fig. 2-1.
This rate is slightly Jower than estimated on the basis of eigenvalue
disparity. The converged beam pattern is shown in Fig. 5-4.

The final configuration that was examined was the three-concentric-
triangle case. The estimates of convergence rate indicated that
performance would be only slightly better than that given by the two-

concentric-triangle case. In the simulation a minor improvement of 100

adaptations was obtained over the number of adaptations needed in the
two-concentric-triangle case. The beam pattern for the configuration

of three concentric triangles is shown in Fig. 5-5.
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VI. DERIVATION OF OPTIMAL BEAM PATTERN

A closed form solution for the beam pattern of the adaptive antemna

array of Fig. 3-1 will now be found.

Let W be the weight vector defined as k,

Wo= [wyowywy ...w ]T (6~1) 4

. 17273 """ "2n 3

where W, and Wi4n (i=)...n) represent the in-phase and quadrature phase ;
weights at element i. Let X be the vector of received signals at each i
element. Then i
- T ¥

X = [x] Xg eee Xp oo x2n] (6-2) i

where the X; and x(i+n) (i=1...n) represent the in-phase and quadrature g
\ d

phase components of the signal at element i. Also let Xq be the signal
with power p at the primary element.

The output of the antenna array is given as

o 7 A AW AT 7o 7 VP TV ST SO

y = x5 - WX . (6-3)
Consequently, the output power becomes
E[yz] = p- ZWTE[XOX] + NTE[X'XT] W . (6-4) f
Define
P = E[xo-X]
and

R = E[X-X'] .

PR T e WEANREPCEIN




Derivation of the sensitivity pattern for the array depicted in
Figure 3-1 is achieved as follows. Assume a sinusoidal plane wave of

power p and angle ¢ incident on the array. Then it can be shown that

Elx;-x, ] = coslo; - ¢,) (6-6)
where
0 k=0
& = 21r-£kcos(ak - ) . L<k<n (6-7)
2m-g, _sin(e, - -¥) n+lc<ck<on .
Therefore
0] T
pw) = [P | - g[70%2 (6-8)
L?;n(w)_ hf;XZn_
and

X1X) X3%2 - - - XyXp,

. . (6-9)

1]
m

R(y) = E[xixj]

¥ ¢ - - X2n%2n

b —

Hence, given the geometry of the array and the arrival angle of the

test signal, P and R can easily be calculated.
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In Appendix B it is shown that

k=1 Mk

where Qk is the kth eigenvector and

Rjammer’ as defined in Appendix C.

of the isotropic white noise incident upon every element.

Pjammer’ is similar in structure to

Specifically, it is determined by M independent jammers, in the follow-

ing manner.

E’: 0 Q' )
+ CN

Jammer

Ak is the kth eigenvalue of
2

Recall, also, that N is the power

The vector
the P defined in Eq. (6-8).

Once the eigenvectors and efgenvalues are established, Eq. (6-12)

specifies the optimal beam pattern.
true for M jammers.

the two jammer case.

Note that the above analysis is

Appendix A derives eigenvectors and eigenvalues for

(6-10)

M
Pjamnelr' = z P("’i) (e-11)
i=1
-where 2 is the arrival angle of jammer i. P(wi) is defined by
Eqs. (6-5,6-6,6-7). Substituting (6-10) into (6-3) yields
T
Q Q
24 _ T k “k . -
ELy"] = - Pjamer 1 oZ| * Piammer (6-12)
k=1 "k N
Cr r T
b S Q-0 R Q-G "
Jammer o Ak + °N2 ol Ak + oy 2 Jammier °




VII. BEAM PATTERN CHARACTERISTICS

To compare the converged beam patterns of different antenna
configurations, a desired beam pattern must be established. For this
study, the desired beam pattern is unity gain in all directions except
where a jammer is incident on the array, where the gain should approach
zero.

In section VI, a closed form expression for the converged beam
pattern was derived. That expression was used to develop a program for
directly generating the converged pattern for a particular array. The
simulation results of Fig. 2-2d, took 141,000 adapts to converge. This
represents a substantial amount of computer time. The closed form
solution was used to generate the pattern of Fig. 7-la, verifying the
simulation results. Much less computer time was required to generate
this pattern than to generate the simulation results. The program using
the closed-form expression allowed quick comparison of converged beam
patterns for different array configurations.

Converged beam patterns for two basic antenna geometries, linear
and triangular, will be discussed. The linear array consists of omni-
directional antenna elements placed on a line. As mentioned previously,
a linear array results in undesired symmetric nulls. By adding additional
equally spaced elements, extra degrees of freedom are introduced into
the system. As can be seen in Figures 7-la, b, ¢ the additional array
elements cause the nulls to become sharper, and introduce increasing
ripple into the beam pattern. The gain in the region between the two

jammers comes closer to unity as the number of elements is increased.
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Fig. 7-1, Beam Patterns at Convergence for Several LInear Arrays.




The triangular arrays consist of antenna elements positioned as
shown in Figures 4-3a (3 elements), 4-9a (6 elements), and 4-6a
(9 elements). Each of the latter two figures builds upon its predecessor
by adding three additional elements. Note in Figures 7-2a, b, ¢ that
the undesirable symmetric nulls are no longer present. As with the
linear arrays, as the number of elements is increased, the nulls sharpen,
and ripple is intreduced.

Generally, increasing the number of auxiliary antenna elements
sharpens the nulls, in addition to increasing the convergence rate. A

triangular array eliminates the unwanted symmetric nulls.
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VIII. CONCLUSIONS AND DIRECTIONS FOR FURTHER STUDY

It has been demonstrated that the addition of a few surplus
auxiliary elements can effect a substantial improvement in the convergence
rate of an adaptive antenna array subjected to two closely spaced jammers
of disparate power level. A theoretical analysis showed that the
normalized eigenvalue disparity provided a good measure of adaptation
rate for any given configuration. Computer simulations confirmed the
validity of the analysis and furnished specific illustrations of array
geometries with convergence rates far better than that exhibited by a
minimal linear array. Additional work is needed to provide more specific
design guidance for arrays with gooqﬁgggxgiz::ce properties. It would
be useful to examine the question of optimal convergence rate for the two-
Jjammer case, given some set of constraints on array dimensions and element
count.

Considerable progress has been made in developing a technique for
studying the impact of antenna geometry on the converged beam pattern in
the two-jammer case. The closed-form expression for computation of the
beam pattern provided an efficient way to determine the pattern for any
element geometry that might be under consideration. Further work is
needed, however, to provide better insight into the synthesis of arrays
with good beam-pattern properties.

The concepts and results of this paper could also be extended to the
3-dimensional case, where jammers and array elements are no longer
coplanar. This will require techniques for representing the 3-dimensional
beam pattern in 2 dimensions. Consideration of the 3-dimensional

extensions has begun.
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Extension of these results to arrays containing many more than
three or four elements will be undertaken. New approximation methods

will be required to keep the algebraic expressions tractable and

insightful.
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APPENDIX A

The purpose of this Appendix is to obtain explicit expressions for

the eigenvalues and eigenvectors of the adaptive antenna array of Fig. 3.

Let the two jammers arriving at w] and wz be sinusoids. Let the

weights attached directly to the antenna elements be labeled 1 through

n, and those attached after the -90° phase shift be correspondingly

labeled n + 1 through 2n. See Fig. 3.

The

th

signal at the input to k= weight is given by

X = Zp! cos(uﬁt+el-¢k])
+ 2p2 cos(w2t+92-¢k2)
where, for 1 =1, 2 we have

Py é Jammer power i at each ant. ele.

ne

w Radian frequency of jammer 1.

ne»

Uniformly distributed [0,2n]
random phase of the jammer {

at the primary element.

(e] is statistically independent

of ez.)

8

Zwlk cos(wi-ak) fork=1, ... n

O = §3%-n O30V ) - 7

for k = n+l, ..., 2n .

it b

(A1)




It can be seen that
E(xjxk) = D] c°5(¢j]’¢k]) + 02 C05(¢j2‘¢k2)
for j, k=1, ..., 2n | (A2)
The correlation matrix R is defined by
R & [E(xx,)] (A3)
7k *

Substituting from (A1) and (A2):

T T | +(0y4D,) (A4)
-(D]+Dz) l C]+C2

where C], Cz, D] and D2 are nxn matrices given by
[ci]jk = pi °°s(¢ji'¢ki)
[Di]jk = pi Si“(¢ji'¢ki)
i=1,2
Jyobk=1, ...y

Using the theorem derived in Appendix C, the efgenvalues of R are

related to the eigenvalues of a complex matrix B given by

n>

C, + €, + 1[-(D;+D,)] (AS)

in the following manner: n eigenvalues (say A], Az, cees An) of R are

the same as those of B. The remaining n eigenvalues are related as

follows:




Ak = Neon for k=n#l, ..., 2n . (A6)

Writing B in terms of vector outer products of complex exponential

vectors:
_ * *
B = p]U]U] + °2U2U2 (A7)
where

T

-idy . -i6,. -ig .
U, = [e Woe '8, .,e "J] i=1v 2 . (A8)

J

It can be seen that the rows of the Hermetian matrix Uj0; are

*
linearly dependent. Thus UjUj is of rank 1, with one real eigenvalue,
+*

and all other eigenvalues are zero. Since the columns of UjUj are also
all linearly dependent on Uj, Uj spans the eigenspace corresponding to

' *
the one nonzero eigenvalue of UjUj.

* *

Since B is a linear combination of U]Ul and uzuz, B will be of rank
<2 for n > 2 with at most two positive eigenvalues. The eigenvectors
of B will be in the space spanned by U] and UZ' Thus an efgenvector is
given by

r = Y]U] +YZU2 (A9)
where M and Y, are complex scalars to be determined from the following

derfivation.

Combining (A7) and (A9),

*

Yo « Y] k
Br = y]l.l] [p](n + -_YT U‘Uz)] + yzuz[pz(n + -Y—z- UZU])] . (A0)




Since Bl = AT, for I' to be an eigenvector

_ Yo % _ Y] *
A= p.ln*'?]—U]U2 = °2"+72'UZUI . (A11)
Y2
Solving (A11), a quadratic in 7
1
1
2 2
n n 2 * 2
YZ 'f(p]"'pz) + l:a‘ (pz'p]) + sz] lu'luzl ]
T = } x — - (A]Z)

Substituting (A12) in (A11) and using (A6),

1)

[ 2 H
= h " o0.)? *u_12
M= gleytep) + 7 (ogmep) 4 "1"2'”1"2'}

_ 1
n n? 2 * 2]2 5
Ay = 3loyte,) - 3 (01=p5)" + 00, U4, ] (A13)
Al 2 M e T A
Am = 0 form¢ {1, 2, n+l, n+2} . y

Thus (A13) yields the eigenvalues for the configuration of Fig. 3.
By the theorem of Appendix C, the eigenvectors of R can be expressed

in terms of the efgenvectors of B, which will now be found.

Rearranging (A9):

Y2
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: % From (A12);
 § Tet
1
2 2
d 4 n n 2 * 2
| corresponding to Al
and 1
, 2 Z\Pp.P1) = |7 PP PP2l% %
corresponding to AZ .
Then
21 _ b
'Y_' = *
1 p.lU]U2
for A]
and
¥ .
1 p]U.|U2
for >‘2
Thus the two efgenvectors are
b,
" - "1(” t——U,
14U

E

R W comg o A e . . . . e oo BT 1AL T RRD T,

D ST\ D . SRR e 5>

2 &

(Ar14)

(A15)




Since the eigenvector can be linearly scaled, multiply both sides

*
Py,
by » yielding the eigenvectors of the B matrix of (A5) as
= Y + byU 16
Iy = (eglyl) Uy + byl (A16)
= * ]

Applying the theorem of Appendix C, we can find the unnormalized

eigenvectors of the R matrix as:

0
~md

t
-0
310
o s~
31
i
S | ”
——
-
0
=
+
—

]
20 =
m! 3
o] o~
31 =
—tt )
A I g

corresponding to A] and An+1‘

Re(T,) -Im(T,)
Q ° In(F,) P One2 T “Re(T,]

corresponding to AZ and An+2

> (A18)

J

(A18) expresses the eigenvectors for the configuration of Fig. 3-1.
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APPENDIX B

The purpose of this appendix is to derive the optimal weight vector,

"opt

Fig. 1.

» Which minimizes the output power of the antenna array given in

The output power of this array (Eq. 3-3 of the main text) is:

E[yzl = p-aut

m
n

P+ ulry . (81)

Since £ > 0, R must be positive definite or positive semidefinite.
Consequently £ is minimized by finding the weight vector which satisfies

8 . o (82)

Differentiating Eq. Bl with respect to W gives

& . .
22 = P+ . (83)
Therefore,
W, = Rp (84)
opt .

Addition of isotropic white noise of power o: to the system results

in

W

opt = R+ZTP . (85)

Since R is positive semidefinite, it can be diagonalized using an

orthonormal set of eigenvectors. Let the first r efgenvalues be
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non-zero, and denote the corresponding r unit eigenvectors by
Q1, QZ' vees Qr' Choose the remaining n-r eigenvectors such that they
are orthonormal, and span the null space of R.

The matrix which diagonalizes R is

Q = [q Q... Qr .- Q1 . (86)
Note that
oo = " = 1 (87)
and define
o= QW W= QW (88)
o= Q% ;o ox o= o . (89)
Let yr denote the white noise component of the signal on element i.
Now,
M
P = E[(x, +n )X + no )]
= E[xox]
= E[onX']
= QE[on'] (810) |
and define i
P = E[x '] (811)
therefore,
pro=qtr ; P o= Qpr . (812) ;




Next, define

>
L]

diag[kl. Ags «ovs Ar. 0, ..., 0]

3 - QtRxe

qterxxtiq
eretx (gt0%)

Erx: (x)*]

hd
J

(T I

For r < i < n, we have

YA
A 0=>E(x.i)] = 0

x; 0 for r<is<n .

th

Hence, the i- component of P' is given by

N\
"

i Elx %3]

E[XOO] for r+1<i<n
> P! = 0 for r+l1<i<n .
Combining Eqs. (B5,B7,B8) gives,
W= o

- [y, + o211 ot

s [A+ aﬁl]-‘P' .

(813)

(814)

(B15)

(816)

(817)

(B18)

(819)




From Eq.(B18), P;=0forr+1<i<n,so

- 2]

PY/ (3 + o))

P30 + o)

W = . (B20)
2
P;/(Ar + °N)
0
If follows from Eq. (B12) that
Py = QP (B21)
and so
t 2
%W“k*%) 1<k<r
wi - . (822)
0 r+l<k<n
From Eqs. (B6,B8),
n
W=D om . (823)
k=1
Using the result of (B22) gives the desired expression:
r
t 2
WD aa +dd) P L (824)

‘
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APPENDIX C

Proposition
Let S be a complex hermitian n x n matrix with eigenvalues

x,, 12, cees An and corresponding eigenvectors E]. Ez, cees En' Then

a real symmetric matrix constructed as follows;

. [Re(s) -Im(s)
R [Im{S%'{' Re(Si]
has following eigenvalues and eigenvectors

Eigenvalues A]. vees An’ Al’ vees An

[Re(E, )
Eigenvectors |, = ThTE;) fork =1, ..., n

[-Im(E, _ )
K ie-(E; ;)— for k = n+l, cees 20
i -

Comments

1. Since S is hermittian (i) Aj's are all real

(11) Ej's all complex

2. Ris 2n x 2n symmetric matrix and as expected has real eigen-

values and eigenvectors.




Proof

R may alternatively be represented as

R = -12.[__5_13_515_.*_’_5] | (Cla)
-is +-Ts{ s +5
- Ms_tds], s pss (Cib)
2-is T s Z)-is s
= 3+ & (Cic)
where
t
s - "f[:?;*;-isi] ~ (c2)

Consider the lﬁh eigenvalue of S; AL and the corresponding eigen-

vector EL' Construct a 2n dimensional vector

(c3)

e
S
-t
1A
™~
1A
>
[ ]

The matrix product

f.e.




B Nt

:isEL - isEL

FZA LE I3

N =

A l‘l, . (ce)

Thus xz is the z"‘ eigenvalues and 8§ is the Lth efgenvector of 4 for

1<2<n. For (nt1) <m < 2n we compute the efgenvalues and efgen-

vectors of as follows.

For each m define £ = m-n. Construct € as

iE €
6, = = for n+1<m<2n . (C5)
Ee Ea-n

Proceeding as we did in (C4) we have

I EN L
s = 3[4 ‘
-L
(isE, + 1SE, | 120 i€
- e el L fTee L 1t
ZUSEer ) g, | Y,
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JCm = "L‘m = Am‘m

th

thus §, is the m~ eigenvector with

Since § is hermitian;

——

Thus the eigenvalues of &§ are the eigenvalues of 4, and the eigen-
vectors of 4 are the complex conjugates of the eigenvectors of .

Now construct

Q = 8+ 8

1<k<2n .
Using the definition of R in (Clc), form the matrix product R K
RQ, = (4+3)(5,45,)

46y + 48, + 36, + 38,

AEy + ka +48, + AkEk

=
S RALEL




Now consider Jfk and substitute for 4 from (C2) and _‘k from (C3) or (C5)
depending on value of k.

1<k<n

| =3l _ _
# -iSE, + 1SE,

= 0 (C9a)

3 -ISE, |+ isE,

"7
-SEk_n + st;_n
=0 . (C9b)

Substituting results of (C9a) and (C9b) in (C8) we have

qu = A0, . (C10)

Thus Ak is the eigenvalue of R and Ok.
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Eigenvalues Ak and Ak+n are equal, but the following argument shows
f that Q, and Q,, are not 1inearly dependent.

Consider the equation

aok + ka_m = 0 (C13)

If the only values (a;b) that satisfy (C13) are (0,0), then Qy and
Qu4p 2re linearly independent.

Using (C11) and (C12)

a Ee-(-si)_. + b :IE(Ekin.-_n-)_ = 0
Im(§, ) Re(s, . )

-

1
I
l
1

b a Im(Sk)
re(s,) |-mn(s,) | | a .
In§,) | Re(s,) b )
[ ]
Re(s, ) ; -Im{g, ) ;
IM(S,()E Re (6, )
[]
0 {-In(s,)
de [b‘ 17%e6, 7
a = = 0
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- By BNy e

and

Re(s,) { 0
det Imrik) )
b = : = 0

det §

Therefore Q and Qu4p 2re linearly independent.
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APPENDIX D

Interpretation of the NED Plot for Small Jammer Separations

As was discussed in Section IV of this report, there is an apparent

conflict between the convergence rate indicated by the NED plot and the

convergence rate obtained in practice when the angular separation between g
jammers becomes small. The values obtained from the NED plot are large, %
showing that an extremely slow convergence mode exists. On the other ;
hand, intuition and experience indicate that two closely-spaced jammers ?

7

can be quickly eliminated using a single, broadened null. This appendix

examines these two viewpoints more closely and provides a resolution of

PRy

the apparent conflict.

In order to examine convergence rate in some detail, learning curves
were plotted for the three-element triangular array (Figure 4-3) using
several different jammer configurations. Figure D-1 is the learning
curve obtained with the strong jammer (Power = 100) at 40° and the weak
jammer (Power = 1) at #1°. For this 1° jammer spacing, the error power

drops extremely rapidly to a value of less than 1 x 10'7. This corresponds

gty AT 4. N YT AT YOI -

to the rapid nulling that is intuitively expected from placing a single
notch on both signals. Once the rapid nulling has occurred, however,

the learning curve becomes essentially flat, and further reduction of
error power occurs at an extremely slow rate. This is the slow conver-
gence mode indicated by the large eigenvalue disparity. What is not
shown by the NED plot is the fact that, for the selected initial weights,

the slow mode becomes important only after error power has been reduced

to very low levels.
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Learning curves for the same array configuration and jammer powers
are shown in Figures D-2 and D-3 for the cases involving, respectively,

!50 and 30° jammer separations. The 15° case is the same case that was

treated in the body of this report. The NED is 12.5, and convergence
occurs at about 26,100 adaptations. The 30% case has an associated NED
of 3.5, and convergence occurs after some 9,800 adaptations. The error
levels that are reached after the first few adaptation cycles differ by
approximately an order of magnitude, with the error in the 15° case

being the smaller of the two. In both cases, however, error levels after
the initial rapid adaptation remain relatively high with respect to the
arbitrarily selected convergence threshold of 1 x 10'6. Convergence
along the slow mode dominates in both cases, and the NED ratio comparison

provides a rough measure of relative convergence rates:

.o_ 12,5 _
NED Ratio = =T 3.57
Ratio of Adaptation Times 2%4%%% 2.70 .

By making allowances for the differences in error levels after the
first few adaptation cycles, the NED ratio between the 15% and 30° cases
can be checked. Crossover of the two learning curves occurs at 3,340
adaptations. If times to convergence are compared from this point, the
NED ratio is seen to accurately reflect comparative rates of convergence

along the slow mode:

- 26,100 - 3340 _ 22,760 _
Ratio of Adaptation Times = *800 - 3340 —?ﬁigﬁ' 3.52 .
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It can be seen that the NED provides a useful measure of

convergence rate under the assumption that convergence occurs along

the slow mode. In practice, however, convergence will typically occur
along a mixture of modes, and the convergence time indicated by the NED
wilf overbound the true time. Further work is needed to define the
circumstances under which the estimate provided by the NED is useful and
to provide more accurate convergence measures where the estimate is
overly pessimistic. Consideration is being given to an exact solution
for the two-jammer problem. This solution will involve calculating the
optimal weights, determining the distance from the initial weights to the
optimal weights, and decomposing this distance into components along the

eigenvectors associated with the fast mode and the slow mode.
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RADC plans and executes research, development, test and
selected acquisition programs in support o4 Command, Control
Communications and Intelligence (C37) activities. Technical
and engineering suppont within areas of technical competence
48 provided to ESD Program Offices (POs) and othen ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and controf, sur-
veillance of ground and aerospace objects, intelligence data
collection and handling, information system technology,
{onospheric propagation, solid state sciences, microuave
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