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PREFACE

The work reported herein was conducted by the Arnold Engineering Development
Center (AEDC), Air Force Systems Command (AFSC) . The results of this research were
obtained by ARO, Inc., AEDC Group {a Sverdrup Corporation Company), operating
contractor for the AEDC, AFSC, Arneld Air Force Station, Tennessee, under ARO Project
No. P34F-31A. The research was sponsored by the Air Force Armament Laboratory.
Analysis of the data was completed on September 30, 1979, and the manuscript was
submitted for publication on February 1, 1980.
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1.0 INTRODUCTION

Interest in highly maneuverable, aerodynamically controlled missiles has increased in
receni years. Evaluation of mission capability for missiles of this category relies primarily on
the missile aerodynamics. It is well known that the missile static aerodynamics are
predominant in a mission analysis; what is not known is the importance of the dynamic
derivatives in such an analysis. It is necessary to define the effects of these parameters so that
in the future, an experimental 1est apparatus may be designed for their measurement and so
that accurate simulations can be performed.

This subject analysis documents the effects of only those dynamic derivatives that may
significantly affect the motion of highly maneuverable missiles. The derivatives investigated
are the direct derivatives Cmq, Cings C,_q, Cig» Cep, Cn,s and C,; the cross derivatives
Ce» Cnp. and C,,p: and the cross-coupling derivatives ng, C,,q, Cmp, and Cp, . The missile
configurations used for the investigation are representative of the conventional yaw-to-turn
and bank-to-turn missiles. The sensitivity of each configuration is documented with respect
to derivative variations Root loci, time response, and damping ratio plots are used.

2.0 METHOD OF ANALYSIS

The senmsitivity of flight vehicle motion to variations in aerodynamic and physical
characteristics is reflected in the longitudinal and lateral-directional stability modes. The two
longitudinal modes are short period and phugoid, and the three lateral-directional modes are
-roll, spiral, and duich roll. Linearized analysis of geometrically and aerodynamically
symmetric air vehicles in wings-level, nonrotating flight without sideslip does not require
more than a three-degree-of-freedom program since the longitudinal and lateral-directional
perturbations are truly uncoupled. However, for asymmetric geometry and nonzero-
rotational rates, the perturbations from the reference conditions are all coupled. In many
cases, the degree of coupling may be small; hence, a three-degree-of-freedom analysis would
be adequate, but when an attempt is made to determine the actual effect of the cross-
coupling between the longitudinal and lateral-directional motions, a six-degree-of-freedom
analysis is required.

The Arbitrary Degree of Freedom (ADOF) computer program was modified to provide
initial trim required for level and steady turning flight conditions. The program is applicable
to flight vehicles either with or without feedback control systems and can be used for any set
of degrees of freedom. The equations of motion and data input routines used in the program
are of a general nature and are not restricted by assuming a symmetric vehicle or an
equilibrium reference condition.
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The modes of motion are represented by the roots of the characteristic equation formed
by linearizalion of the six equations of motion.

Initially, all dynamic derivatives under investigation were individually assigned a value of
unity and then varied over a predetermined range. All other pertinent parameters were
maintained at the required trim values. The stability characteristics were recalculated for
each assigned value of the derivative, thereby mapping the effects on the five primary modes
of motion.

3.0 TECHNICAL DATA
3.1 MISSILE CONFIGURATIONS

Two missile configurations were selected for the dynamic derivative sensitivity study — a
conventional yaw-to-turn and a bank-to-turn configuration. The selection of a specific
missile for each configuration was made on the basis of current configuration design trends
and available wind tunnel data.

For the bank-to-turn missile, one of the early Interlab Air-to-Air Technology (ILAAT)
designs was selected and is shown in Fig. 1, along with representative full-scale dimensional
characteristics., The basic configurational components consisted of nose, body, wing, and
fins. The body makes a smooth transition from circular to an increasing elliptic cross section
to a constant elliptical main body.

A general research model known as the Aerodynamic Data Correlation {ADC) missile
was selected for the yaw-to-turn configuration. Representative full-scale dimensional
characteristics are given in Fig.' 2. The ADC model consists of an ogive nose section and a
cylindrical body with aft mounted cruciform fins.

3.2 AERODYNAMIC DATA
3.2.1 General

The rigid-body aerodynamic data are input to the stability axis systermn. Data are given in
table look-up form as functions of the variables shown in the equations of the Appendix. All
aerodynamic coefficients for both missile configurations are referenced to body cross-
sectional area and diameter.
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3.2.2 Wind Tunnel Measuremenis

The static aerodynamic data matrices used in modeling both missile configurations were
obtained from wind tunnel tests at AEDC., The static data for the bank-to-turn
configuration (Fig. 1) were obtained for the Mach number range from 0.8 to 3.5 and for an
angle of attack of up to 26 deg. The static data matrices for the yaw-to-turn configuration
(Fig. 2) were formulaied from data obtained in previous study at AEDC. The matrices
include data for Mach numbers from 0.6 to 3.0 and for an angle of attack from -6 through
26 deg.

The matrices for the dynamic aerodynamic data for the yaw-to-turn configuration were
formulated from data presenied in Refs. 1 and 2 and in other work at AEDC. These
matrices include data in the Mach number range from 0.6 to 3.0 and in the angle-of-attack
range from -6 through 26 deg. The roll damping characteristics are documented in Refs. 1
and 2, and pitch and yaw damping have been documented.

3.2.3 Estimated

The dynamic stability characteristics for the bank-to-turn configuration have not been
determined experimentally. Several prediction methods were reviewed for estimating flight
vehicle dynamic derivatives. Both semi-empirical {Ref. 3) and unsteady panel methods (Ref.
4) were reviewed. For the methods available, a semi-empirical method known as the USAF
Stability and Control Datcom (Ref. 3) appeared to be the most extensive and easiest to
implement. A portion of Datcom (Digital Datcom; see Ref. 5)'was used in estimating the
bank-to-turn dynamic stability derivatives. The Mach number and angle-of-attack ranges
for which the derivatives were estimated were, respectively, from 0.8 to 3.5 and from -6t0 26
deg. It should be noted that Datcom is valid only for the attached flow regime (low angle of
attack).

The missile configuration of Fig. 1 was geometrically modified to conform to the
restraints of the Digital Datcom computer code. In the Digital Datcom, flight vehicles are
modeled with the use of body, wing, horizontal, and vertical tail input data. Therefore, for
the computer program, fins 3 and 4 of the missile of Fig. 1 were modeled as the horizontal
control surfaces, while the areas of fins 1 and 2 (also of Fig. 1}, were combined as one upper
vertical surface. In addition, the wing, horizontal, and vertical tail were modeled as straight
tapered planforms rather than double delia planforms.
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4.0 RESULTS AND DISCUSSION
4.1 GENERAL

The dynamic stability analyses for the bank-to-turn and vaw-to-turn missile
configurations were conducted in trimmed level and steady turning flight. Turning flight
conditions were used to simulate the missiles in maneuvering flight regime. The turning
flight condition provides larger values of the angular rate terms (p, q, and r), thereby giving
the aerodynamic cross-coupling moments larger values in the linearized equations of
motion. This turning flight condition provides a means for ascertaining the importance of
the second-order cross-coupling derivative terms.

The dynamic derivative sensitivity studies were conducted with use of flight envelopes
representative of both missile categories. The specific Mach number, altitude, and g flight
conditions at which the investigations were conducted are shown in Fig. 3. The trimmed
flight conditions shown for each Mach number and altitude are 1-g-level, an intermediate g,
and a maximum g. The maximum g at each Mach number and altitude was linited only by
the control surface authority and by the maximum angle of attack of the data matrix. Tables
1 and 2 summarize the aerodynamics used for the missile flight conditions. Table 3 gives the
mass, inertia, and geometric characteristics used to represent the full-scale bank-te-turn and
yaw-to-turn missiles.

Figure 4 gives the range for varying the dynamic derivatives plus the associated maximum
and minimum values measured in the wind tunnel and estimated by Digital Datcom. Both
the direct and cross derivative ranges were arbitrarily selected at approximately twice the
maximum of the measured and estimated derivatives. The range for the cross-coupling
derivatives was chosen to correspond to the range for the cross derivatives, Experimental
results obtained by Orlik-Ruckemann (Ref. 6) with use of a cone wing model have shown
that the cross-coupling derivatives combined with the acceleration derivatives (Cmé. Cogs
and Cg;) approach and/or exceed those of the cross derivatives for high angles of attack. It
should be noted that the dynamic derivatives for the yaw-to-turn configuration were
experimentally obtained as a combination of the rate and acceleration terms (¢.g., Cy, - Chng
cos ). In the sensitivity study, these combination derivative values were used as pure rate
terms.

The root locus format shown in Fig. 5 demonstrates the primary method used to show
the effect of derivative variations on the vehicle modes of motion. The resultant roots
(eigenvalues) of the characteristic equation are plotted in the root locus format shown as the
derivatives are varied. The real part of the root represents the damping ratio, whereas the

10
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imaginary part represents the frequency of oscillation (radian/sec}). The time required for
each mode to damp to one half or 1o diverge to double amplitude is shown below each plot;
the motion period is shown vertically. The roots of the characteristic equation may be either
real (aperiodic) or complex (oscillatory) and either stable or unstable.

4.2 BANK-TO-TURN CONFIGURATION

The dynamic derivative sensitivity analysis was conducted for altitudes of 10,000 and
40,000 ft for Mach numbers of 0.8., 1.1, and 3.5 for load factors of up to 25 g. The low
Mach number flight conditions correspond to initial maneuvers after launch, whereas the
high Mach number corresponds to supersonic terminal flight conditions.

4.2.1 Dynamic Direct Derivative Variations

Longitudinal. The missile motion sensitivity to variations in the direct rate and acceleration
derivatives C.,,q and Cp,; is shown in Figs. 6 and 7, respectively. The range (+ 1,000 per
radian) for which the derivatives were varied was at least twice the magnitude of that
obtained from Digital Datcom (see Fig. 4). The influences of altitude and load factor (g’s)
on the missile's sensitivity to derivative variations are presented for each Mach number, As
previously noted, the maximum g’s available at each Mach number are limited by the control
surface authority and angle-of-attack limit. Onfy the short period, S/P, mode shows
sensitivity to variations in the pitching moment caused by the Cmq and Cy,; derivatives. The
sensitivity in the short period mode at each Mach number is essentially unaffected by the
load factor, g; there is, however, a significant effect of Mach number on sensitivity of the
short period mode with Cmq and Cp,; variations. The short period mode is less sensitive to
Cmq and Cp,; variations at 40,000 ft than at 10,000 ft. The reduced sensitivity is primarily
due to the reduction in density with increased altitude.

The motion sensitivity to the force derivatives C|_q and C.; is shown in Fig. 8. The
longitudinal and lateral-directional modes of motion were totally insensitive to variations in
either C[_q or Cy; over the range of + 500 per radian.

Figures 9 and 10 demonstrate, respectively, the influence of variations in 'IJmq and C;
on the vehicle damping ratio and motion response characteristics at Mach 3.5 and 10,000-ft
altitude for a 10-g banked turn. Figures 9a and 10a show the sensitivity of the short period
and damping ratio, Z, with variations in Cmq and Cy; over the range of + 1,000 per radian.
As can be observed in the root locus plots, the short period damping ratio is quite sensitive
to variations in CI11q and Cy,;. The time response shown in figures 9b and 10b results from a
pitch control doublet and characterizes the changes in the short period motion for three

11
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values each for both Crng and Cp ;. The changes in the pitch rate response to a unit doublet
in pitch control are shown for values of Cmq and Cy,. corresponding to the trim values,
values near the point at which the short period is neutrally stable, and values near the
maximum or minimum for the experimental ranges shown in Fig. 4. The changes in the time
response, again, indicate the senstivity of the short period motion to the direct derivatives
Cmq and Cy,; and quantify the significance of the root migration with derivative variation
shown in Figs. 6 and 7. |

Lateral-Directional. The missile motion sensitivity to variations ( = 1,000 per radian) in the
direct damping derivative in yaw, C,, is shown in-Fig. 11. The only significant motion
senstivity to C,_is in the dutch roll mode of motion. The sensitivity in the dutch roll mode
due to C,, increases with increasing load factor (g's) for all Mach numbers at each altitude.

The effects of variations (& 1,000 per radian) in the direct roll damping derwatwe C, ,
on the longitudinal and lateral-directional modes of motion are shown in Fig. 12, Only the
lateral-directional modes are shown here for clarity; the longitudinal modes were insensitive
to C,-p variations.

The extreme sensitivity of both the roll and dutch roll modes to variations in Cp
associated with the low moment of inertia, I, about the roll axis. The sensitivity in the dutch
roll mode due to Cp variations increases with increasing load factor (g's) for all Mach
numbers at each alutude For large negative values of Cf » the dutch roll mode may migrate
from a periodic spiral to a roll-spiral coupling (lateral phugmd) to, finally, an aperiodic
mode at large positive values. This sensitivity is made apparent by tracing the dutch roll root
migration at Mach 0.8 and 40,000-ft altitude for a 5-g banked turn. The roll mode is
extremely sensitive to relatively small changes in C,_:p as can be seen by tracing the roll root
migration at M = 3.5 and altitude = 10,000 ft for 1-g level flight. The sensitivity in the roll
mode due to C;p increases with increasing Mach number but decreases with increasing
altitude and load factor. The roll and dutch roll modes are more sensitive to the same
magnitude variations in Cpp than to variations in Ch,; this greater sensitivity to C;p can be
seen by comparing Figs. 11 and 12. The increased sensitivity of the roll and dutch roll modes

to C,p is associated with the previously mentioned low moment of inertia, 1x, about the roll
axis.

Figure 8 shows the motion sensitivity to variations in the side force derivative, Cy,» with
variations in Cuq and Cy ;. The longitudinal and lateral-directional modes of motion were

totally insensitive to Cy, over the range of + 500 per radian.

The influence of variations in C,;_ on the vehicle lateral-directional damping ratio and
motion response is shown in Fig. 13 at M = 0.8 and 40,000-ft altitude for a 10-g banked

12
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turn. The sensitivity of the dutch roll and spiral mode damping ratio to variations in C,_is
shown in Fig. 13a. As can be noted in the root locus plots of Fig. 11, the dutch roll damping
is very sensitive to C,, variations. The yaw rate time response shown in Fig. 13b results from
a yaw control doublet and characterizes the changes in the dutch roll motion for three values
of Cp,. The sensitivity of the dutch roll mode, as demonstrated by the yaw rate response,
ranges from a highly damped motion for C,. = -1,000 per radian to a lightly damped motion
that approaches a neutrally stable mode at C,,, = 100 per radian. The change in the yaw rate
response for the three values of C, corresponds to the changes in the Time-to-Half-
Amplitude, T2, shown in Fig. 11 for the same values of C,,.

The sensitivity of the dutch roll moede damping ratio and motion response to variations in
Cpp over the range of + 1,000 per radian is presented in Fig. 14. The flight condition
presented corresponds to M = 0.8 and altitude = 10,000 ft for a 10-g banked turn. The
damping ratio plot (Fig. 14a) demonstrates the sensitivity of the dutch roll to relatively small
changes in C;p about zero value. This sensitivity is also apparent in the roll rate time response
(Fig. 14b) for Cfp values of -200, -100, and -62.5 ({trim value) per radian. The roll rate
response attributable to a unit roll control doublet changes from a motion with T2 ~ 0.1
sec at C,p = -62.5 to a much less damped motion with Ty, ~ 0.04 sec at C(p = -200 per
radian. The roll and dutch roll modes are quite sensitive to small changes in Cpp; this can be
seen by tracing the root migrations in Fig. 12a.

Both the roll and dutch roll modes of motion have been shown to be quite sensitive to
changes in C,, and Crp within the value ranges estimated by Datcom (Fig. 4).

4.2.2 Dynamic Cross Derivative Variations

The missile motion sensitivity to variations in the cross derivative, Cq, is shown in Fig.
15. Only the lateral-directional modes of motion are affected by a variation in Cy_ (in the
range of +500 per radian). The sensitivity of the dutch roll mode to C; increases with
increasing load factor (g's) with each Mach number, whereas the roll mode sensitivity
decreases with increasing g flight at each altitude and Mach number. By comparing the
dutch roll root migrations in Figs. 11 and 15, one sees that the sensitivity of the dutch roll
mode to variations in Cy, is equal to that for variations in the direct derivative, Ca,-

Variations of the yawing moment caused by the roll rate parameter, C,,p, affect the
damping and frequency of the roll and duich roll modes of motion significantly, as can be
seen by tracing the root migration in Fig. 16. In general, the sensitivity of the roll and dutch
roll modes to 'CI1p increases with increasing load factor (g’s) and Mach number. The roll
mode may go from aperiodic stable with negative values of Cnp to unstable with positive
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values of C,,p. The dutch roll mode may go from an unstable oscillation with negative values
of C,.p to a stable oscillation and finally 1o a degenerated aperiodic mode with positive values
of Cnp. In general, the roli and dutch roll modes of motion are more sensitive to C,.p (Fig. 16)
than to C, (Fig. 15) for the flight conditions investigated.

The motion sensitivity to variations in the side force derivative, C_Vp, is shown in Fig. 17.
As with other force derivatives, the effect of C, on both the roll and dutch roll modes is not
considered significant.

The influence of variations in C;on the vehicle dutch roll damping ratio and on the roll
rate response is shown in Fig. 18 at M = 0.8 and altitude = 40,000 ft for a 10-g-banked
turn, Shown in Fig. 18a is the sensitivity of the dutch roll mode damping ratio to variations
in Cy_over the range + 500 per radian. The roll rate time responses shown in Fig. 18b result
from a yaw control doublet and demonstrate the sensitivity of the dutch roll damping to
Cq.- The dutch roll motion, as shown by the roll rate response, ranges from highly damped
motion for C;, = 500 to that approaching a neutrally stable mode at Ci. = -50 per radian.
The changes in the roll rate time responses, along with the dutch roll root migrations shown
in Fig. 15, indicate that the missile’s motion may be highly sensitive to variations in the cross
derivative C.

The sensitivity of the dutch roll damping ratio and yaw rate response (o Cn,, is presented
in Fig. 19at M = 1.1 and altitude = 10,000 fi for a 10-g banked turn. The dutch roll damp-
ing ratio (Fig. 19a) is sensitive to variations in C,,p over the range of + 500 per radian. The

_yaw rate time response shown in Fig. 19b results from a roll control doublel and
demonstrates the sensitivity of the dutch roll mode motion for three values of Cnp. The
changes in the yaw rate time response with C,,p variations follows trends of the dutch roll
mode root migrations with Cnp variations as shown in Fig. 16. As with C; the bank-to-turn
missile motion is sensitive to C,,p variations.

The influence of variations in C:,p on the dutch roll damping ratio and yaw rate response
is shown in Fig. 20at M = 3.5 and altitude = 10,000 ft for a 25-g banked turn. For variation
in C,, over the range of + 500 per radian, the change in the dutch roll damping ratio of  Fig.
20a is not considered large enough to significantly alier the dutch roll motion. This is
shown in the minimal change in the yaw rate response of Fig. 20b attributable to a roll
control doublet for range in Cy, of -500 to 500 per radian.

In general, therefore, direct damping derivatives are important in motion analysis. The
sensitivity of the missile lateral-directional modes of motion to variations in the cross
derivatives C; and C,,p is on the order of the direct derivative Cy,; therefore, C; and C“p are
necessary to perform accurate missile motion simulation.
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4.2.3 Dynamic Cross-Coupling Derivative Variations

In the cross-coupling derivative investigation the derivatives C,, Cmp, C;q yand C, q Were
each initially given nominal values of 100 per radian. Then, individual variations in each
derivative were performed with .the remaining derivatives at their nominal values. By
maintaining nominal (nonzero) values for the cross-coupling derivatives, the possible
derivative interaction effects described in Ref. 7 were included.

The motion sensitivity to variations in the cross-coupling derivative qu is shown in Fig.
21 for Mach numbers of 0.8, 1.1, and 3.5. Including the cross-coupling derivatives in the
linearized analysis results in a weak coupling in the longitudinal and lateral-directional axes
as indicated by the migration in the short period, spiral, roll, and duich roll modes. As
observed, the sensitivity of the dutch roll mode with variations in qu depends on the flight
conditions (Mach number, altitude, and load factor). Although the sensitivity of the modes
of motion to C, is not as significant as it is to C;, (compare Figs. 15 and 21), errors may
occur in missile motion simulation if the Cy derivative is not modeled when the magnitude
approaches the maximum ranges utilized in Fig. 21.

The motion sensitivity with variations in the cross-coupling derivative lCmp is shown in
Fig. 22. The short period, roll, and dutch roll mode sensitivity to Cmp is similar to that
experienced with the C.;q derivative variations. If it is assumed that the cross-coupling
derivative Cy, . is of a magnitude approaching that of the cross derivatives, then incorrect
motion simulation may possibly result if the derivative is not included in the aerodynamic
modeling.

The motion sensitivity with variations in the cross-coupling derivatives Cp,_ and qu is
shown in Fig. B along with the variations in the force derivatives. The longitudinal and
lateral-d_irectional modes of motion are totally insensitive to variations in either Cp, or qu
over the range of £ 500 per radian.

The sensitivities of the missile damping ratio and frequency and the roll and pitch rate to
variations of C;] (Fig. 23) and C“‘p (Fig. 24) are given for M = 3.5 and altitude = 40,000 ft
for a 25-g banked turn. At this flight condition, the missile was most sensitive to variations
in cross-coupling derivatives. The short period, phugoid, and dutch roll mode damping
ratios are shown, in Fig. 23a, to be quite sensitive to variations in C,, over the range of + 500
per radian. The short period and dutch roll damping ratios exhibit similar sensitivity to Cny,
(Fig. 24b}. The sensitivity of the dutch roll mode of motion to Cy, is shown (Fig. 23b) by the
changes in the roll rate response resulting from a pitch control doublet, whereas the
sensitivity of the shor1 period mode of motion to Cm is shown (Fig. 25b) by the changes in
the pitch rate response resulting from a roll control doublet.
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4.3 YAW-TO-TURN CONFIGURATION

The dynamic sensitivity study for the yaw-to-turn missile was conducted at altitudes of
10,000 and 20,000 ft at Mach 1.3 and at altitudes of 10,000 and 40,000 ft for Mach 3.0. The
flight conditions investigated were 1-g-level flight at Mach 1.3 and 1-g-level and 5- and 10-g
turning flight at Mach 3.0. Angle of attack and/or control surface deflection required for
trim flight at Mach numbers of less than 1.3 for accelerated g flight conditions exceeded the
range in the available acrodynamic data matrix.

4.3.1 Dynamic Direct Derivative Variations

Longitudinal. Figures 25 and 26 show the missile motion sensitivity to variations in the direct
rate and acceleration derivatives Cp and Cp,;. The range for which the derivatives were
varied (+1,000 per radian) was slightly less than twice the magnitude obtained
experimentally (see Fig. 4). Due to the absence of coupling between the longitudinal and
lateral-directional planes of motion, only the longitudinal modes are shown. Only the short
period mode shows sensitivity to variations in C'“q and Cp;. There is a significant Mach
number effect on the sensitivity of the short period mode with Cmq and Cp,; variations. As
noted for the bank-to-turn configuration, the short period mode is less sensitive at 40,000 ft
to Cmq and Cp; variations than at 10,000 ft because of the decrease in density with
increasing altitude.

The meotion sensitivity to the force derivatives CLq and Cp; is shown in Fig. 27. The
missile modes of motion were totally insensitive to variations in either C o Or Cyp; over the
range of + 500 per radian.

The influence of variations in Cmq and Cy,; on the vehicle longitudinal damping ratio
and pitch rate response is shown respectively in Figs. 28 and 29 at M = 3.0 and altitude =
40,000 ft for 1-g-level flight. In Figs. 28a and 29a, the short period damping ratio is shown to
be sensitive to variations in Cmg and Cp;. The pitch rate time response shown in these
figures results from a pitch control doublet and demonstrates the sensitivity of the short
period mode to Cmq and Cy,;. The changes shown in the pitch rate response correspond to
values of Crllq and Cpy,; at trim, at values of zero, and at values near which the short period
mode is neutrally stable.

Lateral-Directional. The missile motion sensitivity to variations (= 1,000 per radian) in the
direct damping derivatives in yaw, Cy, is shown in Fig. 30. The roll, spiral, and dutch roll
modes are affected to different degrees by C,_variation. The most predominant effect ison
the dutch roll mode for the flight conditions evaluated. The sensitivity of the roll and spiral
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modes is more pronounced for the 1-g-level trim flight conditions. The dutch roll mode sen-
sitivity due to C,,_ variations increases with increasing load factor (g’s) and altitude at Mach
number 3.0.

The effect of variations ( + 1,000 per radian) in the direct roll damping derivative, Cgp, on
the lateral-directional modes of motion is shown in Fig. 31. The extreme sensitivity of the
roll and spiral modes to Cy, is associated with the low moment of inertia, Ik, about the roll
axis. The pitch, Iy, and yaw, Iz, moment of inertia are approximately two orders of
magnitude larger (see Table 3) than the rolling moment of inertia. The dutch roll mode of
motion is sensitive to variations in Cgp, but this sensitivity does not produce an unstable
mode for the flight conditions analyzed. The roll and spiral modes are more sensitive to the

same magnitude variations in Cpp than to C,_as can be seen by tracing the root migrations in
Figs. 30 and 31.

The lateral-directional modes of motion are totally insensitive 1o variations {+ 500 per

radian) in the side force derivative Cy; thesc modes are shown with the normal force
derivatives CLq and C ; in Fig. 27.

The influence of variations in C,, on the vehicle spiral and dutch roll damping and yaw
rate response is shown in Fig. 32 at M = 3.0 and altitude = 10,000 ft for a 10-g banked turn.
The sensitivity of the dutch roll damping ratio with variations ( £ 1,000 per radian) is shown
in Fig. 32a. As can be noted from the curve slope, the dutch roll damping is very sensitive to
Cq, variations. The time history shown in Fig. 32b results from a yaw control doublet and
characterizes the effect of changes in Cy_on the dutch roll motion.

The sensitivity of the roll and dutch roll damping and roll rate response to variations in
Cgp is shown in Fig. 33 at M = 3.0 and altitude = 10,000 ft for a 10-g banked turn. The
damping ratio plot {Fig. 33a) demonstrates the sensitivity of the spiral, roll, and dutch roll
modes to relatively small changes in Cpp about zero values. This sensitivity in the dutch roll
mode is apparent from the roll rate time response plot (Fig. 33b). For the same magnitude
change in the derivatives, the dutch roll mode of motion is significantly more sensitive to Crp
than to C,,.

4.3.2 Dynamic Cross Derivative Variations
The vehicle motion sensitivity to the cross derivative C;, is shown in Fig. 34. Only the
lateral-directional modes of motion are affected by variations in C;, over the range of +500

per radian. The sensitivity of the dutch roll mode to C;, increases with increasing load factor
(g’s), whereas the spiral mode sensitivity decreases with increasing load factor. By
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comparing the dutch roll root migrations with Fig. 30, it can be seen that the sensilivity of
the dutch roll mode to Cy, is greater than that for the direct derivative G, -

Changes in the spiral, roll, and dutch roll modes of motion with variation of Cy, are
shown in Fig. 35. The roll and spiral mode sensitivity to Crlp increases with increasing load
factor. The dutch roll mode sensitivity is also highly dependent on the load factor. In most
cases, the roll and spiral modes are more sensitive to Cnp than to C; as can be seen by tracing
the root migrations in Figs. 34 and 35.

The lateral-directional modes of motion are insensitive to variations ( + 500 per radian) in
the side force parameter Cy as shown in Fig. 27. For the flight conditions investigated, the
C,p parameter does not appear to be an important parameter for motion analysis.

The influence of variations in C;, on the lateral-directional damping ratios and roll rate
response is shown in Fig. 36 at M = 1.3 and altitude = 20,000 ft for 1-g-level flight. The
damping ratio plot demonstrates the sensitivity of the spiral, roll, and dutch roll modes to
variation in Cg over the range of + 500 per radian. The roll and spiral modes are quite
sensitive to Cy over the range of +500 per radian. This is shown by changes in the roots
from a coupled root at large negative values to real non-oscillatory roots or modes for values
less negative than -100 per radian. The roll rate time response atiributable to a vaw control
doublet (Fig. 36b) demonsirates the predominance of the spiral and dutch roll roots in the
C. range from -100 to 200 per radian.

The sensitivity of the lateral-directional damping ratios and yaw rate time response to
(:.1|J is shown in Fig. 37 for M = 3.0 and altitude = 10,000 ft for a 10-g banked turn.
Changes in the damping ratio of the dutch roll mode shown in Fig. 37a further demonstrate
the sensitivity of the dutch roll roots to relatively small changes in Cnp near zero. The
changes in the yaw rate time response (Fig. 37b} with changes in C.,p point up the
significance of the root migrations shown in Fig. 35. The changes in the time response shown
for values of C,.p = -1,2 and 50 demonstrate the dutch roll sensitivity to Cnp, whereas the
changes shown for values of -1.2 and -30 demonstrate the spiral mode sensitivity.

The sensitivity of the missile lateral-directional modes of motion to variations in the
cross derivatives C; and C,,p is of the same magnitude as for the direct derivatives and
therefore is important and necessary for accurate motion simulation.

4.3.3 Dynamic Cross-Coupling Derivative Variations
As noted for the bank-to-turn configuration, the cross-coupling derivatives Cr,,, C.,,p,

er , and qu were assigned nominal values of 100 per radian. Each derivative was varied
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separately over the range of + 500 per radian while the others were fixed at their nominal
values.

The sensitivity of the longitudinal and lateral-directional modes of motion to variations
in the roll due to pitch rate derivative, ng, is shown in Fig. 38. The short period, dutch roll,
roll, and spiral modes are shown to be quite sensitive to qu over the range + 500 per radian
for M = 3.0 flight conditions. The dutch roll mode sensitivity to er increases with
increasing load factor, whereas the roll sensitivity remains approximately the same with
increasing load factor. Although the lateral-directional modes of motion are less sensitive to
qu than to C,, inaccurate motion simulation may occur if the C;q derivative is of a large
magnitude and is not included.

The motion sensitivity with variations in the pitch attributable to roll rate derivative,
Cmp, is shown in Fig. 39. The mode sensitivity 1o C,,.p is almost identical to that shown for
C,q. Neglecting Cmp in motion analysis could cause inaccuracies if the derivative is of the
magnitudes over the ranges investigated in this study.

The sensitivity of the missile modes of motion to variation in qu is shown in Fig. 40. The
root locus plot for M = 1,3 flight conditions is omitted because of the insensitivity of any of
the modes to qu. For the M = 3.0 flight conditions, one can note some movement of the

roots with C,,q variation, but the movement is much less than that associated with Cpq and
Cu,, variations.

The missile modes of motion are totally insensitive to variations in Cy,_and are included
in Fig. 27 with the force derivatives.

The sensitivity of the missile damping ratio and roll rate time response to C;q is shown in
Fig. 41 at M = 3.0 and altitude = 10,000 ft for a 10-g banked turn. This flight condition
represents the condition for which the mode sensitivity to qu was the most pronounced. The
short period, phugoid, dutch roll, and spiral damping ratios in Fig. 41a are shown to be
quite sensitive to variations in ng over the range of +500 per radian. The roll rate time
response (Fig. 41b) to a pitch control doublet demonstrates the sensitivity of the dutch roll
mode to variations in C;q over the range from -50 to 100 per radian.

The sensitivity of the missile damping ratio and pitch rate time response to C“‘p
variations over the range =500 per radian is shown in Fig. 42 at M = 3.0 and altitude =
10,000 ft for 1-g-level flight. The primary effect shown in Fig. 42a is the sensitivity of the
short period damping ratio. Associated with the change in damping ratio is a corresponding
change in frequency as can be seen by tracing the root migration in Fig. 39. The pitch rate
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time response (Fig. 42b) demonstrates the short period sensitivity to Cmp values of -500, 0,
and 200 per radian. A point of particular interest is the lack of coupling between the
longitudinal and lateral-directional modes for Cmp = 0.0.

The sensitivity of the damping ratio and yaw rate time response to qu is shown in Fig. 43
at M = 3.0 and altitude = 10,000 ft for 10-g banked turn. Little change in dutch roll and
short period damping ratio is seen in Fig. 43a. The changes in the yaw rate time response
(Fig. 43b) for values of qu =-500, 0, and 200 demonstrate the dutch roll sensitivity to qu,
The missile modes of motion are much less sensitive to C,,q than they are to C,,q or Cmp.

5.0 CONCLUDING REMARKS
Based on this analysis, the following observations and conclusions may be made:

la. Variations in the longitudinal direct derivatives G, and Cp, significantly
affect the short period mode of motion for both the bank-to-turn and yaw-to-
turn missiles. The sensitivity of the short period mode of motion with variations
in ('J.,,q and Cp; increases with Mach number but is relatively unchanged by
load factor (g's).-

b. Variations in the lateral-directional direct derivatives C,_and Cpp significantly
alter the roll, spiral, and dutch roll modes of motion for both the bank-to-turn
and yaw-to-turn missiles. The sensitivity of the dutch roll mode increases with
increasing load factor (g's) and Mach number. The spiral and roll mode
sensitivity may increase or decrease with increasing load factor (g’s), depending
on the missile configuration.

2. Variations in the lateral-directional cross derivatives C; and G, alter the bank-
to-turn and vaw-to-turn roll, spiral, and dutch rofl modes of motion in a
manner similar to that resulting from variations of the same magnitude in the
direct derivatives. The roll and duich roll motion sensitivity increases with
increasing load Factor (g’s) and Mach number.

3. Large variations (% 500 per radian) in the cross-coupling derivatives ng. qu,
and Cj, alter the longitudinal and lateral-directional modes of motion for both
bank-to-turn and yaw-to-turn missiles. The yawing moment caused by pitch
rate, qu, was found to be less important than either qu or Cmp. The pitching
moment associated with yaw derivative, C,, appears to be insignificant in
missile motion.
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4. Varying the force derivatives CLq, Crys C,,p, and C,_ did not produce any
noticeable changes in the modes of motion for either the bank-to-turn or yaw-
to-turn missile.
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Figure 32. Yaw-to-turn configuration - effect of C, on damping
ratio and time response.
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ratio .and time response.
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with C,.p variation.
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Table 1. Bank-To-Turn Configuration
a. M =038, Altitude = 10,000

) Level Turning Turning
Trim Values Flight, 1 g Flight, 5 g Flight, 10 g
a{deg) 1.5 5.8 9.8
¢ {deg) 0 78.5 84.3
¥ (deg/sec) 0 10.5 21,3
Cm {per rad) -264.9 -286.6 -301.23

q
Cm_ {per rad) 0 0 0

a
Co {per rad) 0 0 0

P
Cm {per rad) 0 0 o]

r
CL {per rad) 137.4 169.8 186.4

d
C..(per rad) 0 0 0

[+ ]

Cn {per rad} -66.1 -67.0 -66.8B

X
Cn (per rad) -1.0 -7.4 ~13.3

o
C, {per rad) 0 1] a

d
Ci (per rad) 13.4 13.8 14.3

r
Cmp(per rad) -62.6 -62.8 -62.5
C_ {per rad) 0 0 0

3

q
C_ (per rad) 0.3 0.2 0.2
Yo
C_ (per rad) -0.7 0.6 1,8
p
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Trim Values

a(deg)

é(deg)

¥ (deg/sec)

Ch {per
q

Cc_ _{per
5

C_ {per
"o

C (per
Ty

C. (per
L
q

c  (per
La

cn {per
r

C, (per
P

Ch (per

q

Cy (per
r

Cc, (per
'3
P

Cc, (per
£
q

C_ {per
Yr

rad)

rad)

rad)

rad}

rad)

rad)

rad)

rad)

rad}

rad)

rad)

rad}

rad)

rad)

Table 1. Continued

b. M = 0.8, Altitude = 40,000 ft

Level

Flight. 1 g

4.4

-274.8

157.6

-66.9

-5.3

13.7

-62.7

926

Turning Turning
Flight, 5 g Flight, 10 g

15.1 24.7
7B.5 84.3
11.8 23.9
-311.2 -330.5

0 0

0 0

0 o
205.,4 231.0

0 0
-65.4 -60.8
-20.9 -33.3

0 Y
15.2 17.0
-59.1 -58.7

0 o
0.1 -0.1
3.5 5.3
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Table 1. Continued
c. M = 1.10, Altitude = 10,000 ft

Level Turning Turning
Trim Values Flight, 1 g Flight, 5 g Flight, 10 g
o (deq) 0.1 3.5 6.0
¢ (deg) 0 78.5 ga._2
 (deg/sec) 0 7.6 15.4
C, {per rad) -335.7 ~343.3 -367.3
q
Cm_(per rad) 0 0 0
;i
Cm (per rad) o 0 ]
P
€, (per rad) 0 0 0
Y
L (per rad) 153.0 167.4 164.6
q
C;,. (per rad) 0 0 0
o
Cn (per rad) -64.6 -65.1 -65.3
r
c, (per rad) -0.1 -31.3 -6.6
P
C, (per rad) o )] ¢
q
C} [pex rad) 10.0 10.2 10.5
T
C2 (per rad) -55.8 -56.4 -57.1
P
CR {per rad) 0 0 0
9
C_ (per rad) 0.3 0.3 0.3
YI
C._ {per rad) -1.0 =-1.0 0.6
¥p
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Trim Values

o{deq)

¢ {deqg)

i[deg/sec}

Cm (per

Cm_(per
a

Cm (per
P

Cm {per
r

CL (per
q

c_ (per
L&
C_  {per

n
r

C_ {per
"p

C, {per
q

C, (oer
lr

C, (per
2
e

C, (per
“q

C_ (per
YI'

C_ ({per
Yp

rad}
rad}
r&d)
rad})
rad}
rad}
rad)
rad)
rad)
rad)
rad)
rad}
rad)

rad)

Table 1. Continued
d. M= 1.10, Altitude = 40,000 ft

Level
Flight, lg

2.6

-339.7

161.2

-65.0

-2.2

l0.1

-56.1

98

Turning Turning
Flight, 5 g Flight, 10 ¢

9.3 16.2
7B.5 84.2
8.5 17.4
-406.0 -425.8

0 0

0 0

0 0
203.4 216.3

a 0
-65.0 -62.7
-10.8 ~19.2

0 0
10.9 12.4
-58.0 -53.86

0 ]

0.2 0
1.5 3.4



Trim Values

o (deq)

¢ (deg)
@(deg/sec)

C_ (per rad)
C__(per rad)
C_ (per rad)
C_ {per rad)
¢ (per rad)
CL_(per rad)
C_ (per rad)
C, {per rad)
c {per rad)
C, (per rad}
(per rad)
C, [per rad)
CY {per rad)

C. {per rad)

Table 1. Continued

Level
Flight, 1 g

¢G.2

-227.0

122.0

-31.7

-40.5

99

e. M= 350, Altitude = 10,000 ft

AEDC-TR-80-11

Turning Turning
Flight, 10 g Flight, 25 g
1.1 2.6
84.3 87.7
4.9 12,2
-228.1 -230.4
0 a
0 0
D 0
122.4 123.5
0 0
-31.8 -32.0
0.1 -0.9
0 0
4.6 4.6
-40.6 -40.8
a 0
0.2 0.2
-0.6 -0.3
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Trim Values

a{deq)

¢ (deg)

videg/sec)

Cn (per

9

Cp. (per
o

C_ (per
mp
C_ (pex

m
r

C. (per
*q

C..(per
L{l

C_ [per
Ny

C_ (per
p

Cc_ (per
q

C, lper
Ly

C, lper
P

¢, (per
2
q

c
yr{per

C. (per
¥p

rad)

rad)

rad)

rad}

rad)

rad)

rad)

rad)

rad)

rad)

rad)

rad}

rad)

rad)

Table 1. Concluded
f. M = 350, Altitude = 40,000 ft

Level

Flight, 1 g
.5

-227.4

122.1

-31.7

0.6

Turning
Flight, 10 g

Turning
Flight, 25 g

3.6

84.3

124.7

B.4

87.7

13.7

-252.2
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Table 2. Yaw-To-Turn Configuration

a. M=13
Altitude = 10,000 ft, Altitude = 20,000 ft,

Trim Values Level Flight, 1 g Level Flight, 1 g
a 6.5 3.3
¢ ¢ 0
" 0 0
Cm -409.7 -398.7

q
C a D
i)
Ch 0 0

p
C 0 a
Ty
C 0 o
L

q
C 0 0
La
cn -389.3 -309.7

r
Cn -4.1 =-5.1

P
c 0 g o
n

q
c 0 Q
o
c -4.9 -5.1
€

P
c 0 0

2

q
C o 0
Y
C 0.8 0.4
Yp
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Trim Values

a

=

Table 2. Continued
b. M = 3.0, Altitude = 10,000 f1

Level
Flight, 1 g

1.2

-298.0

-309.7

Turning Turning
Flight, 5 g Flight, 10 g
5.3 9.1
78.5 g4.3
Z.8 5.7
-287.7 -302.9
o 0
Q o
(1] 0
Q o
o 0
-307.0 -244.5
-0.5 -1.2
4] 1]
0 0
-3.6 -3.7
0 0
D 0
-0.2 -0.1
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Table 2. Concluded
c. M = 3.0, Altitude = 40,000 ft

Level Turning Turning
Trim Values Flight, 1 g Flight, 5 g Flight, 10 g
a 1.9 13.6 22.5
[y 0 78.5 84.3
¥ 0 3.2 6.4
Cm -287.9 -303.8 -301.8
|
Cm- 0 0 0
C 0 0 Q
™
P
C 0 a a
mr
C a 0 0
L
q
C 0 0 0
Lﬂ
C =310.0 =182.7 -172.86
Ny
c ~0.5 -3.0 -6.5
n
P
cn 0 Q Q
q
C Q 0 0
lr
cﬂ -3.5 -3.7 -4.1
P
C 0 0 0
2
q
c 0 0 0
Yy
C -0.2 0.1 1.0
¥p
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Table 3. Missile Physical and Mass. Characteristics

Mass

Ix(body axiag)
IY(body axis)
Iz(body axis)

I,p{body axis)

cg

Bank-to-Turn

5.75 slugs

0.34 slug—ft2

34.1 slug-ft2
34.15 slug-ft2
0.0 slug-ft?
0.458 £t

0.7633 ft

B.9 ft

50 percent body length

104

Yaw-to-Turn

43.80 slugs

9.4 slug—ft2

745 glug-ft2

745 slug-ft2

0.0 slug-ft2

1.54 f£t2
1.4 ft

14 ft

50 percent body length
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APPENDIX

EQUATIONS DEFINING THE TOTAL AERODYNAMIC DATA
IN THE STABILITY AXIS SYSTEM

Longitudinal

Fx = 35[ Cpla 8, W]

_ d ad
Fo - e s (5) ()]

My = 354 [lea, 8,01+ Cp, (0, M) (%%)»f cm&(§)+cmp(‘;—“‘r)+cm'(;%)]

Lateral-Directional

Fy

- pd i
s [c, o 0B+ Gy (o B, Ty ) (53 ¢ C, a3 |

— ) - pi
My - 750 [ €, o WA = Gy (@08, +C,; M5, Cnp{a.lﬂ( ﬂ)

¥ r

+ C“r(a'M)(%) + qu (?.z_:r')]

pd
My = §5d [CEB[a,M)ﬁ + Cfa (a, M)B, + Cga (a,.M}5, ~ Cpp{a,M) (E)
¥ r

cn(2) e 8]

where
Bp = Pitch Control
GR = Roll Cantrol
GY = Yaw Contreol
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Bank-to-Turn Missile

o -6 to 26 deg
0.8 to 3.5
& ~10 to 20 deg

8 -10 to 20 deg
=20 to 20 deg
GY =20 to 20 dep

Yaw=to-Turn Missile

Data Matrix Variables

a 0 to 24 deg
M 0.6 to 3.0
GP =20 to 20 deg

Control Authority

6 =20 to 20 deg
6, -20 to 20 deg
§ =20 to 20 deg
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NOMENCLATURE

(Note: All aerodynamic data are referenced
to the stability axis system.)

Co Drag-force coefficient, drag force/qS

CL Lift-force coefficient, lift force/gS

CLq Derivative of lift-force coefficient with respect to pitch rate, 8C, /3(qd/2V), per
radian

Cr, Derivative of lift-force coefficient with respect to &, 3CL/3(ad/2V), per
radian

Cfp Derivative of rolling-moment coefficient with respect to roll rate,
aC¢/d(pd/2V), per radian

C;q Derivative of rolling-moment coefficient with respect to pitch rate,
aCy/ d(qd/2V), per radian

Cs Derivative of rolling-moment coefficient with respect to yaw rate,
AC/a(rd/2V}, per radian

Ci; Derivative of rolling-moment coefficient with respect to &, 3Cy/8{cd/2V), per
radian

Cy Derivative of rolling-moment coefficient with respect to angle of sideslip,
0Cy/08, per radian

Cy Derivative of rolling-moment coefficient with respect to 8, aCy/3(8d/2V),
per radian

CrGR Derivative of rolling-moment coefficient with respect to dg, dCy/35g, per radian

Cnﬁy Derivative of rolling-moment coefficient with respect to 8y, 0Cy/38,, per radian

Cn Pitching-moment coefficient, pitching moment/gSb

l::,,,p Derivative of pitching-moment coefficient with respect to roll rate,
dCn,/3(pd/2V), per radian

Cmq Derivative of pitching-moment coefficient with respect to pitch rate,

dCn/3(qd/2V), per radian
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Cn

r

Derivative of pitching-moment coefficicnt with respect to yaw rate,
0C,/d{rd/2V), per radian

Derivative of pitching-moment coefficient with respect to &, dC,/3(kd/2V),
per radian

Derivative of pitching-moment coefficient with respect to 8, #C,/#(3d/2V),
per radian

Yawing-moment coefficient, yawing moment/qSd about missile cg

Derivative of yawing-moment coefficient with respect to roll rate,
d0C,/d(pd/2V), per radian

Derivative of yawing-moment coefficient with respect to pitch rate,
0C,/d(qd/2V), per radian

Derivative of yawing-moment coefficient with respect to yaw rate,
aC,/a(rd/ 2V}, per radian

Derivative of yawing-moment coefficient with respect to &, 8C,/d{ad/2V),
per radian

Derivative of yawing-moment coefficient with respect to angle of sideslip,
9C,/a8, per radian

Derivative of yawing-moment coefficient with respect to 8, 3C,/8(8d/2V), per
radian

Derivative of yawing-moment coefficient with respect to ég, 8C,/95g, per
radian

Derivative of yawing-moment coefficient with respect to &y, 6C,/33,, per
radian

Derivative of side-force coefficient with respect to roll rate, dC,/8(pd/2V), per
radian

Derivative of side-force coefficient with respect to yaw rate, 8C,/3(rd/2V), per
radian

Derivative of side-force coefficient with respect to angle of sideslip, 3C,/38, per
radian

Derivative of side-force coefficient with respect to é,, 3C,/d8,, per radian
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cg Center-of-gravity location, percent body length
D/R Dutch roll

d Reference body diameter, ft

Fx . Force acting along X-stability axis, 1b

Fy Force acting along Y-stability axis, 1b

Fz Force acting along Z-stability axis, 1b

g Acceleration of gravity, ft/sec?

Ing,ly,12 Moments of inertia about X-, Y-, and Z-body axes, respectively, slug-ft2

Ixz Product of inertia, slug-fi2

j Imaginary number, -1

M Mach number

My Moment acting about X-stability axis, ft-Ib
My ~ Moment acting about Y-stability axis, fi-1b
Mz Moment acting about Z-stability axis, ft-1b
m Mass, slugs

p.q,r Components of Eabout X-, Y-, and Z-body axes, respectively, radiaﬁ/sec
q Dynamic pressure, gV2/2, Ib/ft2

S Body reference area, fi2

5/p Short period

v Total velocity, ft/sec

W, W Undamped natural frequency, radian/sec
A Damping ratio

a Angle of attack, deg

B Angle of side force, deg
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bp Pitch control deftection, per radian
6r Roll control deflection, per radian
by Yaw control deflection, per radian
Y Air density, slug/ft3
o Real part of complex variable
¢ Angle of roll, deg |
SUPERSCRIPT

Derivative with respect to time
K 1,000 of feet
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