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ABSTRACT

\'rhe singularity expansion method (SEM) has been applied to
determine natural resonances of a horizontal wire and perpendicular
crossed wires oriented over an imperfect ground plane. In order to
account for the imperfect conductivity of the ground, the Sommerfeld
formulation is used and a theoretical-numerical solution obtained.

Sample results are presented for both the frequency domain and the

SEM solutions.
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I. INTRODUCTION

An electromagnetic pulse such as the nuclear EMP or the
Lightning EMP will induce current and charge densities on aircraft
and missile surfaces. These distributions represent the external
electromagnetic fields that are in general related linearly to the
interior fields (equipment currents and voltages). Acquiring a
knowledge of the exterior fields is the first step in determining
termipal currents and voltages induced within an illuminated aero-
n;;tical system. Transfer functions, either theoretical or experi-
mental, are used to relate the voltage and/or current at a particular
location to the most significant point or points of entry for the
electromagnetic energy.

A number of simulation facilities have been constructed to test
the response of aircraft and missiles to the nuclear EMP. In each
of the existing facilities the aircraft must rest on a concrete pad
(or a wooded platform) which eliminates the possibility of testing
the inflight mode respgyse. However tests can be conducted as the
aircraft flies by the simulator but this procedure presents its
own difficulties. Thus a theoretical model is needed for the
interpretation of the "fly-by" test as well as for the extrapolatiom
of the test data from ground based measurements to predict the

inflight mode response.

In contrast to nuclear-EMP testing lightning-FEMP testing has

not evolved to the level of sophistication of nuclear EMP testing.

N S C IS TR




Probably this 1s a result of the lightning pulse not being well

defined and the accompaning nonlinear environment not being well
understood. However lightning-EMP testing requires many of the
same considerations as nuclear-EMP, simulating the appropriate
electromagnetic environment and quantifying the effects of the
physical limitations of the simulator configuration.

In order to gain insight into the response of an aircraft
or missile to an electromagnetic pulse, a wire model is used for
both convenience and accuracy [1]. When an aircraft/missile (or
the wire model) 1is located near an imperfect ground plane as in
the u;ual test configuration, the induced surface currents are
affected by two principle processes. First, the scatterer is
exposed to the direct radiation and the ground reflected radiation.
Second, the induced surface currents interact with the ground plane.
The first process is well understood for both perfect and imperfect
ground planes, and is straight forward to analyze [2]. However the
second process being much more complicated is very difficult to
analyze, particularly when the ground is an imperfect conductor ([3].

A general formulation based on the singularity expansion method
is developed for horizdntal wire scatterers oriented over an imper-
fect ground plane. In order to account for the imperfect conduc-
tivity the exact Sommerfeld formulation is used [4). Accordingly a
system of integral equations are derived and solved utilizing a
numerical solution technique. Natural frequencies for a single
horizontal wire and for a horizontal wire cross are obtained.

Because of the complexity of the Sommerfeld integrals as they
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appeared in the kernel of the integral equations the computer CPU
time would be prohibitive for a parametric study. Therefore
sufficient data is presented only for fiducial purposes. Frequency
domain results for plane wave excitation are presented along with

natural frequencies.
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IT. FORMULATION

Frequency Domain Considerations

For an arbitrary configuration of horizontal wires oriented
over an imperfect ground plane the individual wire currents induced
by an incident electromagnetic field are obtained by solving a

system of linear integral equations [5].

. !{‘ I, (0" ,)G(L,,0",)dL", = Janue (E + E¥eF) (1)
. =1 - D S A Y ! o' "t) t3
L
1
where E:?c and E:;f are the components of the incident and ground

reflected electric fields along the jth wire of a system of N wires,

Ii(!.' 1) is the current on the ith wire at position 2' g
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X = (xj- x') cos a, + (yj-y'i) sina, (14)
y= -(xj -x'i)sin ui+ (yj- y'i) cosa, (15)
z =z ! (16)

Here (x'i,y' 1% ) , the coordinates of A 1 along the ith wire;

(xj .yj.zo). the coordinates of points "j along the jth vire; and

the angles a, and aJ are illustrated in Pigure 1,
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When the horizontal wires are joined additional considerat ions
must be made. First the wires must satisfy Kirchhoff's current
law, the sum of the wire currents must equal zero at the junction.
Second the charge per unit length on the wires are required to
satisfy the Wu-King {6] junction condition, i.e. for an n-wire

junction
UGty = 9% T a3¥3 7 T T 4y, an

where 1 is the charge per unit length given by

1 d
. q, ==+ o I1.(2) (18)
. 1 Juw dzi 11 |junction pt.
and
v, =2 | a2 - 0.5772 19)
1 kb'i :

In addition to the junction conditions the wire currents are
required to vanish at the open ends.

Due to the complexity of the system of integral equations to
be solved a numerical solution technique is employed, in particular,
the method of moments. This procedure involves dividing the
wire structure into eléctrically short segments. On each segment,
the wire current is approximated by some convenient function, here
a sinusoidal current expansion is used. Therefore the curremt on

the nth segment of the jth wire with end currents I,(L,,n) and

3

Ij(zj.n+1) is represented by




I, -
I,(t, ) ein [k (4-2 )]+1,(2, Dein [ko(!.j,m_l'zj)]

sin[ko(z

-2, )]
j,n+l "§,n (20)

Upon introducing the segmental current representation into the
system of integral equations, a system of linear equations for the
segment end currents can be obtained by enforcing the resulting
equations at a discrete set of points, namely, the end points of
the wire segments.

The resulting system of linear equations is of the form

*

N

I s, In =By (21)

n=1 .

where N-N1+N2+N3+ ~-- is the total number of unknown currents
after requiring the currents at the open ends to be zero. The
integral equation is enforced at the ends of all wire segments
excluding open wire ends and junction points, which yields N-Nw
equations where Nw is the total number of wires intersecting.
Applying the Wu-King junction condition yields Nw-NJ equations
where NJ is the total number of junctions. Applying the Kirchhoff
current law at the junctions yields an additional NJ equations.
Hence the total number of equations is equal to N' the total number
of unknown currents.

Computation of the system matrix elements smn can be simpli-
fied by mathematical manipulation and integration by parts. How-

ever the Sommerfeld terms accouting for the imperfect ground require

a8 double numerical integration, one integral over the wire segment

"
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and the other integral over an infinite range. These integrals
occur in the expressions for 8su and g,» see (5) and (6). To
perform the evaluation a deformed contour similar to the one
suggested by Miller et al {7] is chosen. The deformation of the
contour is permissable since all the branch points and poles of
the integrand lie in the secopnd and forth quadrants of the complex

A plane. Accordingly

M oexp[-3/W-vI (ztz )]
8sg = 23 I I_(Ap)Adr
o v, 2.2 + /)\2 2 °
A 16 - Y1
« exp[-/BZ Yoz (z+z°)]
+ 2 J_(Bp)BdX (22)
o V2 2% Va2 2 °
8 Yy 8 Yy
) Ay AT {v’kz—vg- A=y exp-1VA7vZ (z+2,)]
» o j J —
& ) Yg VA< Yi +Yi /Az-yg

X Io(Ap)de

) I“ V82+Y§ [¢32+Y§ - V82+Y§ ]exp[-VBz*Yg (2+zo)]
+
o yg v’szwlz + vf v’Bzﬂoz
x J_(B0)BdA (23)

where s:-x+ij and Io 18 the modified Bessel function of the
first kind. The choice of AI » a8 real constant, as the limit of
the first integrals in (22) and (23) is made to render the inte-
grands of the second integrals sufficiently smooth for rapid

convergence when a Gaussian-Laguerre interpolatory quadrature

e
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formula 18 used. For real frequencies AI - 5k°/2n provides good
results. Some experimentation is required to choose an appropriate
value for AI when complex frequencies are considered. The first
integrals in (22) and (23) are evaluated by using the Gaussian
interpolatory quadrature.

Both the Gaussian and Gaussian-Laguerre quadrature formulas
are derived by using convenient interpolating polynomials. Theoret-
ically, the more roots of the polynomials (increasing the order)
the more accurate the results will be. However this occurs at the
expense of computer CPU time. For the data that will be presented
dhbs;quently, the number of roots of the Gaussian quadrature is
denoted NIG and the number of roots for the Gaussian-Laguerre

quadrature is NIL. Both NIG and NIL are varied to achieve the

desired accuracy within the limitations of available CPU time.

Singularity Expansion Method

In order to employ the singularity expansion method (SEM) the
foregoing frequency domain formulation is extended into the complex
s-plane, where s = jw . Basically the SEM solution technique
provides a solution for the induced current }n terms of a simple
pole expansion in the frequency domain and corresponding damped
sinusoids in the time domain. To construct the solutions one must
obtain the natural frequencies (poles), natural modes and coupling
coefficients [8]. Only the natural frequencies are expected to
sensitive to the properties of an imperfect ground plane. Hence
this report will concentrate on obtaining data for the natural

frequencies.




The natural frequencies are the simple poles of the solutions
for the surface current and charge in the complex s~-domain. In
order to obtain the natural frequencies the system of equations in
(21) are used. By observing that the singularities of the current
are those complex frequencies for which the system matrix is singu-
lar, 1i.e. det[smn] = 0 , the natural frequencies are obtained by
searching for the roots of the determinant of the system matrix.

For the data reported here the roots were obtained via a Muller

iteration scheme [9].




I1I. FREQUENCY DOMAIN RESULTS

In order to verify the numerical procedures and algorithms
frequency domain, domain data is obtained for twc simple wire
configurations, a single horizontal wire and a horizontal wire
cross. Both configurations have been studied extensively by
other authors for both free space conditions and perfect ground
plane conditions [10,11].

The single horizontal wire oriented over an imperfect ground
1; illustrated in Figure 2. For plane wave incidence normal to
the ground and with the electric field directed parallel to the
cylinder, typical induced axial currents are exhibited in Figure 3
for resonant conditions (for comparison see Table 5). Corresponding
results for a perfect ground would show significant variation of
the current magnitude with height above the ground. From the
analysis of Taylor et al. [12] one obtains for the current at the

center of the horizontal wire

‘ inc
' UE cos(kl/2)-1
1235, [ c_‘oc+(k!. ) ] (24)

vhere

2n 2n

[+]
nan T Ik In 5oy (25
g o g ©

U=

—h

Z2h

ln—
a

(26)

fn Atyh L]
Z =2 { 1+
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Figure 2: Single horizontal cylinder oriented
over an imperfect ground plane.
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Xk
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For the parameters presented in Figure 3, (24) yields

l{—'— = 0.0108 [38,4° A/N/m
Enc

wvhen h/a = 4 and f = 119.7 MHz. The agreement between the fore-
going result and the numerically obtained value in Figure 3 ?s .
satisfactory since (24) was derived using transmission line theory
that requires (koh)2 <<1 whereas the sample calculation considered
koh = 0,501.

A second configuration is alsc considered. It is a horizontal
vire cross oriented over an imperfett ground as shown in Figure 4.
With the structure illuminated from above and .the electric field
directed parallel to the £, and li elements, the current distri-

1
butions are computed and displayed in Figure 5.
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Current distribution induced on
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IV, SINGULARITY EXPANSION METHOD RESULTS

In order to have confidence in the numerically obtained
results the dependence of the results upon the various numerical
solution par;meters is investigated. Considergng the single
cylinder, Table 1 illustrates typical dependence on the parameters
used to evaluate the Sommerfeld integrals (22) and (23). At the
lower conductivity substantial variation in the first natural
frequency is exhibited. Also the natural frequencies depend upon
tGe number of current segments used. This dependence is exhibited
in Table 2. Generally when the length of a current segment is
greater than a/z and less than 23? good results are obtained.
Finally the numerically obtained results are compared with the
results of independent (but less rigorous) formulations. These

data are shown in Table 3.

Obtaining the natural frequencies for various ground conduc-
tivities becomes increasingly more difficult as the conductivity
is decreased. 1In Figuse 6 the natural frequencies of a cylinder
are displayed in the complex s-plane with conductivity of the
ground as a parameter. For high conductivities the natural
frequencies approach the value obtained for a perfect ground [10].
But for low conductivities numerical difficulties degin to occur
for o‘ < 0.18/m, which prevented convergence to the free space

result. The dotted line is expected to give the true variation.
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TABLE 1: First Natural Frequency of a Cylinder
over an Imperfect Ground for Various

Numerical Parameters ?

! 4

(t/a=20., h/a=4, t=im, ‘R-l) 4

3

o NIG  NIL B S,tle .-
1.28/m 4 4 Sk /21 -0.1598 + 32,551 !
6 6 Sk /2n -0.1598 + § 2.551 -

6 15 Sk /2n -0.1566 + § 2.565 :

T

0.06S/m 6 15 Tk /2n -0.460 + § 2.584 i
:

6 15 9k /2x -0.442 + 32.650 )

] 6 15 11k /27 -0.423 + 32.719 ¢
§

4

¢

TABLE 2: First Natural Frequency of a Cylinder j
over an Imperfect Ground Versus the
Number of Current Segments

(£/a=200, h/a=40, NIL = NIG=2,
t=lm, 0=1.2x108S/m, eg=1)

N Sy8/c

. 10 -0.0293 +3 3.061
16 -0.0392 + 4 3.018
25 -0.0481 +§ 2.980
40 ~0.037 +3 2,925
50 -0.0570 + 3 2.906
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TABLE 3: First Natural Frequency of a Cylinder
over an Imperfect Ground as Obtained
by Different Analyses.

(2/a=20, h/a=4, f=lm, 0=120S/m, tR-l )

ANALYSIS §,¢/c
Sommerfeld~Integral Formulation ~0.0915 +3 2.599
Riggs and Shumpert [13] -0.0875 + 4 2.526

Reflection Coefficient Formulation [14) -0.1246 + J 2,562

TABLE 4: First Natural Frequency of a Cylinder
over an Imperfect Ground versus
Dielectric Constant.

(1/a=20., h/a=4, 2=1.0m, 0=0.128/m)

L $18/¢c

1 -0.3320 +j 2.5182
10 -0.3135 +] 2.5856
20 -0.2741 +3 2.6140
25 -0.2594 +3 2.6189
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\ Note that when numerical difficulties occur the natural frequéncy
Q 18 close to the free space value.

Q The dependence of the natural frequencies of a horizontal

| cylinder upon the permittivity of the ground and the height above

the ground is exhibited in Tables 4 and 5. These data are not

intended to be sufficient to provide the complete parametric

behavior. They are presented to be a basis of comparison for a

kT Y Ry

more efficient (i.e. less expensive) algorithm ceveloped by using

an approximate solution technique.




Mode

Syl,1
Sy 1,2
Sy 2,2
Sy 3,1

as1l

TABLE 5:

T P e e

First Natural Frequency of a Cylinder

over an Imperfect Ground Versus Height.
(¢/a=20., 2=1.0m, 0=0.1258/m, el-l)

h/a
4

6
8
10

TABLE 6:

sll/c
«0.3320 + § 2.5182

-0.2940 + § 2.4899
-0.3133 + § 2.4324
-0.3511 + § 2.3768
-0.4242 + § 2.503

Natural Frequencies of Horizontal

Crossed Wires over an Imperfect
Ground (21+£i-l.-2£2, L/a=20, !.i/ "1

=0.5, h/L=0.2, L=lm, 0=0.1S/m,
e8-20c°)

Free Space
-0.2923+3 2.319
-0.3426+3 3.726
-0.6786+ 3 6.066
-1.0166+3 8.139

-0.4242+ 3 2.503

SL/c
Perfect Ground

~0.0513+4 2.361
-0.1021+4 3.769
-0.3909+3 5.741
-0.6691+4 7.581
-0.0898+§ 2.592

Imperfect Ground
-0.0965+ 3 2.222
-0.0927+3 3.715
-0.44 +3 5.781
-0.69 +3 7.59
-0.2621+3 2.620




24

V. CONCLUSION

By extending the Sommerfeld formulation treating infinitesimal
dipoles over an imperfect ground plane, a formulation is developed
for treating horizontal wire configurations in proximity to an
imperfect ground. Numerical results are obtained for a single
wire and perpendicularly crossed wires.,

Structure resonances are obtained by utilizing the singularity
expangsion method. Sample results are presented and comparisons are
m;de with the results of other more approximate formulations.
Because of the inordinant amount of CPU time required parameter

studies are not presented. However sufficient data are provided

to verify more efficient algorithms that may be developed.
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