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ABSTRACT

The singularity expansion method (SEM) has been applied to

determine natural resonances of a horizontal wire and perpendicular

crossed wires oriented over an imperfect ground plane. In order to

account for the imperfect conductivity of the ground, the Sommerfeld

formulation is used and a theoretical-numerical solution obtained.

Sample results are presented for both the frequency domain and the

5EM .solutions.
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I. INTRODUCTION

An electromagnetic pulse such as the nuclear EMP or the

Lightning EMP will induce current and charge densities on aircraft

and missile surfaces. These distributions represent the external

electromagnetic fields that are in general related linearly to the

interior fields (equipment currents and voltages). Acquiring a

knowledge of the exterior fields is the first step in determining

termical currents and voltages induced within an illuminated aero-

nautical system. Transfer functions, either theoretical or experi-

mental, are used to relate the voltage and/or current at a particular

location to the most significant point or points of entry for the

electromagnetic energy.

A number of simulation facilities have been constructed to test

the response of aircraft and missiles to the nuclear EMP. In each

of the existing facilities the aircraft must rest on a concrete pad

(or a wooded platform) which eliminates the possibility of testing

the inflight mode response. However tests can be conducted as the

aircraft flies by the simulator but this procedure presents its

own difficulties. Thus a theoretical model is needed for the

interpretation of the "fly-by" test as well as for the extrapolation

of the test data from ground based measurements to predict the

inflight mode response.

In contrast to nuclear-EMP testing lightning-DIP testing has

not evolved to the level of sophistication of nuclear SW testing.



Probably this in a result of the lightning pulse not being well

defined and the accompaning nonlinear environment not being vell

understood. However lightning-EMP testing requires many of the

same considerations as nucler-EMP, simulating the appropriate

electromagnetic environment and quantifying the effects of the

physical limitations of the simulator configuration.

In order to gain insight into the response of an aircraft

or missile to an electromagnetic pulse, a wire model is used for

both convenience and accuracy [1). When an aircraft/missile (or

the wire model) is located near an imperfect ground plane as in

the usual test configuration, the induced surface currents are

affected by two principle processes. First, the scatterer is

exposed to the direct radiation and the ground reflected radiation.

Second, the induced surface currents interact with the ground plane.

The first process is well understood for both perfect and imperfect

ground planes, and is straight forward to analyze [2]. However the

second process being much more complicated is very difficult to

analyze, particularly when the ground is an imperfect conductor [3].

A general formulation based on the singularity expansion method

is developed for horizdntal wire scatterers oriented over an imper-

fect ground plane. In order to account for the imperfect conduc-

tivity the exact Soimerfeld formulation is used [4]. Accordingly a

system of integral equations are derived and solved utilizing a

numerical solution technique. Natural frequencies for a single

horizontal wire and for a horizontal wire cross are obtained.

Because of the complexity of the Somierfeld integrals as they

_OI...L . ..



appeared In the kernel of the integral equations the computer CPU

time would be prohibitive for a parametric study. Therefore

sufficient data Is presented only for fiducial purposes. Frequency

domain results for plane wave qzcitation are presented along with

natural frequencies.
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Frequency Domain Considerations

For an arbitrary configuration of horizontal wires oriented

over an Imperfect ground plane the individual wire currents induced

by an Incident electromagnetic field are obtained by solvilng a

system of linear integral equations [51.

N (tofinc ref
I J i(i)G(lt, L')dt'i - i41rwc (Et + E(1)

iml L i 0 tj j

in

where E in:and Eref are the components of the incident and ground
ti ti

reflected electric fields along the jth wire of a system of N wires,

I (ts1)is the current on the ith wire at position £L',

G~ji')-con(ra )( Yo(g

+ si (a- _L (g 0-g+ g+ g,) (2)
ayax

g - o

-si 2o 01+U 10(P) 5
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-Uo(z+ zo)
v,-2 (UOU )e J (p) dA (6)

-22 2+: U0

(zo  0 " _ )2 + p2 (7)

R -4(Z+Zo0) 2 +p2 (8)

o - 'x2+y2 (9)

U x''4.y2 (10)

U1 -"2 .2 (1
+y1

Yo -j. -i Jk (12)
0 0 0

y1 " Jwu 1(a1 +w e1) (13)

x - (1J- X') cosa t I (yj -y':l) sn a, (14)

y - -(xj - x'i)sin ai + (yj- Yf ) coso i  (15)

z- z0  (16)

Here N y o)i z the coordinates of L'i along the ith wire;

(xj ,yj ,zo), the coordinates of points J9j along the ith wire; and

the angles aI and, a are Illustrated n Figure 1.
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When the horizontal vires are joined additional considerations

must be made. First the vires must satisfy Kirchhoff's current

law, the sum of the wire currents must equal zero at the junction.

Second the charge per unit length on the wires are required to

satisfy the Wu-King (6) junction condition, i.e. for an n-wire

Junction

q - q202 - q3 3 - - qnn (17)

where qt is the charge per unit length given by

q A1 d i(t)l (18)
I jw dti junction pt.

and

2 [ - 0.5772 (19)

In addition to the junction conditions the wire currents are

required to vanish at the open ends.

Due to the complexity of the system of integral equations to

be solved a numerical solution technique is employed, in particular,

the method of moments. This procedure involves dividing the

wire structure into electrically short segments. On each segment,

the wire current is approximated by some convenient function, here

a sinusoidal current expansion Is used. Therefore the current on

the nth segment of the jth wire with end currents I (Ln) and

Ij(Lj ,n+l) is represented by

iI
...........
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Ij (ij) - 1 1 1 L~

I J (I J .0+1) sin [ ko( J -!J .n), ] J in)s. [ko (IJ , n~l-J )

sin[k 0 (tj ,n+l-tj (20)

Upon introducing the segmental current representation into the

system of integral equations, a system of linear equations for the

segment end currents can be obtained by enforcing the resulting

equations at a discrete set of points, namely, the end points of

the wire segments.

The resulting system of linear equations is of the form

N

sI = Em (21)

n-l

where N-N +N 2+N 3+ --- is the total number of unknown currents

after requiring the currents at the open ends to be zero. The

Z- integral equation is enforce4 at the ends of all wire segments

excluding open wire ends and junction points, which yields N-NV

equations where N is the total number of wires intersecting.

Applying the Wu-King junction condition yields Ny-Nj equations

where Nj is the totals number of junctions. Applying the Kirchhoff

current law at the Junctions yields an additional N3  equations.

Hence the total number of equations is equal to N the total number

of unknown currents.

Computation of the system matrix elements S can be simpli-

fied by mathematical manipulation and integration by parts. How-

ever the Sommerfeld terms accouting for the Imperfect ground require

a double numerical integration, one integral over the wire segment
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and the other integral over an infinite range. These integrals

occur in the expressions for gs and . see (5) and (6). To

perform the evaluation a deformed contour similar to the one

suggested by Miller et al (7] is chosen. The deformation of the

contour is permissable since all the branch points and poles of

the integrand lie in the second and forth quadrants of the complex

A plane. Accordingly

I1 exp[-Jv z- (z+zo)]
gSH 2J 0 1o (Xp)AdX

0 Y 1

r exp(-iBZ y7 (z+z°)1
+ 2 Jo J (B)$d (22)

o

gv -2j f ~ 2 (),Z Z + Y2 ,3
00O 1 1 o;

x 1I0(Xp)XdX

r vO' f,+4gYZ- ro+1 Jexpi-rv +-Y"j (z+z~)
y2 2 /0- =+ y

x J0 (Bp)BdX (23)

where 0 "-+JA and I is the modified Bessel function of the

first kind. The choice of AI , a real constant, as the limit of

the first integrals in (22) and (23) is made to render the inte-

grands of the second integrals sufficiently smooth for rapid

convergence when a Gaussian-Laguerre Interpolatory quadrature

a~, 1



10

formula is used. For real frequencies A, " 5k /2w provides good

results. Some experimentation is required to choose an appropriate

value for A1 when complex frequencies are considered. The first

integrals in (22) and (23) are evaluated by using the Gaussian

interpolatory quadrature.

Both the Gaussian and Caussian-Laguerre quadrature formulas

are derived by using convenient interpolating polynomials. Theoret-

ically, the more roots of the polynomials (increasing the order)

the more accurate the results will be. However this occurs at the

expense of computer CPU time. For the data that will be presented

subsequently, the number of roots of the Gaussian quadrature is

denoted NIG and the number of roots for the Gaussian-Laguerre

quadrature is NIL. Both NIG and NIL are varied to achieve the

desired accuracy within the limitations of available CPU time.

Singularity Expansion Method

In order to employ the singularity expansion method (SEM) the

foregoing frequency domain formulation is extended into the complex

s-plane, where s - jw . Basically the SEM solution technique

provides a solution for the induced current in terms of a simple

pole expansion in the frequency domain and corresponding damped

sinusoids in the time domain. To construct the solutions one must

obtain the natural frequencies (poles), natural modes and coupling

coefficients [8). Only the natural frequencies are expected to

sensitive to the properties of an imperfect ground plane. Hence

this report will concentrate on obtaining data for the natural

frequencies.



The natural frequencies are the simple poles of the solutions

for the surface current and charge in the complex s-domain. In

order to obtain the natural frequencies the system of equations in

(21) are used. By observing that the singularities of the current

are those complex frequencies for which the system matrix is singu-

lar, i.e. det[Sn I - 0 , the natural frequencies are obtained by

searching for the roots of the determinant of the system matrix.

For the data reported here the roots were obtained via a Muller

iteration scheme (9].
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III. FREQUENCY DOMAIN RESULTS

In order to verify the numerical procedures and algorithms

frequency domain, domain data is obtained for t-c simple wire

configurations, a single horizontal wire and a horizontal wire

cross. Both configurations have been studied extensively by

other authors for both free space conditions and perfect ground

plane conditions [10,11].

The single horizontal wire oriented over an imperfect ground

is illustrated in Figure 2. For plane wave incidence normal to

the ground and with the electric field directed parallel to the

cylinder, typical induced axial currents are exhibited in Figure 3

for resonant conditions (for comparison see Table 5). Corresponding

results for a perfect ground would show significant variation of

the current magnitude with height above the ground. From the

analysis of Taylor et al. [12] one obtains for the current at the

center of the horizontal wire

x 'uinc -

JUE ic  cos(k/2) _1 (24)

I -kZ Lcos(kI12)J
c

where

2n 2nU - A--J + JkoIn 0(5
n +1 0 n + (25)
g o g o

S1+ L (26)

a
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Figure 2: Single horizontal cylinder oriented
over an imperfect ground plane.
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An 1+rh)
1

k k 0 1 + 2h (27)
2h

TIn

no 2h
Z n2  (28)co 2w a

1) .120 w
0

g _j

g
y , [JwU(O 9+J we 9])

For the parameters presented in Figure 3, (24) yields

11 0.0108 /38.4 A/V/rn-I inc
when h/a - 4 and f - 119.7 MHz. The agreement between the fore-

going result and the numerically obtained value in Figure 3 is

satisfactory since (24) was derived using transmission line theory

that requires (k0h)
2 <<1 whereas the sample calculation considered

k 0h - 0.501.

A second configuration is also considered. It isa horizontal

wire cross oriented over an Impetfett ground as shown in Figure 4.

With the structure illuminated from above and the electric field

directed parallel to the AI and I  elements, the current distri-

butions are computed and displayed in Figure S.

' . s
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Figure 5: Current distribution induced on
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to the ground with the electric field
parallel to the y-axis.
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IV. SINGULARITY EXPANSION METHOD RESULTS

In order to have confidence in the numerically obtained

results the dependence of the results upon the various numerical

solution parameters is investigated. Considering the single

cylinder, Table 1 illustrates typical dependence on the parameters

used to evaluate the Sommerfeld integrals (22) and (23). At the

lower conductivity substantial variation in the first natural

frequpncy is exhibited. Also the natural frequencies depend upon

the number of current segments used. This dependence is exhibited

in Table 2. Generally when the length of a current segment is

greater than a/z and less than 2a, good results are obtained.

Finally the numerically obtained results are compared with the

results of independent (but less rigorous) formulations. These

data are shown in Table 3.

Obtaining the natural frequencies for various ground conduc-

tivities becomes increasingly more difficult as the conductivity

is decreased. In Figure 6 the natural frequencies of a cylinder

are displayed in the complex s-plane with conductivity of the

ground as a parameter. For high conductivities the natural

frequencies approach the value obtained for a perfect ground [101.

But for low conductivities numerical difficulties begin to occur

for o X 0.1 S/rn, which prevented convergence to the free space

result. The dotted line is expected to give the true variation.
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TABLE 1: First Natural Frequency of a Cylinder

over an Imperfect Ground for Various
Numerical Parameters

(t/a-20., hla-4, I-l, sc-I)

a NIG NIL Y S t/c

1.2S/m 4 4 5k /2% -0.1598 + j 2.551

6 6 5k /2w -0.1598 + j 2.551

6 15 5ko/2w -0.1566 + j 2.565

0.06S/ 6 15 7k /2w -0.460 + j 2.584

6 15 9k0 /2w -0.442 + j 2.650

6 15 11k /2w -0.423 + J 2.719

TABLE 2: First Natural Frequency of a Cylinder
over an Imperfect Ground Versus the
Number of Current Segments

(t/a-200, h/a-40, NIL-NIG-2,
I-In, 0-1.2x10 8 S/m,cR-l)

N S11/c

. 10 -0. 0293 +.j 3.061

16 -0.0392 +J 3.018

25 -0.0481 +j 2.980

40 -0.05.- + j 2.925

50 -0.0570 +j 2.906

80 -0.0593 + J 2.878

~~~~~.................................. ..... . ., ,- . .. ..- ,. . ,.r " -
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TABLE 3: First Natural Frequency of a Cylinder
over an Imperfect Ground am Obtained
by Different Analyses.

(1/a-20, hla-4, Zola, o-120OS /a,eRwl

AMALYSIS S tI c

Somerfeld-Integral Formulation -0.0915 +j 2.599

Riggs and Shumpert (131 -0.0875 +j 2.526

Reflection Coefficient Formulation [141 -0.1246 + j 2.562

TABLE 4: First Natural Frequency of a Cylinder
over an Imperfect Ground versus
Dielectric Constant.

(1/a-'20., h/a-4, 1-1.0m, amO.12 S/u)

1 -0.3320 +j 2.5182

10 -0.3135 +j 2.5856

20 -0.2741 +j 2.6140

25 -0.2594 +j 2.6189

35 , -0.2379 +j 2.6232

aw~~- .....
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2.3

a=20., - 4, Z. 1.0
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-0.8 -0.6 -0.4 -0.2

Figure 6: First Natural Frequency of a horizontal
cylinder over an imperfect ground plane
versus ground conductivity
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Note that when numerical difficulties occur the natural frequency

is close to the free space value.

The dependence of the natural frequencies of a horizontal

cylinder upon the permittivity of the ground and the height above

the ground is exhibited in Tables 4 and 5. These data are not

intended to be sufficient to provide the complete parametric

behavior. They are presented to be a basis of comparison for a

more efficient (i.e. less expensive) algorithm developed by using

an approximate solution techni4ue.

• |

.. . . .. . . . . .. . . . . . . . .
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TABLE 5: First Natural Frequency of a Cylinder
over an Imperfect Ground Versus Height.

(1/a20.,1-1.m, a0.12/u, R7.

h/a S 1 Jt/c
4 -0. 3320 + j 2.5182

6 -0.2940 + j 2.4899

8 -0. 3133 + j 2.4324

10 -0.3511 + j 2.3768

-- 0.4Z42 + j 2.503

TABLE 6: Natural Frequencies of Horizontal
Crossed Wires over an Imperfec:
Ground (11+11-'L-2' 2 , L/am2O, tIt
-0.5, b/L-0.2, L-la, a-0.lS/m,
e -20e

9 0

Mode SL/c

Free Space Perfect Ground Imperfect Ground

Syl1,1 -0.2923+ j 2.319 -0.0513+ j 2.361 -0.0965+ j 2.222

Syl1,2 -0.3426+ j 3.726 -0.1021+ j 3.769 -0.0927+ j 3.715

Sy 2,2 -0.6786+j 6.06,6 -0.3909+ j 5.741 -0.44 +j 5.781

Sy 3.1 -1.0166+ j 8.139 -0.6691+j 7.Wl -0.69 +j 7.59

asi1 -0.4242+ j 2.503 -0.0898+ j 2.592 -0.2621+ j 2.620
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V. CONCLUSION

By extending the Sommerfeld formulation treating infinitesimal

dipoles over an imperfect ground plane, a formulation is developed

for treating horizontal wire configurations in proximity to an

imperfect ground. Numerical results are obtained for a single

wire and perpendicularly crossed wires.

Structure resonances are obtained by utilizing the singularity

expanpion method. Sample results are presented and comparisons are

made with the results of other more approximate formulations.

Because of the inordinant amount of CPU time required parameter

studies are not presented. However sufficient data are provided

to verify more efficient algorithms that may be developed.
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