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ABSTRACT

This paper reports on an experiment in trying to understand an

unfamiliar program of some complexity and to record the authors' under-

standing of it. The goal was to simulate a practicing programmer in a

program maintenance environment using the techniques of program design

adapted to program understanding and documentation; that is, given a

program, a specification and correctness proof were developed for the

program. The approach points out the value of correctness proof ideas in

guiding the discovery process. Toward this end, a variety of techniques

were used: direct cognition for smaller parts, discovering and verifying

loop invariants for larger program parts, and functions determined by

additional analysis for larger program parts. An indeterminate bounded variable

was introduced into the program documentation to summarize the effect of

several program variables and simplify the proof of correctness.
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UNDESTANDING AND DOCUMENTING PROGRAMS

I. INTRODUCTION

Understanding Programs - We report here on an experiment in trying to

understand an unfamiliar program of some complexity and to record our under-

standing of it. We are as much concerned with recording our understanding as

with understanding. Every day programmers are figuring out what existing

programs do more or less accurately. But most of this effort is lost, and

repeated over and over, because of the difficulty of capturing this under-

standing on paper. We want to demonstrate that the very techniques of good

program design can be adapted to problems of recording hard won understandings

about existing programs.

In program design, we advocate the joint development of design and correct-

ness proof, as shown by Dijkstra in (Dahl, Dijkstra, and Hoare) and (Dijkstra)

and by (Linger, Mills, and Witt), rather than a posteriori proof development.

Nevertheless, we believe that the idea of program correctne, provides a com-

prehensive a posteriori strategy for developing and recording an understanding

of an existing program. In fact, we advocate another kind of joint develop-

ment, this time, of specification and correctness proof. In this way, we have

a consistent approach dealing always with three objects; namely, (1) a specifi-

cation, 7) a program, and (3) a correctness proof. In writing a program, we

are given (1) and develop (2) and (3) jointly; in reading a program, we are

given (2) and develop (1) and (3) jointly. In either case, we end up with the

same harmonious arrangement of (1) and (2) connected by (3) which contains our

understanding of the program.

In the experiment at hand, our final understanding exceeded our most

optimistic initial expectations, even though we have seen these ideas succeed

iA
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2

before. One new insight from this experiment was how little we really had to

know about the program to develop a complete understanding and proof of what

it does (in contrast to how it does it). Without the correctness proof ideas

to guide us, we simply would not have discovered how little we had to know.

In fact, we know a great deal more than we have recorded here about how the

program works, which we chalk up to the usual dead ends of a difficult discovery

process. But the point is, without the focus of a correctness proof, we would

still be trying to understand and record a much larger set of logical facts

about the program than is necessary to understand precisely what it does.

In retrospect, we used a variety of discovery techniques. For simpler

parts of the program, we used direct cognition. In small complex looping parts,

we discovered and verified loop invariants. In the large, we organized the

effect of major program parts as functions to be determined by additional

analysis. We also discovered a new way to express the effect of a complex

program part by introducing a bounded indeterminate variable which radically.-....

simplified the proof of correctness of the program part.

The experiment - We were interested in a short but complex program using

real arithmetic, and felt that more attention might be paid to the structure

and correctness of programs that deal with real arithmetic. The program was

chosen by Professor James Vandergraft of the University of Maryland as a diffi-

cult program to understand. It was a FORTRAN program called ZEROIN which

claimed to find a zero of a function given by a FORTRAN subroutine.

Our goal was to simulate a practicing programmer in a program maintenance

environment. We were given the program and told its general function. The

problem then was to understand it, verify its correctness, and possibly

modify it, to make it more efficient or extend its applicability. We were not

given any more about the program than the program itself. The program given
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to us is shown in Figure 1. Professor Vandergraft played the role of a user

of the program and posed four questions regarding the program:

1. I have a lot of equations, some of which might be linear. Should

I test for linearity and then solve the equation directly, or just

call ZEROIN? That is, how much work does ZEROIN do to find a root

of a linear function?

* 2. What will happen if I call ZEROIN with FA and FB both positive?

How should the code be changed to test for this condition?

3. It is claimed that the inverse quadratic interpolation saves only

.5 function evaluations on the average. To get a shorter program, I

would like to remove the inverse quadratic interpolation part of the

code. Can this be done easily? How?

4. Will ZEROIN find a triple root?

It should be noted that the authors are not currently working in the area of

numerical analysis, though it is not an unknown area to them.

Vt
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II. TECHNIQUES FOR UNDERSTANDING PROGRAMS

Flowcharts - Any flowehartable program can be analyzed in a way we

describe next for better understandability and documentation. For a fuller

discussion, see (Linger, Mills and Witt). We consider flowcharts as directed

graphs with nodes and lines. The lines denote flow of control and the nodes

denote tests and operations on data. Without loss of generality, we consider

flowcharts with just three types of nodes, namely:

function node:

Predicate node:

collecting nodes:

where f is any function mapping the data known to the program to new data,

e.g., a simple FORTRAN assignment statement, and p is any predicate on the data

known to the program, e.g., a simple FORTRAN test. An entry line of a flowchart

program is a line adjacent to only one node, at its head; an exit line is

adjacent to only one node, its tail.

Functions and data assignments - Any function mapping the data known to

a program to new data can be defined in a convenient way by generalized forms

of data assignment statements. For example, an assignment, denoted

x :- e, (e.g., x :- x + y)

where x is a variable known to the program and e is an expression in variables

known to the program, means that the value of e is assigned to x. Such an

assignment also means that no variable except x is to be altered. The concurrent

assignment, denoted

xl, x2, ..., xn :- el, e2, ..., en

means that expressions el, e2, ... , en are evaluated independently, and their
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values assigned simultaneously to xl, x2, ... , xn, respectively. As before,

the absence of a variable on the left side means that it is unchanged by the

assignment.

The conditional assignment, denoted

(pl Al I p2 - A2.. p, - An)

where pl, p2, ... , pn are predicates and Al, A2, ... , An are assignments

(simple, concurrent or conditional) means that particular assignment Ai

associated with the first pi, if any, which evaluates true; otherwise, if no

pi evaluates true, then the conditional assignment is undefined.

An expression in an assignment may contain a function value, e.g.,

x :- max(x, abs(y))"

where max and abs are functions. But the function defined by the assignment

statement is different, of course, from max or abs.

We note that many programming languages permit the possibility of so-

called side effects, which alter data not mentioned in assignment statements

or in tests. Side effects are specifically prohibited in our definition of

assignments and tests.

Proper programs - We define a proper program to be a program whose flow-

chart has exactly one entry line, one exit line, and, further, for every node

a path from the entry through that node to the exit. For example,

f

are proper programs, but

are not proper programs.

*. ' .-- • , -•
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Program functions - We define a program. function of a proper program P,

denoted [P], to be the function computed by all possible executions of P which

start at its entry and terminate at its exit. That is, a program function [P]

is a set of ordered pairs, the first member being a state of the data on entry

to P, the second being the resulting state of the data on exit. Note that

the state of data includes input, output files which may be read from or

written to intermittently during execution. Also note that if a program does

not terminate by reaching its exit line from some initial data at its entry,

say by looping indefinitely or by aborting, no such pair will be determined and

no trace of this abnormal execution will be found in its program function.

Proper programs are convenient units of documentation. Their program

functions abstract their entire effect on the data known to the program.

Within a program, any subprogram which is proper can be also abstracted by its

program function, that is, the effect of the subprogram can be described by a

single function node whose function is the program function of the subprogram.

We say two programs are function equivalent if their program functions

are identical. For example, the programs

have different flowcharts but are function equivalent.

Prime proarams - We define a prime program to be a proper program which

contains no subprogram which is proper except for itself and function nodes.

For example,

are primes, while

f
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are not prime (composite programs), the first (of the composites) having

subprograms

f and

Any composite program can be decomposed into a hierarchy of primes, a prime

at one level serving as a function node at the next higher level. For example,

the composite programs above can be decomposed as shown next.

6-A

In each case, a prime is identified to serve as a function node in another

prime at the next level. Note also that the first composite can also be

decomposed as

.. . . . h

so that the prime decomposition of proper programs is not necessarily unique.

Prime programs in text form - There is a striking resemblance between

prime programs and prime numbers, with function nodes playing the node of

unity, and subprograms the role of divisibility. Just as for numbers, we can

enumerate the control graphs of prime programs and give a text description of

small primes as follows:

all A
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f;

P if~ p then f f i

while p o f od

f P do f until p ad

pi f p then f else g fi

p dol f while p do2 y d

Larger primes will go unnamed here, although the case statement of

Pascal is a sample of a useful larger prime. All of the primes above except

the last (dowhiledo) are common to many programing languages. Prime programs

in text form can be displayed with standard indentation to make the subprogram

structure and control logic easily read, which we will illustrate for ZEROIN.

...
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III. UNDERSTANDING ZEROIN

The prime program decomposition of ZEROIN - Our first step in under-

standing ZEROIN was to develop a prime program decomposition of its flowchart.

After a little experimentation, the flowchart for ZEROIN was diagrammed as

shown in Figure 2. The numbers in the nodes of the flowchart represent

contiguous segments of the FORTRAN program of Figure 1, so all lowest level

sequence primes are already identified and abstracted.

The flowchart program of Figure 2 was then reduced, a step at a time, by

identifying primes therein and replacing each such prime by a newly numbered

function node, e.g., R.2.3 names prime 3 in reduction 2 of the process. This

reduction is shown in Figure 3, leading to a hierarchy of 6 levels. Of all

primes shown in Figure 3, we note only two which contain more than one predi-

cate, namely, R.3.1 and R.5.1, and each of these is easily modified into a

composite made up of primes with no more than one predicate. These modifica-

tions are shown in Figure 4. We continue the reduction of these new composite

programs to their prime decompositions in Figure 5. In each of these two cases,

a small segment of programs is duplicated to provide a new composite which

clearly executes identically to the prime. Such a modification which permits

a decomposition into one predicate primes is always possible, provided an

extra counter is used. In this case, it was fortunate that no such counter

was required. It was also fortunate that the segments duplicated were small;

otherwise, a program call in two places to the duplicated segment might be a

better strategy.

A structured design of ZEROIN - Since a prime program decomposition of a

program equivalent to ZEROIN has been found with no primes of more than one

predicate, we can reconstruct this program in text form in the following way:

The final reduced program of ZEROIN is given in Reduction 6 of Figure 3, namely,



ZERO IN

1 -9

10-11

4I-2

41-42

5759 6 4 68

ge 2. <9L>



Reduction I

ZERO IN

1-9

R.1 .1 R.1.1 u 10-11

25-12

JRR.1.2

R.1.3 a 53

57-59 64-68

Fiue3-1o44pgs



Reduction 2

R.2.1= 1-

R.2.1 19

256-28

R.2.2 29-3

R.2.22

14

R.2.3

Figure 3 (2 of 4 pages)

led



Reduction 3

ZEROIN

R.2.1 R.3.1 48-49

25-28R23

77-7

79-80 858

Reduction 4

ZERO IN

R.2.1 R.4.1

25-28 R 94

20-24

4-10-102 43-4

R.4.1

95

Figure 3 (3 of 4 pages)



Reduction 5

ZEROIN

R.2.1R.5.1 u 25-28

R.5.1R.2.21

leO-10244

R.4.1

95

Reduction 6

ZERO IN

61R.6.1 R .2.1

rR.S.11

100- 102

Figure 3 (4 of 4 pages)



R.3.1 * 8-49 M.3.1 48-4

R.2.3 R.2.3
can be

7-7 modified

to 7-

79-80 8 5- 86 79-80 80-86 85-86

R.5.1 * 25-29

R22can be M.5.1 u 25-29 2--

mod ifled

43-4 to R.2.2

R.4.1 3-44

95 
t 

4.

95

Figure 4



Reduction 1

M.3.1 5.1.1 * 7-7

484979-80 85-86

=5. 85-86

Reduction 2

M.3.1 5.2.1 = 4231
48-49

5.2.1 85-86

Reduction 3

M.3.1 5.3.1 = 8-44

5.2.1 85-86

Figure 5 (1 of 2 pages)



Reduction 'Ik

M.5.1 T.1.1 * 95

2S-29252

R.2.2

43-44

R.4.1

T.1.1

Reduction 2

25-29 T.2.1

R.2.2

43-44

.2

Reduction 3

5- .3.1 R.2.2

43-44

T.2.1

Reductn =:

Figure 5 (2 of 2 pages)
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that R.6.1 is a sequence, repeated here,

R.6.1 *

121

Now R.2.1 can be looked up, in turn, as:

R.2.1 -

etc., until all intermediate reductions have been eliminated. Recall that

R.5.1 (and R.3.1) was further reduced in Figure 5. When these intermediate

reductions have all been eliminated, we obtain a structured program in PDL

(Process Design Language) for ZEROIN shown in Figure 6. Note there are three

columns of statement numberings. The first column holds the PDL statement

number; the second holds the FORTRAN line numbering of Figure 1; the third

holds the FORTRAN statement numbering of Figure 1. The FORTRAN comments have

been kept intact in the structured program and appear within square brackets

[,]. From here on, statement numbers refer to the PDL statements of Figure 6.

The duplication of code introduced in Figure 4 can be seen in PDL 72, 73,

and PDL 96-99. It should be noted, however, that in PDL 87-91 the second

IF STATEMNT in FORTRAN 93 can be eliminated by use of the if-then-else. This

permits an execution time improvement to the code. A second improvement can be

seen in PDL 62-66. The use of the absolute value function can be eliminated

and the if-then-else can be used to transform the else negative p into a

positive p only in the case where p is negative.

II.



.-:0RTRAN

-ine Stat
lefer- .
race ref

ZIROIN. PROGRAM

1 1-2 func zeroln (real ax, bx, f, tol, integer ip)
2 5 real a, b, c, d, e, eps, fa, fb, fc,
3 tol1 , x, p, q, r,s
4 7 [COMPUTE EPS, THE RELATIVE MACHINE PRECISION]
5 9 epa :- 1.0
6 do
7 10 10 epa :- eps/2.0
8 11 tol 1:- 1.0 + epa
9 until

10 12 to 1 _1
11 od
12 14 [ITIIZATION]
13 16 if ip - 1 then write ('THE INTERVALS DETERMINED BY ZEROIN ARE') fE
14 18 a: ax
15 19 b :-bx
16 20 fa , f(a)
17 21 fb := f(b)
18 23 [BEGIN STEP]
19 25 20 c: a
20 26 fc :-fa
21 27 d :b-a
22 28 : d
23 dol
24 29 30 if ip I then write (b, c)fi
25 if
26 31 abs (fc) < abs (fb)
27 then
28 32 a: b
29 33 b: c
30 34 c:= a
31 35 fa: fb
32 36 fb :-fc
33 37 fc fa
34 fE
35 39 [CO-IERGENCE TEST]
36 41 40 tol 1 :- 2.0 * eps* abs (b) + 0.5 *tol
37 42 m :- .5 * (c-b)
38 while
39 1,2 abs (xm) > tol 1 and fb , 0
40 do2
41 TIS BISECTION NECESSARY]
42 if
43 udla(e) - tol 1 or abs (fa) L abs (fb)
44 83 then (BISECTION] -
45 85 70 d -,
46 86 a: d
47 46 alse (IS QUADRATIC INTERPOLATION POSSIBLE]
48 if
49 48 a 0 c
50 62 then INVERSE QUADRATIC IWTERPOLATION]

Figure 6. (1 of 2 pages)



Line Stint
erer- I

ence ref.

51 64 50 q : fa/fc
52 65 r :, fb/fc
53 66 s : fb/fa
54 67 p : s * (2.0 *xm* q * (q-r) - (b-a) * (r-1.0))
55 68 q :- (q-1.0) * (-1.0) * (s-1.0)
56 55 else (LINEAR INTERPOLATION]
57 57 a : fb/fa
58 58 p :-2.0 * *s
59 59 q: 1.0- s
60 fi
61 70 TiDJUST SIGNS]
62 if /* note can be */
63 72 60 p > 0 /* if p > o then q :-q*/
64 then /* else p :-p*/
65 -72 q :- -q /* in PDL*
66 fi
67 73 p :- abs(p)
68 75 (IS INTERPOLATION ACCEPTABLE]
69 if
70 77 (2.0 * p)2 (3.0 * x * q - abs (tol 1 * q))
71 83 then (BISECTION]
72 85 70 d:- xm /* note 85-86 repeated */
73 86 :-d /* inPDL */
74 else
75 79 • :-d
76 80 d :- p/q
77 fi
78 fi
79 Tc-OmPLETE STEP]
80 90 80 a: b
81 91 fa: fb
82 if
83 92 abs(d) > tol 1 /* note test done twice */
84 then /* in FORTRAN */
85 92 b :- b + d
86 fi * here and */
87 iU 1* in line 88 */
88 93 abs(d) 4 tol 1
89 then
90 93 b b + sign (toll, 1 )
91 fi

92 94 fb : f(b)
93 if
94 fb * (fc/abs (re)) > 0.0
95 then [BEGIN STEP]
96 25 20 c :- a /* note 25-28 */
97 26 fc :f Ia /* repeated */
98 27 d :-b -a /* in PDL
99 28 e: d

100 fi
101 od
102 98 T -nE
103 100 eron :b
104 L01 return
105 102 cnuf

Figure 6. (2 of 2 pages)
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By construction, the PDL program of Figure 6 is function equivalent

to the FORTRAN program of Figure 1. But the PDL program will be simpler

to study and understand.

Data references in ZEROIN - Our next step in understanding ZEROIN was to

develop a data reference table for all data identifiers. While straight-

forward and mechanical, there is still much learning value in carrying out

this step, in becoming familiar with the program in the new structured form.

The results are given in Figure 7. This familiarization led to the following

observations about the data references in ZEROIN (in no particular order of

significance, but as part of a chronological, intuitive, discovery process):

1. ax, bx, f, ip, tol are never set, as might be expected, since

they are all input parameters (but this check would determine

initialized data if it existed, and also checks for the presence of

side effects by the program on its parameters if passed by reference).

2. Zeroin is never used, but is returned as the purported zero found

for f (since Zeroin is set to b just before the return of the program,

it appears that b may be a candidate for this zero during execution).

3. eps is set by the dountil loop 6-11 at the start of program execution,

then used as a constant at statement 36 from then on.

4. tol lis used for two different unrelated purposes, namely, as a

temporary in the dountil look 6-11 which sets eps, then reset at

statement 36 as part of a convergence consideration.

5. the function f is called but three times, qt.16, 17 to initilize

fa, fb, and at 92 to reset fb to f(b) (mAe evidence that b is the

candidate zero to be returned). /

6. the identifiers a, c are set to andifrom b, and the triple a, b, c

seems to be a candidate for bracketing the zero which b (and zeroin)

purports to approach.



Set Used

a 14,28,80 16,19,21,30,49,54,96,98

ax 14

b 15,29,85.90 17,21,24,28,36,37,54,80,85,90,92,98,103

bx 15

a 19,30,96 29,37,49

d 21,45,72,76,98 22,46,73,75,83,85,88,99

* 22,46,73,75,99 43

eps 5,7 7,8,36

f 16,17,92

fa 16,31,81 20,33,43,51,53,57,97

fb 17,32,92 26,31,39,43,52,53,57,81,94

fe 20,33,97 26,32,51,52,94

i£p 13,24

p 54,58,67 63,67,70,76

q 51,55,59,65 54,55,65,70,76

r 52 54,55

s 53,57 54,55,58,59

col 36

tol 1 8,36 10,39,43,70,83,88

xm 37 39,45,54,58,70,72,90

zeroin 101

FiSure 7.
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7. the identifiers fa, fb, fc are evidently standins for f(a), f(b),

f(c), and serve to limit the calls on function f to a minimum.

8. the identifiers p, q, r, s are initialized and used only in the

section of the program that the comments indicate is concerned

with interpolation.

9. focusing on b, aside from initialization at statement 15, and as

part of a general exchange among a, b, c at statement 28-29, b is

updated only in the ifthenelse 83-90, incremented by either d or

tol 1.-

10. d is set to xm or p/q (as a result of a more complex bisection and

interpolation process); m is set only at statement 37 to the half

interval of (b, c) and appears to give a bisection value for b.

A function decomposition of ZEROIN - The prime program decomposition and

the familiarity developed by the data reference tabulation and observations

suggest the identification of various intermediate prime or composite programs

in playing important roles in summing up a functional structure for ZEROIN.

Each such intermediate prime or composite program computes values of a function.

The inputs (function arguments) of this function are defined by the initial

values of all identifiers which are inputs (function arguments) for statements

which make up the intermediate program. The outputs (function values) of

this function are defined by the final values of all identifiers which are

outputs (function values) for statements which make up the intermediate pro-

gram. Of course, further analysis may disclose that such a function is

independent of some inputs, if, in fact, such an identifier is always

initialized in the intermediate program before its use.

On the basis of this prime decomposition and data analysis, we reformulated

ZEROIN of Figure 6 as zeroinl, a sequence of four intermediate programs, as

I
liliil-i-iil
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shown in Figure 8, with function statements using the form f. n-m where n, m

are the boundary statements of the intermediate programs of ZEROIN from Figure 6.

The identifier *outfile in the output lists refers to the fact that data is

being transferred to an outfile by an intermediate program. The phrase (xz,v)

projection of some function x,y,z,u,v,w :, p,qr,st,u means the new function

x,z,v :- p,r,t.

In the program descriptions which follow, all arithmetic operations

are assumed to represent machine arithmetic. However, we will occasionally

apply normal arithmetic axioms in order to simplify expressions. We next

look at the intermediate programs.

f.5-11 - The intermediate program which computes the values of f.5-11

is a sequence, namely, an initialized dountil, i.e.

5 eps :- 1.0

6 do

7 eps :- eps/2.0

8 tol 1 :- 1.0 + eps

9 until

10 tol 1 A 1

11 od

After some thinking, we determined that at PDL 6, an invariant of the form

16 - (3k> o (eps - 2 -k)) A 1 + eps > 1

must hold, since entry to PDL 6 must come from PDL 5 or PDL 10 (and in the

latter case tol I > 1, having just been set to 1.0 + eps, so 1.0 + eps > 1).

Furthermore, at PDL 9 the invariant

19 - (0 k , 1 (ep - 2-k )) A tol 1 - 1 + eps

must hold, by observing the effect of PDL 7, 8 on the invariant 16 at PDL 6.

Therefore, at exit (if ever) from the segment PDL 5-11, we must have the

condition 19 A PDL 10, namely

(3k 1 (ape - 2k)) A 1 + 2 epe 1 A tol 1 - 1 + epes. 1



1 func zeroin 1 (real ax, bx, f, tol, integer ip)

2 real a, b, c, d, e, eps, fa, fb, fc, p, q, r, a, tol 1, xm

3 integer ip

4 (compute eps, the relative machine precision]

5 eps, tol 1 :- f. 5-11

6 (initialize data]

7 a, b, c, d, e, fa, fb, fc, *outfile := f. 13-22 (ip, ax, bx, f)

8 [estimate b as.a zero of f]

9 a, b, c, d, e, fa, fb, fc, p, q, r, s, tol 1,xa, *outfile :-

f. 23-101 (a, b, c, d, e, f, fa, fb, fc, ip, p, q, r, s, tol 1, xm)

10 (set zeroin for return, zeroin :b]

11 zeroin : f. 103-103(b)

12 return

13 cnuf

Figure 8
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Thus we have

Lema 5-11 The program function of f.5-11 is the constant function.

{(O., (eps, tol 1)) l (3k >, 1 (eps - 2 k)) A 1 + 2 epa > 1 A tol I - 1 + eps .< I}

Since tol 1 is reassigned (in PDL 36) before it is used again, f.5-1 can be

thought of as computing only epe.

f.13-22 - The intermediate program which computes the value of f.13-22

is a sequence which can be written directly as a multiple assignment. It is

convenient to retain the single output statement PDL 13, and write

f.13-22 - f.13-13; f.14-22

yielding

Lema 13-22 The (a,b,c,d,e,*outfile) projection of f.13-22 is function

equivalent to the sequence

f.13-13; f.14-22

where f.13-13 = if ip " i then write ('THE INTERVALS DETERMINED BY ZEROIN ARE')

f.14-22 - a,b,c,d,e :- ax,bx,ax,bx-ax,bx-ax

f.23-101 - The intermediate program which computes the value of f.23-101

is a bit more complicated than the previous program segments and will be broken

down into several subsegments. We begin by noticing that several of the input

and output parameters may be eliminated from the list. Specifically, as noted

earlier, p, q, r, and s are local variables to f.23-101 since they are always

recalculated before they are used in f.23-101 and they are not used outside of

f.23-101. The same is true for xm and tol 1. fa, fb, and fc can be eliminated

since they are only used to hold the values of f(a), f(b) and f(c).

After considerable analysis and a number of false starts leading into a

great deal of detail, we discovered an amazing simplification, first as a con-

jecture, then as a more precise hypothesis, and finally as a verified result.

This simplification concerned the main body of the iteration of zeroin, namely
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PDL 41-92, and obviated the need to know or check what kind of interpolation

strategy was used, step by step. This discovery was that the new estimate

of b always lay strictly within the interval bracketed by the previous b and c.

That is, PDL 41-92, among other effects, has the (b) projection

b :- b + a(c-b), forsome a,0 < < 1

so that the new b was a fraction a of the distance from the previous b to c.

With a little more thought, it became clear that the precise values of d, e

could be ignored, their effects being captured in the proper (but precisely

unknown) value of a. Furthermore, this new indeterminate (but bounded) variable

a could be used to summarize the effect of d, e in the larger program part

PDL 23-101, because d, e are never referred to subsequently. Thus, we may

rewrite f.23-101 at this level as

a, b, c *outfile :- f.23-101 (a, b, c, f, ip)

and we define it as an initialized while loop.

Lemma 23-101 The (a, b, c, *outfile) projection of f.23-101 is function

equivalent to

(ip - 1 - write (b, c) (true. I); (Lemma 24]

(I f(c) < I f(b) I. a, b, c :- b, c, bItrue- I) (Lemma 25-34]

while

f(b) 0 0 A I (c-b)/2 I> 2 eps I b I + tol/2

do

a, b, c :- b, b + a(c-b), c where 0 < a < l; [Lema 41-92]

(f(b) * f(c)> 0 - a, b, c :- a, b, a I true - I); (Lemma 93-100]

(ip - 1 write (b, c) I true * 1); [Lemma 241

(f (c) I < I f(b) I - a, b, c :- b, c, b ltrue. -) [Lemma 25-34]

od

where I is the identity mapping.

A
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The structure of f.23-101 corresponds directly to the structure of

PDL 23-101 except for a duplication of segment PDL 23-34 in order to convert

the dowhiledo into a whiledo. The proof of the correctness of the assignments

of f.23-101 is given in separate lemnas as noted in the comments attached to

the functions in Lema 23-101. The while test is obtained by direct substitu-

tion of values for tol 1 and xin defined in PDL 36-37 into the test in PDL 39

using eps as defined in Lena 5-11.

Lemma 24 PDL 24 is equivalent to (ip - 1 - write (b, c)J true - I)

2f: By direct inspection

Lemma 25-34 The (a, b, c) projection of the program function of PDL 25-34

is function equivalent to

f I (c) < I f (b) I*a, b, c :- b, c b true * :

2_f: By direct inspection of PDL 25-34

Lemma 41-92 The (a, b, c) projection of the program function of PDL 41-92

is function equivalent to

a, b, c :- b, b + a(c-b), c where 0 < a C 1

The proof will be done by examining the set of relationships that must

hold among the variables in PDL 41-92 and analyzing the values of p and q only.

That is, it is not necessary to have any knowledge of which interpolation was

performed to be able to show that the new b can be defined by

b :- b + a(c-b) , 0 < a < 1

We will ignore the test on PDL 48 since It will be immaterial to the lemma

whether linear or quadratic interpolation is performed. We will examine only

the key tests and assignments and do the proof in two basic cases--interpo-

lation and bisection--to show that the (d) projection of the program

function of PDL 41-78 is

d - (c-b) (a) where 0 < a < 1
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Case 1 Interpolation

If interpolation is done, an examination of Figure 6 shows that the

following set of relations holds at PDL 78:

0 11. tol 1 m 2 * eps * abs (b) + .5 * tol (PDL 36)

v 12. m- (c-b)/2 (PDL 37)

* 13. abs (xm) > tol 1 (PDL 39)

1 14. p 0 (PDL 67)

15. 2. *p < 3 *xm* q-abs(tol 1 * q) (PDL 70)

'16. d -p / q (PDL 76)

17. abs(d) > tol 1 (PDL 83)

Now let's examine the set of cases on p and q

p> OAq< 0

We have d - p/q < 0 (by hypotheses),.

p > 3 xm + tol 1 (by 15), and tol 1; 0 by(11)

2

Since abs(xn) > tol 1 (by 13) and x im + I2 < 0 (since p/q < 0)

we have xm < 0 implying 0 > d > > 3 xm > 3 (c-b) > (c-b).

q f T

Thus 0 > d > (c-b) yielding d - a(c-b) where 0 < a < 1

p > 0 A . > 0

We have d - p > 0 (by hypotheses),

< 3 xm - tol 1 < 3 3 (c-b) < (c-b) (by 15, 11, 12)

implying 0 < d < (c-b). Thus d - %(c-b) where 0 < a < 1

p> 0 j q- O

q a 0 implies 0 > 2 * p (by 15) and we know p > 0 (by hypotheses),

implying a contradiction
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pm 0 A - anything

abs(p/q) > tol 1 (by 16, 17) and tol 1 >, 0 (by i) implies p cannot

be 0

p < 0 A q - anything

p )6 0 (by 14) implies a contradiction

Case 2 Bisection

If bisection is done, an examination of Figure 6 shows that the follow-

ing set of relations holds at PDL 78

BI. xm - (c-b)/2 (PDL 37)

B2. abs(xm) > tol 1 (PDL 39)

B3. d - xm (PDL 45 or PDL 72)

Here d xm (by B3) implies a = (by Bl) and thus d - (c-b)(a) where

0<a <

PDL 82-91 implies if I d < tol 1 (i.e., if d is too small) then

increment b by tol 1 with the sign adjusted appropriately

i-e d abs(d) > tol 1

sign (tol 1, xm) otherwise

But tol 1 < abs(xm) (by 13 and B2) - abs((c-b)/2) and the sign (tol 1)

is set to the sign (xm) implying

tol 1 - a(c-b) where 0 < a < 1

Thus, in PDL 82-91 b is incremented by d or tol 1, both of which

are of the form %(c-b) where 0 < a < 1. Thus we have

b :- b + a(c-b) , 0 < a < 1

and since in PDL 80-81 we have a, fa :- b, fb we get the statement of

the Lamma.
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Once again, the reader is reminded that the proof of Le ma 41-92 was done i

by examining cases on p and q only. No knowledge of the actual interpolations H

was necessary. Only tests and key assignments were examined. Also, the pro-

gram function was abstracted to only the key variables a, b, c and a represented

the effect of all other significant variables.

Lemma 93-100 The (a,b,c) projection of PDL 93-100 is function equivalent to

(f(b) * f(c) > 0 - a, b, c :- a, b, al true. I)

2f: By direct inspection, PDL 93-100 is an if then statement with if

test equivalent to the condition shown above and assignments which include

the assignments above.

The last function in zeroin 1 (from Figure 8) is the single statement

PDL 103 which can be easily seen as

Lm 103 f.103 is function equivalent to zeroin :- b

Now that each of the pieces of zeroin 1 have been defined, the program

function of zeroin will be given. First, let us rewrite zeroinl, all in one

place, using the appropriate functions (Figure 9).
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1 func zeroinl (real ax, bx, f, tol, integer ip)

2 real a, b, c, d, e, eps, fa, fb, fc, a

3 file *outfile

4 [compute eps, the relative machine precision]

5 eps :- {x (- k ># 1 (x - 2 -k)) A 1 + 2 x > 1 A 1 + eps . 1}

6 (initialize data]

7 (ip - 1 - *outfile : 'THE INTERVALS DETERMINED BY ZEROIN

ARE' itrue - 1)

8 a,b,c,d,e :- ax,bx,ax,bz-ax,bx-ax

9 (estimate b as a zero of f]

10 (ip - 1 * *outfile (b, c) Itrue - I)

11 Cabs(f(c)) < abs(f(b)) a, b, c :- b, c, b [true - I)

12 while

13 f(b) 0 0 A I (c-b)/2 I> 2 eps I b I + tol/2

14 do

15 a, b, c :- b, b + a (c-b), c where 0 < a < 1;*

16 (f(b) * f(c) > 0 - a, b, c :- a, b, a true I);

17 (ip - 1 - *outfile(b, c) t :rue -) ;

18 (abs(f(c)) < abs(f(b)) 1 a, b, c : b, c, b Itrue -)

19 od

20 (set zeroin for return, zeroin :- b]

21 zeroin :- b
22 return

23 cnuf

Figure 9

a a is an indeterminate based on the current values of a, b, c, d, e, f,

fa, fb, fc, tol and eps
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Theorem 1-105

fun zeroin has program function [zeroin] =

(ax - bx - root:- bx

f(bx) - 0 - root : bxi

f(ax) - 0 - root:- ax

f(ax) , f(bx) <0 . root := approx (f, ax, bx, tol)

true (V k - 1,2 ,...,f(bk) * f(ck) > 0 root :- unpredictablel

3k > 0 (f(bk) * f(ck) -E 0 A V j 1,2,...k -1, f(b ) * f(c) > 0)-)

root :- approx (f, bk, Ck, tol)

where

approx (f, ax, bx, tol) is some value in the interval (ax, bx) within

4 * eps * Ix 1+ tol of some zero x of the function f

and

the sequence (bi, cl), (b2, c2), ... is defined so that each

succeeding interval is a sub-interval of the preceding interval;

and in the case where abs(d)<tol 1 never occurs {bl, c1l} - ax, bx},

[bk+l, c k+} defines the half interval of (bk, ck} including bk9 and

bk+1 is chosen to minimize abs(f(bk+l)).

Proof: The proof will be carried out in cases, corresponding to the conditions

in the rule given in the Theorem, The first three cases follow directly by

inspection of zeroinl, as special cases for input values, which

bypass the while loop. I.e., if ax - bx, then the values of a, b, c and

root can be traced in zeroin 1 as follows:

a b c root

zeroin 1.8 bx bx bx

.11 bx bx bx

(condition 13 fails since c-b - 01

.21 bx bx bx bx
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Cases 2 and 3 proceed in a similar fashion.

Case 4, f(ax) * f(bx) <0, wll be handled by an analysis of the whiledo

loop and its results will apply to the last subcase of the last case as well.

The first subcase of the last case arises when no zero of f is even bracketed

and zeroinl runs a predictable course, as will be shown.

Case 4: It will be shown that the entry condition f(ax) * f(bx) <0 leads to

the following condition at the whiletest of zeroinl:

I - (a - c 0 b V a < b < c v c < b < a) A f(b) * f(c) :E 0 A abs(f(b) ! abs(f(c))

The proof is by induction. First I holds on entry to the whiledo loop because

by direct calculation

after zeroinl.8 a - c A f(b) * f(c) <0 A c 0 b

after zeroinl.ll a - c A f(b) * f(c) <0 A abs(f(b)) < abs(f(c)) A c 0 b

Next, suppose the invariant I holds at any iteration of the whiledo at

the whiletest, and the whiletest evaluates true, it can be shown that I is pre-

served by the three-part sequence of the do part. In fact, it will appear that

the first part, in seeking a better estimate of a zero of f may destroy this

invariant, and the last two parts do no more than to restore the invariant.

It will be shown in Lea 15-18 that

after zeroinl.15 (a < b < c V c < b < a) A f(a) * f(c) <0

after zeroinl.16 (a-cOb V a < b < c v c < b < a) A f(b) * f(c) _<0

after zeroinl.18 (a-c~b v a < b < c v c < b < a) A f(b) * f(c) 50 A
abs(f(b)) S abs(f(c))

which is I, again. Thus, I is indeed an invariant at the whiletest.

Consider the question of termination of the whiledo. In Lemma 15-18T

it will be shown using c. and b. as entry values to the do part, that for

some a, 0<<l, after zeroinl.18 abs(c-b) < abs(co - bo) max (a, 1-c).
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Therefore, the whiledo must finally terminate because the condition

f(b) 0 0 A abs((c-b)/2) > 2 * eps * abs(b) + tol/2

must finally fail, because by the finiteness of machine precision abs(c-b)

will go to zero if not terminated sooner.

When the whiledo terminates, the invariant I must still hold. In par-

ticular f(b) * f(c) < 0, which combined with the negation of the whiletest gives

IT - f(b) * f(c) .< 0 A(f(b)) - 0 V abs((c-b)/2) 4 2 * eps * abs(b) + tol/2

IT states that

1) a zero of f is bracketed by the interval (o, c)

2) either the zero is at b or the zero is at most Ic-b 1from b,

i.e., the zero is within 4 * eps * I b I + tol of b.

This is the definition of approx (f, b, c, tol).

Now, beginning with the interval (ax, bx), every estimate of b created at

zeroinl.15 remains within the interval (b,c) current at the time*. Since c

and b are initialized as ax and bx at zeroinl.8, the final estimate of b is

given by approx (f, ax, bx, tol). The assignment zeroin :- b at zeroinl.21

provides the value required by case 4.

Case 5: part 1. We first show that in this case the condition a - c will hold

at zeroinl.15 if f(b) * f(c) > 0. By the hypothesis of case 5, part 1,

f((b+c)/2) is of the same sign as f(b) and f(c). Therefore, the first case of

zeroinl.16 will hold and the assignment c :- a will be executed implying a - c

when we arrive at zeroinl.15 from within the loop. Also, if we reach zeroinl.15

from outside the loop (zeroinl.8-11) we also get a - c.

We now apply Lema 15L, which states that under the above condition the

(a, b, c) projection of zeroinl.15 is

this is because f(b) * f(c) s 0 is part of I

- *,
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+*Cc-b)/2, if ab(c-b)/2-tol 1
(f(b) * f(c) 0 a, b, c := b, b + tol 1, otherwise "c

true a, b, c :- b, b + c(c-b), c)

which is a refinement of zeroinl.15.

Note that zeroinl.18 may exchange b,c depending on abs(f(b)) and abs(f(c)).

Thus, the (b,c) projection of the function computed by zeroinl.15-18 in this

case is

b, c :- b + (c-b) 2 b or b, c :- b, + coll)

i.e., the new interval (b, c) is the half interval of the initial (b., c,)

which Includes b. (for increments greater than tol 1), and the new b is chosen

to minimize the value abs(f(b)). The result of iterating this dopart is

unpredictable unless more is known about the values of f. For example, if the

values of f in (ax, bx) are of one sign and monotone increasing or decreasing,

then the iteration will go to the end point ax or bx for which abs(f) is

minimum. In general, the iteration will tend toward a minimum for abs(f), but

due to the bisecting behavior, no guarantees are possible.

Case 5: part 2. This covers the happy accident of some intermediate pair

b,c bracketing an odd number of zeroes of f by happening into values bk, ck, such

that f(bk) * f(ck) :S 0. The tendency to move towards a minimum for abs(f(b))

may increase the chances for such a happening, but provide no guarantee. Once

such a pair bk, ck is found, case 4 applies and some zero will be approximated.

This completes the proof of the theorem except for the proofs of the

three lemas used in the proofs which follow directly.

VA.

.sk-
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Loma 15-18 The Invariant I defined as

I (a w c 0 b V a < b < c V c < b < a) A f(b) * f(c) < 0 A abs(f(b)) abs(f(c))

is preserved by the execution of the loop body ZEROINl.15-18.

Proof: We use the following abbreviations:

P 1 abs(f(b)) 0 0 A abs((c-b)/2) > 2 * *ps * abs(b) + tol/2

I ((c < b) V (c > b)) A f(b) * f(c) < 0

11 E (a < b < c V c < b < a) A f(a) * f(c) < 0

12-= (a -.c 0 b V a < b < c V c < b < a) A f(b) * f(c) , 0.

Note that P is the loop predicate. The validity of the Lemma is an immediate

consequence of the following conditions:

Cl : I A P 1 0

C2 • I {ZEROIN1.151 11

C3 : I( {ZEROIN1.16} 12

C4 : 12 (ZEROINl.18} I

Condition Cl is straightforward. C2 can be seen by considering c < b and

c > b as different input cases. Condition C3 follows from

I, A f(b) * f(c) > 0 (c :- a} 12 (note that setting c - a changes the
sign of f(c))

11 A f(b) * f(c) 4 0 w 12

Similarly, C4 can be inferred from

12 A abs(f(c)) < abs(f(b)) (a, b, c := b, c, b} I

12 A abs(f(c)) >, abs(f(b)) I.

;
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Lmma 15-18T Given b., c. on entry to zeroinl.15-18 then for some a, O<a<l

after zeroinl.15 abs(c-b) = (1-a) abs(c.-b.)

after zeroinl.16 abs(c-b) _ abs(c.-b.) max (a, 1-a)

after zeroinl.18 abs(c-b) _ abs(c.-b.) max (a, 1-a)

proof: after zeroinl.15

abs(c-b) - abs(c.-b.-a(c.-b.) - abs(c.-b.)(1-ca) O<a<l

abs(b-a) - abs(b.+a(c.-b.) - b.) - abs a(c.-b.) O<a<l

after zeroinl.16

abs(c-b) _ max abs(c.-b.) (1-a), abs(c.-b.)a)

_ abs(c.-b.) max (a, 1-a)

after zeroinl.18

abs(c-b) ! abs(c.-b.) max (a,l-a) since b and c are unchanged or
exchanged.

It should be noted that in the above discussion, zeroinl.17 was ignored

because its effect on the calculation of the root and termination of the loop

is irrelevant.

We have one last lemma to prove.

Lema 15L Given a - c and f(a) * f(b) >0 then zeroinl.15 calculates the

new b using the bisection method, i.e.,

b :- b + (b-c)/2 if abs(c-b) > tol 1

ftol 1 otherwise I

proof:

From PDL 43, either abs(f(b)) < abs(f(a)) or bisection is

done (PDL 45) with d - x - (c-b)/2. Then PDL 82-91 implies

b :-= b + d a b + (c-b)/2 if abs(c-b)/2 > tol 1

lb + tol 1 otherwise I

Since by hypothesis a *c, PDL 49 Implies inverse quadratic
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interpolation is not done and linear interpolation (PDL 56) is

attempted. Thus

s = fb/fa and 0 < s < i since fb * fa > 0 and abs(fb) < abs(fa)

p o (c-b) * s, using xm + (c-b)/2

q o 1-s, implying q> o in PDL 59

The proof vil be done by cases on the relationship between b and c.

o >_...b

c > b implies p > 0 in PDL 58. Since p > 0 before PDL 62, PDL 65

sets q to -q, so q < 0. Then the test at PDL 70 is true since

2 * p o a. * s is positive,

3.0 * xm * q -I (c-b) * q is negative, and
2

abs(tol 1 * q) is positive

implying PDL 70 evaluates to true

and bisection is performed in PDL 72-73.

c < b

c < b implies p < 0 in PDL 58. Since p < 0 before PDL 62,

PDL 65 leaves q alone and PDL 67 sets p > 0 implying p - (b-c) * x.

Then the test at PDL 70 is true since

2 * p - 2 * (b-c) * s is positive,

3.0 * xm * q -" (c-b) * q is negative, and
2.

abs(tol I *q) is positive

implying PDL 70 evaluates to true

and bisection is performed in PDL 72-73.

!A A
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IV. CONCLUSION

Ansverins the questions - We can now answer the questions originally

posed by Professor Vandergraft.

Question 1:

If the equation is linear, the program will do a linear interpolation

and find the root on one pass through the loop, except in the case where the

size of the interval (a, b) is smaller than tol 1. Then it will do a bisection

(from the test at PDL 43). Note the other potential condition where it may

pass to PDL 44 for bisection is if abs(fa) - abs(fb) (from PDL 19, 26, and 43).

However, in this case bisection is an exact solution. The case that the size

of the interval is smaller than tol 1 is unlikely, but can happen.

Question 2:

The theorem states that if f(a) and f(b) are both of the same sign, we

will get an answer that is some point between a and b even though there is no

root in the interval (a, b) (case 5a of the Theorem). If there are an even

number of roots in the interval (a, b) then it is possible the program will

happen upon one of the roots and return that root as an answer (case 5b of the

Theorem). To check for this condition, we should put a test right at entry

to the program between PDL 3 and PDL 4 of the form.

if

f(a) * f(b) > 0

then

write ('F(A) and F(B) ARE BOTH OF THE SAME SIGN, RETURN B')

elso

PDL 4-102

fi
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Question 3"

It would be easy to remove the inverse quadratic interpolation part

of the code. We can do this simply by removing several PDL statements, i.e.,

PDL 47-55. However, this would not leave us with the best solution since

much of the code surrounding the inverse quadratic interpolation could be

better written. For example:

(1) there vould be no need to keep a, b, and c

(2) the test in PDL 70 could be removed if we checked in the loop

that f(a) * f(b) was always greater than zero, since bisection

and linear interpolation would never take us out-of the interval.

Cleaning up the algorithm would probably require a substantial transformation.

Question 4:

Zeroin will find a triple root. it will not info%m the user that it is

a triple root, but will return it as a root because once it has a root

surrounded by two points such that f(a) and f(b) are of opposite signs, it

will find that root (case 4 of the Theorem).

Program history - Since most programs seen by practicing programmers

do not have a history in the .literature,-we did not research the history of

ZEROIN until we had completed our experiment. The complexity of the program is

partially due to the fact that it was modified over a period of time by differ-

ent authors, each modification making it more efficient, effective or robust.

The code is based on the secant method (Ortega and Rainboldt). The idea of

combining it with bisection had been suggested by several people. The first

careful analysis seems to have been by T. J. Dekker (Dekker).

R. P. Brent (Brent) added to Dekker's algorithm the inverse quadratic inter-

polation option, and changed some of the convergence tests. The Brent book

ms ........ . . J , ,jJ,-, '
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contains an ALGOL 60 program. The FORTRAN program of Figure 1 is found in

(Forsythe, Malcolm & Molar) and is a direct translation of Brent's algorithm,

with the addition of a few lines that compute the machine-rounding error.

We understand that ZEROIN is a significant and actively used program for cal-

culating the roots of a function in a specific interval to a given tolerance.

Understanding and documenting - As it turns out, we were able to answer

the questions posed and discover the program function of ZEROIN. The techniques

used included function specification, the discovery of loop invariants, case

analysis, and the use of a bounded indeterminate auxiliary variable. The

discovery process used by the authors was not as direct as it appears in the

paper. There were several side trips which included proving the correctness

of the inverse quadratic interpolation (an interesting result but not relevant

to the final abstraction or the questions posed).

There are some implications that the algorithm of the program was over-

designed to be correct and that the tests may be more limiting than necessary.

This made the program easier to prove correct, however.

We believe this experience shows that the areas of program specification

and program correctness have advanced enough to make them useful in understanding

and documenting existing programs, an extremely important application today.

In our case, we are convinced that without the focus of searching for a correct-

ness proof relating the specification to the program, we would have learned a

great deal, but would have been unable to record very much of what we learned

for others.

Hamming pointed out that mathematicians and scientists stand on each other's

shoulders, but programers stand on each other's toes. We believe that will

continue to be true until programmers deal with programs as mathematical objects.

as unlikely as they may seem to be in real life, as we have tried to do here.

,I 
I 

.
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