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ABSTRACT

A Markov step process Z equipped with a possibly non-denumerable

state space X can model a variety of queueing, communication and com-

puter networks. The analysis of such networks can be facilitated if

certain traffic flows consist of mutually independent Poisson proces-

ses. Accordingly, we define the multivariate counting process

N=(NIN 2 ,...N c ) induced by Z; a count in Ni occurs whenever Z jumps

from xeX into a (possibly empty) target set r (i) We study N through

the infinitesimal operator A of the augmented Markov process W=(Z,N),

and the integral relation connecting A with the transition operator

Tt of W. It is then shown that Ni is expressed in terms of a non-

negative valued function ri defined on X; ri (x) may be interpreted as the

expected rate of increase in Nil given that Z is in sate x.

For univariate N (i.e., c=1), we show that N is Poisson iff (a)

E[r(Z(t))l] is constant and (b*) E[r(Z(t))IN(t)]=E[r(Z(t))1 for each

t O. These "local" conditions are weaker than the usual global

sufficiency criteria, which moreover require stationarity (of Z) and

independence (of N(t) and Z W

-. A multivariate N is Poisson (i.e., composed of mutually inde-

pendent Poisson streams if each is stationary, andj>(Z(t))

is independent of N(t) for each i and each 1. The latter is already

much less restrictive than the independent of N(t) and Z(t), but We-
I - 14
awe able to find even weaker hypotheses which are both necessary and

sufficient for N to be Poisson.



0. INTRODUCTION

In earlier papers, the authors [1][13][14] and others [10][15]

[7][11] have studied traffic processes in Markov feedback queueing net-

works, and more generally, traffic processes appropriately defined on

regular Markov processes with a denumerable state space. One applica-

tion has been to Jackson networks (exponential servers, random instan-

taneous routings, and independent Poisson exogenous arrival streams) in

equilibrium; we have shown that certain traffic processes consist of

mutually independent Poisson streams, while others--those within loops

or cycles--cannot be Poisson. The same type of result extends to more

general queueing networks, in the sense that we have found some neces-

sary and sufficient conditions that traffic processes are Poisson [13]

[14]. However, we know of no prior result asserting complete necessity

conditions for multivariate counting processes induced by a Markov step

process.

We are now able to extend the theory to apply to a Markov step

process Z on a non-denumerable state space X, and to cover simultaneous

sufficiency and necessity conditions for both univariate and multi-

variate counting processes N induced by Z. As in [131, the notion of

traffic is abstracted to the less restrictive concept of jumps from

originating to target sets in the state space; the number of such

jumps constitutes the counting process under investigation. Moreover,

we introduce a unified methodology that simplifies prior approaches.

Melamed [131 has summarized arguments in the queueing system lit-

erature purporting to show that certain traffic streams are Poisson

[1](3](7][101(151; in each instance, the proof is equivalent to demon-

strating the independence of N(t) and Z(t) for each tl0 under the
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additional hypothesis that Z is in equilibrium. It is now known (13]

that weaker conditions suffice for univariate or multivariate N.

Further, a necessity result [13] exists for univariate N. In our work,

we shall find conditions that are simultaneously necessary and suffi-

cient for both univariate and multivariate N.

The "global" nature of the independence between N(t) and Z(t)

fails to discriminate between parts of Z relevant to N, and those

aspects of Z having no influence on N at all. It is thus intuitively

plausible that the usual sufficiency conditions can be improved, and

necessity also considered. It turns out that "local" criteria for a

Poisson N can indeed be derived. To this end, we augment the Markov

step process Z to incorporate the traffic N via the new Markov step

process W=(Z,N). We study N through the infinitesimal operator A of

W, using the integral relation connecting A with the transition opera-

tor T . In this fashion, we elucidate the properties of a non-negative

function r (for univariate N) defined at least on the domain of A. We

can interpret r(x) as the jump rate of N, given that Z is in state x.

For univariate N, we find N to be Poisson iff (a) the expectation

E[r(Z(t))] is constant, and (b*) the conditional expectation

E[r(Z(t))IN(t)1=E[r(Z(t))] for each tO.

For multivariate N=(NIN 2 ,...,Nc), it is proved in Section III

that extensions of (a) and (b*) suffice for the Ni to be mutually

independent Poisson streams. However, an even less restrictive set

of conditions are discovered to be both sufficient and necessary in

the same regard. Another set of conditions is shown to be equivalent

to the latter set. In each of these cases, the specified conditions

reduce to (a) and (b*) when c-l, i.e., when N is actually univariate.
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We stress that each of the results quoted above are applicable

to Markov step processes on denumerable as well as non-denumerable

state spaces. This generalization over [3][4][7][10][11][13][151

does not entail any sacrifice in the strnegth of the conclusions

obtained, nor does it require a more complicated analytic methodology.

Although it is not customary to contemplate pure jump Markov queueing

or storage systems on non-denumerable state spaces, it is easy to

visualize models of systems that are essentially non-denumerable.

These might involve variable magnitude or partial service, as well

as processing of units (e.g., messages or rainfall) of random size.

As for multivariate N, we remark that its analysis has already led

to the construction of a maximal decomposition for Jackson networks

[11, and that there may well be new applications to respective counting

processes generated by multiple classes of service and/or customers.

I. PRELIMINARIES

Our intent is to analyze a counting process N induced by a

Markov jump process Z. We shall need some standard notions applicable

to such processes; these are stated without detailed explanation, but

with sufficient references to aid the reader unfamiliar with the mat-

erial. For Z, we suppose a state space X equipped with a c-algebra

and the discrete topology. In the terminology of Dynkin ([61, p. 93),

Z is required to be a step process. The weak infinitesimal operator

A of Z ([61, Section 1.6) is a (possibly unbounded) transformation

with representation ([61, Section V.2)
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(Ag)(x) = -q(x)g(x) + q(x)f Q(x,dy)g(y), xex . (1.1)
x

Here A is a mapping from a subset of P into b, h being the set of

bounded real-valued functions on (x,fi). Moreover, Q is measurable

separately in each variable, with Q(x,X)=l for each xcX. We remark

that Q(x,r) is regarded as the probability that a jump, starting from

x, will take Z into r. The function q is the jump rate, q(x) being

the parameter of the exponentially distributed sojourn time, given

that Z is at x.

To preclude trivialities, we specify that there be no absorbing

states; then O<q(x)<- for the step process. Under the stronger hypo-

thesis--met by most practical systems--that sup[q(x)]<c<, A becomes an

endomorphism which is identical with the strong infinitesimal operator

([12], p. 643). Otherwise, we are forced to simply assume that the

indicators geh to appear hereafter lie in the domain of the weak

infinitesimal operator A. This cannot be guaranteed, as is indicated

by the example of the departure process from the simple M/M/a queue.

Our principal concern is a counting process N generated by Z.

A count occurs whenever Z jumps from x directly into 1' where r is ax x

(possibly empty) measurable subset of X such that x1 . In terms ofx

the notation established for (1.1), Q(x,Px )is the probability that a

next jump of Z increments N. To place this notion in a suitable con-

text, augment Z to the new Markov process

W = (Z,N) (1.2)

on a state space XxN + , where N is the set of non-negative integers.

On the new state space, the a-algebra is that generated by rx{k},

I'-F, keN+ . The infinitesimal operator A for W is defined by (1.1)

with the same rate function q, but with Q replaced by
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Qx,) n+1,k FCx

d((x,n),rx{k}) =Q(xr)6nk (1.3)
Q (x,F) 6n,k rNrx=o

where 6 is the Kronecker delta. If we take 4(x,n) = g(x) and use

(1.3) in (1.1), we see that (Akg)(x) = (iki)(xn) for each k-1,2,...;
n

hence, by the exponential formula of semi-group theory the transition

probabilities P and P are related by

P(t,x,) = 7 P(t,(x,O), rx{n}) = P(t,(x,o),rxN +). (1.4)
n=O

The projection of W on X then has the same probability structure as Z,

provided that the initial probabilities are related by

'P (A) = w0 (Axfo}), (1.5)

where qt and pt are the probability measures of Z(t) and W(t), respect-

ively. In (1.5), N(O)=O almost surely is assumed as a matter of con-

venience.

Thus, W is an augmentation of Z by the counting process N. More-

over, the argument of Theorem 1 in [1] is applicable to show that W

retains the Markov property as well as the step process behavior. In

fact, we have

Theorem 1.1: W is a Markov step process whose weak infinitesimal

operator A is represented by (1.1), with functions Q given by (1.3)

and 4(x,n)=q(x). If q is bounded, A is an endomorphism on the bounded

measurable functions on xxN+; if geO (the domain of A), and h is a

bounded function on N+ , then ghe A. Under the hypothesis (1.5)

n n
Pn{x(tk )cr 0 - (W( ) (kxN + ) } (1.6)1 1

for all collections of tk and measurable rk .  0k k
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We now complete this Section by listing several standard rela-

tions ([6], Chapter 2) appropriate to our purpose. Starting from the

transition probability, we can define the semi-group of transition

operators on )1 by

(Ttg)(w) = JP(t,w,dy)g(y) (1.7)

where) =XxN. The Tt have the probabilistic interpretation

(Ttg)(w) = E[g(w(t))IW(O)--w] (1.8)

where E denotes an expectation. Each fdb induces a linear functional

on the space of bounded signed measures. Specifically, we obtain

(Ttg, Po) = f(Ttg)(w) o(dw) = E[g(W(t))]. (1.9)

In particular, if we choose

1 wexx{n} (1.10)

0 otherwise

we shall have

(Ttgno= P[N(t)=n]. (1.1)

In the remainder of this paper, we will make repeated use of

the standard identity ([6], p. 40)

t
(T tg) (w) = g(w) + f dTf P(T,w,dy) (Ag) (y) (1.12)

0 ?V

which, when W(0) has probability measure co' yields

t
E[g(W(t))] = (g, 0) + f dT f P(T,dy)(Ag)(y), (1.13)0

where we have defined P(T,A)=P[W(T)eA] and P(T,w,A)-P[W(T)EAjW(0)-w].

As we shall see, the evaluation of (1.13) for a gn of the form (1.10)

and a Markov step process in probability equilibrium is relatively

........... w ~ . );
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easy, and sheds light on the properties of the traffic process N.

II. CONDITIONS FOR POISSON COUNTING PROCESSES

We begin by specializing (i.13)-for the g specified by (1.10);

this leads directly to an expression for P[N(t)=n]. First, g is

substituted into (1.1) applied to W, so that we find for y=(x,k)

(Ag n ) (y) - q(x)Q(xr x ) [6 k,n-6 k,n]. (2.1)

Substituting (2.1) into (1.13) yields the basic formulas

t
P[N(t)=0] = 1 - f dTf q(x)Q(x,rx)P(r,dx,0) (2.2a)

0 X

and

t
P[N(t)=n] = f dT fq (x)Q(x,r ) [P(T,dx,n-l)-P(r,dx,n)]

0 X
(2.2b)

for n _l. In the above, we have adopted notation consistent with (1.13);

P(t,A,n)=P[Z(t)eA,N(t)=n. These two equations can be added together

and the complement taken to produce the simpler

t
P[N(t)>n] = f dT f r(x)P(T,dx,n) (2.3)

0 X

in which we have used the more compact notation

r(x) = q(x)Q(xrx); (2.4)

evidently, r(x) is (intuitively speaking) the rate of the counting

process, assuming that the Markov process Z is in state x. Furthermore,

r(Z(t)) may be thought of as the rate of the counting process N at time

t, and its expectation E[r(Z(t))] as the intensity of N at that time.

We mention these interpretations at this juncture, because r is in fact

a crucial parameter of N.
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To relate r to the counting process N, we shall begin by

defining some a-algebras relevant to stationarity and independence

properties involving r and N. We define the a-algebralrt=a{N(u),u_<t},
and observe that1?tcjt=a{Z(u),u5t}. We note further that the events

{N(t)-N(s)=n}t-=a{Z(u),ut}. With this notation, we claim

Lemma 2.1: Let Act. Then almost surely

E(A j t ) = E E(AIZ(t))17 t] = E[E(A 1t) 1 t]  (2.5)

Proof: By the Markov property for Z, E(AIZ(t))=E(Al-t)=E(AIt,t ) -

Conditioning again on-At and using the fact that the conditioning

reduces the right hand expression to E(Aflnt) yields (2.5). o

Lemma 2.2: For Os<_t we have almost surely

t
E[N(t)-N(s) jls] = f E[r(Z(r))[-[s]dT (2.6)

S

Probf: If W (u)=(Z(S+u),[N(s+u)-N(s)]), then Ws is a Markov process

with the same statistics as W. We may substitute (2.1) into (1.12)

to obtain an expression for P[N(t)-N(s)=njZ(s)], and proceed as in

(2.3) to calculate P[N(t)-N(s)>nlZ(s)]. Since P[N(t)<m]=I, the con-

ditional expectation E[N(t)-N(s)IZ(s)] follows by summing over n; the

summation process is valid under the integral sign according to

Fubini's theorem. Thus we find

t
E[N(t)-N(s)IZ(s)] - f E[r(Z(T))IZ(s)]dT. (2.7)

s

To reduce (2.7) to (2.6), integrate both sides of (2.7) over Aets

with respect to probability measure, using again Fubini's theorem on

the right side. Reference to Lemma 2.1 then completes the argument. a

It is easy to calculate the expectation of N from (2.6) or

(2.7). Taking the expectation of both sides of either of these

equations leads to
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t t

E[N(t) = f E[r(Z(T))]dT = f (r, T )dT. (2.8)
0 0

Clearly, (2.8) simplifies if Z is in equilibrium, that is, if

P[z(t)eri is constant for t O and any fixed 'fd. We note that equil-

ibrium is equivalent to each of the following: (g,t ) is constant,

(Ttg,1o) is constant, or (Ago )=0 for each ge; this equivalence is

easily shown for Feller processes. A more restricted version of the

above is given by

Definition 2.3: For a geY, Z is in g-partial equilibrium if (gpt)

is constant for all t>O [or equivalently, if (T tg,0o) is constant,

or (Ag, p )=0].

Evidently, g-partial equilibrium is a local steady state condition

that permits arbitrary (nonstationary) behavior of parts of the Markov

process. In particular, r-partial equilibrium requires that the part

of Z relevant to N be in a steady state condition. It may be expected

that N experiences homogeneous growth--and is hence a candidate for a

Poisson process--if Z is in r-partial equilibrium.

For N to be Poisson, it is also necessary that the future and

past of N be independent; more precisely, [N(t)-N(s)] is independent of

-s for all 0<s_<t. We shall see that a notion relevant to the appropriate

independence is

Definition 2.4: For a gej, Z is g-partially independent of N if, for

every t?0, E[g(Z(t)) It ]=E(g(Z(t)) ]. o

It is clear that Z(t) is independent of-", iff Z is g-partially inde-

pendent of N for every g, and that the independence of g(Z(t)) and7 t
is equivalent to g-partial independence if g is an indicator function.

With the aid of Definitions 2.3 and 2.4, we can assert conditions under

which N is a Poisson process.

-4*
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Theorem 2.5: N is a Poisson process if and only if

(a) Z is in r-partial equilibrium, and

(b) Z is r-partially independent of N.

Proof: We shall make repeated use of Watanabe's theorem ([5], p. 76),

which states that a counting process is Poisson iff

E[N(t)-N(s) I1s ] s A(t-s) (.2.9)

for 0_<s<t. This is in turn equivalent to the independence of

[N(t)-N(s)] and S , together with E[N(t)-N(s)]=A(t-s).

Suppose now that (a) and (b) are satisfied. If (b) and (a) are

successively applied to the integrand in (2.6), that integrand becomes (r,whi), wich

we call A. This proves (2.9), and with it sufficiency. To demonstrate

necessity, observe that if N is a Poisson process of intensity A, the

left side of (2.6) becomes X(t-s) according to (2.9). Since r is

bounded (as it must be to belong to kA ) and a right continuous step

function, we may divide both sides of (2.6) by (t-s) and take limits

as t s. The limiting operation yields E[r(Z(s)) 71s]=X almost surely,

whence (b) follows. Taking the expectation of E[r(Z(s))It] then

leads immediately to (a).

A recent paper concerned with Poisson traffic flows on denumer-

able state Markovian systems introduces the concept of weak pointwise

independence ((131, Section 5), which plays the role of our r-partial

independence in our Theorem 2.5. In a sense, weak pointwise independence

is a more desirable condition, since it involves only independence of

N(t), and not of Pt (the entire past of N). We shall be able to

strengthen our results similarly, referring to N(t) rather thanll for

necessity and sufficiency.
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Definition 2.6: (compare Definition 2.4 and subsequent comments).

For a gai, Z is weakly g-partially independent of N if, for every t0,

E[g(Z (t))JN(t) ]=E[g(Z (t)) ].

Theorem 2.7: The conclusion of Theorem 2.5 continue to hold if (b) is

replaced by (b*). In particular, (a) and (b*) imply (a) and

(b).

Proof: Necessity of (a) and (b*) is obvious, because (b) implies (b*).

To demonstrate the sufficiency of (a) and (b*), write (2.2a) and (2.3)

in the form

t
PIN(t)=0[ = 1 - 1 E[r(Z(r))I(T,0)]dT (2.10)

0

and

t
P[N(t)>n] = f E[r(Z(T))I(T,n)]dT (2.11)

0

in which I(T,n) is the indicator function of the event {N(T)=n}. That

E[r(Z(T))I(T,n)]=E[r(Z(T))]E[I(T,n)] is a consequence of (b*), and (a)

states that E[r(Z(T))] is constant, say equal to X. Hence, (2.10) and

(2.11) become

tP[N(t)=0] = 1 - X f P[N(T)=O]dT (2.12)

0

and

t
P[N(t)>n] - X f P[N(T)=n]dT. (2.13)

0

We shall deduce from (2.12) and (2.13) that the inter-jump intervals

of N are mutally independent and exponentially distributed. To this

end, call Tk=inf(t:N(t)-k}, and let Sk-Tk+l-Tk so that Tn becomes the
t>O
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n
sum of inter-jump times, i.e., Tn= Sk. The set equality {N(t)=O}={Sl>t},

together with the (unique) solution of (2.12) yields as a density func-

tion for TI=S1 the function fl(t)=Xe-Xt. We now proceed by induction to

show that Tn is distributed according to the n-fold convolution of den-

sities fn"

First, consider that {N(t)>n}={Tn+l<t}, so that Tn+1 has a pro-

bability density according to (2.13). From the same equation, using

{N(t)=n}={Tn t1-{Tn+l<t}, we obtain

fn+l(t) = X[Fn(t) - Fn+l(t)] (2.14)

in which fn and F represent respectively the probability density andn n
probability distribution fucntions of Tn. To complete the inductive

argument, we turn to the Laplace transforms fn of the fn"

For T1' 1(s )= - Suppose now Tn has generating function
An

fn(S)=[s- • Then, using the generating function version of (2.14),
^ X n+l

we find that fn+l(S) [i+-n is the unique solution of (2.14).

The last assertion of the Theorem follows readily: if (a) and

(b*) are valid, N is a Poisson process, whence (a) and (b) hold by

Theorem 2.5. D

Corollary 2.8: If Z is in probability equilibrium, and if N(t) is

independent of Z(t) for each t O, N is a Poisson process.

The Corollary is obvious in view of Theorem 2.7, although the

independent increment property of N is easy to prove directly from

the independence of N(t) and Z(t). In fact, for any Ae t, the Markov

property yields almost surely

P[An{N(t)-n}IZ(t)] - P[AJZ(t)]P[N(t)=nJZ(t)]. (2.15)

The second term on the right reduces to PEN(t)-n] by virtue of the

hypothesis. If we than take the expectation of both sides of (2.15),



-13-

we obtain the result P[An{N(t)=n}1=P(A)P[N(t)=n], as required.

Corollary 2.8 presents global stationarity and independence

conditions, whereas the conditions (a), (b) and (b*) appearing in

Theorems 2.5 and 2.7 reflect only the local relationships pertinent

to N. It is therefore natural that the conditions of Corollary 2.8

are not necessary for N to be a Poisson process. We now give an

example in which N is Poisson, but neither of the hypotheses of

Corollary 2.8 are satisfied.

A system consists of two exponential servers in tandem, with

respective service rates ai and queue lengths Z. We suppose that

the input to the first server is a Poisson stream of intensity A,

with O<a 2<X<a . We assume further that Z2 (0)=O, while Z1 (0) has

equilibrium distribution appropriate to an M/M/l queue with input

rate A and service rate a1 . As is well known (31, the departure stream

N from the first server is Poisson. Nevertheless, Z=(ZIZ 2 ) is not in

equilibrium--indeed, Z has only transient states. Moreover, Z2 (t)=O

if N(t)=O, and in fact, Z2 depends on N for any initial distribution

z2•

III. MULTIPLE COUNTING PROCESSES

In this Section we extend the theory of Section II to simultan-

eous counting processes, as represented by the vector N-(NI,N2,...,Nc),

each Ni being itself a counting process induced by the Markov process

Z. The vector process N is said to be Poisson if each Ni is a Poisson

stream, and if the Ni are mutually independent random processes. Our

interest lies in finding necessary and sufficient conditions under which

N is Poisson.
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As before, we define Ni to increase its count by one whenever.)

the step Markov process Z passes directly from x to rx  In con

sistency with our former notation (2.4), we shall call

ri(x) = q(x)Q(x,r(i)), (3.1)

i x

which is heuristically interpreted as the counting rate of Ni , given

that Z is in state x. Conditions that each Ni be a Poisson process

are described in terms of the corresponding ri by Theorem 2.7 via

ri-partial equilibrium and weak ri-partial independence. However,

these individual r. cannot reveal any information on the mutual inde-1

pendence of the N..1

Our results require one restriction met by all potential appli-

cations of which we are aware. Throughout this Section we shall assume

the validity of

Hypothesis 3.1: The Ni are disjoint counting processes if, for each

xeX, the r i=i,2,...,c are disjoint sets. o
x

If now the original Markov process is augmented to W=(Z,N), we have

for W (cf. (1.3))

(U)
Q (x,r) n rcrI n+ei,kx

0((x,n),rx{k}) = (3.2)

IQ(x,r) Sn,k rr °

Here n is the vector count n-(nl,n 2,...,nc), ei is the unit vector

along coordinate i, and r°  x - ur( ) Note that the disjointness
iMx 1

of the r x plays a crucial role in the definition of Q

We continue to proceed as in Section I. To compute probabilities

of the count, it is convenient to define
1 wr-xx(nlkn 2,...,n C )

gn (w), (3.3)

0  otherwise

For this gn and with the benefit of Hypothesis 3.1, we have
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(Ag n ) (y) = [ ri(x) n+en] (3.4)i=1 [ 1ek- n,k~

in which A is the infinitesimal operator of W and y=(x,k). Next,

(3.4) is substituted into (1.13) to produce for 6=0,O,...,O)

c t
P[N(t)=] = 1 - [ I E(ri(Z(T))I(T,O]dT (3.5)

i=l 0

and for n#8

c t
P[N(t)=n] = I f {E[ri (Z(T))I(T,n-ei)]- E[ri (Z(r))I(T,n)]}dT;

i=l 0

(3.6)

Here the indicator I is defined as in (2.10) and (2.11), with the

proviso that I(Tn-ei)=O if ni=0.

With the aid of these two expressions, we can adapt Theorem 2.7

to multiple streams.

Theorem 3.2: N is Poisson, the Ni having respective rates

= E[ri (Z(0)] (3.7)

provided that for each i, i=1,2,...,c

(a) Z is in ri-partial equilibrium, and (3.8)

(b*) Z is weakly ri-partially independent of N. (3.9)

Remark: This Theorem does not claim necessity. Assumption (b*) should

be taken to mean that the ri(Z(t)) are each (pairwise) independent of

the vector process N at every t-_O.

Proof: It follows directly from Theorem 2.7 that the respective Ni are

Poissonprocesses whose rates are specified by (3.7). It remains to show

that the Ni are mutually independent. To this end, apply the hypothe-

ses of the Theorem to (3.5) and (3.6); these then reduce to

t
PIN(t)-el - 1 - X P[N(T)-e]dT (3.10)
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and

t c t
P[N(t)-n] + X f P[N(T)=n]dT - I XA f P[N(T)=n-ei]dT,

0 i=i 0

(3.11)

where X=ZX. These equations have as their unique solution

n.
c (Xit) 1

P[N(t)=n] = 1 { n.! exp[-X it]), (3.12)
i=l i

so that the Ni(t), i=1,2,...,c are mutually independent for every

(fixed) t.

We must further prove that N is a process of independent incre-

ments. For this purpose, we define W as in the proof of Lemma 2.2,

and reiterate the arguments of the proceding paragraph to demonstrate

that N(t+u)-N(u) has the same distribution as N(t)=N(t)-N(O). From

(3.12), the generating function f, defined by

A T
fuv (s) = E(exp{-s (N(v)-N(u))}], 0 < u :5.v (3.13)

with N regarded as a column vector and sT the row vector sT= (slos2,...s C ),

is then

f uv(s) = exp{(v-u)[EXAiexp(-s i ) -Al}. (3.14)

The independent increment character of N is now an immediate consequence

of the form of f (see 112], Sections 37.1 and 37.3).U,V

The hypotheses of Theorem 3.2 are considerably weaker than we might

have anticipated. For one thing, the equilibrium requirement (a) is no

more stringent than the necessity condition imposed in Theorem 2.5 on

each Ni individually. More surprising, however, is the independence

assumption (3.9), which requires neither the Ni(t) nor the ri(Z(t)) to

bo stochastically independent; rather, the mutual independence of the
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Ni(t) (and indeed, the processes Ni is a natural outcome appearing

in the course of the proof.

Nevertheless, we shall assert even weaker sufficiency conditions

for N to be Poisson; moreover, the same conditions are also necessary.

In particular, the independence hypothesis (b*) in Theorem 3.2 is

replaced by the less restrictive

c {E[ri(Z(t))I(t,n-ei)] - xiE[I(t,n-ei)]

b'. (3.15)

cS{ Ejr i(Z(t))I(t,n)]} - XE[I(t,n)].
i=l1

for all n-(n 1 ,n 2 ,. ..,nc) and all t O.

Before proceeding to a proof of sufficiency and necessity, we

make three remarks concerning (b') above. First, in the presence of

(a) (cf. (3.8)), (b*) (cf. (3.9)) implies that both sides of (3.15)

are zero; hence, (b') follows from (b*). On the other hand, for a

single stream (b) and (b*) coincide in the presence of (a), as is

readily shown by an inductive argument on (3.15). Second, the induc-

tive argument fails for multiple streams (i.e., c>_2) because successive

sums on the left side of (3.15) are incomplete. Indeed, we have been

unable to derive any necessity statement claiming stronger independence

requirements on N(t) and Z(t). Finally, we observe that necessity has

generally been less well understood than sufficiency. We know of no

other necessity conditions for multiple processes to be mutually inde-

pendent Poisson. Even for a single process, the usual sufficiency

hypotheses are not also necessary. To illustrate this statement, we

observe that detailed balance implies reversibility [9], from which one

concludes that a Poisson input in equilibrium leads to a Poisson output

.~ --... -t
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(see [16], or recall the M-M property in [15]). Nevertheless, the

converse--necessity--is false; a simple tandem M/M/1 queue has the

M-M property, but is neither reversible nor detail balanced.

We now proceed to

Theorem 3.3: N is Poisson if and only if (a) and (b') hold.

Proof: To show sufficiency, we simplify (3.5) and (3.6) by introducing

(a) and (b'). The resulting relations are (3.10) and (3.11), so that

the remainder of the argument follows the proof of Theorem 3.2 verbatim.

If N is Poisson, the necessity part of Theorem 2.7 applies to each

Ni, so (a) holds, the respective rates Xi being specified by (3.7). Now

differentiate (3.5) and (3.6), observing that the integrands are con-

tinuous from the stochastic continuity of Z. Differentiation thus

yields the single set of equations

d cjt{E [I (t,n)1) I s  {E [r I(Z (t)) I(t,n-e,) ]-E [r i(Z(t)) I(t,n) ] }

i-l

(3.16)

But the probability P[N(t)=n]=E[I(t,n)] is furnished by (3.12), from

which

d c
a-[E[I(t,n)J ] I A. i{E[I(t,n-ei)]-E[I(t,n)]}. (3.17)

i1

Elimination of the derivative between (3.16) and (3.17) then verifies

(b'). 

Let us consider briefly the new condition (for all n)

I E[r i (Z( t ) ) IN(t)-n] = X and

b. (3.18)

c
I {E[ri(Z(t))I(t,n-ei)H - XiE[I(t,n-ei)]} 0.
iul
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Some implications involving (b+ ) are: (a) and (b*)=*(b+ )=(a) and

(b'). 1 Therefore, (b + ) suffices for N to be Poisson, but we have been

unable to prove that (b+) is necessary. Our best result in that dir-

ection is an asymptotic one, namely

Corollary 3.4: If N is Poisson

cE[r (Z(t)) IN(t)=n]-X = 0(t - ) as t- (3.19)

i=1

for all n.

Remark: It is trivial that both sides of (3.15) tend toward zero as t

tends to infinity; this occurs becuase P[N(t)=n] -0 (any n) if N is

Poisson.

Proof of Corollary: We return to property (b') (i.e., (3.15), which is

valid under the stated hypothesis. This equation is rewritten in terms

of conditional expectations as

c ( i){E[r.(Z(t))IN(t)=n-e
i] - E[ri(Z(t))]}

i=11
n i

(3.20)
ct{ I E[r ilZ(t)) IN(t)-n] -XI,

in which we have also used (3.12) to express the ratio between

P[N(t)-n-ei ] and P[N(t)-n], and have been able to assign arbitrary

values to probabilities conditioned on {N(t)-n-e i } when niMO. Since

the ri are necessarily bounded because they are in the range of the

infinitesimal operator, the left side of (3.20) is also bounded in

t for each fixed n. Hence (3.19) follows. (

We conclude our discussion by observing that the necessarily

iNote that the second equality of (b ) contains (a). Take n-ke., so
that only the j terms remain. Then sum over k; the result is
E[r (Z(tl)]-X, as required.
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infinite sets of equalities established thus far can be simplified--

at least in principle--through the introduction of generating functions.

To this end, we determine the generating function version of the

infinite set of integral equations (3.5) and (3.6) under the assumption

that N is Poisson as previously supposed. Actually, it is easier to

work with the differential equations (3.16), multiplying both sides by

y=Uy and summing over n. For convenience, we let z=1l-yi , and con-

fine ourselves to z-(zlz 2 ... zc) satisfying l-z 1I<l for each i. We

take

c Ni (t)
Gt (z) = E[ Il (l-z i ) 1 (3.21)

which equals exp[-tZ(Aizi)] by the Poisson assumption, so that the time

derivative of Gt(z) becomes ZXiziG t(z). Further, we define

c N. (t)
G tj(z) = E( 11 (l-z i ) 1 irj(Z(t'))]. (3.22)

With this notation, the infinite set of equations (3.16) [equivalent

to (3.5) and (3.6)] becomes
C A A

X izi(Gti(z) - Gt(z)l = 0. (3.23)

The significance of this equation is recognized in

Corollary 3.5: Condition (b') of Theorem 3.3 is equivalent to (3.23).o

Although (3.23) "looks neater" than (b') [cf. (3.15)], it is no

more susceptible to simplification. It is only in the case of the

single stream (i.e., c=l), that (3.23) (and for that matter, conditions

(b*), (b) or (b +)] reduce to the independence statement of Theorem 2.7,

which in combination with (a) is equivalent to a Poisson N.

................................
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