
A D Ab9 733 SYRACUSE UNIV NY SCHOOL OF COMPUTER AND INFORMATION
-ETC F/ 9/2

MATHEMATICAL SEMANTICS FOR HIGHER ORDER PROGRAMMING LANGUAGES.(U)
JUL 80 L E SANCHIS F

6
9620 79-C 0016~ nAFSR-T- 0-07 59 NL

...E.h..E..E.h E

"'''125 1. I1.8

JIL25~

F(I I [' ,I I

LEVEL
FINAL REPORT Fj49620-79-C-A 16

TITLE MATHEMATICAL SEMANTICS FOR HIGHER ORDER
/

PROGRAMMING LANGUAGES

AUTHO IS . ANCHIS "
u er and Information Science

Syracuse Univ we
Sauy"i"a, N.Y. 13210

PREPARED FOR: AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Boiling AFB
D.C. 20332

DT10fLECTE
~SEP 3 0ugl

80 9 25 051
Approved tor public rele'-,

Lt ... asrbtn ',

4*r~

44

'AIR FORCE OFV'i(6 UP' SCIENTIFIC RESEARCH (APSC)
NOTICE OF TICAkSMLTTAL TO DDC

This techuical. report. liar, t0". reiviewed an~d is
approved for publiL . -elenso 1AW AIR 190-12 (7b)
Distributiou to willm'ited.
A. D. BLOSEI Tectuitcal Inrat iontQL officer

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Deta.Entered),

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
RPRBEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

UPOSR-TR- 8 - 0 7 59
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

MAI EATICAL SEMANTICS FOR HIGHER ORDER Final
PROGRA MING LANGUAGES 6. PERFORMING OG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Luis E. Sanchis
F49620-79-C-0016

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Syracuse University
School of Computer & Information Science
syr cl mc. NY 13210 61102F 2304/A2

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/NM July 1980
Boiling AFB, Washington, DC 20332 1S. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADORESS(iI different from Controlling Office) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED
15s. DECLASSIFICATION! DOWNGRADING

SCHEDULE

t 16. DISTRIBUTION STATEMENT (ol this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Programming languages, Procedure definition, copy rule, Lambda calculus,
Church-Rosser property, Nondeterministic computability, Reflexive domains,
Reductional semantics, Structural semantics

20. ABSTRACT (Continue on reverse aide It necessary and Identify by block number)

> Complete operational and mathematical semantics are presented for a higher
order applicative algorithmic language (BAL). Both semantics involve parti-
ally ordered domains closed under limits of convergent sequences. Procedure
calls are formalized via lambda calculus reductions, or copy rule. Evaluations
involve a more general form of computability described as nondeterministic
computability. The mathematical semantics is obtained via embeddings in re-
flexive domains. Both semantics are proved to be equivalent, and several
applications are given. The adequacy of the copy rule is proved in standard

DD , SAN 73 1473 EDITION OF I NOV 65 1S OBSOLETE UNCLASSIFIE

SECURITY CLASSIFICATION OF THIS PAGE (When Data EnlerE)

UCLSSIFIED
SCCUIA rY CLAbSIFICAIION OF THIS PAOE(h'm Data Itered)

20. Abstract cont.

-)- situations where computability is deterministic. Several examples are
presented.

UNCLASSIFIED
SECURITY CLASSIFICATION Of YU PAGEWhon Date Entered)

L#LJf,/LL, R .LLD - At w4A.

f1

INTRODUCTION

This report covers research performed under AFOSR

sponsorship from June 1st, 1979 until May 31st, 1980.

A number of results have been obtained, which have been

organized in one substantial paper entitled: Algorithmic

Language Semantics and Nondeterministic Computability.

It is expected that this paper will be submitted for

publication, and a copy is included as part of this report.

The paper will be referred to as ALS.

Some ideas and results included in ALS were actually

obtained during the early stage of this project, under RADC

sponsorship. But only one result has been reported

previously, namely the proof of the Church-Rosser Property

which was included in the final report to RADC, and appears

also in section 1 of ALS. All other results are reported

here for this first time.

MAIN RESULTS

The central topic of the project was the problem of

mathematical semantics for higher order programming

languages. It was intended to apply lattice-theoretical

methods, and a considerable amount of information about

these structures has been collected uhder the former sponsor.

The proposal to AFOSR was explicitly commi-tted to use

a particular type of structures called reflexive domains.

At the time we began the research reported here we decided

to apply the method to a non-trivial language involving

.0 I
,C-

CA N.

several higher order principles.

We chose a basic language specially designed to

clarify the essential problems of higher order languages.

The language was called BAL, and a complete description

is given in section lof ALS.

The language involves a few operators, which are

implemented in a natural way, avoiding restrictions

intended to make the language more 'practical' or 'efficient'.

The only restrictions are those required by the meaning

of the operators which are necessary to prove the fundamental

properties of the language. The idea is to isolate the

semantical problems, and not to contribute another language

to the computer daily practice. Still BAL is quite a

powerful language in which recursive programming is possible,

even if such a feature is not explicitly allowed.

The most severe restriction in our approach is that BAL

is an applicative language. There is no doubt it would have

been of greater significance to consider a sequential

language containing procedure definitions and assignment

statements. But we do not think we are ready yet for such

an application. At any rate applicative languages are

important, and while they simply dissolve the dynamical

structure of sequential languages they also exhibit some of

their typical problems. The experience we have obtained with

BAL should prove useful when the time come to consider other

types of languages.

ale.

t U

The language BAL is a truly higher order language, and

contains procedure definitions in the form of lambda

abstraction. Two other important features appear in BAL.

There is a branching operator that responds to the usual

conception in computer' languages, and there is a particular

operator which we call a ground operator. It is not

operational, in the sense that no reduction rule is

associated with this construct. Its role is to isolate

a program in a given context, and it is essential to perform

substitutions of programs. It seems to be related to

assignment statements in sequential languages.

The syntax of BAL is described using well-known

techniques of the lambda calculus. Actually BAL is an

extension of the lambda calculus, in which the usu1 notions

of redex and reduction generalize in a natural way. We prove

that the reduction relation in BAL satisfies the Church-Rosser

Property, thus generalizing the well-known result in the

lambda calculus. This property, whose proof is given in

section 1 of ALS, is essential for the semantics proposed in

in the next section. The technique used in the proof presents

some interest. Residuals are completely avoided, and only

structural inductions are used.

The operational, or reductional, semantics for BAL is

given in section 2, while the mathematical, or structural,

semantics appears in sections 3 and 4, where the equivalence

between both semantics is proved. The operational semantics

i2

formalizes the copy rule, embodied in type II reductions,

and also the obvious meaning of the branching operator,

embodied in type III reductions. This treatment of the

copy rule presents some peculiarities requiring

explanation.

Normally the copy rule is suppossed to be applied a

number of times, until a program is obtained which can

be evaluated without further procedure invocations. We

use rather the copy rule to generate a sequence of programs,

each one of them being evaluated assuming that any procedure

call has undefined arguments. This produces a sequence

of partial values, which on the basis of the Church-Rosser

Property can be shown to be convergent to some limit. That

limit is defined to be the output value of the program.

The advantage of this method is the way it relates to

the mathematical semantics defined in section 3. Essentially

it makes it possible to prove in a fairly natural manner

the equivalence of both semantics. But it need Justification,

and several sections in ALS are devoted to clarify this matter.

First of all this conception requires an adjustment of the

current notion of computability, so we introduce a more

general conception called nondeterministic computability.

This idea is discussed in some detail in the introduction of

ALS. Second we must show that our characterization of the

copy rule actually agrees with the usual meaning, at least

~5

in some standard situations. This is done in section 6 of

ALS, where we prove that whenever the primitive operators

satisfy some rather natural conditions, then our definition

of the copy rule agrees with the usual one in language

semantics. This is equivalent to saying that in such cases

the computation is actually deterministic.

Our conception of the copy rule imposes a number of

mathematical restrictions. For instance we must assume

that values are partially ordered in such a way that limits

of convergent sequences exist. This is not in fact a

restriction, for any set of objects can be considere partially

ordered by the identity relation. So our theory is actually

quite general and includes the usual forms of computability.

It is worth mentioning here that our conception of the copy

rule was anticipated in our proposal to AFOSR under the name

of principle of copy rule completeness.

The main result of this project is the equivalence

between the operational and mathematical semantics. Several

applications are given in section 5, which actually depend

on the structural character of the mathematical semantics.

For instance we prove that computability in BAL is closed

under substitution.

CONCLUSIONS

While some of the proposed objectives of the project

have been obtained others will require further effort.

The project was conceived as a highly theoretical endeavor,

"a

involving some sophisticated mathematics, but is was also

expected that some aspects of real life computer languages

would be clarified. The language BAL includes principles

occurring in computer practice, and our construction reveals

some of the mathematical complexities underlying their

applications.

The next step should be the extension of this technique

to sequential languages. This is by no means a trivial

extension, and will require a complete formalization of the

copy rule in the dynamical environment which is proper for

sequential languages. On the other hand we may expect the

mathematical semantics to be essentially the same given for

SAL via em~beddings in reflexive domains.

The results obtained in the paper were obtained by

the principal investigator. Valuable cooperation was provided

by the graduate assistant George Mouradian, who has been

associated for several years with this project.

...................

PREPRINT

ALGORITHMIC LANGUAGE SEMANTICS

AND

NONDETERMINISTIC COMPUTABILITY

Luis E. Sanchis

SchooZ of Computer and Information Science
Syr'acuse University

1980

CONTENTS

0. INTRODUCTION 1

1. THE LANGUAGE BAL 6

2. COMPUTABILITY WITH BAL 17

3. STRUCTURAL SEMANTICS 24

4. A MINIMAL EMBEDDING 32

5. DEFINABILITY 41

6. DETERMINISTIC COMPUTABILITY 47

7. EXAMPLES 53

8. CONCLUSIONS 60

REFERENCES 63

1

0. INTRODUCTION

0.1 During the last ten years or so a considerable amount

of attention has been given to the semantics of algorithmic

languages, with emphasis on the so called denotational or

mathematical semantics. To deal with this problem a rather

abstract theory has been developed, involving complete

lattices and continuous operations. Although the main

ideas were introduced by Scott in connection with the lambda

calculus, and some logicians have shown interest, it was

among computer scientists that the new approach was taken

with definite enthusiasm.

This form of semantics is concerned with languages

containing higher order definitions of functions and procedures.

Any semantics has to make explicit the basic computability

of the different operators entering the language. It was

in dealing with procedures that the traditional notion of

computability was found to be defficient. In this theory

computations deal with finite discrete objects, symbols or

numbers, and it was Scott's crucial insight that computability

of functions involved rather an approximation process, which

should be described in terms of partial orders and continuity.

Essentially the lattice approach is an attempt to

provide a more general theory of computability, which in

turn should be the basis for the semantics of higher order

languages. But this theory never came to be fully developed,

although Scott has discussed some important features (see[6]).

2

The most important contribution in the direction of

computability was the approximation theorem proved in

Wadsworth [8J, which actually is presented in terms of

semantics. We attempt in this paper to formalize a more

general notion of nondeterministic computability via

an algorithmic language called BAL. We prove that the

denotational semantics anticipated by Scott is actually

complete, relative to this notion of computability.

0.2 A computation involves an effective process that

generates a sequence of states, a crucial property being

the possibility that such a sequence may be infinite.

Deterministic computability is characterized by the

following fundamental assumption: an infinite computation

ie undefined and produces no output. In this conception

computability requires essentially some terminating machinery,

or final states, otherwise no output is ever possible.

In order to obtain nondeterministic computability we

must allow for infinite computations producing output. But

this conception must be refined. Obviously we do not want

to call a computation any situation in which some output is

generated by an infinite process, even if the process is

effective in some sense. What we want is that the output

should be determined as a limit of the process. More

precisely, the infinite process should produce a sequence

of partial values, each one by a finitary computation, andI the final output should be the limit in the sense that it

3

contains all the partial values, and nothing else.

A well known example of this form of computability

is enumeration reducibility (see [2) and [4]). If o is

an enumeration operator, and O(A) = B, where A and B are

sets of numbers, then B is generated by an infinite process

which produces an infinite sequence of finite sets, B

being the union of all such partial values. The process is

infinite even if A and B are finite sets, for no terminating

machinery exists. If B is finite then after some stage the

process will produce partial values equal to B, but B is

determined as the output only as a limit, and not by any of

the partial values.

0.3 In formalizing.these ideas we follow closely Scott [6),

but note that our motivation is given in terms of the basic

notion of nondeterministic computability. We shall assume

the domain of values to be partially ordered. A limit is

understood as a least upper bound in the usual sense in

lattice theory. We need only to assume that limits exist

for directed subsets.

The possibility of an undefined computation must enter

explicitly in our theory, so we introduce a special undefined

value, characterized as the least element in the ordering.

This is sufficient if the operations are monotonic.

A sequence of partial values may present conflicting

results (say true and false), so the limit in such cases

must be an inconsistent or overdefined element. It is

characterized as the greatest element in the partial order.

These assumptions are sufficient to introduce functions

which are computable in a nondeterministic sense, but are

not deterministically computable. For example consider a

function f such that f(x) = 0 if x is the undefined value,

and otherwise, f(x) = the overdefined value. It is possible

that the input x = undefined be given via some infinite

deterministic computation, so no deterministic computation

of f(x) = 0 is possible. On the other hand a nondeterministic

computation is possible, simply by generating partial values

all equal to 0, and of course converging to 0.

A final restriction must be imposed. We want the

computable operations to be closed under substitution. Since

output values are obtained as limits of partial values, and

will enter as inputs of computations in the same way, we must

require that the operations be continuous. We must point that

this is ih fact a crucial restriction (see [6)) that makes

possible the structural semantics developed in sections 3 and 4.

0.4 Our construction is built around the algorithmic (or

programming) language BAL. This is a type free applicative

lambda calculus,with a conditional operator and a ground

operator. The language is interpreted in basic structures

consisting of partially ordered domains. A direct interpretation

is possible only for terms (i.e. programs) in normal form.

For general programs the interpretation is given by a

reductional semantics that essentially describes the

5

underlying computability assumed by the theory, which is

of course nondeterministic computability in the sense

discussed above.

The main result is the existence of a structural

semantics which is equivalent to the reductional, and

it is independent of any notion of computability. The

semantics was originally introduced by Scott £5) for

a simple lambda calculus, and a proof of equivalence

for this calculus was given by Wadworth [8]. We

extend their results to the language BAL.

Our use of the lambda calculus departs from the

traditional approach, as given for instance in [1]

chapter 3. We do not encode numerical values in terms

of the calculus, but rather consider all values as

denotations of variables and constants. The conditional

operator works on the same assumption, and cannot be

defined using application and abstraction.

0.5 Research presented in this paper has been supported

by the U.S. Air Force under contracts RACD F 30602-76-

C-0325 and AFOSR F 49620-79-C-0016.

MENW-77

~6

1. THE LANGUAGE BAL

1.1 In this section we describe a formal language,

called Basic Algorithmic Language, or simply BAL. It

is essentially a lambda calculus extended with a condi-

tional operator and a ground operator.

The language contains a countable number of formal

variables: v , v2, ... , the symbol Q, and a set of

constants symbols including at least the symbols tt

and ff. Other symbols are used to describe the basic

operations, as explained below. Letters u,v and w are

used to denote variables. If X and Y are expressions in

BAL then X = Y means that they are formally identical.

The fundamental structure of BAt are programs or

terms as they are usually called in applicative languages.

A term is defined inductively as follows:

Ti: Variables, the symbol n, and constants are terms,

also called atomic terms.

T2: If X and Y are terms then (XY) is a term, also

called an applicative term.

T3: If X is a term and v is a variable then AvX is

a term,also called an abstraction term.

T4: If X, Y and Z are terms then (X m Y,Z) is also a

term, also called a conditional term.

T5: If X is a term and i is a nonnegative integer then

{Xi is a term,also called a ground term.

Letters U,V,W,X,Y,Z will denote terms. We follow

the usual notation in combinatory logic and lambda

7

calculus (see [i]) • In particular we assume the

definition of the notion: the variable v occurs free

(or bound) in the term X. And also the definition

of the notion: the term Y is free for the variable

v in the term X.

If X and Y are terms and v is a variable then the

notation [Y/v]X denotes the result of replacing all

free occurrences of v in the term X by the term Y.

Note that no change of bound variables is assumed.

Hence in case u X v tnen [Y/v]xuX = xu[Y/v]X.

We shall say that the variable u is strictZy free

for the variable v in the term X in case that [v/u][u/vJX

E X. This is actually equivalent to saying that u is free

for v in X and in case u X v then u does not occur free in X.

If u is strictly free for v in X then for any term Y the

following relation holds: [Y/uJ[u/v]X = [Y/v]X.

We assume the usual conventions to avoid writing too

many parentheses. Hence parenthese are replaced by

associating to the left. In this way the expression XYZ

stands for the term ((XY)Z). It follows that any term X

has a unique expression in the form X1 ...Xn, n k 1,where

XI is not an applicative term.

We introduce also the following conventions. A term

of the form AvX X2...Xn , n k 1, is understood as X'X Xn

where X1 XvX,. And a term of the form [Y/v]XiX2...Xn,

n a 1, is understood as XjX2...X n where X' =Y/v)X

1.2 We shall need a number of properties of the substitution

8

operator, which in some cases will be assumed without

proof. For example it is obvious that in case v X u,

v does not occur free in W and u does not occur free in

V then [V/v][W/u]X = [W/u)[V/v]X.

Lemma 1.1. If v is different from w, v does not

occur free in W, and Y2 is free for v in Y1 then

[W/w][Y 2/v]X 1 = [[W/w]Y 2/v][W/w]Yl .

The proof is by induction on the structure of Y.,

the only non trivial case being when Y is of the form

XuX and v occurs free in Y., This means that u is

different from v. If u is identical to w then w does

not occur free in Y2 ,since Y2 is free for v in Y,, so the

relation follows. Finally if u is different from w then

the substitutions can be reduced to X and the induction

hypothesis can be applied.

Lemma 1.2 . Under the same assumptions of Lemma 1.i,

if W is free for w in [Y2/v]Y, then [W/w]Y 2 is free for

v in [W/w)Yg.

Assume the conclusion is false. Then w occurs free

in Y2 and W is not free for v in YV" But this contradicts

that W is free for w in [Y2/v]Y i.

1.3 Reduction in BAL is an extension of the standard

reduction in the lambda calculus. We define redex and the

oontractum of a redex by the following rules:

RXI : If X is a term of the form vY then X is a redex of

type I. Any term of the form Xu[u/v]Y where u is

strictly free for v is a contractum of X.! !1
y ~ J,,. "..... . ", . .

9

RX2 : If X is of the form XvYZ then X is a redex of type II.

If Z is free for v in Y then [Z/v]Y is the contractum

of X.

RX3 : If X is of the form (X1 : X2 ,X3)Y then X is a redex

of type III and (X1 X2 Y,X3 Y) is the contractum

of X.

If X is a term containing a redex U as a subterm, and

Y is the result of replacing U by some contractum, we say

that X reduces immediateZy to Y and write X redm Y.

We define the relation X reduces to Y as the reflexive

and transitive closure of the relation X redm Y. If X

reduces to Y we write X red Y.

To prove that the relation reduction satisfies the

Church-Rosser Property (CHRP) we shall follow the approach

in [i]. First we define another relation red s such that

reduction is the reflexive and transitive closure of red s .

Then it is sufficient to prove the CHRP for the relation red s

1.4 We define the relation red s inductive by a set of rules,

each involving a set of premises, that in some cases may

be empty. We describe the premises in advance for all rules

and then proceed to describe the conclusion for each rule.

if X" Y1 3 Xn reds Yn, n 0, then:

Rule A: If X0 is an atomic term then

X0X.1 ***Xn red s X0Y1 -.Yn

Rule B: If n 2 1 and the variable u is strictly free for

the variable v in Y then
I

AvX..X n red s 7u[u/v]Y ...Yn

10

Rule C: If n k 2, u is strictly free for v in X., and

Y2 is free for v in Y then

xu[u/v]X X2...X n red s [Y 2/v]Y Y ..Yn

Rule D: If n k i 2 3 then

(X I X2,X3)X4 ...X red s

(Y I: Y2Y4"''Yi'Y3Y4"''Yi)Yi+...Y n

Rule E: If n z 1 and i 2 0 then

{XI)iX 2 ***Xn red s {Y1)iY 2***Yn

It is clear that X red Y implies X red Y. To prove

that red is the reflexive and transitive closure of red s

it is sufficient to show that X redm Y implies X red s Y.

Lemma 1.3 Assume XI red s Y 1 X2 reds Y2 and X3 reds Y3"

Then XvXi red s AvY , (Xi D X2,X 3) red s (Yi D y2,Y3) and

{X 0, red s {Y}i-

This follows immediately from rules B,D and E.

Lemma 1.4 If X red s Y and V red W then XV red YW.

If X red s Y then some of the defining rules must

apply. If we enlarge the set of premises of the rule by

including V red s W then by the same rule we get XV red YW.

Lemma 1.5 If X redm Y then X red s Y.

The proof is by induction on the construction of the

term X. Note that in case X is a redex and Y is a

contractum then X red Y follows using rules B,C, and D.

Then proceed by induction using lemmas 1.3 and 1.4.

Lemma 1.6 If X red s Y and v is a variable that occurs

free in Y then v occurs free in X.

This is clear from the form of the defining rules.

11

Theorem 1.1 If X red s Y, V red s W, V is free for w

in X and W is free for w in Y, then [V/w]X red [W/w]Y.s

The proof is by induction on the construction of X,

considering cases according to the rule used to derive

X red8 Y. In all cases we use the following notation.

If the premises in the rule are: XI reds Y' " ' Xn red, Yn'

then we put Xj - [V/w]Xj, and Y' - [W/w]Yj, = ,...,

Rule B. Here X - V *.Xn, and Y -- uu/v]Y1 . . n .

By the induction hypothesis we have X' red s Yi,J = 2,.--,n.

If v = w or u - w it is sufficient to take X red s YI as

a premise and apply rule B. If v X w and u X w then V is

free for w in Xl and W is free for w in Y so X, red8 YI

follows. In order to apply rule B we have to make sure

that u is strictly free for v in Y1. Clearly we may assume

that w occurs free in Y It follows that w occurs free

in X, , u does not occur free in W and v does not occur

free in V or W. Hence

[v/u][u/v]Y = [v/u][u/v][W/w]Y

E [v/u][W/w[u/v]Yt

[W/w][v/u][u/v]Yt

yt
i

If we apply rule B we get the desired relation for

xvx= [V/w]vx1

xu[u/v]Yi xu[u/v][W/w]Y i
-u[w/w][u/v]y i
- W/w] xu[u/v]yl

12

Rule C. Here X Xu[u/v]XiX 2...Xn and Y [Y2/v]Y Y3... Yn

Note first that the variable v is used only to describe

substitutions. We can use the induction hypothesis on X

to replace such variable. Hence we may assume that v $ u

and v . w and also that v does not occur free in V or W.

It is clear that V is free for w in X ,...,X n and W is free

for w in YI'Ys,'.,Yn. In case v does not occur free in Y

then Y2 does not appear in Y, so we may replace Y2 in such

a way that W is free for w in Y2. This means that in any

case we have X' red Y19 j = 1,...,n. To apply rule C wea s
need first that u is strictly free for v in X1, and for this

we may assume that w occurs free in X . It follows that

u i w and u does not occur free in V, hence

[v/u][u/v]XE [v/u][u/v][v/w]x1

[v/u][v/wl[u/v]x1

B [V/w][v/u][u/v]x1

-XI

We need also that Y' is free for v in Y' but this follows
2 1

from Lemma 1.2. Now we may apply rule C, and this gives

the desired relation. For first note that by Lemma 1.1

we have [Y /v]Y' [W/w]CY 2 /vJY 1 . Furthermore we have also

xu[u/v]Xi - [V/w]Au[u/v]X I which is trivial in case w = u

(so w does not occur free in X) and in case w X u it

follows because v does not occur free in V.

The other rules are trivial. This completes the proof

of Theorem 1.1.

Theorem 1.2 If X red S Y and X reds Z then there is

a term U such that Y red U and Z red U.
s s

*1t.

The proof is by induction on the structure of X with

cases arising from the rules used in both derivations. The

premises of X reds Y are denoted as X1 red s Yj, . Xn reds Yn

and the premises of X red s Z as X redZ , ... ,X red s Z .s1 1. n 5n

By the induction hypothesis we may assume that for J = i,...

there is a term U such that Y. red s Uj and Z red s UJ.

We shall assume also that these terms can be chosen in such

a way that collision with free variables are avoided.

Rules A, D and E are trivial. Rules B and C may appear

in three combinations: both rule B, both rule C, one rule B

and the other rule C.

Both rule B. Here X B XvX1 .. .Xn and Y =- u[u/v]Yl...Yn,

and Z = Xu'[u'/vJZ 1 ... Zn . Note now that for a properly chosen

variable w we have

[u/v]Y 1 red s [u/v]U I and [w/u][u/v]U1 = [w/v]U1

[u'/v]Z 1reds [u'/v]UI and [w/u'][u'/v]U1 = [w/v]U 1

so by rule B we get

Y red s xw[w/v]Ul...U n

Z red s xw[w/v]U1...Un

Both rule C. Here we note that the variable v in the

rule can be chosen the same in both derivations. It follows

from Theorem 1.1 that we may choose U = [U2/v]U U 3...U n

Rules B and C. Here X F Xu[u/v]X IX2 .. xn,

Y [Y2/vYIY 3 ... Yn, and Z = Xw[w/u]ZZ 2 .. Zn . We have

of course that X' red s Y but only that [u/v]X reds Zj'.

Since we can choose v to be strictly free for u in Z

1|

______l

It follows that X1 red s Cv/u]Z - Z1 and now we apply the

induction hypothesis so Y1 red, U1 and Z1 reds U1 . But

then Z' red s [u/vJU 1 and it follows that we may take

U S [U2 /v]U1 U3 ... Un .

As mentioned above from Theorem 1.2 it follows that

the CHRP holds for the relation reduction. Hence if

X red Y and X red Z there is U such that Y red U and

Z red U.

1.5 A term containing no redex of type II or III is

said to be in normaZ form. In general given a term X

there is no term Y in normal form such that X red Y.

And whenever exists, it is unique up to change of

bound variables. In the next section we introduce an

evaluation procedure that applies only to terms in

normal form. To be able to extend this evaluation we

follow [8] and associate with each term X a partial

normal form denoted as XP . The definition of Xp is

given by the following induction rules:

PI: If X - X0 X1... Xn, n O,where X0 is atomic then

X - X0P1..np

P2: If X XvX1 then Xp = XvXp
1

P3: If X XvXlX 2 ...Xn, n 2 2, then X
P - ([/v]XX 3...Xn

P4: If X E (XI D X2 ,X3)X4***Xn, n > 3, then

Xp - (Xp (X2X P4Xn)P(x 3x4... Xn)p)

P5: If X - {X0 } X1 ...Xn , n 2 0, then XP = Q XilXn.. n

Lemma 1.7 If Y is atomic and Y is free for u in X

then ([Y/u]X)p [Y/u]XP .

L..-

P5.

15

The proof by induction on the structure of X is

straightforward.

We are interested in determining the relation between

terms XP and YP whenever X red Y holds. For this purpose we

introduce the relation X is 0-covered by Y, where X and Y

are terms in normal form. We denote this relation in the form

X a-cov Y, and it is defined by the following rules:

CVI: If YX 1 2...,X2n n ; 0, are terms in normal form then

OX X...Xn -cov Y.

CV2: If X1 9-cov Y1,...,Xn o-cov Yn , n z 0, and X0 is

atomic, then X0X1 ...X n f-cov X0Y1 ...Yn .

CV3: If X1 0-cov Y,, and u is strictly free for v in Y,,

then XvX1 Q-cov xu[u/v]Y1 .

CV4: If X. a-cov Y1 , X2 Q-cov Y2, and X3 a-cov Y3 ' then

X1 D X 2,X3 -cov Y1 Y 2,1Y3

CV5: If X -cov Y' "'" , Xn n-cov Y n n k 1, then

Xi i X2...X n 0-cov {Y 1iY2...Yn

It is easy to show that if X is any term in normal

form then X f-cov X holds.

The notation X a-cov* Y denotes the transitive

closure of the relation X 9-cov Y.

Lemma 1.8. Let X and Y be arbitrary terms such that Y is

free for w in X. Then ([a/w]X)p a-coy ([Y/w]Y)P.

The proof is by Induction on the structure of X. If

X = X0X1 ...Xn and X0 is w, the conclusion follows by rule CVi.

If X0 is atomic different from w, it follows by the induction

hypothesis.

..... ',. , , . , , . , . I

16 1

If X AvXiX2 .*Xn, n z 2, take Z [9/v]X 1 ...X3. It is

clear that ([a/v]X)p ([Q/v]Z)P . Using that Y is free for w

in X we have ([Y/w]X)P ([Y/w]Z) p . Hence the conclusion

follows by the induction hypothesis on Z. The other cases are

similar.

Theorem 1.3. If X red Y then XP Q-cov* Y.

From the definitions it follows that we need only

to prove that if X red Y then XP f-cov YP. The proof is by

induction on the structure of X, with cases arising from the

rules in the derivation of X reds Y. For example, assume that
rule C is used. In this case X u[u/v]X 1X2...Xn and Y

[Y2/v]Y1...Yn. Note that the variable v is used only to

describe substitutions, hence we may assume that v does not

occur in the terms X2,..,XnY 2 ,*...Yn. Now put Z1 _ XlX3...Xn,

and Z2 Yly 3 Y It follows that XP ([Q/v]Z 1)p and

Y E [Y2/v]Z 2. By the induction hypothesis and Lemma 1.8 we have

XP 0-cov ([Q/v]Z2)P f-cov YP

1.6 We complete this section with a new definition. If X and

Y are arbitrary terms, and there is a term U such that X red U

and Y red U, we shall say that X is convertibZe to Y and

write X cony Y.

From the CHRP it follows that the relation X conv Y is

the reflexive, symmetric and transitive closure of the

relation X red Y.

.....

17

2. COMPUTABILITY WITH BAL

2.1 Let D be a partially ordered set under some relation c.

We say that D is a domain in case the following conditions

are satisfied: i) D contains a least element i (bottom),

and a greatest element T (top), and they are different.

ii) If M is a directed subset of D (i.e. if each finite

subset of M has an upper bound in M) then the least upper

bound of M in D exists and it is denoted uM. If D is

affected by subscript, superscript or index then the

symbols c, 1, T, u will be similarly affected.

A subset D' of the domain D is a subdomain of D

if it is a domain under the restriction partial order

and whenever M is a directed subset of D' then uM = u'M

(or equivalently uM E D').

If D is a partially ordered set then D+ denotes the

set obtained by adding two new elements i and T, and

extending the ordering in such a way that they become the

bottom and top of D+ . For example if A is any set we may

consider A partially ordered by the identity relation.

Then A+ is a domain (actually a complete lattice), called

the flat domain induced by A. In particular if A = {true,false}

then we put Bool = A+. Another application of this notation
+

is W+ where w is the set of nonnegative integers.

2.2 Let D and D' be domains. A function from D into D'

is oontinuous in case f(uM) = u'f(M) whenever M is a directed

subset of D. The set of all continuous functions from D into

D' is denoted by D * D'.

a

18

The set D 4 D' becomes a domain if we introduce the

partial order f c g if and only if f(x) c' g(x) for all

x c D. Then 1D-D' = XycD. D, and TD4D' = XYcD.TD,"

Furthermore if F is a directed subset of D - D' then

uF = g £ D - D' where for x c D we have g(x) = u'{ f(x)

f £ F)

The notation D1 - D 2 D3 is an abbreviation of

Di - (D2 - D3). And in general we put
D D2 -)- = D1 + (D2 4 ... D).

If f c D 4 4 ... - Dn 4 D' and x, D 2 . xn c Dn

we put f(xl,...Ixn) = f(xi)...(Xn)-

A retraction in the domain D is a function f c D - D

such that f o f = f. It follows that f(D) = Fix(f) =

{ x : f(x) = x) is a subdomain of D. A retraction f such

that f(x) c x for all x £ D is called a projection.

An embedding of the domain D' into the domain D is

a pair (g,h) where g c D' + D, h c D 4 D' and h(g(x)) = x

for all x c D'. It follows that g o h is a retraction

in D and D' is isomorphic to Fix(g o h).

Let (Dj : J c J) be a collection of domains indexed

by the set J. We put H = {<J,x> : J C J A x c DJ)

and define the domain D = * D = H+, where the ordering in
J :Ja

H is the natural extension of the orderings in each domain D .

We call D the direct sum of the indexed collection of domains.

For each J £ J there is a canonical embedding of DJ into D

given by the pair (tj,qj) where the function Aj is

19

defined by Ij(x) <J,x>, and q, is defined by the

following cases:

qj(y) - if y - I

= x if y = <J,x>

= " if y = <i,x> and J # i

= T if y = T

projections.

If D is some domain we define a function CondD £

Bool - D - D * D as follows:

CondD(X,y,z) = i If x = IBool

= y if x = true

= z if x - false

TD if x = fBool

The continuity of the function CondD can be easily

verified. Note that CondDD, (xYlY 2)(z) = CondD,(xyl(z),Y 2 (z)).

If f c D -* D' is such that f(i = and f(TD) = TD, then

f(CondD(x,y,z)) = CondD,(xf(y),f(z)).

2.3 A basic structure H is a collection H: J c w) of

domains indexed by w such that H0 = Bool. The elements of

H are called ground elements of type (j). More generally

if a = (il,...,ik,j), k z 0, il,...,ik,J c w we say that

a is a ground type, put H. = Hi -$ Hik -+ H and

say that the elements of H are ground operators of type a.

Finally if B = (ai,...,an,j), n z 0 and al,...,an are ground

types, j £ w, we say that B is a functional type, put

H a Ha., + ... *- Han * H and say that the elements of

H0 are functionals of type .

20

An algorithmic system is a triple S = (H,C,int) where

H is a basic structure, C is a set of constants in BAL

containing at least the symbols tt and ff, and int is a

function such that for each constant c c C int(c) = some

ground operator in H, int(tt) = true, int(ff) = false.

If int(c) if a ground operator of type a we say that c

is of type a in S.

An aosignment in the system S is a function a such

that for any variable v in BAL a(v) = some ground

operator in H. If a(v) is of type a we say that v is

of type a in S under a.

We fix now an algorithmic system S = (H,C,int). We

shall consider only terms in which the constants are in C.

We proceed to define a function Evi(X)(a) where i c w,X is

a term in normal form and a is an assignment in S. The

value of this function is some element of Hi. To simplify

the notation we shall not write the superscript S. The

evaluation function is defined by the following rules:

EVI: If X X0 Xi...Xn, n 2 0, where X0 is a constant of

type a = (il,...,ik,i) then

Evi(X)(a) = int(X 0)(Ev i(X 1)(a),...,Evik(Xk)(a))

where in case n < 0 we put X X

EV2: If X B XoXI...Xn, n z 0, where X0 is a variable of

type a = (il,...,ik,i) under a then

Evi(X)(a) = a(XO)(Evil(X,)(a),...,Evik(Xk)(a))

where in case n < 0 we putX+ 1 ... Xk

n+1 k

21

EV3: If X BX X..X n n a 0, where X0is atomic and

neither rule EVI. nor rule EV2 applies then

Ev iCMX(F) =L

EVl:, If X =-AXthen Ev (XM(a) = Ev i([sa/vJX 1)(0)

EV5: If X EX1 X2 X then

Evi(X)(a) =CondHi (Evo(X,.)(0) Ev j(X 2)(U),Ev X 3)(0))

EV6: If X =-(X 0 1 X..Xn, n z: 0, and i =J then

Evi(X)(0) = EviCXo)(a). If i # a then
Ev i(X)(0) = 1i

Note that from EVi it follows that Ev 0(ttx. .X n)(a)=

true and Ev 0(ffX1.l nX)(a) - false. And from EV3 it

follows that Ev i(QX. -X n)(0) = -Li*

Theorem 2.1. if x a-cov Y and a is any assignment then

Ev i(O) Ci Ev i(Y)(CO.

Proof by induction on the structure of X with cases

arising from the rules defining the covering relation. All

cases are straightforward.

We proceed now to extend the evaluation function

to arbitrary terms. Note that from the CHRP, Theorem 1.3 and

Theorem 2.1 it follows that for any term X the

collection {Ev i(YP)(a) X red Y) is directed. We

define then Ev i(X)(oj) =Ui{Evi (Yp)(a) :X red Y)

Let F be a functional of type a

We say that the closed term X computee F in S in

case that for arbitrary x I ... ,x n of the proper type

the following relation holds:

F(x ,...Dx) Evi.(XVI ...V n)(0)

22

where a(vj) = xj, J = 1,...,n. Finally we say that the

functional F is S-computabZe in case there is a closed

term X that computes F in S.

2.4 We want to prove some general properties of S-computable

functionals, essentially closure under substitution and

recursion. In principle this is possible using the

above definitions, but this approach is involved and

requires a great deal of syntactical analysis. Some

examples will illustrate the general situation.

Let Y = v1 (MM) where M = Xv2 (v1 (v2v2)). We want

to determine the functional F of type ((i,i),i)

computed by Y. It is easy to see that whenever YvI red Y

then Y is either of the form Av1 (vn(MM))v1 or of the

form v n(MM).,It follows that YP is either n+(,,) orform

vn+1 (Q) so if we put a(v1) = f of type (i,i) it

follows that Evi(YP)(0) =fn(±i This means that

F(f) = minimal fixed point of f.

Let consider now an example involving substitution.

Assume Ev (VM(a) = e e H and also that V is free for v

in X. In this case we may expect Evi([V/v]X)(a) = Evi(X)(a')

where a'(v) = e and otherwise a' is identical with a. This

is not true in general but it is true if we replace V by

Vi i.e. if we isolate V in X. Similar isolation

techniques are necessary for more general substitutions.

The crucial problem seems to be that the evaluation

of a term X is not directly determined by the structure

_ j l

23

of X. It is certainly determined by the structure of X,

but indirectly, through a reduction procedure that

generates other terms whose structure is in general

difficult to predict. In this sense we may say that

the evaluation described in this section Is a reductional

semantics for BAL. We would like to have a structural

semantics in which thV evaluation of a term is directly

determined by its structure. The possibility of such a

semantics was discovered by D. Scott (see [5]), and the

equivalence of both semantics for the lambda calculus

was proved by Wadsworth (see [8)).

2 -.................. ..

24

3. STRUCTURAL SEMANTICS

3.1 A domain D such that there is an embedding of D o D into D

is called a reflexive domain. The structural semantics is

obtained by embedding the basic structure H in some

reflexive domain D. We must impose a number of restrictions

relating these embeddings.

A reflexive embedding of the structure H consists

of a domain D, a pair (*,4) embedding D - D into D, and for each

I t w a pair (gi,h1) embedding Hi into D,such that the

following conditions are satisfied for arbitrary ij in w:

REI: If I Pi J then hi o gj = XyeHj.±I

RE2: For each x c Hi *(g (x)) = XdcD.gl(x)

RE3: For each f c D - D hi(J(f)) = hi(f(±))

We shall assume some reflexive embedding E of the

basic structure H, and prove some elementary consequences

of the conditions REi-RE3. Then we assume an algorithmic

system S and define the structural semantics. The equivalence

with the reductional semantics is proved assuming the

reflexive embedding is minimal. A minimal reflexive

embedding is constructed in the next section.

3.2 First It is convenient to generalize the function *.

We put D0 = D and Dn+1 = D * Dn. Then we define ,n c D Dn

as follows: t0 = ID9 *n+1(d) = n o *(d) .

Note that 4(1) = XdcD.i , and *(T) = XdcD.r . Hence

the following relation holds for arbitrary elements

d and d' of D and x E Bool:

*(CondD(,d,d,)) = CondD D, (X,(d),(d,))

..........

25

Lemma 3.1. If n k 0 and d0,d1,...,dn+ I are

elements of D then

#n+l(d0)(di,...,dn+1) - 0(#n(d0)(d ,...,dn))(dn+j)

The proof is by induction on n. The case n = 0 is

trivial. Assume the relation holds for n. Then

#n+2(d0)(dl,...,dn+2) = Fn+1(:(d0)(d:))(d2,...,dn+2)

= (n(O(d0)(di))(d 2,.... dn+l))(dn+ 2)

= (n+l(d0)(di,...,d n+l))(dn+2)

Lemma 3.2. If x e Hi and dl,...,d n are elements of

D,then *n(gi(x))(d1 ,...,d n) = g,(x).

This follows immediately from RE2 and the definition

of 4n.

3.3 The next step is to define embeddings for the domains

of ground operators in the basic structure. From now on

in this section the letter a will denote a ground type

(il,...,ik,J) where k 0. In case k > 0 then a.' will

denote the ground type (i2,...,ik,j).

We define embeddings (g,,h,) of H into D by

induction on k. If k = 0 we put = gj and h. = hi.

If k > 0 we define

g6(f) = *(%, o f o hi1)

h (d) = h6 , o f(d) o gI

Lemma 3.3. Let f be a ground operator of type a.

Thefor arbitrary elements dl,...,dn of D, n 1 0 the

following relation holds:

#n(g.(f))(di1, ...,dn) - gp(f(hil(d 1),...,h ik,(dk,)))

where k' - min(n,k), p = (J) in case n a k and p *

(in+i,...,ik,j) in case k > n.

26

Proof by induction on min(n,k). If k = 0 or n = 0

then both sides evaluate to g,(f). If n > 0 and k > 0 then

*n(gM(f)) = n-i o g, o f o hi1

so by the induction hypothesis

4n l(g,(f(hil(d1))))(d 2 ,. ..,dn) =

9P (f(h ii(d 1 ", "".,h ik' (d k')))

where p and k' satisfy the conditions of the lemma.

Lemma 3.4. Let f be a ground operator of type a.

Then h (ga(f)) = f(Lil,...,Iik). If i p j then hi(ga(f)) = i

If k = 0 this is trivial. If k > 0 then using RE3,

hi1 (.) = Lil and the induction hypothesis on a' we have

h (g a(f)) = h ((g., o f o hi1))

= h (ga ,(f(hil(±))))

If i j J the argument is similar using REi in case k = 0.

Lemma 3.5. Let f be a ground operator of type a.

Then for arbitrary elements d,,...,d n of D, n 2 0, the

following relation holds:

hj (n(g (f))(d , . . . , d n)) = f(hil(di) , . . . , h i k (d k))

where in case k > n we put dn+1 = . = dk
= I

This follows using first Lemma 3.3 and in case k > k'

using Lemma 3.4.

3.4 We proceed now to define the structural semantics for

BAL. Again we assume an algorithmic system S = (H,C,int)

and also some reflexive embedding E of H. An assignment

here is a function T such that for any variable v, x(v) is

some elcment of D. The notation [d/v]T denotes the

.. ' . -..4. -. 4.' _ ,

27

assignment T' where T'(v) = d and otherwise T' is

identical with T.

The semantics is given by a function VaE(X)(T)

where X is any term and T is any assignment. The

function takes values in D. To simplify the notation

we shall omit the subscr'pt E and the superscript S.

The definition is by induction according to the

following rules:

VAi: If X is atomic then Va(X)(T) = d, where d = g (int(X))

in case X is a constant of type a in S, d =T(X) in

case X is a variable, and d = i in case X = 0.

VA2: If X YZ then Va(X)(T) = O(Va(Y)(T))(Va(Z)(T))

VA3: If X)AvY then Va(X)(T) = *(AddD.Va(Y)([d/v]T))

VA4: If X XI 1 X2,X 3 then

Va(X)(T) = CondD(h 0 (Va(X1)(T)XVa(X 2)(T),Va(X 3)(T))

VA5: If X = Y}i then Va(X)(T) = gi(hi(Va(Y)(T)))

Technically the function Va is undefined if in rule

VA3 the operator * applies to a non continuous function.

But this situation does not arise and we can prove the

following theorem.

Theorem 3.1. If X is any term and T is any assignment

then Vx(X)(T) is defined. Furthermore if T(v') = uM where

M is a directed subset of D, then Va(X)(T) = u(Va(X)([d'/v']T):

d' e M).

The proof by induction on the structure of X is

straightforward. We consider only the case X E AvY. From

the induction hypothesis it follows that Va(X)(T) is

28

defined. To prove the second part we may assume that the

variable v' is different from v. For each d' c M we

define a function fd,(d) = Va(Y)(Ed/v][d'/v']T). From

the induction hypothesis it follows that fd' €D -, D.

If d' and d" are elements of M such that d' c d" then

fd fd" (this also follows from the induction hypothesis

using M' = {d',d"}). Hence the collection {fd' : d' c M}

is directed in D - D. Now using VA3 and the induction

hypothesis we have

Va(X)(x) = *(XdcD.u{fd,(d) : d' E MI)

= *(u{fd, d' c M})

= u{*(fd,) d' c M}

= u{Va(X)([d'/v'3T) : d' c M}

The next two lemmas are standard basic results in

structural semantics. Proof are omitted.

Lemma 3.6. Let T and T' be assignments such that

r(v) c T'(v) whenever v occurs free in X. Then

Va(X)(i) c Va(X)(Tt).

Lemma 3.7. If V is free for v' in X and Va(V)(T) = d,

then Va([V/v']X)(T) = Va(X)([d/v'JT).

3.5 We are now in position to study the relation between

reductional and structural semantics. We shall see that

for terms in normal forms they are equivalent. For terms

in general the situation is not clear. Recall the convention

of 3.3 relative the ground type a.

Lemma 3.8. Let X X0X ...Xn, n a 0, and

.............................

29

Va(X 0)) g,(f) for some ground operator f of type ~

For t= 1,...,k let dt = Va(X t)(T) where in case k > n we

put X . Then h (Va(X)(T))
n~i ..

f(hil(d),...,hik(d) .Furthermore if i j then

h i(Va(X)(T))=

First note that from Lemma 3.1 it follows that

Va(X)(r) = *n(Va(X 0)(r'))(Va(Xi)(r),...,Va(X)(Tr))

Hence using Lemma 3.5 we get

h i(Va(X)(T)) = f(h ij(d i),... ,h ik(d k))

If 1 9 j the h.i(Va(X)(T)) = ±follows from the second

part of Lemma 3.4~.

Theorem 3.2. Let X be a term in normal form, a some

assignment in S and T an assignment such that whenever

a(v) = f and f is a ground operator of type a then T(V)=

g0L(a(v)). Then Ev i(X)a) = hi (Va(X)(T)).

The proof is by induction on the structure of X.

Assume X EX 0 X1* .. X n where i s atomic. In case X

then both sides evaluate to i.i. Otherwise we use Lemma 3.8.

If X E vY then we have

Ev i(X)(a) = Ev i([n/v)Y)(o)

= hi (Va([fl/v]Y)(T))

= h,(Va(Y)(E±/v]T)) by Lemma 3.7

= hi (Va(X)(T)) by RE3

The other cases follow easily from the definitions

and the induction hypothesis.

If X and Y are terms such that for any assignment T

rat. am.. I

30

we have Va(X)(T) c Va(Y)(r) then we write X [Y. If

X Y and Y C X hold we write X Y.

Lemma 3.9. Assume X[Y1, X2 [Y2 and X [Y Then:
i) XXX2 [2 3

ii) AvX [AvY

iii) X1 X2 ,X3 [Y1 Y 3

iv) {X 1) 1 {Y I}

These relations follow immediately from the definitions

and the monotonicity of the operations involved.

Lemma 3.10. If X is a redex and V is a contractum of

X then X = V.

Assume X E XvX1 and V = Xu[u/v]X I where u is strictly

free for v in X This means X [v/ul[u/v]X and v is

free for u in [u/v]X Hence from Lemma 3.7 it follows

that for any assignment T and element d of D we have

Va(X1)([d/v]T) = Va([u/v]X1)([d/u]T)

and this implies X = V.

For the other cases use Lemma 3.7 and the properties of

the operator Cond discussed in 2.2.

Theorem 3.3. If X cony Y then X = Y.

Proof by induction on the structure of X, using Lemmas

3.9 and 3.10.

Theorem 3.4. If X O-cov Y then X [Y.

Proof by induction on the structure of X with cases

arising from the rules defining the covering relation. All

cases are straightforward.

-. Now

31

Lemma 3.11. If X is any term then XP X.

Proof by induction on the structure of X. All

cases are easy. For example if X XvX ... Xn, n 2 2,

then by the induction hypothesis

Xp ([a/LvX 3 ...Xn)p r [/vi1X 1 3... X n

and on the other hand using Lemmas 3.6 and 3.7

[a/v]XX..X [X
1 3'* n

From Theorem 3.4 it follows that for any term X

and assignment T the collection {Va(YP)(T) : X red Y} is

directed. We shall say that the embedding E is minimal

if the relation Va(X)(T) = u{Va(YP)(T) : X red Y}

holds for arbitrary term X and assignment T.

Theorem 3.5. Assume the embedding E is minimal,

X is any term, a is some assignment in S, and T is an

assignment such that whenever a(v) = f and f is a

ground operator of type a, then T(v) = g(o(v)). Then

EvI(X)(a) = hi(Va(X)(T)).

Evi(X)(o) = u{Evi(YP)(a) : X red Y}

= u{hi(Va(YP)(T)) X red Y)

hi(u{Va(YP)(T) X red Y))

= hi(Va(X)(T))

32

4. A MINIMAL EMBEDDING

4.1 To construct a minimal embedding we shall use the

following procedure. We introduce a number of conditions and

prove that an embedding in which they are satisfied is

minimal. Then we construct an embedding in which those

conditions hold.

Let E be an embedding with domain D where (*,*) is

the embedding of D - D into D. We shall assume there is

a sequence P0 2 P1, ... P k" ... of projections in D such

that the following conditions are satisfied:

RD1: For each k t O, Pk C Pk+11 Pk(T) = T, and

furthermore u(Pk : k a 0) = IDD

RD2: For k 2 0 and d c D, O(Pk+1(d)) c Pk o *(d) o Pk

RD3: For d E D, *(P0 (d)) c P0 o *(d) o XdcD.i

Now we extend the language BAL by introducing new

symbols n k for each k a 0. We extend also the definition

of terms by including a new clause:

T6: If X is a term then for each k ' 0, nk[XJ is a term.

A primitive term is a term in which there is no

occurrence of the symbols Rk" The rank of a term X is the

greatest k such that nk occurs in X, and it is 0 in case

it is a primitive term. We denote by r(X) the rank of X.

The notion of redex and normal form is taken

exactly as in 1.5. Note that a term of the form H k[AVY]Z

may be in normal form.

If Y is a term we can eliminate from Y all occurrences

of symbols Rk' simply by replacing every part Hk[Z] by Z.

33

If Y is in normal form and X is the primitive term obtained

by this elimination procedure, we shall say that Y is a

restricted form of X. The set of all restricted forms of

X is denoted by R(X). Note that if X is a primitive term

in normal form then X e R(X).

The valuation procedure of the preceding section can be

extended to non primitive terms by including a new rule:

VA6: If X = H k[Y] then Va(X)(T) = Pk(Va(Y)(T))

Since the functions Pk are continuous it follows that

the general properties of the valuation function are still

valid. We shall continue to use the notation of the

preceding section.

By the assumption RD1 we know that Pk C Pk+1 c I

If Y is some term, and Y' is obtained by eliminating from

Y some symbols H k' or by replacing some symbols Rk by Um

where k < m, it follows that Y [Y'. If Y is a restricted

form of the term X, and Y' is in normal form then Y' is

also a restricted form of X.

Note that if X is a primitive term the set

{Va(X')(r) : X' c R(X)) is directed. For given two elements

X' and X" of R(X) we may apply the elimination and

replacement procedure explained above to obtain Y c R(X)

such that X' [Y and X" [Y.

Theorem 4.1. If X is a primitive term then for every

assignment T:

Va(X)(T) = u{Va(X')(r) X' c R(X))

314

The proof is by induction on the structure of X.

The case X is atomic is trivial since then X E RMX.

Assume X =-YZ. Note that if Y' c R(Y) and Z' e R(Z)

then for any k, H k [Y']Z' E RMX. Hence we have

Va(X)(Tr) = *(VaCY)CTr))(Va(Z)(r))

= ONO{P(Va(Y)(T)):k O1))(Va(Z)(T))

= u{*(Pk(VaCY')(T)))(Va(Z')(T)):k -O,Y'£R(Y),Z'ER(Z)

= U(Va(II k [Y']Z' kkO, YVER(Y), Z'ER(Z)}

= U(Va(X')(T) :X' r R(X)}

Now consider X XvY. Here if Y' E R(Y) then XvYI £ RMX.

We define f YCd) =Va(Y)([d/v]T). And for Y' £ R(Y) we

define fy,(d) = Va(Y')([d/v]T). From the induction hypothesis

it follows that f Y = U{f Y Y' c R(Y)} Hence

Va(X)(T) = 'F(f)

= Uf(fy,) :Y' c R(Y))

= U(Va(XvY')(T) :Y' e R(Y))

= U{Va(X')(T) :XI c R(X))

The other cases follow easily from the induction hypothesis

and the continuity of the operations involved.

4.2 The proof of minimality is given via two lemmas that

will be proved next. Note that from condition RD2 and

Lemma 3.7 the following relation holds, provided that

Y is free for v in X:

Note also that from RD3 it follows that

R 0[X]Y IRi n0 [n/v]X)

35

Lemma 4.1. Let X be a primitive term and X' c R(X)

where r(X) - k + 1. Then there is a primitive term Y and

Y' e R(Y) such that X red Y, r(Y') w k, and X' [Y'.

The proof is by induction on the structure of X.

If X X0oXI ...Xn where X0 is atomic, we may assume that

X' = X0XI...X', where X£ c R(Xi), i = 1,...,n. So the

result follows from the induction hypothesis.

Let X = XvXI'..Xn . If n = 1 we may assume that

X' = xvXl, so the result follows from the induction

hypothesis. If n > 1, then we may assume that

X' B 1k+[XvXi]X ...XA. By the induction hypothesis

there are terms Y and Y' c R(Yi) such that X red Yis

r(YI) = k, and Xi I Y,2 i = 1,....,n. Clearly we can take

Y such that Y2 is free for v in Y" Hence we take
Y [Y2/v]YY 3... Y n and Y' = n[Ink[Y2]/vlYlJY3 ...Y-

Clearly X red Y, Y' RCY), r(Y') = k and X' [Y' holds

by RD2.

Assume X E (X1 X2 ,X3)X4***Xn. If n = 3 we may

take X' = Xj n X2,X3, and the result follows easily from

the induction hypothesis. If n > 3 then we may assume

that X' = Rk+ [XI l X ,Xi]X4... X. By the induction

hypothesis we can find primitive terms Y., ZI and Z2 such

that X1 red Y., X2X4 "''Xn red Z,, X3X 4...Xn red Z2 , and

also terms Y', Z' and Z' such that Y' c R(YI), Z' c R(Z£),

c R(Z=), r(Y' r(7) = r(ZI) = k and furthermore X' [Y1,

nk+ [X]X...XA Z , k+[X]X?...XA [Z1. Hence we

k. 241 ~

k4 ..

36

take Y Y and Y Y Now since

P () ., and P k .(T) - T, it follows that

1 X l k+l[XJ n' nk+l[X3 .4Xn Y

and clearly r(Y') = k.

The case X = {XOj X...Xn follows easily from the

induction hypothesis.

Lemma 4.2. If X is a primitive term, X' c R(X) and

r(X') = 0, then X' [Xp.

Proof by induction on the structure of X. All

cases are easy, and we consider only X =AvX1.. .Xn, n z 2.

Here we may assume that X' = Ro[XvX,]X2... Xn: Hence

using RD3 we have

x,r [[/xj] .A

I ([n/v]X iX3. Xn)P by ind. hyp.

r xp -

Theorem 4.2. If E is an embedding satisfying

conditions RDi-RD3, then E is minimal.

Let X be some term and t some assignment. From

Theorem 4.1 it follows that we have to show only that

for any X' E R(X) there is Y such that X red Y and

Va(X')(T) c Va(YP)(r). But this follows from

Lemmas 4.1 and 4.2.

4.3 To construct a minimal embedding of a given basic

structure H we follows the procedure of [5]. We define

..... 1....

37

a sequence of domains Do, D1, ... such that Dk is a

projection of Dk+l, and take the inverse limit of the
sequence. We put Do = iM.Hi, and Dk+ 1 = Dk - D The

embeddings of Dk into Dk+, are given by pairs (ikJk)

where io(x) = AyeDo.X, Jo(f) = f(±o), i+ 1 (f) = ik o foJk'

and J= k o f o ik It is easy to check that

all these functions are continuous, Jk o i =I andk k 'k'n

ik o Jk ck+1 Ik+, " Note that Jk(Tk+1) = Tk,

Jk(ik+)= ik' ik(Tk) = Tk+1 and ik(= k Ik+1

The inverse limit of this sequence is the set D of

all functions d defined on w such that for any k c w,

d(k) c Dk and d(k) = Jk(d(k+l)). If d and d' are elements

of D we define d c d' if and only if d(k) ck d'(k) for

all k £ w. Then D with this partial order is also a

domain. For we may define (k) = ik' T(k) = Tk, so 1

and T are least and greatest element of D. Furthermore

if M is a directed subset of D then for each k c w, the

set {d(k) : d c M) is directed in Dk. So we may define

d'(k) = ukfd(k) : d c N) , by the continuity of the functions

Jk it follows that d' c D and actually d' = uM.

Next we define for each k an imbedding (ikwiwk)

of Dk into D. We put Jwk(d) = d(k). To define ik. we

use recursion. It is sufficient to define Ik (x)(m) for

x c Dk and m k. We put Ik (x)(k) = x and ik.(x)(m+1) =

im(ike(x)(m)). It is easy to show that these functions

are continuous, J.k o ikm - Ik, and ik. o Jk c I.

Note that ik (Tk) T.and Jk(T) - Tk

38

Lemma 4.3. Assume d e D and m a k. Then

i) J-k - Jk 0 J-k+1

i ik. U ik+l o ik

i J-k o im. o d(m+l) o JmM o Ik. = d(k+l)

Property i) follows immediately from the condition

Jk (d(k+l)) = d(k). To prove ii) we use induction to show

that for m L k+1 and x c Dk, i k(x)(m) = ik+l (ik(x))(m).

Finally iii) is proved by induction on m - k. The case m = k

is trivial. For m > k use i) and ii), the induction

hypothesis and note the relation Jk o d(k+2) o ik

Jk41 (d(k+
2)) = d(k+l).

Now we define projections P k in D, k 0. We put

P k = i ko 0 Jk Note that Pk o Pk = I, and Pk(T) = T.

Note also that Pk = ik+1? o ik o Jk o Jk+1 c Pk+1"

Lemma 4.4. Assume m k. Then:
i) Jk o PmJak

ii) Pk o Pm =Pk

i Pm o ik = ik,

iv) Pm o Pk = P1k

v) imm o Pk+l(d)(m+l) o Jfm = ikm o d(k+1) 0 J-k

Both i) and iii) are proved by induction on m -k,

using Lemma 4.3. Then ii) follows from i) and iv) follows

from iii). The proof of v) uses also induction on m - n.

The case m = k is trivial. If m > k use Pk+ 1((d) =

Pk+2 (Pk+(d)), the induction hypothesis, and note that

P k+1 (d)(k+2) = ik o d(k+1) 0 Jk"

39

Lemma 4.5. u{P m :m 01 = ID+D

We put d' = u{Pm(d) : m 2! 01. Then for any k

d'(k) = uk{Pm(d)(k) : m- k}

= d(k) by Lemma 4.4 1)

hence d = d'.

Corollary. If f e D - D, then u(Pm o f o Pm: m z 01 = f

Now we proceed to define the embedding (*,) of

D * D into D. We put *(f)(k+l) = Jwk 0 f 0 'k. , for

f e D -+ D and k - 0. And *(d) = u{im o d(m+l) o J., : m 2! 0}

for d c D. Note that 0 is well defined for

im. o d(m+1) o J~m = ira!. o im o d(m+l) o Jm o Jwm+!

= im+,. o im+ (Jm+i(d(m+2))) o Jm+l

c im+l. o d(m+2) o J-m+l

Note that O(W(f)) = f follows immediately from Lemma 4.5.

But we also have ((d)) = d since *((d))(k+1) = d(k+l)

by Lemma 4.3 ii1).

Theorem 4.3. The following relations hold for arbitrary

d c D and k k 0 and f E D -D:

i) *(Pk+a(d)) = ik., o d(k+1) o Jk

ii) Pk o #(d) o Pk= ik. o d(k+i) o Jmk

Iii) #(P0 (d)) = Ad'ED.Po(d)

iv) Po(*(f)) = Po(fCL))

v) *(Po(d)) = PO o f(d) o Xd'cD.i

Property i) follows using the definition of * and
Lemma 4.4 v). Property ii) also follows using the

definition of # and Lemma 4.3 1ii). To prove iii) we

ILL-

4o

compute using part i) and the definition of I0

(Po (d)) = *(PI(Po(d)))

= i0 o P0 (d)(i) o J.o

= o i0 (d(O)) o J.o

= xd'ED.P0 (d)

To prove iv) we compute using part iii) and the

fact that P0 is a projection

p O(W()) C W() p o(f(1)) C f(A)

4(po((f))) C f 4(Po(f())) c f

Po(*(f)) C f(±) P0 (f(±)) c 0(f)

p O(W()) C po(f(.L)) p0o(f(1)) - po(f))

To prove v) we use iv) with f = O(d), hence

P0 (d) = ((d)(.))

so v) follows from iii).

Condition RDI has been proved in Lemma 4.5. And

conditions RD2 and RD3 follow from Theorem 4.3 i),ii) and v).

To complete the proof we must define the embedding of H

into D. Let recall that for each i c w, there is a

canonical embedding (i,qi) of Hi into DO. Clearly if

i Pi j then qi(t 3 (x)) = Ai . Now we define gi= i0 o I

and hi = q o J0. It follows that hi o g. qi o I = Ii"

Furthermore, noting that P0 o i0. i0. and J.0 o P0 = Iwo,

and using Theorem 4.3 iii) and iv), we get RE2 and RE3.

41

5. DEFINABILITY

5.1 In this section we return to the S-computable functionals,

and prove some closure properties. Although these results

can be proved directly from the definitions, we rather use

the minimal embedding. This makes possible a generalization

which will be described in terms of definability.

We assume some algorithmic system S = (H,C,int) and

a minimal embedding E of H. The domain of the embedding

is D and (*,) is the embedding of D - D into D. We shall

assume also that * o * = ID, so we have an isomorphism of

D and D - D. This is not strictly necessary but it

simplifies some of the proofs. If X is a closed term then

Va(X)(T) is actually independent-of r. So in this case we

shall write Va(X).

If d, and d2 are elements of D then the application

operation in D is denoted (did2) = (d1)(d2), so this is

the counterpart of operation application in BAL. We follow

the usual rules to eliminate parenthesis, namely association

to the left. Note that Xd'cD.dd' = 0(d), hence *(Xd'cD.dd') = d.

Furthermore if did' = d2d' for all d' c D then dI = d2.

We denote by Q0 the subset of D consisting of all elements

d such that for some closed term X, Va(X) = d. A basis in D

is a subset Q of D such that Q is a subset of Q, and Q is

closed under application. It follows that Q. is a basis,

the minimal basis contained in any other basis. A similar

notion was defined in [4] where we required also that Q be

countable.

42

There are some convenient rules to define elements

in a given basis Q. For example there is S £ QO such

that for arbitrary d,,d 2 and d3 in D, Sdld 2d3 = d d3 (d2d3).

Also there is K c Q such that Kd d2 = d . We mention

also elements B and B' such that Bdd 2 d3 = d$(d2 d3),

and B'd d2d3d4 = d (d2 (d3 d4)).

In general if M is an applicative expression containing

variables from the list d1 ,...,d n constant symbols denoting

elements of a basis Q, and the only operation in M is

application, then there is a (unique) element d c Q such

that ddi...dn = M holds for all values in D of the

variables d1 ,...,dn .

We recall the convention that the letter a always

denote a ground type of the form (il,...,ik,j), k 2 0.

The letter B will denote a functional type of the form

(l, .., ~l),n 2t 0.

Lemma 5.1. There is an element r C Q such that

for any d c D, rCd = g(h (d)).

If k = 0 take r = Va(Xv{v I). If k > 0 note

that g A(h (d)) = q(g,' o h , o *(d) o gjl o h 1) so
take r such that r d = B'r ,dr

5.2 Let F be a functional of type B. We say tha d c D

defines F in case that the relation

F(xis,...,x n) = hi(dd ... d n)

holds whenever g j(xj) = dj, J = 1,...,n. If Q is a

basis and d c Q defines the functional F we say that

F is Q-definabZe.

43

Theorem 5.1. A functional F is S-computable if

and only if it is Q0-definable.

This follows immediately from Theorem 3.5.

In order to study definability over some basis Q

it is convenient to define embeddings for the domains H

where B is a functional type. This is done essentially

as for the ground types, and in fact the definitions

agree in case B is actually a ground type.

The embedding of H is given again by a pair (g ,h).

If n =0 we put g. = gi and h = hi. If n > 0 we put

go(F) = (g.8, o F o h.) and h (d) = h,, o *(d) o g.1,

where ' =(2,...,an,i).

Theorem 5.2. Let F be a functional of type B, and

go(F) = d. If n m a 0 and Bm = (am+1,...,an,i) then

the following relations hold for arbitrary d,,...,dm:

i) gom(F(hal(d1),...,hm(dm))) = dd1...dm

ii) d(r,d)...(r mdm) =dd...dm

iii) rom(dd ...dm) = dd ...dm

To prove i) note that g~J(F(h l(d1))) = dd, hence

g02(F(hal(d),ha2(d 2))) = ddId 2, and so on. Now ii)

follows from i) since h j(r j dj) = haj (dJ), j =

And iii) also follows from i) noting that rom(gom(x)) =

gmm(X).

Theorem 5.3. Let Q be a basis and F a functional

of type 0. Then F is Q-definable if and only if g8 (F) c Q.

If go(F) = d c Q then it is clear from Theorem 5.2 i),

...

244

with mn n, that d defines F. On the other hand if d' c Q

defines F take d such that dd.. *dn r (d'(r d)...(r d).

From this we get

F ~an (d)..h (h (dl(r d) (r d)

gi(F(hal(d.1),...,h n(d n))) = r1 (d'(r ald1) (ran dn))

hence by extensionality g (F) = d.

If g 0(F) = d we shall say that d is the graph of F.

It follows that F is S-computable if and only if the graph

of F is in Q 0,

5.3 We shall prove closure under substitution in the

following form. Let H be a functional of type (i8

G be a functional of type 8' ci.. cnc) Now we may

define a functional F of type 0 by

Let d0be the graph of H, and d' be the graph of G,

and assume both are In the basis Q. Then there is d E Q

such that for arbitrary dl,.. .,dn the following relation

holds: ddi1... d n = d1i... d n)d 1-d n. Hence it follows

from Theorem 5.2 i) that

G(h a(dI)..handn ha (d dn)

giFha d)..ha (d n)) =

= gi(H(b a(d'd I ...d n),b al(d 1),...,htn~dn)))

= d 0(d'd I ... d n)d d..n

add ...dn

hence d Is the graph of F so F is Q-definable.

45

5.4 Definitions by recursion are introduced via a

functional F of type (ul,...,n,c). We know there

is a functional G of type ' = (. such that the

following identity holds:

F(xl,...,Xn,GCxl,...,Xn),yl,...,yk) UG(xl,...,xn,yl,...yk)

We shall show that in case F is Q-definable then Q is also

Q-definable.

The proof uses the term Y introduced in 2.4. We

put Va(Y) = R e Q0' Since YvI con v v1 (Yv) it follows that

for any d c D, the relation Rd = d(Rd) holds. Furthermore

by inspecting the terms Y such that YvI red Y it follows

that Rd = u{dni : n 2 0}. Hence if d' is any element of

D such that dd' c d' it follows that for each n 2 0, dn± c d'

hence Rd c d'.

Now let d be the graph of the functional F, and take

d0 such that d0d1 ...dn = R(dd . ..dn). Hence using Theorem 5.2

we can prove the following properties of do:

i) d0(r 1 d)...(randn) = d I ...dn

ii) r(d 0 d I...d n) = d0d ... dn

iii) d0 (r ald)...(randn)(rildn+1)... (rikdn+k d0d I...dndn+i...dn4

iv) rj(d0dl...dndn+l...dn+k) = d0di...dndn+i** dn+k

Let G be the functional of type s' defined by do. From

the above properties it follows that do is actually the

graph of G, hence Theorem 5.2 applies. Now we put dm = gam(Xm),

m = i,...,n and dn+t = git(yt) , t = j,...,k. We compute

as follows, using that G(xl,...,x n) = ha(dodi...dn):

1I

4I6

- hj(dd1 .**df~dOd, ...d n)d ... *d n+k)

= h J dodl ... dndn+l...dn+k)

-G(x j..xny--2k

We must also prove that the functional G is minimal.

Assume G' is another functional of type 0' such that for

arbitrary x1%.,

If d' is the graph of G' then for arbitrary dl,..,, n

dd ...*dn(d'd .- .d) c d'd 1.* .dn

hence from the properties of R and the definition of d

d 0d ...dn d'd ...d

but this implies d 0 C d', hence G =hS,Cd 0) -ca, ho,(d') Gf

147

6. DETERMINISTIC COMPUTABILITY

6.1 The notion of computability presented in this paper is

essentially relative. If S = (H,C,Int) is an algorithmic

system and F is a S-computable functional, then we can

reduce the evaluation of F to partial evaluations using

the basic operators in S, i.e. those operators of the form

int(c) for c e C. Whether these basic operators are

computable in some absolute sense, is a question that we

do not intend to discuss here.

In this section we want to discuss a more restricted

question, namely deterministic computability. An operator

is deterministically computable in case the evaluation is

given by an effective procedure with a terminating machinery,

such that whenever the procedure terminates an output value

is produced, and in case the procedure does not terminate

the output is undefined. The general procedure described

in secion 2 to evaluate Evi(X)(a) is not deterministic, even

if there is some Y such that X red Y and Evi(X)(a) = Evi(YP)(C).

For there is no rule to detect this situation so the evaluation

must proceed to generate all terms Y such that X red Y. In

other words no terminating machinery is available.

6.2 As before the letter a denotes a ground operator

(il,...,ik,j). A ground operator f of type a is reguZar in

case the following condition is satisfied: If f(xI ,x.) = e

and e # ±j, and x,...,xl are values such that either

X = or x Xm, m - i,...,k, then f(x e.
m im m,

.

148

We say that a system S - (H,C,int) is regular if

int(c) is a regular operator for every c e C. An

assignment a is regular if a(v) is a regular operator for

every variable v.

Lemma 6.1. Let S be a regular system, and a and a'

be regular assignments, such that for every variable v,

either a(v) = ia for some type a, or a(v) = a'(v). If X

and Y are terms in normal form such that X a-cov Y

holds, and Evi(X)(a) = e where e # i, then Evi(Y)(a') = e.

Proof by induction on the structure of X with cases

arising from the rules defining the covering relation.

Let X E X0Xi...X n where X0 is atomic. Since e i

rule CV2 applies and e = f(e1 ,... ,ek) for some ground

operator f of type a. But then Evi(Y)(a') = f(e',... e) =

where by the induction hypothesis either em = lim or em = el,

m M 1,...,k. Since f is regular we have e - e'.

The other cases follow easily from the induction

hypothesis.

Theorem 6.1. Let S be a regular system, and a and a'

be regular assignments, such that for every variable v,

either a(v) = .a for some type a, or 0(v) = a'(v). If X is

any terms such that Evi(X)(a) = e where e i i then

Evi(X)(a') = e.

We put Evi(X)(a') = e'. Then e ci e' follows from

Lemma 6.1 applied to YP whenever X red Y. To prove e' c. e

take any Y such that X red Y. By the CHRP there is Z such

KI

49

that Y red Z and Evi(Zp)(o) = e* where e* # I and e* ci e.

Then by Lemma 6.1 Evi(ZP)(a') - e*, hence Evi(YP)(a') Cj e*.

Corollary. If S is a regular system and f is S-computaLle

ground operator, then f is regular.

Immediately from the Theorem noting that the elements

of any domain H are regular.

6.3 We shall say that a system S is partial evaluation

deterministic if whenever X is a term and a is some regular

assignment such that Ev i(XP)(a) = e and e # ii, then

Evi(X)(a) = e. If S is partial evaluation deterministic

then there is a deterministic procedure to evaluate

EvI(X)(c) for any term X and regular assignment a. Simply

generate the terms Y such that S red Y and evaluate Evi(YP)(o) =

If for some Y the value e is different from i stop and

output is e. Otherwise the output is i.

Theorem 6.2. A system S is partial evaluation deterministic

if and only if it is regular.

First assume that S is partial evaluation deterministic

and put int(c) = f for c c C, where f is a ground operator

of type a, and we may assume k 1. Assume that f(x,.. .,xk) = e

where e # 7i" Now put I = xvlv1 , and for m = 1,...,k take
xm such that either xm = ±im or xm' = Xm, Xm IVm, 0(v x1 .

Xm = ms m EI~m o(m) = m

Put X E cXI...Xk. Then X red cvI.. .vm, hence Ev (X)(0) =

f(x.,,. ..,x) = e'. On the other hand X red cY1 .. Yk = Y where

vm if xm i 'im and Ym = Xm otherwise. Now Evj(YP)(a) =

f(x,...,x k) a e. Since S is partial evaluation deterministic

77

50

we have e = e', so f is a regular ground operator.

Assume now that the system S is regular and X is a

term such that Evi(XP)(a) = e where e # Ai and a is a

regular assignment. Then by Lemma 6.1 if Y is a term

such that X red Y holds, we have Evi(YP)(a) = e, hence

Evi(X)(a) - e.

It is possible to argue that any deterministically

computable operator must be regular. For assume f is a

ground operator of type a, and there is a deterministic

procedure to evaluate f(xl,...,xk) = e where e # ±j and

xm = Iim. Since the input xm may be given via a deterministic

but infinite computation it follows that the evaluation of e

must ignore the input Xm, hence the same output will result

if xm is replaced by x.m m

6.4 We conclude this section with some considerations on

the role of the overdefined element. We are interested in

some conditions imposing restrictions on the manner the

overdefined element determines the output. For instance

we may want that whenever some input is overdefined, and

it is not ignored by the computation, then the output

should be also overdefined. We may go further and require

that the output should not be overdefined unless some

input is overdefined. These are consistency conditions,

in the sense that any inconsistency In the output is

totally determined by inconsistencies in the inputs.

Let f be a ground operator of type a. We say .hat

51

f is weakZy consistent if the following condition is

satisfied: If f(x , ...,xk) e and e # Tj, and

x1,.x1 are values such that xm - Tim or xm M x

m = 1,...,k, then fVx, x') = e. And we say that f is

oonsistent if it is weakly consistent and whenever

f(xl,...,xk) = T3 then for some m, xm = Tim.

A system S is (w akly) consis tent if int(c) is

(weakly) consistent for every c e C. An assignment a

is (eakZy) consistent if o(v) is (weakly) consistent

for every variable v. Note that any element in H is

weakly consistent, but only the elements different from Tj

are consistent.

Lemma 6.2. Let S be a weakly consistent system, and

a and a' be weakly consistent assignments such that for

every variable v, either a(v) - T. for some type a, or

a(v) a'(v). If X is a term in normal form such that

Evi(X)(c) = e where e I Ti then Evi(X)(a') = e. Furthermore

if S and a are consistent then Evi(X)(G) # Ti.

The proof is by induction on the structure of X, similar

to the proof of Lemma 6.1.

Theorem 6.3. Let S be a weakly consistent system, and

a and a' be weakly consistent assignments such that for

every variable v, either a(v) = T for some type a, or

a(v) = a'(v), If X is any term such that Evi(X)(Ca) = e

where e # Ti then Evi(X)(a') - e. Furthermore if both X

and a are consistent then Ev I(X)() Ti
Ti

52

The first part is trivial since from Lemma 6.2 it

follows that whenever X red Y then Evi(YP)(c) = Evi(YP)(c11).

To prove the second part note that if e = i we are done,

and if e # Ai then by Theorem 6.2 there is Y such that

X red Y and Evi(YP)(a) = e. Hence by Lemma 6.2 we have

e # Ti

Corollary. If S is regular and consistent and f is

S-computable, then f is consistent.

7. EXAMPLES

7.1 We shall consider here a number of algorithmic

systems, showing their power and limitations. It is

convenient to distinguish different basic structures

using superscripts. So in general a given algorithmic

system is of the form S = (H'Cj'int) where J c w.

The domains in the structure HJ are denoted as HJ wherei

i £ . It is not necessary to define Hi for all i.

To avoid ambiguities we agree that in case it is not

explicitly defined then Hi= {.L,T}.i

Let A be some set and B another set contained in some

domain D. Let f(x1 ,...,xk), k 2 1, be some partial function

defined on A with values in B. The function is partial

so it may be undefined for some arguments. Suppose

now that in some basic structure we have Hi = A+ and

H = D . We want to extend f to a ground operator f*

of type (il,...,ik,j) where ii = ... = ik = i.

If f(xl,...,x k) = e is defined we put f*(xl,...,x k) = e.
Ik f......,x

if f(x k...,xk) is undefined, or some 1m = li, we put

f*(xl, ...,xk = j. In all the other case we put

f(x .. ,x J Note that f* is a regular and

consistent ground operator.

In proving a functional to be S-cmputable we shall use

the results of section 5 on definabilitV. In general

functionals will be defined using substitution and

recursion. Note that in case a functicmnl F is S-computable

and F' is a functional defined by addirg new variables,

" ii -- ,i " . ..

54

and also permutation of variables, then F' is S-computable.

For suppose the close term X computes in S the functional

F(x1 ,x2 ,x3). Then the term Y = v I)Xv2 Xv3 Xv4 (Xv4v2v1)

computes the functional F'(x ,x2 ,x3,x4) = F(x4,x2,x,).

With this understanding it should be clear that the

substitution/rule proved in 5.3 can be used for any kind

of substitution, and computability will be preserved.

7.2 The first example is the system S, = (H1,C ,int)
+

where we put H1 = w .(Recall that H0 is always Bool).1
We put C, = {O,s,p,b,c(we do not mention explicitly the

constant tt and ff which are assumed to be in any system)

The function int1 is defined as follows:

i) int (0) = 0 C W+

ii) int (s) = s* of type (i,i) where s is the function

on w defined by s(n) = n + 1.

iii) int1 (p) = p1 of type (1,1) where p is the function

on w defined by p(0) = 0 and p(n+l) = n.

iv) int1 (b) = b* of type (i,0) where b is the function

defined on w by b(0) = true and b(n+l) = false.

v) int (c) = c of type (1,1,1) where c is the function

defined on w by c(n,m) = 0.

We shall show that whenever f is a partial recursive

function on w, then f* is S -computable. The ideas are

well known and we Just outline the argument.

First note that if ck(xl,...,xk) = 0 is the constant

zero function with k arguments, the c* can be defined from

c* by substitution. If f(xl,...,xk) = xi is some identity

55

function, the f* is not an identity function in U.

But we can define f* as follows:

f*(x,...,xk) - Cond (b*(ck(xl,...,Xk)),xi,xi)

Now consider a total numerical function defined by

primitive recursion from total functions in the form [
f(xl,...,xk,O) = fl(xl,...,xk)

f(xl,...,xky+l) = f2(xl,...,xkyf(]l,...,xkY))

To simplify the notation we put k = 1 and define an

operator d of type (1,1,1) as follows

d(x,y) = Cond (b*(c*(x,y)),b*(y),b*(y))1

Next we define a functional F of type (I,(ii),Ii) by

F(x,z,y) = Cond (d(x,y),f*(xl,f*(xp*(y),z(y)))

Now let f0 be the recursive solution of z in the

functional F, hence

F(x,f0 (x),y) = f0 (x,y)

From this it follows easily that f* = f0 "

Finally we consider a partial recursive function

defined by minimization from a total recursive function

in the form

f(xl,...,Xk) = Uy[fl(x1,. ..,xk,Y) = 0]

Again we assume k = I and define a functional F of type

(i,(1),1,1) by

F(x,z,y) = Condl(b*(f*(x,y)),O,z(y+l)+i)

Let f0 of type (i,i,i) be the recursive solution for z,

hence F(x,f0 (x),y) = f0 (x,y), and f0 is minimal with

this property. We can show now that f*(x) = f0 (xO).

56

First note that if x =i or x =T the definition is

consistent with the properties of f*. Take x c w; then

we can prove for any n c w,that if m is the least number,

m 2 n such that f 1(x,m) = 0 , then f0 (x,n) = m - n. The

proof is by induction on m -n. Finally note that if

f (x,y) # 0 then F(x,z,y) = z(y+l.) + 1. Hence if

f (x,y) # 0 for all y c w, then for any m 2 0 and with

a = (1.,1) we have for any y E w:

F(x)m+'(a)(y) = F(x,F(x)m(±),y) =- 1

hence in case f(x) is undefined then f0 (x,0) = ± •

The system S appears to be reasonably complete.

Still we note that there are operators which are intuitively

computable, but are not S1 -computable. For instance the

operator f of type (1,1,1) defined by f(x,y) = the meet of
+

x and y in w , is not consistent so it is not S1 -computable.

We may want to extend S to allow this and other similar

operators to be computable. Or we may prefer to ignore

the situation on the assumption that the introduction of

the overdefined element in this context is artificial and

does not correspond to any real computing problem. In fact

as long as one is interested only in deterministic

computability it seems more reasonable to eliminate

altogether the overdefined element. We shall discuss

this possibility in The next section.

As we may expect the system S1 is defficient in terms

of nondeterministic computability. For example let g be

57

a partial numerical function on w. We want to compute for

each x c w the unique y such that g(y) = x, whenever

such y exists. In case there is no y such that g(y) = x

the output is undefined. In case there are two or more

the output is overdefined. We formalize this in a

functional F of type ((,i),ii) which is defined

F(g,x) = u{Condl(E*(g(y),x),y,±I) : y C W}

where E is the equality predicate on z, so E* if of type

(1,1,0).

It is easy to show that F is not S1-computable.

For assume that X is a closed term that computes F.

Define g1 (y) = 11 in case y = i or y e w and y X 0,

g1(0) = 0 and g(1 T1) = T 1. Then F(g1 ,0) = 0 so there

is a term Y such that Xvv 2 red Y and Ev (YP)(0) = 0,

where a(v1) =g and a(v2) = 0. But the evaluation

of YP uses only a finite number of values of g1 " Let

n be such that g1 (n) is not used. Now define g2(n) = 0

and otherwise g2 (y) = g,(y). Now we have F(g2 ,0) = T .

On the other hand Ev1 (YP)(al') = 0 where a'(v i) = 92

and o'(v 2) = 0 and this contradicts Theorem 6.3.

7.3 We consider now a system S2 = (H2 ,C2 ,int2) which

is an extension of S and it is not regular. We take
H2

H= H1, and C2 = C1 u {j). We define int 2 the same as

int I on C1, and put int 2 (j) = j of type (1,1,j) where

J(x,y) = the join of x and y in w

In the system S2 we may compute truly nondeterministic

7.58
functionals. For instance the functional F defined

above is S2-computable. To show this define a functional

H of type ((i,1),t,(ii),Ii) as follows

H(g,x,h,y) = J(Cond,(E*(g(y),x),y,i,),h(y+l))

If h0 is the recursive solution for h, it is easy to

verify that F(g,x) = h0 (g,x,0).

The example S3 is of the form (HCint 3) and

it is also an extension of S1 . We put H3 = ,+

H3 = Pw = the power set of w with the usual inclusion2

ordering. We use greek letters y and 6 to denote

elements of Pw. We put C3 = C1 u {J,sg,ep}. The

function int 3 is equal to int1 on C . We put int 3(J) = J

of type (2,2,2) where J(y,6) = the join or union of y and 6

in Pw; int 3 (sg) = sg* of type (1,2) where sg(x) = (x);

int3 (ep) = ep of type (1,2,0) where ep(x,y) = i0 in

case x = i, or x e w and x i y, ep(x,y) = true in case

x e y, and ep(T 1 ,y) = TO.

In S3 we can define a functional F of type

((1,1),(1.,2),1,2) as follows

P(g,H,y) = J(sg*(g(y)),H(y+i))

Let H0 be the recursive solution for H, so we have

F(g,H0 (g),y) = H0 (g,y)

It is easy to see that if g is any partial numerical

function on w, then H0 (g*,0) = the range of g. It

follows that all recursively enumerable sets are

S 3-computable.

59

On the other hand we can define in S3 an extension of

the operator ep. Let e0 ,e,,... be the canonical enumeration

of all finite subsets of w (see [7] page 525). Hence for

n E w, en is a finite subset of w and every finite subset

can be expressed in this way. We define an operator in

of type (1,2,0) as follows: in(x,j) = 0 in case x = i or

x c w and ex is not a-subset of y; in(x,y) = true in case

x e w and ex is a subset of y; in(T 1 ,y) = To . The operator in

is S -computable. The details are left to the reader.
3
Now let assume some recursive pairing of w, of the

form pr(x,y) = z with inverse functions ls(z) = x and

rs(z) = y. Consider the following functional G of type

(2,2,1,2)

G(y,6,y)

sg*(Cond 1(ep(yy),Cond I(in(Is*(y),6),rs*(y),),.L))

Now define a functional H of type (2 ,2,(1,1),I,1)

H(y,6,h,y) = J(G(y,6,y), h(y+l))

Let h0 be the recursive solution for h and define

Ap(y,6) = h o(Y,6,0)

The operator Ap of type (2,2,2) is actually the application

operator of the graph model, denoted as fun in [7] page 526

(see also [4]).

Let recall that enumeration operators are of type (2,2)

and are defined by fixing the first argument of Ap to some

recursively enumerable set. It follows that all the enumeration

operators are S3-computable.

60

8. CONCLUSIONS

8.1 The constructions presented in this paper involve

three different elements: the language BAL, the basic

structure H, and the reflexive domain D. The connection

between BAL and H is given by the function Evi; and H is

related to D by some embedding. There is another

connection between BAL and D via the function Va, that

commutes with the others in case the embedding is minimal.

The existence of this factorization depends strongly on

continuity assumptions. Apparently as long as continuity

is enforced there is no need to pay attention to the

nature of the objects in the basic structure. They may

be numbers or sets, finite or infinite, the factorization

is always available and makes it possible to interpret tie

programs in BAL as real mathematical expressions.

Continuity seems to determine the limit of the method.

If we allow monotonic but not continuous operators, we

get operators that are closed neither under substitution

nor under recursion. To deal with monotonic operators

we need a notion of transfinite reduction which is far

beyond the finitary rules of BAL.

8.2 The theory is developed under the assumption that

domains contain a top overdefined element. A motivation

for this was suggested in the introduction. But an

alternative construction is possible without enforcing

such restrictions We may redefine the notion of domain,

requiring a least but not a greatest element. Then we

...

61

must redefine the construction A + which now is obtained

by adding only a least element. This changes the

definition of Bool and also of D. With these changes

it can be checked that all definitions,proofs and constructions

in the paper not involving a top element are still valid.

In particular the minimal embedding will result in a domain

D without top elementi but otherwise satisfying all the

required conditions.

This alternative theory without overdefined elements

may present some interest as a generalization of deterministic

computability. But to study nondeterministic computations

the overdefined element seems to be essential. In fact

there are reasons that suggest that the best generalization

would be to assume all the domains to be complete lattices

(as happens to be the case in all the examples considered).

8.3 The results on deterministic computability suggest

other alternatives. In a regular system there is no need

to define the function Evi as a limit, and hence the domain

structure is not necessary. We need only the existence of

a bottom element, and monotonicity only relative to this

element. We conjecture that a theory along these lines

will be equivalent to Moschovakis's abstract computability.

Several directions may be suggested to continue this

investigation. We do not think that the ultimate significance

of the minimal embedding is expressed by the applications

in this paper. The reflexive domain seems to provide a

mathematical structure for the apparently chaotic world

Li4

62

of terms and reduction in BAL. We may expect eventually to

find rules for the safe manipulation and combinations of

programs. This application will certainly be of interest

in practical computer science.

In another direction there is obvious interest in

studying more examples, to determine the real scope of

the theory. And there is interest also in the study of

higher order structures, not only higher order functionals,

but also structures defined by recursion.

63

REFERENCES

[1] J.R.HINDLEY, B. LERCHER, and J.P. SELDIN, Introduction
to Combinatory Logic, Cambridge University Press,
London, 1972.

[2) H. ROGERS, Theory of Recursive Functions and Effective
Computability, McGraw-Hill, New York, 1967.

[3] Y.N. MOSCHOVAKIS, Abstract First Order Computability I,
Trans. Amer.Math.Soc., vol.138, pp.427-464,1969.

[41 L.E. SANCHIS, Reducibilities in two Models for
Combinatory Logic, The Journal of Symbolic Logic,
vol.44, pp.221-234, 1979.

[5] D. SCOTT, Continuous Lattices, Proc. 1971 Dalhousie
Conference, in Lecture Notes in Mathematics vol.274,
pp.97-136, Springer-Verlag, New York, 1972.

(6] D. SCOTT, Outline of a Mathematical Theory of
Computation, Proc. 4th Ann.Princeton Conf. on
Information Sciences and Systems,pp.169-176, 1970.

[7] D. SCOTT, Data Types as Lattices, SIAM Journal of
Computing, vol.5, pp.522-587, 1976.

[8) C.P. WADSWORTH, The Relation between Computational
and Denotational Properties for Scott's D -Models
of the Lambda-Calculus, SIAM Journal of C~mputing,
vol.5, pp.44 8-521., 1976.

[9) E.G. WAGNER, Uniformly Reflexive Structures: on the
Nature of G6delization and Relative Computability,
Trans.Amer.Math.Soc., vol. 1 4, pp.1-41, 1969.

. ..a... S

