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also In section 1 of ALS. All other results are reported

INTRODUCTION
This report covers research performed under AFOSR

sponsorship from June lst, 1979 until May 31st, 1980.

A number of results have been obtained, which have been
organized in one substantial paper entitled: Algorithmie
Language Semantics and Nondeterministic Computability.

It 1s expected that this paper wlll be submitted for
publlication, and a copy 1s included as part of this report.
The paper will be referred to as ALS.

Some ideas and results included in ALS were actually
obtained during the early stage of this project, under RADC
sponsorship. But only one resul£ has been reported
previously, namely the proof of the Church-Rosser Property

which was included in the final report to RADC, and appears

here for this first time.
MAIN RESULTS

The central topic of the project was the problem of
mathematical semantics for higher order prcgramming
languages. It was intended to apply lattice-theoretical

methods, and a considerable amduht*df:information about

these structures has been colleétgd'uhder fhe former sponsor.
The proposal to AFOSR was explicitly committed to use

a particular type of structures called reflexive domains.

At the time we began the research reported here we decided b

to apply the method to a non-trivial language involving




several higher order principles.

We chose a basic language speclally designed to
clarify the essential problems of higher order languages.
The language was called BAL, and a complete description
is given in section 1 of ALS.

The language involves a few operators, which are
implemented 1n a natural way, avolding restrictions
intended to make the language more ‘practical' or 'efficient’'.
The only restrictions are those reguired by the meaning
of the operators which are necessary to prove the fundamental
properties of the language. The ldea 1s to 1solate the
semantical problems, and not to contribute another language
to the computer daily practice. Still BAL is quite a
powerful language 1n which recursive programming is possible,
even 1f such a feature is not explicitly allowed.

The most severe restriction in our approach i1s that BAL
1s an applicative language. There is no doubt it would have
been of greater significance to consider a sequential
language containing procedure definitions and asslignment
statements. But we do not think we are ready yet for such
an application. At any rate applicative languages are
important, and while they simply dissolve the dynamical
structure of sequential languages they also exhibit some of
thelr typical problems. The experlience we have obtained with
BAL should prove useful when the time come to consider other

types of languages.
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The language BAL is a truly higher order language, and
contains procedure definitions in the form of lambda
abstraction. Two other important features appear in BAL.
There 1s a branching operator that responds to the usual
conception in computer languages, and there is a particular
operator which we call a ground operator. It 1s not
operational, in the sense that no reduction rule 1is
assoclated with this construct. Its role is to isolate
a program in a given context, and it 1s essentlial to perform
substitutions of programs. It seems to be related to
assignment statements in sequential languages.

The syntax of BAL 1s described using well-known
techniques of the lambda calculus. Actually BAL is an
extenslon of the lambda calculus, in which the usu2l notions

of redex and reduction generalize in a natural way. We prove

that the reduction relation in BAL satisfies the Church-Rosser
Property, thus generalizing the well-known result in the
lambda calculus. This property, whose proof is given in
sectlion 1 of ALS, is essential for the semantics proposed in
in the next section. The technique used 1n the proof presents
some interest. Residuals are completely avoided, and only
structural inductions are used. »

The operational, or reductional, semantics for BAL 1is

given in section 2, while the mathematical, or structural,

semantics appears in sections 3 and U, where the equivalence

between both semantics is proved. The operational semantics -y




formalizes the copy rule, embodled in type II reductions,
and also the obvious meaning of the branching operator,
embodied in type III reductions. This treatment of the
copy rule presents some pecullaritles requiring
explanation.

Normally the copy rule is suppossed to be applied a
number of times, untll a program is obtained which can
be evaluated without further procedure invocations. We
use rather the copy rule to generate a sequence of programs,
each one of them belng evaluated assuming that any procedure
call has undefined arguments. Thils produces a sequernce
of partial values, which on the basis of the Church-Rosser
Property can be shown to be convergent to some limit. That
1limit is defined to be the output value of the program.

The advantage of this method is the way it relates to

the mathematical semantics defined in section 3. Essentially
it makes it possible to prove in a fairly natural manner

the equivalence of both semantics. But it need justification,
and several sections in ALS are devoted to clarify this matter.
First of all this conception requires an adjustment of the
current notion of computability, so we introduce a more
general conception celled nondeterministic computabillity.

This 1dea is discussed in some detail in the 1introduction of

ALS. Second we must show that our characterization of the

copy rule actually agrees with the usual meaning, at least
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in some standard situations. This 1s done in section 6 of
ALS, where we prove that whenever the primitive operators ?
satisfy some rather natural conditlons, then our definition

of the copy rule agrees with the usual one in language

semantics. This is equlvalent to saying that in such cases
the computation is actually deterministic.

Our conceptlon of the copy rule imposes a number of
mathematical restrictions. For instance we must assume
that values are partially ordered in such a way that limits
of convergent sequences exist. This is not in fact a
restrietion, for any set of objécts can be considere partially
ordered by the identity relation. So our theory i1s actually
quite general and includes the usual forms of computability.
It 1s worth mentioning here that our conception of the copy
rule was anticipated in our proposal to AFOSR under the name
of principle of copy rule completeness.

The main result of this project is the equivalence
between the operational and mathematical semantics. Several
applications are given in section 5, which actually depend

on the structural character of the mathematical semantics.

For instance we prove that computability in BAL is closed
under substitution.
COKNCLUSIONS .

While some of the proposed objectives of the project

have been obtained others will require further effort.

The project was conceived as a highly theoretical endeavor, g;f
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involving some sophisticated mathematics, but 1s was also

expected that some aspects of real life computer languages

would be clarified. The language BAL includes principles

occurring in computer practice, and our construction reveals

TP AR T

some of the mathematical complexities underlying their

applications.
The next step should be the extension of this technique

to sequential languages. This is by no means a trivial
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extension, and will require a complete formalization of the

vy .

copy rule in the dynamical environment which is proper for

BTy

sequential languages. On the other hand we may expect the

mathematical semantics to be essentially the same given for

BAL via embeddings in reflexive domains.
The results obtained in the paper were obtained by
the principal investigator. Valuable cooperation was provided

by the graduate assistant George Mouradian, who has been

assoclated for several years with this project.
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0. INTRODUCTION

0.1 During the last ten years or so a considerable amount
of attentlion has been given to the semantics of algorithmic
languages, with emphaslis on the so called denotational or
mathematical semantics. To deal with this problem a rather
abstract theory has been developed, involving complete
lattices and continuous operations. Although the main
i1deas were introduced by Scott 1in connection with the lambda
calculus, and some logicians have shown lnterest, it was
among computer scientists that the new approach was taken
with definite enthusiasm.

This form of semantics 1s concerned with languages
contalning higher order definitions of functions and procedures.
Any semantics has to make explicit the basic computability
of the different operators entering the language. It was
in dealing with procedures that the traditional notion of
computabllity was found to be defficient. In thils theory
computations deal with finite discrete obJjects, symbols or
numbers, and it was Scott's cruclal insight that computability
of functions involved rather an approximation process, which
should be described in terms of partial orders and continuity.

Essentially the lattice approach 1s an attempt to
provide a more general theory of computability, which in
turn should be the basis for the semantics of higher order
languages. But this theory never came to be fully developed,

although Scott has discussed some important features (see[6]).
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The most important contribution in the direction of
computability was the approximation theorem proved in
Wadsworth [8], which actually is presented in terms of
semantics. We attempt in this paper to formalize a more
general notion of nondeterministic computabllity via

an algorithmic language called BAL. We prove that the
denotational semantics anticipated by Scott 1is actually
complete, relative to this notion of computability.

0.2 A computation involves an effective process that

generates a sequence of states, a crucial property being

the possibility that such a sequence may be infinite.
Deterministic computablility 1s characterized by the

following fundamental assumption: an infinite computation

18 undefined and produces no output. In this conception
computability requires essentially some terminating machinery,
or final states, otherwise no output 1s ever possible.

In order to obtain nondeterministic computability we
must allow for infinite computations producing cutput. But
this conception must be refined. Obviously we do not want
to call a computation any situation in which some output 1is
generated by an 1Infinlte process, even if the process is

effective in some sense. What we want is that the output :

should be determined as a 1limit of the process. More
precisely, the infinite process should produce a sequence
of partial values, each one by a finitary computation, and p

the final output should be the limit in the sense that 1t




contains all the partial values, and nothing else.

A well known example of this form of computabllity
is enumeration reducibility (see [2] and [4]). If ¢ is
an enumeration operator, and ¢(A) = B, where A and B are
sets of numbers, then B 1s generated by an 1nfinite process
which produces an infinite sequence of finite sets, B
belng the union of all such partial values. The process is
infinite even if A and B are finite sets, for no terminating
machinery exists. If B is finite then after some stage the
process will produce partial values equal to B, but B is
determined as the output only as a limit, and not by any of
the partial values.

0.3 In formalizing these ideas we follow closely Scott [6],
but note that our motivation is given in terms of the basic
notion of nondeterministic computability. We shall assume
the domain of values to be partially ordered. A 1limit is
understood as a least upper bound in the usual sense in
lattice theory. We need only to assume that limits exist
for directed subsets.

The possibility of an undefined computation must enter
explicitly in our theory, so we introduce a special undefined
\yalue,'characterized as the least element in the ordering.
This is sufficient 1f the operations are monotonic.

A sequence of partial values may present conflicting
results ( say true and false), so the 1limit in such cases

must be an inconsistent or overdefined element. It 1is




characterized as the greatest element in the partial order.

These assumptlions are sufficient to introduce functions ’
which are computable 1n a nondeterministic sense, but are i
not deterministically computable. For example consider a E

function f such that f(x) = 0 if x 1s the undefined value,
and otherwise, f(x) = the overdefined value. It 1s possible
that the input x = undefined be given via some infinilte

deterministic computation, so no deterministic computation

of f(x) = 0 is possible. On the other hand a nondeterministic
computation is possible, simply by generating partial values
all equal to 0, and of course converging to 0.

A final restriction must be imposed. We want the
computable operations to be closed under substitution. Since
output values are obtained as limits of partial values, and
willl enter as 1nputs of computations in the same way, we must

require that the operations be continuous. We must point that

this is ih fact a ecrucial restriction (see [6]) that makes
possible the structural semantics developed in sections 3 and 4.
0.4 Our construction is built around the algorithmic ( or
programming) language BAL. This is a type free applicative
lambda calculus,with a conditional operator and a ground
operator. The language 1s 1lnterpreted in basic structures
consisting of partlally ordered domains. A direct interpretation
is possible only for terms ( i.e. programs ) in normal form.

For general programs the interpretation is given by a

reductional semantics that essentlally describes the

JRPICEY RV PR




underlying computabllity assumed by the theory, which 1s

of course nondeterministic computability in the sense
discussed above.

The main result 1s the existence of a structural
semantics which 1s equivalent to the reductional, and
1t 1s independent of any notion of computabllity. The
semantics was originally introduced by Scott [5] for
a simple lambda calculus, and a proof of equivalence
for this calculus was given by Wadworth [8]. We
extend their results to the language BAL.

Our use of the lambda calculus departs from the
traditional approach, as given for instance in [1]
chapter 3. We do not encode numerical values in terms
of the calculus, but rather consider all values as
denotations of variables and constants. The conditional
operator works on the same assumption, and cannot be
defined using application and abstraction.

0.5 Research presented in this paper has been supported

by the U.S. Air Force under contracts RACD F 30602-T76-

C-0325 and AFOSR F 49620-79~C-0016.




1. THE LANGUAGE BAL

1.1 In this sectlion we describe a formal language,
called Basic Algorithmic Language, or simply BAL. It
1s essentlally a lambda calculus extended with a condi-
tional operator and a ground operator.

The language contains a countable number of formal
variables: v1, \FY e+ 5 the symbol 2, and a set of
constants symbols including at least the symbols tt
and ff. Other symbols are used to describe the basic
operations, as explained below. Letters u,v and w are
used to denote varlables. If X and Y are expressions in
BAL then X = Y means that they are formally identical.

The fundamental structure of BAL are grograms or
terms as they are usually called in applicative languages.
A term 1s defined inductively as follows:

Ti: Varlables, the symbol 9, and constants are terms,
also called atomic terms.

T2: If X and Y are terms then (XY) is a term, also
called an applicative term.

T3: If X is a term and v is a variable then AvX is

a term,also called an abstraction term.

T4: If X, Y and Z are terms then (X > Y,Z) 1is also a
term, also called a conditional term.
T5: If X 1s a term and 1 is a nonnegative integer then

{X}i is a term,also called a ground term.

Letters U,V,W,X,Y,Z will denote terms. We follow

the usual notation in combinatory logic and lambda




calculus (see [1] ) . In particular we assume the
definition of the notion: the variable v occurs free
( or bound ) in the term X. And also the definition
of the notion: the term Y is free for the variable
v in the term X.

If X and Y are terms and v is a varlable then the
notation [Y/v]X denotés the result of replacing all
free occurrences df v in the term X by the term Y.

Note that no change of bound variables is assumed.
Hence in case u # v then [Y/v]auX = auf¥/vIX.

We shall say that the variable u is strictly free
for the variable v in the term X in case that [v/u](u/v]X
£ X. This 1s actually equivalent to saying that u 1s free
for v in X and in case u Z v then u does not occur free in X.
If u is strictly free for v in X then for any term Y the
following relation holds: [Y/ullu/v]X = [Y/v]X.

We assume the usual conventions to avoid writing too
many parentheses. Hence parenthese are replaced by
assoclating to the left. In this way the expression XYZ
stands for the term ((XY)Z). It follows that any term X

has a unique expression in the form Xi...X ,'n 2 1 ,where

n
x1 is not an applicative term.

We introduce also the following conventions. A term

of the form xvxixz...x , n 2 1, 1s understood as X{Xz...x

n n

where X; = AvX,. And a term of the form [Y/v]xixz...xn,
n 2 1, is understood as xixz...xn where x; z (Y/v]xi.

1.2 We shall need a number of properties of the substitution
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operator, which in some cases will be assumed without
proof. For example it is obvious that in case v £ u,

v does not occur free in W and u does not occur free in
V then [V/v][W/ulJX = [W/ullV/v]X.

Lemma 1.1. If v is different from w, v does not
occur free in W, and Y2 1s free for v in Y1 then
[W/wllY,/v]Yy = [[W/wlY,/v][W/wlY,.

The proof 1s by induction on the structure of Y,,
the only non trivialvcase belng when Y1 i1s of the form
AuX and v occurs free in Y,. This means that u 1s
different from v. If u 1s ldentical to w then w does
not occur free in Y2,since Y2 is free for v in Yi’ so the
relation follows. Finally if u 1s different from w then
the substitutions can be reduced to X and the induction
hypothesis can be applied.

Lemma 1.2 . Under the same assumptions of Lemma 1.1,
if W is free for w in [Yz/v]Yl then [W/w]Y2 is free for
v in [W/w]Yi.

Assume the conclusion is false. Then w occurs free
in Y2 and W is not free for v in Yl' But this contradicts
that W is free for w in [Y2/v]Yi.

1.3 Reduction in BAL is an extension of the standard
reduction in the lambda calculus. We define redex and the
contractum of a redex by the following rules:

RX1 : If X is a term of the form AvY then X is a redex of

type I. Any term of the form aulu/v]Y where u is

strictly free for v is a contractum of X.

WPAE BP o ot et S I A~
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RX2 : If X is of the form AvYZ then X i1s a redex of type II.
If Z is free for v in Y then [Z/v]Y is the contractum
of X.
RX3 : If X is of the form (x1 > x2,x3)Y then X is a redex ;

of type IIf_and (X1 > X2Y,X3Y) is the contractum
of X.
If X 1s a2 term containing a redex U as a subterm, and

Y is the result of replacing U by some contractum, we say

that X reduces immediately to Y and write X red Y.
We define the relation X reduces to Y as the reflexive ?
and transitive closure of the relation X redm Y. If X

reduces to Y we write X red Y.

P

To prove that the relation reduction satisfles the
Church-Rosser Property (CHRP) we shall follow the approach

in [1]. Pirst we define another relation reds such that

o gy Rt . g

reduction 1s the reflexive and transitive closure of reds.
Then 1t 1s sufficient to prove the CHRP for the relation reds.

1.4 We define the relation reds Inductive by a set of rules,

T LA

each involving a set of premises, that in some cases may
be empty. We describe the premises in advance for all rules
and then proceed to describe the conclusion for each rule.
Ir X1 reds Yl’ cee s xn reds Yn’ n =2 0, then:
Rule A: If xo is an atomic term then

X X ...X red_ X.Y Y

071 n s “071""""n
Rule B: If n > 1 and the varlable u is strictly free for

the variable v in Y1 then

AvX ...Xn reds xu[u/v]Yi...y

1 n
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Y

Rule C: If n 2 2, u 1s strictly free for v in Xi, and g

Y2 is free for v in Y1 then

Au[u/v]xlxa,...xn reds [YZ/VJY1Y3...>Yn [
Rule D: If n 21 > 3 then
()(.1 > xz,x3)xu...x reds
. (Y, > Yo¥ . ¥, VoY) Y)Y, Y

Rule E: If n 2 1 and 1 > 0 then
{xi}ixz...xn reds {Y1}1Y2...Yn
It 1s clear that X reds Y implies X red Y. To prove
that red is the reflexive and transitive closure of reds
it 1s sufficient to show that X redm Y implies X reds Y.
Lemma 1.3 Assume X1 reds Yi’ X2 reds Y2 and X3 reds Y3.
Then lv)(.1 reds AvyY (X1 > X X3) reds (Y1 > Y2,Y3) and

1? 2’

{Xl}1 red, {Y,1,.

This follows immediately from rules B,D and E.

Lemma 1.4 If X red, Y and V red, W then XV red  YW.

If X reds Y then some of the defining rules must
apply. If we enlarge the set of premises of the rule by
including V reds W then by the same rule we get XV reds YW,

Lemma 1.5 If X redm Y then X reds Y.

The proof 1s by 1induction on the construction of the

term X. Note that in case X is a redex and Y 1s a

contractum then X reds Y follows using rules B,C, and D.

Then proceed by industion using lemmas 1.3 and 1.4.
Lemma 1.6 If X reds Y and v 1s a variable that occurs
free in Y then v occurs free in X.

This 1s clear from the form of the defining rules.




Theorem 1.1 If X reds Y,

\'s reds W, V is free for w

in X and W is free for w in ¥, then [V/w]X reds [(W/w]Y.

The proof is by induction on the construction of X,

considering cases according to the rule used to derive

X reds Y. In all cases we use the following notation.

If the premises in the rule are: X1 reds Yi’ cee Xn reds Yn’

then we put Xj = [V/w]XJ, and Yj
Avxl...xn,

= [W/w]YJ, J=1,...,n.

Rule B. Here X = and Y =

Au[u/v]Yi...Yn.

By the inductlion hypothesis we have Xj reds Yj,J = 2,.0.,4N,
If v =woruz=wilt is sufficlent to take X1 reds Y.1 as
a premise and apply rule B. If v £ w and u Z w then V 1s

free for w in Xiand W is free for w in Y1 so X{ reds Y{

follows. 1In order to apply rule B we
that u 1s strictly free for v in YJ.

that w occurs free in Yi' It follows

have to make sure
Clearly we may assume

that w occurs free

in Xl, u does not occur free in W and v does not occur

free in V or W. Hence
[v/u][u/v]Yi = [v/u][u/v][w/w]Y1
= [v/ullW/w]lu/v]Y,
= (W/wllv/ullu/v]Y,
z Yi

If we apply rule B we get the

AvX{ z [V/w]Ale
Au[u/v]Yi z Au[u/v][W/w]Y1
g au[W/wllu/v]y,

(w/wlrulu/v]y,

desired relation for




Rule C. Here X = Au[u/v]Xixa...Xn and Y [Yz/v]YlY

3"’Yn'
Note first that the variable v 1s used only to describe
substitutions. We can use the lnductlion hypothesls on X1

to replace such variable. Hence we may assume that v Z u

and v Z w and also that v does not occur free in V or W.

It 1s clear that V 1s free for w in xi,...,xn and W is free
for w in Yi’YB”"’Yn’ In case v does not occur free in Y1
then Y2 does not appear 1n Y, so we may replace Y2 in such
a way that W is free for w in Y2. This means that in any

case we have X!

J
need first that u 1s strictly free for v in Xi, and for this

reds Yj, J=1,...,n. To apply rule C we
we may assume that w occurs free in Xi. It follows that
u # w and u does not occur free in V, hence
[v/ulfu/v]X) = [v/ullu/vi(V/w]X,

[v/ullv/w]lu/vIX,
(v/wllv/ullu/viXy

1]
xl

11}

We need also that Yé

from Lemma 1.2. Now we may apply rule C, and this gives

is free for v in YI but this follows

the desired relation. For first note that by Lemma 1.1

we have [Yé/v]Y{ = EW/w][Yz/v]Yl. Furthermore we have also

aufu/v]xy = [V/w]xu[u/v]X1 which is trivial in case w = u
(so w does not occur free in xi) and in case w # u it
follows because v does not occur free in V.

The other rules are trivial. Thils completes the proof
of Theorem 1.1,

Theorem 1.2 If X reds Y and X reds Z then there is

a term U such that Y reds U and Z red8 U;
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The proof 1s by induction on the structure of X with ¥
cases arising from the rules used in both derivations. The
premises of X reds Y are denoted as X, reds Yi, cee s Xn reds Yn
and the premises of X red_ Z as X red_2Z , ... , X red_ 2

S 1 S 1 n S b
By the induction hypothesis we may assume that for j = 1,...,n %
there 1s a term UJ such that YJ reds UJ and ZJ reds UJ.

We shall assume also that these terms can be chosen in such

a way that collision wlth free variables are avoided.
Rules A, D and E are trivial. Rules B and C may appear

in three combinations: both rule B, both rule C, one rule B

and the other rule C.

Ty A AWL T F W A

Both rule B. Here X = Avxi...xn and Y

Au[u/v]Yi...Yn,

and Z = Au'[u'/v]zi...zn. Note now that for a properly chosen

e 3 R A

variable w we have

Ty

(u/v]Y1 reds [u/v]U1 and [w/u][u/vJU1

(w/v1U,
[u'/v]Z1 reds [u'/v]U1 and [w/u'][u'/v]U1 z [w/v]U1
s0 by rule B we get
Y reds Aw[w/v]Ul...Un
y/ reds xw[w/v]Ui...U

n
Both rule C. Here we note that the variable v in the

L.
O T T PN W R 5 T WA ST

rule can be chosen the same in both derivations. It follows

from Theorem 1.1 that we may choose U = [U2/v]U1U3...U

n

Rules B and C. Here X = Au[u/v]Xixz...Xn,
Y = [Y2/v]Y1Y3...Yn, and Z = Aw[w/u]ZiZz...Zn. We have
]
of course that )(4:l red Y.1 but only that [u/v])(.1 redS Zi'

Since we can choose v to be strictly free for u in z;




i 1t follows that X, redg (v/ulz! = Z; and now we apply the
induction hypothesls so Y1 reds U1 and 21 reds Ul. But

. then Z] redg (u/v]U; and it follows that we may take

U = [UZ/V]Ulu3"'Un'

As mentioned above from Theorem 1.2 it follows that
the CHRP holds for the relation reduction. Hence 1if
X red Y and X red Z there 1s U such that Y red U and
Z red U.
1.5 A term contalning no redex of type II or III is
saild to be in normal form. In general given a term X
there is no term Y in normal form such that X red Y.
And whenever exists, it is unique up to change of
bound variables. 1In the next seétion we introduce an
evaluation procedure that applies only to terms in
normal form. To be able to extend this evaluation we
follow [8] and associate with each term X a partial

normal form denoted as Xp. The definition of Xp is

given by the following induction rules:

P1: If X = X.X,...X , n > 0,where XO i1s atomic then

01 n
P .y yP P
x - xoxl".xn.
P2: If X = AvX, then XP = avx}
P3: If X = avX,X,...X , n 2 2, then XP = (tn/v]x1x3...xn)p
PY: If X =

(xy » x2,X3)Xu...Xn, n > 3, then
P - p p p
x - (x1 2 (szu-.-xn) ,(X3Xuoooxn) )
. = P _ P, P P
P5: If X = {xo}ixi,..xn, n 2 0, then X¥ = {xoyixi...xn
Lemma 1.7 If Y is atomic and Y is free for u in X

then ([Y/ulX)P = [Y/ulxP.




The proof by induction on the structure of X is
sfraightforward.

We are interested in determinlng the relation between
terms XP and YP whenever X red Y holds. For this purpose we
introduce the relation X is Q-covered by Y, where X and Y
are terms in normal form. We denote this relation in the form
X g@-cov Y, and it is defined by the following rules:
cvi: 1If Y,Xi,...,Xn, n =2 0, are terms in normal form then

(1).4 Xn Q=-cov Y,

1...
cve2: 1If X, @-cov Yl,...,Xn Q-cov Yn’ n 2 0, and XO is

atomic, then Xoxl...xn Q=cov x YloooY .

0 n
cv3: 1If x1 Q~cov Yi, and u 1is strictly free for v in Yl’
then avX; @-cov rulu/v]Y,.
cvlh: 1If X; @-cov Y,, X, g-cov Y,, and X3 Q-cov Y3, then
X; > X55X5 a-cov ¥y > ¥p,Ys.
cvs5: If X1 Q-cov Y1, cee Xn Q-cov Yn’ n 21, then
{xl}ixz...xn Q=cov {Y1}1Y2"'Yn’
It is easy to show that if X is any term in normal
form then X @-cov X holds.
The notation X Q-cov* Y denotes the transitive
closure of the relation X @-cov Y.
Lemma 1.8. Let X and Y be arbitrary terms such that Y is
free for w in X. Then ([a/wIX)P a-cov ([y/w]Y)P.
The proof i1s by induction on the structure of X. If
X = xoxi...xn and XO is w, the conclusion follows by rule CVi,
Ir XO is atomlec different from w, 1t follows by the induction

hypothesis.

[P SR




If X = AVX1X2...Xn, n22, take Z = [Q/v]X X It is

1..' 3.
clear that ([8/vIX)P = ([e/v]Z)P. Using that Y is free for w
in X we have ([Y/w]x)p z ([Y/w]Z)p. Hence the conclusion

follows by the induction hypothesis on Z. The other cases are

-
‘J\
i Pt S SR _....;hr.u«m_‘..-p-.j

similar,

Theorem 1.3. If X red Y then XP a-cov* Y.
From the definitions 1t follows that we need only

to prove that 1f X reds Y then XP @-cov YP. The proof 1s by

T

induction on the structure of X, with cases arising from the

rules in the derivation of X red_ Y. For example, assume that

LT /]

rule C is used. In this case X Au[u/vjxlxz...xn and Y =
[Y2/VJY1...Yn. Note that the variable v is used only to
describe substitutions, hence we may assume that v does not
occur in the terms x2""’xn’Y2”"’Yn' Now put Z4 = X1X3...Xn,

and 7, = Y,Y It follows that X° = ([8/v]21)P and

I..Y L]
3 n
Y = [Y2/v]22. By the induction hypothesis and Lemma 1.8 we have

xP a-cov ([Q/VJZZ)p g-cov YP
1.6 We complete this section with a new definition. If X and

Y are arbitrary terms, and there is a term U such that X red U

and Y red U, we shall say that X 1s convertible to Y and
write X conv Y,

From the CHRP it follows that the relation X conv Y is
the reflexive, symmetric and transitive closure of the

relation X red Y.




subset of M has an upper bound in M) then the least upper

[

2. COMPUTABILITY WITH BAL

2.1 Let D be a partially ordered set under some relation c.

We say that D 1s a domain 1n case the following conditions

13 SR SO SO A -

are satisfled: 1) D contains a least element 1 (bottom), )

and a greatest element 1 (top), and they are different.
i1) If M is a directed subset of D (i1.e. i1f each finite

bound of M in D exists and it 1s denoted uM. If D 1s
affected by subscript, superscript or index then the
symbols <, 1, T, v Wwill be similarly affected.

A subset D' of the domain D is a subdomain of D
if 1t 1is a domaln under the restriction partial order
and whenever M 1s a directed subset of D' then uM = u'M
(or equivalently uM ¢ D').

If D is a partially ordered set then D+ denotes the
set obtained by addling two new elements 1 and T, and
extending the ordering in such a way that they become the
bottom and top of D+. For example if A 1s any set we may
consider A partially ordered by the identity relation.
Then At 1s a domain (actually a complete lattice), called
the flat domain induced by A. In particular if A = {true,false}

then we put Bool = A+. Another application of this notation

is w+ where w is the set of nonnegative integers.
2.2 Let D and D' be domains. A function from D into D!
18 continuous in case f(uM) = u'f(M) whenever M is a directed

subset of D. The set of all continuous functions from D into

D' 1s denoted by D + D',




The set D + D' becomes a domain if we introduce the

partial order f ¢ g if and only if f(x) <' g(x) for all

X ¢ D. Then 1 = AyeD.;D, and Tpapt = AyeD.TD,.

D-D'
Furthermore if F is a directed subset of D - D' then

uF = g ¢ D » D' where for x ¢ D we have g(x) = v'{ f(x)
f e F}

The notation D, + D, » D3 is an abbreviation of

2
Dy » (D2 -+ D3). And in general we put

D1"D2".o."Dn=D1"(D2"oo-+Dn)-

If feDy» ...~ Dn + D' and x4 € Dy, ..., X, € Dn
we put f(xi,...,xn) = f(xi)...(xn).
A retraction in the domain D is a function f ¢ D = D

such that f o £ = f. It follows that f(D) = Fix(f)

{ x : f(x) = x} 1s a subdomain of D. A retraction f such
that f(x) < x for all x ¢ D 1s called a projection.

An embedding of the domain D' into the domain D is
a pair (g,h) where g ¢ D' » D, h ¢ D » D' and h(g(x)) = x
for all x ¢ D'. It follows that g o h 1s a retraction
in D and D' is isomorphic to Fix(g o h).

Let {DJ :J € J)} be a collection of domains indexed

by the set J. We put H

{<Jox> : J eJT AXxcE€ DJ}

and define the domain D ® DJ = H+, where the ordering in
eJ

H i1s the natural extension of the orderings in each domain DJ.
We call D the direct sum of the indexed collection of domains.
For each J ¢ J there is a canonical embedding of DJ into D

given by the pair (2J,qJ) where the function RJ is

e od g
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defined by zj(x) = <j,x>, and qy is defined by the

following cases:

"
[

qj(y) = 1y ify
=x ify=<},x

= 1, 1f y <i,x> and J # 1

J
J

=71, 1f ¥y

"
-

projections.
If D is some domain we define a function CondD €

Bool -+ D » D + D as follows:

if x =

CondD(x,y,z) 18001

true

ip
y if x

2 if x = false

= 7 if x =

D Bool

The continuity of the function CondD can be easlly
verified. Note that CondD*D,(x,yi,yz)(z) = CondD,(x,yl(z),yQ(z))-
If £ ¢ D+ D' is such that f(ip) = 15, and f(7y) = T, then
f(Condy(x,y,2)) = Condp,(x,f(y),f(z)).
2.3 A basic structure H is a collection {HJ :J e w } of
domains indexed by w such that Ho = Bool. The elements of
HJ are called ground elements of type (J). More generally
if a = (11,...,1k,J), k 2 0, 11,...,1k,J € w we say that
a 1s a ground type, put Ha = H11 + ... P Hyp o HJ and
say that the elements of Hm are ground operators of type a.
Pinally if 8 = (a1,...,an,jJ), n 2 0 and al,...,an are ground
types, J € w, we say that 8 is a funetional type, put
H, = H + ... Han - HJ and say that the elements of

8 ol

HB are functionals of type g .




An algorithmic system is a triple S = (H,C,int) where
H 1s a basic structure, C 1s a set of constants in BAL
containing at least the symbols tt and ff, and int is a
function such that for each constant ¢ ¢ C int(c) = some
ground operator in H, int(tt) = true, int(ff) = false.

If int(c) if a ground operator of type a we say that c
is of type a in S.

An assignment in the system S 1s a functlon o such
that for any variable v in BAL o(v) = some ground
operator in H. If o(v) is of type a we say that v 1is
of type o in S under o.

We fix now an algorithmic system S = (H,C,int). We
shall consider only terms in which the constants are in C.
We proceed to define a function Evf(x)(o) where 1 ¢ w,X is
a term in normal form and o 1s an assignment in S. The
value of this function 1s some element of Hi' To simplify
the notation we shall not write the superscript S. The
evaluation function is defined by the following rules:
EVi: If X = XgX1...X,, n 2 0, where X, is a constant of

type o« = (11,...,1k,1) then
Evi(x)(c) = 1nt(xo)(Ev11(X1)(°)""’Evik(xk)(°))
eee = X

where in case n < 0 we put Xn+1 f

K =

xoxi...xn, n 2 0, where X0 is a varilable of

type a = (11,...,1k,1) under ¢ then

Ev2: If X

Ev,y(X) (o) = °(x0)(Evi1(x1)(o)""’Evik(xk)(°))

where in case n < 0 we put Xn+1 S.4. = xk ]




EV3: If X = xoxi...xn, n 2 0, where Xo is atomic and

neither rule EV1 nor rule EV2 applies then

Ev,(X) (o) = 1

i
EV4: If X = AVX1 then Evi(X)(c) = Evi([n/v]XI)(o)
EV5: If X = X1 > X2,X3 then

Evi(x)(a) = CondHi(Evo(Xl)(o),Evi(x2)(0),Evi(x3)(0))

EV6: 1If X = {Xo}in...Xn, n20, and 1 = J then

Evi(X) (o) = Evi(xo)(o). If 1 #J then

Evi(X)(o) = Ly

Ncte that from EVt it follows that Evo(ttxi"’xn)(°) =
true and Evo(ffxl...xn)(a) = false. And from EV3 it
g
Theorem 2.1. If X Q@-cov Y and o is any assignment then

follows that Evi(nxi...xn)(o) = 3

Evi(X)(o) <y Evi(Y)(c).

Proof by inductlon on the structure of X with cases
arising from the rules defining the covering relation. All
cases are straightforward.

We proceed now to extend the evaluation function

to arbitrary terms. Note that from the CHRP, Theorem 1.3 and

Theorem 2.1 it follows that for any term X the
collection {Evi(Yp)(o) : X red Y} is directed. We
define then Evi(x)(a) = ui{Evi(Yp)(c) : X red Y}

Let F be a functional of type g = (al,...,an,1).
We say that the closed term X computee F in S in

case that for arbitrary xi,...,x of the proper type

n
the following relation holds:

F(xi,...,xn) = Evi(le...vn)(o)




where o(vy) = x4, J = 1,...,n. Finally we say that the
functional F is S-computable 1n case there is a closed
term X that computes F in S.
2.4 We want to prove some general properties of S-computable
functionals, essentlally closure under substitution and
recursion. In principle this 1s possible using the
above definitlions, but this approach is involved and
requires a great deal of syntactical analysis. Some
examples wlll illustrate the general situation.

Let Y = av,(MM) where M = AV, (v, (Vovs)) . We want
to determine the functional F of type ((1,1i),1)
computed by Y. It is easy to see that whenever Yv1 red Y

then Y is either of the form Avl(v?(MM))v1 or of the

form v?(MM)..It follows that YP 1s either o"'!

(ag) or
v?+l(99) so if we put o(vl) = f of type (1,1) it
follows that Ev,(YP)(c) = fM(1;). This means that
F(f) = minimal fixed point of f.

Let consider now an example involving substitution.
Assume EVJ(V)(O) =ec HJ and also that V is free for v
in X. In this case we may expect Evi([V/v]x)(o) = Evi(x)(a')
where o'(v) = e and otherwise o' 1s identical with o. This
is not true in general but it is true if we replace V by
{V}J, i.e. if we isolate V in X. Similar isolation
techniques are necessary for more general substitutilons.

The crucial problem seems to be that the evaluation

of a term X 1s not directly determined by the structure
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of X. It is certainly determined by the structure of X,
but indirectly, through a reduction procedure that
generates other terms whose structure is in general
difficult to predict. 1In thls sense we may say that

the evaluation described in this section is a reductional
semantics for BAL. We would like to have a structural
semantics in which the evaluatlion of a term is directly
determined by 1ts structure. The possibility of such a
semantics was discovered by D. Scott (see [5]), and the
equlivalence of both semantics for the lambda calculus

was proved by Wadsworth (see [8]).




3. STRUCTURAL SEMANTICS

3.1 A domain D such that there is an embedding of D - D into D
1s called a reflexive domain. The structural semantics is
obtained by embedding the basic structure H in some
reflexive domain D. We must impose a number of restrictions
relating these embeddings.

A reflexive embedding of the structure H consists
of a domain D, a pair (v,¢) embedding D » D into D, and for each
1 ¢ v a pair (gi’hi) embedding H; into D,such that the
following condlitions are satisfied for arbitrary 1,j in w:
RE1: If 1 # J then hy o gJ = AyeHJ.li
BE2: For each x ¢ Hy ¢(gi(x)) = AdeD.gi(x)
RE3: For each f ¢ D + D hi(w(f)) = hy (£(1))

We shall assume some reflexive embedding E of the
basic structure H, and prove some elementary consequences
of the conditions RE1-RE3. Then we assume an algorithmic
system S and define the structural semantics. The equivalence
with the reductional semantics 1s proved assuming the
reflexive embedding is minimal. A minimal reflexive
embedding 1s constructed in the next section.

3.2 First it 1s convenient to generallze the function ¢.

0 n+1

We put D° = D and D =D » D". Then we define ¢ ¢ D » D"
¢n+1(d) = ¢, 0 ¢(a) .

Note that 4(1) = AdeD.1 , and 4¢(71) = AdeD.T . Hence

as follows: ¢0 = ID’

the following relation holds for arbitrary elements

@ and d' of D and x ¢ Bool:
¢(Condp(x,d,d")) = Condp n,(x,¢(d),e(da'))




Lemma 3.1. If n 2 0 and d0’d1"°"dn+1 are

elements of D then

0n+1(d0)(d1""’dn+1) = ¢(¢n(d0)(d1""’dn))(dn+1)
The proof 1s by 1nduction on n. The case n = 0 is
trivial. Assume the relation holds for n. Then
Lemma 3.2. If x e Hi and dl""’dn are elements of
D,then ¢n(gi(x))(d1,°°"dn) = gi(x)'
This follows immediately from RE2 and the definition

of L

3.3 The next step 1s to define embeddings for the domains
of ground operators in the basic structure. From now on
in this section the letter a will denote a ground type
(11,...,1k,J) where k 2 0. In case k > 0 then o' will
denote the ground type (i12,...,1ik,J).

We define embeddings (gh,ha) of H, into D by
induection on k. If k = 0 we put & = gJ and ha = hJ'
If k > 0 we define

& (f) = v(g,,» o £ o hy,)
ha(d) = huv o ¢(d) o gil

Lemma 3.3. Let f be a ground operator of type a.
Then for arbltrary elements d1"°”dn of D, n 2 0 the
following relation holds:

(8, (£))(d,,...,d) = g (£(hy, (A ),...,hy, (d,0)))
where k' = min(n,k), o = (J) in case n 2 k and o =

(in+1,...,1k,J) in case k > n.

Lt A

B
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Proof by induction on min(n,k). If k =0orn =20
then both sides evaluate to ga(f). If n>0and k > 0 then

¢n(8u(f)) = ¢n_1 o gav ofo hil
so by the induction hypothes%s £ |
On-l(gu'(f(h11(d1))))(d2""’dn) =

g, (£(hy, (d,),0 0 shy (d,0))) ¢

where p and k' satisfy the conditions of the lemma. l

Lemma 3.4. Let f be a ground operator of type a.
Then hJ(ga(f)) = r(*il""’*ik)' If 1 # J then hi(ga(f)) = 1y
If k = 0 this is trivial. If k > 0 then using RE3,
hil(l) = 1;, and the induction hypothesis on a' we have
hy(g,(f)) = hy(¥(g,, o £ 0 hy,))
hy (4 (£(hy; (1))

£lgqseeeslygy)
If 3 # ] the argument 1s similar using RE1 in case k = 0.

Lemma 3.5. Let f be a ground operator of type a.
Then for arbitrary elements di""’dn of D, n 2 0, the
following relation holds:

hy(8,(8, (£))(dg,...,d ) = £(hy,(4), .. ,hy (d)))

where 1in case k > n we put dn+1 = ... = dk = 3

This follows using first Lemma 3.3 and in case k > k'
using Lemma 3.4.
3.4 We proceed now to define the structural semantics for
BAL. Again we assume an algorithmic system S = (H,C,int)
and also some reflexive embedding E of H. An assignment
here is a function t such that for any variable v, t(v) is

some elcment of D. The notation [d/v]t denotes the
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assignment t' where t'(v) = 4@ and otherwise ' 1is
identical with «.

The semantics is given by a function Vag(x)(r)
where X 1is any term and t 1s any asslignment. The

function takes values in D. To simplify the notation

we shall omit the subscr'pt E and the superscript S.
The definition 1s by induction according to the

following rules:

VA1: If X is atomic then Va(X)(t) = 4, where d = ga(int(x))
in case X is a constant of type o« in S, d =1(X) in
case X is a variable, and d = 1 in case X = Q.

"

VA2: If X = YZ then Va(X)(t) = ¢(Va(Y)(x))(Va(Z)(x))

VA3: If X

AvY then Va(X)(t) = p(adeD.Va(Y)([d/v]t))
VA4: If X = X1 > X2,X3 then

Va(X)(t) = CondD(hO(Va(X1)(T)LVa(Xz)(T),Va(x3)(1))
VA5: If X = {Y}; then Va(X) () = gi(hi(Va(Y)(t)))

Technically the function Va is undefined if in rule

VA3 the operator ¢y applies to a non continuous function.

But this situation does not arise and we can prove the

following theorem.

Theorem 3.1. If X is any term and 1 i1s any assignment
then Vx(X)(t) is defined. Furthermore if 1(v') = uM where
M is a directed subset of D, then Va(X)(t) = v{va(X)([d'/v']t):
a' ¢ M}.

The proof by induction on the structure of X is
stralghtforward. We consider only the case X = avY. From

the induction hypothesis it follows that Va(X)(x) is




defined. To prove the second part we may assume that the

variable v' is different from v. For each d' € M we
define a function fd,(d) = Va(Y)([da/v][d'/v']t). From

the induction hypothesis 1t follows that f e D » 0D,

4’
If d' and 4" are elements of M such that d' < @" then

fd' c fd" (this also follows from the induction hypothesis
using M' = {d',d"}). Hence the collection {fd, : d' e M}
is directed in D - D. Now using VA3 and the induction
hypothesis we have

Va(X) (1)

W(AdeD.u{fd,(d) : d' e M})

v(ulfy, : d' e M})

u{p(fy,) : A" e M)
u(Va(X)([d'/v']t) : d' e M}

The next two lemmas are standard basic results in
structural semantics. Proof are omitted.

Lemma 3.6. Let 1 and t' be assignments such that
1(v) < tv'(v) whenever v occurs free in X. Then
Va(X) (1) < va(X)(z').

Lemma 3.7. If V is free for v' in X and Va(V)(x) = 4,
then Va([Vv/v']X)(x) = Vva(x)([d/v']t).
3.5 We are now in position to study the relation between
reductional and structural semantics. We shall see that
for terms in normal forms they are equivalent. For terms
in general the situation is not clear. Recall the conventlon
of 3.3 relative the ground type a.

Lemma 3.8. Let X = xoxi...xn, n 2 0, and

e R T T T T i L




Va(xo)(r) = g, (f) for some ground operator f of type a.
For t = 1,...,k let d, = Va(Xt)(r) where in case k > n we
put Xn+1 2 ... = Xn = Q. Then hJ(Va(X)(r)) =
f(hi1(d.)""’hik(dk)) .Furthermore if i1 # J then

hy (Va(X) (1)) = 1.

First note that from Lemma 3.1 it follcws that
Va(X)(r) = ¢, (Va(X,) (1)) (Va(X )(1),...,Va(X ) (1))
Hence using Lemma 3.5 we get
hy (Va(X) (1)) = £(hy (d,),...,hy, (4))
If 1 # § the hi(Va(X)(T)) = 14 follows from the second

part of Lemma 3.4.

Theorem 3-2. Let X be a term in normal form, o some
assignment in S and 1 an assignment such that whenever
o(v) = f and f is a ground operator of type « then t(v) =
g,(o(v)). Then Ev,(X)(¢) = hy(Va(X)(1)).

The proof is by induction on the structure of X,
Assume X = xoxl...xn where XO Is atomic. 1In case XO £ Q
then both sides evaluate to 1;. Otherwise we use Lemma 3.8.

If X = AvY then we have

Evi(x)(o) = Evi([ﬂ/v]Y)(o)
hy (Va([a/v1¥) ()
hi(Va(Y)([l/v]r)) by Lemma 3.7

hy (Va(X) (1)) by RE3
The other cases follow easlily from the definitions
and the induction hypothesis.

If X and Y are terms such that for any assignment =




we have Va(X)(t) < Va(Y)(tr) then we write X [ Y. If

X[ Yand Y[ X hold we write X = Y,

X, [ Y,and X, [ Y

2 P 3 Then:

Lemma 3.9. Assume X1 L Yi’ 3°
1) X1X2 { Y1Y2

i1) AvX1 [ Ale

111) X1 > X2,X3 [ Y1 > Y.,,Y

2°°3
iv) {X1}J L {Yi}J

These relations follow immedlately from the definitions
and the monotonicity of the operatlions 1involved.

Lemma 3.10. If X 1s a redex and V is a contractum of

X then X = V.

Assume X Ale and V = Au[u/v]X1 where u is strictly

free for v in X . This means X = [v/u][u/v]X1 and v 1is
free for u in [u/v]xi. Hence from Lemma 3.7 it follows
that for any assignment 1t and element d@ of D we have
va(X,)([d/v]t) = Va(lu/v]X, ) ([d/ulr)

and this implies X = V.

For the other cases use Lemma 3.7 and the properties of
the operator Cond discussed in 2.2.

Theorem 3.3, If X conv Y then X = Y,

Proof by induction on the structure of X, using Lemmas
3.9 and 3.10.

Theorem 3.4. If X f-cov Y then X [ Y.

Proof by induction on the structure of X with cases
arlising from the rules defining the covering relation. All

cases are straightforward.
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Lemma 3.11. If X i1s any term then xP [ X.

Proof by induction on the structure of X. All
cases are easy. For example if X = Ale...Xn, n =222,
then by the induction hypothesis

X° = ([/vIXgXg. . X OP [ [/vIX X5.. X
and on the other hand using Lemmas 3.6 and 3.7

[n/v]xlx X [ X

3+ Xy
From Theorem 3.4 1t follows that for any term X
and assignment t the collection {va(YP)(1) : X red Y} is
directed. We shall say that the embedding E is mintimal
1f the relation Va(X)(1) = u{Va(¥Y’)(1) : X red Y)
holds for arbitrary term X and assignment r.
Theorem 3.5. Assume the embedding E 1s minimal,
X 1s any term, o 1s some assignment in S, and t is an
assignment such that whenever o(v) = f and f 1is a
ground operator of type a«, then t(v) = gh(c(v)). Then
Evy (X) (o) = hy (Va(X)(1)). '

Evy (X) (o)

u{Evi(Yp)(o) : X red Y}

u{hi(Va(Yp)(r)) : X red Y}

hi(u{Va(Yp)(r) : X red Y})
hi(Va(X)(r))
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b, A MINIMAL EMBEDDING

4.1 To construct a minimal embedding we shall use the
following procedure. We introduce a number of conditions and
prove that an embedding in which they are satisfied is

minimal. Then we construct an embedding in which those

conditions hold.

Let E be an embedding with domain D where (v,¢) is
the embedding of D + D into D. We shall assume there is
a sequence PO, Py ooy Pk, ... of projections in D such
that the following conditions are satisfied:

RD1: For each k 2 O, Py < P Pk(r) = 1, and

k+1?
furthermore u{P, : k 2 0} = Ip p
(d)) ¢ P

RD2: For k 2 0 and 4 ¢ D, ¢(P o ¢(d) o P

k+1 k k

RD3: For 4 € D, ¢(P0(d)) c PO o ¢(d) o AdeD..

Now we extend the language BAL by introducing new
symbols nk for each k 2 0. We extend also the definition
of terms by 1ncluding a new clause:

T6: If X is a term then for each k 2 0, nk[X] is a term.

A primitive term is a term in which there is no
occurrence of the symbols nk' The rank of a term X is the
greatest k such that nk occurs in X, and it 1s 0 1n case
it 1s a primitive term. We denote by r(X) the rank of X.

The notion of redex and normal form is taken
exactly as in 1.5. Note that a term of the form nk[xvY]Z
may be 1in normal form.

If Y 1s a term we can eliminate from Y all occurrences

of symbols nk, simply by replacing every part nk[ZJ by Z.
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If Y is in normal form and X 1s the primitive term obtained
by this elimination procedure, we shall say that Y is a
restricted form of X. The set of all restricted forms of

X is denoted by R(X). Note that if X is a primitive term
in normal form then X e R(X).

The valuation procedure of the preceding section can be
extended to non primitive terms by including a new rule:
VA6: If X = nk[Y] then Va(X)(r) = Pk(Va(Y)(r))

Since the functions Pk are continuous it follows that
the general properties of the valuation function are still
valid. We shall continue to use the notation of the
preceding section.

By the assumption RD1 we kﬂow that Pk c Pk+1 cI
If Y is some term, and Y' 1s obtalned by eliminating from
Y some symbols "k’ or by replacing some symbols nk by nm
where k < m, 1t follows that Y [ ¥'. If Y is a restricted
form of the term X, and Y' is in normal form then Y' is
also a restricted form of X.

Note that if X 1s a primitive term the set
{(Vva(X')(t) : X' € R(X)} is directed. For given two elements
X' and X" of R(X) we may apply the elimination and
replacement procedure explained above to obtain Y ¢ R(X)
such that X' [ Y and X" [ Y.

Theorem U4.1. If X is a primitive term then for every

assignment t:

Va(X)(t) = u{Va(X')(r) : X' e R(X)}




The proof 1is by inductlon on the structure of X.
The case X is atomic 1s trivial since then X € R(X).

Assume X YZ. Note that if Y' ¢ R(Y) and Z' € R(Z)
then for any k, nk[Y']Z' e R(X). Hence we have
Va(X)(t) = ¢(Va(Y)(r))(Va(2)(r))
= ¢ (u{P (Va(¥)(1)):k20})(Va(2) (1))
= u{e(Pp(Va(Y')(x)))(Va(Z')(v)):k20,Y"eR(Y),Z'eR(Z):
= u{Va(nk[Y']Z' : k20, Y'eR(Y), Z'eR(2)}
= u{Va(X')(1) : X' ¢ R(X)}
Now consider X = AvY. Here 1f Y' e R(Y) then AvY¥' e R(X).
We define fY(d) = Va(Y)([d/v]t). And for Y' e R(Y) we
define rY,(d) = Va(Y')([d/v]t). From the induction hypothesis
1t follows that fy = u{fy' : Y' e R(Y)} Hence
v(fy)
= v{y(fy,) = Y' e R(Y))

Va(X)(t)

= u{Va(avY')(t) : Y' ¢ R(Y)}

= y{Va(X')(r) : X' ¢ R(X)}
The other cases follow easily from the induction hypothesis
and the continuity of the operations involved.
4,2 The proof of minimality is given via two lemmas that
willl be proved next. Note that from condition RD2 and
Lemma 3.7 the following relation holds, provided that

Y is free for v in X:

Met [AvXIY € om (0w [Y]/vIX]
Note also that from RD3 it follows that
no[va]Y r no[[n/v]X]




Lemma 4.1. Let X be a primitive term and X' ¢ R(X)
where r(X) = k + 1. Then there is a primitive term Y and
Y' ¢ R(Y) such that X red Y, r(Y') = k, and X' [ Y'.

The proof 1s by induction on the structure of X.

If X = X X ...Xn where X0 is atomic, we may assume that

0™1

XOXR...XA, where XJ ¢ R(Xi), i=1,...,n. So the

result follows from the induction hypothesis.

xl

Let X = avxi...xn. If n = 1 we may assume that
X' = vai, so the result follows from the induction
hypothesis. If n > 1, then we may assume that

X' = [vai]Xé...Xﬁ. By the induction hypothesis

nk+1
there are terms Y, and Y] e R(Yi) such that Xi red Y,,
r(Yi) =k, and X; [ ¥}, 1 = 1,...,n. Clearly we can take
Y, such that Y2 is free for v in Yl' Hence we take

1
Y = [Y2/VJY1Y3...Yn and Y' = nk[[nk[Yé]/v]Yi]Yé...Yﬁ.
Clearly X red ¥, Y' ¢ R(Y), r(Y') = k and X' [ Y' holds
by RD2.

Assume X = (X1 > x2,x3)xu...xn. If n = 3 we may
take X' = Xi > Xé,Xé, and the result follows easily from
the induction hypothesis. If n > 3 then we may assume
that X' = nk+1[Xi > Xé,Xé]xﬁ...Xa. By the induction
hypothesis we can find primitive terms Yi’ Z1 and 22 such

that X1 red Yi’ szu...xn red Z XBXH...Xn red Z2’ and

1’
also terms Yi, Zi and Zé such that Y] e R(Yl), 2] € R(Zl),
23
nk+1[Xé]x5...XA [ Zi, nk+1(x§]xb...xa [ Z5. Hence we

¢ R(Z,), r(Y!) = r(Z') = r(Z!) = k and furthermore X' [ Y',
2 1 1 2 1 1
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take Y = Y1 > Zi’ZZ’ and Y Y1 > 21,22. Now since

Pk+1(1) = 1, and Pk+1(r) = v, 1t follows that

X' o= Xy oo M, [XSIXE. LX), M, [X4IXG...X0 €Y

and clearly r(Y') = k.

The case X = {XO}JXI"'Xn follows easily from the
induction hypothesis.

Lemma 4.2. If X is a primitive term, X' ¢ R(X) and
r(X') = 0, then X' [ XP.

Proof by induction on the structure of X. All
cases are easy, and we consider only X = Avxl...xn, n 2z 2.

Here we may assume that X' = nO[AvX{]Xé...Xé. Hence

using RD3 we have
Xt r no[[n/v]X;]x§...x'

n
[ ([a/vIX X ..% )" by 1nd. hyp.
r xP

3°
Theorem 4.2. If E is an embedding satisfying
conditions RD1-RD3, then E 1s minimal.

Let X be some term and 1 some assignment. From

Theorem 4.1 1t follows that we have to show only that
for any X' € R(X) there i1s Y such that X red Y and
Va(X')(t) < va(YP’)(1). But this follows from

Lemmas 4.4 and 4.2.

4.3 To construct a minimal embedding of a given basic

structure H we follows the procedure of [5]. We define
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a sequence of domains DO’ D1’ ... 8uch that Dk is a
projection of Dk+1’ and take the inverse limit of the
sequence. We put DO = 12mH1’ and Dk+1 = Dk > Dk' The

embeddings of Dk into D are glven by pairs (1k,3k)

k+1

where io(x) = AyeDy.x, Jo(f) = r(xo), : S

and Jk+1(f) = Jk ofo 1, It is easy to check that

(f) = ik ofo Jk’

all these functions are continuous, Jk (o} 1k = Ik’ and

1 © Iy x4y Igaqe Note that Jp(mp ) =71y,

Jk(lk+1) = L, ik(rk) = T, 4, and ik(lk) = Ay
The inverse limit of this sequence is the set D of
all functions d defined on w such that for any k ¢ w,

d(k) € D, and d(k) = Jk(d(k+1)). If 4@ and 4' are elements

k

of D we define d < d' if and only if d(k) <, d'(k) for

k
all k ¢ w. Then D with this partial order is also a
domain. For we may define 1(k) = Lies T(k) = Tys SO L
and T are least and greatest element of D. Furthermore
if M 1s a directed subset of D then for each k € w, the
set {d(k) : d ¢ M} is directed in D,. So we may define
d'(k) = v fd(k) : d e N} , by the continuity of the functions
Jk it follows that 4' € D and actually 4d' = uM.

Next we define for each k an imbedding (1ku’3wk)
of D into D. We put J-k(d) = d(k). To define 1. We
- use recursion. It 1s sufficient to define ik’(x)(m) for
x ¢ D and m 2 k. We put 1kn(x)(k) = x and 1k.(x)(m+1) =
1m(1kn(X)(m))' It 1s easy to show that these functions
are continuous, Jok o 1k- = Ik’ and 1k- o J-k < I,

Note that 1, (7,) = T.and J,, (7) = 7,

o




Assume d ¢ D and m 2 k. Then

Lemma 4.3.

1) Jag = i © Jekss

i11) ik_ = 1k+1~ o ik

111) j 04 o dm1) o J_ o1 = d(k+1)

k
Property 1) follows immediately from the condition

Jk(d(k+1)) = d(k). To prove 1i) we use induction to show
that for m > k+1 and x e D, iku(x)(m) = ik+1°(ik(x))(m).

Finally 1i1) is proved by induction on m - k. The case m = k

is trivial. For m > k use 1) and ii), the induction

hypothesis and note the relation Jk o d(k+2) o 1

k

Jk+1(d(k+2)) = d(k+1).

Now we define projections Pk in D, k 2 0. We put
P = 1k°° o Jak. Note that Pk o P = I, and Pk(r) = T,
Note also that Pk = ik+1¢ o] 1k 0 Jk o] J~k+1 IS Pk+1‘

Lemma 4.4, Assume m 2 k. Then:
1) 0 Pp=d.,
11) Pk o Pm = Pk
111) P o4, =1,
iv) Pm o Pk = Pk
v) 1pe © Pk+1(d)(m+1) o Jnm = 1k~ o d(k+1) o J ok

Both 1) and 11i) are proved by induction on m - k,

using Lemma 4.3. Then 1i) follows from i) and iv) follows

from 111). The proof of v) uses also induction on m - n.

The case m = k is trivial. If m > k use Pk+1(d) =

Pk+2(Pk+1(d))’ the induction hypothesis, and note that

Poyq (D) (k42) = 1, o0 d(k+1) o §,.

Hi M A e L2 e
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Lemma 4.5. u{Pm :m2 0} = Ip,p
We put d' = u{Pm(d) :m 2 0}. Then for any k

d'(k) = uk{Pm(d)(k) :m 2 k}
= d(k) by Lemma 4.4 1)
hence d = 4'.
Corollary. If f ¢ D » D, then u{Pm ofo Pm t:m=20}=7°¢
Now we proceed to define the embedding (¢,¢) of

D ~ D into D. We put y(f)(k+1) = J_ o fo i , for

feD~+Dand k 2 0. And ¢(d) = u{im°° o d(m+1) o me :m 2 0}
for d ¢ D. Note that ¢ 1s well defined for

1 .0 d(m+l) o Jop = 1

m o im o d(m+1) o Jm oJ

m+le om+1

= im+1fn ° im+1(Jm+1(d(m+2))) 0 Jom+1

c i o d(m+2) o J

m+le om+1

Note that ¢(¢(f)) = £ follows immediately from Lemma 4.5.

But we also have y(¢(d)) = d since v(¢(d))(k+1) = d(k+1)
{ by Lemma 4.3 111).

Theorem 4.3. The following relations hold for arbitrary

deDand k 20 and f ¢ D = D:
1) 0(Py,(d)) =1, o d(k+1) o J
11) P, © ¢(d) o Pk =1, 0 d(k+1) o J ek

111) #(Py(d))
1) Pyv(f)
{ V) #(Py(d))

Ad'eD.Po(d)
P, (£(1))
Po o ¢(d) o Ad'eD.2

Property 1) follows using the definition of ¢ and
Lemma 4.4 v). Property i11) also follows using the
definition of ¢ and Lemma 4.3 111). To prove 11i) we




compute using part 1) and the definition of 1, j

¢(P0(d)) = ¢(P1(P0(d))) :
10w © Pu(a)(1) o J 4
=15, 0 1,(a(0)) o § 4 !
Ad'eD.PO(d)

To prove 1v) we compute using part 1ii) and the ;

fact that P0 is a projection

Po(¥(£)) < ¥(f) Po(£(1)) < £(1)
$(Py(u(£))) < f $(Po(£(1))) < £

Po(¥(£))  £(1) Po(£(1)) < w(f)

Po(v(£)) © Po(£(1)) Po(£(1)) < Py(u(£))

To prove v) we use iv) with £ = ¢(d), hence
Po(d) = Po(¢(d)(1))
so v) follows from 1ii).

Condition RD1 has been proved in Lemma U4.5. And
conditions RD2 and RD3 follow from Theorem 4.3 1),i1) and v).
To complete the proof we must define the embedding of H

into D. Let recall that for each i ¢ w, there is a £

canonical embedding (zi,qi) of Hy into Dy- Clearly if

i # J then qi(zj(x)) = 1. Now we define gy = io°n o £y

and hi =q4 0 on. It follows that hi °cgy =qy 0 li = Ii'
Furthermore, noting that PO o] ioun = 10°° and Juo e} P0 = JmO’
and using Theorem 4.3 11i) and iv), we get RE2 and RE3.




5. DEFINABILITY
5.4 In this section we return to the S-computable functionals,
and prove some closure propertles. Although these results
can be proved directly from the definitions, we rather use
the minimal embedding. Thls makes possible a generalization
which will be described in terms of definability.

We assume some algorithmic system S = (H,C,int) and
a minimal embedding E of H. The domain of the embedding
is D and (v,¢) is the embedding of D + D into D. We shall
assume also that p o ¢ = ID, so we have an isomorphism of
D and D - D. This is not strictly necessary but it
simplifies some of the proofs. If X is a closed term then
Va(X)(t) is actually independent of t. So in this case we
shall write Va(X).

Ir d1 and d2 are elements of p then the application

operation in D is denoted (d1d2) = ¢(d1)(d2), so this is

the counterpart of operation application in BAL. We follow
the usual rules to eliminate parenthesis, namely association
to the left. Note that xd'ep.dd' = ¢(d), hence yp(rd'eD.dd') =

Furthermore 1if dld' = d,d' for all 4' ¢ p then d, = d

2 2’

We denote by QO the subset of [ consisting of all elements
d such that for some closed term X, Va(X) = d. A basis in D
is a subset Q of D such that QO is a subset of Q, and Q 1is
closed under application. It follows that QO is a basis,
the minimal basls contained in any other basis. A similar

notion was defined in [4] where we required also that Q be

countable.

d.
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There are some convenient rules to define elements
in a given basis Q. For example there is S ¢ Qo such

that for arbitrary dl’d2 and d3 in D, S4.d4.,4, = d1d3(d2d3).

1273
Also there 1s K ¢ QO such that Kd1d2 = d1. We mention
t =
also elements B and B' such that Bd1d2d3 dl(d2d3),

and B'd1d2d3du = d1(d2(d3du))'

In general if M is an applicative expression containing

varlables from the list d1""’d constant symbols denoting

n’
elements of a basis Q, and the only operation in M is
application, then there is a (unique) element d e Q such
that ddi"‘dn = M holds for all values in D of the
varlables d1""’dn‘
We recall the convention that the letter a always

denote a ground type of the form (i1,...,1k,J), k 2 O.

The letter 8 will denote a functional type of the form
(a1,...5,an,1), n 2 0.

Lemma 5.1. There is an element r, ¢ Q0 such that

P/ pn Tormraa S UPAIREY

for any d ¢ D, rd-= gm(hu(d)).

If k = 0 take r. = Va(Avi{vll ). If k > 0 note
that gu(hu(d)) = w(gu, oh, o ¢(d) o g4, © hii) so
take T, such that rad = B‘ra,dril.
5.2 Let F be a functional of type 8. We say tha d ¢ D

defines F in case that the relation
F(xi,...,xn) = hi(dd1"'dn)

holds whenever gaj(xj) = dJ, J=1,...,n. If Q is a

basis and d ¢ Q defines the functional F we say that

F is Q-definable.




Theorem 5.1. A functional F 1s S-computable if
and only 1f it 1s Qo-definable.

This follows immediately from Theorem 3.5.

In order to study definability over some basis Q
i1t 1s convenilent to define embeddings for the domalns HB
where g is a functional type. Thls 1s done essentially
as for the ground types, and in fact the deflnitions
agree 1n case g 1s actually a ground type.

The embedding of H8 is given again by a pailr (ge,hB).
If n=0 we put gB = gy and hB = hi' If n > 0 we put
gB(F) = w(gB, oFoh,) and hB(d) = hB' o $(d) o € 1
where g8' = (a2,...,an,1).

Theorem 5.2. Let F be a functional of type B, and

gB(F) =d. Ifnz=2m20 and gm (am+1,...,an,i) then

the following relations hold for arbitrary dl,...,dm:

.d

1) ggp(F(h,,(d,),...;h (4 ))) = dd,...d]

11) d(ra1d1)“°(ramdm) = ddi"‘dm

i11) er(dd1"'dm) = dd1"'dm
To prove i) note that gel(F(hai(di))) = dd_, hence
gB2(F(ha1(d1)’ha2(d2))) = dd1d2, and so on. Now ii)
follows from i) since haJ(rquJ) = haj(dj)’ J=1,...,m.
And 111i) also follows from i) noting that rsm(gsm(x)) =
Bam(X).
Theorem 5.3. Let Q be a basls and F a functional
of type . Then F is Q-definable if and only if gB(F) e Q.

If gg(F) = d ¢ Q then 1t 1s clear from Theorem 5.2 1),
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with m = n, that d defines F. On the other hand 1f 4' ¢ Q

it

L
defines F take d such that ddi"'dn = ri(d (ruldl)"'(rundn))‘
From this we get

e e e —
CBoeld e

F(hal(di),o--,han(dn)) = hi(d‘(ru1d1)'--(rundn)) ;H

i.

gi(F(hql(di),o.-,han(dn))) = ri(d'(raldl)'--(rundn)) ‘
= ddi"'dn ‘

hence by extensionality gB(F) = d.
If gB(F) = d we shall say that 4 is the graph of F.

It follows that F 1s S-computable if and only if the graph
of F 1s in QO‘

5.3 We shall prove closure under substitution in the

following form. Let H be a functional of type (a,8)

G be a functional of type B' = (al,...,an,a). Now we may

define a functional F of type 8 by g

F(xi,...,xn) = H(G(xl,...,xn),xl,...,xn)

Let d0 be the graph of H, and d' be the graph of G,
and assume both are in the basis Q. Then there is d ¢ Q

such that for arbitrary d1”"’dn the following relation
holds: ddl...d

n = do(d'd1"'dn)d1"‘d Hence it follows

from Theorem 5.2 i) that

n°

G(hul(dl),...,han(dn)) = ha(d'di...dn)

gi(F(hal(d1)""’hun(dn)) =
= gy (H(n (d'd ...d),h  (d),. . 5h p(d)))
= do(d'din . odn)dlo . .dn
= dd1"'dn
hence d 1s the graph of F so F 1s Q-definable.
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5.4 Definitions by recursion are introduced via a
functional F of type (al,...,an,a,a). We know there
is a functional G of type 8' = (al,...,an,a) such that the
following identlty holds:

F(xl,...,xn,G(xi,...,xn),yl,...,yk) = G(xl,...,xn,yl,...yk)
We shall show that in case F is Q-definable then Q is also
Q-definable,

The proof uses the term Y introduced in 2.4. We
put Va(Y) = R ¢ Q- Since le conv vi(le) it follows that
for any d ¢ D, the relation Rd = d(Rd) holds. Furthermore
by inspecting the terms Y such that le red Y 1t follows
that Rd = u{d™ : n 2 0}. Hence if &' 1is any element of
D such that dd' < d' it follows that for each n 2 0, d"y c d'
hence Rd < 4d'.

Now let d be the graph of the functional F, and take

4, such that d4,d,...d_ = R(dd1"'dn)' Hence using Theorem 5.2

0 071" ""n
we can prove the following properties of do:

1) do(ru1d1)"‘(rundn) = d.d d

0d4---4p
11) ra(d0d1'°'dn) = dOdi"'dn

111) dO(raldi)'"(randn)(rildn+1)'"(rikdn+k) = dOdl"’dndn+1"'dn4
iv) rJ(d0d1°"dndn+1"'dn+k) = dOdl"’dndn+1"'dn+k

Let G be the functional of type g' defined by do. From

the above properties it follows that do is actually the

graph of G, hence Theorem 5.2 appllies. Now we put dm = gam(xm),

m=1,...,n and A 4 = git(yt) s, t =1,...,k. We compute

as follows, using that G(xi,...,xn) = ha(dod1"'dn):




F(xl,...,xn,G(xi,...,xn),yi,...,yk) =

= hy(dd,...d (a,d,...4 )d

n n+1'..d

n+k)
= hJ(dOdi"'dndn+1"'dn+k)

= G(xl,...,xn,yl,...,yk)
We must also prove that the functional G is minimal.

Assume G' 1s another functional of type B' such that for

arbitrary xl,...,xn:

F(xl,...,xn,G'(xi,...,xn)) c G'(xi,...,x )

a n

If 4' is the graph of G' then for arbitrary d1""’dn

1 n
hence from the properties of R and the definition of d

dd"'°dn(d'd1°"dn) c d'dl...d

0

1 <
dodl...dn cd dl...dn

but this implies d, < d', hence G = hB'(do) g he,(d') = G




6. DETERMINISTIC COMPUTABILITY
6.1 The notion of computabllity presented in this paper 1is i
essentially relative. If S = (H,C,Int) is an algorithmic
system and F 1s a S-computable functional, then we can
reduce the evaluation of F to partial evaluations using
the basic operators in S, i.e. those operators of the form
int(c) for ¢ ¢ C. Whether these basic operators are
computable in some absolute sense, 1s a gquestlon that we
do not intend to discuss here.

In this section we want to dlscuss a more restricted
question, namely deterministic computability. An operator
is deterministically computable in case the evaluation is
given by an effective procedure with a terminating machinery,
such that whenever the procedure terminates an output value
is produced, and in case the procedure does not terminate
the output 1s undefined. The general procedure described

in secion 2 to evaluate Evi(X)(o) is not deterministic, even

if there is some Y such that X red Y and Ev,(X)(o) = Ev,(YP)(0).
For there is no rule to detect this situation so the evaluation
must proceed to generate all terms Y such that X red Y. In

other words no terminating machinery is available.

6.2 As before the letter a denotes a ground operator
(11,...,1k,J). A ground operator f of type q 1s regular in

case the following condition is satisfied: Ir f(xi,....,xk) = e
and e # 1gs and x{,...,x& are values such that either

Xn = i4pm or x = xé, m=1,...,k, then f(x;,...

s




We say that a system S = (H,C,int) 1s regular if
int(c) is a regular operator for every ¢ € C. An
assignment ¢ is regular if o(v) is a regular operator for
every variable v.

Lemma 6.1, Let S be a regular system, and o and o'
be regular assignments, such that for every variable v,
either o(v) = . for some type a, or o(v) = o'(v). If X
and Y are terms in normal form such that X Q-cov Y

holds, and Evi(x)(o) = e where e # 1 then Evi(Y)(o') = e,

g
Proof by induction on the structure of X with cases
arising from the rules defining the covering relation.
Let X = xoxi...xn where Xo is atomic. Since e # 1y
rule CV2 applies and e = f(el,...,ek) for some ground
operator f of type a. But then Evi(Y)(o') = f(e{,...,e&) = e',
where by the 1nduction hypothesis either en = Y4m or enp = eé,
m=1,...,k. Since f 1s regular we have e = e',
The other cases follow easily from the induction
hypothesis,
Theorem 6.1. Let S be a regular system, and ¢ and o'
be regular assignments, such that for every varilable v,
either o(v) = 1, for some type a, or o(v) = a'(v). If X is
any terms such that Evi(x)(o) = e where e # 14 then
Evi(x)(c') = e,
We put Evi(x)(c') = e', Then e <y e' follows from

Lemma 6.1 applied to YP whenever X red Y. To prove e' cy €

take any Y such that X red Y. By the CHRP there 1s Z such




that ¥ red Z and Evi(Zp)(o) = e* where e* ¥ y and e¥ <y e.
Then by Lemma 6.1 Evi(zp)(o') = e¥*, hence Evi(Yp)(a') <y e¥,
Corollary. If S i1s a regular system and f is S-computalle
ground operator, then f is regular,
Immediately from the Theorem noting that the elements

of any domain H, are regular.

J
6.3 We shall say that a system S 1s partial evaluation
deterministic 1f whenever X is a term and o is some regular
assignment such that Evi(xp)(o) = eand e #1,, then
Evi(X)(o) = e, If S is partlal evaluation deterministic
then there 1s a deterministic procedure to evaluate
Evi(X)(o) for any term X and regular assignment o. Simply
generate the terms Y such that S red Y and evaluate Evi(Yp)(c) = e
If for some Y the value e is different from 14 stop and
output 1s e. Otherwise the output is 1y

Theorem 6.2. A system S is partial evaluation deterministic
if and only if it 1s regular.

First assume that S 1s partial evaluation deterministic
and put int(c) = f for ¢ ¢ C, where f is a ground operator
of type a, and we may assume k 2 1. Assume that r(xi,...,xk) = e

where e ¥ 140 Now put I

Avlvl, and form = 1,...,k take

' = LI = = '
X, such that either x = 4 or xp =x , X =1Iv, c(vm) Xpe
Put X = cxi...xk. Then X red CV, oo eV hence EvJ(X)(a) =
r(x;,...,xi) = e', On the other hand X red °Y1"°Yk z Y where
Y =

. P -
n Vi ifr X ¥ Mm and Ym = Xm otherwise., Now EVJ(Y (o)

f(xi,..,’xk) = e. Since S is partial evaluation deterministic
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we have e = e', so f is a regular ground operator.
Assume now that the system S 1s regular and X is a
term such that Evi(xp)(o) = e where e # 1, and 0 is a
regular assignment. Then by Lemma 6.1 if Y is a term E
such that X red Y holds, we have Evi(Yp)(o) = e, hence
Ev, (X)(0) = e. b

It 1s possible to argue that any deterministically

computable operator must be regular, For assume f is a

e T AR

ground operator of type a, and there is a deterministic

Tar oW

procedure to evaluate f(xl,...,xk) = e where e # LJ and

res

Xp = L0 Since the input X, may be given via a deterministic
but infinite computation it follows that the evaluation of e ¥
must ignore the input X hence the same output will result
ir X 1s replaced by xé.

6.4 We conclude this section with some considerations on

e T RO

the role of the overdefined element. We are interested in
some conditions imposing restrictions on the manner the

overdefined element determines the output. For instance

o £ AP PRI 0T

we may want that whenever some 1lnput 1s overdefined, and
it 1s not ignored by the computation, then the output
should be also overdefined. We may go further and require
that the output should not be overdeflned unless some
input 1s overdefined. These are consistency conditions,
in the sense that any inconsistency in the output is

totally determined by inconsistencies in the inputs.

Let f be a ground operator of type a. We say %hat




f 1s weakly consistent 1f the following condition is

satisfied: If f(xl,...,xk) = e and e ¥ Ty and
] 1 = = '

xi,...,xk are values such that X Tim °F Xp X e

m=1,...,k, then f(xi,...,x&) = e, And we say that f 1is
consistent if 1t 1s weakly consistent and whenever

f(xi,...,xk) =Ty then for some m, x = 74 .

A system S 1s (weakly) consistent 1f int(c) is

(weakly) consistent for every ¢ ¢ C. An assignment ¢
is (weakly) consistent 1if ¢(v) is (weakly) consistent
for every variable v. Note that any element in H

J

weakly consistent, but only the elements different from TJ

is

are consistent.

Lemma 6.2. Let S be a weakly consistent system, and
¢ and o' be weakly consistent assignments such that for
every variable v, either o(v) = y, for some type 4, or
a(v) = g'(v). If X is a term in normal form such that
Evi(x)(o) = e where e ¥ Ty then Evi(x)(a') = e. Furthermore
if S and ¢ are consistent then Ev,(X)(¢) # v,.

The proof is by induction on the structure of X, similar
to the proof of Lemma 6.1.

Theorem 6.3. Let S be a weakly consistent system, and
c and o' be weakly consistent assignments such that for
every variable v, either g(v) = T for some type a, or
o(v) = g'(v), If X is any term such that Evi(x)(q) = e

where e ¥ 1, then Ev,(X)(¢') = e. Furthermore 1i1f both X
i i

and ¢ are consistent then Evi(x)(a) oty
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The first part 1s trivial since from Lemma 6.2 it
follows that whenever X red Y then Evi(Yp)(a) = Evi(Yp)(o').
To prove the second part note that if e = 14 we are done,
and if e # iy ‘then by Theorem 6.2 there is Y such that
X red Y and Evi(Yp)(o) = e, Hence by Lemma 6.2 we have
e ¥ Ty

Corollary. I1If S 1s regular and consistent and f 1s

S-computable, then f 1s consistent.
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T. EXAMPLES

7.1 We shall consider here a number of algorithmic

systems, showing their power and limitations. It 1s
convenient to distinguish different baslc structures
using superscripts. So in general a given algorithmic
system 1s of the form SJ = (HJ,CJ,intJ) where J € w.
The domains in the structure HJ are denoted as Hi where
i1 e w. It is not necessary to define H{ for all 1.
To avoid ambiguities we agree that in case it is not
explicitly defined then H] = {4,T}.

Let A be some set and B another set contained in some

domain D. Let f(xi,...,xk), k 2 1, be some partial function

defined on A with values in B. The function is partial
so it may be undefined for some arguments. Suppose

now that in some basic structure we harve Hi = A+ and

%. HJ = D . We want to extend f to a ground operator f¥

? of type (11,...,1k,j) where i1 = ... =1k = 1.

If f(xl,...,xk) = ¢ i1s defined we put f“(xl,...,xk) = e.
Ir f(xl,...,xk) 1s undefined, or some x = i,, We put
f*(xi,...,xk) =1y In all the other c2se we put
f*(xi,...,xk) =Ty Note that f* is a regular and

consistent ground operator.

In proving a functional to be S-camputable we shall use
the results of section 5 on definability. In general
functionals will be defined using substitution and

recursion. Note that in case a functimel F is S-computable

and F' 18 a functional defined by addimg new varlables,




and also permutation of variables, then F' 1is S-computable.
For suppose the close term X computes in S the functional
F(xi,xz,x3). Then the term Y = xvlkv2Av3xVu(Xvuv2v1)
computes the functional F'(xl,xz,xB,xu) = F(xu,xz,xi).
With thls understanding it should be clear that the
substitution&rule proved in 5.3 can be used for any kind
of substitution, and qomputability will be preserved.

7.2 The first example is the system 81 = (Hi,Ci,intl)
where we put Hi = wt.(Recall that H, 1s always Bool).

We put C1 = {0,s,p,b,c}(we do not mention explicitly the
constant tt and ff which are assumed to be in any system)
The function 1nt1 is defined as follows:

1) 1nt (0) =0 e W’

i1) inti(s) = s¥* of type (1,1) where s is the function

on w defined by s(n) = n + 1.

111) inti(p) = p* of type (1,1) where p is the function

on w defined by p(0) = 0 and p(n+1) = n.

iv) 1nt1(b) = b¥* of type (1,0) where b is the function
defined on w by b(0) = true and b(n+1) = false.
v) intl(c) = c¥* of type (1,1,1) where ¢ is the function

defined on w by c(n,m) = 0.

We shall show that whenever f 1s a partial recursive
function on w, then f#* 1is Si—computable. The ideas are
well known and we Just outline the argument.

First note that 1f ck(x1""’xk) = 0 is the constant
zero function with k arguments, the cﬁ can be defined from

c* by substitution. If f(xi,...,xk) = x; 1s some identity
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function, the f* 1s not an identity function in wt.

But we can define f* as follows:
f*(xl,...,xk) = Cond (b*(c;(xl,...,xk)),xi,xi)
Now consider a total numerical function defined by
primitive recursion from total functions in the form
f(xl,...,xk,o) = fl(xi""’xk)
f(xl,...,xk,y+1) = fz(xl,...,xk,y,f(xl,...,xk,y))
To simplify the notation we put k = 1 and define an
operator d of type (1,1,1) as follows
d(x,y) = Cond (b*(c*(x,y)),b*(y),b*(y))
Next we define a functional F of type (1,(1,1),1,1) by
F(x,z,y) = Condi(d(x,y),f:(x),fg(x,p*(y),z(y)))
Now let f, be the recursive solution of z in the
functional F, hence
F(x,fq(x),y) = f5(x,y)
From this it follows easily that f* = fo.
Finally we consider a partial recursive function
defined by minimization from a total recursive function
in the form
f(xi,...,xk) = wylf, (x,5...5%,y) = 0]
Again we assume k = 1 and define a functional F of type
(1,(1,1),1,1) by
F(x,z,y) = Cond, (b*(f%(x,y)),0,z(y+1)+1)
Let f, of type (1,1,1) be the recursive solution for z,

hence F(x,fo(x),y) = fo(x,y), and £y is minimal with

this property. We can show now that f*(x) = fo(x,o).
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First note that 1f x = ,0rx =7, the definition is
conslistent with the properties of f#¥. Take x € w; then
we can prove for any n e w,that if m 1s the least number,
m 2 n such that fl(x,m) = 0 , then fo(x,n) =m-n. The
proof 1s by induction on m - n. Finally note that if
fi(x,Y) # 0 then F(x,z,y) = z(y+1) + 1. Hence if
fi(x,y) # 0 for all y € w, then for any m 2 0 and with
a = (1,1) we have for any y ¢ u:
FO™H1,)(9) = FOGFEOMe),y) = oy

hence 1in case f(x) is undefined then fo(x,o) =1

The system St appears to be reasonably complete.
Still we note that there are operators which are intuitively
computable, but are not Si—computable. For instance the
operator f of type (1,1,1) defined by f(x,y) = the meet of
x and y in w+, is not consistent so it is not Sl-computable.
We may want to extend S1 to allow this and other similar
operators to be computable. Or we may prefer to ignore
the situation on the assumption that the introduction of
the overdefined element iIn this context is artificial and
does not correspond to any real computing problem. In fact
as long as one is interested only in deterministic
computabllity it seems more reasonable to eliminate
altogether the overdefined element. We shall discuss
this possibility in the next section.

As we may expect the system 81 1s defficlent in terms
of nondeterministic computability. For example let g be

R T L. Lt TR PP PR
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a partial numerical function on w. We want to compute for
each x e w the unique y such that g(y) = x, whenever

such y exists. In case there is no y such that g(y) = x

. e e — e

the output 1s undefined. In case there are two or more
the output 1s overdefined. We formalize this in a
functional F of type ((1,1),1,1) which is defined

F(g,x) = u{Condy(E¥(g(y),x),¥,17) : ¥ € w}
where E 1s the equality predicate on w, so E¥ if of type

(1,1,0).

It 1s easy to show that F 1s not S,-computable.
For assume that X is a closed term that computes F.

n in case y = i, 0ryeuw and y # 0,

gl(o) = 0 and gi(rl) =T Then F(gi,o) = 0 so there

1s a term Y such that Xv, v, red Y and Evl(Yp)(o) = 0,

Define gl(y) =1

where o(vl) = g and o(v2) = 0. But the evaluation

1
of YP uses only a finite number of values of gl. Let ¥

n be such that gl(n) is not used. Now define g2(n) =0
and otherwise g,(y) = 81(Y)- Now we have F(g2,0) =Ty 3
On the other hand Evi(Yp)(o') = 0 where a'(vi) = 8,

and o'(v2) = 0 and this contradicts Theorem 6.3.

7.3 We consider now a system S2 = (Hz,Cz,intz) which
is an extension of 81 and it is not regular. We take
H2 = Hi, and 02 =C, v {j}. We define int2 the same as

1nt1 on C,, and put 1nt2(j) = 3 of type (1,1,1) where

1
J(x,y) = the jJoin of x and y in wt.

In the system 82 we may compute truly nondeterministie
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functionals. For instance the functional F defined
above is Sz-computable. To show this define a functional
H of type ((1,1),1,(1,1),1,1) as follows
H(g,x,h,y) = J(Cond, (E¥(g(y),x),y,1,),h(y+1))

If ho 1s the recursive solution for h, it 1s easy to
verify that F(g,x) = ho(g,x,o).

The example S3 is of the form (H3,C3,1nt3) and
it is also an extension of S, We put H3 = m+,
Hg = Pw = the power set of w with the usual inclusion
ordering. We use greek letters y and § to denote
elements of Pw. We put 03 = C1 v {J,sg,ep}. The
function 1nt3 is equal to int, on C,. We put int3(J) =J
of type (2,2,2) where J(y,8) = the join or union of y and &
in Pu; 1nt3(sg) = sg* of type (1,2) where sg(x) = {x};
1nt3(ep) = ep of type (1,2,0) where ep(x,y) = ig in

case x = 1, or x ¢ w and x £ v, ep(x,y) = true in case

1
X € vy, and ep(Tl,y) = Tq-

In S3 we can define a functional F of type
((1,1),(1,2),1,2) as follows

F(g,H,y) = J(sg*(g(y)),H(y+1))

Let Ho be the recursive solution for H, so we have

F(g,Hy(8),y) = Hy(e,y)
It 1s easy to see that if g is any partial numerical
function on w, then Ho(g*,o) = the range of g. It

follows that all recursively enumerable sets are

83-computable.
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On the other hand we can define in S3 an extension of
the operator ep. Let €3s€g9--- be the canonical enumeration
of all finite subsets of w (see [7] page 525). Hence for
new,e, is a finite subset of w and every finite subset
can be expressed in this way. We define an operator in
of type (1,2,0) as follows: in(x,y) = 15 in case x = L, or
X ¢ w and ey is not a-subset of y; 1in(x,y) = true in case
X e v and e, 1s a subset of y; in(Ti,Y) = T,. The operator in
is 33-computable. The detalls are left to the reader.

Now let assume some recursive palring of w, of the
form pr(x,y) = z with inverse functions 1ls(z) = x and
rs(z) = y. Consider the following functional G of type
(2,2,1,2)

G(Y,G,Y) =

sg*(Condi(ep(y,v),Condi(in(ls*(y),6),rS*(y),11),11))
Now define a functional H of type (2,2,(1,1),1,1)

H(Y,53h>Y) = J(G(Y,say)9 h(y+1))

Let ho be the recursive solution for h and define
Ap(y,8) = hy(y,8,0)

The operator Ap of type (2,2,2) is actually the application
operator of the graph model, denoted as fun in [7] page 526
(see also [4]).

Let recall that enumeration operators are of type (2,2)
and are defined by fixing the first argument of Ap to some
recursively enumerable set. It follows that all the enumeration

operators are 83-computab1e.




8. CONCLUSIONS
8.1 The constructions presented in this paper involve
three different elements: the language BAL, the basic
structure H, and the reflexive domain D. The cornection
between BAL and H is given by the function Evi; and H 1s
related to D by some embedding. There is another
connection between BAL and D via the function Va, that
commutes with the others 1n case the embedding i1s minimal.
The existence of this factorizatlion depends strongly on
continulty assumptions. Apparently as long as continuity
is enforced there is no need to pay attention to the
nature of the objects in the basic structure. They may
be numbers or sets, finite or infinite, the factorization
is always available and makes it possible to interpret tae
programs in BAL as real mathematical expressions.
Continuity seems to determine the 1limit of the method.
If we allow monotonic but not contlnuous operators, we
get operators that are closed neither under substitution
nor under recursion. To deal with monotonic operators
we need a notion of transfinite reduction which is far
beyond the finitary rules of BAL.
8.2 The theory 1s developed under the assumption that
domains contain a top overdefined element. A motivation
for this was suggested in the introduction. But an
alternative construction 1s possible without enforcing
such restrictions We may redefine the notion of domain,

requiring a least but not a greatest element. Then we
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must redefine the construction A+ which now 1s obtained

by adding only a least element. This changes the

definition of Bool and also of J@JDJ' With these changes

1t can be checked that all definitlions,proofs and constructions
in the paper not involving a top element are still valid.

In particular the minimal embedding will result in a domain t

D without top element; but otherwise satisfying all the

required conditions.
This alternative theory without overdefined elements
may present some interest as a generalization of deterministic
computability. But to study nondeterministic computations
the overdefined element seems to be essential. 1In fact
there are reasons that suggest that the best generalization
would be to assume all the domains to be complete lattices
(as happens to be the case in all the examples considered).
8.3 The results on deterministic computability suggest
other alternatives. In a regular system there is no need
to deflne the functicon Ev1 as a 1limit, and hence the domailn
structure is not necessary. We need only the existence of
a bottom element, and monotonicity only relative to this
element. We conjecture that a theory along these lines
will be equivalent to Moschovakis's abstract computability.
Several directions may be suggested to continue this
investigation. We do not think that the ultimate significance
of the minimal embedding 1s expressed by the applications
in this paper. The reflexive domain seems to provide a

mathematical structure for the apparently chaotic world
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of terms and reduction in BAL. We may expect eventually to
find rules for the safe manipulation and combinations of
programs. This application will certainly be of interest
in practical computer science.

In another direction there 1is obvious interest in
studying more examples, to determine the real scope of
the theory. And there 1s interest also in the study of
higher order structures, not only higher order functionals,

but also structures defined by recursion.
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