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A DISCRETE APPROXIMATION FRAMEWORK FOR HEREDITARY SYSTEMS

Abstract

-‘A discrete approximation framework for initial-value problems involving
cértain classes of linear functional differential equations (FDE) of the retarded
type is constructed. An equivalence between the FDE and abstract evolution
equations (AEE) in an appropriately chosen Hilbert space is established. This
equivalence is then employed in the developﬁent of discrete approximation schemes
in which the infinite-dimensional AEE is replaced by a finite-dimensional system E
of difference equations. Convergence and rates of convergence are demonstrated i
via the properties of rational functions with operator arguments and both classical
and recent results from linear semigroup theory. Two examples of families of

approximation schemes which are included in the general framework and which may

be implemented directly on high-speed computing machines are developed. A

numerical study of examples which illustrates the application and feasibility

5 of the approximation techniques in a variety of problems together with a summary

and analysis of the numerical results are also included.

/ o

i Accession For
: FTIS GRA&I '
i DDC TAB AIR FORCE OFFICE OF SCIENTIFIC RESRARCH (AFSC)
A : Unazmounced NOTICE OF TRANSMITTAL 10 DDC
i Justification This technical repert has been reviewed and is
‘ approved for public release IAW AR 190-12 (7D).
By, ‘ " pistridbutien is wunlimited.
$ H ‘. n. m
Distribution/ Technical laformstien oftioer
|—Availabilisy Cogrs
Avall ep:d/ox
Dist opec’al

A TR M 4 e i e e PR T S )




L AHANRNGL For £ v i ) iy i SRk

1. Introduction

The focus of this investigation is the'construcfion ofva general abstract
approximation framework for certain classes of linear retarded functional dif-
ferential equations (FDE). The methods included in the framework will have a
sound theoretical basis for convergence, and Qill be designed with the intent of
application to the solution of optimal control and parameter ideﬁtification
problems governed by FDE. The work presented below is concerﬂed with approximate
integration methods for FDE, while the results dealihg with the'appliéation of
the schemes to the optimal control and parameter identification problems will be
discussed elsewhere. We begin by calling upon the results of Banks and Burns
(3], [4), among others, to establish the equivalence of solutions to certain
classes of FDE of particular interest and the solutions of corresponding abstract
ordinary differential equations, also known as abstract evolution equations (AEE),
set in an appropriately chosen Hilbert space. We then proceed to develop
general approximation schemes for the solutions to the homogeneous AEE which
in turn, via the equivalence described above, provide approximate solutions to
the FDE. Using approximation techniques for 556 semigroups of bounded linear
operators on abstract spaces, both classical and recently published results,
we are able to characteriée the convergence and rates of convergence for rich
classes of these schemes. In addition, two particular families of approximation
schemes included in the general framework are developed and studied in detail.
The approximation framework for the homogeneousAinitial-value problem is then
extended to include schemes applicable to the non-homogeneous problem as well.

We conclude with a discussion of numerical results obtained by actually imple-

menting and testing these schemes on a wide variety of hereditary systems.
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2.

The idea of constructing approximate solutions to differential equations

set in infinite-dimensional spaces, in particular FDE and parabolic and hyper-

i

bolic partial differential equations via approximations to the solutions of

Sy dat

equivalent AEE, has been considered by many authors. Historically, the well-~

3
!

known Lax equivalence theorem (cf. Richtmyer and Morton [31]) for the homogen-

eous case, and Thompson's [35] subsequent extension of their results to the

non-homogeneous and quasi-linear problems, can be considered to be the forerun-
ners of most investigations in this direction. More recently, in the pértic-
ular_case of FDE, a rather extensive formulation for an approximation framework
J , sas been developed by Banks and Burns [3]. The latter treatﬁent considers a

state variable approximation exclusively as part of a two-step process through

which the final approximating solution is obtained. That is to say, the AEE,

an ordinary differential equation in an infinite-dimensional abstract space

3
1
H

characterized by an unbounded operator on the right~hand side, is approximated

by a sequence of systems of ordinary differential equations defined on finite-

dimensional approximating subspaces. These systems of ODE of successively

higher dimension must then in turn be solved numerically via any one of a number

i
‘B

of classical approximate integration techniques. The schemes discussed here,

however, approximate the AEE by a sequence of systems of discrete difference

equations of successively higher dimension. This represents a simultaneous f
approxihation in both the state and the time variable which is readily programmed

in a single stéep. Recently, Reber [28], [29], in considering these ideas for linear

et ——

non-autonomous systems (i.e. systems with coefficients that vary in time) , has.

demonstrated sub-linear convergence for a scheme employing finite-diffefence- 1

like approximations in both the state and the time variables. In the case of

an autonomous'system} his work becomes a special case of the general approxima-
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3.

tion framework éonsttucted in the sequel. Furthermore, the abstract formulation
to be discussed below allows one to consider stafe and time variable approxima-
tions of varying design and arbitrary order of convergence independently. An
extensive bibliography and survey of the literature through 1976 concerned with
the approximation of solutions to FDE (and, in some cases, the associated optimal
control problem) via techniques of the type discussed above can be found in (4}.
Finally, a rather broad theory, somewhat more general in nature yet less

attuned toward'practical computation than the research to follow, can be found

in a recent paper by Hersh and Kato [15). Many of our results are closely
related to the ideas of the Hersh-Kato treatment.

The notation employed here is for the most part standard. For 1 < p < =, a

closed interval I in R and a Banach space X, the synbol Lb(I;X) denotes the

Banach space whose elements consist of equivalence classes of strongly

Lebesgue-measurable functions f: I + X for which flfli < » and which is
I
endowed with the usual Lp norm IflL' = (f|f|§)1/p. The symbol C(I;X) denotes
I

p
the Banach space of continuous functions from I into X together with the usual

supremum norm. In the case that X = Rg, where n is the dimension of the FDE
system under investigation, the above notations are foreshortened to Lp(I)

and C(I) respectively. The symbol <-,:> represents the standard inner

L,

product on the Hilbert space LZ(I) given by <f,g>L = f fg. L_(I) (with the
2 I
standard L norm) denotes the Banach space of all real-valued equivalence

classes of functions which are essentially bounded on I, while the notation
Ck(I) stands for the space of all R"-valued continuous functions defined on
I whose first k derivatives are continuous. M{I) represents the measurable
functions from I into R" while the Banach spaces w(j’

P
absolutely continuous functions possessing j-1 absolutely continuqus deriva-

(1;R™) of R"-valued

tives and jth derivatives that are in LP(I) are denoted simply by wg(x). For
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4.

Banach spaces X and Y, the syuﬁols H(X,Y) and B(X) denote the gpaces Of
all bounde_d linear operators from X intq Y and X into X respectively. The
spaces and.‘{;‘ n’ the gpace of all n x n matrices, are endowed with the
euclidean and gpectral norms, respectively. The norm of an element x con-
tained in a normed linear space X is denof:e_d by ]xl g+ Or more simply by |x|
in the case that the inﬁended space may be inferred from the context of the
statement. Similarly, the norm of a bounded linear operator TG.Q(X,}()

is denoted simply by | T | in the case that the operator norm in question is
that one which is in_duced by the standard norms on the spaces X and Y. If

T € ZKX), the notation jr Ix will also on occasion be used. The symbol I

is used to reptesent the identity opgrator. No further clarification is
provided if the space upon which it operates can be determinéd from the con-
text of its usage. The standard notations ol(S’f , ®(F, p(9 are employed to
represent the spectrum, point spectrum and resolvent set in the complex plane
C of a linear operator 7, while the symbols 2(9) and RT) denote its
domain and range. For A€ p(9), the symbol R(A:;9) denot;,es the resolvent of
Z (F-AI)-I. The positive integers n, v, p and positive numbers T and r to
be defined in the ne#t section are assumed to bhe fixed throughout. For any
function x of one real variabie we use both kX and Dx to stand for the deri-
vative of x with fespect to that -_variable. As is commonly the case in papers
concerning retarded functional differential equations, for an R"-valued
measurable function s + x(s), the notation X, denotes the function in

M (-r,0) given by % (8) = x(t+8), -r < 6 < 0. For a rational function

c(z) -l P(2) /Q(z) defined for z €C, the symbol deg C(z) denotes that integer

given by deg P - deg Q, where deg P and deg Q represent the respective degrees

of P'and Q as polynomials in z.

et
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2. Equivalence of FDE and AEE

We state .precisely the FDE initial-value problems for which approximate i
solutions are sought and describe their equivalent formulations as correspond-
ing AEE-initial-value problems set in an abstract function space.

Consider the initial-value problem given by

(2.1) mﬂ=nu9+fWLtelmﬂ

(2.2) x(0) = n, Xy = ¢

where ne Rn, ¢ E Lz(-r,O) and f € L2(0,'1‘). We shall assume that the linear

W

operator L: Lz.(-r,o) + R" is of the form

0
y .
(2.3) L($) = ] Ap(-t,) + J D(6) ¢ (6) a6

3=0 .

where Aje_y;m, j=0,1,2, ..., vV, DE L2([-r,O];_‘{;m) and 0 = T, < ri <

eee € T, = ¥. Strictly speaking, the expression ‘for L given by (2.3) is not
well-defined for all ¢ € Ly(-r,0) in that point evaluations of ¢ are required.
However, since our primary concern is the solution éf the initial-value prob-
lem (2.1) , (2.2), we need only consider insfances of L(xt) appearing
beneath aﬁ integral sign. More precisely, a solution of the initial-value

problem (2.1), (2.2) ., is a function x € Lz(-r,'r) such that t + x(t) is

absolutely continuous on (0,T), x(0) = n, X, = ¢ and

.t t
(2.4) x(t) = n + I L'(xo')do + I f(o)do, t € [0,T).
0 ' 0

xoe Lz(fr,O) for each 0 € [0,T] implies that the mapping ¢ + L(xo) is in




LZ(O.T). Thus the expression for x(t) given by (2.4) is well-defined.

Employing standard arguments, the following lemma may be established.

2.5.' Lemma. There exists a unigue solution to the initial-value problem

(2.1, (2.2). Moreover, the solution depends continuously upon the -

initial data and the non-homogeneous perturbation. That is to say, if
xk(t) denotes the unique solution to the non-homogenous FDE x(t) =

L(x,) + £, (t) with initial conditions x(0) = n + n in

K’ xo = ¢k where nk
Rn, ¢k + ¢ in Lz(-r,O) and fk + £ in LZ(O,T), then we have that
sup lxk(t)-x(t)f + 0 as k > » where x(t) is the unique solution of the
t €[0,T}

initial-value problen given by (2.1), (2.2). .

2.6. Remark. Liﬁear homogeneous FDE with right-hand sides of the form

given by the expression in (2.3) are not the most general to which the
equivalence and approximation results to be established can be applied.

However, it is noted in [6] and [13] that this form is of sufficient generality to
include all linear homogeneous autonomous FDE commonly arising in pr;ctical

applications. The details of establishing the equivalence for the FDE

B bt R v et et 1t

initial-value problem (2.1), (2.2) under less restrictive hypotheses are

discussed in [3], [41].

Following Bo;isoviE and Turbabin {91, and countless other authors working
with retarded functional differential equations, we choose the Hilbert

space Z = R" x L2(-r,0) with inner product

<(nyedy)e(nyedg)>g = <Myonp> fn * <O1rdp’y
R 2

as the space upon which the corréaponding AEE will be defined. In the light
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7.

of the existence, uniqueness and continuous dependence results stated in

Lemma 2.5, one can define a family of solution operators on the space Z assoc-

LS it S R

iated with the homogeneous form of the initial-value problem (2.1), (2.2).

oSk

Indeed, for t € [0,T], let S(t): 2 + 2 be given by

i s(t) (¢,n) = (x(t).xt)
i
where x is the unique solution of (2.1), (2.2) with £ = 0. The pair (x(t),xt) {
3 " will on occasion be referred to as the state or state variable of the system.
Since Lemma 2.5 is valid for all T > O, the family {S(t): t > 0} forms a

%

now be used to calculate the closed densely defined infinitesimal generator

semigroup of bounded linear operators on 2. Standard techniques (4] can

S of {S(t): t > O} together with its domain of definition. They are given by

(n,d) = (L(),$)

A

i for all (n,$)€ D) = ((n,$)E2: 1=4(0), $EW,(~r,0)}.

I

p g
A gk

For purpose of reference, we state certain properties of the% semigroup

e

of operators {S(t): t > 0} and its infinitesimal generator @/ that are used in
the discussion below. The verification of these results may be found in any
i standard reference on linear semigroup theory. 1In pa;:ticular, "[11, (i8], (19},

[26] and [38] are adequate in this regard.

1A ' o

! (1) NAF™) is dense in z. 1In particular, 2(F") is dense in Z for
, n=]

i eachn=1, 2, ... .

(2) . There exist positive constants B and M such that g = n(NC

{A€EC:Re A<B} and, moreover, the resolvent operator R();Qf) with Re A > B

satisfies the condition : ’ :

T e e S i et T T TR 2 < ST




oty

2.7 |[rROuN"|,= | @AD", < M(Re 2-g) 7"

for all n > 1. This in turn implies that

Ister ], < uft, -

We adopt the notation of Kato [18] and let the symbol G(M,8) denote the
set of all closed, densely defined operators that satisfy a condition like
(2.7) on the respective spaces upon which they are defined. 1In addition,
we shall also, on occasion, have reason to consider the set of all closed,
densely defined linear operators 7 whose resolvent sets p() contain not
only the half-plane {A€C: Re A>8}, but a sector of the complex plane,

{» e C: |.=rg }-B|<-;- + o} for some w > 0, and whose resolvent operators,

R(1;9), satisfy the stronger, somewhat more restrictive condition
IR = (-2 < m|r-8|™

for all X € {AEC: |arg A-Bl S 12'-+w}, n=1,2,... . We denote this set of
operators by the symbol H(w,B,M). We note that if ¥ €EH(w,8,M) it is the
infinitésimal generator of {U(t)}, a quasi-bounded semigroup of operators

(i.e. |uv) < Mest) , holomorphic in t for t contained in a sector of the

complex plane (cf. Kato [18)).

A linear operator F with domain dense in a Hilbert space H is said

to be dissipative if

Re <.7x,x>H <0 for x€EXAT)

It can be shown (cf. Krein [19]) that if there exist a constant 8 and an inner

product l-,-lH defined on H which generates a topology equivalent to the




standard inner product topology on H, then the conditions 7 -BI dissipative
with respect to the [-,-) inner product (i.e. [Fx,x]H < Blx,xl,, xEDNT))
and (9 -XI)) = H for any A with Re A > B are necessary and sufficient for
9€ G(M,B). Furthermore, 9 - 81 dissipative implies (see [19]) that
0(9) C {A€C:Re A<B}. Thus if H is finite-dimensional, 9 € G(M,B) if

and only if (¥ -Bl1) is dissipative.

We now construct an inner product on 2, <-,->g, that generates an equival-
ent topology to the standard inner product topology on Z and for which there
exists a constant B such that <.<¥’z,z>{J < 8<z,z>g for all z contained in 244,

The inner product we construct is essentially the same as those defined in

(6], [29]) and [30] for a similar purpose.

Let the step function g defined on [-r,0) be given by

v . =
g(9)=gj=1+ ):lAil for 8 € [-1,,-1. .), 3 =1,2,...,V.

T.
i=j J i-1

Then, for (n,¢) and ({,y) € 2, we define

. 0
<(ﬂ,¢),(C.¢)>g nT-C + [ $(8)yY(0)g(6)ae

T v =1 :
ng+ ) 9 f $(0)y(0)ae
L
j - .
J

2
| tn,¢) |g = <(n,9),(n,0)> .
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10.

Clearly

"
A 1/2
-y < Llg < e T a2 [,
i=1
Thus the topology generated by <-,->g on Z is equivalent to the standard

inner product topology on Z. Furthermore, using standard arguments (cf. [6],

[29], [33]), we have for ¢ = ($(0),4) € DX,

<J{$,¢>g

<(L(¢),$), (¢ (0) .<1>)>g

0

v

<) a.¢(-1.) + J D(6)4(6)d0,¢(0)>
j=0 J J 7 Rn

r

\) -Tj—l ~ -
+ 1 g, J $(0)9(6)d6 < B<¢,¢>
j=1 ) . g

-T,
J

v
= + + .
where B = (1 2j=O|AjI lDle)
Turning our attention to establishing an equivalence result for the non-

homogeneous initial-value problem (2.1), (2.2), for z. = (n,¢) € 2 and

0
£ GELz(O,T), let z: [0,T] + 2 be given by the expression

t
{2.8) ' z{t) = S(t:)z0 + Js(t-o) (£(v) ,0)a0 , t €1o,T],
o .

where 0 denotes the zero function in Lz(-r,O).

2.9, Lemma. For z as in (2.8) and x the unique solution of the non-homogeneous

initial-value problem (2.1), (2.2) we have the strong equivalence of solutions

given by




(2.10) z(t) = (x(t),xt).

The complete proof of Lemma 2.9 may be found in [3]. However, it can be sum-
marizeci as. follows. The equivalence stated in (2.10) i§ easily verified for
the case of f € Cl(O,T) Aand z, (S 9@) via standard results from linear
semigroup theory [18]. An application of the facts that Cl(O,T) is dense in
L2(0,T) and () is dense in 2, together with the uniqueness and continuous
depéndence properties of both x(t) and z(t), are sufficient to conclude that
the desired strong equivalence of solutions obtains for all f E‘Lz(O,T) and

zoe z.

3. Preliminary Definitions and Basic Results
We make the following definitions that will prove useful in our discussions
below in regard to the formulation of an approximation framework for the homo-

_geneous FDE initial-value problem given by

t € [o,T],

3.3 Definition. Let {Z'N} denote a sequence of approximating finite-
dimensional subspaces of Z [6 ] defined by

zN = span{«tém, ¢}(11), caey ¢N N } ’

where %j) €2, 4=1, 2, ..., kN' Then for each N = 1, 2, ..., the 4-tuple

{zN,wN, MN, c(z) } will be called a Discrete Approximation Scheme,. or more

simply a DAS, for the Cauchy problem (3.1l), (3.2) if




B we—

- .
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1l2.

1) (z, <'.'>N) is a finitg—dimensional approximating Hilbert space

; defined by the relations

Z, = A (zY)

and

<oy = < O e e,

N . : R . . 5
where ¢ represents an algebraic isomorphism mapping ZN onto ZN' (As an

k
example, one possible construction for ZN would be to choose zN = R N and

o as the canonical coordinate map from the finite-dimensional subspace ZN

onto R .) We note that with the inner product on ZN defined as above, oN ;i

actually represents an isometric mapping of ﬁn onto ZN'

(2) =7.: Z > Z_ together with its right inverse w; : ZN + 2 are projection- J

N N

and embedding-like mappings respectively defined by

_ Na -1._ , N-1
LR T = (e

| A . ~ ~ 2
} where PN is the orthogonal projection of Z onto ZN along (ZNTL. 3
!
i

(3) jﬂk: ZN -+ ZN is a bounded linear operator.

3 (4) C(2) is a rational function of the complex variable =z.

We make the standing assumption that T = pr, p an integer greater than
i zero, and partition the interval (0,T] into PN subintervals of equal length
- defined by the nodal points t: = kr/N, k=0, 1, ..., opN. That essentially

no loss of generality is incurred by restricting T to be an integral multiple |

e A oot e e T

of the maximum delay in the problem, r, is discussed in Reber [29, Section 1]

8). It is our desire to construct the Discrete Approximation Scheme

{ZN,WN,Jﬁ&,C(z)} in a manner that will guarantee that if

R D

UV e o7 - .-
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13.

(a) " is, in some sense, an approximation to z for eachz € 2

(b) _;JNnNz is, in some sense, an approximation to ¥z for each z in

a sufficiently large subset of ()
(c) C(z) is, in some sense, an approximation to & for z € C suffic-

iently small
then the sequence of vectors {zz}ifo contained in ZN and generated by the
discrete semigroup of operators {C(ﬁ%)k} (cf. Kato [18]) according to the

recurrence
N N r- '
2. = 7.2 LA C(ﬁ%)zk' k=0,1,2,...,0N-1,

will in some sense approximate

N

z(t]l:) =e Lkz

0 = S‘*ﬂ’zo' k =0,1,2,...,0N.

"It is further desired that {zg};ﬁo provide an approximation {xﬁ}:zo to

PN
k=0’

evaluated at the node points. Makihg these ideas precise and demonstrating

{x(ti)} the true solution of the FDE initial-value problem (3.1), (3.2)

that they can indeed be reaiized are the concerns of the definitions and

' results that follow.

3.4. Definition. The Discrete Approximation Scheme {ZN,WN..V ,Cl2)} will

be said to be factor stable if the infinite set of operators on zN .given by

X k
C(E.MN) ’ k = 0'1'2'--.,0“

is uniformly bounded in N for all N sufficiently large.
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' The fact that C(z) N(z)/D(2z) is a rational function
implies that the evaluation of C(%%) for each N'will require the invertibil-
ity of the operators D(}r;%) . Sufficient conditions which can be satisfied by é
the _(IN and C(zf which will guarantee the existence of this inverse will be E
provided in the next section. For the present, however, the operators
C(-g%) will be referred to with the implicit assumption that D'-l (%%)

exists for all N sufficiently large.

3.5, ' Definition. The Discrete Approximation Scheme {ZN,wN,dN,C(z)} will

be said to be factor convergent as an approximation to the initial-value

problem’ (3.1), (3.2) if for each zoe Z, given € > 0, there exists an N =

ﬁ(e,zo) such that
r k N )
Ic(EMN) "Nzo'“NS(tk)zolu < €, kK =0,1,2,...,0N

for all N > N.

The next definition is a precise statement of what is intended when it

is said that n_z is an approximation to z for each z € 2.

N

3.6. Definition. A Discrete Approximation Scheme {ZN'"N'%'C(Z)} will
be said to have property (Pl) if the mapping LN z ~ ZN and its right inverse

wr-ql: Zy, * 2 satisfy the condition

(P1) |11;;11r z - zlz +0 as N + » for each 2z € Z.

3.7.  Lemma. Suppose {ZN,WN,ﬂ“.C(z)} is a Discrete Approximation Scheme

with property (Pl). Then the mapping L z2 » Zy and its right inversge
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15.
A zN + 2 satisfy the following:

(1) |ﬂNz|N < |z|z for each z €2;

(2) In;]'zN 2 < |zN|N for each 2z € Zyi

(3) |1er|N > |z|z as N + » for each z € 2.

The veracity of Lemma 3.7 follows directly from the definiéions of ™ and w;l.
We note that only- the third proposition requires {ZN,'nN, ,Q(N,C(z)} to have

property (Pl).

3.8. Definition. Let Py zZ Rn, p,: z > Lz(—r,O) be the two coordinate
projection mappings defined by pl(n,¢) = n and pz(n,¢) = ¢ respectively for

(n,¢) € Z.

That a factor convergent Discrete Approximation Scheme does indeed yield
an approximate solution to the FDE initial-value problem (3.1), (3.2) is veri-

fied in the next lemma.

3.9.. Lemma. Suppose that {ZN,‘NN,%,C(z)} is a factor convergent Discrete

Approximation Scheme with property (Pl). Then, ‘given € > 0, there exists an

N = N(e) such that lx(‘t:)-pl(ir;lz:)in <e, k=0,1,...,0N, for all N > R,

NyoN in 2 is given by

where the sequence {zk K=0 N

N r k
z, = C(-ﬁ.w") "wZo0°

Proof: Let € > O be given. Then

—. . , . AP
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- N -1 N

(3.100 Ix(t:)'pl("ulz:)l n = Ipytzig)-my zk)lgn
j R
it
4 N, _-1N
: < |=:(':k)-1|N zk‘z
{
3
’ = - N -1 N
; < iz(t:)-nulﬂnz(t:) Iz + |ﬂN1‘1er(tk) T zklz
3

-1 N r k .
= | a-rtagz (€ |, + lcEa n 2 o s ez, |y

A

sup I(I-n;lwu)z(t) lz + |c(§%)knnzo-nNS(t}>zo|N .
t€(0,T)

since {z(t): tE[0,T]} is a compact subset of Z (being the continuous image of

a compaét subset of R) and {ZN’"N’%'C(Z)} has been assumed to have property

(P1), we may conclude that = “m >1 uniformly on {z(t): tE[0,T]} as N + =,

T Y T

5 Thus the first term in the last inequality in (3.10) tends to zero as N + =,
In addition, the fact that {ZN,ﬂN,JVN.C(z)} has been assumed to be factor

convergent implies that

|C(§-,.%)kerzo-'1rl“s(t:,t}zo|N < e/2, k=0,1,...,0N

for all N sufficiently large. Therefore, it follows that

|x(t:)-pl(1ralz:)|n < e, k=0,1,2,...,0N
R

for all N sufficiently large. , 0
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4. The Equivalence Theorem

In this section we state and prove a theorem that provides necessary
and sufficient conditions for the factor convergence of a Discrete Approxima-

tion Scheme and subsequently yields estimates for the rate of factor conver-

"gence on restricted classes of initial data. The sufficient conditions are

such that they are easily verified for a wide variety of DAS that are considered

in the sequel. The arguments required to prove this theorem rely heavily upon
standard approximation results for semigroups of linear operators (cf. Kato

{18]1). These preliminary results, which have been suitably modified so as to
allow for the additional complexity introduced by the variation of the approx-

imating spaces, are contained in Lemmas 4.1, 4.3 and Theorem. 4.4 bélow.

In the discussions which follow, ZN' "N' ‘MN are assumed to have been

constructed in accordance with the requirements specified in Definition 3.3.

4.1 Lemma. Suppose

(1) _(JMN € G(M,B) for all N sufficiently large (M,B independent of N);
[ 4

(2) |[%Wu—ﬂkm zOlN + 0 as N+ = for each z, € D, where D, is a

dense subset of Z contained in () ;

(3) For >‘0 € C with Re )‘0 > B there exists a dense subset of Z, Dz,

such that R(J\O:MDZQ D, -

Then it follows that

| lR(Xo;dN)wN-ﬂNR(XO;d)]zo|N +0 as N + »

for each zOE z.

TR N g e, Y S > AT

st




. . %
18,
] Proof: ;
; 4.2) |[R(A X AR ML R(A ) )z |
j ( N NN o'N
3 = In(xo;_cx’“) [MNnN-nNMR(AO;_MzolN
H
i ‘ 1
< IROGi ) | 1 m-m ARG 1A 2 | :
f—ReA-Bl[‘d" -1 IR M)z| +0 as N+
.for each z, € DZ' However, D2 is dense in Z, and the operators
*
%
i .
! [R(A ;) mo=m R(A ;)
j are uniformly bounded in N for all N sufficiently large. Indeed,
:‘
S
4 1o 2M
'IR“‘O"MN)"N ™R "M)lN ~Re A-B °
for all N sufficiently large. Therefore, it follows that
A
lta(xo;%) nN-nNR(Ao;_d)]zoln +0 as N + @ !

for each zoe z.
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4.3. ' Lemma. Suppose %E G(M,B) for all N sufficiently large. Then for
A € C with Re A > B, the operators %R(M.MN) = MNWN-HVI are uniformly

bounded in N for all N sufficiently large.

_ Proof: Re X > B and MNE G(M,B) imply that A € p(dN) . Therefore, we have
= - - -1 = 1y -1 -1
I = (A1) (R -AT) (A1) - (A -AD)
or
e -1
%(MN ADTT =T+ M -AD) T

This implies

-1 . . .-l
lof (A T < ]1|N+ 1A} AT

' <1+_]ALM— =M

- Re A-B8 ~ A

for all N sufficiently large.
0

Theorem 4.4, to follow, is a minor modification of a standard result from
the theory of approximation for linear semigroups of operators generally attri-
buted to Trotter [36] .' The veracity of the result can be argued in a manner
similar to that used by Kato in verifying Theorem 2.16 i.n Chapter 1IX of ([18].

The details of the proof of the result as stated in Theorem 4.4 can be found

: in [33].

_; | 4.4 Theorem. Suppose




% | | 20.

(1) MN: zN - ZN is the infinitesimal generator of the Zo semigroup
of bounded linear operators, {S (t): t>0} , defined on Z;
(2) A:DANC 2z + 2 is the infinitesimal generator of the Zb semi-

group of bounded linear operators, {S(t): ’t30}, defined on 2z,
such that

(1) .MN,;WEG(M,B) for all N sufficiently large (M,B independent of N);
(2) Il%ﬂu-num zolN ->. 0 as N + » for each zoe Dl' where D1 is a

dense subset of Z contained in () ;

(3) There exists a Aoe C with Re AO > 8 and Dz, a dense subset of

Z such that

R(AO:I/)DZ c D,.

Then [[SN(t) nN—nNS(t)]z0|N + 0 as N + = for each zoe Z, and moreover the

convergence is uniform in t for t € [0,T]}.

f We remark that if the set D, is invariant under R(XOM for some

1

!_ AOE C with Re >‘0 > B, that is R(XOM)DI C D,, it suffices to choose D, =

1 2

Dl.

The following corollary yields an estimate for the rate of conveigence
in Theorem 4.4.
4.5. °  Corollary. Suppose ¥ & D () satisfies the following:

(1) For each zE€ & , there exists a K = K(2z) such that

| L 2] < KNP
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(2) There exists a subset %] of ¥ such that, for z €5 and ) with Re)>8,
(a) s(t)z € &, t € (0,T]
() st (A1-o¥Vz€ Y, .t € [0,T]
and furthermore the constar.xts guaranteed by (1) for (a) and (b) are indepen-

dent of t € [0,T].

Then under the hypotheses of Theorem 4.4, there exists a k(z) such that

- nLp ‘
l[SN(t)‘H’N TrNS(t)]zlN < k(z) (N) t € lo,7]
for each z € _9’1.

The verification of Corollary 4.5, which follows as a direct consequence
of the arguments in support of Theorem 4.4, can be found in [6].

The subsequent four lemmas provide results and identities which are
required in order to estimate the degree to which a rational function approx-
imation to the exponential evaluated at t7, where 9 is the infinitesimal gen-
erator of the _Z‘o semigroup {e'q.t: t> 0.}, approximates ej-t for t small. With
the exception of the final conclusion, Lemma 4.6 is a verbatim statement of
Hersh and Kééo {15], Lemma 2. The proof, which has been omitted, can be found
in that paper. The result which has been appended to Lemma 4.6 follows as an
immediate consequence of their arguments. Lemmas 4.7 and 4.8 comprise a minor
extension of Lemma 3 in (15]. The proof of Lemma 4.7 can be argued using the
properties of _‘Zo' semigroups and their infinitesimal generators (cf. [33]).

The proof of Iemma 4.8 has been included. .

N P e
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4.6. Lemma. Suppose J € G(M,B) is the infinitesimal generator of a ?0

R

semigroup of operators and C(z) is a rational function of degree < 0 with no
poles in {z € C:Re 2<0}. Then there exist positive constants €, K such that

'|C(h_7)| <K for all h with 0 < h < e. Moreover, the only dependence of the

it o b, 2 s

* constants € and K upon the operétor 9 is reflected in the choice of ¢, where

e = e(B).

o

4.7. Lemma. Suppose fe G(M,B) is the infinitesimal generator of the ;

.%0 semigroup of operators {e‘%: t>0}. The: for feg(f‘“) we ‘have

1 e - g (h_/j)! £| < mTNE| pte|
3=0

iiketh e Aoy Kt A it

4.8. ~Lemma. Suppose

& ‘; (1) 7 € G(M,B) is the infinitesimal generator of the %0 semigroup of

P .
operators {e/t: t>0}.

(2) C(z) is a rational function satisfying

Ak

{a) Iez-—C(z)‘I =0(|z|q+l),  z+>0 with g> 0 .
(b) deg C(2) < g+l

(¢) C(z) has no poles in {z € C: Re 20}.

Then for h sufficiently small, the operator C(h.9) exists and, moreover, for

f E g(jqﬂ') , we have

q+l

4 Iefhf-c(hﬁ’)fl _<_fae8h|_7 e |nd*?,

where M is a positive constant independent of gEecM,B).

A R
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)

Proof: Suppose C(z) = N(z)/D(z) where D(z) is a polynomial of degree p.

Without loss of generality, we may assume that D has leading coefficient 1.

Thus D{z) may be written as

P
p(z) = 1 (z-xj)
j=1

where by hypothesis (2c) Re )‘j >0, 3 =1,2,...,p. Assuming for the moment

that (f—hxj)-l exists, we see that

0 hD) = (1 (Fh-a T
=1 7

wh(gan ) = hHP
j=1 ]

Now Re Aj >0, j=1,2,...,p, and I € G(M,B) imply

h'lxje {x €c:re »>8}C 0( 5, §=1,2,...,p

for all h sufficiently small. Hence, (F—h-lkj)-l, J=1,0ee, P, do

indeed exist, as does C(h.9) = D(h.9) IN(hF) for all h sufficiently small.
To prove the second proposition, we note that hypothesis (2c) implies that

C(z) is analytic at z = 0. Therefore hypotheses (2a) and (2c) together imply

2z, ~(q+)

that C(z) = X;.lzo(zj/j!) + qu‘Q(z) or 9(z) = (C(z) - q )2 . where

3=0 j!
Q(z) is analytic near z = 0, i.e. Q does not have a pole at z = 0, Furthermore,

for zE{zEC: Re 220, i#o}, c(z)‘z-(qﬂ) is finite by hypothesis (2¢) and

3 .
( -;T)z (q+1) is finite since it has degree less than zero and the point
=0

'z = 0 has been excluded from the set of interest. Therefore we may conclude

that Q(z) has no poles in {z € C: Re 2<0}.

e . dautic s, . il




1f C(z) = N(z)/D(z), hypothesis 2(b) implies

deg N(z) < deg D(2z) + q + 1.

Therefore

j .
deg 9(2) = degl(c(z) - 5 2 (a+1)
j= . J
N(z) - D(z) § ;—!
3=0
= degl ]
D(z) 2%+

3
= deg[N(z) - D(2) % jT'_] - deng(z)zq+1]

3=0

3
< mgx[deg N(z), deg(D(2) % ;Tl‘)] - (deg D(z) + g + 1)

j=0

= max[deg N(z), deg D(z) + q) - (deg D(z) + q + 1)

_<_degD(z)+q+1—'(degD(z) +q+1l) =0,

and thus Q(z) satisfies all of the hypotheses of Lemma 4.6. Thus, for

all h sufficiently small and all 7€ G(M,B) we have

loth TV | < x for some K > 0 independent of 7€ G(M,B),

and hence

3
lemdie - § BT | o |0 H MmN e = 1T oI M|

< khq+1|_7q+1f| .




Therefore,

. 3 gy J
Ie-%‘f-c(h_%fl < |e‘7hf - § %— £+ | E (—"J—/'—’—f -cth e
j=0 j=0 :

< T M| GTHe| gL SOt

_ l";lehshq+1|_9-q+1f|.

The estimate of the bound on the first term on the right-hand side of the pre-

ceding inequality follows from Lemma 4.7. [

We are now prepared to state and prove the primary result of this section.
It is referred to as the equivalence theorem because it serves to characterize
factor convergence for Discrete Approximation Schemes and because of the sim-
ilarity it bears to the well-known Lax equivalence theorem [20]. The reader
is instructed to note the similarities which exist between Theorem 4.9 to
follow, the Léx theorem mentioned above, and the somewhat more general result
given in Theorem 1 of [15]. The key step in the arguments supporting the
sufficiency claim in ali three of these results is the factorization which is

employed immediately preceding (4.11) in the proof which is ogiven b‘elow.

4.9. Theorem. {The Equivalence Theorem) Suppose {ZN,ﬂN,MN,C(z)} is a

Discrete Approximation Scheme with property (Pl) satisfying

(la) For all N sufficiently large, dN € G(M,B) is the infinitesimal

generator of the go semigroup of operators {SN(t): t>0} defined on Zy-

(2a) l[%ﬂu-ﬂNMzolN + 0 as N + = for each zoe Dl' where Dl. is a

dense subset of Z contained in 2(%) .
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(3a) There exists a AOG C with Re Ao > B and Dz, a dense subset of 2

such that R(Ao;.m/)D2 co,,"

and

(1b)  [clz)-e?| = 0(|z|T*}) as z » 0 with q > 0
(2b) deg C(2) < g+l

(3b) C(z) has no poles in {z € C: Re 2<0}.

Then the operators C(ﬁ%) exist for all N sufficiently large and factor

stability is necessary and sufficient for factor convergence.

Proof. The first proposition follows as a direct result of Lemma 4.8. The

arguments required to verify the necessity part of the claim parallel those
employed in the proof of necessity in the Lax equivalence theorem {20}, and
have therefore been omitted. A detailed proof of this result as it is stated
above can be found in [33]. To prove sufficiéncy, for z, € 2and k = 0,1,2,

«+.+,pN, we have
r k N
(4.10) IIC(N%) "N-"NS(tk”zolN

r k N _ N N
< IIC(N%) -SN(tk”"NZOIN + I[SN(tk)nN-erS(tk)]zolN.

Theorem 4.4 implies that the se-cnd term on the right-hand side of (4.10)

tends to zero as N + », We now consider the first term. 'We have




AR i b . o i WA o BT kRIS
T T .

e i e ek

1 N e <

27.
[teE 2055 (M IR ;)T s 2 |
N N k 0 N N°C'N

k-1 .
- L /yvicE) s & N ;o 191
= ljzoc(Ng(N) [c-0) Syl 1550t ) RO G124 LN
(4. 11)
2 lcE %)JIIIC(—%)-SN%) 18, (8, IRLIW _qf)q”ln zoly

(4.12)

k-
r q+l,
JZ | e ) - sN(N)ls (tk 1-3) RO G5 20 T Py 2ol
o <Mﬁkil 85 DI os FROG s o) T o |
=MoL, ST n%0'n
k-1 B
o N,.r g+l q+l
5M0Mj£0 @ sty LR )1 20 ]
. N
. ks Btk—' +1 +1
< M jgo e @ gRrOG 1T 2|
T +1 +1
< myime D | Lagrr s ) 19 mZoly
- T +1
< moime®Tor 5 Yar v (A 5 24) 'Iq EENM

< Mo T (5| o, RO i) | F 21,

< 7M§;1 |zolz(§)q.

¢ for all N sufficiently large,

where vy = MoﬁMTeBT and MA is as was defined in Lemma 2.3. . The estimate in
0

(4.12) and the constant MO are consequences of the assumption of factor

Py
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stability, while the estimate in (4.13) and the constant M result from an

application of Lemma 4.8.

Lemma 4.1 implies that

| [R(Ad;ﬂu) q-ﬂﬂN—wNR(Ao ) a1 % | N

oy . _ ) PN
Ijzon(xo,%) RO\ @) 1 =M RO 20 IROA 590 zo|N

.of )9 cof V- . o) 93
< jZo IR(A 127 ”[R“o'—"n’“u nNRuo.Mm(xo.M) zo|N
M i
< —H RO )T ~m RO D IRO AT |
=0 (Re AO_B)J 0" N "N N0 o o'N
1 Q-3
< (g+l) max ————| [R(A ) -7 RO IR ;)
jE{O.l,zy...,q} {Re )\O-B)J 0% N N 0 °
-»> 0 as N » o,

Therefore, it follows that

r k N q+l
(4.14) | teEag) -5 (£ ImROA 1) T4 |

Ia

r k_ N . q+1_ . q+l
| tc () "-5, (£) 1 [m RO\ T T-RO ) T md2 |
r k_ N . q+l
o+ l[c(N,dN) Sy (t,) IR(A i o) ngb|N

r k_ N ' q+l - |
| eG4 Sn‘%””“‘"‘o'—‘in’ m ~TR O 12 Jzo|N

Ia

+ | 1cEA -5 (€ 1RO ) a2 |

L - v s Mt

%oln
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8T, . g+l gy A1
< (Mgt D IR Q0T T om RO Y

q+l rq
oly * Y"AO ENM

& gisrim o -

+ 0 as N + =,
_ Hence
X k N
|[C(N%) -S(t)) ]ﬂNz|N +0 as N~
for each z € Q(R(Ao;ﬂ)qu). But _Q(R(Ao;ﬂ)qﬂ‘) =9Mq+l) is a dense subset
of 2. Therefore, using the fact that the opefators [C(Eﬁﬂ&)k-su(ti)], k =

0,1,2,...,pN, are uniformly bounded in N for all N sufficiently large, we

conclude that, given € > 0, there exists an N = ﬁ(e,zb) such that

|[C(§JYN)k-SN(t§)lTTNzOIN <e, k=0,1,2,...,0N

for all N > N and each Zy € 2, which implies factor convergence.

D

While Theorem 4.9 above yields both necessary and sufficient condi-

tions, it is only the sufficient conditions that are of practical importance.
Indeed, the theorem will be applied to demonstrate factor convergence for a

Discrete Approximation Scheme satisfying the required hypotheses via the

i
i
i
!

generally more easily verified condition of factor stability.

et

The next corollary provides estimates for the rate of factor convergence

for a factor stable Discrete Approximation Scheme satisfying the hypotheses of

the equivalence theorem.
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4.15. - Corollary. Suppose {ZN,ﬂN,gN,C(z)} is a factor stable Discrete
Approximation Scheme with property (Pl) which satisfies the hypotheses of

Theorem 4.9.  Furthermore, suppose there is a set ¥ C D,C 2 D() such that

for each z € & there exists a constant v = v(z) for which

|WNwN-nNMz|N<_\: (2) (%)p for some p > 0.

Then for each zOE _@(_w'qﬂ') for which (M-AOI)sze % 3 =0,1,2,...,q9, there

exist constants ko = ko(zo) and k2 = kz(zo)' depending on z, such that

r | r,p r,q
Ilc(N%) -8 (¢ )]nNzOI S kPP + k(D9

‘Proof: Let zg be as in the statement of the corollary and define

- A1)z ). i =
vj(zo) = \’(W)\OI) zo), 0,1,2,....q,
v ( = max v,(z.).

0_J<q o

Then zoe .@MH') = Q(R(XOM (q+1)) implies that zy = R(AO;M) (q+1)vo for some

Vo€ 2. From (4.14) it follows that
r k N - r k_ N . (g+l)
| te oty s (e ) 1m 20 | | (e GRh) "-5, () 1m RO 1.0 Yo Iy
BT {(q+l) . (g+l) q+l r.q
< (My+Me )|[R(l°;%) nN-'nNR(Ao,.d) NO'N + YM}‘Q |v0|z(N)

<y ot1ef) | {R(xos.d) [R (A7 Q) m-M RO 5.0 )

: “"‘o—“”(q A, | + w‘{?lvolz‘r’q

R P e e iy 0 8 SRR TEI e v L <Y




< My wuedT) ? IR, .g/)’lluu X ALIELE TOT 0B

j=0 ' ;

. RO ) (T3 [, + ynq+1|v | (59 ‘

0 " To'N Ao 0z N %

< (M ey ? jl [R(xo.d)vr nNR(AO:_M)l }‘
j=0 (Re A -8)

q

. R(kozjiq(q—j) v

q+l rq
oln * e ol

(4.16)

(A

2

BT M (g-3j)

(M_+Me" ") —_—— | T - AR AR 1.9 vl
0 §=0 (re A -g)I*t < T NN

+ ymu¥ 1|v | (= )q

IA

2
T M (g+1-3j)
(" )Jgo m | afmy-my RO o T v

st v |, &9
0

2 -
< My +meT) % —-—-'1———+—1v (2) (§ 5HP 4 qu )y Iz(ﬁ)q
3=0 (Re 1, -8)7
< (yrme® m Viz@D) ( max  (Re A~8) N DP 4 iy |59
JE{I 2'¢oo'q+1} 0

ko(zo)(N)p + k (zo)(é)q, .for all N sufficiently large,

where (4.16) follows_from an application of the estimate given by (4.2).
o

Finally, we can summarize the above results in a theorem which will be

suitable for application in the discussions below.
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4.17. Theorem. Suppose {ZN’"N'%'C(Z)} is a factor stable ‘Discrete
Approximation Scheme with property (Pl) satisfying the hypotheses of Theorem

4.9. . Furthermore, suppose that %is a subset of .OJLMZ) N Dl for which

(1) * For each z € & there exists a K = X(z) such that

e R R TS

. P
| L m-n @z < k(2N

(2) There exists a subset..sq of ¥such that for ze;S’i and Ao with Re Ao > B
(a) s(tlze ¥, t€J[o,1).
(b) 'S(t)(/\OIMzGS", t€ [0,T] .

and the constants guaranteed by (1) for (a) and (b) are independent of

t € (o,T].

Then {ZN,ﬂN,MN,C(z)} is factor convergent and, moreover, for each

zoeyin_@mﬂ”) for which (AOI-M ijES/; j=0,1,2,...,q, there exist

" constants X

L kl(zo) and k, = kz(zo) which depend on zy. such that

ok o N P rq -
Ilc(N%) L. nNs(tk)]zole_kl(N) + k9, k =0,1,2,...,0N.

Proof: Theorem 4.9  ensures that {ZN,'HN,UN,C(Z)} is factor convergent. To

verify the second proposition, let zZ, be as in the statement of the theorem.

It follows that

f
i
%
:,0
E
3

. \ r k - N
(4.18) |G S -ms(e)1z,]

< leGofp nes g mrz |+ lisg e n-nshiz |

T e 3. TP RO T A




i S T 1k I M . S b A o S5 i = b A

P I,q I,p
< ko lzg) P ko (2)) (DT + kiz) ()

Lp rnq
= kl(N) + kZ(N) ’

where k1 = kl(zo). and k2 = kz(zo).

The estimates of the bounds on the first and second terms on the right-

hand side of (4.18) follow as consequences of Corollaries 4.15 and 4.5, res-

pectively.

5. The Padé Approximations and Characterization of Factor Stable/Factor

Convergent Discrete Approximation Schemes

Adopting the terminology employed in [12] and [15]), we make the following

definition.

5.1 . Definition. We shall say that a rational function r(z) is acceptable

with respect to the set {z€C: Re 2<0}, or equivalently a member of the class 1

aRe z<0’ if

. (5.2) (1) |r(z)-ez| = O(|zIQ+1). z+0,qg>1
(20 |e(z)| <1, =z€ {zEC: Re 2<0}

Among the most widely known classes of rational function approximations

to the exponential (rfae) which in addition provide acceptable subclasses

.are the Padé approximations [10], [37] defined by the formulae

pj,k(Z) =N,  (2)/D, ,(2), jok =1,2, ...

3k 3k
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where

%
= {j+k-m) tki m -
Nj.k(Z) mzo (34k) tm! (k-m) ! Z .
) _ . {j+k-m) 1§} M
Dj.k(Z) i (j+k) tm! (§-m) ! (-2)".

m=0

For the purpose of reference, we.state and in some cases prove the following
propositions containing results, properties and identities relating to the pPadé
approximations. The proofs of Propositions 5.8 and 5.9 may be found in

Ehle [12], together with the verification of Proposition 5.10 which is the

primary result of that paper.

5.4. Proposition. deg Pj k(z) = k-j, and
Froposition , ‘
lp, (2)-¢*] =o(|z|3*™**h,  za0.
ik

5.5. Proposition.

Dj’k(z) = Nk'j(-z), juk 20
5.6. Proposition.
' n
n k n a
k k
P, (2) 1 2. 1 o7 (l+2)
o,n xeo K 420 K!
where
(1) a; >0, k=0,1,2,...,n, all n
’ n n
(2) ) o (a/kl) =1
() & =&l x=0,1,2,...,n.
TR T : B . - ~—— o s L
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Proof: Let:
n 22 23 zn
Q/ = Span(l' Z, ?!_r 3—!' veoey ‘J}'
2 n
yn z gpan{l, (1l+z), {tz) -912)—} .

/2 R nt

Then if j,n: " Q/n is the coordinate transformation operator mapping @ n

. . +1 .
onto an, a simple calculation reveals that Mn: Rn+1 + " 1, its matrix repre-

sentation with respect to the bases defined above, is given by '

[~ ]

1 1

- le
pont
IH wIH

0 1l

Ih-u1H b'w
~ -
|0-'
’-‘

o
o
j
- N

e (n-2) !

N
W
-

The inverse of Mn may be caiculated, and is given by

1 -1

0 1l -1

'
-]
'H

L
21

NIH wl
Pt
wlt
-
.
.
L]
—_
\
(]
'

ik Sl
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Upon inspection, it can be observed that the coordinate identification

P, (DED T (1,1,1,1,....17e "1

- holds. Then if

n n _n n,T n+l
Po'n(z)Ey L (ao,al,...,an) € R

we have
(ah,a",a” a»T = mla,1,1,...,07
0' ll 2""' n n .
or
n
1 1 1 1 n-1 1 {-1)
SToartar st ot OV oo n!
n _n n, T :
(a.,a.,...,a ) = _ .
0' 1' n l - L
21! 31
1
2!
0
l
We verify (1) by induction. For all n, a: =12>0, a:_l =02>0,
n n 1 1l n
a _,= 1721 > 0, a-37371 " 31 > 0. Suppose & (2k-1) > 0. Then
2k
n n (-1) _.n 1
32k = 8p-(2k-1) T @EOT T ¥n-(2x-1) * 0T 2 O

o TSl il b
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n _.n 2k __1 _qy (2k+1) 1
a2 = Pnm(2e-n VT w@ar e 2 O

The veracity of (2) follows from

n n
n a n a
1<=p0n(0)=2ﬁ(1+0)k=2ﬁ.
’ k=0 k=0

Finally, for the verification of (3), we have

el 1 L L (n+1) - (k+1) 1
B "7 3r Ayt Y (B*1-(k+D)) !
1 1 n-k 1l _.n _ )
_—2—!- 3! . ¥ (-1) (n-k) ! "'ak ’ k—0.1,2,...,n 2
n+l _.n n+l _.n
a, =0=ajanda,, =13,
a

Techniques similar to those employed in the proof of Proposition 5.6

can be used to verify the following result as well (cf. [33]).

s.7. Proposition.

k
N X-mt+ (§-1) 1 K omt (4
N = - — m+(j-1)
33 = To Zo( N, (@ = 3 L j_g 12y n(2)
j 3 ) m=0

and

X .

(";j) mo 7%




5.8. Proposition. (Ehle) 1If for some j, k > O, Nj k(z) has all of its

4

zeros in the open left half-plane, then for all m > j, N k(z) has all of its
’

zeros in the open left half-plane.

"5.9. Proposition. (Ehle) For any n > 0, if N (z) has all of its

n+l,n+l

zeros in the left half-plane, then Nn n+2(z) also has all of its zeros in

14

the left half-plane.

5.10. Proposition. (Ehle) The diagonal and first two subdiagonal entries
in the Padé€ table of rfae are acceptable with respect to the set

{z€c: Re z<0}. That is,

{p (2)}, {pn+1,n(2)}' {Pn+2,n(z)} = =0,1,2, ...

n+l,n+l Re z<0’ "

It is Ehle's [12] conjecture that these are the only entries in the Padé table

which are of class uRe Norsett [25] has substantiated this conjecture

z<0 "

in the case of the third and fourth subdiagonal entries in the table, i.e.

{r (z)} and (P (z)}. More recently, Iserles [16], [17] has demonstrated

n+3,n n+4,n

that {Pn m(z)} is not acceptable if n-m Z 2(mod 4), n > m+3,

r

As is pointed out in [15], there are other classes of rfae in addition to
the Padé approximations which have been investigated with regard to acceptabil-
ity. 1In particular, the Norsett functions [24] with denominators of the form
(1 + az)n, a property desirable for computational efficiency, have been shown

to contain an acceptable subclass. However, since the Padé rfae yield an

acceptable subclass with an arbitrarily high degree of approximation, we are

content to restrict our attention to them alone.
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vVon Neumann's theory of spectral sets will prove a useful tool in estab-
lishing the factor stability of certain Discrete Approximation Schemes of interest.
The details of this theory, and the proof of Theorem 5.12 below, can be found in
von Neumann's original work [23), Riesz, Sz.-Nagy [32] or Berberian [8]). Similar
applications of von Neumann's theory of spectral sets appear in [15) and [21].

Let T be a bounded linear transformation on a Hilbert space H.

5.11. Definition. A set ? Cc (completed by the point at infinity) will

be called a spectral set for the linear transformation T if (a) it is closed,

(b) ? =2 o(T) and (c) for every rational function u(z) satisfying the

inequality |u(z)| < 1 for all ZG?: we have that ||u(T)]|| < 1.

5.12. Theorem. A necessary and sufficient condition that the halfplane

{z€cC: Re 2<0} be a spectral set for the bounded linear transformation T is that
Re<Tf,f> < 0

for all £ € H.

The next lemma, a modified version of the corollary to Theorem 6 in: [15],
will permit us to apply the above results in the characterization of factor

convergent approximation schemes. Due to the importance of this lemma, a

detailed version of the proof provided in [15] is included.

5.13. Lemma. Suppose

(1) c(z) € ¥

Re zf_o

(2) {z€cC: Re 2z<0} is a spectral set for T-BI, where 8 > 0 and T

is a bounded linear operator on a Hilbert space H.
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Then |C(§ T) | <1 + BKr/N for some constant K which is independent of N.

Proof: C(z) a rational function, and C(z) € ¥ imply that C(z) must

Re z<0

have finitely many poles, all lying in the right half-plane. Therefore there

-exists an M > 0 such that C(z) and C'(z) are analytic in {z€C: Re z<M}. Now

cliz e A implies that C(z) is bounded at =, and thus deg C(z) < O.

Re zip

Moreover, deg C'(z) = (deg C(z))-1 implies that deg C'(z) < 0 and C'(2) ‘is
also bounded at «. Therefore, an application of the maximum modulus principle

from the theory of functions of a complex variable guarantees the existence

of a K > 0 for which |C'(2) | <K for z € {z€C: Re z<M}. Let

c(z+§a) - c(z)

fN(z) = " .

N

By the mean value theorem of dif‘ferential calculus, we have

C(z+§s) - C(2)

] - I -
£,(2) = - =cue), ezl <38, £ = g2,
=8
N
Therefore

sup |fN(z)|= sup IC'(E(z))l <K
Re z<0 Re 2z<0

for all N sufficiently large (i.e. %B < M). Consider %(-fN(z) for N sufficiently

large. It is a rational function, and moreover
|%fN(z)| <1 for all z € {zEC: Re 2<0} and all N sufficiently large.

Since {z€C: Re 2<0} a spectral set for (T -BI) implies that it is also a

‘spectral set for %(T -81), N =1,2,... (cf. Theorem 5.12), we have

e e e e = SR

e e e ——————
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i :
1 r
a IEfN('E(T 1) | <1 or 'fu(;"r -61)| K

for all N sufficiently large. This implies that

i &I

Loyl - leiEr - gy - cir - X
;_ Heg ol - leGr -t f] < feE » - cer B} | < xBE

or

r r : KBr
'C-‘ﬁ ™| < lc<ﬁ<'r -81)) | + =

for N sufficiently large. However, C(z) € ?IRe z<0 and {z€C: Re 2<0} a spec-

tral set for %(T -8I), N = 1,2,..., implies that

letr -8 | <1 . ¥
Therefore,

x KBr
'C(ﬁ' T)l <1+ N

for N sufficiently large.

o

5.14. Lemma. Suppose that {ZN'"N' MN,C(Z)} is a Discrete Approximation

Scheme with property (P1) satisfying:
(1) There exists an inner product [-,-]N on zN that generates a

topology on zN equivalent to the standard ZN inner product topology for which

Re[._(imzu,zl\“]N < B[zN,zN]N for each zNG ZN and all N sufficiently large with

B > 0 independent of N;

(2) IIMNnN-ﬂNMzIN + 0 as N+ » for each z € D), where D, is a dense

La b e e, 4 W g O N

subset of Z contained in Z() ;
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(3) There exists a )‘O € C with Re )‘0 > B and Dz, a dense subset of 2
such that R(J\o;__a’)D2 C D,
(4) c(z) € Y

Re z<0°

Then {ZN,nN,MN,C(z) } is factor convergent.

Proof: 1In the light of the remarks in §2, condition (1) above and

ZN finite-dimensional are necessary and sufficient for MNE G(M,B) for all

N sufficiently l.arge. Therefore, if we can demonstrate that {ZN,nN,.MN,C(z)}

is factor stable, an application of Theorem 4.9-will yield the desired result.
Let ll | IN represent the norm on ZN which is induced by the inner

product [-, -]N and which obeys the norm equivalence relation given by
n a
ml.INill'IlNiM|'|N'

Condition (1) implies that Re[(.Q’N-—BI)z,z] § S0 for all N sufficiently large.
Thus Theorem .5.12 yields that {z€C: Re z<0} is a spectral set for the

operators MN-BI for all N sufficiently large. Moreover, C(z) € U d

Re 2<0 an

Lemma 5.13 imply

BKr

X
le@ag ]y < 1+ &

for N sufficiently large. _Therefore, for k = 0,1,2,...,0N, and all N suffic-

iently large, we have

k k ‘BKx, k BKr, N
oo™, < HeEap g < @+ 5O < @+ H5°

Hence

oo sl b st 1k i
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|C(§J}§)k|N < eBKT, k =0,1,2,...,0N and all N sufficiently large,

golxe

which implies that {ZN,WN,jy&,C(z)} is factor stable.
0

-5.15. Lemma. Suppose that {ZN’"N"ﬁyh’C(Z)} is a Discrete Approximation

Scheme with property (Pl) satisfying
(la) There exists an inner product induced norm ||'||N on Z, generat-

ing an equivalent topology to the standard ZN norm topology for which
IHE) |12 < 1 + arm
N N TN — !

for all N sufficiently large with a > O independent of N. Suppose further
that conditions (2), (3) and (4) of Lemma 5.14 are also satisfied by

{ZN,nN,Jy&,C(z)}. Then {ZN,ﬂN,Jya,F(g)} is factor convergent.

The proof of Lemma 5.15 may be argued by demonstrating that condition (la)
. . . 2 ‘
implies condition (1). Indeed, if ||z|l“ = [z,z]N, it is not difficult to show

that (cf. [33])

a
Re[J!&Z'ZJN j_;[z,z]N.

-

The next theorem serves to characterize a certain subclass of the Pade

approximations and the factor convergent approximation schemes that it

generates.

5.16. Theorem. Suppose that {ZN,nN.QI;,C(z)} is a Discrete Approximation
Scheme with property (Pl) satisfying either condition (1) of Lemma 5.14 or .

condition (la) of Lemma 5.15 ~ in addition to conditions (2) and (3) of

Lemma 5.14. Then if C(2) € {P'?T"_;!“"l(Z)} or C(z) € {Pn+l.n(z_)} o.r_




C(z) € {sz'n(z)}, n=1,2,..., where Pj,k(Z) rep?esents the (j,k)th entry

: in the Padé table of rfae, the scheme {ZN, ,MN,C(z)} is factor

m
N
convergent.

Proof: Proposition 5.10 and Lemmas 5.14, 5.15 above.

As w th i ’ i

s we have seen, the construction of {ZN,wN,MN,C(z)} with C(z) € ﬂRe 2<0
together with the theory of spectral sets will enable us to

characterize large classes of factor stable and thereby factor convergent

Discrete Approximation Schemes. However, if C(z) € Y

Re 2<0’ condition

(5.3) deems it necessary that deg c(z) < 0; that is, if C(z) = N(2)0 (z),

then deg D(z) > deg N(z). Unfortunately, the restriction that deg C(z) < O
precludes the investigation of many approximation schemes comitonly encc;untered

in practice, and often with many highly desirable properties, via this approach.

Ty T S T TR A Ay s

In particular, explicit schemes, i.e. those for which deé D(z) = 0, are not

acceptable in the sense of Definition 5.1, but are computationally desirable,
since no operator inverse need be calculated. Fortunately, however, we shall
Se able to investigate a wider class of approximation schemes than those con-

- structed with C(z) € ?IRe 2<0 through the application of other techniques to

-

P DN e M IR

be described below. T

5.17. Theorem. Suppose {ZN'"N"%'C(Z)} is a Discrete Approximation Scheme

with property (Pl) satisfying conditions (1a), (2) and (3). 'Then if C(2) =

Po'k(z), kK= 1,2,404¢ {ZN’"N’%’CLZU is factor convergent,

Proof: 1In the light of the arquments in support of Lemmas 5.14 and

5.15° and the fact that the Py k(z) satisfy conditions (1lb), (2b) and (3b)
. ’




of Theorem 4.9, ., we need only demonstrate that {ZN LQ[ P, (z))
1,2,..., are factor stable before we can apply Theorem 4.9 to obtain the .:
desired result.

If we again assume the norm equivalence relation 'x}‘\l-|N < ||'||N

ﬁI'IN’ we have for n = 0,1,2,...pN and all N sufficiently large

k
k a,
. no_ i R AP I8
€5.18) e Ok(NM) Hy = “(on 5 (e D7

k k
¥ j X il r jyn
(jZo g " Z 51 Hagep 1HD

.
k . . .
(3 da+3EmIn o (2 orimn
- 320 ! N -, !
ak
( 2 —l eurk/N)
j=

where (5.18) above follows from an application of Proposition 5.6. Thus

l1|
| 0 k ﬁiif) lN Y emk ’ n=0,1,2,...,0N for all N sufficiently large,

and hence {ZN'"N'jg&'PO k(z)}, k =1,2,..., are factor stable.
, 4
0

, 5.)9. Remark. For purpose of reference in the arguments that follow, the

reader is reguested to note that inequality (5.18) above implies that

urk/N
18y, G311y <

5.20. ' Lemma. Suppose {ZN.H Jlf Pj k(z)} is a Discrete Approximation

Scheme with property (Pl), where P (z) =N (z)/D

3,k i,k (z) is th? (j.k) th

Jok
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entry in the Padé table of rfae. Then if condition (la) of Lemma 5.15

above is satisfied, we have that

| (—sz) l i, n=20,1,2....,nN
. for all N sufficiently laxge and k = 0,1,2,..., where Ci is independent of
h, N and j.
Proof: Proposition 5.7 implies for n = 0,1,2,...,pN, N sufficiently large
“that

X !
yn 1 k-m+ (i-1) r n j
[l jok Gy = 11 3, mZO( -1 P, Gy 1

1 : K .
< ( 1 z (k-m+(3-1))|lp

: . G "
(kfj) n=0 3-1

O,m N

ol i

Z ( -m+(3-1)) arm/N)n

I A

(k+3)
]

=0

n

‘ k
& < (—— V¢ k-m+ (- 1)) Qork/N

| : )
; (k‘;J) mo J°1

[

ark/N, n arkp akT

= (e ) <e =e .

Therefore, assuming the norm equivalence relation in Lemma 5.14, we have

o o ] e AN R D B N,

5?‘3?

I . .

3,k N =Cy n=20,1,...,pN, all N sufficiently large.

's | 0

5.21. . -Lemma. Suppose {zN’"N'jyk'pj,k(Z)} is a Discrete Approximation Scheme

with property (Pl) where P, . (2) = N (z)/Dj'k(z) is the (j,k)th entry in the

ik b 3
Padé table of rfae. Then if there exist constants M,f for which either

3 - _

g +
- ,.,.*.é‘, T e T, I

5.';-‘5.:“4,;"#3;{;4(;,@"»!:: B Rt~ T . s . T " T

e AR Ty 3 e Y
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(5.22) (1) MN € H(w,B,M (cf. §2) for all N su_-fficiently

‘large and some w > 0

i 0 i SIS %o i 45

or

(5.23) . (2) .Q{NE G(M,B) for all N sufficiently large and the roots of

D. . (z) are real,
j.k :

we have, for j < k+2,

AP s 1 g oot 3

r -n 2. =0,1,2,...,0N for all N sufficiently large,
lp, k(N%) ‘Nf.cj' n +do

e e

where cz. is independent of N, n and k.
J .

Proof: Propositions 5.8 and 5.9 imply that Nj k(z) with k < j+2 have
. ’

their zeros in the open left half-plane. Indeed, NLl(Z) =1+ %z has as its

i only zero z = -2, Then if we adopt the conventions that:

O T

(a) A—B denotes the implication that "A has its zeros lying in the ;

open left half—élane implies B has its zeros lying in the open left half-
plane” justified by Proposition .5.8;

(b) A =B denotes the same implication as in (a) justified by Proposi-

?
;I
4
i
A
k!
4
i

tion 5.9, '

the following table can be constructed to substantiate the claim.

-— e [

R - LN i Wit
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/NO,Z(Z)
Nl'l('z) Nl,lZ(Z)
@ b
N:Al(z)v N_,}z(z) ‘
' \NA%I(.Z) N4!2(z)
Ns%l(z) Ns%z(z)
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N1,3(2)
NZ}B(Z) N2'4(z)
N313(z) N3%4(z) “3,5(2)

N4{3(z) Nyly(2) N4{5(z) N, ¢(2)
! (2) l ) N l ( )4ﬂ N (z) N_ _(z)
Ng 3(z)  Ng ,(z2) = Ny 5z 5,6'2 5,7'%
| | l | |

e e

Proposition 5.5

implies that Dj']éz) = Nj K-2), which in turn implies that

Dj k(-z) with j < k+2 has all of its zeros in the open left half-plane. Thus,

Dj k(z) with j < k+2 has all of its zeros in the open right half-plane.
’

Therefore, for j < k+2, it follows that

o, (@) =1% 1§ adka] withrerd*>o0,i=1,2,....3
j.k Gk i=1 i i
3j
and oF = I a3k,
3 =] i

Note: 1In order to simplify notation, the j, k superscripts and subscripts

on 6‘; and Az'kl, i=1:,2,...,j, will be suppressed in the discussion below.

Working formally, we find

r -n; _ (L 3 r -n nyl x -n
|Dik(N%) IN |G 121“‘11' N"VN)) IN = s '121“’"1- E‘%) lN
3 n j A.N

n r -n N, n i -n
< fof® 1oy gap Ty sl 1 @7l e ™

Now, Re Ai >0,41i=1,2,...,3, guarantees'that |arg Ail < n/2 and Re -:__1 Xi >

B, 1 =1,2,...,j, for N sufficiently large. Thus du € G(M,B) or

e ——— e S =

v e e 1

R




%E H(w,B,M) implies that the operator inverses in the preceding inequality
exist for N sufficiently large. Furthermore, in the case that (5.22) holds,

we have

) 3 AN
5|0 gn - -ny _ n N.n i, n
6] . 1” |( - ) = 6] 121(‘) IR 07|

‘ 3
n N/ n N _ay D
< |s} igl(r) M(lrxi| gy ™.

j
= 8" 1y, [T

Br
- )
i=1 i IAiIN

-n

-n

3
- -ny 3
|8)™ (ln 1Ay 17 M n (1- Tx—ﬁ?

-n

j
_ e ni..Jj _ _
IG HG |M II (1 'r)\—-‘—u-) =

J

M](H(I-T)‘—TE) ) =< '_1

5 '

J Br

M° T (1 - )
lxilu

i=1

for all N sufficiently large with C§ independent of N. The calculation above
. . Br .-N _ :
follows from the fact. that 11%(1 - Ti:m) = exp(Br/hil) implies that
Br -N . . .
1 - Tk_il'ﬁ) ,i=1,2,...,j, are uniformly bounded in N.
when (5.23) holds, the appropriate steps in . '(5.24) are replaced by
n j N n n j N n
|61n(~) .%)i<|s|n(r —————-|6|n(m(|x|e).
=1 " e 3 -8)" i=1
where we have used the assumption that J\i €R, 1=1,2,...,5. The remainder

of the proof proceeds as in the previous case.
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5.25. Theorem. Suppose that {ZN,ﬂN,Jxa, P. k(z)} is a Discrete Approxima-

. i tfiop K gg e

tion Scheme having property (Pl) where PJ (z) = N (z)/D (z) is the . )

11 (j,k) th entry in the Padé table of rfae and j ik+2- Suppose further that

AN JJ',P (z)} satisfies conditions (la), (2) and (3) referred to in ,
i i
1

. Theorem 5.17 in addition to either

(4a) MNE H(w,B,M) for all N sufficiently large and some w > O

(4b) {r€cC: D (J\)-O}C R.

Then the scheme is factor convergent.

Proof: Once again, we need only demonstrate that {ZN,nN,J&%,Pj k(z)} is g
’

factor stable. Lemmas 5.20 and 5.21 imply that

or n o _ r -1 xr n
1oy, 5% Iy = 110y %) N R ly

_ r -n n r -n
. - IDj,k(N‘/N) N; 'k N"j) | le,k(N"(yN) INI 3, k(NM) IN
f
! 2.1 _ k .
i 2 C5% = S5

n=20,1,2,...,0N, for all N sufficiently large with C§ independent of N.
D

A DAS of the form (ZN,nN,JJQ,Pl k(z)}, k=0,1,2,..., satisfying conditions
. ’
: (la), (2) and (3) stated above is factor convergent. Indeed, D, k(z) is
[ 4

linear in z for each k and thus condition (4b) is satisfied as well. Unfortunate-

ly, it cannot be argued that this is also the case for DAS of the form
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{zN,nN.MN.Pj k(z)} with j > 1 and k = j-2,3-1,1,j+1,... . In fact, it can be
’

demonstrated (cf. [33]) that {)C: D, k(A)=O} consists of complex conjugate
’

pairs for each k and {AEC: D, k(k)-O} consists of one real value and a complex
’

i Y R L R

conjugate pair for each k.

Finally, we can summarize the preceding results with the following theorem.

5.26. Theorem. Suppose {zN'"N"wN'Pj k(z)} is a Discrete Approximation
’

Scheme with property (P1) satisfyinq

(1) I[MN"N-"NMZIN > 0 as N + » for each z € Dl' where D1 is a

dense subset of Z contained in () ;

(2) There exists AO € C with Re )‘0 > B and Dz, a dense subset of Z for

which R(AO;I.Y)D2 c Dl'

and Pj ,k(z) is the (j,k)th entry in the Padé table of rfae. In addition,
’

T o T O

consider the following supplementary hypotheses which may be satisfied by

|
{Zyom

P

N’MN'Pj,k(Z) }:

(-) % € H(w,B,M) for all N sufficiently large and some w > 0O (M,8

‘independent of N), together with condition (la) of Theorem 5.17;

LT ~a Fo Tt R AR OIYE

(]) condition (la) of Theorem 5.17;

(0) MNG G(M,B) for all N sufficiently large (M,B independent of N).

Then the scheme {ZN'"N"“’N'P 3 k(z)} is factor convergent under the additional
[

hypothesis (-), (|) or (O) respectively if that symbol appears in the (j,k)th

position of Figure 5.27 below.
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k)i o 1 2 3 4 5 6 17 8 9 10 =
0 + O+ o+ o+ o+ o+ o+ o+ o+ >
1 ® @ + + + + + + 4+ + o+ -+
2 @ ® - - - ~ - - - - >
3 ® ® o - - - - - - - >
4 ® © & - - - - -~ - o
5 ® 8 © - - - - - =
6 ® © & - - - - >
7 ® © & - - - =~
8 e  © - - -
9 ® ® ® - -+

10 ® © o -
‘ P A T

Figure 5.27.

R e

5.28. Remark. It is important to note that we cannot make the claim that the

results presented above represent a complete characterization of the factor

stable/factor convergent Discrete Approximation Schemes constructed with the
Padé rfae. In fact, numerical results indicate that stronger conclusions may

!

t

] : indeed be drawn and that further investigation is warranted.
! DA
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6. Averaging and Finite Difference Discrete Approximation Schemes

[T ———

A Discrete Approximation Scheme {Z:‘,ﬂ:M:,C(z)} will be said to be

of the Averaging and Finite Difference (AFD) type if it has been constructed

in the following manner (cf. Definition 3.3). For each N = 1,2,..., let

7N = 1:(0) n; (0) 1, (N) n; (N)
Ar—‘span{ Gy v oeeer B eees SO, O }
with
Jath) - (5.,00, 3 =128 385 @N15, k=1,2,...N
3 N k j .
j=1,2,...4n
where

jth

éj = (0,0,...,1,0,....007€e ", 0 =(0,0,...,00 € R",

N
0 is the R"-valued O-function defined on {-xr,0), and xk(-) € Lz([-r.O) iR),

r r
1, t € [-kg - (k-1)F)

N
X, (t) = ¥ (t) =
k [-kE, - (k-1)5)

(] otherwise, k =1,2,...,N.

6.1. Remark.

(i) 2;‘ is an n(N+l)-dimensional subspace of Z.
(ii) For k, £ > 1, we have that

0

» AL PY ¢ ) N, = N, . =
<y v $N >s J <xk(e)ej, x,t(e)epRn ae
-X

proe

T . - e 10

1 ———
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(o}
= N(g)xN(8)e'e,d8 =
f xk(e)xz(e)ejeide 0
unless k = ¢ and j = i, in which case

N - -
<%y (01&,, xE(O)ej>d6

0
¢(k) a0, I

N VA
0 -(k-l)ﬁ
= NegysT = =L
= ] xk(e)ejejde = I i dae = N -
=X -kﬁ
(iii) Clearly <J$b(10) , l@;k) >y = O unless k = 0, j = i, in which case
<)¢(0) ¢(0) = 1.
2
For each N =1, 2, ...
A A N n
(1) Define z, by z, = X R, where an element in Z: is denoted by
0

- - - - A - ]
= (05,0, 08, ..., 0) € Zo; a cr®, §=0,1,2,...,N.

The mapping o:: 2:: > ZS is defined by

N n
N k ja(k)
(6.2) o, () T 6.
Ak=0 j=1 3 N

IR

=) (uo, Zakxk( ) = (ao al'az""'“u) =
i i, T n .
where ai = (al,az, ...,an) €ERrR,1i=0,1,2,...,N. Using the mutual ortho-

gonality of the {j¢t:k)} (cf. Remark 6.1), we have for a, B ng

<a,8>y =<(™) Lo, (GN)"J‘_B}z

- <z zal; j¢(k)' E Z B (k)>z
k=0 j=1 k=0 j=1 3
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W s

Z ) gk 330 330,
k=0 j=2 73

Z

n
0,0 j2 (k) J 2 (k)
= Z uij + Z S a < ¢ ¢ >,

(2) Again using the mutual orthogonality of the {J$£k)}, we calculate

B R

ﬁA, the orthogonal projection of Z onto the subspace ﬁN. Indeed, for

3 N A
(n,6) € 2:
2A - k k k j~(k
B0 = 1§« 0,38 g 5 3R, 3R

| k=0 j=1

‘ ] ,

= ] <9, (5,005, 30
3=1 ?
N n
i + 1 ) g<( ), ‘O'Xk( )e )>, J¢(k’
k=1 j=1
-(k-1E
~ (k)
= Z (n'e, )(e :0) + 2 I (— [ jwnde) 4;
j=1 k=1 j=1 —kr/N

4 - (k-1 %

3 =T N -
| = (n.o) + (o, Z Z (-— I ej Ne)de)xk(-)ej)
i k=1 j=1 T “xz/N

.

1 -(k-1)E

; _ N N _ N -

¢ =(n, ) ) (% f e';ue)ae)xk(-)ej)

i k=1 j=1

g =kx/N

i

i

!

i e emer e e e o e e - — e i
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-(k-1)§
- N N N
=(n, ) < [ ¢(8)a8) x, (*))
k=1 = _xeoN

N
- <N N
= (M, ) ¢.x ()
!S=1kk

where

-(x-1E

=N N N

5 = I $(0)a0, K = 1,2,...,N.
-kr/N

N |

Representations for the mappings w:: z > Z: and (ﬂ:)-lz Z: + Z can also be
- - - = - A
calculated. For (n,$) € 2z and (vo,vl,vz,...,vN) € Zy ve have

N
6.3 R0 = BT = ah(A, L BGC) = (LAY
k=1
and
A-l- = - N.-1,- = - - Y_ y
() T (V¥ seen sy = (0,) (VgrVyoeenrvy) = (¥, ,kzlvkxk(-)).

(3) Define.ﬂf:: z: > Zﬁ as follows. Let

2(*;N): {0,1,2,...,v}->{0,1,2,...,N}

-

be given by

LN =k AE -1 €IS, ~(-DD), 3 = 01,2, 0w

3

that is to say

€ (-(HNE, ~(EHN-DFP, 3 =012, 00y,




s, Srteacy a0 e
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mmfmvez,v—w,vmy“”%)aﬁm

1

(6.4 v = (LNy, DMY)

‘where L(N) € .Q(z:, R") is given by

N 4
v N -(J-l)ﬁ )
L(N =
Ny 21 Ve 4,m Z D(8) bV,
-3jr/N
A N n
and D(N) € Q(ZN, X R) is given (by its matrix representation with respect
1l
to the basis for z: discussed above) by
N+1
[— N A 0 - o
r r
A e .0
r r
N ®1I
n
N N
r . r
— -

where In represents the nxn identity matrix and @ is the Kronecker product.

Hence

L(N)y, j=0

N - -
;(vj-l-vj)' j = 1,2,...,“.

6.5. Remark. The justification for the characterization of the schemes

defined above as averag:[ng/finite difference should now be clear. Indeed, as




is evidenced in (6.3), (n,¢) € Z is approximated by ﬂ:(ﬁ,w =

(ﬁ,$§,$g,...,_$s) € z: where

Y
- - -1)-N-
¢j = ¢(0)ae
-jr/N

is the average value assumed by ¢ on the interval [-j%, -(j-l)%l . Fur-

~

thermore, (6.4) reveals that for v € ZA, an approximation to ¢ =

N
(6(0),0)€ DA, 4y = (L(Ny, DINY E 2 approximatesdf = (L(4),DP) € 2

via a finite difference approximation of the differeritiation operator.

6.6, Lemma. {Z:,ﬂ:M:,C(z) }, an AFD Discrete Approximation Scheme as

defined above, will have property (Pl).

Proof: For each (n,¢) € 2 we must demonstrate

1A

A, - = B = = '
(i) " -1 (1,0 |, |20, 61,00 |,

I(I-f’:) (R, 0) |, + 0 as N > =,

Since 1;: is an orthogonal projection, |13§| < 1, and thus the operators
{(1-13:)} are uniformly bounded in N. Therefore it suffices to demonstrate

that (6.7) obtains on a dense subset of 2. 1In light of this we consider

the subset & of Z defined by

% = (R, $)E z:6ECt (-r,0) ).

R

The set ¥ is dense in 2 by virtue of the fact that Cl(-r,o) is a dense subsget
of Lz(,-r,O), and, for (n,$) € Z, the-veracity of (6.7) can be argued in a

straightforward manner (cf. [33)).




Following Reber [29], we construct the following weighted inner product

on Z:. Let k(-,N): {0,1,2,...,N-1} » {1,2,...,v} be given by k(j;N) =

. N X
min{k>1: -TkeUi=j+1 Ji}, where I, 0= l-ir/N. -(1-—1)N) and

1 j =N ;
g = gN =
J J v ]
l + Z lAil' j = oper,..-,N-lo
i=k{3j:N)

A
Then for a, B € Zy+ we define

N T 2
§ L9 o8 |laf ly = teaaly
k=1

=
o
o
Zin

Noting that 1 < gg 2+ 2;;1 |Ak|) , we have

Y
1/2
e 1y < ae T2,

and hence the two norms |- lN and H- l IN on Z, are equivalent.

The next lemma is essentially a restatement of Reber [29, Lemma 6.2) for
the case of an autonomous system. The rather lengthy and technical proof of

Lemma 6.8 has been omitted. The arguments can be found in their entirety in [29]).

6.8. Lemma. For (Z:,n:ds,C(z)} an AFD Discrete Approximation Scheme as

defined above, we have

[1¢z + 2B ([2 <1 + axw

- B R e e o —




for all N sufficiently large with o > 0 independent of N.

Recalling Lemma 5.15, we note that Lemma 6.8 will also imply the existence

of a B > 0 for which
(¥hz,2] < Blz,z],  for N sufficiently large

where z = (;0';1""’;N) € Z:, and B is independent of N. A direct proof of
this result can be given, and can be found in [33]. The required arguments are

in the same spirit as those employed in the proof of Lemma 3.6 of [4].

R A A
6.9. Lemma. For {ZN,WNMA ,C(z)} an AFD Discrete Approximation Scheme as

defined above, we have

| b ezl = X(2) (/W as N » @

for each z € ng), where K(z) = K((¢(0),d)) = K(|$|w,|$|L ).
. 2

The proof of Lemma 6.9 can be found in [33]. The arguments are similar to

#

those used in the proofs of Lemma 3.2 and Corollary 3.1 of [4].
The next lemma enables us to apply Theorem 4.17 to AFD Discrete Approximation

Schemes to establish estimates fbr the rate of factor convergence,

6.10. Lemma. Suppose zo = ($(0),$) € ng) and S(t) z, = {x(t) ,xt), where

1
i
1
:
3

x(t) is the unique lsolution to

x(t) = L(xt)

o = ¢

Then there exist constants Ml' Mz such that

i

L.

B k2 R g e
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; 61. |
‘ |
; ' 1
§ x|, <m, o€ 10,T] 1
; (2) |x°|in M, geE[0,T].

Proof: zq eg(dz) implies that ¢ € w;(—r,o), with &a(_O) = L(¢), which in

f
!
i
turn implies [ 7] that x.E w;(-r,T)Ccl(—r,T) . Therefore %(+) is a contin- ‘
~uous function on the compact set [-r,T]. Hence, there exists an Ml such that }

|%|, < M, or I"‘ol., < M), for o €0,T].

To verify the second proposition, we note that xewg(-r,T) implies the

T
existence of an M, such that ”x(o) |2do < Mg. Therefore, for ¢ € [0,T] we have

' -
l Q 0 g
' . 2 . 2 . 2 . 2
i |x0|L2 = f lxa(e)l as = [ | x(0+6) | a6 = I | %(u) | “aa
; -r -x o-r
| T
: :J k) | 2o < 2.

g ' Finally, we apply the theory developed in the preceding two sections

* . to AFD approximation schemes in order to characterize a class of factor con-

vergent schemes of this type.

' 6.11. Theorem. Suppose {Z:,":od:,P (z)} is an AFD Discrete Approxima-

i

!

!
3.k |
(z) is the (j,k)th entry in the Padé ;
X

I

2

i

i

-

tion Scheme as defined above, where P

s el i s inanab

ik
' table of rfae. Then if either
i
}

i
' (6.12) (1) j =0, or 1, with k arbitrary, k = 1,2,...

or
: (6.13) . (2) 9§ = k,k+1,k2,..., Xk.=1,2,...,

g ————

the scheme is factor convergent. Furthermore, for such j and k
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roAnA _ AN nr- i+
l[pj’k(M> - stz = o+ oanth,

e ¥ R R et T R i

n=0,1,2,...,pN, for each z°€ QWJH“Z), where the constants in the 0(-)

term necessarily depend on z,. |

Proof: Lemmas 6.8 and 6.9 . above, together with the choice Dl = D2 =

i 9@2) and an application of Theorem 5.26, guarantee that the scheme is |4

factor convergent. Let us now consider the estimates for the rate of factor

convergence. We choose & = QY2 g S DA ). Then, for
1l

>‘0 € C with Re )‘0 > B, we have (AOI:M]'ZOE %, i=0,1,2,...,j4%. Further- '

more, upon inspection of the constant K(zo) in the statement of Lemma 6.9, it is

immediately seen that Lemma 6.10 implies that K(S(t) zo) , t€ [0,T), and

K(s(t) ().OI:M zo) , t € [0,T], are independent of t. Thus all of the hypotheses

of Theorem 4.17, are satisfied, and the desired conclusion obtains.

o

6.14., Remark. In practice, it is observed that AFD approximation schemes :

satisfying conditions weaker than those stated in (6.12) and (6.13)

factor converge. Two possible explanations for the observed behavior of these

|
)
]
1
schemes can be offered. ‘
- (1) The M: as defined above are,’in actuality, contained in H(w,B,M) l
for some w > 0 and all N sufficiently large. Unless the.d:
are negative definite self-adjoint operators on ZS (cf. Kato I1gl,
Krein [19]}), which is clearly not the case, this condition is in
general difficult to verify. If, in fact, it could be demonstrated

ﬂ\atﬂg € H(w,8,M for all N sufficiently large, based upon an 1

application of Theorem - 5.26 stronger conclusions could be drawn.

~Figure 5,27 does not represent a complete characterization of
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factor stable Discrete Approximation Schemes constructed with the

e Hod, L L re ™ g e T

Padé rfae.

Both of these conjectures remain, at present, unsubstantiated.

“7. Spline and Variational Discrete Approximation Schemes

For each N = 1,2,..., let

~(0) '6(1)

AN_
(7.1) Zg = Span{¢N N N

where 6;3)69(_@ cz, j= 0'1'2""’kN' Note that 22

subspace of 2. Then a Spline/Variétional (SPV) Discrete Approximation Scheme can

is a (kN+1)-dimensiona1

be defined as follows:

k +1

S .. .. 1. (NoN_ N-1 N, -1, P N1, N1
(1) {ZN.< ' >N} = {OSZS,<(OS) (-),bs) ( )>z} = {R +<log) ( ),(OS) ( )>Z}

i

N . . . .
where og is the canonical isomorphism which associates with each element in
+1
AN : .
Zs its coordinate vector in R determined by the basis defined in (7.1);

P

(2)

L . o v M———na e 7 2

S S -1 S .

"N' zZ > ZN and "N : ZN -+ Z are given by
S N»g S,-1
LV g PN and (WN)

S = (og)-1 respectively,

e e A e VDnin i3

where ﬁg is the orthogonal projection from Z onto ﬁg with respect to the Zg

inner product defined in §2;

Lt e s & oid ot

s ._.8 S . Sop 8.1
(3).@':. 25 > z0, oy T AT N=1,2,...

e e e e
- U
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7.2. Remark. In the case that %;J)} is an orthogonal basis, we have for
- =, .8
Q, B G ZN
- = ~(3),2
<a,B> = z |¢ IZ a.B,
N =0 N jJ
‘and for (n,¢) € 2
kN
S _ ~(4) -2 2(3) . Na(3)
mg(n.¢) = jzo o7 157 <t ,8 V>0 8y
k
N
~(j) -2 ~(3) =
= 7 le 15" <, ¢),0.7> e,
j=0 N N 275
_ ky+1
where ej = (0,0,...,0,1,0,...,0) €ER .
jth
7.3. Definition. We shall say that an (SPV) Discrete Approximation Scheme

has property (P2) if for some integer k > 1 we have

(1) lim L(Y) = L(4) in "
N

(2) 1lim D¢" = D¢ in L,(-r,0)
N-»co

for all ¢ € ck(-r,o) , where ¢N is defined by the relation ﬁg@ = f’g(NO) $)

N ~
= ("(0),¢") € 2.
As in the case of (AFD) approximations, we define a special inner product

and associated induced norm on Z: which generates an equivalent topology to the

topology generated by the standard Zz inner product. For «,B € ZN' let

———

—————

g[E,EIN - <« (o™t

& Bl 1311 = 1aay,




where <~,°>g is the inner product on Z defined in §2.

b+ 7.4. Lemma. For {Zi : fl'C(Z)} an SPV Discrete Approximation Scheme as
i

defined above we have

J¥y 21y < BJE. 5] N=1,2,...,

for z € zi with B > 0 independent of N. -

Proof: Using the dissipativeness of Q/-BI with respect to the g inner product

(cf. §2), we have

Jdii,zln = JHISQJX’(“;) g .z] = J9s PgMd 71z, zl

N, -1 N~g N, -1- N, -1=~ _ .29 N, -1- ~ N, -1-
<(a) oSPN—W(os) 2, (0g) 2 > = <PNMOS) z, (0g) 2>

v 7
L]

N -1- N, ~1~ Ny~1l- N, -1=- ‘
Aog) "z,p0(0,) 2>y = <Qog) "z, (05) 2>,

~1- -1-

r(ON) z> = BJErEIN

A

N
B<(_°S)

O

L N,C(z)} an SPV Discrete Approximation Scheme

1

i 7.5. Lemma. For {2 ,ws
¢ -

: with property (P2) we have

|[M:w:-wrs¢ﬁ]zolu +0 as N + =

for each z Eg(dml) , where k is as in the statement of Definition -7.3.

P e TR TR ERER T
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(k)

Proof: $ = (¢(0),¢)EE£2LQ¢k+1) implies ¢ absolutely continuous. Therefore

R -1 S -
IWS'HN M]MN = I[ﬂ:.ly(ﬂz) "3'"NM¢IN

(7.6)

A

[P

(7.7)
2 l/2

> 0 as N + =,

(™ - |2+ |pe" D¢|
R

where the estimate in (7.6) follows from Lemma 3.7 and the one in (7.7) from

property (P2).

+
If we select Dl = D2 = E?(ka 1), Lemmas 7.4 and 7.5 above, together with

Lemma 5.14 and Theorem 5.16, yield the following theorem and its corollary.

7.8. Theorem. Suppose {Zz,w:,ﬁfz,c(z)} is an SPV Discrete Approximation
Scheme with properties (P1) and (P2). Then if C(2) € uRe 4<o¢ the scheme

is factor convergent.

7. Corollary. Suppose {Z . ,EKN,P (z)} is an SPV Discrete Approxima-
tion Scheme with properties (Pl) and (P2) where Pj k(z) is the (j,k)th entry
in the Padé table of rfae. Then if j = k, k+1 or k+2 and k > 0 is arbitrary,

the scheme is factor convergent.

2 (3)

As a particular example we consider the case of the ¢

(¢;j)(0) ¢(j)) chosen with the ¢(j) as first-order spline functions (cf. [27),

(34]). We make the following definitions.
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(1) Let
AN _ 1.(0)  2-(0) n-(0) 1-(1) 1-(N ~ (N
Z, = span { €y 1 Ey v ceer €y 4 eé poeeer ey ), cees #eN )},
where
- n
¥ ej = (0,0,...,0,1,0,...,0) €R
|
, .
and
ialk) _  k K, =
ey = (eN(O), eN( )ej)
with e:(') denoting the scalar-valued first-order spline function on [-r,0]
characterized by the relation
] k,-ir . .
i —_—) =
$ eN( N ) = Gik' i,k =0,1,...,N.
o
r 1 N;N N, . i X .
13 Then ZN = OSZl' where Og is the canonical isomorphism defined above.
i
% . 1 1, .
(2) The mapping L zZ > ZN is defined by
E 1 _ N1lg
X "™ =% Py
' where 1§g is the orthogonal projection associated with the subspace 2? with
i respect to the Zg inner product. The right inverse of n;, (w;)_l: Z; + 2,
@ is defined by
B |
3 1,-1 _ , N.-1
(WN) = (os) .
!
1
i

R m AP A e . o
. S et OF S AT S R .
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1

1 .
<>
N ZN are given by

(3) The operators JY:‘]: z

1 1 1, -1
‘dN = nNM(ﬂN) .

Using the well-~known properties of interpolatory splines [34] and the
fact that aN = lf’g@ for ff»G 2 satisfies a variational condition by virtue of
the fact that 11;3 is an orthogonal projection, we have that the following
result obtains. The details of the proof, which are omitted, can be found

in [ 6], Theorem 4.1.

7.10. Lemma. The SPV Discrete Approximation Scheme {Z;,n:‘,d;,c(z)}

defined above will have properties (Pl) and (P2).

As a consequence of Theorem 7.8 we have

7:11 Theorem. If, in the SPV Discrete Approximation Scheme
1 1 1 . . .
{ZN' "N"'d ,C(2)}, C(z) is chosen from among those rational functions in the

class QlRe z:o, then the scheme is factor convergent.

In order to estimate the rate of factor convergence for the linear

i --
spline approximation scheme defined above, we rely on results established in

i

{6]. Remark 4.1 of that paper guarantees that

i

(7.12) |w;n§-n;ma|n = 0(1/N) as N +

for each ¢ € {(4(0) .¢)=¢EC%'2',O)} Dg(_da) , where the dependence on ¢ of the

R " Rt -
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constant K in the O term in (7.12) can be expressed by

(7.13) K=K =KJo] 18] .
2

-Furthermore, the nature of the dependence in '(7.13) is such that Lemma

6.1 . guarantees that for z € 2@ and Ao € C with Re X > 8,

K(S(t) zo)| and K(S(t)O\OI:;Mzal are independent of

t€ [o,T] t€(0,T]
t€ (0,T]. Thus, by analogy to Theorem 6.11, we have the following result:

7.14. Theorem. If, in the SPV Discrete Approximation Scheme

{z} n, L, p (z)} ‘as defined above, p_. (z2) is the (j,k)th entry in the
N NNk 5,k '

Padé table of rfae, with j = k, k+l or k+2 and k > 0 is arbitrary, then the

scheme is factor convergent. Furthermore, for such j

roAnl 1. N - j+k
[1ey L RN TS () 120 [y = 01/M + o/,

n=0,1,2,...,0N, as N > », for each zOGQWj+k+3) . The constants in the
0(-) terms necessarily depend on z,-
7.45. Remark. Further improvement in the rate of factor convergence can
be achieved via the formulation of SPV Discrete Approximation Schemes employ-
ihg bases composed of highér-order spline functions'. In particular, if cubic
splines are usgd, the SPV Discrete Approximation Scheme {z;,ns,_(y:,? j,k(z”
is factor convergent for j = k, k+l, k+2 and k > 0 arbitrary. For such j

and k, it can be further established that
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r n3 3 N - 3 j+k
IIPj'k(NMg) ™ "Ns‘tn)]zoln O(1/N7) + O(1/N’"T)

n= 0,1,2:--.,DN as N » » for each zoe 9W3+k+5).

7.16. Remark. Unfortunately, it appears that it is not possible to prove

a result analogous to Lemma 6.8 for SPV Discrete Approximation Schemes in

general. That is, it cannot be demonstrated that

gll(I+§Q¢§)||§ <1+ ar/N for N sufficiently large with a > 0 and

independent of N.

In fact, for all test examples considered, the approximation schemes

{z;,n;,m';,po (@) k=1, 2 and {z;.n;,d;mo (2}, k =1, 2, 3, exhibited
r ’

behavior characteristic of numerical instability when actually programmed and
tested on the computer. 1Indeed, they did not factor converge. On the other

hand, however, it was observed, again in all test examples considered, that

the Discrete Approximation Schemes {Z;,ﬂépﬁfz,Po k(z)} with k > 3 and

;,ﬂ;,ﬂfﬁ,Po k(z)} with k > 4 were factor convergent, and as expected with
’

significantly improved rates of factor convergence with increasing k. On

{z

the basis of this numerical evidence, we conclude that many interesting

open questions remain regarding the characterization of SPV Discrete Approx-
imation Schemes employing Padé rfae. Furthermore, in the light of the compu-
tational desirability of explicit schemes, i.e. those for which C(z) =
Po,g(Z)' k=1, 2, ..., these questions are clearly an important direction

for future research.
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8. Approximation of the Solutions to the Non-Homogeneous and Nonlinear

Initial-vValue Problems

We now turn our attention to the construction of approximate solutions to

the non-homogeneous FDE ihitial-value problem given by
(8.1) mu=LmQ+wa t € [0,T)

(8.2) + . (x(O),xo) = (n,9) = z,

where the hypotheses satisfied by L, £, n, ¢ and x have been specified and dis-
cussed in detail in §2. The procedure by which this is achieved is the extension

of the results in §3 so as to yield approximations to

t
(8.3) Z(t) = S(t) Zo + [ S(t-c) (f(U) ro)dor t e [oiT]
0

We recall (cf. §2) that the expression given in (8.3) yields a solution to
the FDE initial-value problem (8.1), (8.2) via the equivalence discussed above.

We begin with several rather technical definitions.

8.4. Definition. For f €& L2(0,T) we define the parameterized family of

o;)erators T(t;f): 2+ 2, t € [0,T) by

t
T(t;f)z = S(t)z + I s(t~-0) (£(0) ,0)d0.
0

8.5. Definition. {2 .J#%.C(z).D(Z)}o N=1,2,..., is said to be a

NN
Discrete Approximation Scheme for the perturbed problem (DASP) (i.e. for

the non-homogeneous initial-value problem (8.1), (8.2) if
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(1) {ZN'"N' N,C(z)}, N =1,2,..., is a Discrete Approximation Scheme
for the homogeneous initial-value problem (3.1), (3.2) (cf. Defini-

tion 3.3);

(2) D(2) is a rational function of the complex variable z.

The scheme {ZN,WN,_;yN,C(z) ,D(2)} is said to have property (Pl) if

{ZN,WN,.MN,C(z)} has property (Pl) in the sense of Definition 3.6.

8.6. Definition. For {ZN,wN.Jza,C(z),D(z)} a DASP, f EEL2(0.T) and
each positive integer N, let the family of operators Gk(ﬁ;f): ZN > ZN, k =

0,1,2,...,0N, be defined recursively via the relations

Go(‘%;f) =1
(8.7 6. Ein N =cEX) ¢ &N + S ) n (P £,0)
k N’ N N k-1"'N’ N N "Nk’ ’
k = lrzloo-per

where zN (S ZN and the family of transformations

ng L,(0,7) »R", kK =1,2,...,0N

-

operating on £ E€ L2(0,T) represent a discretization of the function f on the

interval {0,T]. Different applications of the schemes to be developed below

require various choices for the {pz}. For the present discussion, we define
the {pzl to be integral averaging operators. That is, the p: are given by

kx/n
N
pkf =37 f(o)do, k=1,2,...,pN.

(k-1)x/N
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N . .
Further comments regarding the selection of the {pk} are included in the
remarks at the conclusion of §9. The recurrence relation (8.7)

can be solved to yield

G (£:6)2N = C(Ed)kzN + = 'f cE ) ¥ IoE oy (N
k ‘N’ N N2 NON Ny "y (pyE.0),

k =0,1,2,...,pN.

The operators C(i—%) and D(%JJN) are again referred to with the
implicit assumption that if the degree of the polynomial in the denominator
of C(z) or D(z) is greater than zero, then the required inverses exist.

: r . .
sufficient conditions for the existence of C(KMN) have been provided in
§4, while the existence of D(ﬁdN) is considered in §10 when the role of the

rational function D(z) is discussed.

8.8. Definition.. A DASP (ZN,wN,%,C(z) /,D(2)} is said to be factor
stable if
(1) The Discrete Approximation Scheme for the homogeneous initial-value
problem, {ZN,WN,MN-,C(Z)}, is factor stable in the sense

of Definition 3.4;

- (2) For each z € 2, we have
. . .
| DG ) m-m 112 |+ 0 as N + =,
8.9. Remark. For a factor stable DASP {ZN,wN,_gf ,C{(z) ,D(2z)}, the

strong convergence of {D(-:%%)} to the identity required by condition (2), and

an application of the Uniform Boundedness Principle, imply that the operators

on ZN’ D(%.dnl, are uniformly bounded in N,

B L i
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8.10. Definition. The DASP {zn'"N'Jx%'C(Z)’D(Z)} is said to be factor
convergent at z, € Z as an approximation to z(t) as given by

(8.3) if for each € > 0, there exists an N = ﬁ(zo,f,e) such that

r . N
|Gk(N,f)1er0 - nN'r(tk,f)zolN < g, k =0,1,2,...,pN

for all N > N. The scheme is said to be factor convergent if it is factor

convergent at each z, € 2.

That a factor convergent DASP does indeed yield an approximate solution

to the non-homogeneous or nonlinear FDE initial-value problem is guaranteed

by the next lemma.

8.11.
with property (Pl). Then for each z, = (n,$) € 2 and ea&h € > 0 there exists

Lemma. Suppose {ZN’"N'%'C(Z) ,D(z)} is a factor convergent DASP

alN = ﬁ(e,zo) such that

lk(tz) - pl(w;lzﬂ)l n < € k =0,1,2,...,0N
R

for all N > N, where zﬁ = Gk({]-;f) %o and x{(t) denotes the unique solution to

the FDE initial-value problem, (8.1), (8.2). -

The px;oof of the preceding lemma, which is essentially indistinguishable
from the proof of Lemma 3.9, has-been omitted.

To a cert.ain extent, the technigues and arguments employed in the suc-

ceeding sections parallel Thompson's [35] results in his extension of the

classical Lax equivalence theorem (cf. [31]) to finite difference approxima-

TN, T e T g vy e - ean e . N N : B
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tions for non-homogeneous and quasi-linear initial-value problems for parabolic
partial differential equations. However, unlike fhe treatment in [35], we are
able to exploit the fact that for each fixed t € (0,T] the non-homogeneous
perturbation term which appears in the abétract formulation of the FDE lies in
. a finite-dimensional space (cf. [3])) and hence are able to obtain stronger

results via simplified arguments.

9. Factor Convergence of Discrete Approximation Schemes for the

Non-Homogeneous Problem

We demonstrate that for an appropriately constructed DASP {ZN,HN,JUk,C(z),D(z)}.
factor stability implies factor convergence. Consider the DASP
{ZN,wN,Jx%,C(z),D(z)}. For each N = 1,2,... and each t € [0,T], we define the
following parameterized families of bounded linear operators with domain R"

and range in ZN' For n € Rn, let

(1) T (t)n = m,S(t) (n,0)

kr (k+l)r

/
N 1 —— - -
ﬂNS(tk) (n,0) if t € [N N ), k=0,1,2,...,PN-1

ST (n0) ift=T

\

/

kr (k+l)r

k
C(§MN) 1 (n,0) if t € [gr—g—), k = 0,1,2,...,0N-1

X or)PN -
~C(N.tx{q) my(n,0) if t =T

X
D‘i%) (1,0




9.1, Lemma. Let {ZN.wN.M ,C(2) ,D(2)} be a factor stable DASP with

property (Pl) for which {ZN,nN,MN.C(z)} satisfies the hypotheses of Theorem

4.9. . Then for each t € [0,T], we have

i e ekl 1

ﬁ)|ﬁMU%Mﬂ“*0asN*%

H%u%%uul+o“n+w.

IIBN-iN|| +0as N+ =,

where the norm in (i), (ii) and (iii) above is that one which is generated by

the uniform operator topology on _Q(Rn,ZN) .

Proof: For t € [0,T) and each N = 1,2,..., let kN(t) be defined to be that

. integer in the set {0,1,2,...,pN} for which t € [kN(t)r/N, ((kN(t)+l)r)/N) .

Then for each t € [0,T] and each n € Rn, we have

R ~ ~ N
(9.2) IITN(t)-SN(t)]nlN |[sz(t)-nNs;tkN(t))1<n,o)|N

N
|[S(t)-S(tkN(t)

)1(n,0) [, > 0 as N + =

'
Ia

|t st )-ctfuz!)k“(t)n 1(n,0) |
% tkN(;) NN N Oy

0.3, B 0-E il

0 ag N > =;

| 1Bg-Iyinly = [P m-m 11(n,00 |, + 0 as N + =,
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where {9.2) follows from the uniform continuity of S(-)z on compact
intervals for each z € Z, (9.3) . from the factor convergence of

{ZN,WN,wN,C(z)} guaranteed by Theorem 4.9, and (9.4) from the assump-

tion of factor stability of {ZN,nN,Jag,C(z),D(z)}. Recalling that strong

. convergence of linear operators is equivalent to uniform convergence if the

domain of the operators is a finite-dimensional space, we obtain the desired
conclusion immediately{

]
9.5. Lemma. Suppose {ZN,nN,jy&,C(z),D(z)} is a factor stable DASP with
property (Pl) for which {ZN'“N'Jyﬁ’C(Z)} satisfies the hypotheses of Theorem
4.9. Then for £ €5L2(0,T), we have that the scheme is factor convergent
at z. = 6 = (0,0), the zero element of Z, and moreover the convergence is

0
uniform in £, for f in bounded subsets of L2(0,T).

Proof: For k =0,1,2,...,0N, we have

r N
(9.6) IGk‘ﬁ’f’"Ne'"NT‘tk’f’eln

t

k

r k=j . .r N N

EIC(NJ¥§) D(Nsx&)wn(ajf,o)fnnf S(tk—o)(f(o).o)dc|N
0

1]
Zin

X jr/N
'210%%) *IpEofym & £(0)do,0)
= (j-1)r/N

|A
Zin

jx/N
L ogyk=i, XN
c(54) m f f(o)do,o)lN

1 r

_r
Ny
(i-1)x/N

I %

jxr/N tg
f(o)do,OJ-nN ]'S(ti-O)(f(U).o)dolu
(3=1)z/N 0

N

k.
+ 15 T cEafnkIn
N o) NN N




jr/N
| E 2 )k'j[D(Euz’)w -m I)( £(o)do,0) |
=1L Clgef N5 TN Oy
=1 (5-1)z/N

X jr/N
+ 1 ch) In (£(0),01a0
=L (-1 epw

tN

k N
- [ My (t,~0) (£(0) ,00do]
0

k . Jr/N
< L leqal ) 25 | [ ol
= (3-1) /N

" jr/N R . tz ) N~
+ |£1 Cy(t,-0) £(0) do -f 'J'N(t-,k-o)f(a)dalN
1 =L (5-1ye/N 0
3 : k9N K
i ~ ~ oy N ~ N
f 5%hf%”g1 f ﬂwﬂ+q[%&{®ﬂw%wnﬂﬂ®m
1 (i-1)r/N 0
| : o
| A A A N A N
< Myl o= f [£(0) |ao + f g te-0) -3 (011 ]| | £(0) | a0
- 0 0
1 N

T
< Mollﬁu-fnlfrl/z(f [£60) [Pa0) /2 4 f ey (t-01-8 (e¥-0)1]] |£(a) |ao
0

o

N
\ tk',[A N
Snitye=0) =Ty (-0 1| [£(0) |ao
0




< w215 Ayl el
T ‘ T
+ (I |IEN(T-o)-§N(T-o)||2do)1/2(f | £(0) | 2a0) /2
0 0
T T
+ (J | |§N(T—o)—'i‘N(T-o) | |2do)1/2(f | £¢0) | %a0) /2
0 4]

T
= m 121D -1 A & 2,.,1/2
ol % A Y S BT N (J |16y ¢7-0) -8 (r-0) | | “ao) /2| €|
2 2
0
T
+ (I 118 (1-0) -2 (1-0) | |2a0) /2| ¢]
- 2
0

where the constant ¥ (guaranteed by the assumption of factor stability)
denotes the uniform bound on the operators C(ﬁ%)k, k=20,1,2,...,pN for all
N sufficiently large.

Recalling the definition of 'i‘N('t) , §N(t) and éN(t) for each N = 1,2,...
and each t € [0,T), it can be verified that

[legr-8 e || < my + mePT

and

a A BT
lsg(e) -t (e || < 2me™".
Therefore, if we apply Lemma 9.1 and the Dominated Convergence Theorem to
the final estimate in (92.6), the desired result follows immediately.

0
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T e ik

A straightforward application of the triangle inequality together with

Lemma 9.5 and Theorem 4.9 yields the following result.

- i DASP
9.7. Theorem. Suppose {ZN,nN,J¥%.C(z),D(z)} is a factor stable DA
. s , of
"with property (Pl) for which {ZN,ﬂN,jﬂh,C(z)} satisfies the hypotheses

is factor
Theorem 4.9. Then for £ EELZ(O,T), we have that the scheme is fac

. . . : d
convergent and moreover the convergence is uniform in f for f in bounde

3 subsets of L2(0,T).

% 9.8. Remark. The fact that factor convergence is uniform in f for f in
bounded subsets of L2(0,T) plays an essential role in the application of these
schemes to the approximate solution of optimal control problems for systems
governed by hereditary systems of the form which we have been considering (cf.

Banks and Burns [4 ], Reber [29]).

9.9. Remark. 1In certain applications, choices of {pE}, xk=0,1,2,...,PN

other than the integral averaging operators employed in the arguments above
are more desirable. In particular, in the case of system identification
problems (cf. Banks, Burns and Cliff [ 5]) the relevant input functions £

j are frequently contained in the class of piecewise continuous functions on
(0,T}] (PC(0,T)). In this instance, the appropriate choice for the {pg} is

given by

(9.10) BRE = £(1), K =1,2,...,0N.

While it is possible to demonstrate factor convergence for appropriately

constructed DASP employing the {52} defined in (9.10),'ve'note that it
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may no longer be the case that convergence is uniform in f for f in bounded

subsets of PC(0,T). However, for problems involving parameter identification

the convergence obtained for such {ps} is adequate.

10. Making an Appropriate Choice for D(z)

For a DASP {ZN,ﬂNhifh,C(z),D(z)} it is clear from the results presented in
§4 that the rational function C(z) should be chosen as an approximaticn to the
exponential function ez. Indeed, if this is the case, under the additional
hypotheses specified in the statement of Theorem 9.7, C(%Jya)k yields an approx-
imation to S(kr/N) and factor convergence obtains. In this section we consider
criteria according to whicﬁ the rational function D(z) can be selected. In
view of the results of the preceding section, in addition to the requirement
that the operators D(i%ﬁk) exist, at least for all N sufficiently large, it is
necessary that the factor stability condition be satisfied. That is, for each

z, € Z we require that
r
ID(Njyg)ﬁNzo-nNIzo N0 N > o,

while D(2) = 1, i.e. D(%J&%)'= I, the identity operator on ZN’ would satisfy
these conditions, it has been observed in practice that other satisfactory

D(z) are available which yield an " n“proved rate of factor convergence and

approximate solutions with enhanced accuracy. The heuristic argument which

follows will serve to motivate these ideas further.

The basis for the approximation schemes we have constructed is that

r r. X N
cEAyrz |+ DE) T (p £,0)
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X 3 v

should in some sense approximate

r
562,

N
tk N
+ [ S(tk-o)(f(o) ,0)do.

N
Y1

In particular,

r r
C(ﬁﬁxg)ﬂNzk_l n S(ﬁ)zk_l

and
B
r x N N
(10.1) § D) "y (P E/0) J S(t,~0) (£(0) ,0)do.
‘ N
tk-l
Recalling that D(%jy&) and Ty are bounded linear operators, we rewrite expression
(10.1) as
N . N
Lk . tk .
(10.2) ° f D(ﬁ%) TrN(f(o) ,0)do ~ I s(tk-o) (£(0) ,0)do.
N N .
-1 : -1

Inspection of (10.2) reveals that D(z) should be chosen so that D(%Jzﬁ)
. N N N r
approximates s(tk-o) ; 0 € (tk_l,tk) , or equivalently s(t); t € (O,N) . Con-

sequently we consider D(z) of the form

D(z) = Pj'k(kz)

.

where once again Pj k(z) denotes the (j,k)th entry in the Padé table of rational
r
function approximations to the exponential and A is a fixed constant between 0

and 1. The parameter A included in the definition of D(2z) serves to compensate

st it
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3 for the fact that for each N = 1,2,..., the operators {S(t): t € [O,t—i-]} are to
be approximated by the single operator D(ﬁgx%). The mean value theorem from

elementary calculus suggests one possible choice for 2,

3 i . r/N

3 . r N . .
D('ﬁﬂN) = J k()‘NM) =7 J Pj'k(O.SyN)do.
' ¢

The parameters j and k are chosen with regard to the requirements that the

;i operators Pj’k(kgjx%) (a) exist for all N sufficiently large, and (b) satisfy

;f the factor stability condition. As is the case for Discrete Approximation
Schemes for the homogeneous initial-value problem, it is the behavior of the
approximation triple {ZN'"N'Jx&} which determines the factor stability properties
of the DASP {ZN,ﬂN,MN,Pi’j(z),Pklz(kz)}.

The remainder of this section is devoted to characterizing that subclass
of the Padé table which under certain assumptions on {zN,nN,xy§} yields appro-
priate rational functions D(z). We pay particular attention to the triples
determined by the Averaging/Finite Difference and Spline/Variational state

approximations discussed in :§6 and §7 respectively.

Piiindis oo cos MR, ..

10.3. Theorem. Suppose that {ZN,ﬂN,MN.,Pi'j(z)} and {ZN’"N'xN'Pk,R.(z)}

| are Factor stable Discrete Approximation Schemes with property (Pl) which satisfy

: the hypotheses of Theorem 4.9. Then for A € [0,1] fixed, the operators
k e N_m;]) exist for all N sufficiently large and, moreover, the DASP given by
‘; N' N"d 'P (z) Py (Az)} is factor stable.

Proof: The existence of the operators Pk 2 Nd ) for all N sufficiently large

A O i

f is a consequence of Lemma 4.8, Factor stability can be demonstrated as follows:

J
H




:
|
|
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(10.4) Ip Py NQ/N)n zo-m 120l
Ar Ar Ar
< 'Pk,z_‘ o AL R N)zolN + |s¢ N)zo—zolz
for zoe 2.

A trivial modification of the arguments used to verify sufficiency in
the proof of Theorem 4.9 yields that the first term on the right-hand side of
(10.4) tends to zero as N + @, while the fact that {S(t): t>0} is a %%

semigroup of operators on Z implies that the second term tends to zero as N +

as well.

Theorem 10.3 applied in conjunction with the results of §5
provides a rich class of appropriate rational functions D(z). 1Indeed, for a
given approximation triple {ZN'“N”QK&}' §5 serves to characterize
those entries in the Padé table which, when selected for C(z), yield a factor
convergent Discrete Approximation Schéme for the homogeneous problem. Theorem

10.3 further reveals that any choice appropriate for C(z) is appropriate for

D(z) as well, and thereby gives rise to a factor convergent DASP.

While Theorem 10.3 . assures us that for a given approximation triple

{z T ,Jﬁ%} satisfying certain basic hypotheses the set of factor stable DASP

of the form {ZN,ﬂ ' o i .(z), Pk z(kz)} is non-empty, we are fortunate in that
.3 .

a still broader characterization is possible. Furthermore, these results will

be directly applicable to the Averaging/Finite Difference and Spline/Variational

approximation triples which have been discussed earlier.
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10.5. Theorem. Suppose that {ZN'“N'Jy;'Pi j(z)} is a factor stable Discrete

’
Approximation Scheme with property (Pl) which satisfies the hypotheses in the
statemerit of Theorem 4.9. ‘Suppose further that there exists a constant K > 0

E independent of N such that

r L
(10.6) . [+ S| <K

iL for all N sufficiently large. Then for each k,% > O with k < %2+2 and each
A € [0,1) we have that the operators Pk l(éﬁiﬁk) exist for all N sufficiently

large and, moreover, the DASP given b i
' ' g Y {ZN'“N'Jy&'Pi,j(Z)'Pk,l(AZ)} is factor

stable.

The proof of Theorem 10.5 can be argued in much the same manner as were

the proofs of Lemma 4.8 and Theorem 4.9 (cf. [33]).

As a consequence of this theorem, one has that if

{ZN'"N'Jay'Pi .(z)} is a Discrete Approximation Scheme satisfying the required
14

i hypotheses, then for each k > 0 and A € [0,1] the DASP given by

i . is t e may choose
{ZN'"N'ﬁgk'Pi,j(Z)'PO,k(Az)} is factor stable. That is to say, we may |

e e g ——

C(z) from among those entries in the Padé table for which no operator inverse

need be calculated in the computation of the operators D(E&!&).

That condition (10.6) is satisfied by the Averaging/Finite Difference
approximation triple is an immediate consequence of Lemma 6.8. That the
i condition also obtains for the linear Spline/Variational approximation triple is

the conclusion of the next theorem.

10.7. Theorem. For {z;,n;,llz} as defined in §7, we have

[ +M)IN_<_M1,




where Ml is independent of N.

Proof: The equivalence of the norms | lN and gl I . | lN (cf£. §7) on ZN

implies that it suffices to show
r a1 Y A
gH(I + = N) H <M, M~ independent of N.

For $N € Z;, we find that

r *N{12 _ ANt 12 X N 2N r,2 1,Ni12
(10.8) g+ ﬁm;w g = g 18115 + 25 guz,lqw,zv I, * o Lty

r ANy 12 r, 2 2
where inequality (10.8) above is a consequence of Lemma 7.4.

Inspection of the inequality given by (10.8) reveals that if we can
demonstrate that g| I-SY:,” = O(N) as N + », then the desired conclusion obtains.

Once again employing the norm equivalence of | lN and gl I - I IN' we show

loily, = o).

-~

Recalling that for ¢ € 2;‘

(nh N e BNC DA,

N

we le; (n;)-1$N = ('¢N(0),¢N) and find

Ld,lﬁnls - |W;Mw;)'1éul§ < Id(ﬂ;)'lﬁnlg
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The Schmidt inequality (cf. Schultz [34]) yields the following bound for |D¢N|i :
2
0 _ N -(3-1)x/N
|D¢N|i = I Io¢ (o) [2a0 = ¥ lo¢" (o) | a0
2

-r J=1 —jr/N

N -( j-1) r/N
N, 2

< I 1@ }
. =jr/N

|¢N(o)|2do = 12(§)ZI¢NIE
i=1 2

<1220 1%+ 16712 1 = 2% 1V
R 2 '

Conseq\_xently for -t € [-r,01 it follows that

.0 0
% -0 ]2 = [o" (o) - J Do (0 da|? < 2[eV @) |? + 2 1 f |0¢" (o) | 240

T T

R o S T

<20 (% + 2e|o6V|2 < 2|6¥0) 12 + 2ar 2N 2
2 ‘ r L,

A

2y, N o N 2 212N 2
< kN[00 ,40) |5 = kN[

© e it ARG A Lt s

where Ki is a positive constant independent of N. This in turn implies

0
v
|L¢N‘:n < 2|j21 Aj¢N(-Tj)|2 +2 IJ p(e)¢" (o) a0 |2

r

S |
‘ 2 N2

<205 |allet-r o2 + 2|2 ¢
ju1 Iy ] L," I,

. v :
2N 2 2 |.Nj2
<2v 1 |a %o = |“ + 2]pl] o]
j-1I LA ] L, 7
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1A

v
2, 2|:N2 2 ;N2
(2vK, j§-1|Aj‘ N e[+ 2|D|L2|¢ Iy

[

where K, is a positive constant independent of N. Therefore, we have

A

N2
lard" |

” A -2 212N12
IL¢“I;,, + |D¢N|§2 < kN2 + 12T

KN2|$N'§ , -

where K is a positive constant independent of N, and hence

IQ/;IN = o).

10..9. Remark. The results of Theorem 10.7 are easily generalized and
extended to apply to approximations eﬁploying spline bases of arbitrarily high
order (the relevant constants will of course depend upon the order of the
spline basis chosen). In particular, this includes the cubic Spline/Variational
triple {Z;,ﬂ;,iﬁg} discussed in §7.

It is interesting to note that for a given approximation triple
{ZN;HN,jy&} several standard time-differencing numerical techniques for ordinary
differential equations determine DASP of the form {ZN'"N'Jaa'Pi,j(Z)'pk,l(AZ)}

when applied to the approximating ODE system in zN given by
{10.10) zy(t) = ALz (k) + nN('f(t) 0), t € [o0,T]

(10.11) zN(O) -z "~ nN(n.O)

i che e b R IR Y S MRIRPIREIRENE SEETR
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We conclude this section with two examples which serve to illustrate these ideas.

10.12. Example (Trapezoidal Approximation). For a given approximation
triple {ZN'“N'MN}' consider the approximating ODE system (10.10), (10.11)
in its equivalent integral equation formulation given by

t t

zN('c) = zN(O) = IMNZN(o)do + I nN(f(o) ,0)da, t € [0,T).
0 0

TP T T VTS T I VAT SR TN ST PG TN T YT R ety G A

. .N
Recalling that tk = kr/N, k =0,1,2,...,pN, it follows that

eI M T Frne e o

N N

. ) t tye

(10.13) . zylt) = z (g ) +I .Q’NzN(o)do + IN my(£(0),0}do,
-1 ty-1

S ST i 7

k=0,1,2,...,pPN.

If we approximate the first integral on the right-hand side of (10.13) via

the trapezoidal rule for numerical integration, we have

. t
N N r N N
zN(tk) ¥ zN(tk_l) + 'z—ﬁwNzN(tk-l) +_,MNzN(tk)] + ﬂN(f(O) ,0)do,

Y1

N

t
k
_x_ N £ N r, N
(10.14) (1 - el v 1+ gy )+ e IN £(0)do,0) .

-1

Recalling that JVN € G(M,B) i.mplies the operator (I - %ﬁ"%) "l exists for all N

sufficiently large, we solve (10.14) for zN(t:) and find

N r_ -1 r . ¢ N r r -1 N
zglty) ¥ (T - 20 (1 + Zpz(h ) + {UT - A NBLO).
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Consequently, an approximation scheme can be defined and is given by the following

relations:

"n%o’

r 1l

r -1 r k-1 r - N
= (I - -2—N.<¥N) (1 + Z—NIZN) zg  *§I- Eﬁ"yﬂ) (P E/0) .

N
k=1,2,...,0N.
Recalling the definition‘of the family of approximate solution operators for
N
the non-homogeneous initial-value problem, {Gk(ﬁ;f)}£=o determined by a given

DASP {ZN.ﬂN,J¥;,C(z),D(z)} for each N =1,2,..., it can be verified that

=0,1,2,...,pPN,

N

=0 denotes the family of approximate solu-

T, xr

where for each N = 1,2,..., {Gk(ﬁ;f)}z

. . . 1
tion operators corresponding to the DASP given by {Zn'"N'JxQ'Pl,l(Z)'P1,o(52)}'
We note that when {ZN,wN,Jﬁk} i3 an Averaging/Finite Difference approximation
triple, the method which has just been discussed, and thereby the DASP

A A A 1 . .
{ZN’"N‘£¢N'P1,1(Z)’Pl,O(EZ)} is analogous to the well-known Crank-Nicolson
approximation commonly employed in the numerical solution of parabolic partial

-~

differential equations [22].

10.15. Example (The Improved Euler Approximation). For a given approximation

triple {2 J&&} it is once again convonjient to consider the approximating ODE

N'"N'
system {(10.11), (10.12) in its equivalent integral equation form on the
intervals [t:_l,t:l, k=1,2,...,0N given by the expression in (10.13):

N

N N tk
zg(t) =z (t 1) + I J!&zu(o)do +
N

;

N

wN(f(a),o)do.
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T s W

The improved Euler approximation formulae [14] with step size r/N are an Euler

predictor:

f(o)do,0)

corrector:

N 2N NN N NN

. t
| (20.17) & 2 = 24 Tof Kt af Ky 4 Iy (8 f £(0) do ,0) .
g
| t

When combined, (10.16) and (10.17) lead to the approximation scheme given

by the relations

k _ r 1,r2 2 k-1 «x r_ N
) {10.18) 2y = (I + SRz + JI + 35H)m (e £,0).

A comparison of expressions (10.18) and (8.7) reveals that

E} k IE r
3 zy = Gk (ﬁwf)wnzo, k=0,1,2,...,pN

‘? for each N = 1,2,..., where (GiE ﬁvf)}zio’denotes the family of approximate

R ' 1
solution operators determined by the DASP {ZN,nN,ng,PO'Z(z),PO 1(52)}.

Several other numerical integration techniques for ordinary differential

eI AR TR

equations commonly encountered in practice correspond to DASP of the form

{ZN'"N'Jyg'Pi j(z),Pk 2(Az)}. In particular, the explicit Euler or forward
’ [
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difference method gives rise to the DASP {ZN,ﬂN, v Fo 1(z),l}, while the
’

implicit Euler or backward difference method determines the DASP

{ZNI“NI %'PI'O(Z) 'Pl,O(Z) }.

10.19, Remark. Examplés 10.12 and 10.15 above provide a naturalllink
between the ideas of the present investigation and the approximation framework
developed in [3] and [6]. Indeed, for a given approximation triple {ZN'“N'Jv%}
satisfying hypotheses similar to those given in the statement of Theorem 4.9,
the latter treatments demonstrate the convergence to the expression given in
(8.3) of the classical variation of parameters solution to the initial-
value problem (10.10), (10.11). When actually applied in practice, the

desired approxiﬁating solution is obtained via the application of standard
numerical integration techniques for ordinary differential equations to (10.10),
(10.11). If the numerical integrétion.scheme employed is among those. discussed
in the examples above (and others not presented) and the time step for the

method is chosen as r/N, the two formulations become equivalent.

1ll. Analysis of Numerical Results

We present here computational results derived from the application of approx-
imasion schemes included in the framework developed above to several hereditary
systems of the form discussed in §2. The numerical results which follow were
obtained via a software package developed by the author and implemented in APL
on the IBM 360/67 at Brown University. All of the calculations which follow were
performed in a 330K-byte workspace which was sufficient to generate approximate
solutions with values of N up to 96 in the case r = 1, n =1 and N = 32 in the

cases r =1, n=2andr=1, n=3, A compuﬁationally efficient software

it vl s ¢

ke N, it

caida.
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ki package based on the approximation framework discussed above, which includes
methods utilizing the Averaging/Finite Difference and Spline/Variational state
variable approximations, is currently under development.

In addition to the example which follows, we have tested our approximation
;chemes on several other hereditary systems with a variety of characteristics

(cf. {33]). These examples werealso used to test the methods

developed in [2 ], [4] and [6]. Hence, they can serve as a basis for a
preliminary comparison of the two approximation techniques. It is interesting
to observe that in many instances, for the same state variable approximation,
the results we obtain via a Discrete Approximation Scheme constructed with a
second-order convergent rational function approximation to the exponential
compare favorably with the corresponding results in [2 ] and [6 ] computed
with a fourth-order Runge-Kutta integration of the approximating ODE with step
size chosen independently of the state variable approximation.

! When considering the rates of convergence in our test examples, we

EF would not, in general, expect to observe those rates theoretically predicted

i by the results discussed in §4. 'Indeéd, those estimates pertain to

’ the homogeneous problem exclusively on a restricted class of initial data.
However, the predicted rates appear to be in some sense indicative, if not
conservative, estimates of the qualitative behavior observed experimentally in
; man;nof the test examples (both homogeneous and non-homogeneous with arbitrary
1? initial data) which we have studied.

)

g In the tables which follow, the symbol Ns;jkz denotes the absolute
difference between the exact solution x to the FDE initial-value

problem and the approximate solution computed via the piscrete Approximation

- P iitn s s

: Scheme for the non-homogeneous injitial-value problem

(11.1) {zﬁ,wﬁ,ﬂﬁ,Pi'j(z),Pk'z()\z)}, |

. yTOyon

| 3
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Eﬂ where pu,v(Z) denotes the (u,v)th entry in the Padé table of rational function
approximations to the exponential and the superscript * may take on the values

A, 1 or 3 depending on whether the state variable approximation is of the
Averaging/Finite Difference, linear Spline/Variational or cubic Spline/Variational

type, respectively. The parameter A has been fixed at 1/2 throughout. 1In the

RANSIIES VIR K

discussion below we also, on occasion, denote the DASP (11.1) by the shorthand
notation {*,N,i,j,k,%}. Finally, recalling that |Pi j(z)—ezl = oMy 45 5 o 0,
’

we define the quantity q = i+j as the index of the approximation scheme {*,N,i,3j,k,%}.

11.2. Example (Banks and Kappel [6 ], Example 1). Consider the scalar,

second-order, non-homogeneous initial-value problem
u(t) + a(t) + u(t-1) = 10,
u(g) = cos 6, u(8) = -sin 9, ~1<86<0

in its equivalent formulation as a 2x2 first-order system in the form of (2.1), (2.2),

L et

_ 0 1 0 o 0
e = Lo s + ] Sxen + 10,
9 T . T
a - x(O) = (1'0) ’ Xo(e) = (COS 9, -sln 9) r -1 i 0 i 0,

where x1 = u and x2 = u.

The solution on the interval [0,2] can be calculated by the method of

steps [11] and is given by

X () = w(t) = -9 - sin 1 + 10t + (10 + .5 sin 1 - .5 cos e ©

+ .5(sin 1 - cos 1)sin t + .5(sin 1 + cos l)cos t, t€ (0,1)
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x,(t) = w(t) - 29 - 2 sin 1 + cos 1 + (19 + sin 1) (e-1) - 5(e-1)°

-(t-1) ~(t-1)

+ (29.5 + 1.5 sin 1 - cos l)e + (10 + .58inl - .5 cos l)e

4 .5(sin 1 - 1)cos(t-1) + .5(1 - cos 1)sin(t-1) t € [1,2]

R

]

xz(t) = il(t).

The numerical results for tﬁis examble are exhibited in Tables 11.3
and 11.4. Based ﬁpon this evidence, we make the following observations.
Averaging/Fiﬁite Difference approximations in an explicit scheme of index 2,
{a,N,0,2,0,1}, effectively yield O(l/Nl-s) convergence, where § is a positive
number strictly less than 1. Although the rate of convergence remains unchanged,
approximate solutions generated by the explicit scheﬁe of index 1, {a,n,0,1,0,0}

for each N, were in general less accurate than the corresponding results for

the index-2 scheme. Little if any improvement is gained through the application

of AFD schemes with index g greater than 2. -Convergence like'o(l/Nz) as N » »
is achieved by the diagonal implicit/explicit scheme {1,N,1,1,1,0} of index 2

5 constructed with a linear Spline/Variational state approximation. Accuracy is

enhanced when diagonal schemes having index greater than 2 are employed. For
the indexf4 scheme( {3,8,2,2,2,0}, with cubic Spline/Variational state approx-
imations, O(I/Nz) convergence is observed. Once again increased accuracy is
obtained if‘é scheme-having a higher index is employed. Extremely accurate
results obtained with cubic-spline-based methods fof relatively small values
of N make the éhatéc;erization of convergence rates difficult. Indeed, the
actual approximation error is most likely masked by the influx of error from

other sourcés, i.e. machiﬁe roundoff and numerical quadratures.

o ——— e
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11.5. Remarks. Evidence provided by our numerical study indicates that certain
trade-offs exist in choosing between an AFD and SPV approximation scheme. While
in most cases, SPV methods yielded suéetior results, it has been cbserved (cf.
[61, Example 4) that when éhe initial data lies in the gsubspaces of Z, {i:} (cf.
"§6) , defined in the construction of the Averaging/Finite Difference approximations,

the AFD methods provide results superior to those of spline-based approximation

schemes.

In addition, as one might expect, a.price must be paid for the increased
accuracy and rapidity of converéence yielded by the cubic spline methods.
Due in paft to the wider bandwidth of the matrices generated,lthese schemes
tend to be more difficult to program, take longer to execute and have larger

storage r=quirements than either the Averaging/Finite Difference or linear

Spline/vVariational approximations. Moreover, as is the case in any numerical

approximation algorithm, it is desirablé to maintain a uniform order of approx-
imation throughout all phases of the computation. The cubic spline state
approximations with a theoretically predicted convergence rate of 0(1/N2)

as N + « will therefore perform best in a scheme with a relatively high index.
Unfortunately, in the case of spline-based approximations we are unable to

guarantee factor convergence of explici; methods. Thus, for a factor con-

vergent Discrete Approximation Scheme of high index employing cubic spline
state approximations, it is necessary to invert a matrix which is a high-

degree polynomial in the matrix Gf:- In general, this tends to be a numerically

T S S R Y TR W P ITIY

ill~conditionéd procedure and may require the use of higher precision arithmetic.




12. Concluding Remarks

We have constructed an abstract approximation framework which can be applied

to FDE initial-value problems of the type discussed in §2. We have detailed

readily verifiable conditions which if satisfied guarantee convergence to the
solution of t_:he initial-value problgm. The schemes proposed, and the abs&act
framework in general, represent an alternative to related approximation packages
for FDE suggested by Banks and Burns [3], [4] and Banks and Kappel [6]. Further-
more, in the case of an autonomous linear system, the methods developed here are
an extension a.nd generalization o;f the ideas discussed by Reber [29].

Within the framework itself, there is a'éréat deal of freedom in the actual
selection of a particular convergent approximation scheme. Moreover, based on

the evidence discussed in the previous section, one can conclude that the appro-

.priate choice of parameters wixich determine the optimal method to apply depends

heavily upon the characteristics of the initial-value problem under consideration.

The numerical results for the test examples suggest that the factor con-
vergence ;;ropertiea of a particular method depend rather heavily on the interrela-
tion between the order of the state approximation employed and the degree to
which the rational function component of the scheme approximates the exponential
function. 'In fact, it is apparent that a deeper understanding of this interdepen-
dence would provide valuable imight which could lead to thé solution of many of
the*unanswered questiohs posed throughout this paper.

The approximation framework .developed in this investigation has also been
applied to certain classes of quasi-linear FDE initial-value problems (cf. (33]),
and has been expanded so as to become part of a package yielding approximate solu-
tions to the optimal control and parameter identification problems for systems
governed by retarded functional differential equations of the type we have

considered (cf. [2], [3]), [4), [5), (29])).
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