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A DISCRETE APPROXIMATION FRAMEWORK FOR HEREDITARY SYSTEMS

Abstract

A discrete approximation framework for initial-value problems involving

certain classes of linear functional differential equations (FDE) of the retarded

type is constructed. An equivalence between the FDE and abstract evolution

equations (AEE) in an appropriately chosen Hilbert space is established. This

equivalence is then employed in the development of discrete approximation schemes

in which the infinite-dimensional AEE is replaced by a finite-dimensional system

of difference equations. Convergence and rates of convergence are demonstrated

via the properties of rational functions with operator arguments and both classical

and recent results from linear semigroup theory. Two examples of families of

approximation schemes which are included in the general framework and which may

be implemented directly on high-speed computing machines are developed. A

numerical study of examples which illustrates the application and feasibility

of the approximation techniques in a variety of problems together with a summary

and analysis of the numerical results are also included._-
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1. Introduction

The focus of this investigation is the construction of a general abstract

approximation framework for certain classes of linear retarded functional dif-

ferential equations (FDE). The methods included in the framework will have a

sound theoretical basis for convergence, and will be designed with the intent of

application to the solution of optimal control and parameter identification

problems governed by FDE. The work presented below is concerned with approximate

integration methods for FDE, while the results dealing with the application of

the schemes to the optimal control and parameter identification problems will be

discussed elsewhere. We begin by calling upon the results of Banks and Burns

[3], [4], among others, to establish the equivalence of solutions to certain

classes of FDE of particular interest and the solutions of corresponding abstract

ordinary differential equations, also known as abstract evolution equations (AEE),

set in an appropriately chosen Hilbert space. We then proceed to develop

general approximation schemes for the solutions to the homogeneous AEE which

in turn, via the equivalence described above, provide approximate solutions to

the FDE. Using approximation techniques for SC0 semigroups of bounded linear

operators on abstract spaces, both classical and recently published results,

we are able to characterize the convergence and rates of convergence for rich

classes of these schemes. In addition, two particular families of approximation

schemes included in the general framework are developed and studied in detail.

The approximation framework for the homogeneous initial-value problem is then

extended to include schemes applicable to the non-homogeneous problem as well.

We conclude with a discussion of numerical results obtained by actually imple-

menting and testing these schemes on a wide variety of hereditary systems.
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The idea of constructing approximate solutions to differential equations

set in infinite-dimensional spaces, in particular FDE and parabolic and hyper-

bolic partial differential equations via approximations to the solutions of

equivalent AEE, has been considered by many authors. Historically, the well-

known Lax equivalence theorem (cf. Richtmyer and Morton 131]) for the homogen-

eous case, and Thompson's [35] subsequent extension of their results to the

non-homogeneous and quasi-linear problems, can be considered to be the forerun-

ners of most investigations in this direction. More recently, in the partic-

ular case of FDE, a rather extensive formulation for an approximation framework

has been developed by Banks and Burns [3]. The latter treatment considers a

state variable approximation exclusively as part of a two-step process through

which the final approximating solution is obtained. That is to say, the AEE,

an ordinary differential equation in an infinite-dimensional abstract space

characterized by an unbounded operator on the right-hand side, is approximated

by a sequence of systems of ordinary differential equations defined on finite-

dimensional approximating subspaces. These systems of ODE of successively

higher dimension must then in turn be solved numerically via any one of a number

of classical approximate integration techniques. The schemes discussed here,

however, approximate the AEE by a sequence of systems of discrete difference

equations of successively higher dimension. This represents a simultaneous

approximation in both the state and the time variable which is readily programmed

in a single step. Recently, Reber 1281, (29], in considering these ideas for linear

non-autonomous systems (i.e. systems with coefficients that vary in time), has

demonstrated sub-linear convergence for a scheme employing finite-diffe ence-

like approximations in both the state and the time variables. In the case of

an autonomous system, his work becomes a special case of the general approxima-
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tion framework constructed in the sequel. Furthermore, the abstract formulation

to be discussed below allows one to consider state and time variable approxima-

tions of varying design and arbitrary order of convergence independently. An

extensive bibliography and survey of the literature through 1976 concerned with

the approximation of solutions to FDE (and, in-some cases, the associated optimal

control problem) via techniques of the type discussed above can be found in (41.

Finally, a rather broad theory, somewhat more general in nature yet less

attuned toward practical computation than the research to follow, can be found

in a recent paper by Hersh and Kato [15]. Many of our results are closely

related to the ideas of the Hersh-Kato treatment.

The notation employed here is for the most part standard. For 1 4 p < a

closed interval I in R and a Banach space X, the symbol L (I;X) denotes the
p

Banach space whose elements consist of equivalence classes of strongly

Lebesgue-measurable functions f: I - X for which f/fIp < - and which is

endowed with the usual L norm X)IL - (f~fP)l/. The symbol C(I:X) denotes
Pp I

the Banach space of continuous functions from I into X together with the usual

supremum norm. In the case that X - Rn , where n is the dimension of the FDE

system under investigation, the above notations are foreshortened to L (i)

p
and CI) respectively. The symbol <,> represents the standard inner

L2

product on the Hilbert space L2 (I) given by <f,g>L - f fg. L (I) (with the
2 I

standard L norm) denotes the Banach space of all real-valued equivalence

classes of functions which are essentially bounded on I, while the notation

CkM(I) stands for the space of all Rn-valued continuous functions defined on

I whose first k derivatives are continuous. M(I) represents the measurable

functions from I into Rn while the Banach spaces W0C) (I;Rn) of Rn-valusd
p

absolutely continuous functions possessing J-1 absolutely continuQus deriva-
tives and jth derivatives that are in L (I) are denoted simply by W(I. For

p -
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Banach spaces X and Y, the syubols I(X,Y) and.Q(X) denote the spaces of

all bounded linear operators from X into V and X into X respectively. The

spaces Rn andVnn, the space of all n x n matrices, are endowed with the

euclidean and spectral norms, respectively. The norm of an element x con-

tained in a normed linear space X is denoted by lxIX, or more simply by lxi

in the case that the intended space may be inferred from the context of the

statement. Similarly, the norm of a bounded linear operator TE.!(X,y)

is denoted simply by I T in the case that the operator norm in question is

that one which is induced by the standard norms on the spaces X and Y. If

T E AX), the notation I TIX will also on occasion be used. The symbol I

is used to represent the identity operator. No further clarification is

provided if the space upon which it operates can be determined from the con-

text of its usage. The standard notations v(.5, ;C, p{9F are employed to

represent the spectrum, point spectrum and resolvent set in the complex plane

C of a linear operator 5, while the symbols9()-f and _(5) denote its

domain and range. For A E p (5), the symbol R(A;-Y) denotes the resolvent of

l (-AI) The positive integers n, v, p and positive nrumbers T and r to

be defined in the next section are assumed to be fixed throughout. For any

function x of one real variable we use both * and Dx to stand for the deri-

vative of x with respect to that variable. As is commonly the case in papers

concerning retarded functional differential equations, for an Rn-valued

measurable function, s - x(s), the notation xt denotes the function in

M (-r,O) given by xt(O) - x(t+8), -r < e < 0. For a rational function

C(z) - P(z)/Q(z) defined for z E C, the symbol deg C(z) denotes that integer

given by deg P - deg Q, where deg P and deg Q represent the respective degrees

of P' and Q as polynomials in z.

_ _ _L
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2. Equivalence of FDE and AEE

We state precisely the FDE initial-value problems for which approximate

solutions are sought and describe their equivalent formulations as correspond-

ing AEE initial-value problems set in an abstract function space.

Consider the initial-value problem given by

(2.1) k(t) = L(xt) + f(t), tE [0,T]

(2.2) x(O) '1, X0

where n E Rn, *E L2 (-r,0) and f EL 2(0,T). We shall assume that the linear

operator L: L 2(-r,O) 4 Rn is of the form

0
V 0

(2.3) L(#) = I Aj*(-T) + f D(O)(e)de
jo0

-r

where AjE~nn, j = 0, 1, 2, ..., ,' DE L2([-r,0];Yn) and 0 = TO < <

< TV M r. Strictly speaking, the expression for L given by (2.3) is not

well-defined for all *E L2 (-r,0) in that point evaluations of f are required.

However, since our primary concern is the solution of the initial-value prob-

lem (2.1), (2.2), we need only consider instances of L(xt) appearing

beneath an integral sign. More precisely, a solution of the initial-value

problem (2.1), (2.2) is a function x E L2 (-r,T) such that t - x(t) is

absolutely continuous on (0,T), x(O) - i, x0 - * and

t t

(2.4) x(t)-, + f L(x )do + J f(a)do, t E [0,T].

0 0

x0 E L2 (-r,O) for each aE (0,T] implies that the mapping a - L(x ) is in

a
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L2(0,T). Thus the expression for x(t) given by (2.4) is well-defined.

Employing standard arguments, the following lemma may be established.

2.5. Lemma. There exists a unique solution to the initial-value problem

(2.1), (2.2). 14oreovbr, the solution depends continuously upon the

initial data and the non-homogeneous perturbation. That is to say, if

xk(t) denotes the unique solution to the non-homogenous FDE ic(t) =

L(x ) + f (t) with initial conditions x(0) = nk, x0 = where nk  n in
t k v O

'k in L2(-r,0 and fk f in L2 (0,T), then we have that

sup Ixk(t)-x(t) - 0 as k where x(t) is the unique solution of the
t E[0 ,T
initial-value problem given by (2.1), (2.2).

2.6. Remark. Linear homogeneous FDE with right-hand sides of the form

given by the expression in (2.3) are not the most general to which the

equivalence and approximation results to be established can be applied.

However, it is noted in (6] and [131 that this form is of sufficient generality to

include all linear homogeneous autonomous FDE commonly arising in practical

applications. The details of establishing the equivalence for the FDE

initial-value problem C2.1), (2'.2) under less restrictive hypotheses are

discussed ih [ 3 1, 4 1.

Following Borisovi' and Turbabin (9 ], and countless other authors working

with retarded functional differential equations, we choose the Hilbert

space Z - Rn x L2 (-r,0) with inner product

< (n r 1' ) (( 2'#f2 )>Z <'A2> Rn +<4I'2>L2

as the space upon which the corresponding AEE will be defined. In the light

ii , ,"I
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of the existence, uniqueness and continuous dependence results stated in

Lenua 2.5, one can define a family of solution operators on the space Z assoc-

iated with the homogeneous form of the initial-value problem (2.1), (2.2).

Indeed, for tE [0,T], let S(t): Z -+ Z be given by

S(t)(,) - (x(t),x t

where x is the unique solution of (2.1), (2.2) with f 0. The pair (x(t),x
t

will on occasion be referred to as the state or state variable of the system.

Since Lemma 2.5 is valid for all T > 0, the family {S(t): t > 0) forms a

0 semigroup of bounded linear operators on Z. Standard techniques (4] can
0

now be used to calculate the closed densely defined infinitesimal generator

-Wof (S(t): t > 0} together with its domain of definition. They are given by

for all (N,*)E O(Wf) = {(n,0GZ: n-=f(0), *Ew (-r,0f).

For purpose of reference, we state certain properties of the-W0 semigroup

of operators {S(t) : t > 0} and its infinitesimal generatorWthat are used in

the discussion below. The verification of these results may be found in any

standard reference on linear semigroup theory. In particular, [1], [18], [193,

[26] and [38] are adequate in this regard.

(1) fnL(Qn) is dense in Z. In particular, (5 n) is dense in Z for
n=l

each n - 1, 2,....

(2). There exist positive constants B and M such that as.W - irCQ)C

{AEC:Re A<B} and, moreover, the resolvent operator R(X;%) with Re X > B

satisfies the condition
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(2.7) IR(A.W')nlz I ( -nI)nZ.1.M(Re A- )-n

for all n > 1. This in turn implies that

ISc(t) Iz_< MeP t.

We adopt the notation of Kato [181 and let the symbol G(M,8) denote the

set of all closed, densely defined operators that satisfy a condition like

(2.7) on the respective spaces upon which they are defined. In addition,

we shall also, on occasion, have reason to consider the set of all closed,

densely defined linear operators 7 whose resolvent sets p(.l) contain not

only the half-plane {AEC: Re X>B), but a sector of the complex plane,

{A E C: j;rg A-B1< 2 + J for some w > 0, and whose resolvent operators,

R(A;Y), satisfy the stronger, somewhat more restrictive condition

-R(X ;)nl = I(y-XI)-nI < MIX-I
-n

for all A E {AEC: larg X-01 ; i+-w), n = 1,2,... . We denote this set of

operators by the symbol H(N,B,M). We note that ifYEH(w,O,M) it is the

infinitesimal generator of {U(t)), a quasi-bounded semigroup of operators

(i.e. IU(t)I < Me t), holomorphic in t for t contained in a sector of the

complex plane (cf. Kato [181).

A linear operator Ywith domain dense in a Hilbert space H is said

to be dissipative if

Re <9,x>H < 0 for x E .(Y)

It can be shown (cf. Krein (19]) that if there exist a constant B and an inner

product I-,] ]H defined on H which generates a topology equivalent to the
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standard inner product topology on H, then the conditions Y9-OI dissipative

with respect to the [-,-] inner product (i.e. [Yx,xl H< B[X'xiH' xE-907))

and !U-I)= H for any A with Re X > 8 are necessary and sufficient for

JFE G (M,0). Furthermore, 7- 01 dissipdtive implies (see [19]) that

a&") C {XEc:iRe A<S1. Thus if H is finite-dimensional, _FE G(M,B) if

and only if (5-OI) is dissipative.

We now construct an inner product on Z, <-,.> 9, that generates an equival-

ent topology to the standard inner product topology on Z and for which there

exists a constant 0 su ch that <JQ'z,z> 9< B~z,z> for all z contained in

The inner product we construct is essentially the same as those defined in

[61,. [29] and (30] for a similar purpose.

Let the step function g defined on [-r,O) be given by

g(e) - g j. 1 + 1. AJ for 6 E [-.-T. j~ '_ j- 1,2...,v.

i=3 J

Then, for (ri,* and (1,* E Z, we define

0

< NI 1 fT -C + f (e) (e) g(e) dO

T V -T

C+Ig f(OhI,(Bde
j=l

and

g g
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Clearly

<(I + I[I A 1" 2  Iz

j=l

Thus the topology generated by <.,> on Z is equivalent to the standard~g

inner product topology on Z. Furthermore, using standard arguments (cf. [6],

[29], [33]), we have for * = (€(0),*) E O(W),

gg

0< I A + D(0) (6)dO, (0)>
j =0 Rn

-r
-Tj-

+ gf J *(E)O(O)de < 8<$,$>

where U= (1 + IV 0IA I+IDI L 2 ).

Turning our attention to establishing an equivalence result for the non-

homogeneous initial-value problem (2.1), (2.2), for z0 = (n,O) E Z and

f E L 2(0T, let z: [0,T] 4 Z be given by the expression

t
t

(2.8) z S(t) z0 + S(t-) (f(),O)d , t E [O,T],

0

where o denotes the zero function in L2 (-r,O).

2.9. Lemma. For z as in (2.8) and x the unique solution of the non-homogeneous

initial-value problem (2.1), (2.2) we have the strong equivalence of solutions

given by
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(2.10) z(t) = (x(t),xt).

The complete proof of Lemma 2.9 may be found in [3]. However, it can be sum-

marized as. follows. The equivalence stated in (2.10) is easily verified for

the case of f E C (0,T) and z0 E 9 ) via standard results from linear

semigroup theory 118]. An application of the facts that C (0,T) is dense in

L2 (0,T) and 19W) is dense in Z, together with the uniqueness and continuous

dependence properties of both x(t) and z(t), are sufficient to conclude that

the desired strong equivalence of solutions obtains for all f L2 (0,T) and

z0E z.

3. Preliminary Definitions and Basic Results

We make the following definitions that will prove useful in our discussions

below in regard to the formulation of an approximation framework for the homo-

geneous FDE initial-value problem given by

(3.1) x(t) L(xt) ,  t E [0,T],

(3.2) x(0) = , x0 =

3.3 Definition. Let {Z denote a sequence of approximating finite-

dimensional subspaces of Z [6 ] defined by

N (0), ;(l) (kN
span 'N ' "' N

where ;(j) E Z, j - 1, 2, ..., k Then for each N 1, 2, ... , the 4-tuple
N N

{ZN, TN,f4(, C(z)J will be called a Discrete Approximation Scheme, or more

simply a DAS, for the Cauchy problem (.3.1)q (3.2) if
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(1) (ZN, <.'">N) is a finite-dimensional approximating Hilbert space

defined by the relations

z N EN)
ZN aZ

and

N -i N)-I

N Z

N -N
where a represents an algebraic isomorphism mapping Z onto ZN. (As an

kN

example, one possible construction for ZN would be to choose ZN R and

as the canonical coordinate map from the finite-dimensional subspace ZN

k N N
onto R .) We note that with the inner product on Z defined as above, a

N
-Nactually represents an isometric mapping of Z onto ZN.

-1

(2) N:Z - ZN together with its right inverse 7N ZN Z are projection-

and embedding-like mappings respectively defined by

NN - .l N)-I
~N NP NNN 2NN

where PN is the orthogonal projection of Z onto Z along ()

(3) _N: Z ZN is a bounded linear operator.

(4) Cz) is a rational function of the complex variable z.

We make the standing assumption that T = pr, p an integer greater than

zero, and partition the interval [0,T) into PN subintervals of equal length

defined by the nodal points t - kr/N, k =0, 1, ..., PN. That essentially

no loss of generality is incurred by restricting T to be an integral multiple

of the maximum delay in the problem, r, is discussed in Reber 29, Section

8. It is our desire to construct the Discrete Approximation Scheme

{ZNN,.INC(z)) in a manner that will guarantee that if
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(a) w is, in some sense, an approximation to z for each zE Z

(b) -VNWN z is, in some sense, an approximation to _Wz for each z in

a sufficiently large subset of 9i_=

(c) C(z) is, in some sense, an approximation to ez for z E C suffic-

iently small

then the sequence of vectors (z NpN contained in ZN and generated by the
k k=0

discrete semigroup of operators {CIN .) k I (cf. Kato [181) according to the
NN

recurrence

N Nz0  Zoo Z C( 4 )zk k - 0,1,2,... ,P-i0= N0 Zk+ I  ,-" k

will in some sense approximate

MYt -- e z0 S (6 zO k --0,1,2,....,P,.

'It is further desired that N p 0 provide an approximation N)PN to

N k-0' the true solution of the FDE initial-value problem (3.1), (3.2)

evaluated at the node points. Making these ideas precise and demonstrating

that they can indeed be realized are the concerns of the definitions and

results that follow.

3.4. Definition. The Discrete Approximation Scheme {ZN'N, 1 N ,C(z)} will

be said to be factor stable if the infinite set. of operators on Z given by
N

C(NJN k  k - 0,1#2#,...,0pN
N N'

is uniformly bounded in N for all N sufficiently large.
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.The fact that C(z) -N(z)/D(z) is a rational function

implies that the evaluation of C(I.. N ) for each N will require the invertibil-N N

ity of the operators D(-NI) . Sufficient conditions which can be satisfied by
N- N

the _i and C(z) which will guarantee the existence of this inverse will be
N

provided in the next section. For the present, however, the operators

CI N ) will be referred to with the implicit 
assumption that D' 1 )

N N NrifN

exists for all N sufficiently large.

3.5. Definition. The Discrete Approximation Scheme {ZN, TN, .NC(z)) will

be said to be factor convergent as an approximation to the i-nitial-value

problem' (3.1). (3.2) if for each z0E Z, given c > 0, there exists an N =

i(e,z 0) such that

IC( ) k NZW NS(t)z0N < C, k 0,1,2,...,ON

for all N > N.

The next definition is a precise statement of what is intended when it

is said that vNz is an approximation to z for each z E Z.

3.6. Definition. A Discrete Approximation Scheme {Z Tr ,JC(z)) will

be said to have property (P1) if the mapping irN: Z ZN and its right inverse

I: ZN " Z satisfy the condition

(P1) I I!NTwz - zIZ 0 as N . a for each zE Z.

3.7. Lemma. Suppose {ZNwN,.-QN,C(z)) is a Discrete Approximation Scheme

with property (P). Then the mapping wN - Z + ZN and its right inverse



15.

-1
1ZN Z satisfy the following:

(1) WNZI N _ <IzIz for each z EZ;

(2) IlY-Iz _ Iz .I for each z N Z

(3) lITzlI - IzIZ as N for each zE Z.

The veracity of Lemma 3.7 follows directly from the definitions of wN and -w

N' NWe note that only- the third proposition requires {ZN,'N,#NC (z)} to have

property (P1).

n
3.8. Definition. Let P3 ; Z 4 Rn, p2: Z 4 L2 (-r,O) be the two coordinate

projection mappings defined by pl(n, } r n and p2(n,*) = * respectively for
(n,). z.

That a factor convergent Discrete Approximation Scheme does indeed yield

an approximate solution to the FDE initial-value problem (3.1), (3.2) is veri-

fied in the next lemma.

3.9.. Lemma. Suppose that {ZNAN, ,C(z)} is a factor convergent Discrete
NN N'

Approximation Scheme with property (PI). Then, given E > 0, there exists an

N(c) such that Iy-t(* N k1  iz n < c, k = 0,1,...,pN, for all N >

N pN . .I
where the sequence {z 0  in Z is given byk k=0 nZN sgeny

N kz nC(I..W') INzO

k  N N N 0

Proof: Let c > 0 be given. Then

K _ _ _
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(3. 10) IX( N -~w1zI RN = pl,(Z(t -Nlz

tk~k kZ Z

NE0T -1 N -1 N N1 NONiO

Sic<{~) t lO,]1i akW compatk subset of N (ben th coninou imagekof

a compacti-i- s)se ofz (y If z)N ha bee assme St o hv roet
N N N

Tshe fit terml i th loast neulit in (.10) testizeouas Nmageof

an aitn sust ofa R)atd {ZNrNi, "C(z)1 has been assumed to bae facoprtN'

convergent implies that

IC() 1rz~r~(~ONc /2, k =0,1,. ..,pN

for all N sufficiently large. Therefore, it follows that

I(N -1zI N k = 0l#2,...,PN

for all N sufficiently large.
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4. The Equivalence Theorem

In this section we state and prove a theorem that provides necessary

and sufficient conditions for the factor convergence of a Discrete Approxima-

tion Scheme and subsequently yields estimates for the rate of factor conver-

gence on restricted classes of initial data. The sufficient conditions are

such that they are easily verified for a wide variety of DAS that are considered

in the sequel. The arguments required to prove this theorem rely heavily upon

standard approximation results for semigroups of linear operators (cf. Kato

[18]). These preliminary results, which have been suitably modified so as to

allow for the additional complexity introduced by the variation of the approx-

imating spaces, are contained in Lemmas 41, 4.3 and Theorem. 4.4 below.

In the discussions which follow, ZNP TrN' .WN are assumed to have been

constructed in accordance with the requirements specified in Definition 3.3.

4.1 Lemma. Suppose

(1) E G(M,O) for all N sufficiently large (M,B independent of N);

(2) I[0 4 0 as N for each zE D,, where D1 is a

dense subset of Z contained in.9C&);

(3) For X E C with Re A > 8 there exists a dense subset of Z, D2 ,
0 0

such that R (A 0,QD 2 C D1.

Then it follows that

I ([R , .,,wR(X 0,,)3zoI . 4 0 as N -

for each zo E Z.
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Proof:

(4.2) I[RCA 0 P'N W)ir N RCA u;e)3 O

o N N N 0 )iINI

< R(A 0 ;-Q() I I [-aNfNw-A (O-6ZI

<i )R(A 'Q) zI- 0 as N+
- Re A -B [(N-N" N O N

for each z 0E D 2*However, D 2 is dense in Z, and the operators

[RCA ;4 ')ir -it RCA *je)J

0' N N N 0

are uniformly bounded in N for all N sufficiently large. Indeed,

R-(A (X ZW) < 2M
0 N N N 0O N ReI

for all N sufficiently large. Therefore, it follows that

I [R(A 0 )t..TR(AOL'6)1ZO IN 40 as N -

for each zaG z.
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4.3. Lemma. Suppose .. NE G(M,) for all N sufficiently large. Then for

XE C with Re A > 0, the operatorsVR(A;A.N) -A- are uniformly
N N N N

bounded in N for all N sufficiently large.

Proof: Re A > B and S1 E G(M,B) imply that A E p(SN ) . Therefore, we have
NN

I (-A -) (NI) - 1 = J (StN-AI) - - A(J'-I)-
N N N N N

or

A( Ow.-XI =1 1 + XAIut -Xl) -
N N %N

This implies

/N( N-I)-N < +IN+ I A 1 (14 -AI)-IN

-- Re A-B

for all N sufficiently large.
0

Theorem 4.4, to follow, is a minor modification of a standard result from

the theory of approximation for linear semigroups of operators generally attri-

buted to Trotter [361. The veracity of the result can be argued in a manner

similar to that used by Kato in verifying Theorem 2.16 in Chapter IX of [181.

The details of the proof of the result as stated in Theorem 4.4 can be 
found

in [331.

4.4 Theorem. Suppose

- - - --- - ---- ~ .. --- *- -
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(1) JIN: ZN  ZN is the infinitesimal generator of the 0 semigroup

of bounded linear operators, (S (t): t>O) , defined on ZNN -N-

(2) .'9LJaC Z - Z is the infinitesimal generator of the -W semi-

group of bounded linear operators, {S(t): t>0), defined on Z,

such that

(I) -NV . EG(M,O) for all N sufficiently large (M, 8 independent of N);

(2) I[% 4 nwN-if-QZOA N z 0 as N + for each z0 E Di , where D1 is a

dense subset of Z contained in (W);

(3) There exists a X0 C with Re X0 > 0 and D2 , a dense subset of

Z such that

R(A0;IV) D 2 C D1 .

Then ItSN(t)wN-V NS(t)]zOIN - 0 as N + - for each z0E Z, and moreover the

convergence is uniform in t for t E [0,T].

We remark that if the set D is invariant under R(X x0 for some
1 0

A E c with Re A , that is R(AoLQ()D1 C Di, it suffices to choose D2 =

D.

The following corollary yields an estimate for the rate of convergence

in Theorem 4.4.

4.5. Corollary. Suppose ._' 9' 2 ) satisfies the following:

(1) For each zE Y , there exists a K - K(z) such that

| I -
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(2) There exists a subset-S of_ 5such that, for z ESI and A with ReX>B,
11

(a) S(t)z E ", t E [0,T]

(b) S(t) (AI-)zE , .t E [0,T]

and furthermore the constants guaranteed by (1) for (a) and (b) are indepen-

dent of t E [0,T].

Then under the hypotheses of Theorem 4.4, there exists a k(z) such that

S[SNMt} N-rNS (t)]1z IN < k (z)(rN ) p  t C- 10,T]

N N N

for each z E9 1I

The verification of Corollary 4.5, which follows as a direct consequence

of the arguments in support of Theorem 4.4, can be found in [6].

The subsequent four lemmas provide results and identities which are

required in order to estimate the degree to which a rational function approx-

imation to the exponential evaluated at tY, where Yis the infinitesimal gen-

erator of the 0 senigroup {e t > 01, approximates e for t small. With

the exception of the final conclusion, Lemma 4.6 is a verbatim statement of

Hersh and Kato [15], Lemma 2. The proof, which has been omitted, can be found

in that paper. The result which has been appended to Lemma 4.6 follows as an

immediate consequence of their arguments. Lemmas 4.7 and 4.8 comprise a minor

extension of Lemma 3 in (151. The proof of Lemma 4.7 can be argued using the

properties of -W semigroups and their infinitesimal generators (cf. (331).

The proof of Lemma 4.8 has been included.

..... .... ..? i 
'..".... . . . .. -"-" .... . ,r - " " =. . . . .. " 

' ' . .
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4.6. Lemma. Suppose /1E G(M,B) is the infinitesimal generator of a 0

semigroup of operators and C(z) is a rational function of degree < 0 with no

poles in {z E C:Re z<01. Then there exist positive constants e, K such that

.lC lh -W < K for all h with 0 < h < . moreover, the only dependence of the

constants c and K upon the operator 9 is reflected in the choice of e, where

£ = 1 .

4.7. Lemma. Suppose _9E G(M,O) is the infinitesimal generator of the

" semigroup of operators {e t>01. The. for fE (9 - q+ l ) we have

i0h f - ( f < Mhq+Ie hi q+1

j=0

4.8. Lemma. Suppose

() 9 E G(M,8) is the infinitesimal generator of the 0semigroup of

operators {e : t>0}.

(2) C(z) is a rational .function satisfying

(a) leZ-C(z)I =O(Izlq1 +l), z 0 with q > 0

(b) deg C(z) < q+l

(c) C(z) has no poles in {zE C: Re z<0.

Then for h sufficiently small, the operator C(hY) exists and, moreover, for

f E (- +l) we have

Ie 9 'hf-C(h-01) f I Me Ohl._'q+tf<hq+'

where M is a positive constant independent of YE GI(M,B)•

" .j ...'
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Proof: Suppose C(z) FN(z)/D(z) where D(z) is a polynomial of degree p.

without loss of generality, we may assume that D has leading coefficient 1.

Thus D(z) may be written as

p
D(z) = HI (z-X.

j=1

where by hypothesis (2c) Re X. > 0, j 1 ,2,...,p. Assuming for the moment
1)

that (59-hX. exists, we see that

)p

D 1 (hS5V) = 1T (95h-A.) 11 (5h-A.X
j=l j=l

- I (hi-l (_97-h-" )X (h-) TI(-hA -

j=1 j=l

Now Re AX > 0, j = 1,2,...,p, and-FE G(M,B) imply

h A E [A Ec: Re A>$) C p (9), j 1,,.,

for all h sufficiently small. Hence, (Y5P-h1) Xl p .. , do

indeed exist, as does M-h9) = D(hY-) 1 N(h-9i for all h sufficiently small.

To prove the second proposition,*we no te that h~ipothesis (2c) implies that

C(z) is analytic at z = 0. Therefore hypotheses (2a) and (2c) together imply

that C(z) =. (ZI/jI) + zqQ(z) or Q(z) - (C(z) - j - l,whr
j=0 ,=0 j1 zwhr

Q(z) is analytic near z = 0, i.e. Q does not have a pole at z, 0. Furthermore,

for zE{zEC: Re z<0,z}, C(z~2z+l is finite by hypothesis (2c) and

J 1-)z~ is finite since it has degree less than zero and the point
j=0
z - 0 has been excluded from the set of interest. Therefore we may conclude

that Q(z) has no poles in {z E C: Re z<O).
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If C(z) = N(z)/D(z), hypothesis 2(b) implies

deg N(z) < deg D(z) + q + 1.

Therefore

zJ - (q+l)

deg Q(Z) = deg[(C(z) - z I)( ]
j=0j-

N(Z) -D(z)

= deg[

D~z) z q 1

deg[N(z) - D(z) j!- deg[D(z) z  I
j=O

< max[deg N(z), deg(D(z) L - (deg D(z) + q + 1)
j=O

= max[deg N(z), deg D(z) + qi - (deg D(z) + q + 1)

< deg D(z) + q + 1 - (deg D(z) + q + 1) = 0,

and thus Q(z) satisfies all of the hypotheses of Lemma 4.6. Thus, for

all h sufficiently small and all9E G(M,O) we have

IQ(h-F i < k for some X > 0 independent of 9E G(M,B) ,

and hence

IC(h-f- (h-J fji I (h -Y) q + I Q(hY)f I h q+lQ(h-)-q+lfl

J=O j

khq--0+ll
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Therefore,

(h 57) (hh Y-le f-C(h-ifl < le -f - " (h)J fI I -f C(hg9 fI
j=j=0 J

< Mq+lehSlq+fl + khq+lI9q+lfI

Me ehhq~ 15+lf I.-

The estimate of the bound on the first term on the right-hand side of the pre-

ceding inequality follows from Lemma 4.7. [

We are now prepared to state and prove the primary result of this section.

It is referred to as the equivalence theorem because it serves to characterize

factor convergence for Discrete Approximation Schemes and because of the sim-

ilarity it bears to the well-known Lax equivalence theorem 120]. The reader

is instructed to note the similarities which exist between Theorem 4.9 to

follow, the Lax theorem mentioned above, and the somewhat more general result

given in Theorem 1 of [15). The key step in the arguments supporting the

sufficiency claim in all three of these results is the factorization which is

employed immediately preceding (4.11) in the proof whieb in given below.

4.9. Theorem. (The Equivalence Theorem) Suppose {ZN,IN,XN,C(z)} is a

Discrete Approximation Scheme with property (P1) satisfying

(la) For all N sufficiently large, V. E G(M,B) is the infinitesimal
N

generator of the 0 semigroup of operators (S N(t): t>o defined on ZN

(2a) IjNVN-WNjZOIN + 0 as N 4 = for each z0 E DI, where D I is a

dense subset of Z contained in.(W').
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(3a) There exists a A0 E C with Re A0> and D2, a dense subset of Z

such that R(A0 ;4AO)D 2  1'

and

(ib) IC(z)-ezl = O(Izlq+l) as z 4 0 with q > 0

(2b) deg C(z) < q+l

(3b) C(z) has no poles in (z E C: Re z<0}.

Then the operators C(-.N) exist for all N sufficiently large and factor
N N

stability is necessary and sufficient for factor convergence.

Proof. The first proposition follows as a direct result of Lemma 4.8. The

arguments required to verify the necessity part of the claim parallel those

employed in the proof of necessity in the Lax equivalence theorem [201, and

have therefore been omitted. A detailed proof of this result as it is stated

above can be found in 133.1. To prove sufficiency, for z0 E Z and k = 0,1,2,

... ,N we have

(1 IC (.IQ k N(4.10) _ -,) Nslt .(tk)1zOIN

< . Cr [S()lN 1 N~~]ONf)S(Y rZOS N () N-"NS ()

Theorem 4.4 implies that the secnd term on the right-hand side of (4.10)

tends to zero as N 4 =. We now consider the first term. We have

...I1 .. ..... 1f.. ....I' I-. ..." ' l ~ lf~ l- " " ' " 1 111
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r k N ql[CI 0 N NC

j=0NN NN NN NN N0N

(4.11)
k-i

I= N n N NN isN (tk~l-j)R(A 0 N)q~l N'O'N

j=0=

(4.12) k-i N--- ' N NO

j=0 NN N

k-i
< M0 M N e KN r~q+ 1  N

tk .r) [*(R(A_)Rlo q+7 7
j=0 N N 0 N 1 N 0 N

NT (K q+1 Nq

< T Mr 0 [ s -NR(X _Q() I irNNZOIN

.Mme I 0' JaNR 0 W)

STR (Ar;q1 Q

pr I-QDNR (

yM 1  0zN for all N sufficiently large,

0

(.4.12) and the constant M are consequences of the assumption of factor0
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stability, while the estimate in (4.13) and the constant M result from an

application of Lemma 4.8.

Lemma 4.1 implies that

_R( ON-W)' 0' N17 N 0 0'1 ONb

j= (R NL~) 0'N N N 0' 0' 0 ON

(q)l max 1-j7O'

j=0

0 as N+

Therefore, it follows that

(4.14) [C( N WR (A ;Sa)O q 0I

Sk N R ai;q6+l qls
[CC(-lW) -S.(Y4]I[Rv 0'')1 RCA ')zN

N )NN N ON NN( 0 bON

< I[C( ~ ks ) N RC q+1

A) SN(' II JRXo;QfN W NIr R( 0'-~q~] ZI-I
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(140Me T 1(X -Yq+l -Z (N)q

< (Mo+R qNMeT)i [R( 0 .. N+N-NRo ) ]zo + YMAo 0 zZO N

-0 as N .

Hence

NQf N N NasN-N

for each z E q(R(A0 -)q+l) But 6(R(A 0-,)q+l) =O-- /q +1) is a dense subset
r k N.

of Z. Therefore, using the fact thatthe operators [C(- N)  )], k =
N N SNtkl

0,l,2,...,pN, are uniformly bounded in N for all N sufficiently large, we

conclude that, given c > 0, there exists an N = N(E,z0 ) such that

IkC( (t I < E, k = 0,1,2,...,pN

for all N > N and each E Z, which implies factor convergence.

While Theorem 4.9 above yields both necessary and sufficient condi-

tions, it is only the sufficient conditions that are of practical importance.

Indeed, the theorem will be applied to demonstrate factor convergence for a

Discrete Approximation Scheme satisfying the required hypotheses via the

generally more easily verified condition of factor stability.

The next corollary provides estimates for the rate of factor convergence

for a factor stable Discrete Approximation Scheme satisfying the hypotheses of

the equivalence theorem.

1 . . .. . .. ... . ... .... ... ...
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4.15. Corollary. suppose (Z.'T NC~~ is a factor stable Discrete

Approxi 'mation Scheme with property (P1) which satisfies the hypotheses of

Theorem 4.9. Furthermore, suppose there is a set Y£D1 q such that

for each z E Y there exists a constant v - v(z) for which

IU r 7rj~ 7F VZ (z)r ()p for some p > 0.

Then for each z 0E (aq+l) for which (f"-A 1) z OEY j =0,1,2,...,q, there

exist constants k 0 = k 0(z 0and k = 2( depending on z0such that

'N N Ntk DtNON-ON +k2 N

Proof: Let zobe as in the .statement of the corollary and define

v .(Z0 ) = v(CW-X0 i)jz), j = 012..q

V(q = 0Max vji(Z 0 ).

Then zO POQql = jWRNIA(+) implies that =o RPA ;V)( +l for some

vo E Z. From (4.14) it follows that

I [C(r.~ k N)J I [C k- N 'N

ST (M0+Me) IR( 0  (q+l) )1  + lv Kq

OT q
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OT<" R( oBT, (jRX 3.11 ) t [ ;Q() -'. R (A I
M e j0O N 0 N N N 0

•ao. (q-J) Voq +l~ v~(

(vI+ YM' OI, 6

S(M0+Me OT M -I R(Ai W -W R (AOW)
3=0 (Re X 0-00 0N)

R (X ;.W) (q-j) vOIN + Y?

(4.16)

< (Mo+MeT) 42 (qM2j)

0 J=O (Re X 0)+1 ON

+ yM Xvo 0V(l)q

0 ZN

-- N0 Me~ j=O (Re A08J+I 1r'N!N-TN R(AO (q+l-J)vo,

+ M0

< (Mo+MeOT) 
2  SA R(P + l i ( )q 

-

j=0 (Re X 0 )A 0
'

<w (M0+MeBT)M2*(z)(qI z) ( max (Re A0- J)(Nr

J=O~ ~ ( e 
Iv0 T-, 0 A0

(zO ) ()
p + k2(z0 ()q, .for all N sufficiently large,

where (4.16) follows from an application of the estima te given b~y (4.2). :

Finally, we can summarize the above results in a theorem which will be

suitable for application in the discussions below.
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4.17. Theorem. Suppose zN71 N,.N,Cz)I is a factor stable Discrete

Approximation Scheme with property (P1) satisfying the hypotheses of Theorem

4.9. Furthermore, suppose that Yis a subset of .O /2 ) n D for which

()' For each z E Y there exists a K = K(z) such that

i -?r M _< Kz)/N P

N N N NJ

(2) There exists a subsetS 1 of S"such that for zEY and X with Re A>
1 1 00

(a) S(t)zEY, t E [0,T].

(b) Sl(t) (X 01 -Q#z E _, t E [0,T]

and the constants guaranteed by 1) for (a) and (b) are independent of

t E [0,T].

Then {ZN ,W ,A(,C(z)) is factor convergent and, moreover, for eachNo N

S0E_ f (Po q +l ) for which (A I-.QtJz E9, j = 0,1,2,...,q, there exist0 10 0

constants " = (z and k k (z which depend on z0, such that

_Q k N < k )p + k )q = 0,1,2,...,pN.
N: N [elN k 0 N o N 2.N

Proof: Theorem 4.9 ensures that {ZNF, N, C(z)) is factor convergent'. To
!N'

verify the second proposition, let z be as in the statement of the theorem.

It follows that

k N(41)< I .  IS ) I

|C (. $kN: N IF....w ZON+ 1NY NWN~i)Z1
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< k 0(z 0)(K) p + k 2(z) ()q + k(z )(I)P
-O N 0N O N

= k (N )p + k (E)q ,

1iN 2 N

where k = k1(z 0 ] , and k 2 = k2(z0

The estimates of the bounds on the first and second terms on the right-

hand side of (4.181 follow as consequences of Corollaries 4.15 and 4.5, res-

pectively.

5. The Pad6 Approximations and Characterization of Factor Stable/Factor

Convergent Discrete Approximation Schemes

Adopting the terminology employed in [12] and 115], we make the following

definition.

5.1 Definition. We shall say that a rational function r(z) is acceptable

with respect to the set {zEC: Re z<O}, or equivalently a member of the class

[ Re z<O' if

(5.2) (1) Ir(z)-ez -(zq+l), z 0 0, q > 1

(5.3) (2) fr(z) < 1, z E {zEC: Re z<O)

Among the most widely known classes of rational function approximations

to the exponential (rfae) which in addition provide acceptable subclasses

,are the Pad4 approximations [101, (371 defined by the formulae

Pjk (z) Njk(z)/Djk(z), j,k - 1,2,
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where

Nj,k (Z) m0 (j+k) ImI (k-m)! I

D. (Z) = (j+k-m) I j I)M
I~ M=0 (j+k) Im! (j-m)! (zm

For the purpose of reference, we state and in some cases prove the following

propositions containing results,. properties and identities relating to the Padg

approximations. The proofs of Propositions 5.8 and 5.9 may be found in

Ehie [12], together with the verification of Proposition 5.10 which is the

primary result of that paper.

5.4. Proposition. deg P. (z) = k-j, and

IP (z) W e ZI o(Izli+k+1), z -~0.

5.5. Proposition.

D (z) = N (-Z), J,k > 0J,k k,j

5.6. Proposition.

n k n akn

0) ,n () k=0 k k=Oki zk

where

n
(1) ak > 0, k - 0,1,2,.. .,n, all n

(2) 1' ( /I

(3) n f+l) k ,,,..n
a k+l'
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Proof: Let.

n2 3 n
n pnlZ z z S)spanlD 1 ' 31-'*--,** ni

n spnl Iz,(l+z) 2 (l+Z)n1

2. nn

Then if_, A n --4&; is the coordinate transformation operator mapping,* n
n

onto Aa simple calculation reveals that M n: R ~ Rll its matrix repre-

sentation with respect to the bases defined above, is given by

0 1 1 1 1 1 1
31 4! Ti

0 0 1 1 1 11
2 1 3! 14 (n-i)1

1 1 1

21

o 0 1 1

0 0 1

The inverse of M nmay be calculated, and is given by

nn

21 31 41 nI

0 1 -1 1 1(- 1) n-l 1
2! 31 (n-i)!

n

0O 1
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upon inspection, it can be observed that the coordinate identification

P (Z E " nT(= n+l
0, n

holds. Then if

we have

n n n n T -T

(a ,a 1 a 2.'a n m n ~~~l..

or

1 + +Lk.~ n-l 1 + (1
1231 41 5! (n-lfl n!

n n n T
(a a1.F.a) n

01 31-

21

4 0

n nwe verify (1) by induction. For all n, a n > 0, a =~ 0 > 0,

a n =1/21 >0, al n > 0. Suppose a n>0. Then
a- n 3  Ti 2 T ! n-(2k-1)

a =an a (-1 I an0nk n_(2k-1)+ (2k)I n -(2k-1)+ (2k) 1

and
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n (n)2k 1I (1 (2k+l) > >0.

an-( 2 k+l) - (2 k-1 ) - (2k)! 2+)

The veracity of (2) follows from

n n an
n k k flk

1-- po (0 ) 1 T, (l +0) 1 =
On k=O k=O

Finally, for the verification of (3), we have

n+l _1 _1 1 (l (n+l)-(k+l) 1,

k+l 2! F 31 4! (1)T

_1 _1 + (_J*)flk 1 a n~ k 0 ,1,2,...,n-2
21 31 n-k)! k

nl n- n+l n

0

Techniques similar to those employed in the proof of Proposition 5.6

can be used to verify the following result as well (cf. [331).

5.7. Proposition.

1Z k k-m+ (j -1). 1__ k k-m+(J-1)
N J-k ''~j M0 J1 ) (z) = ~ 1 (-1 )P O (Z)

and

1 1 ( k-m+(i-1)) -1
(k+i) M-0 J
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5.8. Proposition. (Ehle) If for some j, k > 0, N (z) has all of its
- j,k

zeros in the open left half-plane, then for all m > j, N (z) has all of its
in,k

zeros in the open left half-plane.

5.9. Proposition. (Ehle) For any n > 0, if Nn+l,n+l(Z) has all of its

zeros in the left half-plane, then N (z) also has all of its zeros inn, n+ 2

the left half-plane.

5.10. Proposition. (Ehle) The diagonal and first two subdiagonal entries

in the Padd table of rfae are acceptable with respect to the set

(zEC: Re z<0}. That is,

{Pn+l,n+l(z)}, {Pn+l,n(z)) ' {P n+2,n (z)} E IRe z<0' n 0,1,2.....

It is Ehle's [121 conjecture that these are the only entries in the Pad6 table

which are of class S Re z<" Norsett [25] has substantiated this conjecture

in the case of the third and fourth subdiagonal entries in the table, i.e.

{P n+3,n(z)) and {P n+4,n(z)}. More recently, Iserles [16], (17] has demonstrated

that P n,m(z)} is not acceptable if n-m Z 2(rood 4), n > m+3.

As is pointed out in [15], there are other classes of rfae in addition to

the Pad approximations which have been investigated with regard to acceptabil-

ity. In particular, the Norsett functions 124] with denominators of the form

(1 + az) n, a property desirable for computational efficiency, have been shown

to contain an acceptable subclass. However, since the Pad6 rfae yield an

acceptable subclass with an arbitrarily high degree of approximation, we are

content to restrict our attention to them alone.
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Von Neumann's theory of spectral sets will prove a useful tool in estab-

lishing the factor stability of certain Discrete Approximation Schemes of interest.

The details of this theory, and the proof of Theorem 5.12 below, can be found in

von Neumann's original work [231, Riesz, Sz.-Nagy [321 or Berberian 18]. Similar

applications of von Neumann's theory of spectral sets appear in [151 and [21].

Let T be a bounded linear transformation on a Hilbert space H.

5.11. Definition. A set C C (completed by the point at infinity) will

be called a spectral set for the linear transformation T if (a) it is closed,

(b) a _ c(T) and (c) for every rational function u(z) satisfying the

inequality Iu(z)I < 1 for all z E', we have that I1u(T)II < 1.

5.12. Theorem. A necessary and sufficient condition that the halfplane

IZEC: Re z<0} be a spectral set for the bbunded linear transformation T is that

Re<Tf,f> < 0

for all f E H.

The next lemma, a modified version of the corollary to Theorem 6 in [15],

will permit us to apply the above results in the characterization of factor

convergent approximation schemes. Due to the importance of this lemma, a

detailed version of the proof provided in [151 is included.

5.13. Lemma. Suppose

(1) C(z) E iRe

(2) {zEC: Re z<O is a spectral set for T-OI, where 0 > 0 and T

is a bounded linear operator on a Hilbert space H.
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Then IC(N T)I < 1 + BKr/N for some constant K which is independent of N.

Proof: C(z) a rational function, and C(z) E IRe z<O imply that C(z) must

have finitely many poles, all lying in the right half-plane. Therefore there

exists an M > 0 such that C(z) and C'(z) are analytic in {zEC: Re z<M}. Now

C(z)E 4ARe <0 implies that C(z) is bounded at -, and thus deg C(z) < 0.

Moreover, deg C'(z) = (deg C(z))-1 implies that deg C'(z) < 0 and C'(z) "is

also bounded at -. Therefore, an application of the maximum modulus principle

from the theory of functions of a complex variable guarantees the existence

of a K > 0 for which IC'(z)I < K for z G {zEC: Re z<M}. Let

r
C (z($) - C(z)

fN(Z) _- r
N

By the mean value theorem of differential calculus, we have

r

C(z+-0) - (Cz)
f (z) = -- c'(I) k-zI < r 1 =3
N rN

N

Therefore

sup IfNW)I= sup IC'I((z))I <K
Re z<O Re z<0

r1
for all N sufficiently large (i.e. 4 < M). Consider 1f for N sufficiently

N K N
large. It is a rational function, and moreover

1--f (z) I < 1 for all z E (zEC: Re z<O and all N sufficiently large.

Since {zEC: Re z<0) a spectral set for (T -$I) implies that it is also a

spectral set for N(T -$1), N = 1,2,... (cf. Theorem 5.12), we have
N
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I-IfC(K T -8) <C~( -8)or<JC~T

N ~ ~ ~ f NT-1))(T8NN

oralNsufcetylre Thsipistt

L jC(K T) I IC(ET -81))11 C + ) CC ( ) Y* NN N N

for N sufficiently large. However, C(z) E 'Re z<O and {zEC: Re z<O} a spec-.

tral set for Eft -01)., N =1,2,..., implies thatN

IC( :(T -W) <N<.

Therefore,

IC(E T) < 1 +
N N

for N sufficiently large.

0

5.14. Lemma. Spoethat (Z ,W Q( C(z)} is a Discrete Approximation
Scheme with property (P1) satisfying:

(1) There exists an inner product I-,-] Non Z Nthat generates a

topology on ZN equivalent to the standard Z inner pouttplg o hcN pIdc toooNfo hc
N N N [Z N NRe L-(.z , z , z I for each z E Z and all N sufficiently large withN N- [ N N

8 > 0 independent of N;

(2) I1 rNFNrN.(1z IN - 0 as N for each z eD 1 , where D 1 is a dense

subset of Z contained inOUVp
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(3) There exists a A0 E C with Re A0 > and D2, a dense subset of Z

such that R(A 0-O)D C D
0' 2

Then {ZN,7N,JC(z)} is factor convergent.

Proof: In the light of the remarks in §2, condition (1) above and

Z finite-dimensional are necessary and sufficient for E G(M,8) for all
N N

N sufficiently large. Therefore, if we can demonstrate that {Z if , C(z)}
N' N' N'

is factor stable, an application of Theorem 4.9"wili yield the desired result.

Let tu . represent the norm on Z which is induced by the inner

product [-,-] and which obeys the norm equivalence relation given by
N

Condition (1) implies that Re[(_W -I)z,zJ < 0 for all N sufficiently large.
N N-

Thus Theorem .5.12 yields that {z EC: Re z<0) is a spectral set for the

operators S N-8I for all N sufficiently large. Moreover, C(z) E WRe z<0 and

Lemma 5.13 imply

NKr
IIc (!Q() I IN _< 1 + _

for N sufficiently large. Therefore, for k = 0,1,2,...,pN, and all N suffic-

iently large, we have

k IIC,!.W)I1k _ (r k ,SKr k < ((1 + ,Kr)N)P

N )'I 1 (ON)IIN U+N N

< e8Krp e 8KT .

Hence
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k e ,KT, k = 0,1,2,...,pN and all N sufficiently large,
m

which implies that {Z ?r , NC(z)} is factor stable.

N N -N

0

S5.15. Lemma. Suppose that {Z ,INJN,C(z)} is a Discrete Approximation

Scheme with property (P1) satisfying

(la) There exists an inner product induced norm 1I'1N on ZN generat-

ing an equivalent topology to the standard ZN norm topology for which

II( i+r ) j2 < 1 + ar/N,

for all N sufficiently large with a > 0 independent of N. Suppose further

that conditions (2), (3) and (4) of Lemma 5.14 are also satisfied by

{Z 7NTrld,C(z)}. Then {Z ,r ,.,C(z)} is factor convergent.
N' N 'N NN# N

The proof of Lemma 5.15 may be argued by demonstrating that condition (la)

implies condition (1). Indeed, if NII N PzzJN, it is not difficult to show

that (cf. 133])

N N -Iz i.
Re!.L*z,zlN - 2~zN .

The next theorem serves to characterize a certain subclass of the Padd

approximations and the factor convergent approximation schemes that it

generates.

5.16. Theorem. Suppose that {ZN,wNV.,C(z)) is a Discrete Approximation

Scheme with property (P1) satisfying either condition (1) of Lemma 5.14 or

condition (la) of Lemma 5.15 in addition to conditions (2) and (3) of

Lemma 5.14. Then if C(z) E {P n+l,n+l(z) or C(z) E {P n+l,n(Z) or
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C(z) E P n+2,n(z)), n = 1,2,..., where Pj,k(z) represents the (j,k)th entry

in the Pad4 table of rfae, the scheme {ZN,N, NC(z)) is factor

convergent.

Proof: Proposition 5.10 and Lemmas 5.14, 5.15 above.
0

As we have seen, the construction of {ZN, N ,C(z))with C(z) E z<0
N % N ~ )wt NRe <

together with the theory of spectral sets will enable us to

characterize large classes of factor stable and thereby factor convergent

Discrete Approximation Schemes. However, if C(z) E [Re z<0' condition

(5.3) deems it necessary that deg c(z) < 0; that is, if C(z) = N(z)/D (z),

then deg D(z) > deg N(z). Unfortunately, the restriction that deg C(z) < 0

precludes the investigation of many approximation schemes comihonly encountered

in practice, and often with many highly desirable properties, via this approach.

In particular, explicit schemes, i.e. those for which deg D(z) = 0, are not

acceptable in the sense of Definition 5.1, but are computationally desirable,

since no operator inverse need be calculated. Fortunately, however, we shall

be able to investigate a wider class of approximation schemes than those con-

structed with C(z) E 2 through the application of other techniques to
Re z<O

be described below.

5.17. Theorem. Suppose {ZNn, 3,C(z)) is a Discrete Approximation Scheme
N N N'

with property (P1) satisfying conditions (la), (2) and (3). Then if C(z) =

P (z), k - 11,2,,, 1ZNwW?,C(zj) is factor convergent,
0,kNN N

Proof: In the light of the arguments in support of Lemmas 5.14 and

5.15 and the fact that the PO,k(z) satisfy conditions (ib), (2b) and (3b)
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of Theorem 4.9, we need only demonstrate that {ZN,TN,N',POk(Z)}, k =

1,2,..., are factor stable before we can apply Theorem 4.9 to obtain the,

desired result.

If we again assume the norm equivalence relation mi I < i N_

M N we have for n = 0,1,2,...pN and all N sufficiently large

k
k a.

5.18) ''Po,k(N!' N N = i f N N Nj=0Q

k ka.< ( . a j I I (I 5r j l ) < ( I [ I ) i I

< a 1 1 i~ )J1 1 )n < I N N N-- j 0 j !  N-- j_0 ifN N N

k k

k a.k ka k
< I _-(i + 2 -- ) < I :1aj eearj/N)n

j=0 N - - jif

k arkka k/N n N arkP akT
< e e < e e

j=O i

where (5.18) above follows from an application of Proposition 5.6. Thus

P0,kr '  ,n <M cxkT

AN _n e , n = 0,1,2,...,pN for all N sufficiently large,
m

and hence {ZNTrN. k = li2,'..., are factor stable.

N# NU (NPOkz)} 0

., 5.19. Remark. For purpose of reference in the arguments that follow, the

reader is requested to note that inequOality (5.18) above implies that

IPoI I < e ark/N
0,k N N Ne

as well.

5.20. 1 Lemma. Suppose (ZN,NN,( P (z)J is a Discrete Approximation
N' NJ,k

Scheme with property (Pl), where Pj,k(z) - Njk(z)/Dj,k(z) is the (j,k)th

iAw
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entry in the Pad6 table of rfae. Then if condition (la) of Lemma 5.15

above is satisfied, we have that

(1_,()nl < l

j,k N N N -k

for all N sufficiently large and k =0,1,2,..., where C 1 is independent of

ft, N and j.

Proof: Proposition '5_7 implies for n =0,l,2,...,,pN, N sufficiently large

that

(k+ ~o j-1)IP' 0 j-l ,r N

k

1 k-+j1) )e rm/N n

< 1 ~ k-m+(j-l)) crk/N)n
- k+jJ1

(e rk/N n <ceirkp eakT

Therefore, assuming the norm equivalence relation in Lomma 5.14, we have

INjk.(~)In < e ak C', n = 0,1, ... ,pN, all N sufficiently large.

5.21. . Lemma. Suppose {ZN1I .f',P Wz) is a Discrete Approximation SchemeZNW'N J,k

with property (P1) where P Jk (Z) - N Jk (z/D Jkiz) is the (J,k)th entry in the

Pads table of rfae. Then if there exist constants.M,O for which either
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(5.22) (1) Spf E H(w,B,M) (cf. 52) for all N sufficiently

large and some w > 0

or

(5.23) (2) sN E G(M,8) for all N sufficiently large and the roots of
N

D j,k(z) are real,

we have, for j < k+2,
r _j ,k( N _fN n .2 n<  0 ,

D jk ( N2 n = ,1,2,...,pN for all N sufficiently large,

where C2 is independent of N, n and k.

Proof: Propositions 5.8 and 5.9 imply that N j,k(z) with k < j+2 have
1

their zeros in the open left half-plane. Indeed, N1,1(z) = I + -z has as its

only zero z = -2. Then if we adopt the conventions that:

(a) A--4B denotes the implication that "A has its zeros lying in the

open left half-plane implies B has its zeros lying in the open left half-

plane' justified by Proposition 5.8;

(b) A =*B denotes the same implication as in (a) justified by Proposi-

tion 5.9,

the following table can be constructed to substantiate the Ulaim.

.. ... ............. '
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N0 2(z)

N (z) Ni(z) N,(z)
1,1 1,2 ~ 1 ,3(

N" (z) N I(Z) N2
1  z N 4 (Z)

2,1 2,2 21 z ,

Ni (z) N I (Z) NI N z) N ( N (zz
3,1 3,2 3,3 3,4 3 )  3,5 5,6 N5,

P41(z) N 4I Z (z) N 41(z) N 45(z) N 4,6(z

I I I i I I
N (z) N (z) N I(z) N I(Z) N (z) N I () N (z)

5,1 5,2 5,3 5,4 515 5,6 5,7

Proposition 5.5 implies that Djz) = Nj, -z), which in turn implies that

D jk(-z) with j < k+2 has all of its zeros in the open left half-plane. Thus,

D (z) with j < k+2 has all of its zeros in the open right half-plane.j,k

Therefore, for j < k+2, it follows that

~D~z)I iL j k 5z~ with Re 0, i

Ij,k (zi k1 ,,.,

j

and k _- A j,k
j i=l i

Note: In order to simplify notation, the j, k superscripts and subscripts

on 6k and A i 1,2,...,j, will be suppressed in the discussion below.

Working formally, we find

I (rj -n 1 rV ))-n = 15 1n I r I

r _V/6I I r .
i=l N N

Now, Re X 0, i 1,2,...,J, guarantees that IArg AiI < w/2 and Re X>

1, i - 1,2,...,j, for N sufficiently large. Thus..s, EG(M,4) or

i "'
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(NE H(W,B,M) implies that the operator inverses in the preceding inequality

exist for N sufficiently large. Furthermore, in the case that (5.22) holds,

we have

3 X.N

i(524l1 r r N) N 161 l r Rr N N

( 4 1 61n J(N)n M < 6 in N n-- ir r IN'i8n - i~l

Si=lr r

--bI ln( Nf ilnMJ l )nfl N -
r j

i=l

SIn iMJJ i -n 1)-n R MI j.( O- r -n

il i N i=l1

< 1 .  (IA -K =M( I -

= ISn( O r -n

iill' i i

<B) r -pN _ Or -N p C2

JJ

for all N sufficiently large with C.2 independent of N. The calculation above
)

follows from the fact that lis (l - B -N - exp(Br/IXi1) implies that

(1 -r )N i ; 1,2,...,J, are uniformly bounded in N.

When (5.23) holds, the appropriate steps in *(5.24) are replaced by

NNn j XN IN 16 1.n J !)nM(INiI -n

1 1 
1 i=l (Re n i=l r

where we have used the assumption that Xi E R, i 1 1,2,...,j. The remainder

of the proof proceeds as in the previous case.

U

. . - - ___ _____
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5.25. Theorem. Suppose that {Z IWN,-, P.(Z)1 is a Discrete Approxima-

No No N iV,k

tion Scheme having property (P1) where Pj,k (z) = Nj,k(Z)/Dj,k(z) is the

(j,k)th entry in the Pade table of rfae and j <k+2. Suppose further that

{Z ,WN , 'P.(Z)l satisfies conditions (ia), (2) and (3) referred to in
No N N'J,k

Theorem 5.17 in addition to either

(4a) -W' G H(w,8,M) for all N sufficiently large and some w > 0
N

or

(4b) {AEC: D (A)=0} C R.
j,k

Then the scheme is factor convergent.

Proof: Once again, we need only demonstrate that {ZN orN , oPj (Z) isN N'N j,k

factor stable. Lemmas 5.20 and 5.21 imply that

nr -1 rII 1 n [D .(-W)lN

j~kN I Jk N j,k N 3N ni IN. (.fn

I,k N~ N jk(i..)NI N kD N NV) NjkNNN

C2 C1 =Ck
-jk j,

k

n - l0,l,2,...,pN, for all N sufficiently large with Cj independent of N.
U

A DAS of the form {ZN ,TN -,P (z)), k = 0,1,2,..., satisfying conditions
NoN N l,k

(la), (2) and (3) stated above is factor convergent. Indeed, Dl,k(Z) is

linear in z for each k and thus condition (4b) is satisfied as well. Unfortunate-

ly, it cannot be argued that this is also the case for DAS of the form



51.

{ZN ,7r W ,Pj,k(z)) with j > 1 and k = j-2,j-l,l,j+l,.... In fact, it can be

demonstrated (cf. [331) that {AEC: D 2,k(M-0} consists of complex conjugate

pairs for each k and {AEC: D3 k(A)M-0 consists of one real value and a complex

conjugate pair for each k.

Finally, we can summarize the preceding results with the following theorem.

5.26. Theorem. Suppose {Z ,N, -W,P. (z)) is a Discrete Approximation
N N N 3,k

Scheme with property (P1) satisfying

(1) '['N!'r 1 - Z0 N 0 as N for each z E Di , where D1 is a

dense subset of Z contained in O(

(2) There exists A0 E C with Re A > 8 and D a dense subset of Z for

which R(A ; )D C Dl

and P. (z) is the (j,k)th entry in the Pad4 table of rfae. In addition,

consider the following supplementary hypotheses which may be satisfied by

{Z; ,7r PjQ( P. (z) 1:N N' N' j,k

(-) V H(w,a,M) for all N sufficiently large and some w > 0 (M,B

independent of N), together with condition (la) of Theorem 5.17;

(I) Condition (1a) of Theorem 5.17;

(0) -If G(M,B) for all N sufficiently large (M,B independent of N).

Then the scheme {Z ,INn (,P (z)} is factor convergent under the additionalNP N N'j,k

hypothesis C-), (I) or (0) respectively if that symbol appears in the (j,k)th

position of Figure 5.27 below.
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> 0 1 2 3 4 5 6 7 8 9 10 1

0 + + + ++ +

1 * * + + + + + +' + + + +

2 a 0 a .... -

7 5 5 * - - - 4.

8 0 0 0 - -

9 0 0 0 - 4.

10 5 0 0

3{

4. 4. 4. 4. 4, 4, 4. 4. 4, 4. 4, 4,

4i

101

P I Figure 5.27.

5.28. Remark. It is important to note that we cannot make the claim that the

results presented above represent a complete characterization of the factor

stable/factor convergent Discrete Approximation Schemes constructed with the

Pad6 rfae. In fact, numerical results indicate that stronger conclusions may

indeed be drawn and that further investigation is warranted.

-i
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6. Averaging and Finite Difference Discrete Approximation Schemes.

A Discrete Approximation Scheme U A , #A C(z)) will be said to be

of the Averaging and Finite Difference (AFD) type if it has been constructed

in the following manner (cf. Definition 3.3). For each N =1,2,.. let

IN1()n$(O) li(N) -N)
Z spn N N N N

with

j0() = eO), j 1 ,2,...,N, j$(k) =(iT,XN ()e.) k 1,,.,
N N k j=

where

jth

IT n -n

e. (OO,...,lO,...,O) E R , 0 = (0,0, ...,10) E R

0is thenOvalued 0-function defined on [-r,01, and x ()E L 2([r,0;R),

NN

N r 0 t__ _ otherwise, k 1, , .. N

6.1. Remark.

Mi ZA is an n(N+l)-dimensional 6ubspace of Z.

(ii) For k, 9. > 1, we have that

0

N N Z f <Xk j Mep X(Oei >R n

ILr



-rT

1unless k I and j =i, in which case

0
<j;( Mi (k):, N N ~e~~d

Nk f NZNXj
-rk

so) -(k-i)-
N N=1(O Xj(-ee(O=f

NN

(1) Cearl Zy Z0 X~k) =n 0hr unlekent i in whic casenteb
N N N

For each a N "" a 1 N 2,z

A: ZN

N N N

N k W N - - -=01,, .N

Thej~ N AN 0 k=1 is defined.by

gonality of the (i$(k)) (cf. Remark 6.1), we have for a, B zA
N - N

=N n k i-(k) N n ki()

k-0 j=l k-0 J- J N Z
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N n k~k

k=O j=l )

n N n
0 0 + k Y c 8 ic$(k) j-(k)

j i~ k aj~ j N 'N >Z

j 1 k=l j=J

00 N

* k=1

(2) Again using the mutual orthogonality of the N~ we calculate
A N

Pthe orthogonal projection of Z onto the subspace ZA. Indeed, for

(ri,O E Z:

'A N n 1 $k
P 6' <(;1')J$(k/ N

N N N ZNN
k=0 j=l

n (1~)(.o> ji(O)

I1 < n' ) e 1 > N

N n N N- j-(k)
+ r-<(r1,o)(O'Xk()e )> *

k=l j=l rK

-T-.) + (k-i ;TN-

j1 j ' k=1 j 1 r J fej$ sdOe i N
-kr/N

N n N

= rh)+ o(0, N e~ *(O)dO)X (-)e
k=l j-1 -kr/Nk

-(k-1)-N fi N N T
Ofkl 1 -kr/N e0 d)X
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oc1

=(ni, I (-* NMO
k-l -kr/N

I i X
k-l

where

- (k-i) -
N J N(ede, k =l2..N

-kr/N

A A A-
Representations for the mappings I NZ -0 % and (W N )1 zA Z Z can also be

calculated. For (i)EZ and (v'v'v,... vE Z Nwe have

A ^ N5 NX_) --jN- N -,N)
(63 tN (I, aA N (f) A k k12 N

k=i

and

N
A-i- N N-i- 0 1 =

Tr (vo ;if ... FvN) (a A (voOVi,...IvN) I '~ k= VkXk(

(3) Define~~A Z+Z as follows. Let
N* N N

be given by

Z(JN) =k if - c! -(k-1).), j 012..v
*j N N

that is to say

_TE L-L(J;N)I, -(LjN)-l)b), j
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Then for X ZN' Y v vlv ...... LP) define

(6.4) (L (N)V,. D (N) V)

*where L(N) E V(A R) is given by
Nr

v NN
L(N)v O( I A0; + XAv(j,N) + j~ . ND(e)d~v,

- jr/N

and D(N) E _Q(Z A R n) is given (by its matrix representation with respectN 1

to the basis for A discussed above) by
%

N+l

N -N
-r0 .. 0

r r N
0 ... 0

r r

N SI

N -N
r r

where I nrepresents the nxn identity matrix and S is the Kronecker product.

Hence

"L(N)v, j 0

6.5. Remark. The justification for the characterization of the schemes

defined above as averaging/finite difference should nov be clear. Indeed, as



58.

is evidenced in (.6.3), (n,o) E Z is approximated by 1rfA (n,f)

-- N . .-NE A where(,1, 2 ... ,N N

r

-N N N1-1
j rj

-jr/N

is the average value assumed by * on the interval [-JN, -(J-I)N]. Fur-
N N

A
thermore, (6.4) reveals that for vE ZN, an approximation to * =

(() , 0) E NLJ (L(N) v, D(N)v) E A approximatei = (L($) ,DO) E Z

via a finite difference approximation of the differentiation operator.

A Ag
6.6. Lemma. {ZA ,r Cz), an AFD Discrete Approximation Scheme as

N' N N'

defined above, will have property (P).

Proof: For each (N,O) E Z we must demonstrate

iA 1A_) =((t N) N-I (P$ N n 0Z n,0

I(I-P )6(n,)Iz 40asN

Since PN is an orthogonal projection, N < 1, and thus the operators

{(I-PA ) } are uniformly bounded in N. Therefore it suffices to demonstrate
N

that (6.7) obtains on a dense subset of Z. In light of this we consider

the subset fC of Z defined by

1{(n,#)EZ:ECl(-r,O)}.

The set W'is dense in Z by virtue of the fact that C (-r,0) is a dense subset

of L2 (-r,O), andfor (nO) E V, the-veracity of (6.7) can be argued in a

straightforward manner (cf. 1331).

lill[ I IIT - .i
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Following Reber [291, we construct the following weighted inner product

Aon ZN. Let k(',N): {0.1,2,...,N-l} - {1,2,...,v be given by k(j;N) =N r

min{kl: -TkE j , where J. - [-ir/N, -(i-1)-) andUi-j+1 ai 1 N

1j jN
N

gj g. =
2J+ f INA i = 0,l,2,...,N-l.

i=.klj;N)

AThen for a, 8 EZ N , we define
N

-T- N + r I IlI1*N 0 0 1 gk- I 'k N _

Noting that 1< < 1 '+ kl 1~h, we have

1111'N _ ' N < (1 + k=1 )2 NP

and hence the two norms IN and ''l' on ZN are equivalent.

The next lemma is essentially a restatement of Reber [29, Lemma 6.2) for

the case of an autonomous system. The rather lengthy and technical proof of

Lemma 6.8 has been omitted. The arguments can be found in their entirety in [29].

A  A A6.8. Lemma. For {Z N , N'NC(z)} an AFD Discrete Approximation Scheme as

defined above, we have

+ r-'_.)11I2 < I + Gr/N

..
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for all N sufficiently large with a > 0 independent of N.

Recalling Lemma 5.15, we note that Lemma 6.8 will also imply the existence

of a B > 0 for which

_hNZN < [z,z] for N sufficiently large,- - -N

A
where z =  zl...zN) E %, and 0 is independent of N. A direct proof of

this result can be given, and can be found in [33. The required arguments are

in the same spirit as those employed in the proof of Lemma 3.6 of [4).

AA A
6.9. Lemma. For {ZNNW N  ,NC(z)} an AFD Discrete Approximation Scheme as

defined above, we have

I N-Z i K(z) (i/A ) as N +

for each z E where K(z) = K(( (O),O)) = K(I.,I.IL).

The proof of Lemma 6.9 can be found in [33]. The arguments are similar to

those used in the proofs of Lemma 3.2 and Corollary 3.1 of [41.

The next lemma enables us to apply Theorem 4.17 to AFD Discrete Approximation

Schemes to establish estimates for the rate of factor convergence.

6.10. Lemma. Suppose z0 = (4(0),M)_(W 2) and S(t)z (x(t),xt), where

x(t) is the unique solution to

k(t) = L(xt)

x 0

Then there exist constants M1 , M2 such that

L .~ ,,.
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(2) IIC M, GE [0,T).
2

Proof: z0 E W 2) implies that * E W 2(-r,O), with *(0) =L(O), which in

turn implies [7]1 that xE W (-r,T)C C1 (-r,T). Therefore *(-) is a contin-

uous function on the compact set [-r,T]. Hence, there exists an M 1such that

11.CM 1, or ~*I < M1, for a E [0,T].

2
To verify the second proposition, we note that xE=W (-r,T) implies the

T 2 2
exitene o anM 2suc tht ri(CFldo<M2 Therefore, for a E [0,T] we have

1 0 1x0(6)12d =J' I(G+e)l2d = j (u)12du
-r -r aF-r
T

Finally, we apply the theory developed in the preceding two sections

to AFD approximation schemes in order to characterize a class of factor con-

vergent schemes of this type.

6.11. Theorem. Suppose fA WAWr z) is an AFD Discrete Approxima-N' N N' J,k

tion Scheme as defined above, where P (z) is the (j,k)th entry in the Pade'
j ,k

table of rfae. Then if either

(6.12) (1) J - 0, or 1, with k arbitrary, k =1,2....

or

(6.13). (2) j - k,k+l,k+2,..., k,= 11,2,...,

the scheme is factor convergent. Furthermore, for such j and k
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irp _~~ --. 0ir = o(n, I 0C1/.J

'' j,k CN N INS n 0 N 1/R)+0/N

n ,l,2,... PN, for each zE, where the constants in the 0(-)

term necessarily depend on z0.

Proof: Lemmas 6.8 and 6.9 . above, together with the choice D1 = D

1 2

and an application of Theorem 5.26, guarantee that the scheme is

factor convergent. Let us now consider the estimates for the rate of factor

convergence. We choosey. =)(j+k+2 and -V= .9LQW2). Then, for

X E C with Re A0 > 8, we have (X01- i6z0E Y, i = 0,1,2,... ,j+k. Further-

more, upon inspection of the constant K(z ) in the statement of Lemma 6.9, it is
0

immediately seen that Lemma 6.10 implies that K(S(t)z0 ), t E [0,TJ, and

K(S(t)(0 ( oZ 0 ) , t E [0,T], are independent of t. Thus all of the hypotheses

of Theorem 4.17, are satisfied, and the desired conclusion obtains.

0

6.14.. Remark. In practice, it is observed that AFD aopproximation schemes

satisfying conditions weaker than those stated in (6.12) and (6.13)

factor converge. Two possible explanations for the observed behavior of these

schemes can be offered.

A
(1) The as defined above are,'in actuality, contained in H(w,5,M)

N

for some w > 0 and all N sufficiently large. Unless the.WA
N

are negative definite self-adjoint operators on ZA (cf. Kato [11,
N

Krein 1191), which is clearly not the case, this condition is in

general difficult to verify. If, in fact, it could be demonstrated

that Jw A EH(w,B,M) for all N sufficiently large, based upon an

application of Theorem " 5.26 stronger conclusions could be drawn.

(2) Figure 5.27 does not represent a complete characterization of



factor stable Discrete Approximation Schemes constructed with the

Padd rfae.

Both of these conjectures remain, at present, unsubstantiated.

"7. Spline and Variational Discrete Approximation Schemes

For each N - 1,2,..., let

(7.1) -N pan{ (1) (kN)
zS 2spnN IN' " N

wher j) -ue)C Z' j = O,]l, 2 ,...,kN Note that 2N is a (kN+1)-dimensional
where N

subspace of Z. Then a Spline/Variational (SPy) Discrete Approximation Scheme can

be defined as follows:

SNiN, <(N-1i.) (ON-i_) k N+l N-1 N -Il
(1 {ZD,<*I*>} {ss<( ) S,,~ )R C.) }=R <(a ) (),(a ) ()

N N SS z S S z

where aNis the canonical isomorphism which associates with each element in

iits coordinate vector in R N determined by the basis defined in (7.1);

S 5 -1 5
(2) 7rN Z -ZN and ffN % ZN- ~Zare given by

S N- S5-1 N -i
aN P and (wr) (a) respectively,

where PNis the orthogonal projection from Z onto Z with respect to the Z

inner product defined in 92;

(3) SVCS: ZS 5  ~S w~~wr N 1,2,.
N N N N _____N
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7.2. Remark. In the case thatfo () Iis an orthogonal basis, we have for

01, ~Ez%

N N
j=J)

and for (ni,#) E z

k
5ri) S (n 1i(j1)- < *' ',* )2 Nj(j)
N j1 N ZN SN

j1kN z N(i> z -

k(j$ N Z

where e. (O,O,...,O,1,O,...,O) E-R

jth

7.3. Definition. We shall say that an (SPy.) Discrete Approximation Scheme

Ilk has property (P2) if for some integer k > 1 we have

Nn(1) lim L() =L(O) in R
N-

(2) lim D = Do in L (-r,O)

for all f E Ck(-rO), where f*N is defined by the relation N N~

(f (N (0),0N )E Zi.

As in the case of (AFD) approximations, we define a special inner product

and associated induced norm on ZSwhich generates an equivalent topology to the
N

topology generated by the standard Z S inner product. For c E ZN let
N N

g~ ~ -l_' N~( ) Bg'gI9 II pL 2J~
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where 9.~ is the inner product on Z defined in §2.

S S S7.4. Lemma. For UZ N IJJW C(z)1 an SPV Discrete Approximation Scheme as

defined above we have

JVN' N < 047"z]N'

Sfor z E % with 0 > 0 independent of N.

Proof: Using the dissipativeness of Si-0I with respect to the g inner product

(cf. 02), we have

S.Cef )-1 -,I- =(~
z d'ZI 1T z zl qS N NN N NN S

NiN-g # -1- N-i- -g NN -1N I-
N <( )i 0P3.VCa 

),o~ ><0S aS N (aS zaS >g N S aS Z>g9

S N S g 5 S) z

N -i- N -i- -

a s<a5  z ,(a S) Z>g 04"'zN'

7.5. Lemma. For {Z5 Si% 1S eC(z)) an SPV Discrete Approximation SchemeN 'N N'

with property (P2) we have

I [Ww-S~ 10 aNi
N N OIN 0

for each z E~q( ~k+l) where k is as in the statement of Definition -7.3.
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Proof: = E 9P + I) implies f absolutely continuous. Therefore

I L4 W-S S ]0 = IJwWJ'(ir Sl S_ 7r I

(7.6)

(7.7)

= (IL(fN).L( ) 12 + IDNDOI2 )1/2 + 0 as N
R 2

where the estimate in (7.6) follows from Lemma 3.7 and the one in (7.7) from

property (P2).

0

If we select D = D = k(l), Lemmas 7.4 and 7.5 above, together with
1 2

Lemma 5.14 and Theorem 5.16, yield the following theorem and its corollary.

7.8. Theorem. Suppose [zS WNN,C(z)} is an SPV Discrete Approximation
N' N' N'

Scheme with properties (P1) and (P2). Then if C(z) E WRe z<0' the scheme

is factor convergent.

7.0. Corollary. Suppose {Z N N , P (z)} is an SPV Discrete Approxima-

tion Scheme with properties (P1) and (P2) where P.klZ) is the (j,k)th entry

in the Padd table of rfae. Then if j = k, k+l or k+2 and k > 0 is arbitrary,

the scheme is factor convergent.

As a particular example we consider the case of the *~(J)

S(J) chosen with the (J) as first-order spline functions (cf. [27),
(N 0) N W hen wing eiN
[341). we make the following definitions. 

2,
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(1) Let

2N{I (0) 2-(0) % (0) 1 (l) ... 1;(N), n-(N)
N NN 'N

where

e. (0,0,...,O,l,0,...,0) E-R

and

j,, W) k k -e N (eN (),eN ()e

with e k(') denoting the scalar-valued first-order spline function on (-r,0JN

characterized by the relation

e k(-).-6 i,k = 0,1,...,N.N N ik'

1 N-N NThen % = oSZ,, where aS is the canonical isomo~rphism defined above.

(2) The mapping irN Z Z ZN is defined by

I 0N 1^g
N S N

where Pis the orthogonal projection associated with the subspace ~Nwith
N1

respect to the Z inner product. The right inverse of w N'r )- :ZN1 Z
g

is defined by

1-_1 N -I
OrN (aS
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(3) The operatorsQf I: Z1 ZN are given byN N N

1 = 1 11 --QN N N

Using the well-known properties of interpolatory splines [34] and the

act that *N - for $E Z satisfies a variational condition by virtue of
NaN

the fact that lig is an orthogonal projection, we have that the following

result obtains. The details of the proof, which are omitted, can be found

in [ 6 ], Theorem 4.1.

7.10. Lemma. The SPV Discrete Approximation Scheme {Z 1,7l, ,C(z)}
N'N

defined above will have properties (Pl) and (P2).

As a consequence of Theorem 7.8 we have

7.11 Theorem. If, in the SPV Discrete Approximation Scheme
1 1 1 C(z) is chosen from among those rational functions in the

{N t N'-NtC

class Re z<0' then the scheme is factor convergent.

In order to estimate the rate of factor convergence for the linear

spline approximation scheme defined above, we rely on results established in

[ 6]. Remark 4.1 of that paper guarantees that

(7.12)11 71rn' as(2 N 1 IN 0(1/N)

for each E£ {(€(0),¢):ECi-r,O)) DO(), where the dependence on t of the
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constant K in the 0 term in (7.12) can be expressed by

(7.13) K K(j) = K(I I.,I IL2).

Furthermore, the nature of the dependence in -(7.13) is such that Lemma

6.10 guarantees that for z 0 E -9CW3) and X E C with Re X > ,00 0

K(S(t)z [ and K(S(t)0, are independent of0(~ ) 0 ) 0T]O_ f d1t 0T

tE (0,T]. Thus, by analogy to Theorem 6.11, we have the following result:

7.14. Theorem. If, in the SPV Discrete Approximation Scheme

1 1 11z IT ,i p. (z)} as defined above, P. (z) is the (j,k)th entry in the
N' N' N' j,k jk

Padd table of rfae, with j = k, k+l or k+2 and k > 0 is arbitrary, then the

scheme is factor convergent. Furthermore, for such j

r ,I n 1 N)]z01 0(1/N) + O(l/N j +k)

n = 0,l,2,...,ON, as N , for each z0E.. The constants in the
0

O(.) terms necessarily depend on z0.

7J-5. Remark. Further improvement in the rate of factor convergence can

be achieved via the formulation of SPV Discrete Approximation Schemes employ-

ing bases composed of higher-order spline functions. In particular, if cubic

33 3
splines are used, the SPV Discrete Approximation Scheme {ZN ,WN ,Pk(z)

N' N-Q j,k

is factor convergent for j = k, k+l, k+2 and k > 0 arbitrary. For such j

and k, it can be further established that
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op.= 0(1N 3 ) + O(llNJ+k)

n = 0,1,2,...,PN as N - for each z 0E J+k+5).

7.16. Remark. Unfortunately, it appears that it is not possible to prove

a result analogous to Lemma 6.8 for SPV Discrete Approximation Schemes in

general. That is, it cannot be demonstrated that

g II( I + N) I IN2 < 1 + ar/N for N sufficiently large with a > 0 and

independent of N.

In fact, for all test examples considered, the approximation schemes

1 1 1 3 3 3{Z ~ (I, z), k = 1, 2 and (ZNN N, p ,(z), k = 1, 2, 3, exhibited
1' 14- 'O,k~z N 0,k

behavior characteristic of numerical instability when actually programmed and

tested on the computer. Indeed, they did not factor converge. On the other

hand, however, it was observed, again in all test examples considered, that

the Discrete Approximation Schemes {Z ,W ' P0,k(z)} with k > 3 andN N" 0,k
3 3 31Z r ,1 (,P (z))} with k > 4 were factor convergent, and as expected withN' N N 0,k

significantly improved rates of factor convergence with increasing k. On

the basis of this numerical evidence, we conclude that many interesting

open questions remain regarding the characterization of SPV Discrete Approx-

imation Schemes employing Pad6 rfae. Furthermore, in the light of the compu-

tational desirability of explicit schemes, i.e. those for which C(z)

POk(z), k = 1, 2, ..., these questions are clearly an important direction

for future research.
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8. Approximation of the Solutions to the Non-Homogeneous and Nonlinear

Initial-Value Problems

We now turn our attention to the construction of approximate solutions to

the non-homogeneous FDE initial-value problem given by

(8.1) A (t) L(x t) + f(t), tE 0,T)

(8.21 (x(O),x 0) = = 0

where the hypotheses satisfied by L, f, n, * and x have been specified and dis-

cussed in detail in §2. The procedure by which this is achieved is the extension

of the results in §3 so as to yield approximations to

t

(8."3) z(t) = S(t)z0 + S(t-a) (f(a) ,O)do, t E (0,T]

0

We recall (cf. 12) that the expression given in (8.3) yields a solution to

the FDE initial-value problem (8.1), (8.2) via the equivalence discussed above.

We begin with several rather technical definitions.

8.4. Definition. For f E L2 (0,TJ we define the parameterized family of

operators T(t;f): Z - Z, t E [0,T] by

t

T(t~f)z -S(t)z + J S(t-o)(f(a),o)do.
0

8.5. Definition. {ZNu TNW(eC(z),D(z)), N = 1,2,..., is said to be a

Discrete Approximation Scheme for the perturbed problem (DASP) (i.e. for

the non-homogeneous initial-value problem (8.1), (8.2) if

amid
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(1) {ZNNNWC(z)}, N - 1,2,..., is a Discrete Approximation Scheme

for the homogeneous initial-value problem (3.1), (3.2) (cf. Defini-

tion 3.3)1

(2) D(z) is a rational function of the complex variable z.

The scheme {ZN,1WN,(N,C(z),D(z)} is said to have property (P1) if

{ZNI rN,JW,C(z) } has property (P1) in the sense of Definition 3.6.

8.6. Definition. For {ZN, N ,Clz ,Dz) } a DASP, f E L (0,T) and

each positive integer N, let the family of operators G (-;f): Z - ZN, k =
kN N N

0,1,2,...,pN, be defined recursively via the relations

r =

G ((f)zf)

(8.7) Gk(jf) zN = ( N) G r1  N + r ( 0)N
N N( N k-l N NfN1 N)  ( f N-N,

k1
k 1,2,...,pN,

N
where z E ZN and the family of transformations

PN" L2 (0,T) - Rn, k = 1,2,...,pN

operating on f E L2(0,T) represent a discretization of the function f on the

interval [0,T]. Different applications of the schemes to be developed below

require various choices for the {pk } . For the present discussion, we define

the {pkN to be integral averaging operators. That is, the pN are given by

kr/n
f f f(a)do, k - 1,2,...,PN.

(k-l) r/N
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Further comments regarding the selection of the {pk } are included in the

remarks at the conclusion of §9. The recurrence relation (8.7)

can be solved to yield

r N r N k r k-J NG I-F) z =C(-' z + 1 C i D(I-J)r (p.f,O),k(N N N N j_ N N N N j

k = 0,l,2,...,pN.

rr

The operators C(I-..) and D(_-jV) are again referred to with the

implicit assumption that if the degree of the polynomial in the denominator

of C(z) or D(z) is greater than zero, then the required inverses exist.r

Sufficient conditions for the existence of C(NSt') have been provided in
NN

§4, while the existence of D(D') is considered in §10 when the role of the

rational function D(z) is discussed.

8.8. Definition. A DASP {Z N, .,( C(z),D(z)} is said to be factor
N' N' N'

stable if

(1) The Discrete Approximation Scheme for the homogeneous initial-value

problem, {Z Or Q,,C(W)}, is factor stable in the sense
N' N' N'

of Definition 3.4;

(2) For each z E Z, we have

J[ (r d)f 7I aN

[D(N ) N-NI]Z0IN - 0 as N

8.9. Remark. For a factor stable DASP {Z ,iN,.NC(z),D(z)), the
N'N VON

strong convergence of {D(NN) to the identity required by condition (2), and
N N

an application of the Uniform Boundedness Principle, imply that the operators

on ZN, D are uniformly hounded in N,

N.. . -,, , .. .N ,, , , . ' '
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8.10. Definition. The DASP {Z N, VNNC(z) D(z)) is said to be factor

convergent at z0 C Z as an approximation to z(t) as given by

8.3) if for each c > 0, there exists an N = N(z0 ,f,E) such that

- ( f) N < C, k = 0,1,2,...,pN

for all N > N. The scheme is said to be factor convergent if it is factor

convergent at each z0 E Z.
I0

That a factor convergent DASP does indeed yield an approximate solution

to the non-homogeneous or nonlinear FDE initial-value problem is guaranteed

by the next lemma.

8.11. Lemma. Suppose {ZN, rN,J C(z) ,D(z)) is a factor convergent DASP

with property (Pl). Then for each z = (n,)E Z and each c -> 0 there exists

a N = N(E,z 0 ) such that

fx Y~ -i p( wN zk) Ii C , k = 0,1,2....,pN

N r
for all N > N, where zk = Gk(N;f)hrNzo and x(t) denotes the unique" solution to

the FDE initial-value problem, (8.1), (8.2).

The proof of the preceding lemma, which is essentially indistinguishable

from the proof of Lemma 3.9, has-been omitted.

To a certain extent, the techniques and arguments employed in the suc-

ceeding sections parallel Thompson's [351 results in his extension of the

classical Lax equivalence theorem (cf. (31]) to finite difference approxima-
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tions for non-homogeneous and quasi-linear initial-value problems for parabolic

partial differential equations. However, unlike the treatment in [351, we are

able to exploit the fact that for each fixed t E [0,T] the non-homogeneous

perturbation term which appears in the abstract formulation of the FDE lies in

a finite-dimensional space (cf. [31) and hence are able to obtain stronger

results via simplified arguments.

9. Factor Convergence of Discrete Approximation Schemes for the

Non-Homogeneous Problem

We demonstrate that for an appropriately constructed DASP {ZN'VN( ,C(z),D(z)},

factor stability implies factor convergence. Consider the DASP

{Zi ,w N,C(z),D(z)). For each N = 1,2,... and each t E [0,T], we define the

following parameterized families of bounded linear operators 
with domain Rn

and range in ZN . For n E R , let

(i T(t)n -- NS(t)(,O

N kr (k+l)r7NS (tk) (n,O) if t E [- ,- ), k ' "'"..,
NN N

(ii) SN(t) i-

VNS(T)(1,O) if t = T

C(I N ) kw (nO) if tE [,(k+l)r k = ,I2 .. PN-l

(iii) C Nt) -- S rNT

(,oif t T

(v) N-WN(n,O)

4 '" N.. ..fNi....
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9.1. Lemma. Let (Z it S1 C(z) ,D(z)} be a factor stable DASP withN# N' N'
property (P1) for which (Zi W -, C(z)) satisfies the hypotheses of Theorem

ZNN' N~D~)
4.9. Then for each t E [0,T], we have

N N

(ii) IISN(t)-CN(t)IJ 0 as N -,

(iii) I IN-.II , 0 as N -

where the norm in (i), (ii) and (iii) above is that one which is generated by

the uniform operator topology on M(RnZN).

Proof: For t E [0,T] and each N = 1,2, .... let kN(t) be defined to be that

integer in the set t0,1,2,...,pNI for which t E [k (t)r/N, (( (t)+l)r)/N).
N N

Then for each tE [0,T] and each nE Rn, we have

(9.2) l[N(t)-9N(t) iN = N(n,o)

SI[Ss()_StN )](,O)I1 0 as N-,
tk N(t) Z

.(9.3) 1, (t)- (t) l1i = [ [r .s N )C() N ( ,o) N.
N N M'N (t) N NN 1O

N.

40 as N4

IDNINYnIN - N)wN-ffN(l,)I +aNc
V. ________
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where (9.2) follows from the uniform continuity of SOiz on compact

intervals for each z E Z, (9.3) from the factor convergence of

N' WN'&N' C~) guaranteed by Theorem 4.9, and (9.4) from the assump-

tion of factor stability of {Z W, ,JW C(z),D(z)). Recalling that strong
NN# N

convergence of linear operators is equivalent to uniform convergence if the

domain of the operators is a finite-dimensional space, we obtain the desired

conclusion immediately.

0
9.5. Lemma. Suppose {Z NI'7TNP-W C(z) ,D(z))I is a factor stable DASP with

property (P1) for which {ZNIN~ 7rz satisfies the hypotheses of Theorem

4.9. Then for f E L (0,T), we have that the scheme is factor convergent

at e = (0,0), the zero element of Z, and moreover the convergence is

uniform in f, for f in bounded subsets of L (0,T).

Proof: For k = O,1,2,...,PN, we have

N

11 k r kjrN NJtrk N faod

Nj=l N-' f0 k

k jr/N

N J=l N N -N N N rJ I~ ~ao
(j-l)r/N

r k -j~r jr/N

I C(~)ir( J f~ada,0)i
J N N N r IN

j1 (J-l)r/N

kjr/N N
[ . fk~)ki

N~ N N WNr f f (a) dyo) -ir Nk N ()( C)1
i-i(J-l)r/N 0



k C( r )k-jD r -it I f(o)da)1j ~ D N NN& j'N
(j-1) r/N

k jr/N
+ C C(~k-ljfao

=1(j-1)r/N

t N

-k JkNStNO (f (G) , 0) do

0

k jr/Nfodi

N N- J
<I (U-i) r/N

k jr/N N

+1 j1c(ti-Of(0)da -Nj

(j-1)r/N 0N

C a~~ i~ k jr/N t N

Mj11 6NI f (a) da+I+Jrc N N.c)fc~a

0jl~/ 0

T N

M01IBN-II /( f f(a)da +fll [6N N -a N If)I~l)Idad

0 0k-N~

T

0 f' N kfo N (do d
00

t~N

+ f [N.~* *..*')-^ t -) I ()1d
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0(J115-il I NTOS )I I d / f,~
o2

T T
Ir 112dy)1/12

+ 1 JIN(T-oy)-TN(T-G)I I f/ f(a)I 12do) 1 1

00

T T

+ T 1 1D- i +( i (T-Go)T--s2d) /( f(-)112d ) 1 2 1
f H N N L

0 0

+ (f 1ISN6 (T)G -S (TTo-lYdo) 2lf
0 N 2

where the constant M0 (guaranteed by the assumption of factor stability)

denotes the uniform bound on the operators C( r Nok, k = O,1,2,...,pN for all

N sufficiently large.

Recalling the definition of %N(t)' gN(t and 6N (t) for each N =1,2,....

and each t E [0,T], it can be verified that

116N (t)4 N M 1<M + MeT

and

HN () N -M1< M

Therefore, if we apply Lemma 9.1 and the Dominated Convergence Theorem to

the final estimate in '(9.6). the desired result follows immediately.
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A straightforward application of the triangle inequality together with

Lemma 9.5 and Theorem 4.9 yields the following result.

9.7. Theorem. suppose {N TrQeI C(z),D(z)} is a factor stable DASP
N'_N N'

with property (PI) for which {ZN,., ,C(z)} satisfies 
the hypotheses of

propertyN'fN N

Theorem 4.9. Then for f E L2 (0,T), we have that the scheme is factor

convergent and moreover the convergence is uniform 
in f for f in bounded

subsets of L2 (0,T).

9.8. Remark. The fact that factor convergence is uniform in f for f in

bounded subsets of L 2(0,T) plays an essential role in the application of these

schemes to the approximate solution of optimal control problems for systems

governed by hereditary systems of the form which we have been considering (cf.

Banks and Burns [4 1, Reber [29]).

9.9. Remark. In certain applications, choices of {pN}, k = 0,1,2,... ,PN

- Iother than the integral averaging operators employed in the arguments above

are more desirable. In particular, in the case of system identification

problems (cf. Banks, Burns and Cliff [ 51) the relevant input functions f

are frequently contained in the class of piecewise continuous functions on

(0,T] (PC(0,T)). In this instance, the appropriate choice for the 
{pkik}is

given by

(9.10) pkf = f(t ), k = 1,2,...,pN.

While it is possible to demonstrate factor convergence for appropriately

constructed DASP employing the ( } defined in (9.10),'we'note that it
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may no longer be the case that convergence is uniform in f for f in bounded

subsets of PC(0,T). However, for problems involving parameter identification

the convergence obtained for such p is adequate.

10. Making an Appropriate Choice for D(z)

For a DASP {Z , T ,(N,C(z),D(z)} it is clear from the results presented in

N N N

k4 that the rational function C(z) should be chosen as an approximation to the

zexponential function e . Indeed, if this is the case, under the additional
r ~k

hypotheses specified in the statement of Theorem 9.7, C(N IN) yields an approx-

imation to S(kr/N) and factor convergence obtains. In this section we consider

criteria according to which the rational function D(z) can be selected. In

view of the results of the preceding section, in addition to the requirement

that the operators D(,N) exist, at least for all N sufficiently large, it is
N

necessary that the factor stability condition be satisfied. That is, for each

z 0 Z we require that
r

ND ) NZ 0- NIz0IN + 0, N ®.

While D(z) - , i.e. D(-- N) = I, the identity operator on ZN, would satisfy

these conditions, it has been observed in practice that other satisfactory

D(z) are available which yield an " proved rate of factor convergence and

approximate solutions with enhanced accuracy. The heuristic argument which

follows will serve to motivate these ideas further.

The basis for the approximation schemes we have constructed is that

C' z _ND.V(N ) N (Pf, O)
N KN k-l +N N N N k



82.

should in some sense approximate

N

tkl

In particular,

N N N k-l N -

and

N N

tk-1

Recalling that D(-r od) and wr are bounded linear operators, we rewrite expression

(10.1) as'

t N N

Inspection of (10. 2; reveals that D(z) should be chosen so that D(.-.)
N N

N N Nr
approximates S(t _o) ; E (ti-K ti,) , or equivalently S (t); t N (,4.con-

sequently we consider D(z) of the form

D(z) =P. jV (z)

where once again P Jk (z) denotes the (j,k)th entry in the Padg table of rational

function approximations to the exponential and A is a fixed constant between 0

and 1. The parameter X included in the definition of D(z) serves to compensate
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for the fact that for each N = 1,2,..., the operators [S(t): tE (0,N]} are to
Nr

be approximated by the single operator D(NA). The mean value theorem from

elementary calculus suggests one possible choice for A,

(A-j~') r/N 0r N fpj (a dN) do.

N UN) j,k N-N r Jj,kN
0

The parameters j and k are chosen with regard to the requirements that the
Ar

operators P. (A-W.) (a) exist for all N sufficiently large, and (b) satisfy
jk N N

the factor stability condition. As is the case for Discrete Approximation

Schemes for the homogeneous initial-value problem, it is the behavior of the

approximation triple {ZN, ?r Q) which determines the factor stability properties
N'N N

of the DASP {ZN IT ,Pi(z),P,(Az)).
NY N i,j z' kjR, }

The remainder of this section is devoted to characterizing that subclass

of the Padg table which under certain assumptions on {ZN ,7NN } yields appro-

priate rational functions D(z). We pay particular attention to the triples

determined by the Averaging/Finite Difference and Spline/Variational state

approximations discussed in ;§6 ahd 97 respectively.

10.3. Theorem. Suppose that {Z N P .(z)} and (Z ,r N,P (z)I
N' N' N' i,j N N N k,.t

are Tactor stable Discrete Approximation Schemes with property (P1) which satisfy

the hypotheses of Theorem 4.9. Then for A E [0,1] fixed, the operators

Pk,(AN ) exist for all N sufficiently large and, moreover, the DASP given by

{ZN, N NPi,j(z),Pk,(Az)} is factor stable.

Proof: The existence of the operators PAr £(- for all N sufficiently large
kjt N N

is a consequence of Lemma 4.8. Factor stability can be demonstrated as follows:

_ IL._____________________ __,_-
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10.4) IPk, 1 (- N) NZ0-TNIZ0 IN

itzr14 Ar z z
' Pk,t.(I N)1 NS( ZOIN + IS(N 0 Zo

for zO E Z.

A trivial modification of the arguments used to verify sufficiency in

the proof of Theorem 4.9 yields that the first term on the right-hand side of

(10.4) tends to zero as N - , while the fact that (S(t): t>0} is a WO

semigroup of operators on Z implies that the second term tends to zero as N

as well.

Theorem 10.3 applied in conjunction with the results of §5

provides a rich class of appropriate rational functions D(z). Indeed, for a

given approximation triple {Z ,r ,NJ }, §5 serves to characterize

those entries in the Pad6 table which, when selected for C(z), yield a factor

convergent Discrete Approximation Scheme for the homogeneous problem. Theorem

10.3 further reveals that any choice appropriate for C(z) is appropriate for

D(z) as well, and thereby gives rise to a factor convergent DASP.

While Theorem 10.3 .assures us that for a given approximation triple

{Z 01N, .W } satisfying certain basic hypotheses the set of factor stable DASP

of the form {ZNOJN ' Pi(z),Pk(Xz)} is non-empty, we are fortunate in thatN' N ON' i, j ()'k Xz

a still broader characterization is possible. Furthermore, these results will

be directly applicable to the Averaging/Finite Difference and Spline/Variational

approximation triples which have been discussed earlier.
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i0.5. Theorem. Suppose that (Z IF ,',P. .(z)} is a factor stable Discrete
N' N' N i,J

Approximation Scheme with property (P1) which satisfies the hypotheses in the

statement of Theorem 4.9. Suppose further that there exists a constant K > 0

independent of N such that

(10.6) J(I + E N) IN <

for all N sufficiently large. Then for each kj > 0 with k < k+2 and each
Ar

X E (0,1] we have that the operators Pk(-aN) exist for all N sufficiently
kjt NVN)

large and, moreover, the DASP given by {ZN, 7 ,N,Pi .(z),P (Az) } is factor
N'N N i.,j '~

stable.

The proof of Theorem 10.5 can be argued in much the same manner as were

the proofs of Lemma 4.8 and Theorem 4.9 (cf. [33]).

As a consequence of this theorem, one has that if

P (z)} is a Discrete Approximation Scheme satisfying the required
(ZN"R' N'i,j

hypotheses, then for each k > 0 and A E [0,1] the DASP given by

{Z ,7,Fw ,P. .(z),P (Az)) is factor stable. That is to say, we may choose

N' N i O ,k-

D(z) from among those entries in the Padd table for which no operator inverse
r

need be calculated in the computation of the operators D(-L ).
NN

That condition (10.6) is satisfied by the Averaging/Finite Difference

approximation triple is an immediate consequence of Lemma 6.8. That the

condition also obtains for the linear Spline/Variational approximation triple is

the conclusion of the next theorem.

10.7. Theorem. For {zN N1 as defined in §7, we have

N' N' N

1(a + - 5*). 'N Ml
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where M is independent of N.

Proof: The equivalence of the norms INI and gIIIIN (cf. §7) on Z N

implies that it suffices to show

g +S' < K, Kindependent of N.

For s Ez 1,we find that
N

(10.8) 11(1 + -),N N1 g N NLW. + (E)2gL$NI
g N N Ng9 # I: N 9 N

< (1 + 201~gI~I + NE g ILQe., 11 f

where inequality (10.8) above is a consequence of Lemma 7.4.

Inspection of the inequality given by (10,8) reveals that if we can

demonstrate that g' LANI = 0(N) as N -~c~then the desired conclusion obtains.

Once again employing the norm equivalence of 'Nand g11-Il1N we show

0 (N).

Recalling that for N -1N

1 1 -N Ei
N

we let (VNi )1 . (4 (0)4* N and find

J(1sN12 - WljvflrlNi2 4 i-a((W f)-~
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N (0,N) fN)l 12 I(:LN,D.oN) 2

=IL4NI
2n + IDfNI2

L 2

Thle Schmidt inequality (cf. Schultz [34]) yields the following bound for IDI
2

0 N (;-)r/N

ID NI2 r I tDON o)I do = - j

-rl 2~

21N12 N , 2 N 2
< 12(- = 2 r IN

Consequently for -T C-1-r,O] it follows that

INr12 = 1 N(0 ) - 7 DNad1 2 .< 2IN012 + 2 T f ID N(0) 12 do
-T -T

21 2 ;N(0 ) 1 2 + 2TIDf N12 2 ION(0)12 + 2r L21N2

K N 2 1 ( N(0  *N) I2 K KN 2 liNI2

where K is a positive constant independent of N. This in turn implies

10

ILO 12~ < 21 .N(T 2 + 2 If D(O),N (O)deI12

2( IAj II fN (_,rj)1) 2 + 2 ID12 1,141

J-1 2 L2

Jul L2 L2



< (2vK V ;2)2 N12 + 2 ID12 I'^NI2

<K N2INe
-2 N

where K2 is a positive constant independent of N. Therefore, we have

I.Q,4$N12 < ILf 2  DN12  < K2N
21,N1 2 +l2 22 MN2

_eN -L + LD N 12 N 1

RN 21 i

N

where K is a positive constant independent of N, and hence

I~N N ()

10-.9. Remark. The results of Theorem 10.7 are easily generalized and

extended to apply to approximations employing spline bases of arbitrarily high

order (the relevant constants will of course depend upon the order of the

spline basis chosen) . In particular, this includes the cubic Spline/variational

triple 1Z 3 3 ,-W' discussed in 97.
N"N' N

It is interesting to note that for a given approximation triple

{Z Nv IN,.-'I several standard time-differencing numerical techniques for ordinary

differential equations determine DASP of the form I{ZND 3N0'.Pi (z)Pk (Az))

when applied to the approximating ODE system in Z N given by

(10.10) W (t -Qf Z Wt + it (f W '0) , t E 10,T)

N N N N

(10.11) Zfoo) - WNZO - TN (rn,#)
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We conclude this section with two examples which serve to illustrate these ideas.

10.12. Example (Trapezoidal Approximation). For a given approximation

triple {ZN lrNIl0, consider the approximating ODE system (10.10), (10.11)

in its equivalent integral equation formulation given by

ZNt W z (0) = N(o)do+ f1 n(f (a) 0)do, t E [O1T].

0 0

N
Recalling that tk kr/N, k = 0,l,2,...,PN, it follows that

N N
t ktk

(10.13) z (t )N +(/z()d r f(),0
zN ~ Nl NN

k = 0,l,2,...,PN.

If we approximate the first integral on the right-hand side of (10.13) via

the trapezoidal rule for numerical integration, we have

t N

N N jj Wz(N N k
z (t) z ( )+L.L~z (tk) +~~z (t)]+N(~a,~a

ZN k N (tk-1 + 2N N N kl N N kH+ N TN(f0),)d.

or

(10.14) (1 - ~ z tN) I~ + N + r)7N ( N f~odo,o).
2N N Ntk) 2N NZN tk- 1 N N r f

Recalling that-vl E G(M,O) implies the operator (I - lexists for all N
NN

sufficiently large, we solve (10.14) for z N(y~ and find

(1 2N)l1  N~~) + K -ltk 2N N tk1 N N(pkf'o).
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Consequently, an approximation scheme can be defined and is given by the following

relations:

0
Z N Tr NZoo

(I N (I + -1k + -(I - r~,) f -10zN 2 I _ NN ZN N 2N N N k

k = l,2,...,PN.

.1Recalling the definition of the family of approximate solution operators for

the non-homogeneous initial-value Problem, {Gk 'w ; determined by a given

DASP 1Z itr ,S.q,C(z) ,D(z)}I for each N = 1,2,..., it can be verified that
N'N N

k Tr
ZN = G (S-f)fr z04, k 0 ,l,2,...,PN,

N k N NO

where for each N = 1,2,..., {G T(I.f)}pN0 denotes the family of approximate solu-

tion operators corresponding to the DASP given by {Z WrN -W' (z),P,(z)
N# 1,10

We note that when {Z 7ir ,SQ0 is an Averaging/Finite Difference approximation
N' N' N

triple, the method which has just been discussed, and thereby the DASP

{Z A A17 1&# ' z 1 is analogous to the well-known Crank-Nicolson

approximation commonly employed in the numerical solution of parabolic partial

differential equations [22].

10-.15. Example (The Improved Euler Approximation). For a given approximation

triple {Z ,ir , Iit is once again convvrvient to consider the approximating ODEN NNI

system U10.11), (10.12) in its equivalent integral equation form on the

intervals (t 1,til, k = 1,2,...,PN given by the expression in (10.13):

N N r 'QKNN (a)do + tkifN fMa),O)daY*

tkl Y Nki1)+fNl
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The improved Euler approximation formulae [14] with step size r/N are an Euler

predictor:

tkN N r v k-i r N ..

(10.16) k = z-1 + N. ONN + r f(o)Co,o)

followed by a trapezoidal corrector:

N
k._ k- i r k NIzk) r N £k

(10.17) k + N N N + r fla)daO).

tkl

When combined, (10.16) and (10.17) lead to the approximation scheme given

by the relations

0Z N  r N Z0

k + Ir. 2 2 k-i r rN
10i.18) zN = (I + ON ) ZN + i(I + N .

A comparison of expressions (10.18) and (8.7) reveals that

Zk = IE(f) k = 0,1,2,...,pNzN =G k (l NZ0,  •.,

for each N - 1,2,..., where {GkIE (N ;r )}k= denotes theik=0dentesthefamily of approximate

solution operators determined by the DASP {ZN, N SNP0 2 (z),P 0 1(z)1
}

Several other numerical integration techniques for ordinary differential

equations commonly encountered in practice correspond to DASP of the form

{Z,,,,VP (z),P(Az)). In particular, the explicit Euler or forward



92.

difference method gives rise to the DASP {Z N, WN,'N,P0(z),1}, while the

implicit Euler or backward difference method determines the DASP

{z ,N ,P1,0(z) ,P1,0(z)).

10.19. Remark. Examples 10.12 and 10.15 above provide a natural link

between the ideas of the present investigation and the approximation framework

developed in [3] and [6]. Indeed, for a given approximation triple {ZN rN
N N

satisfying hypotheses similar to those given in the statement of Theorem 4.9,

the latter treatments demonstrate the convergence to the expression given in

(8.3i of the classical variation of parameters solution to the initial-

value problem (10.10), (10.11). When actually applied in practice, the

desired approximating solution is obtained via the application of standard

numerical integration techniques for ordinary differential equations to (10.10),

(10.11). If the numerical integration scheme employed is among those discussed

in the examples above (and others not presented) and the time step for the

method is chosen as r/N, the two formulations become equivalent.

11. Analysis of Numerical Results

We present here computational results derived from the application of approx-

imation schemes included in the framework developed above to several hereditary

systems of the form discussed in §2. The numerical results which follow were

obtained via a software package developed by the author and implemented in APL

on the IBM 360/67 at Brown University. All of the calculations which follow were

performed in a 330K-byte workspace which was sufficient to generate approximate

solutions with values of N up to 96 in the case r = 1, n = 1 and N - 32 in the

cases r - 1, n - 2 and r - 1, n - 3. A computationally efficient software
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package based on the approximation framework discussed above, which includes

methods utilizing the Averaging/Finite Difference and Spline/Variational state

variable approximations, is currently under development.

In addition to the example which follows, we have tested our approximation

schemes on several other hereditary systems with a variety of characteristics

(cf. [33]). These examples werealso used to test the methods

developed in [21, [4 ] and [6]. Hence, they can serve as a basis for a

preliminary comparison of the two approximation techniques. It is interesting

to observe that in many instances, for the same state variable approximation,

the results we obtain via a Discrete Approximation Scheme constructed with a

second-order convergent rational function approximation to the exponential

compare favorably with the corresponding results in [2 1 and [6 1 computed

with a fourth-order Runge-Kutta integration of the approximating ODE with step

size chosen independently of the state variable approximation.

When considering the rates of convergence in our test examples, we

would not, in general, expect to observe those rates theoretically predicted

by the results discussed in §4. Indeed, those estimates pertain to

the homogeneous problem exclusively on a restricted class of initial data.

However, the predicted rates appear to be in some sense indicative, if not

conservative, estimates of the qualitative behavior observed experimentally in

many of the test examples (both homogeneous and non-homogeneous with arbitrary

initial data) which we have studied.

N
In the tables which follow, the symbol 6i denotes the absolute

ijk.

difference between the exact Solution x to the FDE initial-value

problem and the approximate solution computed via the Discrete Approximation

Scheme for the non-homogeneous initial-value problem

(11.1) {Z*, Tr* N (N N ,Pi,j 00k, ),
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where P (z) denotes the (ij,v)th entry in the Pad( table of rational function

approximations to the exponential and the superscript * may take on the values

A, 1 or 3 depending on whether the state variable approximation is of the

Averaging/Finite Difference, linear Spline/Variational or cubic Spline/Variational

type, respectively. The parameter A has been fixed at 1/2 throughout. In the

discussion below we also, on occasion, denote the DASP (11.1) by the shorthand

notation {*,N,i,jk,t). Finally, recalling that IP (z)-el = Oz i  ) as z 0,

we define the quantity q = i+j as the index of the approximation scheme {*,N,i,j,k,£).

11.2. Example (Banks and Kappel [6 ], Example 1). Consider the scalar,

second-order, non-homogeneous initial-value problem

u(t) + 6(t) + u(t-l) = 10,

u(O) = cos 8, 6() = -sin 8, -1 < 8 < 0

in its equivalent formulation as a 2x2 first-order system in the form of (2.A), (2.2),

0 1 0 0 0x(t) 0 llx(t) + 0 0 (t-l) + 0l = [0 -1 [-1 0I t - ) + [ 1

x(0) = (1,0) T, x(O) - (Cos , -sin 8)T _l < 0 < 0,

where x u and x2 = u.

The solution on the interval [0,2] can be calculated by the method of

steps [111 and is given by

xW(t) - w(t) - -9 - sin 1 + 10t + (10 + .5 sin 1 - .5 cos l)e - t

+ .5(sin 1 - cos 1)sin t + .5(sin 1 + cos 1)cos t, tE (0,1]
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x(t) - w(t) - 29 - 2 sin 1 + cos 1 + (19 + sin 1) (t-1) - 5(t-l)

+ (29.5 + 1.5 sin 1 - cos 1)e
- (tl) + (10 + .5 sin 1 - .5 cos l)e ( t - l)

+ .5(sin 1 - 1)cos(t-l) + .5(1.- cos 1)sin(t-l) t E [1,23

x2 (t) = 1 (t)

The numerical results for this example are exhibited in Tables 11.3

and 11.4. Based upon this evidence, we make the following observations.

Averaging/Finite Difference approximations in an explicit scheme of index 2,

{A,N,0,2,0,1), effectively yield O(1/N - ) convergence, where 6 is a positive

number strictly less than 1. Although the rate of convergence remains unchanged,

approximate solutions generated by the explicit scheme of index 1, {A,N,0,1,O,01

for each N, were in general less accurate than the corresponding results for

the index-2 scheme. Little if any improvement is gained through the application

2
of AFD schemes with index q greater than 2. 'Convergence like0(1/N )as N + m

is achieved by the diagonal implicit/explicit scheme {1,N,1,1,1,01 of index 2

constructed with a linear Spline/Variational state approximation. Accuracy is

enhanced when diagonal schemes having index greater than 2 are employed. For

the index-4 scheme, (3,N,2,2,2,01, with cubic Spline/Variational state approx-

imations, O(1/N ) convergence is observed. Once again increased accuracy is

obtaLned if a scheme having a higher index is employed. Extremely accurate

results obtained with cubic-spline-based methods for relatively small values

of N make the characterization of convergence rates difficult. Indeed, the

actual approximation error is most likely masked by the influx of error from

other sources, i.e. machine roundoff and numerical quadraturee.
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1U.S. Remarks. Evidence provided by our numerical study indicates that certain

trade-offs exist in choosing between an AFD and SPV approximation scheme. While

in most cases, SPV methods yielded superior results, it has been observed (cf.

16], Example 4) that when the initial data lies in the subspaces of Z, {Zi (cf.

§6), definedin the construction of the Averaging/Finite Difference approximations,

the AFD methods provide results superior to those of spline-based approximation

schemes.

In addition, as one might expect, a price must be paid for the increased

accuracy and rapidity of convergence yielded by the cubic spline methods.

Due in part to the wider bandwidth of the matrices generated, these schemes

tend to be more difficult to program, take longer to execute and have larger

storage rsquirements than either the Averaging/Finite Difference or linear

Spline/Variational approximations. Moreover, as is the case in any numerical

approximation algorithm, it is desirable to maintain a uniform order of approx-

imation throughout all phases of the computation. The cubic spline state

2approximations with a theoretically predicted convergence rate of 0(1/1N)

as N 4 - will therefore perform best in a scheme with a relatively high index.

Unfortunately, in the case of spline-based approximations we are unable to

guarantee factor convergence of explicit methods. Thus, for a factor con-

vergent Discrete Approximation Scheme of high index employing cubic spline

state approximations, it is necessary to invert a matrix which is a high-

degree polynomial in the matrix N. In general, this tends to be a numerically

ill-onditioned procedure and may require the use of higher precision arithmetic.
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12. Concluding Remarks

We have constructed an abstract approximation framework which can be applied

to FDE initial-value problems of the type discussed in 12. We have detailed

readily verifiable conditions which if satisfied guarantee convergence to the

solution of the initial-value problem. The schemes proposed, and the abstract

framework in general, represent an alternative to related approximation packages

for FDE suggested by Banks and Burns 131, [4] and Banks and Kappel [6]. Further-

more, in the case of an autonomous linear system, the methods developed here are

an extension and generalization of the ideas discussed by Reber [29).

Within the framework itself, there is a great deal of freedom in the actual

selection of a particular convergent approximation scheme. Moreover, based on

the evidence discussed in the previous section, one can conclude that the appro-

priate choice of parameters which determine the optimal method to apply depends

heavily upon the characteristics of the initial-value problem under consideration.

The numerical results for the test examples suggest that the factor con-

vergence properties of a particular method depend rather heavily on the interrela-

tion between the order of the state approximation employed and the degree to

which the rational function component of the scheme approximates the exponential

function. In fact, it is apparent that a deeper understanding of this interdepen-

dence would provide valuable insight which could lead to the solution of many of

thirunanswered questions posed throughout this paper.

The approximation framework.developed in this investigation has also been

applied to certain classes of quasi-linear FDK initial-value proble (cf. [331),

and has been expanded so as to become part of a package yielding approximate solu-

tions to the optimal control and parameter identification problem for systems

governed by retarded functional differential equations of the typ we have

considered (cf. (2], [31, [41, 151, (291).
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