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Tests for Monotons Mean Residual Life Using Randomly Censored Data
YUAN YAN CHEN, MYLES HOLLANDER and NAFTALI A. LANGBERG
Department of Statistics, Florida State University, Tallshassee, Florida 32306, U.S.A.

Summary

The mean residual life (mrl) function €p(x) gives the expected remaining life of a
patient at age x, where the underlying Yailure distribution ig F. Reliabilists and
biometricians have found it useful to categorisze failure distributions by momotonicity
properties of the mrl. In particular F is said to be a decreasing mean residual 1life
(dmrl) distribution if ep(0) is finite and for all 0 s 8 <t epla) 2 ep(t). If th&'
preceding inequality is reversed, F ie said to be an inoreasing mean residual life
(imrl) distribution. Hollander and Proschan (1975) have derived tests of
(1) By F is exponential, vereus Hy: F is dmrl, and (2) H, vereus By: F is imrl. Their
tests are based on a (complete) random sample Xgo cons xn from F. Often, however, data
are inoomplete due to withdrawale from the study and patients still surviving at the time
the data are analysed. In this paper, we generalize the Hollander-Proschan tests to
accomodate randomly censored data. Asymptotically distribution-free tests oft H, vereus
g, Mﬂovmﬂz'mmvidcd. The efficiency loss, due to the presemce of cemsoring,
is aleo imvestigated.

1. Introduction
Let X be a random variable demoting the time to the occurrence of an end-point event.

" The distribution function (df) F(x) = P(X < x) is called the failure distribution of X;

Rl,(x) = 1 - F(x) is the survival function. The mean residual life (mrl) function
corresponding to F(x) is '

ep(0) = ([Re(u)dul/R(x) W

" Koy : tests; Tes e; an-Meler estimator; -
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* ep(x) is desired include the following.

estimate of ep(x) is

The quantity cp(x) is the expected remaining life of the patient at age x, and thus
could also be written as cp(x) = EX - x|X > x).

The mrl is a function of central importance in reliability, biometry, and other
disciplines where survivorship studies arise., Some examples where knowledge concerning

(i) An engineer is testing a component to study its failure distribution. Natural
questions include: what is the expected remaining life of the component given that it
has functioned properly for 10 days?; for 100 days?; and so forth.

(ii) A biometrician is studying the survival data of patients receiving estrogen
for treatment of prostate cancer. The biometrician, physicians, and patients are interested
in the xean residual 1life at 12 months, at 18 months, at 24 months, etc.

(iii) A sociological experiment is performed in which the varisble under study is the
time X until a victim is extricated from a "mishap’’ by receiving help from a passerby. How
long will a victim, on the average, have to wait if he has received no help in the first
10 minutes?, twenty minutes?, etc.

Obviously many other examples where study of the mrl arises can be cited, and the
above examples can be rephrased in different contexts.

Estimation of the mrl has received considerable attention in the literature.
Suppose a random sample xl, cory xn is available from F. A natural nonparametric

%00 = LR/ fp)s - Ix < X)), O i

MQ X(n) = mm EXIt x2' veey &J, I[X < x(n)J = 1 if X < x(n) “ o om’ m
Rp(x) is the empirical survival function of the X's. That is, Kx) = a’l. (mmber of X's .
in the sample > x}.
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Bryson and Siddiqui (1969) plat Fp for -survival data of leukemis-petients. Yerg
(1978) established strong consistency of €; on a finite interval [0, TJ and also showed
that the associated mrl process n"{:},(x) - c’&,(x)} converges weakly to a Guassian process.
Hall and Wellner (1979) strengthen Yang's results; in particular they extend her weak
convergence result to the positive real line. Hall and Wellner also derive. nonparametric
similtaneous confidence bands for e(x). Chiang (1960) focused on estimating the
discretized life-table version of the mrl fimction.

Testing for properties of the mrl. has received less attention in the literature even
though reliabilists have found it useflll to categorize failure distributions according to
monotonicity properties of the mrl.

A failure distribution F is said to be a decreasing mean residual life (dnmrl)
distribution if the mean,e(0), is finite and,

cp(s) 2 ‘F(t)' forall 0<s < t. (&

F is said to be an inoreasing mean residual life (imrl) distribution if e;(0) is finite
and the inequality in (3) is reversed.

The class of darl distributions is useful for modeling situstions where lifelengths
o items deteriorate with age, whereas the class of imrl distributions is appropriate for
models vhere 1ifelengths improve with age. The boundary members of the darl and imrl
classes, obtained by requiring equality in (3), are the exponential distributions. Of
" course, the exponential distributions can be used to model situations where lifelengths
- neither improve nor deteriorate with age. Equivalently, they are the distributions for
which the mrl function ep(x) is constant for all x.

Hollander and Proschan (1975) [HP(1975)] consider the problem of testing

Hy: F(x) =1 - ep(-x/u), x 20, u > 0, u unspecified, @)
Versus
Hl: F is a dwrl distribution and is not exponential, (S)

e e T T T e YR TR IR




using a random sample Xpp een Xy from F. Significantly large values of their test
statistic V* lead to the rejection of Hy in favor of H. Significantly small values of
V* lead to the rejection of Hy in favor of

Hi: F is an imrl distribution and is not exponential. (6)

HP(1975) establish asymptotic normality of V* and also provide critical values, obtained
by Monte Carlo simulation, for n = 2(1)20(5)S0. Exact critical values for n = 2(1)20(5)60
are given by Langenberg and Srinivasan (1979).

Bryson (1974) has suggested a test of Ho vs. Hi However he gives critical values only
for n = 10, 15, 20, 25, and 30, he does not derive the asymptotic distribution of his test
statistic, and his test can not be easily converted to a test of H, versus H,.

In this paper we generalize the HP(1975) test to accommodate the randomly censored
model. Thus, instead of a complete sample X,, ..., X, we are only able to observe the .

pairs

= min(xi, T, 85 =1 if Z; = X; (ith observation is uncensored), and
)
= 0 if Z; - Ti(ith observation is censored).

We assume that xl, ceey xn are independent and identically distributed (i.i.d.) according

to the contimuous failure df F, 'l‘l. cory ‘l‘n are i.i.d. according to a continuous cemsoring

df H(x) = P(T < x), and the T's and X's are mutually independent. The censoring

df H is typically, though not necessarily, unknown and is treated as a miisance parameter.
Model (7) is useful because in many situations the data are amalyzed before all the

subjects have experienced the end-point event. For example, in situation (i) described

earlier, some components on test will still be functioning when the test ends; in

situation (ii) some patients will have dropped out of the study (by moving to amother
city, for example) and others will still be alive at data-analysis time; in situation

(141) some victims will still be swaiting extrication when the experiment ends.
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In Section 2 we derive our test statistic, denoted by VC. The derivation is
similar to the approach of HP(1975), but whereas their derivation utilized the empirical
df to estimate F, our statistic is formed by using the Kaplan-Meier estimator (1958)
[KM(1958) ] to estimate F.

Using results of Reid (1979), we show (in Appendix I) that V°, suitably standardized,
is asymptotically normal. The mnull asymptotic mean of V* is 0, independent of the
nuisance parameters p and H. However, the null asymptotic variance of n”Vc (given by (A.4))
does depend on u and H and must be estimated from the data. A consistent estimator i3 is
also presented in Section 2. (The development of il is given in Appendix I.)

In Section 3, by comparing the V statistic with the HP(1975) V* statistic, we derive
a measure of the efficiency loss incurred due to the presence of censoring.

In Section 4 we apply the V* statistic to some prostate cancer survival data

considered earlier by Koziol and Green (1976) and Hollander and Proschan (1979).

3. A Test for Momotone Nean Residual Life Using Randomly Cemeored Data
Let D(s, t) = RF(s)R*r(t){cp(s) - ‘F(t)}' Then D(s, t) is, for s < t, a weighted
measure of the deviation from Ho (exponentiality) to l-l1 (dmrl alternatives). The
weights Rp(s) and Rp(t) represent the proportions of the population still alive at times
s and t, respectively. Note that D(s, t) = 0 for all sstifandoxnyifﬂo is true.
HP(1975) were thus led to consider

8(F) = [ [Rp(sRp(t)eg(s) - ep(t)MF(8)4F(E) 8)
<
as an average value of the deviation D. Straightforward calculations show that a(F) can
be rewritten as
8) = [LOOFW) - (3/2)FP@) + W/3FW) - (/3)F (w)idu. 8"

T, B R WD T MESAE A YK
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HP(1975) formed their statistic by replacing F by the empirical distribution function F
in (8).

In our randomly censored model, the empirical distribution camnot be computed but we
can compute F, the KM(1958) estimator of F. Letting Zg) = 0» and
zm < 2(2) < ous < z(n) denote the ordered Z's, and c(i) the & corresponding to z(i), we
have

- - 8.,.
Re@) =1-F)= 1 [@-i)@-i+1y @, ©)

\ In (9) we treat Z(n) as an uncensored observation whether it is uncensored or not.

Although ties have probability zero under our assumptions, in practice ties will
occur. When censored observatirns are tied with uncensored observations, the convention
when forming the list of ordered Z(i)'s is to treat the uncensored members of the tie as
preceding the censored members of the tie.

KM(1958) show that F is the maximm likelihood estimator of F in the censored
nonparametric model where no parametric assumptions about F are made. Asymptotic
properties of F are studied by Efron (1967), Breslow and Crowley (1974), Meier (1975),

) and Peterson (1977). Peterson also presents a summary of properties of F.

To form our test statistic, we replace F by F in (8'). Since A(ﬁ) is not scale
invariant, in order to make our test scale invariant we use the test statistic

Ve =AY/, (10)

. where p = gﬁl,(x)dx is, under the assumption that the mean gllF(x)dx is finite and under
suitable regularity on the amount of censoring, a consistent estimator of u.

For camputational purposes, use

n i1
=l 3/m-ge 1) U)J(zm - 2y

-1-
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For computational purposes it is also helpful to rewrite A(l?) as

- n i-1 c(j) i-1 ZGU)
aA(F) ={ J (-(1/6) n C(n - j)/(n~ j +1)3 +t@nin-j)m-j+1)1 ¥
i=1 j=1 j=1 az

i1 LS !
WL/ -5 D0 - Q) - 2t

A consistent estimator %g of the null asymptotic variance of n"vc is developed in

Appendix I. For camputational purposes ;(2) can be written as

a2 | gpe-l i1 S S S | .-1
T 720" + j‘zln(n <i+1) "(n-1i) {72 "exp(-2u Z(i))

. 1s‘1exp(-sa'lz(i)) . 16‘1exp(-4a‘1z(i))

. 45'1exp(-sa‘lz(i)) - 1s‘lexp(-6ﬁ'1z(i))
+ 72'1exp(-8ﬁ’lz(i))} + n{7z‘1exp(-zﬁ'lz(n)) @13)

. 13'1exp(-3ﬁ'1z(n)) + 16" exp(-4i Z(ny)
+a5lemp(-5il2 ) - 187 a6z )

+ 72-1exp(-8ﬁ-12 (n)) }’

" where u is defined by (11).

To test Ho versus l-l1 at the approximate a-level, reject Ho in favor of l-ll if
n”\l‘%&l > 2, and accept H; otherwise. Here z_ is the upper o percemtile point of a
standard normal distribution.

To test Hy versus Hl' at the approximate a-level, reject H, in favor of Hi if
dﬂv‘%&‘ < -z, and accept H, otherwise.

AR T g 3 U RN . e - - iR
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Insisting that the null asymptotic variance of nl’v':, as given by (A.4) of Anpendix I,
be finite imposes a restriction on the amount of censoring that can be tolerated by the test
based on V°. The right-hand-side of (A.4) fails to converge if R (x) = O{R5(x)} as X ap-
proaches . Consider this condition in the proportional hazards model where R,(x) = {Rp(x)).
Here y is viewed as a censoring parameter since the nrobability that an observation will be
censored is P(ci = 0) = y/(y + 1). Then, in this model, the right-hand-side of (A.4) is
finite if y < 1. Thus, for the proportional hazards situation, the V* test will be

inappropriate when the expected proportion of censored observations is greater than or
equal to .

3. Effictency Loss Due to Censoring
Since the V© statistic introduced in this paper is a generalization of the
HP'(1975) V* statistic, we find it natural to compare the power of the V* test based on n
observations in the non-censored case with the power of the V© test based on n* observations
in the randomly censored model.

Thus; let I-‘e be a parametric family within the dmrl class with Fe being exponential.
0

Then we assume the randomly censored model with F = Fe and with censoring distribution H.
For a sequence of alternatives 6, = 8, + en™ (with c > 0) tending to the null hypothesis,
let Bn(en) be the power of the approximate a-level V* test based on n observations in the
uncensored model, and let Bn,(en) denote the power of the aprroximate a-level VE test
based on n' observations in the randomly censored model. Consider n' = h(n) such that

lim Bn(en) = lim Bn.(en), where the limiting value is between 0 and 1, and let

"k = 1im n/n'. The value of k can be viewed as a measure of the efficiency loss due to

censoring. The value of k is adapted from Pitman's (cf. Noether, 1955) measure of asymntotic
relative efficiency but the interpretation of k must be mdified because the tests based on
V* and V° are not competing tests in the ramdomly censored model (V* camnot be applied

to the data arising in the randomly censored model). Roughly speaking, for large

n and dmrl alternatives close to the null hypothesis of exponentiality, the V© test

O TS S Ty g v T WY PIC UTLY AL
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Values of eHI(Vc, V*) are given in Table 1. Note, from (15), that as A tends to 0

it At bl Btz H b0 L 3 2 ST A

requires n/k observations from the randomly censored model to do as well as the V* test
applied to n observations from the uncensored model. Since V° and V* have the same

asymptotic means, it can be shown that k reduces to the limiting ratio of the null

asymptotic variance of n"v* to that of n”Vc, namely,

x 9 o 0%, v) = 20)/4, 1e)

where "g is given by (A.4). Note that k depends only on the censoring distribution H, and

not on the parametric family F, of dmrl alternatives. Hence we use the notation eH(Vc, ve),
rather than ee H(Vc, V#), in (14).
2
We consider the cases (i) where the censoring distribution is exponential, RHI(x) =1
for x < 0, RH](x) = exp(-Ax), x > 0, and (ii) where the censoring distribution is
piecewise exponential, RHZ(x) =] forx<0,and forr=1, ..., n, RHz(x) = crexp(-xlx).

Sp.p <XS S, and RHz(x) = %‘fxp(-xmlx) for Sy < % where
r-1
c, = acp(-izlxi(si -554) * s ;) and s) =0,
In order that rg, given by (A.4), be finite, in case (i) we must impose the restriction

A <1, Then from (A.4) (with ¢y = 1) and (14) we find

eHl(Vc, v = (635 -0 -6 -0t -0 ea -0t

@s)
21265 - Ve s - YL

(corresponding to the case of no censoring), as expected we have ‘lec' V*) tends to 1.
In order to provide a reference point to the amount of censoring, and thereby
facilitate the interpretation of eﬂlwﬂ V*), we also include in Table 1 the value of
«P(X <T) = (1 +2)7}, the probability of obtaining an uncensored observation when X
is exponential with scale parameter 1 and T is independent of X and has the censoring
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When the censoring distribution is H2’ again in order that ‘tg be finite we must impose
the restriction A, < 1. Straightforward but tedious calculations yield

m+l -1 1
o, OV, V) = 6/39)( | e LA - 2 Hexpl-(1 - As, d-expl-(1 - 25,1}

- 6(2 - xr)'lfmcpt-(z - Ap)sy pl-expl-(2 - 2 )s 3} + 9(3 - Ar)'l{exp‘[-(S - Ap)s ]

-expl -(3 - xr)sr]} (16)

+4(4 -2 ) (expl-(4 - A s, 1] -expl-(4 - A s, 1} - 12(5 - A,)'I{e@[-(S T A)Sp!

-exp[-(5 - A8, B +4(7 - 3) " Hexpr-(7 - s, j1-expl-(7 - ads )0

where Sme1 ™ ®,

Values of eHz(Vc , V*) are also given in Table 1. Again, as a reference point for
the ammtofcensoringmderﬂz, we include in Table 1 values of mz = P(X <T) when X
is exponential with scale parameter 1, and T is independent of X with distribution H,.
Direct calculations show

mtl
By, " 1o 1 e 0o eml-0p ¢ Vs )-eml-0y ¢ Ds ),

where sw1 =o,

{Insert Table 1 here.]

4. Example
The data in Table 2 were analyzed in Hollander and Proschan (1979) [(HP(1979)] and

are an updated version of data considered by Koziol and Green (1976). The data corre-
spond to 211 state IV prostate cancer patients treated with estrogen in a Veterans
Administration Cooperative Urological Research Group (1€67) study. At the March, 1977
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closing date there were 90 patients who died of prostate cancer, 105 who died of other
diseases, and 16 still alive. The latter 121 observations are treated as censored obser-
vations (withdrawals). ,

Figure 1 of HP(1979) gives a plot of the M survival function R; for the data of
Table 2. HP(1979) also applied several goodness-of-fit tests, including ones proposed
by Koziol and Green (1976), Hyde (1977) and a test developed in HP(1979), to test the
mll hypothesis that F is exponential with mean 100 months. (As stated by Koziol and
Green (1976), prior experience suggested that had the patients not been treated with
estrogen, their survival distribution for deaths from cancer of the prostate could be
taken to be exponential with mean 100.)

Although the tests applied in HP(1979) tended to support the postulated exponential
distribution with mean 100, the two-sided P value for the Koziol-Green test was .14
suggesting that perhaps a different model could be more appropriate. Furthermore, Gregory
(1979) analyzes the Table 2 data by new goodness-of-fit tests (which will, for some alter-
natives, be more powerful than those proposed by Koziol and Green (1976), Hyde (1977), and
HP (1979)) and his tests do not support the postulated exponential distribution with mean
100.

Figure 1 of this paper plots the Kaplan-Meier analogue 3.‘._.(~) of the empirical mrl
function (defined by replacing ¥ by R in (2)) for the data of Table 2. Specifically

) = 1f Rp (w)du} R (x) 11+ 10x < 2 g e

Notethatc,,,forthedauof'rublez. tends to decresse wp to around 25 months, then tends

.wimemtoabwtmmﬂu,udﬂmmm.

Figure 1 suggests 'wearout', but does not strongly suggest a strictly decreasing
mean residual life.

Application of the V* test tends to confirm the "eye-ball" impression one gets from
Figure 1. We obtain, from (10) - (12), V° = .027, and from (13), ;g e ,066. We then find
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(211)%%;! = 1.52 with & corresponding one-sided P value of .064. Thus, with this ob- |
jective analysis, we find that the test suggests "wearout” in the dmrl direction, but the
test does not strongly suggest a strictly decreasing mean residual life. ;
[Insert Table 2 here.]
[ Insert Figure 1 here.]
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Appendix 1
A Consistent Estimator of the Null Asymptotic Variance of V°

Using straightforward algebra and integratiqn we can write
v e = 6 ofe)de, a1
vhere ' A | .

J@) = -(/2) - auL ¢ 3¢ 4 + (@/3)0>. .
The term [xJ(F(x))dF(x) is a Kaplan-Meier "L-statistic” and results of Reid (1979) can be '
used to show ’ | ’ .

n? [xI(F(x))dFE) — N(O,07) ' (a.2)

| | | XAy ]
o = [[Rp RGN (FCONIF) [ ReGIRp(u) lFudnty, A3

where R_(u) = Ry ()R () and x A y = min(x,y). Thus from (A.1) - (A.3) and Slutsky's
theorem (cf. Cramér, 1946, pp. 254-255), we have

| nve - (a1 = NE,u 2.
Under Hy, it can be show: that u”2c” reduces to the right-hand-side of (A.4), namely

1 .
«g % fem L) ez, A4

B =367 - 627 ¢ 925 ¢ a2t <125 4 42T),

When there is no censoring, i.e. Ry(x) 51, 0 <x < =, the right-hand-side of (A.4) reduces
to 1/210, agreeing with the result for the asymptotic variance of n"V', the HP(1975)

statistic dasimed for the uncensored case.

A consistent estimator 52 of v2 is obtained by replacing Ry, in (A.4), by Ry, the

 empirical survival function of the 2's; Ry(x) = n'> - (mmber of 2's > x}. The resulting

 estimator is given by the right-hand-side of (13).
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TABLE 1

Bfficiency Losses Under Exponential (Hl) and Piecewise
Exponential (H,) Censoring

eHICVc,V*):

("1’12):

GHZCVC.V‘):

(s158,):

GHZCVc.V‘):

1/2

.248

.667

1
(1/2,1/3)
.374

.685

1/2,1)

(/2,1/3,1/4)

475

.718

1/3

435
750
Hy
1

(1/3,1/2)
.290

728

@/2,1)

(1/4,1/3,1/2)
.302

.750

1/4

.552

.800

1

(1/3,1/4)
.513

.763

@a/2,1)

(1/2,1/5,1/10)

.645

.765

1/10

.805

2

1/2,1/3)
.326

.671
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TABRLE 2

Survival Times and Withdrawal Times in Months for 211 Patiemts
(with mumber of ties given in parentheses)

Survival times: 0(3), 2, 3, 4, 6, 7(2), 8, 9(2), 11(3), 12(3), 15(2), 16(3), 17(2), 18,
19(2), 20, 21, 22(2), 23, 24, 25(2), 26(3), 27(2), 28(2), 29(2), 30, 31, 32(3), 35(2), 34,
35, 36, 37(2), 38, 40, 41(2), 42(2), 43, 45(3), 46, 47(2), 48(2), 51, 53(2), 54(2), 57, 60,
61, 62(2), 67, 69, 87, 97(2), 100, 145, 158.

Withdrawal times: 0(6), 1(5), 2(4), 3(3), 4, 6(5), 7(5), 8, 9(2), 10, 11, 12(3), 13(3),
14(2), 15(2), 16, 17(2), 18(2), 19(3), 21, 2, 25, 27, 28, 31, 32, 34, 35, 37, 38(4), 39(2),
4(3), 46, 47, 48, 49, 50, 53(2), S5, 56, 59, 61, 62, 65, 66(2), 72(2), 74, 78, 79, 81, 89,
93, 99, 102, 104(2), 106, 109, 119(2), 125, 127, 129, 131, 133(2), 135, 136(2), 138, 141,
142, 143, 144, 148, 160, 164(3). |

§ "
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Figure 1.
The estimator &,(x) of the mean muun.n!-. |
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