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*he mean residual ife (url ) funco~ x) gives the expected remaining life of a
"' patient at age xi, where tli underi jg-allure d st ion is F. Reliabilists and

properties of the inn. rticular F is said to be a d si reidual life
- (dtnrl) distribution if 1 0) is finite and for all 0 s t, s t)., If the

(imri) distribution. Ilander and Proschan (1975) ye derived tests of
(1) HQ~: F is exp on al, versus H : F is dmrl, a (2) Ho versus I: F is imrl. Their
tests are based on a (c plete) raldm sample X3, , X,, from F. Ofen, however, data

.;4 are incomiplete due to wti hdrawals fromt the study a patients still surviving at the time
Zth~e data are analyzed. this paper, we generali e the Hollander-Proschan tests to
a ccommiodate randomly cens red data. Asyinptotical y distribution-free tests of H0 versus
d, and 11 versus Hi are p vided. The efficienc loss, due to the presence of censoring,
is also investigated.
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Teat. for Monuotone NeWO Reafidgzi Life Using Rwodo..4 Censored Dat

YUAN4 YAN GEM, MYLES HI MIE and NAFTALI A. U1MEG

Departumit of Statistics, Florida,.State University, Tallahasse, Florida 32306, U.S.A.

the 'man reiAndta Lfe (nn'Z) fhmotion e7 (x) give. the eaxeated rsmmir4 life of a

patient: at ago x, ,%ev the underlying Ikiture distribution is F. Reliabiliats and

bianetriaiana have foWnd it uaefkt to oategorixe faiture distriLbutions by ivonotoniaitif

prqwretie of the mat. In pai'tioaalar P is said to be a decr'easing nean veaiduat life

(Owl) distributions if c/0) ia finite and -for all 0 1 sa: t, ey(s) a: ep/t). If the"

preoediiig inequality ia rvervaed F La said to be an inoveasing mean z'esidi I life

(ianw) distibution. ilottande and Pz'osohwi (1975) have derived tests of

(1) NO: P isaeqwmetiat, wu'me ill: F is duel, and (8) H0 versus Hll: F ia imp. 2%7eia'

teat* an baseed an a (ooW te) rand=i ample Z~ .,X ram F. Often, avee, data20 Znf
am inoaiplete due to uith'dmwuata from the studif and patient. still surviving at the time

the data are analtyaed. In. this paper, we gwwerZliae the HotZanider-Pz'oaohw teato to

aeoG9POwdate randuZtf emaored data. Asrptotiaty distribustion-free teat of~ NO verseus

H~ an versus HI are provided. Ohe officoinaoos ea, due to the pzeee of eeneoring,

is also investigated.

i. Introduotion

Let X be a rwaza variable dexitizig the times to the ocoarrewe of an utd-point went.

The distribution function (df) F(x) - P(X :sx) is called the failure distribution of X;

%,(x) - I F(x) is the survival fwction. The mean residual life (wrl) funaction

correspo.ing to F(x) is

Sp() (RF(U)du)/R 7(X). (1)

Xemr 1br&: --pthesis tests; %an FROMlu life; AalnMlr estimator; Hlgt-Emsord
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The quntity eo(x) is the expected remining life of the patient at age x, and thus

could also be written as ep(x) - ECX - xIX ) x).

The al is a function of central importance in reliability, biaotry, and other

disciplines where survvorship studies arise. Some examples where knowledge concering

£p(x) is desired include the following.

(i) An engineer is testing a coponhnt to study its failure distribution. Natural

questions include: what is the expected remaining life of the component given that it

has functioned properly for 10 days?; for 100 days?; and so forth.

(ii) A biametrician is studying the survival data of patients receiving estrogen

for trea t of prostate cancer. The biometrician, physicians, and patients are interested

in the am residual life at 12 months, at 18 months, at 24 months, etc.

(iii) A sociological experiment is performed in which the variable under study is the

time X until a victim is extricated from a jlishap" by receiving help fran a passerby. Hw

long will a victim, on the average, have to wait if he has received no help in the first

10 minutes?, twenty minutes?, etc.

(bviously mny other examples where study of the arl arises can be cited, eand the

above amcples can be rephrased in different contexts.

Estimation of the mrl has received considerable attention in the literature.

Suppose a random saple X1 , ... Xn is available from F. A naturalnoaartric

estimate of oF(X) is

- E(J(u)du)/.(x))j - lx < X(n) J, (Z)
x

where X(n) mxi m Xum X2, ... , XJ , lx X(n)J - 1 if x(X(n) ad 0 otherwse, and

(x) is the apircal survival faction of the X's. That is, Ip (x) -a "I  (uar of X's

in the saple ,x).



Bryson ad Siddiqui (1969) plat fosuvvldaaf1. mi-it.YU

(1978) established strong consistency of on a finite interval (0, TJ and also showed

that the associated arl process ah(sC,(x) - c (x)) conveges wealy to a Qiasian process.

Ill and Wellner (1979) strengthen Yang's results; in particular they extend her weak

convergence result to the positive real line. Hall and Wellner also 4.ri-

simultaeus confidence bands for eF(x). Chiang (1960) focused on estimting the

discretized life-table version of the ml function.

Testing for properties of the nl has received less attention in the literature even

thog& reliabilists have found it use& to categorize failure distributions accoding to

monotonicity properties of the arl.

A failure distribution P is said to be a deeasng m e ual Z life (dmrl)

distribution if the Mean.p(O), is finite and,

eF(s) a eF(t), for all 0 t s s t.

F is said to be animmasi no nredulZ life (lUrl) distribution if eF(O) is finite

and the inequality in (3) is reversed.

The class of dml distributions is useful for modeling situations where lifelanths

LG item deteriorate with age, whereas the class of imwl distributions is qpropriate for

models where lifelengths iqrove with age. The boundary ombers of the dirl and irl

classes, obtained by requiring equality in (3), are the e tial distributions. Of

course, the exponential distributions can be used to model situations wOere hlfeluths

neither lawove nor deteriorate with age. Squivalently, they are the distrilbti for

which the arl function e,(x) is constant for all x.

Hltlamner and Prosclan (197S) (HP(197S)1 consider the problm of testin

10: F() m1- (-x/). x k 0, P0, .lpecified. (4)

s i: P is a &rI distribution aid is n , (5)
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using a ramp sle lXl, ... 9 Xn fromn F. Significantly large values of their test

statistic V* lead to the rejection of Noin favor of 1 . Sgnificantly smell values of

VO lead to the rejection of HO in favor of

1q: F is an 1=1l distribution arnd is not exponetial. (6)

I(197S) establish asymptotic normality of V. and also provide critical values, obtained

by Monte Carlo siulation, for n - 2(1)20(5)50. Exat critical values for n - 2(1)20(5)60

are given by Langeciberg andi Srinivasan (1979).

Dryson, (1974) has suggested a test of HO vs. 1q. However he gives critical values only

for n - 10, 15, 20, 25, and 30, he does not derive the asymptotic distribution of his test

statistic, and his test can not be easily converted to a test of HOverssl

In this paper we generalize the If(1975) test to accaoiodate the rankdomy censored

model. Thus, instead of a complete sample X1,** nX, we are only able to observe the

Pairs

Z .in(Xi, Ti), 61 1 if ZU Xi(ith observation is umcensord), and

(7)

-0 if Zi- Ti(ith observation is censored).

We assmie that X1, .. ,X, are indepeixient and identically distributed (i. i.d.) according

to he ontzuaus aiuredf , T, .. ,Tn are i. i .d. according to a contius censoring

df 11(x) - P(T !c x),, and the T's and X's are uatually Iepnent. The censoring

df H is typically,, though not necessarily,, unwm aid is treated as a inuisance parmeter.

Mode (7) is useful because in may situations the data are analyzed before all the

sub~jects have experienced the end-point event. For stample, in situation (1)decbd

earlier, some components on test will still be functioning when the test eWAS; In

situation (ii) some patients will have dropped out of the study (by wring to uatdwr

city, for scmle) aid others will still be alive at data-analysis tim; in stUation

(iii) s=* victim will still be aiting extication W=e thwexcprint ads.A



In Section 2 we derive our test statistic, denoted by V-. The derivation is

similar to the approach of HP(1975), but whereas their derivation utilized the empirical

df to estimate F, our statistic is formed by using the l(aplan4eier estimator (1958)

E4(19S8)J to estimate F.

Using results of Reid (1979), we show (in Appndix I) that Vc, suitably standardized,

is asymptotically normal. The null asymtotic mean of Vc is 0, independent of the

nuisance parameters v and H. However, the null asymptotic variance of Al c (given by (A.4))

does depend on u and H and must be estimated from the data. A consistent estimator ^2T is
20

also presented in Section 2. CThe development of i is given in Appendix 1.)

In Section 3, by comparing the Vc statistic with the hP(197S) V* statistic, we derive

a measure of the efficiency loss incurred due to the presence of censoring.

In Section 4 we apply the Vc statistic to some prostate cancer survival data

considered earlier by Kziol am Green (1976) and Hollander and Proschan (1979).

A. A roo*t for Monotone Man Residual Life Using Rwdantij C~s Data

Let D(s, t) - RF(s)R (t)(eF(s) - uF(t)}. Then D(s, t) is, for s < t, a weighted

measure of the deviation from HO (exponetiality) to H1 (dmrl alternatives). The

weights R (s) and %(t) represent the proportions of the population still alive at times

Sad t, respectively. Note that D(s, t) u 0 for all s f t if and only if H is true.

MP(1975) were thus led to consider

a(F) - fR(s)RFVt)(c,(3) - eF(t))IdF(s)dF(t)(8
S<t

as an average value of the deviation D. Straightforwr calculations show that a(F) can

be ra itten as

£(F) - t(QOF(u) - (3/2)F (u), (4/3)F3(u) - (/3)F 4(u))du. 8')
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If(1975) formed their statistic by replacing F by the empirical distributim fietion

in (8).

In our randomly censored model, the empirical distribution cannot be ccputed but we

can compute F, the 41(1958) estimator of F. Letting Z(0 ) - 0, and

Z(1) ' ... < Z denote the ordered Z's, and 6(i) the 6 corresponding to Z(i) , we
(ni)

have

R x) = 1- Fx)- i (n- i)(n- i ) -1 i (9)
(i)}

In (9) we treat Z(n) as an uncensored observation whether it is uncensored or not.
Altough ties have probability zero under our assumptions, in practice ties will

occur. When censored observatinns are tied with uncensored observations, the convention

when forming the list of ordered Z (i) 's is to treat the uncensored uembers of the tie as

preceding the censored members of the tie.

I(19S8) show that F is the maximua likelihood estimator of F in the censored

onprmtric model where no parametric assumptions about F are made. Asymptotic

properties of F are studied by Efron (1967), Breslow and Crowley (1974), Meier (1975),

F! and Peterson (1977). Peterson also presents a sumary of properties of P.

To form our test statistic, we replace F by F in (8'1). Since A(F) is not scale

invariant, in order to make our test scale invariant we use the test statistic

vc . 4 (10)

where v = F(x)dx is, under the assumption that the mean (x)dx is finite and under

suitable reglarity on the mount of censoring, a canistent estimtor of V.

For cuipationl purposes, use

n i-i
I- c a E(n - J)/(n - * )J ( - z(t. (11)

in- J () U1
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For computational purposes it is also helpful to rewrite A(F) as

ni-i 26
AM - (-(1/6) ii ((n - j)/(n - J + Ii(j)+(hR[n- /(n-j+11()

i-i Jul j-1
(12)

i- 46 ~ il

.2c -
A consistent estimator Toof the null asymptotic Variance of nV~ is developed in

.2Appendix I. For computational purposes To can be written as

n-i. -1 -1l 1
To 72G& + +~ 1) (n - i) (72 exp(-2;-'Z ()

^-I -1
-18 exp(-3i Z )+16 exp(-4i^'Z

+ 45 exp(-Sir1 Z M) -Sep(-6?' )

Mi (n)

+ 45 exp(-Sii1Z )-18-1 cpC-6^1 Z )

(n)) n

uwee V^ is defined by (11).

To test HOversus Hat the approximuate a-level, rejectHO in favor ofH1 if
n~iol > a ai accept H0 otherwise. Here % is the upper apercmntile point of a

stealard normi distribution.

To test H0 versus Hj at the approw lte s-level, reject H0 in favor of Hj if

10VC;O -Z a, ad accept Ho otherwise.
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Insisting that the null asymptotic variance of nV, as given by (A.4) of Aripendix I,

be finite imposes a restriction on the amount of censoring that can be tolerated by the test

based on Vc . The right-hand-side of (A.4) fails to converge if RK(x) = 0(R(x)) as x ap-

proaches -. Consider this condition in the proportional hazards model where Rd(x) - (R,(x)f .

Here y is viewed as a censoring parameter since the nrobability that an observation will be

censored is P(6i - 0) = y/(y e 1). Then, in this model, the right-hand-side of (A.4) is

finite if y < 1. Thus, for the proportional hazards situation, the Vc test will be

inappropriate when the expected proportion of censored observations is greater than or

equal to h.

3. Efficiency Loe Due to Censoring

Since the Vc statistic introduced in this paper is a generalization of the

HP(1975) V* statistic, we find it natural to compare the power of the V* test based on n

observations in the non-censored case with the power of the Vc test based on n* observations

in the randomly censored model.

Thus, let Fe be a parametric family within the dmrl class with F. being exponential.
80

Then we assume the randomly censored model with F - F0 and with censoring distribution H.

For a sequence of alternatives en 0 00 + cn "h (with c > 0) tending to the null hypothesis,

let 0n(en) be the power of the approximate a-level V* test based on n observations in the

uncensored model, and let n,(On) denote the power of the approximate a-level Vc test

based on n' observations in the randomly censored model. Consider n' - h(n) such that

11. 0n(en) = ir OWn (n)' where the limiting value is between 0 and 1, and let

k - lim n/nI. The value of k can be viewed as a measure of the efficiency loss due to

censoring. The value of k is adapted from Pitmn's (cf. Noether, 1955) measure of asymptotic

relative efficiency but the interpretation of k must be modified because the tests based on

V* and Vc arp not competing tests in the ramdamly cenmored mWdl (V* cannot be applied

to the data arising in the randomly censored model). Roughly speaking, for lar.e

n and dnrl alternatives close to the null hypothesis of exponentiality, the Vc test
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requires n/k observations from the randody censored model to do as well as the VY test

applied to n observations from the uncensored model. Since Vc and V* have the same

asymptotic means, it can be shown that k reduces to the limiting ratio of the null

asymptotic variance of A * to that of nV , namely,

k d. eH(V;, V*) - (210"1 /,*, (14)

I2
where 0 is given by (A.4). Note that k depends only on the censoring distribution H, and

not on the parametric family F. of dmrl alternatives. Hence we use the notation e%(VC, V*),

rather than eFHVC, V*), in (14).

We consider the cases (i) where the censoring distribution is exponential, W 1

for x < 0, %(k) - exp(-Xx), x > 0, and (ii) where the censoring distribution is
+ piecewise exponential, RCx I f or x < 0, and for r - 1, , R, x rep-r)

st1 < x :9 s , an (R-HxC,~x for sm -c x, Awhe

r-l
= iexp(-1),1 1 i-1) + Arr.1) and so - 0.

In order that 402 , given by (A.4), be finite, in case (i) we must impose the restriction

X < 1. Then from (A.4) (with - 1) and (14) we find

e,,.V0, V*) - (6/3S){(l - A)- 6(2 - A) + 9(3 - A) + 4(4 - A)

-12(5 - +)-1 4(7 - })-1}-1.

Values of % (Vc, V) are given in Table 1. Note, from (15), that as % tends to 0

(corresponding to the case of no censoring), as expected we have %(Vc, V*) tends to 1.

In order to provide a reference point to the amount of censoring, and thereby

facilitate the interpretation of e (Vc, V*), we also include in Table 1 the value of

P, P(A < T) - (1 + X) 1, the probability of obtaining an uncensored observation when X

is aqpuwttal with scale parameter 1 and T is independent of X and has the censoring

distribution iL.



;-- 41

10

Hhen the censoring distribution is H2 , again in order that 2 be finite we mist ipose

the restriction ( 1. Straightforward but tedious calculations yield
M~l

e2V€, V*) - (6/3S)( I cr (1 - r) 1 r)Sr. -expC-( - r)Sr))

-6(2 - Ar)l-exp(2 - rSrls exp-(2 - A )sr1) + 9(3 - r exp -(3 - ArS)

-exg-($- Xr)Srl) (16)

+ 4(4 - A r)lexp(-(4 - r)Sr1 -exp[-(4 - Ad)Sr]) - 12(S - r)Sr-1i
r-expc-(S 4 r {exp(-(7 - xr)Sri-exPC-( 7 - r)Sr) -1,

where s,+

Values of eH2 (Vc, V) are also given in Table 1. Again, as a reference point for

the awmt of censoring under 2 , we include in Table 1 values of % - P(X < T) when X

is exponential with scale parameter 1, and T is iLepen-dent of X with distribution H2 .

Direct calculations show

301 -1
"1- r Cr ArOL+r) lceP(-(Ar+ 1)Sr-ll-exP{-CAr+ 1)Sr}],

where s1.I -.

[Insert Table 1 here.]

4. hvvpe

The data in Table 2 were analyzed in Hollander and Proschan (1979) EHP(1979)3 and

are an updated version of data considered by Koziol and Green (1976). The data corre-

sporA to 211 state IV prostate cancer patients treated with estrogen in a Veterans

inistration Cooperative Urological Research Group (1N67) study. At the Mkrch, 1977

..........9



closing date there were 90 patients who died of prostate cancer, 105 who died of other

diseases, and 16 still alive. The latter 121 observations are treated as censored obser-

vations (withdrawals).

Figure 1 of IP(1979) gives a plot of the 94 survival function k for the data of

Table 2. HP(1979) also applied several goodness-of-fit tests, including ones proposed

by Koziol nid Green (1976), Hyde (1977) and a test developed in HP(1979), to test the

null hpothesis that F is exponential with mean 100 months. (As stated by Koziol and

Green (1976), prior experience suggested that had the patients not been treated with

estrogen, their survival distribution for deaths from cancer of the prostate could be

taken to be exponential with mean 100.)

Although the tests applied in IP(1979) tended to support the postulated exponential

distribution with mean 100, the two-sided P value for the Koziol-Green test was .14

suggesting that perhaps a different model could be more appropriate. Furthermre, Gregory

(1979) analyzes the Table 2 data by now goodness-of-fit tests (which will, for some alter-

natives, be more poerful than those proposed by Koziol and Green (1976), Hyde (1977), and

HP (1979)) aid his tests do not support the postulated exponential distribution with mean

100.

Figure 1 of this paper plots the Kaplan-14eier analogue P F(.) of the empirical rl

function (defined by replacing * by R^F in (2)) for the data of Table 2. Specifically

aA
eF(x) W E{J~ u/R~)Jx<Z()j

Note that eF, for the data of Table 2, tends to decrease up to around 25 months, then tends

to increase up to about 70 moths, and then decreases agin.

Figure 1 suggests 'earout", but does not strongly suggest a R~k~l decreasing

mean residual life.

Application of the Vc test tends to confim the "eye-ball" l ssio one gets frm

Figure 1. We obtain, frm (10) - (12), VC - .027, ad frm (13), -A .066. Ne thin find
'0



12

(21)Y~c; 0 1.52 with a coirresponding one-sided P value of .064. Thus, with this ob-

jective analysis, we find that the test suggests "wearout" in the dmrl direction, but the

test does riot strongly suggest a eteiotly decreasing mean residual life.

[Insert Table 2 here.]

[ Insert Figure 1 here.]
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Appendix I

A Consistent Estimator of the Null Asyqtotic Variante of Va

Using straightforward algebra and Integration we can write

Vc -(A(F)p 1 ). 0 1-xJ(Cx))dCx), 000

where
J(u) - -(1/2) - A(,) 42 3

The term Jfr(F(x))dF(x) is a aplan4lier '-statistic and results of Reid (1979) coa be

used to show

2
n 1 xJ((x))dF(x) --.. 1(0,') (A.2)

where

-jR.(x)RF ,)J(F(x))J(F(y)) I (R,(u)R,(u)) dF(u)dxdy, A.3)

where P(u) - RF(U)RH(u) and x A y - ln(x,y). Thus from (A.1) - (A.3) and Sutsky's

theorem (cf. Cramr, 1946, pp. 254-2S5), we have

h( - (A()- N(0,v - 2 2 ).

Under I0, it can be shown that v 22 reduces to the.right-hand-side of (A4), mmly

S2d f. jg(z)lRk(.Pln(z))l-dz, (A.4)
0

where
-1 2 3 4 5

g(z) 36". (z -6z + 9z + 4Z4 - 12z + 4z).

When there is no censoring, i.e. RH(x) , 1, 0 cx -, the right-baud-side of (A.4) redues

to 1/210, agreeing with the result for the astotic vari=Ce of niV", the HP(197S)

statistic designed for the tuacensored case.

A consistent estmto toOf o is Obtained bY relai R, n ( ), b r

empirical survival function of the Z's; k(x) - n"1 (rmber of Z's 3 Z). The nemlthn

estimator is give by the right-hand-side of (13).



TARSE 1

Efficiency Losses Unider Exoetial '(H1) and Piecewise

Exponential (H2) Censorng

H2

1/2 1/3 1/4 1/10

tH v~*:.248 .43S .552 .80S

P,.667 .750 .800 .909

116 5: 1112

(1/2,1/3) (1/3,1/2) (1/3,1/4) (1/2,1/3)

e, - HVcVs): .374 .290 .513 .326

.68S .728 .763 .671

m 2 (31,32): (1/2,1) (1/2,1)(12)

(XV211): (1/2,1/3,1/4) (1/4,1/3,1/2) (1/2,1/5,1/10)

eH(V'~ve): .47S .302 .645

n. -p: .718 .750 .765

""2C
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TAME 2

Sjrvival Times and Withdriml Times in Months for 211 Patients

* (with umbe of ties given in parentheses)

&wavIval times: 0(3),, 2, 3, 4, 6, 7(2), 8, 9(2), 11(3), 12(3), 15(2), 16(3), 17(2), 18,

19(2), 20, 21, 22(2), 23, 24, 25(2), 26(3), 27(2)9 28(2), 29(2), 30, 31, 32(3), 33(2), 34,

35, 36, 37(2), 38, 40, 41(2), 42(2), 43, 4S(3),, 46, 47(2), 48(2), 51, 53(2), 54(2),, 57, 60,

61, 62(2), 67, 69, 87, 97(2)0 100, 145, 158.

Witikirawlm times: 0(6), 1(5),, 2(4), 3(3), 4, 6(5), 7(S), 8, 9(2), 10, 11, 12(3), 13(3),

14(2), 15(2), 16,o 17(2), 18(2), 19(3), 21, 23, 25, 27, 28, 31, 32, 34, 35, 37, 38(4), 39(2),

44(3), 46, 47, 48, 49, 50, 53(2), 55, S6, 59, 61, 62, 65, 66(2), 72(2), 74, 78, 79i 81, 89,

93g, 99, 102, 104(2), 106, 109,1 119(2)9 125, 127, 129, 131, 133(2), 135, 136(2)t 138, 141,

142, 143, 144, 148, 160, 164(3).

WNW&,.-
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ESTIMATED MEAN RESIDUAL LIFE (MONTHS)
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