
AD-AVAR 711 DALAWARE UNIV NEWANK DEPT FCMUE N NOMT T

PREREQUISITES TO DERIVING FORMAL SPECIFICATIONS FROM NATURAL LA--ETC(U)
AUG 80 R M WEISCHEUEL

F49620-79-C-013
!

UNCLASSIFIED AFOSR-TR-80-0867 NLm'lllllllllmmmmEmmEEmmmEE
flflflflfl//lllflll
liii.llN

11.2 1 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I1963,A

N

Lo~ prerequisites to Deriving Formal Specifications from

Natural Language Requirements:

Final Report*

by

Ralph K. Veischedel

August, 1980

DTIC
&%LECTE

~SEP 3 0 1

A

*Research sponsored by the Air Force Office of Scientific
Research, Air Force Syatme Comand, USAP, under contract
no. r49620-79-C-0131. The United States Government is
authorized to reproduce and distribute reprints for

LI.. Goverrnmental purposes notwithstanding any copyright notation
-J herein.

Approved for pubic O M-A

00 22 lfS

IICIASSIFIED
SIR MTV. CLSIFICATION OF THIS PAQE(hM abe RhimP*

been specified both In English and a form1 language. Portions of one, the
specification of EbB, have been studied undfer this contract to determine
which probems are most forimidable for a natural language understanding
systaim. Te soft difficult problems identified by this report are ambiguity
In modifier placmmt, nminal compouds, quantification, definite reference,
and the inference of unstated relationships. Problisms that prowe not to be
as significant are lexical gape, lexical ambiguity, conjunction * and
parenthetical expressions. fte work has also Identified patterns of English
empression La software specification and four areas for further study.

Several practical suggestions for better docmaentation and for moret
uderstan a fazmal specifications are covered at length La a sevarate

report. A samlng of that docment is presented here.

*4.

UNCL&%In-x

SGCUMTV LASIFICTIO OF AGUM 00 MINW91

UNCLASSIFIED
acuqe .b* vPIOM OF THIgS PAGE (When De£o ., ________________

READ WSTRUCTW0N5A EPORT DOCUMENTATION PAGE BEOR COMPLETING FORM

L DOWACCCSIOM 60: . OC IPIC I@4./ AOO UWNI @

_g SRh6?JIONsr ATotT Minw X*pdNS IP2 vt)-1

ISa Oita.EMENTARY N@TES

I. NITH WO)O 8.Au levee.. HTs ifmeoeMSmdidm*'9mloh emw

fRal spX fctos nls pcfctosmdls oteedsg,~
F4962,W-9:!.1 3.

9.Pntual langageATO procsig sofwaD engineeriOngMPRJCT AS

Det of Compuisr spIficmation sciane fJma UNciictin of mesa
comLvesty andDesancefoalseiitisreirsomcefrto

od aid i e ofeloin ifprecise rruc peiiainsfo/gihoe
aodling deecin 43iut n auns n nls pcfctos

sE~ut~ LASINIAWNO M ASIIS P53 O e. DO11196 eeMI

14 D-TRBTO -YTUE# (of. - - --- XO

Table of Contents

1. PurPose and Oganiation

2. U ot~vaton Of the WorkI

3. 8 ul"7ar of Comleted Iftrk 1

4. Aditionl Finin15
S- Related Work 13
G. Conclusions 2

AcknOledgaqt. 32

7i. Rteeerancee 36

41

-wceoft.on for

JUStifigation

vaJty Csd/or

£13 VFMC OIICS OF SCISUPIC RESKACH (AMS)
NOTICN 0F TMSSITTAL TO DOC
Ihis tohzzial report has been reevSSed 5.6 le
ppumve for pubic rolsass. SMAISU 3 (Tjb).

Diatwlpution is alie4
A. V* MOS

Teobisa I~w~s~oaOfflee

1. Purpose and Organization

For the past twelve months, a small, preliminary

study, funded under Contract No. F49620-79-C-9131, has

been underway on the problems a semi-automatic tool

would have in understanding English specifications.

This is the final technical report of that contract;

this work will be extended under grant no AFOSR-80-190.

Section 2 reviews the motivation of this study.

Section 3 summarizes our work thus far. Section 4 gives

further detail on our findings and tentative conclu-

sions. Comparison of this work with that of others

appears in section 5. The conclusion of the report is

section 6.

2. Motivation of the Work

The project is concerned with specifications for

software modules. A software module is a collection of

*closely related" procedures to carry out a common task.

English and formal languages are alternatives used to

specify the interface of a module independent of its

implementation. From the comparison in Table 1, it is

clear that both typ s are complementary and therefore

that both, are important to design of large software

systems. An aspect not obvious in the table is that

English specifications will be the more prevalent of the

two for the foreseeable future. The reason is the great

difficulty (and therefore cost) of writing formal

specifications (Parnas, 1976). Instances where the

benefits of the formal specifications outweigh the

-2-

massive effort in writing then include:

1) developing a family of software systems (Par-

nas, 1976),

2) developing an embedded computer system, such as

is common in military applications (Parnas, 1977), and

3) proving the correctness of aspects of the

software system (Ford Aerospace, 1978).

Table 1

Characteristics of the Specification Languages

English Formal

Easy to understand Difficult to understand
and write

Provide intuitive notion Provide complete detail
Include both functional & Include only functional
nonfunctional requirements requirements (so far)

Frequently ambiguous Unambiguous
Frequently imprecise Precise
Frequently vague Rigorous

2.1 A Machine Aid

Given the analysis above of the two kinds of

languages, one naturally considers the potential of

machine aids for the following tasks:

1) to detect ambiguity and vagueness in English

specifications,

2) to generate the formal specifications given the

English ones, and

3) to verify and validate that an English

-3-

specification and a formal one define the same module

interface.

The motivation of our work is that a tool of the

form in figure 1 would aid in all three goals mentioned

above and that several small preliminary studies would

determine whether such an aid is technologically

feasible in the foreseeable future. The tool would take

a module's specification in English as input. Under the

interactive guidance of the user (who is a software

designer), the tool would generate a formal specifica-

tion corresponding to the module. Guidance by the user

would be supplied in direct response to questions (in

English) posed by the tool regarding ambiguity, vague-

ness, and other aspects that the tool does not under-

stand. An English paraphrase of the tool's understand-

ing is given as a final output in addition to the formal

specificatkon so that the designer can easily check that

the formal specification corresponds to the English

input by comparing the two English versions. The

English paraphrase also provides easy checking that the

tool correctly understood the intent of the

specification's authors.

-4-

Figure 1

machine Aid in Specification

User
Questions TAnswers

tnglih Tol OFormal

English TooSpecification
Specification

)English
Paraphrase

2.2 Hypotheses Motivating the Research

Two hypotheses together suggest that a few small

studies can shed considerable insight into the techno-

logical feasibility of such a tool. The first hy-

pothesis is that the nature of the domain may offer

simplifying heuristics for understanding the English

specification. For instance, the greatest success in

understanding English input has been in data base re-

trieval, as evidenced by Artificial Intelligence Cor-

poration marketing ROBOT, a natural language query sys-

tem (Harris, 1977). Heuristics often show up as special

patterns of language which relate syntax to semantics in

the domain.

Second, the division of responsibility between the

tool and the user (a software designer) could greatly

simplify the problems in creating the tool. If the

majority of tedious decisions can be made automatically

-V

by a tool, while the most difficult for machine under-

standing are presented to the user for guidance, then

the user interaction would greatly simplify the task of

the tool without overwhelming the person with its queg-

tions. Therefore, we have been studying the language

and understanding problems involved, analyzing their

individual frequencies of occurrence and the success

rate of present heuristics for dealing with them. The

intent is not to perform rigorous statistical analysis,

but merely to get a feel for the magnitude of the vari-

ous language processing problems and to identify which

decisions could reasonably be solved automatically by

the system and which should be given to the user for

guidance.

These overall goals lead us to the statement of

work in the next section.

3. Summary of Completed Work

The statement of work of contract F49620-79-C-131

is,

". Collect appropriate examples of computer

software requirements (B-5 Spec. for example).

b. Identify frequently used English constructs

and their formal language equivalents.

c. Make suggestions for improved software docu-

mentation.0

Our progress is presented in sections 3.1, 3.2, and

3.3 corresponding directly to the three parts of the

statement of work.

3.1 Specifications Collected

four sources have been found providing numerous

examples of both English specifications and formal

specifications of the same modules. Such examples are

crucial to performing part (b) of the statement of work.

One is the 8-5 specifications of KSOS, the Department of

Defense Kernelized Secure Operating System (Ford

Aerospace, 1978). Its formal specification is a 72

page, single-spaced listing written in SPECIAL (Roubine

and Robinson, 1976); its English specification is 62

single-spaced pages.

A second is PSOS, a Provably Secure Operating Sys-

tom (Neumann, et.al., 1977). Its formal specification

* is 100 pages written in SPECIAL. Its English descrip-

tion is only 64 pages and contains less detail than a

brief user's manual would. PSOS and KSOS appear to be

the largest, most extensive systems ever formally speci-

fied.

A third defines the functional capabilities for a

proposed secure relational data base management system

(Neumann, et.al., 1977). The formal specification is 12

pages; the English one is 14 pages. Only the functional

capabilities are defined, a command language interface

oriented to naive users is not given.

A fourth class of examples is a textbook (Horowitz

and Sahni, 1976). This text contains eight short

specifications of modules that manage data structures

(e.g. stacks, strings, and symbol tables). The English

-.. -

-7-

specification in each case is at most a very few pages

long; the formal counterpart is at most a half page in

each case, written in AFFIRM (Guttag, et.al., 1978).

It will become clear in section 4 that these exam-

ples alone are more than can be analyzed in many man-

years of effort. Naturally, carefully selected portions

have been studied; for this contract, the portions stu-

died were taken from KSOS.

These four samples form a good base for future ana-

lyses. Since the examples employ two widely differing

kinds of formal languages the effect of the syntax or

semantics of any given specification language will be

factored out of future studies. The wide range in the

scope of the software specified will factor out the

effect of necessarily studying small portions of specif-

ications. The small examples from the Horowitz and Sah-

ni text will be reflective of what might be possible in

the foreseeable future, while an operating system exam-

ple will demonstrate the effect of a much larger seman-

tic domain.

3.2 English Constructions and Formal Language Counter-

parts

We have intensely analyzed 110 sentences from three

portions of the KSOS specification (Ford Aerospace,

1978); each of the three parts was distinctly different

in purpose. One of our goals in this intense analysis

has been to find frequently used English constructions

that might be incorporated into a machine aid for

..... ~~ .- F g :-'

-8-

generating formal specificationsl such patterns offer

simplifying heuristics for the tool. The second goal

has been to isolate problems that the machine can

resolve automatically and those that should be passed

back to the designer; results regarding the second goal

are presented in section 4.

Table 2 summarizes the patterns we have found and

the meaning that the tool would assign to them.

In general, we have not counted as patterns the

special syntactic and semantic constraints imposed by

main verbs in a clause. These are patterns that are

used directly as heuristics in limited domains of

discourse to reduce ambiguity. In some styles of writ-

ing parsers, such as semantic grammars (Burton, 1976)

they would likely be encoded as patterns. In another

style, where semantics is a separate component from syn-

tax but nonetheless directs the parser through frequent

interaction, these constraints would appear in the dic-

tionary, not as explicit patterns in the parser. We

intend to use the latter style of parser, and have not

included such constraints in our table of patterns.

Those constraints should prove very effective heuristics

however, for they do significantly limit the cases of

syntactic ambiguity in the KSOS portions studied and

there is very little lexical ambiguity present. (Lexi-

cal ambiguity refers to a word having more than one pos-

sible sense). This is covered further in section 4.

-9-

Table 2

Some English Patterns in Software Specifications

(For expository purposes, we present simplified
patterns in BNF, though the patterns would fit into
many different grammatical styles. In addition,
many syntactic paraphrases of these patterns would
be included in a realistic grammar. Nonterminal
symbols are enclosed in angle brackets. Other sym-
bols are terminals except for the distinguished
symbol '::-' and the angle brackets. Parentheses
are also terminal symbols. All page references are
to Ford Aerospace (1978).)

1. <noun phrase> ::- <noun phrase> (<acronym>)

This is a common way of defining an acronym, e.g.
"Kernelized Secure Operating System (KSOS)". The
pattern should also have the constraint that the
letters of <acronym> are all capitalized and are
the first few letters of the last few words of
<noun phrase>.

2. <noun phrase> ::- <noun phrase>1 of <noun phrase> 2

where <noun phrase>1 must refer to a data structure
and <noun phrase>2 must refer to data elements for
the pattern to be matched. This is used to indi-
cate the type of elements in a data structure, e.g.
"a set of integers," "a sequence of characters," or
*a data base of name space partitions in use."

3. <head noun> ::- <head noun> [<name> <year>]
<sentence> ::- <sentence> I <name> <year>

"Head noun" is the central noun of a noun phrase;
words before and after it are either premodifiers
or postmodifiers of the head noun. Both of the
patterns are a way of giving a bibliographic refer-
ence for a concept defined either by the noun
phrase containing the head noun of the first pat-
tern or by the sentence in the second pattern. An
example of the first is, "The Security Kernel shall
be used to support the KSOS UNIX Emulator [Emulator
781 which..." (p. 8). An example of the second is,
"Integrity is defined as the formal mathematical
dual of security [Biba 75]" (p. 2). A <name> it-
self has several forms: <surname>, <surname> and
<surname>, <surname> et al., <noun>, <acronym>,
<abbreviated noun>. The first three of course
identify the reference by author name, whereas the
last three do so by a keyword of the title.

4. <noun phrase> :: <premodifiers> instance of <noun
phrase> 1

<noun phrase> ::= <premodifiers> example of <noun
phrase>1

This is a means of describing or defining members
of a set explicitly or implicitly given by <noun
phrase>l. An example where the set is implicit is
given by, "The name within the partition shall be
used to specify particular instances of an object
within the partition" (p. 9).

5. <sentence> ::- <noun phrase>1 <be> returned as the
result of <noun phrase>2

<noun phrase>2 must refer to a function, activity,
or process of the software module. <be> matches
any form of the word "be". This pattern is used to
define a particular value, or more generally the
class of values returned by a function or process
of the software module. It tells more than the
data type of the result, giving more detailed se-
mantics for the value returned and therefore more
detailed semantics for the function. An example is
"A SEID shall be returned as the result of new
object creations (i.e. K.create,
K build segment,...)" (p. 9).

6. <noun phrase> := <noun phrase>1 called <noun
phrase>2

This indicates that the item referred to by <noun
phrase>1 is named <noun phrase>2 . An example is
"All Kernel objects shall be referenced by a common
designator called The Secure Entity Identifier..."
(p. 9).

7. <noun phrase> := <noun phrase>1 : <noun phrase
list>

where <noun phrase>1 is plural and denotes a set
and where <noun phrase list> is a list of conjoined
noun phrases. The system upon seeing this can
infer that the items listed in <noun phrase list>
are elements of the set given by <noun phrase>1 and
have the same data type as <noun phrase>l.

8. <adjunct> ::= regardless of <noun>

where <noun> is the name of a class of entities.
An <adjunct> may appear at many places in a sen-
tence and modifies the sentence as a whole. This
can be approximated in software specifications as
"for all <noun>s" and therefore corresponds to the
universal quantifier. An example is "All process
segments, regardless of domain, shall be manipulat-
ed by the same set of Kernel segment primitives"
(p. 12).

-11-

9. <identifier definition> ::i <identifier> s <noun
phrase>

where <noun phrase> may be very cryptic, requiring
special semantic processing. This is a means used
throughout the document to define the purpose of an
identifier, either as an argument to a procedure or
as a value returned. It occurs after a stereotyped
form, such as "The Kernel primitive.., shall take
the following parameters'. An example is, OvAddr :
virtual address of first byte in the segmentu (p.
21).

10. <noun phrase> ::- <premodifiers> supply of <noun
phrase>1

where <premodifiers> are the normal words that can
appear before the main noun of a noun phrase and
<noun phrase>1 must be a plural or collective
referring to some resource. In the software en-
vironment, this can be treated as a description of
a set of entities, whose members all satisfy the
description of <noun phrase>1 An example is, 'the
supply of mapping registers' ip. 21).

11. <sentence> ::= <noun phrase>, initialize <noun
phrase> 2to <noun phrase>3

where <noun phrase> must be a process or person,
<noun phrase> must refer to memory, and <noun
phrase> 3 must denote a value or state. Of course,
this defines initial values for some unit of
memory. An example of a passive sentence
corresponding to this form is "The segment shall be
initialized to contain all zeros" (p. 21).

12. <sentence> := <noun phrase>l<be> shared between
<noun phrase>2

where <noun phrase>1 is some resource and <noun
phrase>2 must be plural and must be a resource
user. Naturally, this is a description of resource
sharing. An example is, *Segments may be shared
between processes...I (p. 21).

3.3 Suggestions for Improved Software Documentation

Documentation is a rather all encompassing term,

including the English specifications, comments and

descriptions of the formal specification, and the formal

specification itself. Our suggestions in this study

- -- _- - i- r'

-12-

range over those three possibilities also.

In addition to the 110 sentences intensely analyzed

we have performed some less intense analysis of larger

sections of the KSOS specifications to see the context

of the portions analyzed intensely and to add more data

on which to base our suggestions regarding documenta-

tion. In the less intense analysis, we have primarily

looked for three things:

1) striking features of the English descriptions,

2) the corresponding portion of the formal specif-

ication, and

3) items that cause the investigator to reread.

The items that cause the investigator to reread a sen-

tence or section before feeling that the meaning was

understood are oftentimes signals of poor documentation.

Suggestions for improved documentation must be

understandable to the normal designer, technical writer,

and programmer, who write them; hence, they cannot be

couched in terms of artificidl intelligence or computa-

tional linguistics.

Our practical suggestions for improved documenta-

tion are discussed at length in Weischedel (1980). Also

hypothesized there is a list of causes for formal

specifications being so difficult to understand and

write. A sampling of the suggestions in Weischedel

(1980) are presented next; see the report for further

information.

1) English specifications can and should provide

-13-

summaries of detail cutting across several functions of

a module's interface. Formal specifications thus far

tend to present detail for each function in an isolated

way, making them harder to understand.

2) English specifications can and should state

explicitly important implications of a formal

specification which are stated only implicitly in the

formal version.

3) A cross-reference between the English

specification and formal specification is invaluable

both for understanding the formal specification and for

informally validating that it does what the English

description claims.

4) For long specifications, an index is necessary.

kor lack of a better measure, we arbitrarily define

"long" for formal specifications as at least six pages;

"long" for English specifications we arbitrarily define

to be at least a dozen pages.

5) Certain forms in English descriptions are easily

abused, leading to incomplete understanding.

Parentheses should only be used for short renamings of

an entity, such as "the Kernelized Secure Operating Sys-

tem (KSOS)" or "k-buildsegment (a kernel primitive)".

A cryptic, telegraphic style should never be used, not

even to define the meaning of variables. In both of

these cases, a clearer paraphrase can usually be found

without using the misused form.

4. Additional Findings

-14-

For each sentence analyzed from the ESOB specifica-

tion, the following items were identifieds

1) a semantic representation as a typical parser

might generate,

2) any corresponding features in the formal

specification,

3) any problems for machine understanding, and the

demands those problems place upon a system's dictionary,

parser, semantic system, world knowledge, and reasoning,

4) the applicable heuristics to those problems,

and

5) the role the sentence plays in the whole.

Identifying these aspects not only enables us to find

the kind of valid patterns sought, but also provides

data for factoring the problem-solving into that which

the machine can do automatically and that which should

be posed to the user.

Such painstaking analysis is quite time-consuming

empirical observation. There are two major reasons for

this: There simply are no detailed empirical studies in

the literature of the style of English used in software

specifications; so, this is uncharted territory.

Second, understanding sentences occurs for the most part

below the conscious level of reasoning; consequently,

introspection and intuition can offer very little aid.

Because one is not conscious of alternate interprets-

tions, very careful thought and observation is required

to hypothesize the various interpretations and to

-15-

ascertain which problems are solvable by present heuris-

I tics.

Such detailed analysis averages roughly two hours

per sentence for an initial study; review by a second

individual and recording the conclusions takes roughly

another hour per sentence. At first this sounds rather

horrendous. However, the only alternative is to build a

prototype of the tool and empirically analyze it while

processing sentences. To analyze several hundred sen-

tences our way requires several man-months therefore.

From our experience in building three understanding sys-

tems (Joshi and Weischedel, 1976, Weischedel, 1979, and

Weischedel, et.al., 1978), we estimate it would take

several man-years of effort to build a system to analyze

an equivalent number of sentences. Hence, our empirical

methodology requires about an order of magnitude less

effort than it would to build a large system for the

same empirical results.

In section 4.1, we specifically discuss the prob-

lems for machine understanding of English specifica-

tions. Section 4.2 presents problems for generating

appropriate English paraphrases of the formal specifica-

tion constructed.

4.1 Difficulties for Machine Understanding

There are several specific problems we looked for.

For each, we give an example, refer to relevant heuris-

tics, and state tentative conclusions. Our conclusions

at this point are qualitative rather than quantitative;

! ' . .. r :" --77 1_

.16-

the body of data in simply too small yet to draw quanti-

tative conclusions. Under the renewed support for this

work, given through grant number AFOSR-80-190, the body

of data will be enlarged and additional heuristics will

be examined.

1) Lexical gas. The lexicon, the linguistic term

for a dictionary, is a major component of a natural

language understanding system. We divided the words

actually occurring in the analyzed sentences into three

groups: One contains words that would be expected to

occur in general software environments; these, we as-

sume, would be part of the software tool for aiding

designers in creating specifications. Examples include

"the"O Ireturn", and "integer". A second is comprised

of words that are closely related to KSOS, rather than

to software in general; these would have to be added to

the lexicon to prepare the general software tool for the

concepts related to KSOS and to other secure operating

systems. We found this class to be substantial, but

rather predictable, since it consists largely of proper

names (e.g. *Kernel* and *Emulator*) and security re-

lated terms (e.g. *trusted" and OdiscretionaryO).

The third class is a problem, however; it consists

of terms that might not be anticipated in building the

software tool. Examples are solightlym, "complex*,

"residence", and "exhaust*. Vor unanticipated terms,

there are two kinds of approaches one can take. Trying

to infer their meaning is in general beyond the state of

-17-

the art, though some investigations have begun in this

area (Carbonell, 1979; Goldman, et al., 1977; and Mill-

er, 1975). Alternatively, one could ask the user for a

paraphrase in terms it already knows or for permission

to ignore the word. Hendrix, et al. (1978) uses this in

a data base environmenti there is insufficient evidence

of how frequently this approach will work.

Even if the heuristics for dealing with new words

never approach the success displayed by humans, the

severity of this problem is reduced by the fact that

users of natural language systems tend to tailor their

input to perceived system limits (Harris, 1977 and

Malhotra, 1975). Consequently, though the problem of

unexpected words is one of the most scientifically chal-

lenging, it is difficult to predict whether it will

ultimately prevent a software tool from being effective.

We feel the flexibility of persons in using such a tool

will prevent lexical gaps from being a severe handicap.

2) Conjunction. Ambiguity arising from the con-

junctions "and" or "or" has been known as a difficult

problem since the earliest natural language understand-

ing systemi (Woods, 1973). Roughly one quarter of the

116 sentences analyzed contained conjunctions. In only

two cases did the use of conjunction seem unparsable

using current techniques, such as SYSCONJ (Woods, 1973).

However, the remaining cases seem to divide almost even-

ly between those where heuristics could reliably deter-

mine the intended meaning and those where the user would

-18-

need to be asked to disambiguate it. In many cases

where the user would be asked# the alternate interpreta-

tions would be laughable to a person. Clearly, better

heuristics are needed to resolve ambiguity related to

conjunction automatically. However, it is usually rath-

er easy (though verbose) for the user to restate the

input without using the constructions that are most dif-

ficult to understand. For instance, *The virtual ad-

dress and domain parameters shall be for the calling

process only" can be restated in two sentences, "The

virtual address parameter shall be for the calling pro-

cess only. The domain parameter shall be for the cal-

ling process only.m Alternatively, one can easily state

this in a less verbose way which the system would not

find ambiguous; namely, "The virtual address parameter

and the domain parameter shall be for the calling pro-

cess only.* Since it is often easy to rephrase a use of

conjunction in a way that the system would find unambi-

guous, and since techniques for precisely notifying

users of difficulties in processing an English input are

becoming available (Weischedel and Black, 1986), we feel

that an effective strategy for dealing with conjunction

can be worked out for the proposed software tool by com-

bining the tool's heuristic with the person's ability to

paraphrase.

3) Lexical ambiguity. Lexical ambiguity arises

when a word may have more than one meaning (technically

termed "sense*) in a sentence. Of all the possible

(-19-

problems for natural language processing in our intense

analysis, this is perhaps the easiest to overlook in a

given sentence. We found relatively few instances of

lexical ambiguity, and they involved only a handful of

words. An example is "mayO which can mean "is permit-

ted" or *is possiblen. Since the number of instances in

the sample is small, techniques such as those suggested

in Small (1979) should prove effective when adapted to a

standard parser using semantic interaction.

4) Modifier placement. Certain combinations of

syntactic constructions in English are ambiguous because

it is unclear what one of the phrases modifies. Usually

(but not always) a person can resolve the ambiguity in

context via semantic and pragmatic factors, but tech-

niques for automatic resolution of the ambiguity by

machine are an open area of research. In *K_invoke can

remove any special privileges for the process', present

systems would have difficulty determining whether the

privileges are being removed on behalf of the process or

whether the privileges of the process are being removed.

However, in context it is not ambiguous to a person

reading it. Roughly one quarter of the sentences exhi-

bited modifier placement ambiguity. There are two in-

dependent heuristics for this: One has been implemented

in the RUS parser (Bobrow and Webber, 1983), and tries

to capitalize on semantic information to direct the

parse. The other (Heidorn, 1976) tries to capture an

apparent heuristic about the way people organize

-20-

sentences with such modifiers. In the follow-on.grant

to this contract, we will be examining the effectiveness

of. these two heuristics not only on these 116 sentences

but also in a prototype system using the RUS parser.

5) Other syntactic ambiguity. Ambiguity related to

syntax, other than the ambiguity mentioned in items (2),

(3), and (4), occurred in only ten of the sentences

analyzed. The heuristic, mentioned in (4), which uses

semantic information to direct the parse would leave

ambiguity in only seven of the instances. Since the

cases of ambiguity arise so infrequently, this should

not be a problem for processing English specifications

semi-automatically, as long as good techniques become

available for posing the alternatives, paraphrased in

English, to the user. Techniques for such paraphrasing

will be studied in the follow-on grant.

6) Nominal Compounds. Nominal compounds are

strings of nouns or nominalized verbs; the meaning of

the string is not just the sum of the meanings of the

individual words. For instance, "new object" can be

considered as an object which is also new; however, the

nominal compound "user model is not a mode which is also

a user. Determining the meaning of nominal compounds is

therefore a problem for mechanical processing. Further-

more, if the string consists of more than two words,

there is ambiguity. For instance, in "user mode pro-

grams* the grouping is leftward; one is talking about

programs running in the user mode, not about a kind of

-21-

mode program associated with users. On the other hand,

the grouping can be to the right, as in OKSOS UNIX Emu-

lator", which is the UNIX Emulator associated with KSOS,

as opposed to an Emulator for KSOS UNIX. Nominal com-

pounds occurred in roughly 70% of the sentences; strings

consisting of three or more words were not uncommon.

Pinin (in press) deals with the problems of computation-

al models of understanding nominal compounds. Also,

with a semantically directed parser, such as Bobrow and

Webber (1980) report, it may be possible to implement

the suggestions in Brachman (1978) for understanding

nominal compounds. However, these strategies were too

recent to consider during the contract period. Investi-

gating a knowledge representation language which could

support the understanding of nominal compounds is an

emphasis of the follow-on grant.

7) Quantification. The scope of quantifiers poses

an ambiguity that has interested philosophers,

linguists, and computer scientists for many years. For

instance, "Only one object shall be assigned to each

partition*, could mean that the same object (and only

it) is assigned, or that each partition could have a

different object assigned to it (though only one in each

case). Woods (1978) has a heuristic for determining

quantifier scope, but Van Lehn (1978) argues that a com-

pletely new approach is needed. Quantifier scope is

Just one aspect of a much larger problem: determining

what if any logical quantifiers should be used to

-22-

represent a given noun phrase. Plural noun phrases are

sometimes properly represented by the universal quantif-

ier to indicate that a fact or activity is true for each

individual in a set, but other times
they represent

collective set of entities acting together rather than

as individuals. Indefinite noun phrases, such as *a

process', sometimes correspond to some particular enti-

ty, which would be represented by the existential quan-

tifier; at other times they mean a generic example or

norm for a class of entities rather than an individual.

There has been very little discussed regarding computa-

tional techniques to solve these two problems of in-

terpretation; yet in our sample, these two classes of

decisions arose more frequently than the classical deci-

sion regarding quantifier scope.

Van Lehn (1978) and Bobrow and Webber (1980)

correctly suggest that a new computational view of quan-

tification is needed. We will be studying these prob-

lems from another perspective in the follow-on grant.

From the mechanisms of conveying quantified information

in English, we hope to suggest alternatives for specify-

ing that information in formal languages. Psychological

evidence- (Thomas, 1976 and several references therein)

has shown that people not trained in mathematical logic

have great difficulty in interpreting quantification in

English. Therefore, alternatives to logical quantifica-

tion might significantly aid the understandability of

formal specifications.

- I i 1I ' ' d " "I.- t4

-23-

.4 8) Additional semantic problems. An additional

semantic problem is understanding telegraphic style.

Por instance, in context, ORendezvous Name (SEID) al-

ready in use at or below the level of this process"

clearly means, "The rendezvous name (the SEID) is al-

ready in use at or below the level of this process."

Yet, the missing relationships represented by the under-

lined words must be inferred. Work on this significant

problem is just beginning. Two different approaches to

the syntactic aspects of the problem have been presented

by Kwasny and Sondheimer (1979) and Hayes and Reddy

(1979). However, the semantic problem of inferring the

missing relationships has not been attempted in a gen-

eral way.

Another class of problems that arise frequently in

our sample is inferring the relationship of paren-

thesized material to non-parenthetical. The example of

cryptic style above demonstrates a case where the syntax

makes the relationship clear. The parenthetical materi-

al "SEID" is an appositive giving a proper name for the

noun phrase "rendezvous nameu. Roughly one twelfth of

the sentences studied contained parenthetical material

whose relationship to the nonparenthetical would be very

difficult for a machine to infer. No heuristics for

this problem are available yet. Even if a heuristic for

this is never available, the system could request the

user to restate difficult cases of parenthetical materi-

al. This has an additional advantage; oftentimes

-24-

restating the problematic examples of the sections stu-

died yields clearer English for the purpose of under-

standing by humans.

Of course, the semantics of a number of words used

is not yet represented well computationally. However,

there is no significant trend evident here. An example

of a problematic case is the word "somewhat". Since no

trend emerged, meanings for necessary words could be

developed on a case by case basis.

One additional problem is inferring the way the

individual sentence fits into the whole. This has been

called variously "intersentential relations," "coherence

relations," or "structure" in the document. The struc-

ture of a paragraph is very difficult to detect, as an

example from process descriptions in Balzer, et.al.

(1978) shows. Even where structure is explicitly indi-

cated using deeply refined subheadings such as

"3.1.1.2.1.1 Kernel Object: Processes" or is explicitly

indicated using indentation, no techniques have been

developed to detect and use such explicit clues.

9) Definite Reference. Closely related to the

problem of inferring conceptual structure relating a

sentence to the whole is the effect of structure on what

a pronoun or noun phrase refers to. An example of this

impact is the first sentence of Section 3.1.1.2.1.1

"Kernel Object: Processes," which is "In KSOS the pro-

cess is the only active agent in the system." "The pro-

cess" in the context immediately after the title does

Ib

1" -25-

not refer to a particular process as would normally be

the case, but rather refers to the generic notion of

processes in the KSOS Kernel. Noun phrases or pronouns

which would be processed by heuristics for definite

reference occurred in roughly two-thirds of the sample

sentences; many of the sentences contained more than one

instance of the phenomenon. Grosz (1977), Hobbs (1979),

Sidner (1979), and Webber (1978) present heuristics for

resolving and understanding references, given that the

text's structure is known or detectable. It is not

clear in our analysis thus far how effective the heuris-

tics will be for the frequent use of pronominal and noun

phrase reference in software specifications. However,

the problem of inferring the structure relating a sen-

tence to the whole remains. We speculate that since the

possible discourse structure appears more complex in

software specifications than it does in present data

base query systems, the simple heuristics that work ade-

quately in that domain are not likely to be rich enough

for software specifications. More analysis of. the

severity of the problem and of the adequacy of the

heuristics in the papers above is needed.

Since the nine classes of problems raised above

will not always be resolved without user guidance, the

system must be able to generate questions to obtain user

guidance at particular points of difficulty. Naturally,

this requires that the questions be stated in English

POW' I

-26-

and that the system have a clear understanding of what

the alternatives are. The need for such clarifying

questions has been discussed by Codd, et.al. (1978) and

Hayes and Reddy (1979). The approach proposed by Hayes

and Reddy (1979) would limit their heuristics to simple

domains; the domain of software specifications is far

too rich to be a simple domain. McKeown (1979) has

shown that much care is needed in the system's choice of

phrasing, and has offered heuristics for one aspect of

the general problem of choosing a correct phrasing.

Interaction for eliciting user guidance is an area need-

ing further development.

4.2 Problems in Generating English Paraphrases

There are at least two aspects to generating the

English paraphrase of the formal specification which

require an intermediate level of knowledge representa-

tion. One is that properties implicit in the formal

specification oftentimes should be explicitly stated in

an English paraphrase. For instance, in KSOS the func-

tions K create, k buildsegment, k-create-device,

k_fork, and kspawn in their formal specifications each

return a value whose type is said. This is given in

five separate statements, one for each of the functions.

Yet, this implicit fact is quite usefully summarized in

the English specification by "A SEID shall be returned

as the result of new object creations (i.e. k.create,

k-buildsegment, k_create device, kfork, and kspawn)."

An intermediate level knowledge representation would

-27-

summarize such facts formally.

The second aspect, which happens to be illustrated

by the same example, is that the organization of infor-

mation should be different. What is implicit in the

formal specification is often stated explicitly in

English specifications. Ideally, the intermediate

knowledge representation by its organization of informa-

tion would relate the English input to appropriate parts

of the formal specification as output. Then, the inter-

mediate knowledge representation would serve as the

basis for an English paraphrase which would likewise

relate the input to the appropriate parts of the formal

specification.

Mann and Moore (1979) discuss computer generation

of English texts from a knowledge base. The kind of

knowledge base their future work will consider is pro-

cess descriptions written in AP2 (Balzer, in prepara-

tion). The work we suggest is complementary to theirs,

namely, studying the kind of knowledge representation

processes) and which would be the input to an English

text generation system.

Another kind of English output needed is answers to

questions posed by the designer. The designer must be

able to ask the system why certain decisions were made.

For, it is likely that the designer will want to check

the rationale for some of the decisions in order to be

comfortable with the choices made.

-28-

An appropriate knowledge representation is central

to several of the problems determining the technical

feasibility of the proposed machine aid. In addition to

the ones in this section regarding generating English

output, it is also crucial to the following problems in

understanding the English input: representing the mean-

ing of nominal compounds and inferring missing relation-

ships.

5. Related Work

In this section, work which is related to our pro-

ject in overall goals is presented. The comparison

leads us to conclude that our project is unique in com-

plementing related projects.

Mander and Presland (1979) describes a program for

specification analysis (SPAN) which they are developing.

Their goal is to process English requirements documents

a user might write, yielding two kinds of output: 1)

notification of places of potential ambiguity in English

and 2) suggested lists of objects and actions as a

starting point for a user to write the requirements in a

notation such as SA (Ross, 1977) or PSL/PSA (Teichroew

and Hershey, 1977). Though their goals are well justi-

fied, the mechanisms they are implementing in SPAN seem

inadequate to the task. SPAN will analyze the require-

ments document with a purely syntactic analysis and will

note some places of possible ambiguity, such as multiple

modifier placement and conjunction. Unfortunately, in

our analysis of module specification, we have found that

-29-

the number of those kinds of places which are genuinely

ambiguous to a person is rather small. Thus, we con-

clude that their analyzer will flood the user with pro-

jected ambiguities which do not exist, since semantics

and intersentential context is not modeled in SPAN.

Similarly, other sources of ambiguity are not detected,

such as references via pronouns and definite noun

phrases. (Following the strategies they use in the oth-

er cases, one could flag every pronoun and definite noun

phrase, but this would also flood the user with cases

that are not ambiguous in context.) Since no understand-

ing is employed in SPAN, it does generate candidates for

actions and objects which are not reasonable. In sum-

mary, though the goals are worth pursuing, an approach

based on processing programming languages is inadequate

for those goals.

Hobbs (1977) has made some observations on the

differences between programming languages and procedures

described in English. However, the observations are

very general rather than concrete and are for program-

ming languages rather than module specification

languages.

Miller (1977) reports on an in-depth linguistic

study of roughly 60 kitchen recipes published in a popu-

lar cookbooki the long-term aim of this project at IBM's

Watson Research Center was a step toward programming in

English. They specifically looked for linguistic

mechanisms used to describe processes, but their choice

,* ,

-3'-

of domain was inappropriate since kitchen recipes are

only obliquely related to their stated long-term goal

regarding software. Since there is no formal language

specification corresponding to a kitchen recipe, their

study does not establish the needed link between English

and a formal language nor does it isolate the problems

in translating from English to formal.

Quite a number of projects have been undertaken in

the area of program synthesis. These have tended to

involve building a large system which takes as input a

description of the desired input-output behavior and

generates a program having that input-output behavior.

Examples of such research include Balzerr et al.,

(1978), Barstow and Kant (1976), Bierman and Ballard

(1980), Green (1976), Heidorn (1972), Manna and Wald-

inger (1977,1978) and arner and Ruth (1979).

Our work is completely unique when compared to all

projects in program synthesis or related areas based on

the following grounds:

1) The difficult issues of data structure selec-

tion in program synthesis do not arise in our work,

since data structure selection is an implementation

decision and since modules must be specified independent

of implementation.

2) The formidable problem of algorithm selection

in program synthesis does not arise either, since that

too is an implementation decision.

3) There are no efficiency concerns in the

-31-

generated specification, since one does not execute a

module specification in a production environment as one

does a program.

4) None of the program synthesis projects have an

emphasis on natural English input. Many assume the

input is in a variant of first order predicate logic.

The others have highly restricted English. For in-

stance, SAFE (Balzer, et.al., 1978) takes only fully,

unambiguously parsed English as input, where numerous

parentheses to indicate the parse must be added by hand

prior to input.

5) The emphasis of our work is on a series of

small, preliminary studies of English specifications and

formal ones, rather than building a large system, as a

means of assessing whether the proposed tool will be

feasible in the foreseeable future. In fact, as argued

in section 3, the kind of small studies we have under-

taken appear to require about an order of magnitude less

effort than examining the same number of examples would

take in developing a large system to process them.

Though this project is so different compared to

program synthesis research, it contributes to it in a

complementary way. One contribution is that for any

significantly sized piece of software, it will need

modules. Hence, synthesis of large systems will require

dealing with modules. A second contribution, of course,

is that an ideal form of input for program synthesis of

software containing modules is an English description

,~ .~t

-32-

rather than a formal one, for the reasons given earlier.

6. Conclusions

Clearly, generating the formal specification of

KSOS (72 pages) from its English description (62 pages)

is not technologically feasible in the foreseeable fu-

ture. The semantic scope of the concepts discussed and

the amount of contextual structure influencing under-

standing is far richer than in data base question

answering, the domain in which natural language process-

ing has achieved its greatest success. The major pur-

pose in selecting KSOS for our intense analysis under

this contract was to examine a realistic, complex exam-

ple to get the broad picture of the depth and breadth of

problems that a semi-automatic tool to process English

specifications would have. Small examples, of the type

that might be processed in the foreseeable future, would

not give the broad picture necessary initially.

The following problems are the most difficult for

such a tool processing English specifications:

i) ambiguity in modifier placement,

ii) nominal compounds,

iii) quantification,

iv) pronoun and noun phrase reference, and

v) inferring missing relationships.

This is based on the frequency with which the problems

occurred in the sample, the difficulty with which users

could rephrase the English to avoid the problem, and the

-33-

likely success of available heuristics. (However, we

were not able to assess during the contract period

whether adequate heuristics are available already for

the reference problem, item (iv), due to the number of

recent publications regarding it.)

On the other hand, the following problems are not

as significant for such a tool:

vi) lexical gaps,

vii) lexical ambiguity,

viii) conjunction, and

ix) parenthesized expressions.

This is based on the frequency of occurrence, on the

existence of heuristics to handle simple cases, and on

the ease with which people could adjust to paraphrasing

complex cases into processable forms.

Our results suggest four areas of future work.

1) We suggest continued analysis of English

specifications and their formal language counterparts

for several reasons. 1) As indicated in the proposal

for this contract, the data one can collect in one year

is simply too small to guarantee firmer, sharper conclu-

sions. 2) Examining smaller specifications than KSOS

will suggest how much the problems diminish as the

length of the specification diminishes and the variety

of modules in the domain becomes more constrained. 3)

Examining samples whose formal specifiction language

differs widely from the semantics of SPECIAL will factor

out that influence. Additional sources for such

-34-

analysis have been found (see section 3.1) as part of

the statement of work of this contract.

2) A second emphasis is the development of an

intermediate-level knowledge representation. This is

critical to solving both (ii) and (v) above. As indi-

cated in section 4.2, it is also critical to paraphras-

ing the formal specification into an English output, and

explaining the reasons behind the tool's decisions.

3) A third area of future work is developing and

testing heuristics for resolving ambiguity and generat-

ing clarifying questions. This is crucial for effec-

tively obtaining user guidance without unduly burdening

the user. As much ambiguity as possible, particularly

that arising from items (i) and (iii) above, must be

resolved by the machine automatically.

4) An alternative to quantification in formal

languages based on an analysis of the mechanisms in

English for conveying quantified information is called

for, since psychological experiments (Thomas, 1976 and

several references therein) have shown that people not

trained in mathematical logic have great difficulty in

interpreting quantification in English.

We have drawn a number of conclusions as to why

formal specifications are so difficult to understand.

These are presented in Weischedel (1980), along with our

practical suggestions for making formal specifications

more understandable.

(-35-

Acknowledgements

The assistance of Linda Salsburg in our study of

portions of KSOS has been invaluable.

-36-

7. References

Balzer, Robert, "AP2 Reference Manual," Information Sci-

ences Institute, Marina del Rey, CA, (in preparation).

Balzer, Robert, Neil Goldman, and David Wile, "Informal-
ity in Program Specification,m IEEE Transactions on
Software Engineering, Vol. SE-4, 2,-March, 197

Barstow, David R. and Elaine Kant, "Observations on the
Interaction Between Coding and Efficiency Knowledge in
the PSI Program Synthesis System," 2nd International
Conference on Software Engineering, IEEE Computer So-
ciety, IEEE Catalog No. 76CH1125-4C, October, 1976.

Biermann, Alan W. and Bruce W. Ballard, "Toward Natural
Language Computation," American Journal of Computational
Linguistics, 6, 2, 1980.

Bobrow, R. J. and B. L. Webber, "PSI-KLONE - Parsing and
Semantic Interpretation in the BBN Natural Language
Understanding System", In CSCSI/CSEIO Annual Conference,
CSCSI/CSEIO, 1980.

Brachman, R. J., "A Structural Paradigm for Representing
Knowledge," Report No. 3605, Bolt Beranek and Newman
Inc., Cambridge, MA, 1978.

Burton, Richard R., "Semantic Grammar: An Engineering
Technique for Constructing Natural Language Understand-
ing Systems", BBN Report No. 3453, Bolt Beranek and New-
man, Inc., Cambridge, MA, December, 1976.

Carbonell, Jaime G., "Toward a Self-Extending Parser,"
in Proceedings of the 17th Annual Meeting of the Associ-
ation for Computational Linguistics, San Diego, August,
1979, 3-7.

Codd, E. F., R. S. Arnold, J-M. Cadiou, C. L. Chang and
N. Roussopoulis, "RENDEZVOUS Version 1: An Experimental
English-Language System for Casual Users of Relational
Data Bases, IBM Research Report RJ 2144, San Jose, CA,
January, 1978.

Finin, Timothy L., "The Semantic Interpretation of
Noun-Noun Modification", Technical Report, Coordinated
Science Laboratory, University of Illinois, Urbana, IL,
(in press).

Ford Aerospace, "Secure Minicomputer Operating System
(KSOS): Computer Program Development Specifications
(Type B-5)," Tech. Report No. WDL-TR7932, Ford Aerospace
& Communications Corporation, Palo Alto, CA, 1978.

Goldman, N., R. Balzer, and D. Wile, "The Inference of
Domain Structure from Informal Process Descriptions",

" J :) .,-: ' iS I i --,.

-37-

Proceedings of the Workshop on Pattern Directed Infer-
ence Systemsm, SIGART Newsletter, 63, 1977, 75-82.

Green, C., "The design of the PSI program synthesis sys-
tem,* in 2nd International Conference on Software
Engineering, Long Beach, CA: IEEE Computer Society,
October, 1976.

Grosz, Barbara J., "The Representation and Use of Focus

in Dialogue Understanding,* Technical Note 151, SRI
International, Menlo Park, CA, 1977.

Guttag, John V., Ellis Horowitz, and David R. Musser,
*Abstract Data Types and Software Validation," CACM,
vol. 21, number 12, December, 1978, 1048-1063.

Hammer, Michael and Gregory Ruth, "Automating the
Software System Development Process," Research
Directions in Software Technology, Peter Wegner (ed.),
Cambridge, MA: The MIT Press, 1971.

Harris, L. R., "User Oriented Data Base Query with the
ROBOT Natural Language Query System," International
Journal of Man-Machine Studies, 9, 697-713, 1977.

Hayes, P. and R. Reddy, "An Anatomy of Graceful Interac-
tion in Spoken and Written Man-Machine Communication,"
Dept. of Computer Science, Carnegie-Mellon University,
Pittsburgh, August, 1979.

Heidorn, G. E., "Natural Language Inputs to a Simulation
Programming System," Technical Report NPS-55HD72161A,
Naval Postgraduate School, Monterey, CA, October, 1972.

Heidorn, George E., "An Easily Computed Metric for Rank-
ing Alternative Parses", Presented at the 14th Annual
Meeting of the Association for Computational Linguis-
tics, 1976.

Hendrix, Gary G., Earl D. Sacerdoti, Daniel Sagalowicz,
and Jonathan Slocum, Developing a Natural Language
Interface to Complex Data,' ACM Transactions on Database
Systems, Vol. 3, 2, June, 1178, 105-147.

Hobbs, Jerry R., "What the Nature of Natural Language
Tells Us About How to Make Natural-Language-Like Pro-
gramming More Natural," SIGPLAN Notices, 12, 8, 1977,
85-93.

Hobbs, Jerry R., "Coherence and Coreference," Cognitive
Science, Vol. 3, Number 1, 1979, 67-90.

Horowitz, Ellis and Sartaj Sahni, Fundamentals of Data
Structures, Computer Science Press, Inc., --odTa-
Hills, CA, 1976.

-38-

Joshi, Aravind K. and Ralph M. Weischedel, "Some Frills
for Modal Tic-tac-toe: Semantics of Predicate Comple-
ment Constructions," IEEE Transactions on Computers,
C-25(4), 1976, 374-389.

Kwasny, Stan C. and Norman K. Sondheimer, "Ungrammati-
cality and Extragrammaticality in Natural Language
Understanding Systems," in Proceedings of the 17th Annu-
al Meeting of the Association for Computational Linguis-
tics, San Diego, August, 1979, 59-63.

Malhotra, Ashok, "Design Criteria for a Knowledge-Based
English Language System for Management: An Experimental
Analysis", MAC TR 146, Projct MAC, Massachusetts Insti-
tute of Technology, Cambridge, MA, February, 1975.

Mander, K. C. and S. G. Presland, "An Introduction to
Specification Anaysis - SPANO, Dept. of Computational
and Statistical Science, The University of Liverpool,
Liverpool, 1979.

Mann, William C. and James A. Moore, "Computer Genera-
tion of Multiparagraph English Text," USC/Information
Sciences Institute, Marina del Rey, CA, 1979.

Manna, Sohar and Richard Waldinger, *The Automatic Syn-
thesis of Recursive Programs," Proceedings of the Sympo-
sium on Artificial Intelligence and Programming
Languages, SIGPLAN Notices, 12, 8, 1977t 29-36.

Manna, Z. and R. Waldinger, "The Logic of Computer Pro-
gramming," IEEE Transactions on Software Engineering,
SE-4, 3, 197T -99-229.
McKeown, Kathleen R., "Paraphrasing Using Given and New

Information in a Question-Answer System," Tech. Report,
Dept. of Computer & Information Science, Univ. of
Pennsylvania, Philadelphia, PA, 1979.

Killer, Lance A., "Natural Language Procedures: Guides
for Programming Language Design," Paper presented at the
Annual Meeting of the Association for Computational
Linguistics, Georgetown University, Washington, DC,
1977.

Miller, Perry L., "An Adaptive Natural Language System
that Listens, Asks, and Learns", in Advance Papers of
the Fourth International Joint Conference on Art ciai-
Inteligence, Tbilisi, eorgia, USSR, September 3-8,
1975, 4NP-43.

Neumann, Peter G., Robert S. Boyer, Richard T. Feiertag,
Karl N. Levitt, and Lawrence Robinson, "A Provably
Secure Operating System: The System, Its Applications,
and Proofs," SRI Project 4332, Final Report, Stanford
Research Institute, Menlo Park, CA, 1977.

I

-39-

Parnase D. L., "On the Design and Development of Program
Families," IEEE Transactions on Software Engineering,
SE-2, No. 1,R'ch, 197f, pp. I-.

Parnas, David L., "Use of Abstract Interfaces in the
Development of Software for Embedded Computer Systems,*
NRL Report 8047, Naval Research Laboratory, Washington,
DC, June, 1977.

Ross, D. T., "Structured Analysis (SA): A Language for
Communicating Ideas," IEEE Transactions on Software
Engineering, SE-3(1), 19T7,16-23.

Roubine, Olivier and Lawrence Robinson, USPECIAL Refer-
ence Manual", Technical Report CSG-45, Stanford Research
Institute, Menlo Park, CA, August, 1976.

Sidner, Candace Lee, "Towards a Computational Theory of
Definite Anaphora Comprehension in English Discourse,"
AI-TR 537, Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1979.

Small, Steven L., "Word Expert Parsing", Proceedings of
the 17th Annual Meetinq of the Association for
-eurt--onalLing istics, -an - Tego, August, 1979,9-14.

Teichroew, D. and E. A. Hershey, III, "PSL/PSA: A
Computer-Aided Technique for Structured Documentation
and Analysis of Information Processing Systems," IEEE
Transactions on Software Engineering, SE-3(l), 1977,
41-48.

Thomas, John C., "Quantifiers and Question-Asking," RC
5866 (25388) IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, 1976.

VanLehn, Kurt A., "Determining the Scope of English
Quantifiers," MIT AI-TR-483, Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cam-
bridge, MA, 1978.

Webber, Bonnie Lynn, "A Formal Approach to Discourse
Anaphora," SBN Report 3761, Cambridge, MA, Bolt Beranek
and Newman Inc., 1978.

Weischedel, Ralph M., "A New Semantic Computation While
Parsing: Presupposition and Entailment," Syntax and
Semantics, Volume 11: Presupposition, Choon-Kyu Oh and
David A. (73s.)7 Academic Press, New York, 1979,
155-182.

Weischedel, Ralph M., "Practical Suggestions for Writing
Understandable, Correct Formal Specifications", Techni-
cal Report, Dept. of Computer & Information Sciences,
University of Delaware, Newark, DE, 1986.

-40-

Weischedel, Ralph H. and John Black, 'Responding to
Potentially Unparsable Sentences,' American Journal of
Computational Linguistics, 6, 2, IMF.

Weischedel, Ralph K., Wilfried Voge, and Kark James, OAn
Artificial Intelligence Approach to Language Instruc-
tion,' Artificial Intelligence, Ui, 1978, 225-241.

Woods, W. A., "An Experimental Parsing System for Tran-
sition Network Grammars', Natural Lanquaqe Processi
Randall Rustin (ed.), NewY5ork: AXgorithmiIcsPress,
Inc., 1973, 111-154.

Woods, W. A., 'Semantics and Quantification in Natural
Language Question Answering", Advances in Computers,
Vol. 17, New York: Academic Press, Inc., 1978.

f e

-41-

Appendix A

Professional Personnel Associated
with the Research Effort

1. Ralph M. Weischedel
(Principal Investigator)
Dept. of Computer a Information Sciences

2. Linda Salsburg
(full-time graduate student fully supported by the
contract)

received the Master of Science in Computer Science
(non-thesis option), June, 1988.

3. Arthur W. Mansky
(graduate student whose computer time for the
Master's thesis was supported in part by this
contract)

received the Master of Science in Computer Science,
Thesis title: "A Case Study in Natural Language -

Processing: The RUS System",
June, 1980.

Appendix B

Technical Reports to Disseminate Results

At the close of this one-year contract, two techni-

cal reports in the Department of Computer & Information

Sciences Technical Report Series have been prepared to

disseminate results, receive feedback, etc. prior to

submission for publication. The references are

Weischedel, Ralph M., OPractical Suggestions for Writing
Understandable, Correct Formal Specifications", Techni-
cal Report, Dept. of Computer & Information Sciences,
University of Delawareq Newark, DE, 1986.

Salsburg, Linda, "A First Iteration at a Mini-set of
Features for a Knowledge Representation Language",
Technical Report, Dept. of Computer & Information Sci-
ences, University of Delaware, Newark, DE, 1980.

