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PART ONE

SOLUTION PROCEDURE AND NUMERICAL RESULTS

I. INTRODUCTION

The purpose of this report is to develop an efficient numerical

*solution to the E-field integro-differential equation for electromagnetic

excitation of a perfectly conducting body of revolution. This numerical

solution is obtained by applying the method of moments to the E-field

equation. The E-field equation states that the tangential component of

the total electric field is zero on the surface S of the body of revolu-

tion.

The problem is stated in Section II of [1] and the solution is

similar to that in Section IV of [1). Except where otherwise indicated,

the notation is the same as in [1]. Equation numbers drawn from [1] are

preceded by 1-. For instance, (1-40) denotes equation (40) of reference

(11.

The following differences exist between the present solution and

that in [l]. In the present solution, the approximation to the generating

curve of the body of revolution consists of half as many straight line

segments as in [1]. Otherwise, the t directed expansion functions are the

same as those in (1]. However, for directed expansio- functions, the

pulses used in [2] are adopted. Here, t is the arc length along the

generating curve and 0 is the azimuthal angle. The testing functions are

the complex conjugates of the expansion functions. For calculation of the

elements of the moment matrix, each integral with respect to t' over each

straight line segment is evaluated by using nt-Point Gaussian quadrature

1.W



and each integral with respect to t over each straight line segment is

approximated by sampling at the midpoint of the line segment. Althougb

t and t' are both arc lengths along the generating curve, t denotes

integration over a testing function and t' denotes integration over an

expansion function. The former integration is called a field integration,

the latter a source integration. As in [I], n -point Gaussian quadrature

is used for the integration with respect to . However, the method [3] of

eliminating the singularity is used to fortify the Gaussian quadrature

integrations with respect to t' and whenever the source segment is

sufficiently close to the field point. For calculation of the elements of

the excitation vector, nT-Point Gaussian quadrature is used for the t

integration.

With regard to 4 directed testing, calculation of the moment matrix

by sampling the t integrand at the center of each straight line segment is

equivalent to point matching. However, for t directed testing, this calcu-

lation can not be viewed as simple point matching because each t directed

testing function extends over two intervals and therefore must be repre-

sented by two Dirac delta functions instead of one. Furthermore, the

electric charge associated with each t directed testing function is also

represented by two Dirac delta functions.

The method of solution formulated in Part One of this report is

implemented by the computer program described and listed in Part Two. The

present computer program takes almost twice as long to compile as that

in (l]. However, for axial incidence and for moment matrices of roughly

the same order, the present program with n t - nT - 2 and n = 20 executes

almost as fast as that in [11 with N - 20. For moment matrices of the

2



same order, the present computer program probably executes faster than

that in [2] because the one in [2] uses twice as many source segments and

twice as many field points. For oblique incidence, several moment matrices

are required. The computer program in [1] calculates the moment matrices

one by one, that is, each moment matrix is calculated from scratch. How-

ever, the present computer program takes advantage of the fact that some

intermediate calculations are common to all the moment matrices. Hence,

if there is room enough to store all the moment matrices simultaneously,

the present computer program should execute much faster for oblique inci-

dence. Results obtained from the present computer program are generally

more accurate than those obtained from [i], especially for bodies of revolu-

tion with edges.

I,
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II. METHOD OF MOMENTS SOLUTION

The boundary condition that the tangential component of the total

electric field is zero on S is expressed by (1-40) and supporting equa-

tions(i-41)-(1-43). Following the method of moments, we approximate the

electric current J on S-by

_fi (i (it: + I S J$)i

n,j r -- j nj-nj

t j
and substitute this J into (1-41). In (1), J and J are known expan-

-nj n

sion functions and I and I. are unknown coefficients to be determined.
nj nj

The expansion functions J3. and J . are defined by

T.(t) j = 1,2, ... P-2j t =ut ___ e Jn (2)

-nj _t n - 0, +1, +2,...

?. u ) e j - 1,2,... P-1 (3)

-- nj P n - 0, +1, +2,...

where ut and u are unit vectors in the t and 4 directions, respectively.

The j which appears in the argument of the exponential in (2) and (3) is

not to be confused with the j which appears elsewhere in (2) and (3).

The former j is /Ti and the latter j is the subscript which goes from 1 to

either P-2 or P-1. The function Tj (t) is the triangle function shown in

Fig. 1 and p is the distance from the axis of the body of revolution. The

function P (t) is the pulse function shown in Fig. 2 and p is the value

of p at t t where tj is the center point of the domain of the pulse.

The purpose of the scale factor i/p in (3) is to give (3) the same dimen-

d t

4
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Fig. 1. Triangle function T.(t).
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Fig. 2. Pulse function P.(t).
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used later on in the method of moments solution. In Figs. 1, 2, and

3, t is the arc length along the generating curve. It is assumed that

the generating curve consists of P-1 straight line segments where P is

an odd integer greater than or equal to 3. The jth such segment extends

from t to t +I . Its length is A.. The expansion functions (2) and (3)j j,

are especially appropriate if the body of revolution is an infinitely

thin perfectly conducting surface with edges at both ends of the generat-

ing curve. This is true because the t directed electric current is supposed

to approach zero at an edge whereas the 4 directed electric current might

grow large there [4].

Testing functions Wt and Wi are defined by
ni ni

W Ti (t) 1 i = 1,2, ... P-2

nl = 0, +1, +2, (4)

S P i (t) -jn i = 1,2, ... P-1 (5)
n 0, +1, +2,

After substitution of (1) into (1-41), the dot product of (1-41) is

taken with each testing function. These dot products are then inte-

grated over S. As can be derived by retracing the development (1-40)-

(1-65) with (1-46) and (1-47) replaced by (2)-(5), the resulting matrix

equation is

nn 1- n-
J , n- 0, +1, +2,... (6)

where the Z 's are submatrices and the I 's and 's are column vectors.
n n n

6



The matrix of the Z 's on the left-hand side of (6) is a square matrix

n

called the moment matrix. The column vector on the right-hand side of

(6) is called the excitation vector. The jth element of tis I. andn n3

that of I"n is nj The ith elements of t and Vn are given by
n ni* n n

Vt t i W t i E i dS i " 1,2, ... P-2 (7)ni f -ni -

S

V¢  - I W idS i 1,2, ... P-1 (8)ni j -nh
S

where n is the intrinsic impedance and E is the incident electric

field. The ijth elements of the Zn 's are given by

t ti+2 J+2 2

(Ztt)i j dt dt' k2 T (t) Tj(t')(G 5 sin v sin v'n ij J_ J_ i 5
ti ti

+ G7 cos v cos v') - G7 d Ti(t) -i- Tj(t')} (9)

(Znti ff f dt Pit M f t(k2P Tj(t')G sin v' +nG 7  T Wjt))

J n Pi d Pit t ' ~ T tG 6si7 dt' j
t t.i (10)

(Z t) 12 dt J+ dt' P (t')(k2p'T (t) G sin v + nG7 -Ti(t))
n PJ I- I- i 6 7dt

ij J t ti ji (11)

j_it t 2P(12)

(Z = i+ dt (t) ldt'P (t,)(k 2PPIG - n 2G7 ) (12)(n) iJ Pi P t 5t7

where

!L 7



7 - 4 + G5 (13)

7G 4 5 $e2

d kR sin 2) cos (no) (14)

0

wI e jk R

G5  do Ir - o cos (no) (15)

0

T e-jkR

G= fde sin o sin (no) (16)

0

+(4pp'si (z'-z) 2  2 (17)

Here, k is the propagation constant, p is the distance from the axis

of the body of revolution, z is the rectangular coordinate along this

axis, and v is the angle that the tangent to the generating curve makes

with the z axis. The angle v is positive if p increases with t and

negative otherwise. The parameters p, z, and v depend on t. Their

counterparts P', z', and v' depend on t'. The ranges of values of i and

j in (9)-(12) are such that the regions of integration therein move from

one end of the generating curve to the other end. It is understood that

n - 0, +1, +2, ... in (7)-(16).

Note that the quantity G4 defined by (14) is different from that

defined by (1-62). The trigonometric identity

I - 2 sin 2 () + Cos (8
(18)

was used to express (1-62) as the sum of (14) and (15). Expression

(14) is more suitable for computation than (1-62) because the inte-

grand in (14) is always finite.

8
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III. EVALUATION OF THE MOMENT MATRIX

One by one evaluation of the elements (9)-(12) of the moment

matrix is inefficient because of the overlapping regions of inte-

gration. For instance, both (Z ti and (Zn ) contain integrals
- tt

with respect to t over the ith segment (ti, t ). If (Z ) . and
ti+l n i-lj

(Z ni are calculated one after the other, these integrals must either
n i

be stored or calculated twice.

In this report, the contributions to (9)-(12) are accounted for

by regions of integration rather than by matrix elements. Consider the

contributions due to the 2-dimensional region of integration

t < t < t

q - - q+l

This region of integration is called A Integrations in (9)-(12) are
pq

carried out over A for {i'f} or possibly {-ip} P I and { q-

pq jqj-q J-q-I j-q-l

For all other values of i and j, no region of integration in (9)-(12)

intersects A . Setting {i=p-l} {imp i-P-l Land {imp} successively
pq j-q-l ' J=q-1 J-q J'q

in (9)-(12) and counting only the region of integration Ap, we obtainPqp

t t

"#tp)idt q(t')(G 5snvsinv'

t t

(Zn )pj  --plJ dt P_(t) _ dt'(k p T (t') Gsnv' + nG T(t'))

p t- t
p q (20)

9



t t

(Z nt) = 1q _ dt dt'P q (t' ( k P ' Tt(t)G6sin v + nG 7 Tt (t)) (21)

p q

t t

(ZOO) =+ dt P(t) f q+ld ( k 2, -PG 2 G(22)
n pq P p qtt_ 'q (t' p 5  G7

P q

In (19) and (21),

i p-i, p

i 0 (23)

i 'p-

In (19) and (20),

j q-1, q

j 0 (24)

j 'p-I

The asterisk (*) on the left-hand sides of (19)-(21) denotes the contri-

bution due to integration over the region A pq. Note that (22) is (12)

with ij replaced by pq. Because (12) has no overlapping regions of

integration, it is not affected by the change from calculation by matrix

elements to calculation by regions of integration.

Next, each integral with respect to t in (19)-(22) is evaluated by

using the approximation

t
p+l(+f(t)dt - f(t p) Ap (25)

t
p

where f(t) is the relevant integrand and, as indicated in Figs. 1, 2,

and 3,

10



1p (t t l>(26)

Ap ~ -t; (27)

Application of (25) to each integral with respect to t in (19)-(22)

gives

*tt- i + 1 k2TtpT

(Zn) jAp dt' (t')(Gsin v sin v' + G cos v cos v') -

t

G Ti(t)]t T (t (28)

(n ) -ppp')G 6sin v'+ p . T.(t')) (29)

t
q

t2

(tZ , A q+l (t k2p' T(tp)G sin v + G d T(t) )

(Zn iq p p dt' Pq '6 P 7 i t

q (30)

t

q

(Z t'P (t ') T(- )siv+ G I- ( 1)
'n'p i A P f t q kq ip'6 n q G 7 d

p p p 5 np
n q p 7

where v is the value of v at t = t . Incidentally, v f v for
p p P

t < t < t because the generating curve was assumed to be straight

there. In (28)-(31), G5, G6, and G7 are given, respectively, by (15),

(16), and (13) with R replaced by R where

Rp " I(p,_p) 2 + (z,_z )2 + 4p p psin2 ( (32)
p v p p p 2

where z is the value of z at t = t • The range of values of i and j

m - -,Z



in (28)-(30) is, as inherited from (19)-(21), given by (23) and (24).

Application of (25) is only one way to obtain (28)-(31). Another

way to obtain (28)-(31) is by approximating the G's in (19)-(22) by

their values at t - t . This amounts to immediate rather than conse-
P

quential replacement of R by R in (14)-(16). A third way to obtain
P

(28)-(31) is by substituting the approximation

Ti (t) = (Ai6(t-ti) + A i+16(t-t i+l) (33)

Pp tM z A pS(t-t p (34)

T (t) z 6(tt) - 6(t-ti+l) (35)

into (19)-(22). Here, 6(t) is the Dirac delta function. The approxi-

mation (33) preserves the value of the surface integral of the t com-

ponent of the t directed electric current (4) on the portion of S for

which

t _ t :S t p+1  p =1,2, .. P-1

where a and *b are arbitrary. Likewise, the approximations (34) and (35)

do not alter the values of such surface integrals of the electric current

(5) and the electric charge associated with either (4) or (5).

Equations (28)-(31) were obtained by using the testing functions (4)

and (5) and invoking either the approximation (25) or the set of approxi-

mations (33)-(35). Can a set of effective testing functions be defined

such that (28)-(31) can be obtained by using these functions and no auxili-

ary approximation? Testing functions could be defined by substituting (33)

12



and (34) into (4) and (5), but the approximation (35) would still be

required in order to obtain (28)-(31). Unfortunately, the approximation

(35) is not consistent with the approximation (33). Hence, it is not

possible to trace (28)-(31) to effective testing functions.

dI
The functions P q(t'), T (t'), a-T- T~ Wt), v 'and p' in (28)-(31)

are given by

P q(t') -1 (36)

(-I)' 1- (t I______

T )-j + , j q-1. q (37)
q

d T(t') = ( )q-j j -,q(38)

Iv q(39)

I= p+ (t'-t )sin v q(40)

for t q< t' < t .~l Equations (36)-(38) can be obtained from Figs.

1,2, and 3. Equations (39) and (40) are true because the generating

curve is straight for t q< t' < tq . Replacement of j, q, and t' by

i, p, and t in (36)-(38) gives
p

P p(t ) = (41)

T (t) (42)

d p-i

[r-Ti~) W 1 (43)
pp

Substitution of (36)-(43) into (28)-(31) yields

13



*tt t q+l k 2 (_,)q-j2(t °-t q)(sivsnv+
(Z n j A jp dt'{- (I + A )(G 5 sn pSin

q
G cos vpCos v q) - AA G (44)
7 qpq

r q+tk (-l)q-J 2(t'-tq (_,)q- nG7

(Z = - A (-dt'( -i (1+ A q)G 6sinvq + - pA

t q
q (45)

ft tq+l 2 (_-ti -%7)
(Z )q sin v q)G6sin vp +

(iq = ApJdt (- (46)qp q~

tq (46)

q+l 2 (n-t 2
(Z) pq=JAp dt'(k (i + Oqqsin vq)G5 Ppn G7 (47)t

Equations (42)-(45) are rewritten as
2

(Z j 8 (G a sin v sin v + G7aCOS v cos V) +(nij 8 "58 p q 7a p q

(-1) q-jk 2A A
P (G5bsin v sin v + G 7bCOvcos v ) -8 (GbilpB lq 7 p q

2(7)P+q-a-J J (48)
2 7a

k 2tA A sin v k2A A sin v nA
(Zn pj  4 R)G6a ()qj{( p 6b + 2)G7a)

(49)

14



k2A A sin v A sin v nA
(Zn) ff ( P h) + (-)P-q(--I)G (50)

niq 4 ( 6 2Pq 6b 2P 7a7

k2A A A sin v nA nA
(Z ) =2j ( 4--- )(G -  G ) - -q)(2P)G a (51)
n pq 4 Sa~ 2P 5b 2P 2p 7a

q q p

where i is either p-1 or p and j is either q-1 or q and where

t

I a A q m =5,6,72

Gb = ( (t' - tq)Gdt' (53)

t
q

Equation (13) is used to rewrite (52) and (53) as

G7a ff 4a +Ga (4

G7b ff 4b + Sb (

t

Gma - G(t' - tq)dt' (56)

q t -I

q
m = 4,5,6

Eb = (2 - tu)Gd(t' - t )dt' (57)

t q

The argument (t' - tq) supplied with G in (56) and (57) comes into play

ma m q

later on. Substitution of RpfrRi 1)-1)poue

p

IT-ikR~G 4,- tq) 2 d ekR p G 2 ( t os(q (58)

q 0 P

15 '"7



i -JkR

G 5 (t' - tq) = f d, e kR o C cos(n) (59)

0 P
71 -jkR

G6(t' - tq) = f do e kR sin 4 sin(nO) (60)

0 P

where R is given by (32). In (32), p' is given by (40) and z' by
p

= + (t' - tq)Cos vq (61)

Equation (61) is true because the portion of the generating curve for

t < t' < t is straight.
tq q+1l

Evaluation of the integrals in (56) and (57) by means of an

nt-point Gaussian quadrature formula gives

nt (nt i. (nt)

G a = A91 G( A x (62)

m = 4,5,6

n = (n) (n 1 (nt
tmb m At) ( G M( Aq n) (63)

(n ) (nt)
where the abscissas x., and weights A., are tabulated in Appendix A

of (5] for several values of nt . Application of an n.-point Gaussian

quadrature formula to the integrals in (58)-(60) and replacement of

(t t b 1 (nt)

tq) by q x, result in

n -JkR
(n) n) (n) p't 00

A~ e in -) (64)
G4( q A sin( )cos(n)(4

4 (2 nq kn e-kR p'

G5 ( Aq x t IT n A (n ekR coa cos(n) (65)

q I k kR CO 0116



(ni n, (n ) e-jkRpt'
Gnt) =  A sin 0 sin(n) (66)G6( 2q 2 ) = 1 9A kR pz,z

w h e r e _ _ __'2 +2_ s i 2 (_ _6 7

R pg,£ ( -p p)+ (z'-Z ) + 4ppp

where

1 (nt)
P, = Pq + q x., sin Vq (68)

1 (n
z' = Zq +Aq x COS Vq (69)

(neA (x ) + 1) (70)

(nt )
Calculated values of G( A x ) from (64)-(66) are substituted

m 2 q 2

into (62) and (63) in order to evaluate Gma and Gmb. The resulting

values of G and G are then substituted, either directly or through
ma mb

the intermediary equations (54) and (55), into formulas (48)-(51) for

the elements of the moment matrix.

The values nt = 2 and n$ =20 are suggested whenever the field

point is not close to the source segment. If the field point is close

to the source segment, the method of eliminating the singularity [3]

is used. Since double integrals are involved, three variations of the

method are possible. These variations are called methods 1, 2, and 3.

In method 1, elimination of the singularity is applied to the integra-

tion with respect to t'. In method 2, elimination of the singularity

is applied to the integration with respect to 4. In method 3, it is

applied to the double integral. In methods 1 and 2, the "singular part"

17
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of the integrand is subtracted out, numerical integration of the

resulting finite integrand is performed with respect to one of the

variables, the integral (with respect to this variable) of the "singular

part" is added, and then numerical integration with respect to the otAer

variable is done. In method 3, the singular part of the integrand is

subtracted out, numerical integration of the resulting finite integrand

is performed with respect to both variables, and then the double integral

of the "singular part" is added. Method 3 is preferable to either of J
methods I and 2 because the final numerical integration in methods 1 and 2

may involve a singular integrand. However, if what is deemed to be the

'singular part" can be integrated analytically with respect to only one

of the variables, then either method 1 or method 2 is applicable, but

method 3 is not.

Use of method I is now demonstrated. From (56)-(60), the required

integrals with respect to t' are

2 q+ e -kR
G -f e-kR dt' (71)

ia
q

Gb 2( ) q-) W - t e dt' (72)
b I- -- dt'72

q t p
q

The above expressions are rewritten as

Ca = Gal + Ga2 (73)

Gb - Gbl + Gb2 (74)

18



where

ei-kRp~ t
G 2kR~le P- t (75)

q

t~+

Gj dt' (76)
a2 AU

q

t -j kR

2 q ~
2

t

22 q+1 (t' - t )dt'

Gb2 = kR (8
q t

q

Application of n -point Gaussian quadrature to the right-hand sides of

(75) and (77) gives

n
t t (n t

hi. ',A (80)

where

kR kR kR

e ~1 -sn 2 2 2 O
Gm kR kR (1

p P

(n)

where R is to be evaluated at (t' -t ) Ax ,  The purpose of
p qq

the alternate form of G on the extreme right-hand side of (81) is to
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avoid possible roundoff error. As for the integrals in (76) and (78),

we substitute (40) and (61) into (32) to obtain

2 2
Rp =V(pq-pp+(t'tq )sin v q) + (z q-z P+(tc'tq )Cos V q) +*

+.4p (p +(t'-t )sin v )sin2 (1) (82)
p q q q 2

which can be rewritten as

R p= (t'-t +to) +d 2(3
pqo

where

to~ (Pqpp )sin v + (z -Z )Cos v + 2p sin v sin 2 (84)
qP q q p q p q 2

d= r - to (85)
pq 0

rp UVi(P -P 2 + (z -Z ) 2 + 4pq p si 2 ** (86)pq q p q pq 2

Substitution of (83) into (76) and (78) and application of formulas

200.0]. and 201.01. of Dwight (61 give

G -2o (87)a2 9k lo
q

2 21 + -(to q) + d2  tr log] (88)

where -~
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4-A t (tj + A )2 + d 2  A
log o 2 2tj

it1 + (ito1 2> 2 +da
log 

(89)

/ dito <-

(IO1~~)+dj[ -It 1+ 1~.t)24,2 o

To reduce roundoff error, (88) is rewritten as

G__ -K- lg(90)
b2 A k AAd2

(+ A) + d+ (t o - -)2+ d 2

The calculated values of G are used to obtain G according to
a ma

n¢ (n) 2k
G4a 7T GA sin (T)cO (91)

G IT(

5a =2 aGA kCos 09cos(n ) (92)

G = 1 GaA sin sin(n£) (93)

where G is to be evaluated at - given by (70). Equations (91)-

(93) are also valid with a replaced by b. Calculation of Ga and Gb
should be according to the development (73)-(90) only for those values

of for which r is either smaller than or comparable to A . If r
pq q - pq

is considerably larger than Aq, pure Gaussian quadrature is adequate.

Use of method 2 is now demonstrated. Since the integrands of

(58) and (60) are fairly well-behaved, method 2 is applied only to (59).
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In method 2, G 5aand G 5 are calculated according to (62) and (63) with

(n ) ______

G05( A q x V t ) given not by (65) but by

(n) n4  (n ) -jcokRcs9n,)

n A(n)

k-V 2,- kj PP )2 + (z'-z P)2 + P' P)

+ fd)(94)
~=0 k JPt-P) + (z'-z) 2 '

From formula 200.01. of Dwight 1611,

IT

f ____________________log (u + (5
F kI( Pp)2+(z,~ 2 2 +P .. 4) ~ P'

where

U P (96)

2 p

Equation (94) should be used only for those values of t' for which p q

Is considerably larger than 4('- )2 + (z'-z )2 Otherwise, the pure

Gaussian quadrature of (65) is adequate.

Use of method 3 is now demonstrated f or the case in which p-q.

Method 3 is applied only to the calculation of G05 because G 5ais the

only integral in (56) and (57) whose integrand is not bounded. We write
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n ' n -k

GJ~ Tr cos~A CO z$cos(no t e kR~,

5a2 L£'=l(97)

nn(n ) 7 -

2l 1 itt+f

z=A= (n ) 2 2 2 q 0  t k (t -t)+p

2£(A + q tq; P

Because of the formula

2 22 2 1ddy [lg(y + x +y2) + y log(x + x y) 2. 2 (98)

qx +ty

the double integral in (97) is tractable.

T t

2 do q+1 dt' _2 + + 2rpj

q - k2 +P2 2 qq
q '' q q

+2Trqlog A q+ 1+ A q 12(9

In each of methods 1, 2, and 3, an attempt is made to subtract

out the singularity due to 1/R in (58)-.(60). In method 1, h/R itself
p p

is subtracted out. In method 2, the approximation

1j('- I Ip 2 + (z'-Z )2 + P12

to I/R is subtracted out. For comparison, R is given by (32). In method 3,
p p

the approximation

( pp )2 +z- 2 2
p p q
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to I/R is subtracted out for p=q. Because the double integral ofP

this approximation is tractable, method 3 can be extended to cover

the case in which p # q. For p # q, the alternate approximation

1

(p,,pp)2 + (z,_Z) 2 + Pppmin>2

to 1/R merits consideration. Here, "min is the value of p' at that

value of t' which minimizes ( )'- p)2 + (z'-z p) 2 . No matter which of

the above two approximations to I/R is used, the closed form expres-P

sion for its double integral is rather complicated and vulnerable to

roundoff error. For this reason, method 3 was used only for p-q.

For p # q, the decision whether to use methods 1 or 2 is based

on comparisons of A with d and p with d where d is the distance
q 0 q 0 0

from the field point at t = t to the nearest point on the qth sourceP

segment. The distance between the field point at t = t and the pointP

(t',O) on the qth source segment is given by (82) or (83). It is

evident that the minimum of (82) occurs at 0 = 0 because neither p nor

P# of (40) can be negative. At 0, (84) and (85) specialize to

to = (p -p p) sin vq + (zq - Z p) cos vq (100)

d = J(pq -p) cos vq - (Zq - Zp) sin vq1 (101)

The asterisk (*) on the left-hand sides of (100) and (101) indicates

that 0 - 0. Minimizing (83) with respect to tt on the qth source

A A
segment where -- I < t' - t < -, we obtain

2- q 2
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I
,* A
d Itf < -A

d 2 (102)

00

If /(!toI _- )+ (d) 2) itoI >_2A

if

p q Case 1
1 c A < d > Pure quadrature (103)
2 tq- oi

C pq< do

then the pure quadrature of (62) - (66) is used to calculate Gma and

G mb . Here, ct and c are constants for which the values

2 (104)

c= 0.1

are suggested. If

Case 2
c1 A > Method 1 (105)

-c tq o

c p <d
!q - o

then method 1 is used. If o-I
p 0 q Case 3

Method 2 (106)
,~ CPO > d

4)Pq 0

then method 2 is used. If

Case 4
p = q (107)

Methods 1 and 3

then both methods 1 and 3 are used.
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The strategy in (103) and (105)-(107) is based on the assumptions

that the Gaussian quadrature integration with respect to t'must be

fortified only when A is large, and that the Gaussian quadrature inte-q

gration with respect to 0 must be fortified only when pq is large. The

integration with respect to t' could not b4 fortified for 1 c A > d in
2 t q 0

Case -3 because methods 1 and 2 can not be applied simultaneously and

because it was decided earlier to limit use of method 3 to Case 4. How-

ever, pure Gaussian quadrature should still give a fairly accurate evalu-

ation of this integral with respect to t' because of the following reason-

ing. Since p' is large, difficulty can only occur when 0 is small. Further-

more, this difficulty is not usually serious because A < 2d most often.q- o

It is evident that A < 2d if p 0 q, if all the A are equal, and if the

generating curve does not fold back on itself.
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IV. EVALUATION OF THE PLANE WAVE EXCITATION VECTOR

Consider the elements (7) and (8) of the excitation vector for a

0-polarized incident plane wave defined by

Ei t -t (108E= u 6kr_ (108)

and also for a 0-polarized incident plane wave defined by

i  t -jkt • r

I = u 0kr e (109)

In (108) and (109),

k t = - k(u xsin 0 t + uzcos ) (110)

-t = uxcos 0 - u zsin t (11)

t (112)

4~ -y

where 0t is the angle of incidence and where ux ,uy and u are unit

vectors in the x,y, and z directions, respectively. Also, r is the

radius vector from the origin. The origin must lie on the axis of the

body of revolution because this axis is the z axis. Substitution of

(4), (5), and (108) into (7) and (8) gives

vt 1+2  Jkz cos e
nti 4 n k  dt T i(t)(j sin v cos 6t(Jn+l-J - 2 cosv sin 0 tJ n}e

t 1 (113)

V 0 n iId iJkz cos 0t[

Vo . nirk t i P(t) (Jn+l+Jni )cos O e (114)

ti

where Vto is Vt  for Ei given by (108) and V 0  is VO for Ei given by
ni ni ni ni

(108). In (113) and (114),
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in ; n (kP sin e (115)

where Jn is the Bessel function of the first kind. Likewise, substitu-

tion of (4), (5), and (109) into (7) and (8) gives

V - j n rk r dt T i(t)(Jn+ + n)sin v e (116)
ni f t i-t ) Jni l n-i

ti

tIV nl7kildt -P (t) -3i )e jzcs6t (117)
nif P i n+l n-i

where the second superscript on V on the left-hand sides of (116) and

(117) denotes excitation by the 0-polarized incident plane wave (109).

The manipulations required to obtain (113)-(117) are similar to those

used in the derivation of (1-95).

The contributions to (113) and (116) due to integration with

respect to t from tp to tpl are expressed by

,V t-n ~ ik coj 7tO L nk dt T i(t){ j sinvcos t (J n+l-J n -1-2 cos vsin t J n le

t 
p111

*p4i jkz cos 0V -j nTk - dt T (t)0 sn++n)so n v e (119)
ni J f it n+l n- l t

t

p

where i is either p-i or p. The asterisk ( ) on the left-hand sides of

(118) and (119) denotes the contribution due to integration from t- top

t p+. First, v is replaced by vp in (118) and (119). Throughout (114),

(117), (118), and (119), Pi(t), Ti(t), and p are expressed according to
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(36), (37), and (40), respectively. Then, i is replaced by p in (114)

and (117) to make those equations compatible with (118) and (119). The

results of the above substitutions are

*t f= Jt (1+ (-~-' - M{ sinvco 0(J - )-Vni 2 f d (I+VpCoa t (in+l- n-1)

p jkz cos 0
t

-2 cos vsin Ojn}e (120)

p t

V rkPl t(I+(t-t p)sin v ) + )cs6ejkz Cos 0

np - p n+l n-l t (121)
tp
p

t Pi
jt ~Irk P~ (l)P 2(t-t )Jkz cos 0

V f dt(1 + ~ (J 1 +j )sin v e
ni 2A l -

p
p (122)

VO jn+l Tk t i,.dt(11  (t-t p)sin Pv e~+~nl ekz cos e t (123)
np f- ~ -

tp
p

where i is either p-l or p in (120) and (122).

Equations (120)-(123) can be rewritten as

n+1 n
*t 7rk sin vcos j 7TkA cos v sine

4(Fn+1~b n-1,b) 2 nb

(124)

-o n {rApco (F +F )+ A p sin v (F +F 1(125)
np 2 n+1,a n-1,a 2p p n+l~bn-l,bl
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n 7rkA sin v (-l)P-j nwkA sin v
ni 4 Fn+l, +F n- ,-a 4 n+,b n-,b)

(126)

n+1jn likA A sinv

voJF -F A+-2-sin--v---(F -F (127)
np 2 n+l,a n-i,a 20 n+l,b n-l,b

p

where i is either p-i or p in (124) and (126). In (124)-127),

2 i I jkz coB et

F m = A Jm(kp sin 6t)e dt (128)Fma Ap t-

p
p

m=n-1,n,n+1

2 2 ~l jkz cos

Fmb = ( fj'(t-t) Jm(kp sin et)e C dt (129)

p
p

IP

where, from (40) and (61),

p = p + (t-tp) sin vp (130)

z = z + (t-t) Cos v (131)

Evaluation of (128) and (129) by means of an nT-point Gaussian

quadrature formula yields

nT (nT) jkI cos 0te
Fma - AT Jm(kZ sin Ot)e (132)

X-1

m-n-l ,n,n+l
nT (nT ) (n) iki cos 6 t

Fmb - A xT Jm(kt sin 6 t )e , (133)
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where
(n T )

P p + 2 sin vp (134)

(n T)

z=zp + 2 cos vp (135)

The calculation of the plane wave excitation vector would be most nearly

consistent with the calculation of the moment matrix if nT = 1. For

n = 1, the extra data x = 0 and AM = 2 must be supplied. Now,
T 1 1

assuming that nt > 1, it could be said that n -point quadrature is more

accurate than 1-point quadrature. The ni-point quadrature data are

already available because they were used to calculate tne elements of

the moment matrix in Section III. With n fixed at 2, results weret

calculated for both nT 1 and nT = 2. It was difficult to tell which

results were more accurate. The numerical results presented in Section V

were obtained by using nt = nT = 2.

31

I -- A,.llIl~lm :



V. NUMERICAL RESULTS

Computer program subroutines have been written to calculate the

elements of the moment matrix and the elements of the plane wave exci-

tation vector. These subroutines are described and listed in Part Two of

this report. They were used to calculate the electric currents induced

by a plane wave axially incident on two circular disks, a thin washer,

a cone-sphere, an open cylinder, and a spherical shell with an axially

symmetric aperture. The magnitudes of these electric currents are

plotted in this section.

For axial incidence, 0 is either 0* or 180* and the only non-t

zero excitation vectors for the 0-polarized plane wave (108) are

V-1 V

(136)

It is evident from (9)-(17) that

ztt to tt -zo
S-I ZI ZI

no uc (6(137)

In consequence of (136), (137), and (6), the only non-zero column

vectors I and I are given byn n

(138)
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where the column vector on the right-hand side of (138) satisfies (6)

for n=l.

In view of (2) and (3), substitution of (138) into (1) and sub-

sequent division by k give

J T (t) P(t)
2u c-s---Y )  + 2j _ sin (139)lil -t

The jHij written instead of k on the left-hand side of (139) is the

magnitude of the incident magnetic field associated with (108). This

1H1 is indeed equal to k. At t = tp+l, the t component of (139) re-

duces to

Jt 21 t

= lp cos , p=l,2,. ..P-2 (140)_i kP(t Pl)

At t t p the 0 component of (139) reduces to

.0 2jIO

Ai kJp sin , p=1,2,...P-1 (141)

j Hij kp

Here, Jt and J are, respectively, the t and 4 components of J. In the
t0 t

figures to follow, in the 0 =00 plane is plotted with squares and

in the , = 90 ° plane is plotted with octagons.

IH I ii I

Figure 4 shows the t and 0 components -- and of the electric

current induced by the axially incident electric field (108) with 0 -0

on an infinitely thin circular disk of radius 0.25X where X is the wave-

length. In Fig. 4, is plotted with squares and - with octagons.
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Both quantities are plotted versus t/X where t is the arc length

along the generating curve. The horizontal axis in Fig. 4 was labeled

T/k because the lower case letter t could not be drawn by the plotter.

In Fig. 4, the center of the disk is at t = 0 and the edge at t = 0.25X.

The electric currents in Fig. 4 and in Figs. 5-10 to follow were cal-

culated with nt = nT = 2, n = 20 and with the points t., ji1,2,...P~1 J
equally spaced along the generating curve. Since 12 octagons are in

Fig. 4, P=13 therein. The electric current in Fig. 4 should be twice

as large as the magnetic current in Fig. 4 on page 32 of 171.

Figure 5 shows the electric current induced on a circular disk

of radius 1.5X by the same axially incident plane wave as in Fig. 4.

The electric current in Fig. 5 should be twice as large as the mag-

netic current in Fig. 6 on page 33 of [7]. Figure 6 shows the elec-

tric current for axial incidence on an infinitely thin washer of

inner radius 0.4X and outer radius 1.2X. The inner edge of the washer

is at t = 0 and the outer edge at t = 0.8X. Figure 6 should be com-

pared with Fig. 3 of [8]. The size of the washer in Fig. 3 of [8] is

incorrectly stated. That figure is actually a plot of the electric

current on the same washer as in Fig. 6.

Figures 7 and 8 are plots of the electric current for axial

incidence on a cone-sphere of cone angle 200 and sphere radius 0.2X.

Figure 7 is for incidence on the sphere end and Fig. 8 is for inci-

dence on the tip of the cone. The tip of the cone is at t - 0. At

the sphere end, t is approximately 1.48X. For comparison, see

Fig. 4.15 on page 218 of [9].
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0' __ _ _ _ i

.0 .05 .10 .15 .20 .25
T/.

Fig. 4. Electric current for axial incidence on a circular
disk of radius 0.25X, t =0 at center.

3-

.0 .2 .14 .. 8 1.0 1.2 1.14

Fig. 5. Electric current for axial incidence on a circular
disk of radius 1.5X, t 0 at center.

35



S 2-

.0 .

Fig. 6. Electric current for axial incidence on a circ:ular
washer of inside radius 0.4) and outside radius 1.2A,
t =0 at inside edge.
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Figure 9 shows the electric current for axial incidence on an

open-ended cylinder of radius X/2Tr and length A. The plane wave is

incident on the end of the cylinder for which t = 0. The excellent

results plotted in Fig. 9 here and in Fig. 2.13 on page 52 of [2]

were both obtained by using the electric field integral equation,

notwithstanding the stability problem reported in [10].

Figure 10 is a plot of ehe electric current for axial inci-

dence On the infinitely thin conducting shell for which

r - 0.2X

458 < 0 < 1800

where r and 0, being spherical coordinates, are the radius and

colatitude, respectively. This shell is a spherical shell with an

axially symmetric aperture. The pole of the shell is at t - 0. At

the edge of the shell, t is approximately 0.471X. The plane wave is

incident on the aperture.

Numerical results for the electric current on a circular disk

of radius 0.02A not shown here exhibited a noticeable change in slope

near the center of the disk. The curves labeled "a" in Figs. 7 and 8

on page 34 of (7] also indicate a change in the slope of the magnetic

current near the center of the complementary aperture. However, these

changes in slope did not agree with each other. Now, equation (23)

of [111 does not predict any noticeable change in the slope of the

electric current near the center of the disk of radius 0.02X. The

changes in slope obtained by using the computer program of the present
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Fig. 9. Electric current on an open-ended cylinder of radius
X/(2T) and length X, incidence on t =0.

10 ~ I i II I

INCIDENT
WAVE

45K
t .7

0.4

r.0 .1 .2 T.3 .tA

Fig. 10. Electric current on a spherical shell of radius 0.2X
with axially symmetric aperture, edge at t -0.471X,

incidence on aperture.
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report and the program of [71 are obviously wrong. The changes in

slope obtained by using these programs are much more pronounced for

the disk of radius 0.002A. However, they disappear when all calcu-

lations are done in double precision. Hence, these changes in slope

are due to severe roundoff error. This roundoff error occurs because

the vector potential terms, those containing the factor k2 explicit

in (9)-(12), are overshadowed by the rest of the terms in (9)-(12),

the scalar potential terms. If these vector potential terms were set

equal to zero, the moment matrix would be singular because there are

several linear combinations of the expansion functions which have no

electric charge associated with them.
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PART TWO

COMPUTER PROGRAM

I. INTRODUCTION

The computer program which implements the numerical solution

expounded in Part One is described and listed here in Part Two. This

program consists of the subroutine ZHAT, the function BLOG, the sub-

routines PLANE, DECOMP, and SOLVE, and a main program. The subroutine

ZMAT calculates the elements of the moment matrix in (6). The func-

tion BLOG is called by ZMAT. The subroutine PLANE calculates the

elements of the excitation vector in (6) for plane wave incidence.

The subroutines DECOMP and SOLVE solve the matrix equation (6) for

t and I.n n

The main program obtains the electric current induced on the

surface of the body of revolution by the axially incident plane wave

(108) with et W 0 or w radians. The main program calls the subroutines

ZMAT, PLANE, DECOMP, and SOLVE. It is not difficult to generalize the

main program to oblique incidence because the subroutines ZMAT, PLANE,

DECOMP, and SOLVE are designed to calculate It and I for n - 0,1,2,...,n n

For the 0-polarized incident plane wave (108), It is even in n and I is
n n

odd in n. For the 0 polarization (109), n is odd in n and V is even

in n. In order to obtain far field patterns, the main program must be

supplied with additional logic. This additional logic is outlined as

follows. According to (1-91), the far field is obtained by premultiplying

the solution vector to (6) by plane wave measurement matrices for

n - 0, +1, +2,.... The plane wave measurement matrices for n - 0,1,2,...
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can be obtained by calling the subroutine PLANE. The even-odd behavior
Jnfr

in n of the coefficient of e in (1-91) is as follows.

Receiver Transmitter Behavior

Polarization Polarization in n

e 0 even in n

0 B odd in n

0 * odd in n

* 0 even in n

Here, the receiver polarization denotes the component of the far field

being measured. The transmitter polarization is the polarization of

the incident plane wave.
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11. THE SUBROUTINE ZMAT

The subroutine ZMAT(M1,M2,NP,NPHI,NT,RH,ZH,X,A,XT,AT,Z) calcu-

lates the moment matrices in (6) for n - Ml,Ml+l,....H2 where Ml > 0

and stores them in Z. Z is the only output argument. The rest of

the arguments of ZMAT are input arguments. For n -Ml, storage of

the Z submatrices in Z is as follows.n

(Z tt) in Z(i4-N*(J-l))

n ij

(Z t ) in Z(i+N*(j-l) + (NP-2)*N)
n i

(Z )j in Z(i+N*(J-l) + (NP-2)*N+NP-2)
n i

HrN = 2*NP-3 (142)

For n > Ml, the Zn submatrices are stored in Z((n-Ml)*N*N+l) to

nn

in Z(l) to Z(N*N) for n -Ml. Table 1 relates the third to eleventh

arguments of ZMAT to variables in Part One of the text. In Table 1,

pt and z(t-) are the values of p and z at t =t- for 1 1 ,2....P.
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Table 1. Third to eleventh arguments of ZMAT.

Argument Variables in
of ZMAT Part One

NP P

NPHI n

NT nt

R kp(t1) kz(t ),.. .kp(t)

1  ' 2 '**

A (n:4 (n (n..

(n (n (ni

A 5(M) A6B ... A(P),GNP)

DIHENSAO 2HN) ZHN) (PIAnPI)

Miiuhelctin re M3ve by2-14

COMPLE Z(M3**N), 443,GAM3,GAM)



The elements of the Z nsubmatrices are calculated according to

(48)-(51) where G m and G mbare given by (54), (55), and (62)-(66).

However, (62)-(66) are modified through the use of methods 1, 2, or 3

in the cases specified by (105)-(107). The values of c t and c sug-

.1 gested in (104) enter via CT and CP in lines 10 and 11.

Do loop 10 sets 
k

RS(q) =kp DR(q) = qsin v
q 2 q

kA
ZS(q) = kz DZ(q) = cos v

q 2 q
kA A

D(q) = qDM(q) =--9
2 2pq

for q 1,2,... NP-i.

Do loop 11 sets

C2(K) K 2 n C3 (K) 4 i

Inner DO loop 29 sets

C4 (M5) Tr(n) 2(O
AK sin 2-- cos(nO K)

7T (n)
C5(M5) i AK Cos ~K cos(no K)

C6(M5) AK~ sin K sin(noK)

where M5 =K + (n-Ml)*NPHI.

The calculation of (48)-(51) occurs inside three DO loops nested

in the following manner.

DO 15 JQ - 1, MP

DO 16 IP - 1, HP

DO 31 M -1, M3

CALCULATION OF (48)-(51)
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31 CONTINUE

16 CONTINUE

15 CONTINUE

Here, JQ, IP, and M represent, respectively, the variables q, p, and

(n-Ml+l) in (48)-(51). The JN introduced in line 52 is incremented

tt
in line 314 so that the subscript for (Z can be written as; (Zn~~~~np-l,q-i a1 ewitna

p + JN when n - MI. The variable KQ defined in lines 54 to 56 keeps

track of the cases for which q = l and q = MP. Because of (24), these

cases require special treatment. According to (24), expressions (48)

and (49) are absent when j = q-1 and q 1. Likewise, (48) and (49)

are absent when j = q and q = MP.

The variables defined in statements 57 to 70 are needed

inside DO loop 12 or DO loop 16. DO loop 12 puts kp' and kz' of (68)

and (69) in R2 and Z2, respectively. To reduce execution time,

references to subscripted variables as well as calculations are being

done outside DO loops whenever possible. Unfortunately, this usually

increases the number of statements and complicates the logic because

r jk2Ap A

factors such as 8 sin v sin v in (48) are computed by means of

several statements scattered throughout the program. One way to follow

the gradual building up of constants from outer to inner DO loops is to

tabulate computer program variables versus variables in Part One of the

text.

Lines 78 to 88 put kd of (102) in D6. Lines 89 to 94 set KP

equal to the case number in (103) and (105)-(107).
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Lines 96 to 248 put approximate values of G of (56) in GmA forma

m 4,5,6. Lines 96 to 248 also put approximate values of Gb of (57)

in GmB for m = 4,5,6.

Lines 96 to 174 are executed for case 2 of (105) and for case 4

of (107). Method 1 is used here. This method is described by (71)-(93).

The pure Gaussian quadrature option for Ca and Gb advocated just after

(93) is

nt  (n) -jkR
G kR (143)
a 2=1 p

n-jkRnt (nt (nt e P

Gb = AZ, x, kR (144)
2'=i p

where R has the same meaning as in (81). In terms of Z7, R7, Z8, andP

R8 calculated by DO loop 40,

kR =  Z 7 (') + R7(P')*(4 sin 2(2)) (145)

kR

---2 =  Z8(k') + R8(k')*(4 sin2(21)) (146)

DO loop 33 puts Ga and Gb in GA(K) and GB(K). The index K of

2 2DO loop 33 corresponds to Z in (91)-(93). Line 109 puts k r of (86)Pq

in RR. If

r < A (147)
pq 2 t q 2 q

then line 112 sends execution to statement 34 and G and Gb are calcu-

lated according to (73) and (74). Otherwise, DO loop 35 accumulates

Ga and Gb of (143) and (144) in UA and UB. The purpose of the second
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term on the right-hand side of (147) is to assure that the distance

between the field point and the closest point on the line = K on

the qth source segment is no less than I C A before DO loop 35 is
2 t q 1

entered. This distance could be as small as rpq - 2 A DO loop 37

accumulates Ga and Gbl of (79) and (80) in UA and UB. Lines 130 to

142 add G and G of (87) and (90) to UA and UB. Nested DO loops
a2 b2

45 and 46 put G of (91)-(93) in GmA for m = 4,5,6. These DO loops
ma

also put G in GmB for m = 4,5,6. The DO loop indices M and K cor-
mb

respond, respectively, to (n-Ml+l) and X in (91).

Lines 176 to 197 apply method 3 to G Expression (97) for G
5a' 5a

consists of three terms, namely, two double sums and a double inte-

gral. Since the first term in (97) is the result of pure Gaussian

quadrature, the second and third terms in (97) are attributed to

method 3. At this point, however, we do not have the first term in

(97), but the modification of it due to application of method 1 in

lines 96 to 174. For consistency, the inner sum in the second term in

(97) should be replaced by the corresponding exact integral whenever

(147) is true. This corresponding exact integral is given by

1

f( --- 4 log[
q t,2 2 2 q 2p q 2pq 

+q t

Formula 200.01. of Dwight [6] was used to obtain the right-hand side of

(148). The index K of DO loop 63 corresponds to I in (97). Inner DO

loop 65 accumulates in D7 the inner sum in the second term in (97).
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Lines 188 and 189 put (148) in D7. Line 194 puts in D8 the contribu-

tion due to the second and third terms in (97). DO loop 67 adds this

contribution to the modified first term in (97).

Lines 199 to 248 calculate G a and Gmb according to (62), (63),

(64), (66) and either (65) or (94). The index L of outer DO loop 13

corresponds to £' in (62) and (63). DO loop 17 puts (e-JkR p'£)/(kRpt,£

in GA(K) for i - K. If, in accordance with (106),

c pq > V(p' - pp)2 + (z' - Zp) 2  (149)

then (94) is used. Otherwise, (65) is used. If (149) is not true,

then line 220 sends execution to statement 51. Otherwise, lines 221

to 225 put in D6 the contribution due to the second and third terms in

(94). Note that the first term in (94) is the right-hand side of Z65).

DO loop 32 accumulates (64), (65), and (66) in U5, U6, and U7, respec-

tively.

Inside DO loop 31, lines 262 and 263 put G7a and G7b of (54) and

(55) in 14A and H4B, respectively. Lines 268 to 274 calculate terms

in (48)-(50). U5, U6, and U7 belong in (48), U8 and U9 in (49), and

UC and UD in (50). The variables Kl to K8 defined in lines 275 to 282

give the locations in Z of the matrix elements referenced in (48)-(50).

See Table 2. In Table 2, p and q run from I to MP except where other-

wise indicated. The forbidden values of p and q in Table 2 are due to

(23) and (24). The contributions (48)-(51) are accounted for in lines

283 to 310. In these lines, Z(K4), Z(K6) and Z(K8) are referenced for
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Table 2. Storage of matrix elements in Z.

Location in Z Matrix Element

Z(Kl) (Ztt)p_,_ p 0 1, q 0

np-l,q-l

Z(K2) (Z tpq) p 0 MP, q 0 1

Z(K3) (Znt)p-~ p 0 1, q 0 MP

Z(K4) ( p,q

Z(KS) (Z tt)p~ ~ p 0 MP 0M

Z(K7) (Z q)pl.q p0 1

Z(KS) (Zt ) q 0 MP

i the first time, but the rest of the Z's are incremented. The branch

statements interspersed from lines 283 to 306 are due to the f or-

bidden values of p and q in Table 2. The seemingly muddled and

repetitive nature of the Z's in lines 283 to 309 is the result of

an effort to minimize the number of branch statements executed.
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009 DISINOTH SUBROUTIN31.E ZIA(4bXEO.TIO.S45Z1

009 DIMENSION C#442001.C4203.C4421.Z7(101 .IIOeAo(9zeuoSt..eisei

@10 CT=2*
oiln CP=.1
012 00 10 I=2,NP
013 12=1-t

095 Z0ft12)=in (H[)Z(91

020 DZ(I21)02

023 M3=M2-MI*l
024 M4-M1-1
02S PI 2--1t.70790
02600 It KinI.NP4I
027 PHwP12* (Xt K 1#1

020 C2(KI-IPHOP1
029 SN-SIN(.5ePH)
030 C3(KI34**SN*SN
031 At=P[2*ACK)
032 D4=.S*AIOC34I
033 DS5AI*COSCPHI
034 06-A1SSINCPH)
035 MS5K
036 DO 29 NMI.M3
037 PNM(M4,M)*PH

* 036 A2aCOS(P4M5
039 C4IM51-D4*A2
040 CS(MS)3DS*A2

041 C61MSIDD60SINIPN
042 M5=M5+NPHI
043 29 CONTINUE
044 91 CONTINUE
045 NP-NP-I

046 Mf="P-i4. 7047 ft.NT*mp
046 N2N=M!*N
049 N2wN*N

050 UtinIO...5)
051 U2g0.*o2ob
0112 JNW-1-N
@53 D0 15 JOUlemp
@54 K0U2
055 IP(JG*Eaoii KG-I
@50 £F(JQ*Oe0NP) KGin3

057 RIuRS(JOI
@58 21-ZS(JO)
059 01-DCJOI
060 02-DOEJOI
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Got 03-OZ(JO)

@62 0u=02ma
663 OSOO14144I

@64 SVwO"01

@6s Cvs03M&
@0" 16CT*01
067 V62-T6*O1

@60 V62=162*T*S

069 016mCP*R3
070 R62=P6*R6

@71 00 I2 L-19WT
072 *2(LI=R1.02*KT4Ll

073 Z2 (L) Z1 +03 *XT (4.

@74 12 CONTINUE

oft U3wD2*UI
@76 U4=03*UI
077 Do 16 API.Nup
076 R30RSC3P)
079 Z3wZSEIP)
000 R4aRI,3
Oak Z4-ZgZ3
0 82 FtM=R4*SVZ4*CV
003 PIIMZASCFm
064 PH=AS4 R4*CV-Z4*SVI

086 IFCPNN.LEoD&) GO-TO 26

07 DwPM4M.O1
Gas D6=S0RT( 06*D6*PH*PH4)
069 26 IFCIP*EasJ@1l GO TO 2?

090 KPMI
091 IF(T6*GT*061 KPOR

092 IF(R6*GT*061 KP=3

093 GO TO 26

094 27 KP-4
095 26 GO TO (41.42941*42)eKP
@96 42 DO 40 L-1.NT
097 07-A241.)-013

099 Z7(L)=07**7+C6806
IGO RT(L I-3*02ELI

got Z8(LJ=.2S*Z71Lf

102 R6(LIU.25*0791LD

303 40 CONTINUE
304 Z4mft,*R4#z4*z4
IDS 04-R3*RI
104 RS=.S*R3*SV

107 DO 33 K1.NPI
t06 AI=CSIK1
too 3Uuz4*R4*Ag
&to UA-00

Its U11-0.

Ila 1FIRR.*LTe162) 60 T0 34
113 00 35 LinI.NT

134 PwSOATfZT(L1*R1IL)*AI)

its SNa-SIN(Rl
316 CSmC0SERI
13? UCmAT1L,'RSCMPLXICS9SNI

Its UAuUA#UC
t39 UD-XTCLS*UC*UB

35 I CONTINUE
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lag GO TO 36

122 34 00 3? LateNI
123 FtzS0PT(ZS(L),R813*AI3
124 SNU-SENCRI
125 CSUCOS(m)
126 UC-AT(L).R*Sft*CNPLXI-SN*CSI
127 UA-UA*UC
126 U~wX T(L 1 *UCU
129 37 CONTINUE
130 A2=FO*R5*Ai
93t O9WRA-A2*A2
132 RsABSCA2)
133 07=R-01
134 08mR+OI
135 06wSORTE 08*084093
136 RmS0RV(D7*07409)
137 1V4079GEe0.3 G0 O 30
138 AIuALOG( (o8*63*-*C0Rs3093/0
139 GO TO 39
140 38 AI=ALOG((064063/(O7*Rlbf0I
lot 39 UAuA&*UA
142 USiA2*(4/t O*R)-A1)#IM3U
343 36 GA(K~mUA
144 GSIK~InUB
345 33 CONTINUE
146 KI-0
347 00 45 MW13
148 44Au@.
£49 NSA-09
ISO NOA-0.

152 "51100-

154 00*46 K-I*NP41
155 KlwKI,1
156 DG=C4IKIS
157 DO7CSIKI)

ISO 08UC64KII
359 UA-GAMK
160 US-GUIK)
363 H4As06*UA4N4A
162 S4SAsO7*UA#NSA
163 "GASOI*UA4NGA
364 N4iO6*U8+H4§
165 M5S!?*U84445
I " H66uD8*U6+*N6S
£6? 46 CONTINUE
160 64AIM41nN*A
369 GSA4IN)H5A
370 66AIM)m"6A

171 6419(M)-"40
172 65U(M)NHSB
13 G65(M)=H6U
£74 45 CONTINUE
375 IFISCP*NE*41 Go TO 4v
£76 AewO.anPI2*tII
£77 06-29001

17 00 63 Ku1.t~PI
&so Alm*40CMI
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too 9=040C3(K)

log IF(A.LTeT62J 60 TO 66
163 07-0.
184 00 6S LI.*NT
185 D7-D7+AT(L3/5OATfZ?(LI*AI)
986 65 CONTINUE
167 G0 TO 66
l68 64 A I A2.44X(K I* I*
169 D7=06*ALOG(AI+SaAT(5.,AI*ASIE
190 66 0Su0S..A(K)*O7
195 63 CONTINUE
t92 AI=.S*A2
193 A2-6 o 'A 1
194 08=-P 12*O802*/R I* tfG(A2)4A2*SLOGA I I)
195 00 67 M19H3
196 G5A(tN308465A1N1
197 67 CONTINUE
196 GO TO 47
199 41 00 25 N11M3
200 64AIM(NO0
201 GSAINIO.9
202 G6A(M)inOo
203 G40(N1-Ge
204 656(mlo@.
20S G69(m).@.
206 25 CONTINUE
207 00 13 LuloNT
206 A1042ILS
209 R4=At-43
210 Z4uZ21L)-Z3
211 Z4aR4*R4*Z4*Z4
212 R4=R3*Ai
2t3 00 17 X-19NPIHE
254 R=SGRT( Z4#R4*C3tKS I
its Sm--SgN(Rb
216 CS-COS(R)
217 GA(KI-C#MLXCCS* SHIM
258 17 CONTINUE
219 06.0.
220 IF(R62oLU.Z4) GO TO St
221 00 62 K-I*%P~t
222 06=D64A( K)/50RTIZ4,R4*C21Kbl
223 62 C0NTINUE
224 Z*=3eI1S93.fORTIZ4~M4l
225 06.-P I2*06*ALOGI Z44SORT( 1.4Z4*Z41)1SRft145
220 51 At-ATIL)
227 A2=XTtLl*At
226 KIG0
229 00 30 M-04
230 USSO.
231 U-00
232 U700
233 00 32 K-1.NPSII
234 UA-GA(K)
23S KtvK141
230 US-C4(K1 )*UA*US,
23? U6*CS(KI I*UA4U&
230 UY-C6($Cl )*UA#U?
239 32 CONTINUE
240 U000,+U0
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241 G4 A 14)-A I*US *64AIN I
9242 GSAI 04 )A I*U6*GSA13
243 G6 A(04 )=A I*U?*G6AI 141
244 6484 MI=A 2*US*O6464N3
245 SSW %In A2*u6GSDIM)
246 G684MlA2*U7.6484N8
247 30 CONTINUE
248 13 CONTINUE
249 47 At-Oft(IPS
250 UAaAI*U3

252 A2z0(IPI
2113 O6-A2*02
254 07in09*Ai
255 O8mDIOA2
254 Jm-JN
25? 0O 31 "019111
2116 FNM4*N4
259 AtIFMSDN(IPI
260 6NSAaGSAINS
263 HS5inG5sall"
262 H4A-G4A(ND*WA15
263 H46nG4f3lM),HS8;
264 S6A46A(Mb
365 fl68-G6Uf Ni
254 U7-UAIISA#UGS4A
267 US-UA*H5644J6*H48
2"6 tJ5=U-US
269 UGUU7,U8
270 uyin-ui*N4A
271 US806*146A
272 U9-O6*H66-AtftA
273 UC=O?s( 46A*04*14663
274 UOEFt4*DS*M*h
21'S Kiu1P*Jm
274 K2=Kt*t
27? K3-KI+N
278 K4-K2+N
279 KS=K2,NT
260 K6uK44MT
263 K7mK3*N2M
262 KSu114*N2N
263 GO TO (1362091919KO
204 t6 ZCK6IaUS4u9 301 ZCK6)zUS+Ug
265 1Ff IP*EO.11 GO TO 21 302 1FfIEPsE~osi GO TO 24
266 ZCK3DuZ(N3)*.U6-U7 303 ZKiC)nZ(KI)*US6U?
267 ZEK7)=ZUCI*UE-uO 304 Z(K3I.Zf K3)+%-U7

as 26 Ff IPeEOeNP) 6O TO 22 30S 24 KT)=Z(K7D*Xl-#U
269 21 ZIK4)IU6*U? 306 1Ff IPaEO.NPD GO TO IM
290 Z(IC6Duuc4uo 307 24 ZIIZZ(K2l*US5U7
291 Go To 22 306 26 K4).uS*U7
292 t9 Z4fSlS-Z4KSD.,IS-U9 309 2 Ks)=UC*UD
293 1Ff IP.Ea.11 Go To am 310 22 Z6 K6#NT) =U21000SINSAD4N5H61DA I *U
294 zIKIDzIK3I.US*U7 3 11 JMOJN.N2

295 21K?RUZfKTI*UC-UD 3 1 . 31 CONTINUE
294 3Ff EPoEO.NPD GO TO 22 313 14 CONTINUE
29? 23 ZlK21uZ(K2S#US-U? 34 JNSJNON

296 21 Kaluuc#UO 315 is CONTINUE
299 GO TO at 316 ItETURN
300 20 ZlKS)MZ4RS34Uq 317 END
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III. THE FUNCTION BLOG

The function BLOG(x) calculates log (x + /I + xz) for x > 0.

If x is appreciable compared to 1, the FORTRAN supplied subroutine for

the logarithm suffices. However, if x is much smaller than 1, this

subroutine fails because of excessive roundoff error. From formulas

700.1. and 706. of Dwight [61,

1 1"3 ,4 -1.3.5 ,6 + x 2 < 10
log(x + /1-7T) ,x(l - x2 + 24----- x 4 6.7 x 6+ x..) < 1 (150)

2-3 2-4-5 2-4-6-7

If x < .1, the approximation

2 4
-x+3x

log(x + vl"i) = x(1 - 3-+ (151)
6 (151

incurs an error of less than one part in 107. The function BLOG(x)

uses the FORTRAN supplied subroutine for the logarithm for x > .1 and

(151) for x < .1.

001-_ LISTING OF TiE FUNCTION OLOe

@02 FUNCTION BLOGMXI
003 Ii(XOGTOeI) GO TO I
004 X2-X*X
@0S 8LOGu(. *O TS*X2- * 1666671 OX201. IEX
006 RETURN
007 1 SLCG-ALOG(X*SQRT(I.*X*Xbb
D0 RETURN
009 END
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IV. THE SUBROUTINE PLANE

The subroutine PLANE(Ml,M2,NF,NP,NT,RH,ZH,XT,AT,THR,R) calculates

the elements of the plane wave excitation vectors according to (124)-(127)

and (132)-(133) and stores them in R. R is the only output argument.

The rest of the arguments of PLANE are input arguments. There are NF

angles of incidence 0t of (110) and n - Ml, Ml+l,...M2 where Ml > 0.

The Kth angle of incidence resides in THR(K) in radians. For the first

angle of incidence and for n - Ml, storage in R is as follows.

tE)V i in R(i)ni

-V 0 in R(i+NP-2)
ni (152)

v to in R(i+N)

Voo inR(i+N±N-2)-- - .
ni . . ..

Here,

N - 2*NP-3 (153)

The minus signs are attached to V oni and Vto in (152) so that, accord-

ing to (1-100)and (1-104), the vectors stored in R will be measurement

vectors. For the Kth angle of incidence and for n > Ml, the storage
arrangement of , _Vn -Vnt, and Von is still the same as indicated

ni' ni' ni' ni

above, but the storage area now extends from R(2*N*((K-1)*(M2-Ml+l) +

n-Ml) + 1) to R(2*N*((K-I)*(M2-Ml+l) + n-Ml+l)) instead of from R(l) to

A R(2*N). Table 3 relates the fourth to ninth arguments of PLANE to

variables in Part One of the text. In Table 3, p(t ) and z(t ) are the

values of p and z at t -t for i 1,2,...P.
i
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Table 3. Fourth to ninth arguments of PL.ANE

Argument Variable in
of PLANE Part One

NP P

nT

RH kp(t 1) kp(t 2).... kp(t P)

(n) (n (nT

AT A1 '2 AT

Minimum allocations are given by

COMPLEX R(2*N*NF*(M2-Ml+l)), FA(M2+3), FB(M2+3)

DIMENSION RH(NP), ZH(NP), XT(NT), AT(NT),

THR(NF), CS(NF), SN(NF), R2(NT), Z2(NT)

where N is given by (153).

The index IP of DO loop 12 obtains p in (124)-(127). DO loop 13

puts. of (134) and k of (135) in R2(L) and Z2(L), respectively,

for Z - L. The index K of DO loop 14 obtains the Kth angle of inci-

dence.

The index L of DO loop 15 obtains Z. in (132) and (133). Line 48

puts sin ein X. Lines 49 to 73 calculate S and BJ(m-2) so that
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BJ(m+2) - S*J (k sin 0t), m = MI-I, Ml, M2+l

m t

m # -i

If the argument of the Bessel function J in the above equation doesm

not exceed 10- 7 , lines 50 to 54 use the approximations

0,-m#O

Jm m'

m I, m=0

in order to obtain BJ(m+2) and S. The purpose of lines 56 and 57 is to

sin -8
obtain M so large that IJM-2(kP sin @t)I is roughly 10- . Line 58

assures that M is at least as large as M2+3. Lines 59 to 67 start with

JM- 2 (x) = 0

M-3 (x) 1

and use the recurrence relation

Jn-lX) 2n Jn(x) - Jn+l(x)

taken from (9.1.27) on page 361 of [12] to calculate J (x) for n M-4,

M-5,... 0. Lines 68 to 73 use

1 - J0 (x) + 2J2 (x) + 2J4 (x) + 2J6(x) +

taken from (9.1.46) on page 361 of [12] to obtain the normalization

constant S. As the index of DO loop 15 changes, DO loop 25 accumulates

F and F of (132) and (133) in FA(m+2) and FB(m+2), respectively. If
ma mb

F_l,a and F-l,b are needed, lines 83 and 84 use the formulas
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F -I,a F la

F- ,b F lb

to store F l,a and F l,b in FA(1) and FB(l), respectively.

With reference to (124)-(127), the index M of DO loop 27 obtains

(n+2). Inside DO loop 27, UA is jn . The variables U2, U3, U4, and U5

calculated in lines 95 to 98 are needed in order to assemble the right-

hand sides of (124) and (126). The variables Kl, K2, K4, and K5 are the

subscripts of R for V ytO V t  and Vtp , respectively. LinesVn,p-l' np' n,p-i np

102 and 103 obtain (125) and (127). The branch statement in line 104 is

to t
necessary because neither V nor V exists for pl. In linesn~p-1 n,p-l

to t105 and 106, V and V are incremented. The branch statement in!''n,p-i n,p-l

line 107 is necessary because neither V nor Vto exists for p = NP-I. In

to 
np np

lines 108 and 109, V and V- are referenced for the first time.
np np
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001c LISTING OF THE SUBROUTINE PLANE
002 SUROUTINE PLANE(MISM$2,NF.NP.NT.RH.ZH.ET.AT.ThR.UlI
003 COMPLEX R1240)oU.PU1.uA.UB.FA(10b.FB(Il.P2A.F2S.U1iA.P1S.U2.U3.U,
004 COMPLEX u5%CMPLXI 005 DIMENSION RtI43I.ZH(431.KT(1O1.AT(t01.TH431.C5431.5N131.R21 0)
006 DIMF.ASION Z2C10)9BJI501
007 NP=NP-1
008 "Tamp-&

0019 N-1MT+MP

*to N2=2*0
Oil DO &I KuI.NP
032 X=TNR(Kl
033 CS(xlccscs(
014 SNIK)=SIN(X1
015 41 CONTINUE
016 =60)
017 Ut=3.t4tS93*U*NIt
Ole M3-M141
039 M4=N2*3
020 IF(MI*EO*@1 03-2
021 MS=MI*2
022 M6=M2+2
023 00 12 IP-190P
024 KC21P
025 E=gpI*1
026 D~5(HI-Ng3
027 0Zw.5*(ZH(l)-ZH(IPDI
028 01=SGQT(OR*DRtDZ*OZD
029 Rtu.25*IRH(I)4R411P3)
030 Zt=.5sCZH(tI.zl1(tp))
031 DR=.5*00
032 02=DR/Ri
033 D0 13 LI.WNT
034 R2(LISRI GOPeXTIL)
035 z21L1=z1,0zOXrIL)
036 13 CONTINUIE
037 00 14 KtN
038 CC=CS(Kj
039 SS-SNE K)
040 03-DR*CC
041 O4-OZ*Ss
042 05.014CC
043 00 23 #4uM3eN4
044 FA(MImO*
045 F8(M)0O.
046 23 CONTINUE
047 Do 15 L-l1t4T
048 X=SSOR2IL)
049 IF(X@GTe9SE-7) G6 TO 19

050 00 20 M3*04
051 UJ(I-Oo
052 20 CONTINUE -

053 sJ(2ba.I.
054 5=1. 0
095 GO TO IS
056 19 M26*X*4-29/K
057 IF(X*LTeeSI MmII.SG ALOGIOIX1
056 IF(M*LT*M4) HUN4
059 BJ(m~wO6

060 JMftm-1
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062 ajgjm)I;,.
062 00 16 J-4.
063 J2=JN
064 JM.=j*-1
@65 JI=JN-i
066 eJ(JMb=J£/XoajcJ23-eJtJM*21
067 16 CONTINUE
066 s-0.
069 IFCM*LE.41 GO TO 2.
070 00 £7 J=4sM.2
073 SmsSBj(j)
072 17 CONTINUE
073 24 S-BJ(2342*S
074 IS ARGwZ24LI*CC
07S UA-AT(LIjS*CNPLXICOSIAmtGI.SEN£ARJII
076 US=XT(L3*UA
077 DO 25 1NMS.M4
ale FA(K)=Sj(W£*UA4FAIH)
079 FB(M1=8JIM)*US+F6(N)
060 25 CONTINUE
06t 15 CONTINUE
*B2 IF3M1.NES01 GO TO 26
063 FA~c1)A43A
084 FS(I1mF6£33
@65 26 UA-U1
066 DO 27 N-MSeN6
067 M7-l-
086 NM6M*t
069 F2AwUA*(FA(NS£41FAIM71)
090 F2S=UA*(F8( MSI4PS£M?1)

091 US-U*UA
092 F I AUB* I FACH8-FACK711
093 F I SU6*f FS4 M6-F8(M71 I
094 U4D04*UA
095 U2i03*FIAU4*PA4IN
096 U3=D3*FP1UU4'P6CI
097 U4m0R*F2&
096 US-DR*F23

099 KS-K2-1
to0 K*4KI*N
lot K592+N
102 R( K2*MT )-DS(P2AG02F2Bl
103 R(K5.N1)uDI*(F3A#02SF&81
104 IF( [P*EO.I3 GO TO 23
105 Rt(iC)zRiKL)4U2-U3
106 RfK4IuR(K41*U*-US
10? IFIIPeEOeNPD GO TO RE
t06 21 R(SC2luU2*US
£09 RcKs)mU4#Us
IS0 22 K2-K2+N2
li1 UA-US
112 27 CONTINUPE
13 14 CONTINUE
136 12 CONTINUE
Its RETURN
530 END
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V. THE SUBROUTINES DECOMP AND SOLVE

The subroutines DECOMP(N, IPS, UL) and SOLVE(N, IPS, UL, B, X)

solve a system of N linear equations in N unknowns. The input to

DECOMP consists of N and the N by N matrix of coefficients on the left-

hand side of the matrix equation stored by columns in UL. The output

from DECOMP is IPS and UL. This output is fed into SOLVE. The rest of

the input to SOLVE consists of N and the column of coefficients on the

right-hand side of the matrix equation stored in B. SOLVE puts the

solution to the matrix equation in X.

Minimum allocations are given by

COMPLEX UL(N*N)

DIMENSION SCL(N), IPS(N)

in DECOMP and by

COMPLEX UL(N*N), B(N), X(N)

DIMENSION IPS(N)

in SOLVE.

More detail concerning DECOMP and SOLVE is on pages 46-49 of [13).
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Sol c LISTING OF THE SUOROUWINES DECOMP AND SOLVE
002 SUBROUTINE OECONPtN.IPSL
003 COMPLEX ULII960019PI1VOT91911
004 OIMENS9ON SCLE4O)*9PSE4@I
005 00 S IsleN

006 IS(W-0

006 JIu3
009 00 2 J-16N
010 ULMU-AES(REALCULEJiII I*ADSSAgKMAGE.LWIIIP
oil J1=Jt*N

012 IFEAN-ULNI 1.2*2
013 1 RN=ULM

04 2 CONTINUE

016 5 CONTINUE
017 NmIUN.1
01e K2U@
019 00 1 7 Kw 19 N14
020 BIG-Oo

.102t DO 11 IuK914
022 tpugpstl)
023 IPKItP*K2
024 St ZE= (AS(REAL UL( IPK II ASIAINAG(L9 IPK 1) 1*SCLII9PS
025 IFISIZE-81G) 11.11.10
026 to BIG-SIZE
02? IPVmI
026 It CONTINUE
029 IF(IPV-K)I14.15*.4
030 14 J-IPS(KJ
031 tPS(K1=9PSIIPVI
032 IPSCIPVI-J
@33 1 S KPP=IPSIKI*K2
034 PtVOT-ULEKPPI
03S KPI=K+1
036 DO 10 I-KPION
037 KPOKPP
038 IP-IPS(Il#K&

039 Em~-UL( I P MpgVOT
040 18 ULEIPI-EN
041 00 16 J-XP19N 001 00 1 J-1 1141
042 IPaIP#t4 @62 SUN=SUM*ULIIploxcjs
043 KPOKP#N 063 1 IPmIP*N
044 UL4IP1-U4.IPEOW.IKpI 064 2 XfI) so( I PSI-Sul
045 16 CONTINUE 065 K2-NOCN-I1
046 K2=K2+N @66 IP-IPS(N$*K2
04? 17 CONTINUE @67 Xf N1 -X N )PUL(I P)
046 RETURN 060 00 4 111AC~n2*10

01 COMPLEX U~IO)S4jX4j N01 IPI=IPSEII.KE
052 DIMENSION 9PS440 072 apt-[Ii
@153 NPI-N*1 073 SUM-s.
@54 IPUIPS411 @74 I~wIPS
055 x(b1141P) OTIS 00 3 JuspI.N
@516 00 2 1-20N @74 aputpoh
@57 IP-11PS1111 077 3 SUN.SUN*w.EgPlsRIjl
@50 Ipae 076 4 Xf t)-(Xt I -SUN) OULI apal
6159 IMISI-9 079 RETURN
000 4111141,0 END
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VI. THE MAIN PROGRAM

The main program calculates the electric current induced by a

plane wave axially incident on a perfectly conducting surface of

revolution. This plane wave is given by (108) with et = 0 or wT radians.

The components of the electric current are obtained from (140) and (141)

in which I I and I Ipare the pth elements of the vectors 1I1 and I which

satisfy (6) for n-l.

Punched card data are read in according to

READ(l,15) NT, NPHI

15 FORMAT(M1)

READ(l,lO)(XT(K), K=l, NT)

READ(1,1O)(AT(K), K1I, NT)

10 FORMAT(5E4.7)

READ(1,10)(X(K), K-1, NPHI)

READ(l,10)(A(K), K=l, NPHI)

READ(1,16) NP, BK, THR(l)

16 FORMAT(I3, 2E14.7)

READ(1,18)(RH(I), I=1, NP)

READ(l,18)(ZH(I), I=1, NP)

18 FORMAT(l0F8.4)

Here, BK is the propagation constant k iiadT (kL).J. ."e angle of

incidence e0 in radians. THR(l) must be either 0 or IT. The input

variables NT, NPI, XT, AT, X, A, and NP are defined in Table 1.

These input variables can therefore be fed directly into the subroutine

ZMAT. However, RH and ZR must be multiplied by BK before being fed
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into ZMAT. More precisely, RH and ZH are values of p and z so that

the product of RH with BK is the RH in Table 1, and the product of ZH

with BK is the ZH in Table 1. The sample input and output data listed

along with the main program are for the spherical shell of Fig. 10.

Minimum allocations are given by

COMPLEX Z(N*N), R(2*N), B(N), C(N)

DIMENSION RH(NP), ZH(NP), X(NPHI),

A(NPHI), XT(NT), AT(NT), IPS(N)

where N = 2*NP-3.

With reference to (6), line 41 puts the moment matrix in Z.

Line 46 puts the excitation vector V of (6) and the negative of the

excitation vector of (6) in R(l) to R(2*NP-3). These excitation

vectors are for the 8-polarized plane wave (108) and their elements

te
are called vt and Vl . Storage in R is according to (152). Now,

_vto and V0 are also stored in R, but are not used. Lines 47 to 52

put VI and in B. Lines 55 and 56 put the solution vectors Iand

II to (6) in C. DO loop 24 prints out (140) at 0. DO loop 27

prints out (141) at * = 900.
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001 LISTING OF THE M4AIN PROGRAM
@02 c THE SUBROUTINES ZNAT* PLANE* DECOMP. AND SOLVE ARE CAILEO.e
003,#PG14 Joe £XXXX.XXX.1.e23,@MAJrZ.JOEe9mEGgONu2@@K
004-f/ EXEC WAIF9V
@05//fGa.SvSIN 00 6
@ 06 S JOS MAUIZTIME-SePAGZS-60
00? COMPLEX Z(360619Rf24@1.8Ie01%Cf401.u9CI
06 DIMENSION TNR(3).RH1433.ZN1431.XE48I.A(463.XTIIO).ATEIOI.1PS44@9
009 READ(I* IS) NiOMPHI
@30 15 FORMAT42131
oil VRIIE(39301 NT9NPHI
032 30 FORMAT(* NY NPHIO/IX*13*I55
0t3 READ(IIIXT(SCI.Kul.NT1
014 RfADt1IOIATIbKin1.INT)
@15 10 FORMATISE14971

@16 WR(TE(3. II1IXT(K19KZ3.NT1
017 WQITEI39I2IArtK)9K1.*NV5
016 I1 FORMAT49 XTOAIX*$E14*711
@19 12 FOWMAT(9 ATGZ(IX*5E1497Ib
020 PEAD~tII.I)fXtK3.Km3NPH1I
02k REAOII.1OI(A(K1*K-9%NPHI1
022 WRITE(3.331IXfK1*.I1NP19j
023 WRITE(39I*I(A(K).Ks3.NPHI1
024 13 FORMAT($ X'/(1X*5E94s71%
@25 14 FORMAW( A'1IIX.5EI4*701
026 READ4316t NPoSKvTIIREII
@27 t6 PORMAT(t3*2EI4*7I
@28 WRITE93,171 NP.BK*THR(II
029 17 FORMAT($ NPO.6X.'0W'.12X.'VR'/3X.I3.26194.7)
@30 READ(t.1O3(RHt91I.IINP$
031 READCI.I6II(ZhCiI.Iinl.PI
032 15 FORMAT41OPS.4i
033 WPITEt3.9IIRHtI)1m1.1)P
034 WRETE(3.20IEZH(9)III9NPf
0 35 19 FPMATfI RH9#ffIX910F6.451
@36 20 FORMAYC' Z"4/1I.I9FS.411
037 00 28 J3.NHP
@35 RHCJ)zIK*RHIJP
@39 ZN( s)=eK*ZlqtJ)
@40 28 CONTINUE

@43 CALL ZtATE1919NP*NPI*E.VRH9ZH9X9A9XT9AT9Z1
@42 141="P-2
043 N02MT*1
044 WRITE93*291(ZIJ9nI*N1
@45 29 FORMAI Z%'IIX96EIIs41I
@46 CALL PLANE43.1.1.NP.NT.RH.ZH.Xr.AT.THR5R
047 DO 22 JmI.N1T
040 BIJI)RIJ)
049 jI-J+NT
050 ofJiI-REJaI
@51 22 CONTINUE
052 UIN)-RIND
053 WRITEI3.23)ISEJ1I3N1
054 23 FORMATI' I'/ItIXv6E9I9415
@55 CALL OECOMPIN99PSZf
@84 CALL SOLVEtN9IPSvZ9S.C1
@57 N006
@66 VRiTE(39211
069 21 PORNAT(O REAL JT IMAG JT 14AG JT9 I
@60 DO 24 JuIeNf

67



062 c2ucAUS(Ctb
063 VRITEI3*2S) C&*Ct

06' 25 FORMATfIXo3EI&43
06S 24 CONTINUE
066 WRITE13#26)
067 26 FORMATCO REAL JP INAG JP NIAG JP* I
066 NPONP-1
069 D0 27 J=IsNP
070 C1-4.C(R(J3'R"4(J411b*UOC1tNV5
071 C2=CAIBS(Ca)
072 WPITE(39251 CloCt
073 27 CONTINUE
074 STOP
075 ENO
$ DATA

2 20
- 0.S?73503E0 O .S7735@3E*00
Oet*OOOOOE+01 0.1000000E*01

- Oe993t2e6E+00-0.9639719E400-0.91223446E00-0.6D391 I70E400-0.7463319E.90
-0.636O537E*O0-0.5l0s670E+00-0.3737061e.00-0.2271s59E*O-.76S26S2E-1I
O.7652652E-01 0*22776S9E*00 0.3737061E4000 0.530670E400 0.63605376*0
0*7463319E+00 0.839w 3705400 0.91223446+00 0*9639799500 0.99312665*00
Op 1769401E-0 I 0.4060143E-01 09626720SE-01 0.S327674E-01 8*101930&E*
3olI8i945E.00 0o1316686E5400 0.142096&E400 0.14917305400 0.15275349+00
0. 1527S34E+00 0.14qt730E400 0.1420961E400 091316886E+00 0ol1619455400
0.10193015400 0.83276745-01 0.62672055-01 0.4060143E-01 G.17614016-01
It 0*12S6637E*01 0.00000005400
0.0000 0&2334 0.4540 0.6494 0.8090 0.9239 09977 0&9969 0e9511 006526
0*7071

-1 .0000 -0.9724 -0&8910 -0.7604 -0.5876 -0.3627 -0.1564 *0785 0.3090 0.5225
0.7071

$ STOP

PRINTED OUTPUT
NT NPHI

2 20
Kr
- C.S?7.353E*00 @.5773503E*00
AT
0.IOOOOOOE40t 0.1000000KO01

-0.9931286E.00-0.9639719E.@0-0.9122344E400-@.6391170E40-0.74633195400
- 0.6360537E*00-0.Si 066705400-0.3737061E*00-0.227765S9E400-0 .76526525!-01
0.76S26525-01 0.227765954*00 0.37370615400 De5100670E+00 0.63605375490

0.7463319E*00 0*6399170Z+00 0.9122344E.00 0.96397195400 0.993126GE*00

Oo1761401E-01 0.4060143E-09 0.6267206E-01 096327675E-01 0.10M9301500*1 0.11194SE*00 0e1396886E+00 0.1420961E400 0.14917305400 0*152?S34W606
0.35275345400 0.14917355400 0.1429961E400 09132686E500 0.11819455400
0.1019301E*00 0.63276755-01 0.62072065-Ol 0.4060143E-01 0.I76140IE-01
up SK TM
It 0.125603754,01 0.00000005400

0.00010 0.2334 0.4S40 0.6494 0690 0.9239 099877 0.9949 0.9531 0.6516
0.7073

214
-190000 -0.9724 -0.6910 -0.7604 -0.5670 -0.3627 -0.1504 0.0765 0.3090 0.5235

0.7071
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O.S3636-01-O077BE*S3 Ow7552E-@S 0*2574EI01 *o6344E-09 Do.77231!#"
O.*9tgE-0I 0*2893E400 0.3460E-01 091491E*OO 0.212GE-@I @.9127-0t
O.1024E-04 Oo6077E-@3 0*195*E-@2 @.5a93E-@s-o.3673E-02 0.4602L-Ol

-OoI3*6E4O2 o.8703E-09 0*2413E*OI 0*8494E-01 0942SOE*O0 @.VSSSE-@S
0&9369E+00 0.7103E-01 097633E-01 0*6293E-01 @.S943E-01 *.5265e-63
0. 5437E-01 3 o*432GE-01 0.5275E-@I @.SS5E-01 S 262E-@ I 0*M46-01
0.5134E-01 @.2063E-OS

0*315lE+00-O. S38SE,00 0*33E*@0-0*V352E*00 0*4@..E*@-@.s946E6*
Ou3966E*00-0*365E+@0 0.3074E@00-@. IG9E#0* 0. uSS4E.O0-0e376-0&

- 7037E-01- 09 1748E-0 I-Oo25079! 000-0o I I 52E+00-0 *3766E*@0-@.S*"3E44S
Oo87S5E4O0 Oe3070E#0@ 0*SIZ7E*@* 0*3GSOE*00 0*?99E'@@ S.*?49E
0*6911'E*O0 0*6161E*SS OoS279E*00 097602E+00 0*3000E*00 0*?73O"
0#4503E-09 O.5236E#00-0.219E+0 09097SE*@0-@.4S98E*@@ 0*.031E644

- 0.6438E*00 0.6653Ee@@
REAL JY $NAG Jr NAG JI

C&5142E*01 091998E+01 O&IO55E*o
09818?E+00 O.1199E*01 0*14SIE*02
Oo3432E*O0 091163E4-@I 0*1292E*@S

-O.2206E*00 O.5035E#OI G.I@SE+01
-0.7GE*0O 0*7027E400 0.IIOX0IO
-0*1222E+01 0.4161E*0@ 0.32919*@3
-0*1474E+01-0*6S4GE-02 0*164E*@S
-0*1AS9E*01-0*38??E#00 0*153SE+03
-0.1248E*09-0*6133E*0@ Oo23919!*@I

REAL JP SNAG Jp NAG JP
-0.tZO9E@I1-0. IIOAE#01 O.I*92LE*@
-OoIO76E*OI-0*1094E#01 0.15346#09
-0.9486E400-0*941S5*00 0.1337E*@I
-0.050SE*O0-0o?213E400 0.3 121E*@I9
-0*a92SE+Q0-04SG3E+00 @.I0971EOI
- 0. IO2E*OI-0. 3341E.0S0. 15SI29#@S
-Owl480E*0S-0.3604E400 0.1928E#@S
-Qo2002E*0t-0sT3SSE*00 0.21336001
- 0.2629E+01-0. 1433E*01 0.29954081

-0.6385E#0S-0.5l79E*@1 0*S2199#011
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