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PART ONE

SOLUTION PROCEDURE AND NUMERICAL RESULTS

I. INTRODUCTION

? The purpose of this report is to develop an efficient numerical
{

solution to the E-field integro-differential equation for electromagnetic

excitation of a perfectly conducting body of revolution. This numerical

solution is obtained by applying the method of moments to the E-field

equation. The E-field equation states that the tangential component of
the total electric field is zero on the surface S of the body of revolu-
tion.

The problem is stated in Section II of [1] and the solution is

similar to that in Section IV of [1]. Except where otherwise indicated,

the notation is the same as in [1].

Equation numbers drawn from [1] are

preceded by 1-. For instance, (1-40) denotes equation (40) of reference

(11.

The following differences exist between the present solution and

that in [1]. 1In the present solution, the approximation to the generating

curve of the body of revolution consists of half as many straight line

segments as in [1].

Otherwise, the t directed expansion functions are the

same as those in [1]. However, for ¢ directed expansion functioms, the

pulses used in [2] are adopted. Here, t is the arc length along the

generating curve and ¢ is the azimuthal angle. The testing functions are

the complex conjugates of the expansion functions. For calculation of the

elements of the moment matrix, each integral with respect to t' over each

straight line segment is evaluated by using nt-point Gaussian quadrature

1
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and each integral with respect to t over each\straight line segment is
approximated by sampling at the midpoint of the line segment. Although

t and t' are both arc lengths along the generating curve, t denotes
integration over a testing function and t' denotes integration over an
expansion function. The former integration is called a field integration,
the latter a source integration. As in [1], n¢-point Gaussian quadrature
is used for the integrativn with respect to ¢. However, the method [3] of
eliminating the singularity is used to fortify the Gaussian quadrature
integrations with respect to t' and ¢ whenever the source segment is

sufficiently close to the field point. For calculation of the elements of

the excitation vector, n

T-point Gaussian quadrature is used for the t

integration,

With regard to ¢ directed testing, calculation of the moment matrix
by sampling the t integrand at the center of each straight line segment is
equivalent to point matching. However, for t directed testing, this calcu-
lation can not be viewed as simple point matching because each t directed
testing function extends over two intervals and therefore must be repre-
sented by two Dirac delta functions instead of one. Furthermore, the
electric charge associated with each t directed testing function is also
represented by two Dirac delta functions.

The method of solution formulated in Part One of this report is
implemented by the computer program described and listed in Part Two. The
present computer program takes almost twice as long to compile as that
in [1]. However, for axial incidence and for moment matrices of roughly
the same order, the present program with n, = o, = 2 and n¢ = 20 executes

almost as fast as that in [1] with N¢ = 20, For moment matrices of the

2
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same order, the present computer program probably executes faster than
that in [2] because the one in {2] uses twice as many source segments and
twice as many field points. For oblique incidence, several moment matrices
are required. The computer program in [1] calculates the moment matrices
one by one, that is, each moment matrix is calculated from scratch. How-
ever, the present computer program takes advantage of the fact that some
intermediate calculations are common to all the moment matrices. Hence,
if there is room enough to store all the moment matrices simultaneously,
the present computer program should execute much faster for oblique inci-

dence. Results obtained from the present computer program are generally

more accurate than those obtained from [1], especially for bodies of revolu-

tion with edges.
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ITI. METHOD OF MOMENTS SOLUTION

The boundary condition that the tangential component of the total
electric field is zero on S is expressed by (1-40) and supporting equa-
tions (1-41)-(1-43). Following the method of moments, we approximate the

electric current J on S-.by

- t .t o ¢
J ngj (I 305 * Inglns) 1)

and substitute this J into (1-41). In (1), Jt. and J¢ are known expan-
= —nj —nj

sion functions and Ii and Iij are unknown coefficients to be determined.

3

The expansion functions Jc. and J¢. are defined by
nj nj]

T (t) 1,2, ... P=2

s
]

t 7 ind
J°. =u e (2)
noTtooe n =0, +l, +2,...
P.(t) | =1,2, ... P-1
30 =y, L I . (3)
T ey n=0, +1, +2,...

where_gt and u, are unit vectors in the t and ¢ directions, respectively.

¢
The j which appears in the argument of the exponential in (2) and (3) is
not to be confused with the j which appears elsewhere in (2) and (3).
The former j is V=1 and the latter j is the subscript which goes from 1 to
either P-2 or P-1. The function Tj(t) is the triangle function shown in
Fig. 1 and p 1s the distance from the axis of the body of revolution. The
function P,(t) is the pulse function shown in Fig. 2 and pj is the value

3

of pat t = tj where tj is the center point of the domain of the pulse.

The purpose of the scale factor 1/pj in (3) is to give (3) the same dimen-

sion as (2), namely, 1/length. The pulse doublet é%-Tj(t) in Fig. 3 is
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used later on in the method of.moments solution. In Figs. 1, 2, and

3, t is the arc length along the generating curve. It is assumed that

the generating curve consists of P-1 straight line segments where P is

an odd integer greater than or equal to 3. The jth such segment extends

Py S

from t; to t;+1. Its length is Aj' The expansion functions (2) and (3)

-

are especially appropriate if the body of revolution is an infinitely

thin perfectly conducting surface with edges at both ends of the generat-

ing curve. This is true because the t directed electric current is supposed

to approach zero at an edge whereas the ¢ directed electric current might

vy
P o, TOOPRRE P ARRt, .

| grow large there [4].

t ¢
Testing functions ﬂni and 'uni are defined by

T, (e) -jné 1,2, ... P-2

e %)
Tod P 0, +1, +2, ...

=
[}

P, (t) - i=1,2, ... P-1
o,

1 n

(5)

0, +1, +2, ...

After substitution of (1) into (1-41), the dot product of (1-41) is

taken with each testing function. These dot products are then inte-

grated over S. As can be derived by retracing the development (1-40)-

(1-65) with (1-46) and (1-47) replaced by (2)-(5), the resulting matrix

equation is

3 ztt zt¢ [ft Vt!

3 n n n n,

1 ; = {,n=0, +1, +2,... (6)
n n | n n

e e ‘-(_"-“"'J".’;_""ff‘ RO I



The matrix of the Zn's on the left-hand side of (6) is a square matrix

I
! i
4 called the moment matrix. The column vector on the right-hand side of
(6) is called the excitation vector. The jth element of f; is I;j and
that of T¢ is I¢ . The ith elements of vVt and 6¢ are given by
n nj n n
t 1 t i _
vni n I Hni « E°dS , i=1,2, ... P=2 7)
S
o JL([ @ .t - _
Vni n )] ‘Hni E"ds , i=1,2, ... P=1 (8)
S
where n is the intrinsic impedance andlgi is the incident electric
| field. The ijth elements of the Zn's are given by
|
E | - -
3 e tivz G342 )
= = 3 | 1 1 N '
3 (zn )ij j J_ dt I_ at' {x Ti(t) Tj(t )(Gssin v sin v
; £, t;
i
g + G,cos v cos v') - G 4 7 (t) Lo (t"} 9)
Y 7 7de 1077 dt' )
3 ot ! #2 o, ' ' q '
i 2 e m— R + —
éc (Zn )ij pi J- dt Pi(t) [- de' (k" p Tj(t )G6sin v nG7 ac Tj(t ))
" ti t'i
8 > (10)
i " L, [z pe ) q
A = — ' ' ' £
{ (Zn )ij pj J- dt I_ dt Pj(t Y (k" p Ti(t) G6sin v + nG7 ac Ti(t))
} , 15 an
1 "
t, t,
3 ' i+1 j+1
A ) ol __.']_.j I * ' 2 . 2
. = P,(t de'P, (e") (k G. -nG 12
; Il ) )1j 5165 . de P (t) ) j( ) (k"pp'Gg = n7Gy) 12)
‘ A ti tj
]
% where
]
!
,a',
7
. — gy
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G, =G, +G ¢k))

7 =6, %6
m
-jkR
G, =2 J ap S sinz(%) cos (ng) (14)
0
IkR
G5 = I d¢ R cos ¢ cos (n¢) (15)
b
T iR
G6 = J dé Y sin ¢ sin (nd) (16)
0
R= V(o'-0)2 + (2'-2)% + 4pp'sin? ) an

Here, k is the propagation constant, P is the distance from the axis
of the body of revolution, z is the rectangular coordinate along this
axis, and v is the angle that the tangent to the generating curve makes
with the z axis. The angle v is positive if p increases with t and
negative otherwise. The parameters p, z, and v depend on t. Their
counterparts p', z', and v' depend on t'. The ranges of values of i and
3 in (9)~(12) are such that the regions of integration therein move from
one end of the generating curve to the other end. It is understood that
n=0, +1, +2, ... in (7)-(16).

Note that the quantity G4 defined by (14) is different from that

defined by (1-62). The trigonometric identity
1=2 sinz(%) + cos ¢ (18)

was used to express (1-62) as the sum of (14) and (15). Expression

(14) is more suitable for computation than (1-62) because the inte-

grand in (14) is always finite.
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III. EVALUATION OF THE MOMENT MATRIX

One by one evaluation of the elements (9)-(12) of the moment
matrix is inefficient because of the overlapping regions of inte-

gration. For instance, both (Z;t) and (Z:i‘:)i‘1 contain integrals

i"l’j
- - tt
with respect to t over the ith segment (ti, ti+1)' 1f (Zn )i-l,j and

rtmiee Gale 4

tt

(Zn ) are calculated one after the other, these integrals must either

ij
be stored or calculated twice.

In this report, the contributions to (9)-(12) are accounted for
by regions of integration rather than b& matrix elements. Consider the

contributions due to the 2-dimensional region of integration ]

t <t<t

ad
A
T
A
~

This region of integration is called qu. Integrations in (9)-(12) are

i=p-1, s {i=p } and {%=p—1

i=p
rried out over A for {, or possibl .
carr ut ove J=q} pos y {ng j=q-1 J=q_1}

P4d

For all other values of i and j, no region of integration in (9)-(12)

i=p-1 i=p i=p-1 i=p
intersects A_ . Settin }, { }oand {[_ "} s ivel
nterse g g {j=q—1 s j=q-1} ’ {j-q » a j=q uccessively

in (9)-(12) and counting only the region of integration qu, we obtain

fer totl Lot )
= j J dt I dr'{k Ti(t)T (t')(Gssinv sinv'+ G7cosvcos v)-

z, )1j ) 3
t t
P q
d d [}
-Gy Ic Ti(t) Tl Tj(t )} (19
t t
ptl q+l
gory o _ L 'l ' ' d_ '
(zn )pj pp J dt Pp(t)L de'(k"p Tj(t ) G6sinv + nG7 ac’ Tj(t »
t

p tq (20)




[

5 t t
3 ey o L [P [T e aer T )G sin v + ne, LT (6) (21
; nq "o, ) | de'Py Pt T (£)Ggsin v + nG, o Ty(6))  (21)
9% t i
P q !
t_ t !
/ pt+l q+l :
3 o) = A f [ ' ' 2 4 - 2 1
% (Zn )pq ppoq ) dt Pp(t) ) dt Pq(t Y (k“pp GS n G7) (22)
‘ t t E
' |4 q
In (19) and (21),
i=p-1, p
i#0 (23)
1 i# P-1
1 In (19) and (20),
| j=gq-1l, q
; j#0 (24)
é j #P-1

? The asterisk (*) on the left-hand sides of (19)-(21) denotes the contri-
% bution due to integration over the region qu. Note that (22) is (12)
with ij replaced by pq. Because (12) has no overlapping regions of
integration, it is not affected by the change from calculation by matrix

elements to calculation by regions of integration.

Next, each integral with respect to t in (19)-(22) is evaluated by

R T L

using the approximation

tp+1
[ f(t)de = f(tp) Ap (25)

-
P
where f(t) is the relevant integrand and, as indicated in Figs. 1, 2,

and 3,

s
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(26)

A =t ,, -t 27
p (27)

Application of (25) to each integral with respect to t in (19)-(22)

gives

ktt q+l 2
(Z ) = jAp ) de'{k Ti(tp)Tj(t')(Gssin vpsin v' + G7cos v, co8 v') -

t

q
d d .
- G7[E;’Ti(t)]tp E;T'Tj(t )} (28)
(z¢t) =~ AP (t) +1dt'(k2T (t")G,sin v' + 2 G T t") 29
n pj ) 5{€)Ggsin v P, 7 dt' ) (29
tq
) qtl 2
(z ) = A J dt' P (t' )( T (t )G, sin v+ — G [ T (t)] )
P 6 P p 7'dt
t” q q, P
d ' (30)
¢ a+l 1%p! n?
z')y = 3jA_P_(t) J dt'P (t')( G, - G.) 1)
n “pq P P P - q pq 5 ppoq 7
q

where vp is the value of v at t = tp' Incidentally, v = vp for
t.<t< t;+1 because the generating curve was assumed to be straight
there. In (28)-(31), GS’ G6' and G7 are given, respectively, by (15),

(16), and (13) with R replaced by Rp where

- ooyl ey il &
Jeor-0)% + (2'-2)% + o p'sin’ P (32)

The range of values of i and J

where zp 18 the value of z at t = tp.




in (28)-(30) is, as inherited from (19)-(21), given by (23) and (24).
Application of (25) is only one way to obtain (28)-(31). Another
way to obtain (28)-~(31) is by approximating the G's in (19)-(22) by
their values at t = tp. This amounts to immediate rather than conse-
quential replacement of R by Rp in (1{)—(16). A third way to obtaiﬁ

(28)-(31) is by substituting the approximation

- 1
~ 1
Ti(t) 3 (Aié(t-ti) + Aiﬂé(t-tiﬂ)) (33)
Pp(t) ~ ApG(t-tp) (34)
d ~
I Ti(t) = G(t-ti) - G(t-ti+l) 3%

into (19)-(22). Here, 5(t) is the Dirac delta function. The approxi-
mation (33) preserves the value of the surface integral of the t com-
ponent of the t directed electric current (4) on the portion of S for
which

t <t<t p=1,2, ... P-1

0 <0<

where ¢a and ¢b are arbitrary. Likewise, the approximations (34) and (35)
do not alter the values of such surface integrals of the electric current
(5) and the electric’charge associated with either (4) or (5).

Equations (28)-(31) were obtained by using the testing functions (4)
and (5) and invoking either the approximation (25) or the set of approxi-
mations (33)-(35). Can a set of effective testing functions be defined
such that (28)-(31) can be obtained by using these functions and no auxili-

ary approximation? Testing functions could be defined by substituting (33)
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and (34) into (4) and (5), but the approximation (35) would still be
required in order to obtain (28)-(31). Unfortunately, the approximation
(35) is not consistent with the approximation (33). Hence, it is not

possible to trace (28)-(31) to effective testing functions.
d

The functions Pq(t'), Tj(t'), EZT'Tj(t'), v' and p' in (28)-(31)
are given by
Pq(t') =] (36)
p DY)

T (e =5+ — L, i=al (37)

q

_1y9-J
'&%T Tj(t') = "(—_%_ > j = q_]-, q (38)

q

v' = vq 39
p' = pq + (t —tq)sin vq . (40)

for t; <t' <« t;+l' Equations (36)-(38) can be obtained from Figs.

1,2, and 3. Equations (39) and (40) are true because the generating

curve is straight for t; <t'«< t;+1. Replacement of j, q, and t' by

i, p, and tp in (36)-(38) gives

Pp(tp) =1 (41)
1
T (e ) = 5 42)
Pt
1,01, = — (43)
P p

Substitution of (36)-(43) into (28)-(31) yields




ree fer 2 D20
@, )ij = jAp L dt {T a+ Aq ) (G;sin vpsin Vo +
t
q (_l)P"'Q"i‘jG
G, cos vpcos vq) - A } (44)
- fatl 2 -1y 32¢er-e ) 1% e,
(Zn )pj = - A J dt (-—2— Qa+ 3 )G6sin vq + SR )
e q Pa
q (45)
t_ p-i
+1 2 (t'-t ) (-1) nG
-1 N A R A ™
(Zn )1‘:l Ap ]_ dt (2 (1 + 5 sin vq)G6sin vp + 5 h )
r q qP
q (46)
q+l (t'-t ) 2
(Z2¢)pq = jA Jdt'(kz(l + —-—‘1— sin v )c - BT G,) (47)
t q
q
Equations (42)-(45) are rewritten as
2
xtt j k°A A
(Z ) =—2P24d 8 (Gsasin vpsin vq + G7acos vp cos vq) +
13352y o0
8 (G sin vpsm vq + G7bcos vpcos vq) -
S LA Y (48)
2
kA A sin v kAAsinv
*ot - P q 9. - q-3 p ﬂ 9
(Zg o3 ( 6, - (- IGg, + (20 252)6,,}

(49)

14




ato k%A A sin v A sin v bt ™
(2 4q = ¢ N )(Ggy + 2, Cop) + (-1 (ZOq)G7a (50)
kZA A A sin v nA_ nA J
Ll - P49 - (—3y (P
(Zn )pq 2i {¢ 7 )(GSa + 7 GSb) (Zp )(Zp )G7a} (51)
q q P
where i is either p-1 or p and j is either q-1 or q and where
-
2 t[qi-l , i
Gma = A | Gmdt (52)
q -
t
9 _ m=5,6,7
t
2 2 (q+l , .
Gmb = (Z_) I (t' - tq)Gmdt (53)
q £
q
Equation (13) is used to rewrite (52) and (_53) as
C7a = C4a * Csy (34)
(;7b = c;“b + c;Sb (55)
2 t:q+].
= (=== v ]
Gma (A ) J Gm(t tq)dt (56)
q t
q
_ m=4,5,6
2 2 tq+1
= (—- ' t o ]
Gmb A [ (t tq)Gm(t cq)dt (57)
q £
q
The argument (t' - tq) supplied with Gm in (56) and (57) comes into play
later on. Substitution of Rp for R in (14)-(16) produces
m -jkR
G, (' -t ) =2 d¢ e P sinz(i) cos(ng)
4 q kR 2
0 P
15 /Z,f'/




' -jkR
. IR

Gs(t' - tq) = f de ekR cos ¢ cos(ng) (59)
0 P
m -ijp
G6(t' - tq) = ] do ekR sin ¢ sin(n¢) (60)
0

where Rp is given by (32). 1In (32), p' is given by (40) and z' by

z' =2z + (t' - t Jcos v 61
q ( q) q (61)

Equation (61) is true because the portion of the generating curve for

- , -
tq <t < tq+1 is straight.

Evaluation of the integrals in (56) and (57) by means of an

nt-point Gaussian quadrature formula gives

n
t (n) (n)
= t 1 t
ma 22;1 Al' Gm(2 Aq X ) (62)
m 4,5,6
n
t (n) (n) (n)
i - t t 1 t
1 Gy 12;1 Apr. Xgr GG A %) (63)
L (n,) (n,)

where the abscissas Xg and weights AQ, are tabulated in Appendix A

i of [5] for several values of n . Application of an n¢-point Gaussian
B .

quadrature formula to the integrals in (58)-(60) and replacement of
(n)
t
' =
(t tq) by 3 Aq X result in

n ~-jkR .,
Ga‘% A x:?t)) =T §> A;n¢) EEE-—EE—E
q =1 pR'2

2 %y
sin (Tr)cos(n¢l) (64)

-ijPQ'R

T
q Xp 2 . —EE;;T;-— cos ¢£cos(n¢£) (65)

G e g i o B s e 2T ek
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f: E
L S o pri |
: X G6(5 Aq Ko =3 Z A _ii——T___ sin ¢2s1n(n¢2) (66) 1
where
¢
- Voo 32 . 2 ' 2,78
sz'z \/(o pp) +(z -zp) + 4opp sin” (37 (67)
where
, (nt)
p' = pq +-— A q X sin Ve (68)
b | (nt)
& LI =
z zq + A XQ’ cos vq (69)
(n¢)
g =-— (x4 1) (70)
(n )
Calculated values of G 6— A X, ) from (64)-(66) are substituted
into (62) and (63) in order to evaluate Gma and Gmb' The resulting

values of Gma and Gmb are then substituted, either directly or through

S -

the intermediary equations (54) and (55), into formulas (48)-(51) for

the elements of the moment matrix.

&l A

i The values n, = 2 and n¢ = 20 are suggested whenever the field

point is not close to the source segment. If the field point is close

to the source segment, the method of eliminating the singularity [3] i

S L5 s

i, is used. Since double integrals are involved, three variations of the
method are possible. These variations are called methods 1, 2, and 3.
In method 1, elimination of the singularity is applied to the integra-
tion with respect to t'. In method 2, elimination of the singularity

is applied to the integration with respect to ¢. In method 3, it is

e s e vt

applied to the double integral. In methods 1 and 2, the "singular part"”
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of the integrand is subtracted out, numerical intégration of the
resulting finite integrand is performed with respect to one of the
variables, the integral (with respect to this variable) of the “singular
part”" is added, and then numerical integration with respect to the otler
variable is done. In method 3, the singular bart of the integrand is
subtracted out, numerical integration of the resulting finite integrand
is performed with respect to both variables, and then the double integral
of the "singular part" is added. Method 3 is preferable to either of
methods 1 and 2 because the final numerical integration in methods 1 and 2
may involve a singular integrand. However, if what is deemed to be the
"singular part" can be integrated analytically with respect to only one

of the variables, then either method 1 or method 2 is applicable, but

"method 3 is not.

Use of method 1 is now demonstrated. From (56)-(60), the required

integrals with respect to t' are

) tq+1 —ij ,
—r— L
G, AJ — dt 1)
qt
t_ -jkR
2 2 rqtl . ej P :
Gb-(z-—) f (t -t)—kr—dt (72)
kB P
q
The above expregsions are rewritten as
Ga = Gal + Gaz (73)
G, =G . +G (74)

b bl b2
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where
tq+l —ijp
G = -g- e —1 dt'
al A kR
q t” P
q
o
c - 2 q+l at’
a2 A kP.
q £ . P
q
2 2 9t e-ijP-l \
Gbl = (Z-' L (' - tq) (——"ki—)dt
q t P
q
t- ] L
g 2 patl (£' - £ )dt
= (== —_—
Gb2 (A ) I kR
q t P
q

Application of nt-point Gaussian quadrature to the right-hand sides of

(75) and (77) gives

t (nc)
G = A G
al Z'Zl LT
n
Cp1 = { x;r'lt)“f(:t)c
L'=1
where
~5kR kR kR kR
p_,; - sin (5D (sin(=5P) + 3 cos (5B))
c = 1 2 2 2
KR kR
P (—D)
2

(n)
where Rp is to be evaluated at (t' - tq) = % Aq xz,t . The purpose of

the alternate form of G on the extreme right-hand side of (81) is to

19
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(76)

a7)

(78)

79)

(80)

(81)




avoid possible roundoff error. As for the integrals in (76) and (78),

we substitute (40) and (61) into (32) to obtain

Rp = \/(pq—pp+(t'-tq)sin vq)2 + (zq-zp+(t'-tq')cos vq)2 4

" 2.9
+. 4pp(pq+(t tq)sin vq)sin (2)

which can be rewritcen as

R, =\/(c'-r.q+:o)2 + a? (83)

where

t, = (pq-pp)sin vq + (zq—zp)cos vq + 2ppsin vqsin2 (%)

. Y Y 2§
rq \/(pq op) + (zq zp) + Iopqppsin (2)

Substitution of (83) into (76) and (78) and application of formulas

200.01 and 201.0L of Dwight [6] give
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i mran

A A 2 2
e L+ RN L+ D v
log o 2 s lt l 3.—3
o) 5 e
, thol -5t (|t:o] -5 +d
log -/ ) (89)
. A A A A 1
: []t |+—2‘1+/ (Jt |+ —51)2+d2][—§q~ -t |+/;—‘1 -t l)2+d2J
o 2 * o 2
S d
To reduce roundoff error, (88) is rewritten as
t
= 2y _© 4 2
G2 = ) % -5 log (90)
q A2 2 by2 . 2
(e, + 5D +a% +\(t -—59) +d
The calculated values of Ga are used to obtain Gma according to
om0
G4a =T lecaAQ sin (ir)cos(n¢z) (91)
. “f (n,)
G5a = E‘gglcaAg cos ¢Zcos(n¢z) (92)
e (ny)
Ga = 3 lzlcaAQ sin ¢£sin(n¢2) (93)

where Ga is to be evaluated at ¢ = ¢l given by (70). Equations (91)-
(93) are also valid with a replaced by b. Calculation of Ga and Gb
should be according to the development (73)~-(90) only for those values
of ¢, for which r is either smaller than or comparable to A . Ifr
L Pa a° T pq
is considerably larger than Aq, pure Gaussian quadrature is adequate.
Use of method 2 is now demonstrated. Since the integrands of

(58) and (60) are fairly well-behaved, method 2 is applied only to (59).
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In method 2, G and G are calculated according to (62) and (63) with

S5a 5b
1 (n,)
GS(E Aq Xo 1 ) given not by (65) but by
L @) nz¢ (ng) o e |
G.(Ax%x,, )=+ A ~————— co0s ¢, cos(nd,) -
5'2 q % 2 9=1 L kRPl'R L 2
n, A(n¢) '
“Iy %
2 g=1

'_ 2 [ 2 ] 2
k\/(o op) + (z zp) +oop¢

m
+ do (94)

2 2 2
&=0 k ' + (z'- + p'
: ,[(o op) (z zp) P opcb

From formula 200.01. of Dwight [6],

i
J & = 1 log (u + V1+u2) (95)
$=0 k\/(p'-pp)2+(z'—zp)2 + p'pp¢>2 kyo Py

where

75,
e (96)

Vor-o)? + a1z )2

u

Equation (94) should be used only for those values of t' for which pq

is considerably larger than \/(p'-pp)2 + (z'-zp)z. Otherwise, the pure
Gaussian quadrature of (65) is adequate.

Use of method 3 is now demonstrated for the case in which p=q.
Method 3 is applied only to the calculation of G58 because GSa is the

only integral in (56) and (57) whose integrand is not bounded. We write
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4
G, = — A cos ¢,cos(nd,) Ay, e -
sa -2 L % % P KR ooy
(97)
3 (n) -
4 n n t m t
¢ (n) t A,, q+l '
§ __Tzl J A, ] 'z 2 +Z2_J( d‘i’f dt
=1 L'=1 A (n) 2 q - f 2. 22
t 2.2 0 t ki(t'-t )+
k (3‘1 Xg4 ) + °q¢2 q ( q) °q¢
Because of the formula
d2 2,2 2, 2 1
[x log(y + ,/x +y7) +y log(x + Jx"+y7)] = . (98)
dxdy 53
x +y

the double integral in (97) is tractable.

T tq+1 2mp 21p
2 de' _ 2 q / q.?
A Idtﬁf —koq logl:A + 1+(A)]+

q - ' 2 2.2 q q
0 t k J t -t +
q ( q) oq¢
2mp A A 2
+ —-—-—qu log [ 2——1—“pq + 1+ (J_Zﬂpq) ] (99)

In cach of methods 1, 2, and 3, an attempt is made to subtract
out the singularity due to 1/Rp in (58)-(60). In method 1, 1/Rp itself

} is subtracted out. In method 2, the approximation
1

v_n 32 v, 12 142
\/(D Dp) + (z zp) +ppp¢

I . .5 B

to l/Rp is subtracted out. For comparison, Rp is given by (32). In method 3,

the approximation
1

j .
! “_ 2 " 2
g i \[(o P+ (2 z) + opoqtb

2
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to 1/Rp is subtracted out for p=q. Because the double integral of
this approximation is tractable, method 3 can be extended to cover
the case in which p ¥ q. For p # q, the alternate approximation

1

-

o? *

'_ 2 l_ 2
\/(o Dp) + (z zp) +ppomin

a
. o 5o w

to l/Rp merits consideration.. Here, pmin is the value of p' at that
value of t' which minimizes (p'-—pp)2 + (z'-zp)z. No matter which of
the above two approximations to 1/Rp is used, the closed form expres- .
sion for its double integral is rather complicated and vulnerable to
roundoff error. For this reason, method 3 was used only for p=q.
For p # q, the decision whether to use methods 1 or 2 is based
on comparisons of Aq with do and pq with do where do is the distance
from the field point at t = tp to the nearest point on the qth source
segment. The distance between the field point at t = tp and the point
(t',9) on the qth source segment is given by (82) or (83). It is
evident that the minimum of (82) occurs at ¢ = 0 because neither pp nor

o' of (40) can be negative. At ¢ = 0, (84) and (85) specialize to
*
t, = (pq - pp) sin vq + (zq - zp) cos vq (100)

a* = oy = 0) cos v, - (z = 2) sinv| (101)

*
The asterisk ( ) on the left-hand sides of (100) and (101) indicates

that ¢ = 0. Minimizing (83) with respect to t' on the qth source
A A
‘segment where - 7? <t' - tg < ??, we obtain
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ptq

Case 1
1 N
= <
2 ctAq __do ? Pure quadrature
<d |
C4Pq < °J

then the pure quadrature of (62) - (66) is used to calculate Gma and

Gmb' Here, ct and c¢ are constants for which the values
ct =2
= 0.1
o
are suggested. If
; PFa Case 2
1
2 CtAq > d°.' Method 1
Il
<d
c¢0q < oJ\
i
then method 1 is used. 1If
Iy
’ PFq Case 3
Method 2
* 6Pq >4,
f then method 2 is used. If
1 Case 4
Pp=4q
Methods 1 and 3
then both methods 1 and 3 are used.
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The strategy in (103) and (105)-(107) is based on the assumptions
that the Gaussian quadrature integration with respect to t' must be
fortified only when Aq is large, and that the Gaussian quadrature inte-
gration with respect to ¢ must be fortified only when pq is large. The

integration with respect to t' could not be fortified for % ctAq > do in

el AU 0 AR 25, e 1,

Case 3 because methods 1 and 2 can not be applied simultaneously and

because it was decided earlier to limit use of method 3 to Case 4. How~-

3 ever, pure Gaussian quadrature should still give a fairly accurate evalu-
ation of this integral with respect to t' because of the following reason-
ing. Since p' is large, difficulty can only occur when ¢ is small. Further-

more, this difficulty is not usually serious because Aq 5_2do most often.

It is evident that Aq.i 2do if p # q, if all the Aq are equal, and if the

generating curve does not fold back on itself.
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IV. EVALUATION OF THE PLANE WAVE EXCITATION VECTOR

Consider the elements (7) and (8) of the excitation vector for a

0-polarized incident plane wave defined by

-jk_°rx
- ugkn e (108)

and also for a ¢-polarized incident plane wave defined by

E' - gk cHeE (109)
In (108) and (109),
-Et = - k(gxsin et +.gzcos Bt) (110)
g; = u cos et —,gzsin St (111)
2; = Ey (112)

where 0 is the angle of incidence and where u , u , and u are unit

t ~x’ ~y =z
vectors in the x,y, and z directions, respectively., Also, r is the
radius vector from the origin. The origin must lie on the axis of the
body of revolution because this axis is the z axis. Substitution of

(4), (5), and (108) into (7) and (8) gives

to n 1+2 ' Jkz coset
Vni = j 1k f_ dt Ti(t){j sin v cos et(Jn+1 n- 1) ~ 2 cosvsin 6 J le
£ (113)
¢9 n t;.+1 o jkz cos et ‘
= j'mk J dt o Pi(t) (Jn+1 n- 1)cos 6 (114)

4
td t i $6 ¢ i
where Vni is Vni for E- given by (108) and Vni is Vni for E* given by

(108). In (113) and (114),
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Jn = Jn(kp sin Gt) . (115)

where Jn is the Bessel function of the first kind. Likewise, substitu-

tion of (4), (5), and (109) into (7) and (8) gives

£ n t:i+2 jkz cos 8
V=" 3k J- dt Ti(t)(Jn+1'+ Jn_l)sin Ve (116)
4
tl#l jkz cos ©
¢ _ .n+l o - t
Vni jo Tmk I- dt o Pi(t) (Jn+1 Jn_l)e Q17)

ty
where the second superscript on V on the left-hand sides of (116) and
(117) denotes excitation by the ¢-polarized incident plane wave (109).
The manipulations required to obtain (113)-(117) are similar to those
used in the derivation of (1-95).
The contributions to (113) and (116) due to integration with

respect to t from t; tot_ . are expressed by

ptl
o
%0 n p+l jkzcoset
Vni = j 7k j- de Ti(t){j sinv cos Gt(Jn+1-Jn_1)—2 cos v sin GtJn}e
*p (118)
.
*to n pt+l jkz cos et
Vni = - j Tk ) dt Ti(t)(Jn+1+Jn_1)sin Ve (119)
t
p

*
where i is either p-1 or p. The asterisk ( ) on the left-hand sides of
(118) and (119) denotes the contribution due to integration from t; to

t;+1. First, v is replaced by vp in (118) and (119). Throughout (114),
(117), (118), and (119), Pi(t), Ti(t)’ and p are expressed according to
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(36), (37), and (40), respectively. Then, i is replaced by p in (114)

and (117) to make those equations compatible with (118) and (119). The

results of the above substitutions are

t p-i
1 (-1)7 "2(t-t )
6 _ j“ﬂk pt P _
vni 3 J- de (1 + Ap Y{j sin vpcos 8 (J e+l n 1)
t
P jkz cos et
- e
2 cos vpsin efJn} (120)
60 n tp+1 (t-t )sin v jkz cos et
VYYo= 3imk I at 1+ —E——P)y(g 43 )cos 6 e
ne - °p " (121)
P
t_ 4 P-i
geo o _ 20 (PR 0 D 2(H:"))(J +J_ )sin v J e B
ni 2 _ Ap otl n-1 P
“p (122)
0 o+l tp+1 (t-t )sin v jkz cos ©
vnp =3 “mk j dt (1 + )(Jn+1—Jn_l) e (123)
£ p
p
where 1 is either p-1 or p in (120) and (122).
Equations (120)-(123) can be rewritten as
ntl n
Gte ) i ﬂkApsin vicos et F e y - j nkApcos vJsin et .
ni 4 n+l,a n-l,a 2 na
n+l n
i 6 mkA cos v_sin ©
+(_1)P‘1{j ﬂkAEs n vpcos ¢ - 5 - h| o s 5 t e )
4 nt+l,b "n-1,b 2 nb
(124)
0 jnnkA coset A sin v
Vap T T3 {(F41,a%F0-1,2) + %, Foe1,b%Fa-1,0"! (125)
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n p-i.n
kA sin v -1 nkA i
j i -1 7 sin v

b . ____"p " p
Vai 4 (Fo1,a% 01,0’ Q Foe1, b F0-1,1)
(126)
00 jn+1nkA A sin v
Vnp = 2 {(Fn+1,a—Fn—l,a) + (Fn+1,b-Fn-1,b)} (127)

20
P

where i is either p-1 or p in (124) and (126). 1In (124)-127),

2 tp+1 jkz cos et
ma =x j Jm(kp sin et)e dt (128)
pt:
m=n-1,n,n+1
2 2 tp+1 jkz cos Gt
Fmb = (Z— I (t-tp) Jm(kp sin et)e dt (129)
P t-
P
where, from (40) and (61),
= + (t-t in v 130
£>c>p(p)snp (130)
z =2z + (t-t oS Vv 131
p(P)cp (131)

Evaluation of (128) and (129) by means of an nT-point Gaussian

quadrature formula yields

(n jkZ, cos et

n.)

L
F o lzl A Jm(kﬁz sin 6 )e (132)
m=n-1,n,n+l
n ~ 1
T (n) (n) jkZ, cos © l
T T 2 t
Fo 221 Ay Xg Jm(kﬁ2 sin 6 )e \ (133)

-/




where

(nT)
A x2
A = BXx
By pp + > sin vp (134)
(nT)
. Ap*e
g, = zp + 3 cos vp (135)

The calculation of the plane wave excitation vector would be most nearly

consistent with the calculation of the moment matrix if n_, = 1. For

T
nT = 1, the extra data x{l) = 0 and Ail)

assuming that n, > 1, it could be said that nt-point quadrature is more

= 2 must be supplied. Now,

accurate than l-point quadrature. The nt-point quadrature data are
already available because they were used to calculate tne elements of
the moment matrix in Section III. With n, fixed at 2, results were

calculated for both nT = 1 and “T = 2. 1t was difficult to tell which

results were more accurate. The numerical results presented in Section V

were obtained by using n = nT = 2,




V. NUMERICAL RESULTS

Computer program subroutines have been written to calculate the

elements of the moment matrix and the elements of the plane wave exci-

tation vector. These subroutines are described and listed in Part Two of

this report.

They were used to calculate the electric currents induced

by a plane wave axially incident on two circular disks, a thin washer,

a cone-sphere, an open cylindei, and a spherical shell with an axially

symmetric aperture. The magnitudes of these electric currents are
plotted in this section.
For axial incidence, Bt is either 0° or 180° and the only non-

zero excitation vectors for the O6-polarized plane wave (108) are

it |

= (136)

1 L J

¥
—

e vt S o et S, .

] It is evident from (9)-(17) that
i { ott td
‘ 2, Z1

U e

=] (137)

N
<
©-

ot olo]
Z, Z3

[Zc{t 1 . .

4

eI o it T i

In consequence of (136), (137), and (6), the only non-zero column

fad

M are given by

-»>
vectors I; and

(ot |
I,
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where the column vector on the right-hand side of (138) satisfies (6)

for n=1.
In view of (2) and (3), substitution of (138) into (1) and sub-

sequent division by k give

J ¢ Ti(t) ' o P, (t)
_lHiI = 22tcos¢ (JZ Ilj —J-—-——kp ) + 23 8, sin ¢ (g Ilj —J————kpj ) (139)

The Lﬂil written instead of k on the left-hand side of (139) is the
magnitude of the incident magnetic field associated with (108). This

Lﬂli is indeed equal to k. At t = t;+1, the t component of (139) re-

duces to
3, 21§
i B cos ¢, p=1,2,...P-2 (140)
|n™| k(e )

At t = tp’ the ¢ component of (139) reduces to

srd
J 2il
b " IPging , pe1,2,...P-1 (141)
lmt  *%p

Here, Jt and J¢ are, respectively, the t and ¢ components of J. In the

13,1
figures to follow, ——%— in the ¢ = 0° plane is plotted with squares and
-——%— in the ¢ = 90° plane is plotted with octagons.
Ly EXINEA
Figure 4 shows the t and ¢ components i and il of the electric
' L\ 8 |

current induced by the axially incident electric field (108) with Gt =0

on an infinitely thin circular disk of radius 0.25) where A is the wave-

3, 13,
length. 1In Fig. 4, - is plotted with squares and -2 with octagons.
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Both quantities are plotted versus t/A where t is the arc length

along the generating curve. The horizontal axis in Fig. 4 was labeled
T/A because the lower case letter t could not be drawn by the plotter.
In Fig. 4, the center of the disk is at t = 0 and the edge at t = 0.25X,
The electric currents in Fig. 4 and in Figs. 5-10 to follow were cal-
culated with n, = a, = 2,-n¢ = 20 and with the points t;, j=1,2,...P 4

equally spaced along the generating curve. Since 12 octagons are in

Fig. 4, P=13 therein. The electric current in Fig. 4 should be twice
as large as the magnetic current in Fig. 4 on page 32 of [7].

Figure 5 shows the electric current induced on a circular disk
of radius 1.5A by the same axially incident plane wave as in Fig. 4.
The electric current in Fig. 5 should be twice as large as the mag-
netic current in Fig. 6 on page 33 of [7]. Figure 6 shows the elec-
tric current for axial incidence on an infinitely thin washer of
inner radius 0.4)A and outer radius 1.2)A. The inner edge of the washer
is at t = 0 and the outer edge at t = 0.8A. Figure 6 should be com-
pared with Fig. 3 of [8]. The size of the washer in Fig. 3 of [8] is
incorrectly stated. That figure is actually a plot of the electric
current on the same washer as in Fig. 6.

Figures 7 and 8 are plots of the electric current for axial
incidence on a cone-sphere of cone angle 20° and sphere radius 0.2A.
Figure 7 1is for incidence on the sphere end and Fig. 8 is for imci-
dence on the tip of the cone. The tip of the cone is at t = 0. At

the sphere end, t is approximately 1.48\, For comparison, see

Fig. 4.15 on page 218 of [9].
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Fig. 4. Electric current for axial incidence on a circular

disk of radius 0.25)\, t = 0 at center.
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Fig. 5. Electric current for axial incidence on a circular
disk of radius 1.5X, t = 0 at center.
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Fig. 6. Electric current for axial incidence on a circular
washer of inside radius 0.4) and outside radius 1.2A,
t = 0 at inside edge.
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Fig. 8. Electric current ou 2 cone~sphere of cone angle 20°

and sphere radius 0.2X, incidence on tip.

37




Rt A Y

o ws G2

]

e o A Ko A A LA S BNl i I e St 2 0 s s 50Oy et iR

Figure 9 shows the electric current for axial incidence on an
open-ended cylinder of radius A/2T and length A. The plane wave is
incident on the end of the cylinder for which t = 0. The excellent
results plotted in Fig. 9 here and in Fig. 2.13 on page 52 of [2]
were both obtained by using the electric field integral equation,
notwithstanding the stability problem reported in [10].

Figure 10 is a plot of the electric current for axial inci-

dence on the infinitely thin conducting shell for which

r=0.2)

45° < B < 180°

where r and 8, being spherical coordinates, are the radius and
celatitude, respectively. This shell is a spherical shell with an
axially gymmetric aperture. The pole of the shell is at t = 0. At
the edge of the shell, t is approximately 0.471X. The plane wave is
incident on the aperture.

Numerical results for the electric current on a circular disk
of radius 0.02)\ not shown here exhibited a noticeable change in slope
near the center of the disk. The curves labeled "a" in Figs. 7 and 8
on page 34 of [7] also indicate a change in the slope of the magnetic
current near the center of the complementary aperture. However, these
changes in slope did not agree with each other. Now, equation (23)

of [11] does not predict any noticeable change in the slope of the

electric current near the center of the disk of radius 0.02)A. The

changes in slope obtained by using the computer program of the present

P .
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Fig. 9. Electric current on an open-ended cylinder of radius
A/ (21) and length A, incidence on t = O.
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Fig. 10. Electric current on a spherical shell of radius 0.2)

with axially symmetric aperture, edge at t = 0.471),
incidence on aperture.
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report and the program of [7] are obviously wrong. The changes in
slope obtained by using these programs are much more pronounced for
the disk of radius 0.002A. However, they disappear when all calcu-
lations are done in double precision. Hence, these changes in slope
are due to severe roundoff error. This roundoff error occurs because
the vector potential terms, those containing the factor k2 explicit
in (9)-(12), are overshadowed by the rest of the terms in (9)-(12),
the scalar potential terms. If these vector potential terms were set
equal to zero, the moment matrix would be singular because there are
several linear combinations of the expansion functions which have no

electric charge associlated with them.




PART TWO

COMPUTER PROGRAM

I. INTRODUCTION

The computer program which implements the numerical solution
expounded in Part One is described and listed here in Part Two. This
program consists of the subroutine ZMAT, the function BLOG, the sub-

routines PLANE, DECOMP, and SOLVE, and a main program. The subroutine

ZMAT calculates the elements of the moment matrix in (6). The func-

tion BLOG is called by ZMAT. The subroutine PLANE calculates the

elements of the excitation vector in (6) for plane wave incidence.

The subroutines DECOMP and SOLVE solve the matrix equation (6) for
:i ft and ?¢.
# n n

The main program obtains the electric current induced on the

surface of the body of revolution by the axially incident plane wave

(108) with Gt = 0 or T radians. The main program calls the subroutines

ZMAT, PLANE, DECOMP, and SOLVE. It is not difficult to generalize the

main program to oblique incidence because the subroutines ZMAT, PLANE,
DECOMP, and SOLVE are designed to calculate T. and 'I’?; for n = 0,1,2,...,

For the 6-polarized incident plane wave (108), fi is even in n and fi is

odd in n. For the ¢ polarization (109), f; is odd in n and fﬁ is even

P
NIRRT -R)T ten L. 0

H in n. In order to obtain far field patterns, the main program must be

supplied with additional logic. This additional logic is outlined-as

follows. According to (1-91), the far field is obtained by premultiplying

the solution vector to (6) by plane wave measurement matrices for

n=0, +1, +2,... . The plane wave measurement matrices for n = 0,1,2,...

e ot s e e

[
P e



can be obtained by calling the subroutine PLANE. The even-odd behavior

ind
in n of the coefficient of e © in (1-91) is as follows.

ey I e it

Receiver Transmitter Behavior
Polarization Polarization in n
6 8 even in n
¢ ) odd in n
e ¢ odd inn
¢ ¢ even in n

Here, the receiver polarization denotes the component of the far field
being measured. The transmitter polarization is the polarization of

the incident plane wave.

o e 2 A Ferant




IT. THE SUBROUTINE ZMAT

The subroutine ZMAT(M1,M2,NP,NPHI,NT,RH,ZH,X,A,XT,AT,Z) calcu-

' G
R

lates the moment matrices in (6) for n = M1,Ml+l1,...M2 where Ml >0

and stores them in Z. Z is the only output argument. The rest of

the arguments of ZMAT are input arguments. For n = Ml, storage of

the Zn submatrices in Z is as follows.

e T oY s rmers B oo

(z;t) in Z(i+N*(j-1))

ij

bt
(zp") gy in ZOHNX(S-1) + NP-2)

£
2",

3 in Z(i+N*(j-1) + (NP-2)*N)

A T T MY T G 17 S e v b

(Zi(b)ij in Z(i+N*(j-1) + (NP-2)*N+NP-2)

Here,
N = 2%*NP-3 (142)

ey

For n > M1, the Zn submatrices are stored in Z((n-M1)*N*N+1) to

; Z((n-M1+1)*N*N) in the same manner as the Zn submatrices were stored
%% in Z(1) to Z(N*N) for n = Ml. Table 1 relates the third to eleventh
:f arguments of ZMAT to variables in Part One of the text. In Table 1,

i p(tz) and z(t;) are the values of p and z at t = t; for i = 1,2,...P.
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Table 1. Third to eleventh arguments of ZMAT.

Argument Variables in
of ZMAT Part One
NP P
NPHI ny
NT n,
RH kp(£,), ko(t,), .. .ko(ty)
ZH kz(tz), kz(t'z'),...kz(c;)
(n) (n) (n,)
X < 0 ) x ¢ el x $
1 2 n
¢
(n) (n) (n)
A Al ¢ ’ A2 ¢ ’ An ¢
¢
(n ) (n)
XT N
1 2 n
(n) (n) (n)
AT A t ] A t e A t
1 2 nt

Minimum allocations are given by
COMPLEX Z(M3*N*N), G4A(M3), G5A(M3), G6A(M3),
G4B(M3), G5B(M3), G6B(M3), GA(NPHI), GB(NPHI)
DIMENSION RH(NP), ZH(NP), X(NPHI), A(NPHI),
XT(NT), AT(NT), RS(NP-1), ZS(NP-1), D(NP-i),
DR(NP-1), DZ(NP-1), DM(NP-1), C2(NPHI),
C3(NPHI), R2(NT), Z2(NT), C4(M3*NPHI), CS5(M3*NPHI),
C6(M3*NPHI), Z7(NT), R7(NT), Z8(NT), R8(NT)

where M3 = M2-M1+1.




The elements of the Zn submatrices are calculated according to
(48)-(51) where Gma and Gmb are given by (54), (55), and (62)-~(66).

However, (62)-(66) are modified through the use of methods 1, 2, or 3

in the cases specified by (105)-(107). The values of <, and c¢ sug~

gested in (104) enter via CT and CP in lines 10 and 11.

DO loop 10 sets

RS k
(@) oq

Zs(q)

kzq DZ(q) = cos v

kA
D(q) = —1
for q = 1,2,... NP-1,
DO loop 11 sets

2

C2(K) = ¢

$
and  C3(K) = 4 sin2(7§§.

P o o i

Inner DO loop 29 sets

)

(n

; ¢
- cLqus) = 1 A ? .

sin2(7{9 cos(n¢K)

?. i (“¢)
3 C5(M5) =3 AK cos ¢K cos(n¢K)
I

, . (n¢)
9 Co(MS) = 5 A, sin ¢, sin(n¢K)

where M5 = K + (n-M1)*NPHI.

The calculation of (48)-(51) occurs inside three DO loops nested

in the following manner.

DO 15 JQ = 1, MP
DO 16 IP = 1, MP
DO 31 M=1, M3

CALCULATION OF (48)-(51)
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31  CONTINUE

16 CONTINUE

e b R e e o

15 CONTINUE

Here, JQ, IP, and M represent, respectively, the variables q, p, and
(n-M1+1) in (48)-(51). The JN introduced in line 52 is incremented

in line 314 so that the subscript for (Zit)p-l,q—l can be written as
}i p + JN when n = Ml. The variable KQ defined in lines 54 to 56 keeps

track of the cases for which q = 1 and q = MP. Because of (24), these

cases require special treatment. According to (24), expressions (48)

1? and (49) are absent when j = q-1 and q = 1. Likewise, (48) and (49)

are absent when j = q and q = MP.

3 The variables defined in statements 57 to 70 are needed

# inside DO loop 12 or DO loop 16. DO loop 12 puts kp' and kz' of (68)
and (69) in R2 and Z2, respectively. To reduce execution time,
references to subscripted variables as well as calculations are being

done outside DO loops whenever possible. Unfortunately, this usually

D R

Gor s i L . AR

increases the number of statements and complicates the logic because

1k24 A
factors such as ———52—3 sin vp sin vq in (48) are computed by means of

several statements scattered throughout the program. One way to follow

v
RR-—
e

the gradual building up of constants from outer to inner DO loops is to

tabulate computer program variables versus variables in Part One of the

text.

Lines 78 to 88 put kdo of (102) in D6. Lines 89 to 94 set KP

equal to the case number in (103) and (105)-(107).
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Lines 96 to 248 put approximate values of Gma of (56) in GmA for

m = 4,5,6. Lines 96 to 248 also put approximate values of Gmb of (57)

in GmB for m = 4,5,6.

Lines 96 to 174 are executed for case 2 of (105) and for case 4

of (107). Method 1 is used here. This method is described by (71)-(93).

The pure Gaussian quadrature option for Ga and G, advocated just after

b
(93) is
nt (“t) e-ijp
G = A,, =S5 (143)
a gy L kRp
% @) ) I
cb=2'z_ Agv X0 R (144)
=1 P

where Rp has the same meaning as in (81).- In terms of Z7, R7, 28, and

R8 calculated by DO loop 40,

KR = fzwu) + R7 (L") *(4 sinz(%)) (145)
kR
P = V282" + RBQH* stn’cD)) (146)

DO loop 33 puts Ga and Gb in GA(K) and GB(K). The index K of
DO loop 33 corresponds to L in (91)-(93). Line 109 puts kzriq of (86)

in RR. If

+ % A (147)

1
r < 3 ctA q

Pq q

then line 112 sends execution to statement 34 and Ga and Gb are calcu-
lated according to (73) and (74). Otherwise, DO loop 35 accumulates

Ga and Gb of (143) and (144) in UA and UB. The purpose of the second

47
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term on the right-hand side of (147) is to assure that the distance

between the field point and the closest point on the line ¢ = ¢K on
the qth source segment is no less than % ctAq before DO loop 35 is
entered. This distance could be as small as rpq - % Aq. DO loop 37
accumulates Ga1 and Gbl of (79) and (80) }n UA and UB. Lines 130 to

142 add Ga and G, , of (87) and (90) to UA and UB. Nested DO loops

2 b2
45 and 46 put Gma of (91)=(93) in GmA for m = 4,5,6. These DO loops

also put Gmb in GmB for m = 4,5,6. The DO loop indices M and K cor-
respond, respectively, to (n-Ml+1l) and £ in (91).

Lines 176 to 197 apply method 3 to GSa' Expression (97) for GSa
consists of three terms, namely, two double sums and a double inte-
gral. Since the first term in (97) is the result of pure Gaussian
quadrature, the second and third terms in (97) are attributed to
method 3. At this point, however, we do not have the first term in
(97), but the modification of it due to application of method 1 in
lines 96 to 174. For consistency, the inner sum in the second term in

(97) should be replaced by the corresponding exact integral whenever

(147) is true. This corresponding exact integral is given by

A
q

=

dce’ 4 1 [_Aq_ + \/1 + (__[iq__)z] (148)
kAq qu by qu ¢y

2
kA
q t,2 + 2 2
Aq « Dq ¢2

Formula 200.01. of Dwight [6] was used to obtain the right-hand side of

S,
N

(148). The index K of DO loop 63 corresponds to & in (97). Inner DO

loop 65 accumulates in D7 the inner sum in the second term in (97).
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Lines 188 and 189 put (148) in D7. Line 194 puts in D8 the contribu-
tion due to the second and third terms in (97). DO loop 67 adds this |
5 contribution to t he modified first term in (97).

Lines 199 to 248 calculate Gma and Gm according to (62), (63),

b

(64), (66) and either (65) or (94). The index L of outer DO loop 13
-ij v
corresponds to &' in (62) and (63). DO loop 17 puts (e pLL

)/ (kR )

in GA(K) for £ = K. If, in accordance with (106),

C4Pq > \/(:3' - Dp)2 + (2" - zp)2 (149)

then (94) is used. Otherwise, (65) is used. If (149) is not true,

;% then line 220 sends execution to statement 51. Otherwise, lines 221

to 225 put in D6 the contribution due to the second and third terms in

(94). Note that the first term in (94) isthe right-hand side of (65).
DO loop 32 accumulates (64), (65), and (66) in U5, U6, and U7, respec-
tively.

% Inside DO loop 31, lines 262 and 263 put G, and G, of (54) and

7a
%: (55) in H4A and H4B, respectively. Lines 268 to 274 calculate terms
in (48)-(50). U5, U6, and U7 belong in (48), U8 and U9 in (49), and
UC and UD in (50). The variables Kl to K8 defined in lines 275 to 282

give the locations in Z of the matrix elements referenced in (48)-(50).

See Table 2. In Table 2, p and q run from 1 to MP except where other-

wise indicated. The forbidden values of p and q in Table 2 are due to

(23) and (24). The contributions (48)-(51) are accounted for in lines A

283 to 310. In these lines, Z(K4), Z(K6) and Z(K8) are referenced for

T g T o et i = AN
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Table 2.

Storage of matrix elements in Z.

Location in 2 Matrix Element
Z(K1) zth $1 $1
n ‘p-1,q-1 P » 9
2(K2) 2% pFMP, q¥ 1
n "p,q-1
Z(K3) zth pél, q#M
n ‘p-1,q ’

Z(K4) (Z:t)p,q PEMP, qF MP

2(K5) @, 1 at!l

2(K6) AT q# P |
2(K7) o N X |
Z(K8) ), o p# MP | |

the first time, but the rest of the Z's are incremented. The branch
statements interspersed from lines 283 to 306 are due to the for-~
bidden values of p and q in Table 2. The seemingly muddled and
repetitive nature of the Z's in lines 283 to 309 is the result of

an effort to minimize the number of branch statements executed.
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LISTING OF THE SUBROUTINE ZMAT

THE SUBRCGUTINE ZMAT CALLS THE FUNCTION B8LOG

SUBROUT INE ZMATIMIo M2, NP NPHIoNT sRHeZHe XA XT AT Z)

COMPLEX Z{16000V1:ULeU2,U3UQ3USUGIUTeUBeUSeUALUBGOAILI0)GSALILO)
COMPLEX CMPLX:sGOAC(L10)eGABLI100eGSBl10)sGOBII0)eHAAMSALMEALHABL SO
COMPLEX H6B.,UC,UDGA(48),GH(48)

DIMENSION RHEA3) o ZH{A3) o X( 481, ALA8) XT L1 0)oAT(10)RSC82),25(42)
OUIMENSION D(82)DR(82),D2(82),0M(A82)eC2(48).C3(48).R2(10)s22(120)
DIMENSION C4(200)0eC5€2000¢C060€200)e2Z7(10) ¢R7810),28(10)RBL110)
CT=s2e

CP=, 3

D0 10 (=2,NP

[2sl-1

RS(I2)=.SS(RHIT I eRH(I2))

2S(12)=S8{ ZH( L) +ZH( 12))

DI=eS*(RH{E)-RH( (2))

023.5¢(ZH{1)=-ZH(12))

DL I2)=SCRTC(DI1¢Dt +D260D2)

DR(12)=D1 _ ]
DZ(L12)=D2
OM(12)=D(L2)/7RSCL2)
CONT INUE

MIA=MN2-M1+}

Ma=M1=])
PI2=1.570796

DO 11 K=1,NPMI

PH=P 128( X( K} ®#le)
C2(K )=PHSPN

SN=SIN( . 5¢PH) ;
C3(K )=4 + SSNSSN 3
AL=PI2%AL(K) D3
D4=,58A16CI(K)
DS=AL*COS(PM)
D6=A12SINI(PH)

MS =K

DO 29 M=l.M3
PHM=( M4+ M) SPH
A23COS{PHM)

CAIMS )I=DASA2
CS(M5)=D5¢A2
C6(MS)I=DE6SIN(PHM)
M5=MS +NPHIE
CONT I NUE

CONT INVE

up=NP-1

MI=MP=—|

Nz MT e NP

N2N=MTSN

N2=NSN

ULI=(0eoeS)

U2 0ee2¢)
JNs=§=N

DO 1S JOmi. NP
KQ=2

IF(JQ.EQel) KOs
(F(JQ.EQ.MP) KO=J
Ri=RS{JQ)
Zi1=2S(J0Q)
01=D(JQ)

D2=DR(¢ JQ)

& At

51




o T T IR

o P, e, 33

 taend ettt Rt Wi, .

g 42

T e

oat
062
063
064
06s

oe?
060
069
o700
o

or2
273
o7s

o076
ory
ors
ore
080
- 1.1}
082
083
o8s
oas
(1.1}
087
osa
089
090
o9
092
093
094
09S
096
097
o098
099
100
101
102
103
104
108

(¥ 24
100

110
11
112
1t
11s
"ns
118
mnr
1e
119
120

26

27
28
42

40

D3=DZ(JQ)

DA=D2/R)

0S=0Ni Q)

Sv=02/01

Cvs=D3/01

T6=CT#D1

T62=T6401

T62=a782+762

RG=CPIR]

R62=R6SRE

DO 12 L=1oNT
R2(LI=RLD2EXTIL)
221L)=22 +DISKRT (L)
CONTINUE

U3=D2sU1L

Uaz=D3*UL

DO 16 IP=j. NP
R3I=RSIP)

I3325(1P)

Re=R1-A3

24321-23
FMzRASSVZASCY
PHMZABS{FMN)
PH=ABS(RAMCY-Z483V)
06=PH

IF{PHNJ.LE.DLl) GO .-TO 26
D6ZPHM-D1
06xSORT(D6SDE+PHEPH)
IE(IP.EQ.JQ) GO TO 27
KPs=1

IF(T6+GT sD6) KPn2
IF(R6.GT.06) KP=3

GO TO 28

KP=4

GO TO (81:820481442)KkP
DO 40 L=1¢NT
D7=R2{L)-RI
D8=22¢(L)~23
Z7(L)=DT7¢DT¢008808
R7(L }=R3R2(L)
28(L)=,295¢2Z7(L)
RBILI=Z.25¢RT(L)

CONT INVE
ZASRASRA+Z20028
R4=RI*R]

RS=, S54RI SV

D0 33 K={io.NPML
Al=C3(K)

RASZASRASAL

UA=D o

UB=0.

IFIRRA.T.T62) GO TO 36
00 33 L=1.NV
AsSOARTIZ7I(LIGRT(LI®AL)
SNa=S IN(R)

Cs=COS(R)
UCSATIL ) /RECHPLX(CSe SN)
UA=UYASUC

UB=xXT(L) *UCHUB

33 CONTINE

oncrees | o n S
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T2
122
123
126
12s
126
127
L28
129
130
L3t
132
133
134
133

137
138
t39
140
tat

142
te3
tes
184S
1486
147
148
149
150
1912

182
153

1SS
156
1§14
188
159
160
1610
162
163
164
168

167
168
169
170
17t
172
173
17

L76
77
178
79

GO 70 36
00 37 L=l¢NV

R=SORT( Z8(LI+RBLLISAL)
SN==SIN(R)

CS=COS(R)
UCZAT(L ) Z/RESNSCMPLX(~SN: CS)
UVA=UA+UC

UB=xXT(L ) sUCHUB

CONTLNUE

A2=FUIRSSAY

D9=zRR=A2%A2

R=ABSCA2)

07sR-01

DB=Re¢DI

D6=SORT(DBSDBID9)
R=SQRT(D7¢07+09)

IF(D7 «GE«0e) GO TO 36
Al=ALOG((DB+D5) $(-DTR)}/7093/701
Go TO 39

AL=ALOG((D8¢D6) 7{DT+R)D/D8
UA=AL4UA
UB=A25(4.7{D6¢R )=A}) 7DI¢UB
GA(K)=UA

GB8(K)=UB

CONT INVE

Xi1=0

DO 4S M=1l.N3

HOA=0.

HMSA=0e

HEA=0.

HaBa0.

H30=04

H68=0,

00 46 K={1.NPME

Ki=Ki+l)

D6=Ca(K1l)

D7=CS (K1)

Da=CetKl)

UASGA(K)

uB=Ga(K)

HOAZDESUASLHAA
HSADTSUASHNEA

HEA=D ESUACHOA

He B2 D6*UBIMAS
HSB8=D7+UB¢NSS
H6B8=DASUBINGS

CONTEINUE

GAA({MI=HAA

GSA{M)=NSA

GOAL M) =HEA

GBI MI=HAD

GSB( M)=HSS

G6B( M)=H608

CONT INVE

IF(KPNE.4) GO TO 47
A23D1 /7(PLI2¢RL)

06=2,/701

08=0.

00 63 K=1NPHE

Al=RaC2INR)
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R=R4SCI(K)

IF(R.T.TO62) GO TO 66
0720

00 65 L= NT
D7aD7+AT(L)/SARTIZT(LI®AL)
CONTINUE

GO TO 66
AVE=A2/7(X(K)oLe)
D7=D6SALOGCALSSQART (1. +ALSAL))
08=D8+AIK)SDT

CONT INVE

Al3,58A2

A2mle/Al
D8==P[2908¢2./R1%(BLOGIA2)+A200L0G(AL))
00 57 M=i.N3
GSA(M)ISDB*GSAIM)

CONT INVE

GO Ta &7

DO 2S5 M=)l M3

GAA(M)=0,.

GSA(M)=0.

G6A(M)=0,

GaB(M)=0.

GSB(M)=0.

G6B8(MI=0.

CONT INUE

DO 13 Ls=iNT?

Al=R2(L)

Ra=AL-RI

Z4=22(L)~-13

ZA=R4TRA 224820

RA=R3ISAL

00 L7 K=1.NPML

R=SQRT({ ZA*R4SCI(K))
SNa~SIN(R)

CS=COS(R)

GA(K )I=CMPLXICS. SNI)/R
CONTINUE

06=0¢

IF(R62.LE.Z4) GO 7O St
DO 62 K=l NPHL
D6=D6+AIK)/SORT (ZA+RASC2(K))
CONT INUE

2423, 141593/SORT(ZA/RS)
D6==P {2806+ ALOGEL 20 ¢+SART( 1 . +Z4S 24 ) ) /SORT(RS)
ALt=ATIL)

A2=XTLLICGAS

Ki=0

00 30 M=i,M3

US=u0e

(V1. 19

U7=0.

00 32 Xm={ NPNE

VA=GA(K)

KiuwKle}

US=CA(KL JSUAS
UG2CS (K] ISUANS
UT=C6(K1 ISUAMUT?

CONT INUE

U6=DO +V6

A AT A B W K .
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262
243

3
3
47

(3]

GAA(N)I=ALPUSHIGAALNK)
GSAINM)I=ALSUGIGSALIN)
GOAIM)IRALSUTOGOA(N)
GAB(MI=A26USEGAR(N)
GOBINIZA2SUGIGSBLIN)
GOEBIMIZTA28UTIGEB( M)
CONT INVE

CONT INUE

AL=DR((IP)

UAsal syl
uB=D2Z(1IP)sUS

A2=0( IP)

062~ A2502

O7=D(t¢AL

08=D #A2

JM= SN

00 3% N=i.N3
FEN=Me+N
AL=FNIDN(LIP)
HSAaGSA( M)
HSB=GS3( M)
HAA=GAA(MIONSA
HAB=GAB( M) +HSS
HEA=GOA( M)
H6B2G6B( M)

UT=UASHS ASUBSHGA
US=UAEHS BUBSHG D
US=u7-us

Us=yT +US

U?m=UIsHEA
UB=D6*HE A
U9sDOESHEB~ALSHA A
UC=DT78( HOA+DAENHES)
UD=FMeDS SHA A
Kis{PeIN

K2=Ki e}

K3=K i &N

Ka=K 24N

KS=K2¢MT

KéaK o eMT

K7aK34N2N

K8=K4*N2N

GO TO (18:20019)eX%XQ
Z(X6) =UB L9

IF(IP.EQ.1) GO TO 21

ZIK3I)=Z{K3) *V6~U7
ZIKT7)=Z(KT)*UC~UD

IF(IP.EQ.MP) GO TO 22

Zixka) =6 +U?
2(K8)=UC +U0

GG TO 22

ZIKS )=Z(KS) Wo~-u9

IF(SP.EQ.1) GO TO 23

ZUX1)=2LKL ) *USHU?
ZIK7)=2Z(KT)¢UC=-UD

IF(IP.EQ.MP) GO TO 22

ZIK2)=2(K2) *US~VU?
2(x8)=UCeuD

GO va 22
ZIKS) =2 KS) WI~UD

301
302
303
304
305
306
307
308
309
310
31
n2
313
31
3s
316
317

24

22

n
16

ZLKS )=V

IF{IP.EQ.t) GO TO 28

ZIKL)=Z KL IHUSHU?
ZI(K3)aZ(K3) *V6=-U?
Z(K7)=ZLKT)+UC-UD

IF(IP.EQ.MP) GO TO 22

ZIK2)=Z(K2) SUS=UT
ZIKSI=UG Y
Z(Kx8) =uC *UD

ZIRBENT )=U28(DOS {HSASDASHSB)~ALSUD)

JH=JHON2
CONTY INVE
CONTINUE
JN=JINSN
CONT INUE
RETURN
END




[

s ifand o

ki
o

e A e Ui

R N

ITI. THE FUNCTION BLOG

The function BLOG(x) calculates log (x + YT + x?) for x > 0.
If x is appreciable compared to 1, the FORTRAN supplied subroutine for
the logarithm suffices. However, if x is much smaller than 1, this
subroutine fails because of excessive roundoff error. From formulas

700.1. and 706. of Dwight [6],

1 2 13 &4 1¢35 6 2
log(x + /1+x2) = x(1 - 2.3 X + 7e5e5 X " 3eze6:7 ¥ 4+ ...), x"<1 (150)
1f |x|.§ .1, the approximation
2 3x4
log(x + ¢1+x!) = x(1 - x? + ‘4—0— (151)

incurs an error of less than one part in 107. The function BLOG(x)
uses the FORTRAN supplied subroutine for the logarithm for x > .1 and

(151) for x £ .1.

001C LISTING OF THE FUNCTION R0G

002 FUNCTION BLOGIX)

003 IF(XeGTeel) GO TO 1

00s X2=xeX

o0s BLOG=(( + O758X2~=, 1666667) * X241 )8X
006 RETURN

007 1 BLCG=ALOGIXSSQRT (Lo ¢XEX) )

008 RE TURN

VRS,

ot it
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IV. THE SUBROUTINE PLANE

The subroutine PLANE(M1,M2,NF,NP,NT,RH,ZH,XT,AT,THR,R) calculates

the elements of the plane wave excitation vectors according to (124)-(127)
and (132)-(133) and stores them in R. R is the only output argument.

The rest of the arguments of PLANE are input ;rguments. There are NF
angles of incidence 6, of (110) and n = M1, Ml+l,...M2 where M1 > 0.

The Kth angle of incidence resides in THR(K) in radians. For the first

angle of incidence and for n = M1, storage in R is as follows.

to
Vi in R
'Vii in R(i+NP-2)
(152)
td
Vi 1n R@HN) )
v in RGP o —
Here,
"o (153)

6 to
1 and Vni in (152) so that, accord-

ing to (1-100) and (1-104), the vectors stored in R will be measurement

The minus signs are attached to Vﬁ

vectors. For the Kth angle of incidence and for n > M1, the storage

td 96 . td
ni’ vni’ vni’

above, but the storage area now extends from R(2*#N*((K-1)*(M2-Ml+l) +

arrangement of V and Vﬁi is still the same as indicated

n-Ml) + 1) to R(2*N*((K~-1)*(M2-M1+1) + n-M1+l)) instead of from R(l) to

R(2*N). Table 3 relates the fourth to ninth arguments of PLANE to

- variables in Part One of the text. In Table 3, p(tz) and z(t;) are the

values of p and z at t = ti for 1 = 1,2,...P.
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Table 3., Fourth to ninth arguments of PIANE

Argument Variable in
of PLANE Part One
NP P
NT nT
RH kp(cl), ko(cz),... kp(tp)
ZH kz(tl), kz(tz),... kz(tP)
(nT) (nT) (nT) l
XT xl R xz yees xn
T |
()  (n) (n.) |
AT A“T,AT vee A T
1 2 nT

Minimum allocations are given by
COMPLEX R(2*N#NF*(M2-M1+1)), FA(M2+3), FB(M2+3)
DIMENSION RH(NP), ZH(NP), XT(NT), AT(NT),

THR(NF), CS(NF), SN(NF), R2(NT), Z2(NT)

where N is given by (153).
The index IP of DO loop 12 obtains p in (124)-(127). DO loop 13

of (135) in R2(L) and Z2(L), respectively,

| =

puts 6£ of (134) and k%

'3
for = L. The index K of DO loop 14 obtains the Kth angle of inci-

dence.

The index L of DO loop 15 obtains £ in (132) and (133). Line 48

puts

k
2

62 sin Gt in X. Lines 49 to 73 calculate S and BJ(m+2) so that

RO SO v e e,



BJ(m+2) = S*Jm(kﬁ2 sin Gt), m=Ml-1, Ml, ... M2+1

P e
RSPV i

m ¥ -1

If the argument of the Bessel function Jm in the above equation does

3‘ ‘ not exceed 10-7, lines 50 to 54 use the approximations
) Yb , -m# 0
i
Jm=}
i1 m=20

in order to obtain BJ(m+2) and S. The purpose of lines 56 and 57 is to

obtain M so large that IJM_Z(kﬁ2 sin et)l is roughly 10-8. Line 58

3 . assures that M is at least as large as M2+3. Lines 59 to 67 start with
i
‘; JM—Z(X) =0

JM_3(x) =1

and use the recurrence relation

(x) = %? Jn(x) -J . (x)

Jn-l n+l

s T

taken from (9.1.27) on page 361 of [12] to calculate Jn(x) for n = M-4,

M-5,... 0. Lines 68 to 73 use

i
e ARSI

ﬂ : 1= Jo(x) + 2J2(x) + 234(x) + 2J6(x) + ...

taken from (9.1.46) on page 361 of [12] to obtain the normalization
constant S. As the index of DO loop 15 changes, DO loop 25 accumulates

H Fma and Fh of (132) and (133) in FA(m+2) and FB(m+2), respectively. If

b

F a and F-l

-1 are needed, lines 83 and 84 use the formulas

»b

e~ AR
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F—l,a = Fla
Foiw = Fib
to store F_ and F in FA(1) and FB(1l), respectively.

1,a -1,b
With reference to (124)~(127), the index M of DO loop 27 obtains

(n+2). Inside DO loop 27, UA is ﬂjn. The variables U2, U3, U4, and U5
calculated in lines 95 to 98 are needed in order to assemble the right-

hand sides of (124) and (126). The variables K1, K2, K4, and KS are the

t6 €0 o
n,p=-1’ np’ 'n,p-1

102 and 103 obtain (125) and (127). The branch statement in line 104 is

subscripts of R for V and Vgg, respectively. Lines

necessary because neither Vﬁep_l nor V§¢p_1 exists for p=1l. 1In lines
’ >

105 and 106, Vte and Vt¢ are incremented. The branch statement in
n,p-1 n,p-1 X
line 107 is necessary because neither Vig nor Vﬁﬁ exists for p = NP~1. 1In

8

lines 108 and 109, v;p and v;¢ are referenced for the first time.
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001C
002
203
00s
005
000
007
oos
009
ol
o1l
ot2
o3
Ote
o1ls
o116
oLtz
ois
ot9o
020
b21
022
023
02s
02s
026
027
c28
029
030
ol
032
033
03s
03s

037
038
039
080
[ 233
0a2
043
0ss
045
(T 1.]
047
048
0489
00
031
952
083
05
0%

0s?
0oss
039
060

1

13

23

20

LISTING OF THE SUBROUTINE PLANE
SUBROUT INE PLANE(NI o M2,NF NP NTo RHeZHe XT AT+ THR,R)
COMPLEX R(280)eUsUL cUAJUBFALLO) oFBIID)oF2A,F28,F1AFi1B,U2,U3,U8
COMPLEX US,CMPLX
DINENSION RHEAZ) ¢ ZHI(A3) o XT(10) s AT(10) o THR(3ID ,CSEI)+SN(IIR2(10)
DIMENSION 22(10).BJ(30)
NP=NP=]

NTz=NP=|

N=NT e MNP

N2228N

DO 11 K=l4NF

X=THR(K)

CS(K)=COS{X)
SN{K)=SINIX)

CONT INVE

Us€0eole)d
ULl=3,1415938U%e Nt
M3I=M1¢1

MO EM2 +3

IF(ML EQe0) M3I=2
NSaMl 2

ME=M2 2

00 12 IP=L.MP

K2=(P

I=(P+g

DR=¢ SSIRH(I)=RH(IP))
DZ=S*(ZHIIDI=ZH(LIP))
D1=SORT(DR*DOREDZED2Z)
R134 258 (RH{ 1) ¢RHLIP))
ZI=S*(ZH( LI EZHILP))
DR=,SSDR

D2=DR/RI

DO 13 L=14NT

R2(LI=RL ¢DREXT(L)

224 )=21+D28XT (L)

CONT INVE

00 L4 Kxi.NF

CC=CS(K)

SS=SNIK)

D3=DR$CC

DA==D2¢SS

DS=D1 eCC

DG 23 M=u3 MG

FA(M)=0,

FBI(M)=O,

CONT INVE

DO 1S L=1,NT

Xz SSeR2(L)
IFEX «GT e «SE=T) GO TO 19
00 20 M=N3I M4

B8J(M)=0,

CONTINUE

8J(2)=l.

S=l.

GO 7O 18
ME2,88X¢L40=2,7X
IF(XelTaeS) M=l 8¢ALOGLOCIX)
IF(MLTME) M=NG
BJ(M)=0,

JMrM-~-}

61
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L

o6t

062
063
064
06S
066
067
1.3}
069
o7o
ore

or2
073
o7s
07s
076
orr
ors
or9
080
ost

oge2
083
0o8s
08sS
086
oer
-1.1.]
089
090
091

092
093
09s
09S

e

17
26

25

1S

21

27
14
12

8J(JINI=) o
DO 16 J=4.M

J23IM

JM= -1

JizJM-1
BJ(IMI=JI/XEBI(I2)-BII(IN2)
CONT INUE

$=0,.

IF{M.LELA) GO YO 24

D0 17 J=4eM,2
S=S+BJI( J)

CONT [NUE

S=BI(2)+2.8S

ARG=Z2(L )8CC
UAZAT(L)/SSCMPLX (COS{ARG) +SIN(ARG) )
UB=XT{L)SUA

DO 25 Mx=M3I. M8
FA(MI=BI(M)SUALFALIM)
FB(M)=BJ(M)SUBSFBIN)
CONTINVE

CONT INUE

IFI(MLIsNE.O) GO TO 26
FACLI=FAL3)
FB(13=FB(3)

UA=UL

DO 27 M=NS.N6

M7aM=-1

MB=Me L
F2ASUAS(FA(MB)SFAINT))
F20=UAS(FB(MB)+FBINT))
UB=USUA
FIA=UBS(FA(MB)=FA(NT))
Fi1B=UBS*{ FB(MB)-FB(MT?))
UA=DSSUA

U2=D3sF LASUASFALNM)
U3=D33ISF L BHUSSFBRIN)
UA=DROF2A

US=DRF28

Ki=K2=1

Ka=K ] oN

KS=K2 eN

RIK2+NMT )==DSS(F 2A¢D2sF28)
RIKS+MY )=DLI&(F1A¢D28F18)
IF(IP.EQe1) GO TO 21
R{KLI=R{K1)¢+U2-U3
RIXA)I2R (K4 ) +U=US
IF(IP.EQ.NP) GO TO 22
RIX2)=U2 +u3
RIKS)=U4 +US

K2=2K2+4N2

UA=US

CONT INUE

CONTINUVE

CONT INVE

RETURN

END




V. THE SUBROUTINES DECOMP AND SOLVE

The subroutines DECOMP(N, IPS, UL) and SOLVE(N, IPS, UL, B, X)

et

solve a system of N linear equations in N unknowns. The input to
DECOMP consists of N and the N by N matrix of coefficients on the left-

hand side of the matrix equation stored by columns in UL. The output

| from DECOMP is IPS and UL. This output is fed into SOLVE. The rest of

the input to SOLVE consists of N and the column of coefficients on the

22
L ATV TN DG 3 ST  A TH T P30 o s g

right-hand side of the matrix equation stored in B. SOLVE puts the

solution to the matrix equation in X.
Minimum allocations are given by
COMPLEX UL(N#*N)
DIMENSION SCL(N), IPS(N)
in DECOMP and by
COMPLEX UL(N*N), B(N), X(N)
DIMENSION IPS(N)

in SOLVE.

More detail concerning DECOMP and SOLVE is on pages 46-49 of [13].
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g oot ¢ LISTING OF THE SUBROQUTINES OECOMP AND SOLVE
2 002 SUBRQUT INE DECOMPIN, IPS, . )
003 COMPLEX ULCELO00)+PIVOT.EN
00e DIMENSION SCLEA0).IPS(40)
00S 00 S I=1.N
006 tPSti)=t
007 AN=O o
o008 Ji=t
009 DO 2 J=1.N
oL0 ULM=ABS(REALCUL(JL)) JSABS LATMAGIUL (JI))D)
ol JiIzJL eN
ot2 IFC(RAN~ULN) 14202 1
043 ‘I RN=ULM :
ols 2 CONT INVE
ots SCLEL )= o/RN
016 S CONT INVE
oL7 NM{=N={
o18 K2=0
ot D0 17 K=1,NML
020 BiG=0.
_ 021 DO 1) I=KeN
! 022 1P=IPSLL)
. 023 IPK= IPeK2
1 024 SIZEx=(ABSIREAL (UL (IPK) ) ) SABS(ATMAGCULL IPK))))eSCLLEP)
£ 025 IF(SIZE~BIG) LlellelO
| 026 10 BIG=SIZE
027 ipv=g
o028 11 CONT INUVE
029 (F{IPV=K) 18,15.18
030 14 J=1PS(K)
031 (PSI(K)=IPSL IPY)
032 IPSCIPVI=Y
033 1S KPP=LPS(K)eK2
k| 03e PLVOT=UL (KPP)
i 038 XKPi=nkKel
036 DO 16 I=KPLe¢N
037 KP=KPP
4 o3e IP=IPSC I VeK2
i 039 EM=UL( IP)/PIVOT
- 040 18 UL(IP)=~EN .
; oat DO 16 J=XPl N LT 00 1 Jst.INd
B! 082 IP=(PeN 062 SUNSSUNSULCIP) XL J)
¥ 03 KPaKPeN 063 i IP=IPN
! LYY ULE TP I=ULL LP )I¢ENRSULIKP) 064 2 X{1)=B(1PB)-SUN
} 0ss 16 CONYINUE 063 K23NSIN-1)
E 046 K2=K2eN 066 IP=IPS(N) K2
j (Y% 4 17 CONTINUE 067 XENI=XIN)sULLEIP)
1 0as RETURN o068 DO & (BACK=2.N
5] 0A9 END 069 {=NPLI=-IBACK
] 080 SUBROUT INE SOLVE(Ne IPS.UL ¢ BeX) o070 K2=K2-N
4 051 COMPLEX A.(1600)+B(40)X(40),SUN OTL . 1et=lPSLI)eKe
N 0s2 DIMENSEON [PS(40) or2 tPtagel
i 0s3 NP ImNeL ors SUN=O,
1 0Ss IP=LPSCL) ore P=ipL
{ 0ss X(1)=8¢10) ors DO 3 JaiPieN :
i 0s6 00 2 I=2.N : ove tP=IPeN i
. 0s? tP=1PS(L) or? 3 SUNESUNSWRLEIP)I OXLI) i
j oss teaste ore & XCTI=CXCUI=SUN) Z7ULLIPL)
; 0S89 tMing=t 0?9 RETURN
! 2960 SUMsQ, 080 END
64
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VI. THE MAIN PROGRAM

The main program calculates the electric current induced by a
plane wave axially incident on a perfectly conducting surface of
revolution. This plane wave is given by (108) with Bt = 0 or T radians.
The components of the electric current are obtained from (140) and (141)
in which I;p and pr are the pth elements of the vectors f; and f? which
satisfy (6) for n=1.

Punched card data are read in according to

READ(1,15) NT, NPHI

15 FORMAT (213)

READ(1,10) (XT(K), K=1, NT)
READ(1,10) (AT(K), K=1, NT)
10 FORMAT (5E14.7)
READ(1,10) (X(K), K=1, NPHI)
READ(1,10) (A(K), K=1, NPHI)
READ(1,16) NP, BK, THR(1)
16 FORMAT (13, 2El4.7)
READ(1,18) (RH(I), I=1, NP)
READ(1,18) (ZH(I), I=1, NP)

18 FORMAT (10F8.4)

——
—

Here, BK is the propagation constant k

incidence et in radians. THR(1) must be either 0 or m. The input
variables NT, NPHI, XT, AT, X, A, and NP are defined in Table 1.
These input variables can therefore be fed directly into the subroutine

ZMAT, However, RH and ZH must be multiplied by BK before being fed

e o T T AT
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Py SR Din

into ZMAT. More precisely, RH and ZH are values of p and z so that
the product of RH with BK is the RH in Table 1, and the product of ZH
with BK is the ZH in Table 1. The sample input and output data listed
along with the main program are for the spherical shell of Fig. 10.
Minimum allocations are given by
COMPLEX Z(N*N),‘R(Z*N), B(N), C(N)
DIMENSION RH(NP), ZH(NP), X(NPHI),
A(NPHI), XT(NT), AT(NT), IPS(N)
where N = 2*NP-3.
With reference to (6), line 41 puts the moment matrix in 2.
Line 46 puts the excitation vector V; of (6) and the negative of the
excitation vector 3? of (6) in R(1) to R(2*NP-3). These excitation
vectors are for the O-polarized plane wave (108) and their elements
are called Vig and V?g. Storage in R is according to (152). Now,
—Vii and V?i are also stored in R, but are not used. Lines 47 to 52
put 3; and V? in B. Lines 55 and 56 put the solution vectors f; and

ff to (6) in C. DO loop 24 prints out (140) at ¢ = 0°. DO loop 27

prints out (141) at ¢ = 90°.

66
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i oo ¢ LISTING OF THE MAIN PROGRAM
4 002¢ THE SUBROUTINES ZMAT, PLANE. DECOMP, AND SOLVE ARE CALLEOCe
: 003/ /PGM JOB [ XXXXeXXXKele2)e*MAJTZ ¢ JOE ¢ ¢ RE GL ON= 200K 4
i 004 7/ EXEC WAVFIV ’
¢ 005 /7/G0eSYSIN OD ¢
j 006 3408 MAUT 2. TIME=S .PAGES=80
: p oo? COMPLEX 2(1600) sR(2400.B(40).C(40),UCH
3 : oos DIMENSION THR(3) RHISIDeZHIA3 ) X(A8)ALO8)XT(10)AT(10)oIPSLA0)
3 , 009 READ( 1+15) NV.NPHI
oo 1S FORMAT(213)
031 WRITE(3,30) NT.NPNI
012 30 FORMAY(® NT NPHI®/1Xe(3.19)
o3 READ (14 10) EXTIKD oK=L ¢NT)
o1 READ(L2+10)CATIK ) e X= L ogNT)
ots 10 FORMAT(SELA7)
ote WRITE(311DIXT(K) oK=1oNT)
017 WRITE(312VIATIKD)eKuLoNT )
ote 10 FORMAT(® XT'/(1X+SELAT))
019 12 FORMAT(® AT*/(1XeSELGT))
| 020 READC1+10)EXEK) e Ku1 o NPHE D
. o2 READ( e 100CALK) s K=l o NPHE )
; ‘ 022 WRITE(3,131(X(K)oKul NPHI)
9 023 WRITE(I.18)C(A(K) s K=EL s NPHE)
| 02e 13 FORMAT(® X'/(1X.SEL&TI)
B 02s 146 FORMAT(® A*/(L1X¢SE14.7))
: 026 READ(1+16) NP,BK.THR(L)
: 027 16 FORMAT(T3.2E14.7)
j o2se WRITE(3.17) NP+8K,THR(1)
E 029 17 FORMAT(®" NPO,6Xe 'BK?o1I2Xe°THR*/1Xe(3s 2C14,7)
;| 030 READC Ls LAVCRHL [ ) o Um oNP)
t 031 READ( 1, 18)CZH( L ) o tml . NP)
% : 032 16 FORMAT(10F8.4)
1 ' 033 WRITE(3: 19 )C(RH{ L) s Ex i NP)
‘ i 03s WRITE(3:20)(ZH( I eln1oNP)
iX } 03s 19 FORMAT(® RH'/(1X+10F8.4))
i % 036 20 FORMAT(® ZH*/(1Xe10FB4))
s 1 037 DO 28 J=1.NP
i 03s RH(J )=BKIRHI J)
8 039 ZHL J)=BRIZHLYI)
5 040 28 CONTINUE
! ot CALL ZMAT(L oL1oNPoNPHEIoNY oRHeZHo XoAe XV AT 2)
1 ) oa2 HT=RNP-2
i 083 N=2eNTeL
i - oss NRITE(3.29)(ZLJ) o I=LeN)
| 045 29 FORMATI® 2°/(1X.6Eil.4)) :
‘ 0es CALL PLANE( 1+l el oNPoNToRHe ZHoX Te AT ¢ THRoR) ¢
_ 087 00 22 J=1.MT N
4 LYY 8L J)I=RLI) }
3 049 Jimgeny !
1 0s0 8¢ J1)==R(IL) .
t 0S1 22 CONTINUE
i 0s2 B(N)==RIN)
083 WRITE(3:23)(8(JI)eI=leN)
p (1.7 23 FORMATI® 8%/(1X+86€11.8))
3 0ss CALL DECOMP(N.LPS.2Z)
; 086 CALL SOLVE(N.IPS.2,8.C)
3 (1.3 U={Oesle)
3 0ss WRITE(3.21)
E 0389 21 PORMAT(® REAL JY ENAG JTY MAG JIT)
s (1Y) DO 24 Jmi.NT
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061 CL=2,/7RH IO} DSCL )
062 C2=CABS(C1)
063 WRITE(3.,25) Cl.C2

06s 25 FORMAT({LI X3ELL4)
06S 24 CONTINUVE

066 WRITE(3,26)
(-1.34 26 FORMAT(® REAL WP IRAG P HMAG JPC)
[.Y.Y-] NPENP-|
069 DO 27 J=ai NP
070 Ci=a/7{RH(IDRM(IGL) ISUSCLINNT)
(241 C2=CABS(Cl1)
072 WRITE(3.25) CleC2
o073 27 CONTINUE
07 sSTOP
o7rs ENO
SDATA
2 20

~05773503E+00 0.,5773%03E¢+00
0+1000000E+01 0.1000000E+0¢t

= 063931 286E+00-0.9639T19E+00-0.,9122344E¢00~0.8391170E+00-0.T40I319E+00
=0e635053TE+00~0.5108670E+00-043737061E¢00-0+22T77859E¢+00-0.76526S2€E~01

0 7652652E-0i
0+ 746 3319E+00
0+ 1761401E-01
0, 1181L94SE+D0
D+ 1SZ27S3IMEH00
0.,1019301E+0D

0.2277859E+00
0839211 70E¢+00
04060143E-01
0« 1316886E+00
0+1491 T30E+00
CeB83276T74E~-0!

0+3737061E400
0.9122344E+00
0.626720SE~-01
0.1820961E+00
0«1820961E¢00
0.626720S€~01

0+S1086T0E+ 00
0:96397L19E4+00
0.8327674E-01
0«1491730E¢00
0«1316886E+00
0.4060143€E-01

0.6360S37E¢00
0+9931286E¢00
0«101930LE+00
01527334E¢00
0«118194SE+00
0« 1761401E€E-01

11 04 125663T7E401 0.0000000E+00
00000 002334 0s95480 006494 00,8090 00,9239 0.9877
07078
=190000 ~0es9724 =0s8930 =0.7604 ~0,5878 ~0,3827 ~0.1564
0. 7071 )
$STOP
/e
77
PRINTED QUTPUT
NT NPME
2 20
1 2 4
~CeSTTISAIESCO 0.5773303C+00
AT
0« 1000000E+0L 0,1000000E401
4

0.9969 00,9511

00785 043090 0.S52293

~0:9931286E400=09639719€+00~0:9122344E+00-0.8391170E400-0.7463319E¢00
~006360537E¢00-0e5108670E¢00-0e3737061E¢00~0.2277859E¢00~0.7652652E=01

0o T6S26S2E=01 0422TTOSY9ES D00 0.3I73T06LE*00 0.S108670E+00
00 7463319E400 0.839L1T0E+ 00 029122344E400 0.9639719E¢00
A

0e17614C1E~01 DeA060143E-0L 0.6267208E~01 0.8327675E-01
CeliIBLI9ASE 00 0,1316886E+00 0.1420961E400 0.1491730E¢00
0s1527S34E¢00 0,491 TIOVESD0 0.182096LE®00 0.1316886E+00
0e1019301E000 0,832767SE-01 0.6267200E~01 0.40060143E-018
NP 13 ™R

Il 0.1256637E¢01 0,0000000€+00

RN
00000 002334 004540 0:,6498 0.8090 0.9239 0.,9%9877
0.7071
n
=100000 ~0:9724 ~0,8910 =07404 ~0:.3878 —~0. 3827 ~0.1564
0.7071

0.6360537E+00
0.9931286€¢00

01019301 E+00
0e1S27534E¢00
Qe1181943€E+00
001761401 E=-0L

09969 0.935118

00785 0.3090 0.S228
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0+8363E~01-0.97TB8E+ 01

0:491 SE-01L

0. 1024£-01
-~ 0s1348E¢+02

0+1369€+00

04S437E-01

0+5134E-01
8

0.2893E¢00
0.6477E-01
0.8701E-04
0a27103E~01
0.4326E~01
0+2063E-010

0+31SI1E*D0~0.038SE+00
0+3966E+00~0+36S6E+00

0.87SSE+00
0,691 7E¢00
0+4503E-01
~0e06438E¢00
REAL JT
0s1142E401L
0.8187€+00
0e3432E+00
~ 0+ 2206E4+00
~0sTT6BEH+00
- 00 1222E+01

0.66S3E+00
IMAG JT
0.1198E€E+01
O 1199E¢ 012
D1163E+01
0+1035€¢01
0+ 7827E¢+00
0eS163E40O

= 00 14T AECDL~0D6146E~-02
~0s148SE*0L=0.3877E¢00
=00 1248E¢01~-0.6133E+00

REAL JP IMAG JP
=0 1209E¢01~0+ 1184E®01)
- 0e1076E401~0.1094E¢ 0}
~0:9486E¢00~0.9418E¢00
-~ 008584E+00~-0,7213E¢00
= 0+8928E400~0+.4863€+00
=0 1102E401~0¢3341E¢00
~0el4B0E+01~0.3IB04E+00
-~ 0e2002E401-0.7355E¢00
- 002629E401-0+1433E¢01
= 0.6381E%01-0.5179E¢01)

IR B

0« 73S2E-0L
003460E-01)
0«19540E~-02
0+ 2013E401
0«7633E~-01
0527SE-00

0.23T74E€E+01 0 .6344E-01
0«1891E+00 0.2126E-01
045293€C~01=0.3673E~-02
0e848 LAE~0L 004250E+00
0.6213E-01 0.5943E-012
03433E~-01 0.35202€-01

00 7723€¢ 00
O.9127E8-04
Oe 4842E-0¢
0.7850€C-08
0.826S€-01
0¢ 2694C-01L

0e3631C000-0.73S2E¢00 0:+4046E¢00-0:,5696C¢00
0e3074E400-0, 1689E¢00 0+ 1384E¢00-0.3706E~01
~0e7037E~01=0e L1 748E~01=002S87E¢00~-0: 11 S2E¢+00~0e3766E¢00~0.2963€¢+00
03070E¢00 Q8S2TEC0D 0.3660E¢00 0.T939EC00 0. 4749000
0+6161E400 0.S5279E¢00 0.7602E400 0+3060E+00 0.87I0E#+ 00
0eS23I6E¢00~002219E+00 0. 89754 00~004598E¢00 0.0031€+00

MAG JT
0s16S3E£001
0+,14S1E+01
Oe 12128000
Oe10S8E+0OL
Oe110325010
0-1291E401
Os 1AT74E¢0L
0+1538E+010
Oe1391E€001

MAG JP
00 1692E¢01)
Oe1S34C 0018
0e1337€¢018
Oel121E008
O«10LT7ESOL
0e1152€¢01
Oe 1S28£ 0018
0e2133E0018
00299SE001
0,8219€¢01
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