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C V

I. ITMODUCTION

The study of permutations aud permutation networks has been an important

topic of research in parallel processing [4-12]. Permutations of the data as

well as of the intermediate results are required in order to execute the

algorithms that are used in parallel processing. Also, the ability to

simultaneously access multiple data elements from memory is key to successful

parallel processing. This simultaneous access is achieved by the use of

multiple memory modules Ill where those data items that may be simultaneously

needed are stored in different modules. Several permutation techniques [4-12]

have been proposed for arranging the data items so that conflict-free access

to the memory modules is achieved.

In the literature, certain permutations, such as uniform shift, unscram-

bling of t-ordered vectors, etc., have been identified as important in parallel

processing (especially in SIND-type machines). These findings have influenced

the design of some of the permutation networks that have been developed for

interconnection between memory modules and processors (4-12].

This paper introduces a switching theory framework for the study of inter-

connection networks. With this framework, techniques are developed that

characterize both single-stage and multi-stage interconnection networks. In

particular, a variety of interconnection networks - especially useful in single

instruction multiple data stream (S]HD) machines - are able to be completely

characterized by using this switching-theory formulation. The set of networks

studied here includes uniform shift networks (4,7], scrambling/unscrambling

networks (8], Omega networks (5], simplified Omega networks (61, and Flip

networks [13]. Also, we characterize those networks obtained by reversing the

original networks; i.e., the outputs are used as inputs and the inputs as

outputs (see Fig. 1). The reverse networks, besides being of theoretical

interest, have practical importance in that a network may be operated in a

bidirectional mode, thus requiring the use of the reverse network.

Based on this characterization, it is shown that the interconnection net-

works satisfy certain equivalence relationships; these relationships result in

two distinct equivalence classes of networks. The first class includes most

of the single stage networks and certain of the multi-stage networks. The

second class constitutes most of the multi-stage networks. Several related

results regarding structure and number of permutations admissable by these

two classes of networks are developed.
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Section II develops the basic framework for the study of interconnection

networks. Interconnection networks can be broadly classified as single-stage

and multi-stage. A single-stage network uses one stage of switching and the

designed permutation is performed by using single or multiple passes through

the network. A useful example of such a network can be found in the Illiac IV
computer [4]. The interconnection network used in Illiac IV can perform four

different types of uniform shift permutations. Multi-stage networks use n

is equal to log2 N and N is the number of inputs. The desired permutation is

usually realized by using a single pass through the network. A block diagram

of a multi-stage network is shown in Fig. 1. Each stage typically performs

some type of shuffle and switch permutations.

Next, in Section III, certain single-stage networks are characterized.

We consider multi-stage networks in Section IV. We characterize many multi-

stage networks that have implemented or proposed in literature. Both the

forward and reverse versions of the networks are studied. Two equivalence

classes of networks are defined and the networks classified accordingly.

Specifically, it is ahown that uniform shift, unscrambling/scrambling and

simplified Omega belong to the first class, whereas most of the multi-stage

networks belong to the second class. Also, results regarding the structure

and number of permutations admissable by these classes of networks are presented.

2
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11. BASIC POECLATION

This section develops the basic framework for the study of permutations

admitted by single and multistage networks.

A permutation p can be defined as a one to one and on to mapping from a

set of integers into itself. The permutation p is usually represented as

((i,p(i))0 < I < N-1} where p(l) represents the mapping of i, 0 < i < N-1.

In this paper, as in most of the previous work [6-8], we assume N = 2"

for some n. In the following, we introduce F, an alternate representation of p.

Consider the binary numbers 0 to N-1. Let Bn represent these binary num-

bers. The set Bn consists of 2n distinct binary n-tuples. Let F : Bn o Bn be

a mapping, as defined below.

For each 1, 0 < i < N-1, let - (i n, i U,...,i1 ) denote the binary number,

i. Let p () = 1. where I - (J Un l,...,5k,-.jl ) denote the binary ntber J.

where j - p(i). Thus, P is one-to-one and onto mapping of Bn into Bn and is

the permutation p, expressed in tern of the binary numbers.

Now P in turn can be expressed as a collection of n switching functions

f lpf2" ....fk" *".,fn" Each of these functions, fk' 1 < k < n, is an n-variable

functions, as defined below:

For 1 < k <n, let:

Yk - fk(Yn'Ynl. ' yQ, and let

Jk a fk(yn n' Yn-l ' in-1 9...y 1) where

Jk is the k-th component of the binary number j, given by F(i) = j.

3



Example 1:

Consider the following permutation:

Y3 Y2 Yl ]3 Y2 Y1
i J - p Mi 3 i2 1 1 J3 J2 Ji

0 0 0 0 0 0 0 0

1 5 0 0 1 1 0 1

2 6 0 1 0 1 1 0

3 7 0 1 1 1 1 1

4 1 1 0 0 0 0 1

5 2 1 0 1 0 1 0

6 3 1 1 0 0 1 1

7 4 1 1 1 1 0 0
9,

Y 3 = y3y2yl + y3Y2 + yyy

Y - Y + y~~l+ yy

Y 1 ' y3yl + yy

Thus, we see that every permutation on 2 elements can be represented in

terms of n switching functions.

Let (i,p(i)) 0 < i < N-1 be a permutation admitted by an interconnection

network. Let the permutation, p, be represented by n-switching functions,

Y n 'Y n-1 ' 'Y of the variables, Yn'yn-l,',yl' It may be observed that in

the truth table representations of these functions, each Y column contains

exactly 2n1 l's; the rows describing Yj's are all distinct. Thus, the Y

function may possess certain regular structures and may satisfy certain

relationships. This is precisely what we explore in the next two sections,

for single and multistage networks, respectively.

4
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The following develops a definition for an equivalence relationship

between networks; and some related results that will be useful in the next

two sections.

Definition: A bit-rearrangement (bt) permutation is a permutation for which

the Y functions are of the type: Yk - y i.e., Yk's are functions of single

y - variables (that are positive ).

The identity, perfect shuffle and bit reversal permutations are bit-

rearrangement type permutations.

Definition: A network that performs a bit-rearrangement permutation will be

referred to as a bit network.

Theorem 1 : There are n! b permutations of N - 2n elements. This set of

permutations forms a group.

Proof: Consider the set of n functions, {Yl,Y2,.,.,Yn} , where Yk is of the

type, Yk - Yj" Since the n, Yk's can be assigned n, yjis and Yk ' have to be

distinct in each set, there are n! such' distinct assignments. Each of these

assignments constitutes a bit-rearrangement permutation.

Clearly there permutations form a group, since () the identity permutation

is a bit permutation (Yk - yk) (ii) the inverse of a bit permutation is also a bit

permutation (iii) concatenation of twobit permutations is also a bit permutation

Q.E.D.

Let P and P denote the sets of admissable permutations for two networks,

G and G , respectively. Let X-Y-Z denote the concatenation of networks X

followed by Y followed by Z.

Let i-1 represent the reverse network of X.

Definition: The networks G and G are said to be equivalent if there exist

some bit networks, 0 and *, not necessarily distinct, such that 4- G -%k admits

P and G adits P.

Note that (i) G is equivalent to G, itself, since and both can identify

networks which are also bit networks. (ii) and characterize the equivalence

relationship.



The above definition implies that two networks are equivalent if one can

be realized by using the other, with the possible addition of fixed bit net-

works at the inputs and/or outputs to perform the required bit permutation.

Thus, the above definition of equivalence is conceptually different from other

equivalence relationships such as topological equivalence.

Corollary 1: Given a network, G, there are at most (n!) -_1 other networks that

are equivalent to G.

Proof: From Theorem 1, one has n! distinct bLU permutation networks that can

be placed at the inputs and/or outputs of G to obtain its equivalent networks.

Thus, there are, at most, (n)2 networks that are equivalent to G. This

includes G, itself. Hence, the theorem.

Q.E.D.

Corollary 2: If G and G are equivalent for each p(P, there exists pCP such

that:

p p

Proof: Proof is an immediate consequence of the equivalence relationship.

Q.E.D.

Let (pp p) represent a pair of permutations that satisfy the relationship

in Corollary 2. Let F pand F p* represent the two sets of Y k functions that

describe P and P , respectively.

Corollary 3: By relabeling y and Y variables according to a fixed mapping

defied y4 andand -1). one can obtain F * from F (F from F*)
p p p p -

Proof: Proof is obvious.

Exmpe Let *t, and ' ,that define the equivalence relationship between G
and G, both realize the bit reversal permutation. Thus, 40l and also

realize bit reversal permutation.

6
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Let N -8 and let 7 p represent the following three functions for some P:

Y2 - Y2''3

Y3 ay 1 .#y 3

The relabelling defined by bit reversal permutation is as follows:

yl 3 Y1 Y3

Y 2  Y 2  2 Y2

y3 *y 3  Y 3  Y3

Thus, F *represents:
p

Y 2 w Y2 Y,

The permutation, p ,described by F p, is aduissable by G

7
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III. SINGLE-STAGE NETWORKS

In this section, we consider various types of single-stage interconnection

networks. Specifically, the permutations admissable by perfect shuffle networks,

uniform shift networks and networks which perform unscrambling of t-ordered*

vectors are each characterized. We restrict our discussion to permutations

admissable by a single pass through the network. (The use of multiple passes

through the network is equivalent to using single passes in a multi-stage

network and is considered in section IV.)

First we introduce the following definition to be used in developing the

results of this paper.

Definition: Let g(xXn,.. • ,x ,... ,x1) be an n-variable function. Then

S. g= 8 n l...(xx ,xi M 0,...,x 1) g(x ,x _l'...,x t M 1,...,x 1) where 0 is

the exclusive-or operator. The function dE is said to be the Boolean differencedxi

[13,141 of g with respect to xi.

Example 2:

X3 x2 x1 g

0 0 0 0

0 0 1 0

0 1 0 1
0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 3

1. 1 1 0

For this function we can compute

dx3  12

-It may be noted that given the ex-or sum of products expression for g, the

• In literature, this has been referred to as p-ordered vectors.

8
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Boolean difference can be obtained by simply deleting all terms that dodx 1

not involve xi and also, all appearances of xi

(a) Perfect-Shuffle Network

The permutations admitted by perfect-shuffle networks are useful in

parallel algorithms for polynomial evaluation, FFT, sorting, etc. [3]. Also,

these networks are useful for constructing multistage networks.

Theorem 1: The Yk functions that represent the permutations admitted by

(i) the perfect-shuffle network, is given as:

= Yn i - I
Y<iiyi-I 2 < i < n

(ii) the reverse perfect-shuffle network, is given as:

jYi i = n

i =Yi+ I < i < n-1

Proof: Proof is obvious from the definition of perfection shuffle, given as:

21 0 < i < 2 n-1-1
M 21-N+l 2 -< i < 2 ' Q.E.D.

(b) Uniform Shift Network

These are simple networks and can perform many useful permutations in

ON(N) units of time [ 7]. These networks have found use in Illiac IV computers

and shift register memories.

The permutations admitted by these networks can be defined as:

p(i) - (i + d) mod N, where d

represents the amount of shift which may be provided to the network through a

control input.

It may be noted that the reverse of the uniform shift network is also

9



a uniform shift network.

Theorem 2: The Yk functions that represent any permutation which is admitted

by the uniform shift network can be expressed as:

Y n Yn * gn(Yn-l'Yn-2 '""''Yl) where

the function, gn is defined by d, the amount of shift. The other functions,

Y n_,Y n2,..Y Y are related to Yn through the following recursive rule:

If Y k= Yk * g(Yk-lYk2,...yl
)  then Yk-i = Yk-l * d .g

k dYk-1

Proof: Proof provided in the Appendix.

Example 3. Consider the following permutation which corresponds to a uniform

shift of 3 on N 8.

i p(i) Y3 Y2  Yl Y3 Y2 YI

0 3 0 0 0 0 1 1

1 4 0 0 1 1 0 0

2 5 0 1 0 1 0 1

3 6 0 1 1 1 1 0

4 7 1 0 0 1 1 1

5 0 1 0 1 0 0 0

6 1 1 1 0 0 0 1

7 2 1 1 1 0 1 0

Y 3 a Y3 y Y2 Yl yly2

Y2 w Y2 
@ Yl 1

Y M Yl 1

g3 (y3'y2'Yl) Y2 Yl Yl Y2

10
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82 (y39y2 #yl) - y1 01

$1(Y3,Y2,yl)

It may be seen that g2 (y 3 ,Y2 ,yl) g-3
dy2

dg 2g1(y3,Y2,y) - dy

(c) PM21 Network [15]

These plus-minus 2 networks form the basis for data manipulator and ADH

multistage networks. These networks can be interpreted as uniform shift

networks for d - + 2 . Thus, Theorem 2 holds for these networks.

(d) Scrambling/Unscrambling

These networks are useful to scramble the data when stored in to parallel

memories and unscramble the data when it is read from the memory. These are

particularly useful in matrix manipulations as the permutations performed by

these networks provide the required alignment of data to

(i) obtain conflict-free access of arrays from multiple memory modules

and (ii) process the accessed data simultaneously using multiprocessors.

The basic permutation admitted by these networks is called unscrambling

of t-ordered vectors defined as:

p(i) - ti mod N, where

t and N are relatively prime and the value of t may be provided to the network

by a control input.

It may be also noted here that the basic permutation admitted by the

reverse network is also a permutation of the type:

p(i) - ti mod N.

Thus, we need to only characterize the forward network.

Theorem 3: The Yk functions that represent the permutations admitted by the

scrambling/unscrambling networks can be expressed as:

11



Yn y n gn(Yn-l'Yn-2'""Yl) where

the function, gn, is defined by t. The other functions, Yn_IYn2,...,YI,

are related to Y through the following recurrsive rule:n

If Y k * k(yk-lYk-2,.',y) then

Yk-1 Yk-1 * where

~k-l

dyk if (t-l)/2 is evendg; dYk_1

i* • - if (t-l)/2 is odd
dyk_

1

Proof: Proof is provided in the Appendix.

It may be seen that permutations admissable by networks to scrambling/

unscrambling networks and uniform shift networks have certain similar charac-

teristics. In the next section we will show that these permutations, as well

as those realized by certain multistage networks, belong to the class of
"symetric permutations" (to be defined later).

12



IV. MUrTI-STAGE NETWORKS

This section studies the multi-stage networks. These networks are more

useful than single stage networks as they can admit a much larger class of

perutations. Several different multi-stage networks are characterized in

this section, and related results are derived.

Specifically, we characterize both forward and reverse versions of: a)

Omega networks [5], b) simplified Omega networks [6], and c) Flip networks

:13]. Certain equivalence relationships between these networks are then de-

rived. The networks are shown to belong to the following two distinct classes:

Class I: Networks for which the Yk function has the following general form:

Yk - Yk * fk (Yk-l'Yk-2 ' ' ' ' ' y l )

The simplified Omega networks, reverse simplified Omega networks and

certain single stage interconnection networks belong to this class, as shown.

Class I: Networks for which the Yk functions have the following general form:

Yk = Yk * fk (n'Yn-1* ' "Yk'll'Yk-l'"-"l )

The Omega, reverse Omega, Flip and reverse Flip are shown to belong to

this second class.

Further, it is shown that the fraction of Class II permutations that are

admissable by Class I networks tends to 0 asymptotically. Also, we will see

that Class I permutations are "symmetric" (to be defined later).

The techniques used to characterize the networks is based on the following

two observations:

(1) Any permutation which is realized by an n-stage network can be expressed

as a composition of a sequence of n permutations.

(ii) Each of these n permutations can, in turn, be expressed as a composition

of certain easily characterizable elementary permutations.

The networks considered here are N-input, N-output networks where N - 2n

and n is the number of stages

(a) Omega Networks

This network was introduced by Lawrie 15]. Each stage in this network is

13



composed of two subnetworks, which are denoted as S and E in Fig. 3. The first

subnetwork, S, moves the contents of its input, i, to its output, J, where

J - p(i), and p is the perfect shuffle map. The second subnetwork, E, moves

the contents of its inputs, i, and (i+l) to its output, (i+l) and i, respec-

tively, for certain selected i's, where i is an even number. For all other

inputs, i, the contents are moved straight through to the outputs, i. Thus,

in effect, E performs exchanges on the contents of certain selected pairs of

adjacent inputs.

A set of control bits determines the subset of pairs which are selected

for exchange. One bit per pass per data item is all that is needed for control

ling the exchange operation. The data items carry with them these control bits,

and thus, the control bits form an integral part of the contents of the inputs

or outputs.

Each data item carries with it n-control bits. During the k-th pass,

the k-th control bits are used for controlling the exchange operation. The

contents of a certain pair of inputs are exchanged (not exchanged) during the

k-th pass, if k-th control bits (which are contained in both of these inputs)

are 1 (0).

Theorem 5: The Yk functions that represent any permutation which is admitted

by the Omega network can be expressed as:

Y k T Yk * fk (YnoYn-l"'"Yk+l'Yk-l'yk-2"*"yl)

for all k, 1 < k < n where the function, fk' is defined by the control bits,
k
C that are used during the k-th pass.

Proof: Proof given in the Appendix Q.E.D.

The above result was derived independently by Pease [9] and the authors

[17) at about the same time. However, we have here provided a rigorous proof

of the Theorem which was not provided in 19). The techniques that are used

for formulating the proof will be shown to be useful in deriving similar

results for other networks.

In the following, we characterize the reverse Omega networks; these

networks consist of n stages of exchange and inverse-shuffle networks. A

14
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control algorithm for reverse Omega networks is also available [18).

Theorem 6: The Tk functions that represent any permutations, which are

admitted by the reverse Omega networks, can be expressed as:

Yk " Yk * fk 
>

nan-.' k

for all k, 1 < k < n, where the function, fk' is defined by the control bits,
kcis that are used during the k-th pass.

troof Proof is similar to that given for Theorem 5 in the Appendix. The two

differences here are that: the inverse shuffle performs one bit end around

the right shift and is preceeded by the exchange permutation. The equations in

the given proof can be modified in a straight-forward manner to obtain the

Theorem. Q.E.D.

Theorem 7: The Omega and reverse Omega networks are equivalent networks.

Proof: It may be first seen that one can obtain the expressions given in

Theorem 6 from those given in Theorem 7 and vice versa by relabeling both the

input and output variables as described below:

Yk s Yn-K+l and Yk as Y n-k+l for all k, 1 < k <n.

This implies that any permutation admissable by Omega (reverse Omega)

networks is also admissable by a cascade of three networks, as shown in Fig.4

The first and third networks here perform the bit reversal permutation. The

second .network is the reverse Omega (Omega) network. Hence the equivalence

relationship. Q.E.D.

(b) Simplified Omesa Networks

A simplified version of Omega networks was introduced by Lang-Stone 16].

The simplified Omega networks receive only one control bit per data item.

These bits constitute the control bits that are used during the first pass.

These control bits are used in the some way as in the SE network, where they

control the exchange operation during the first pass. However, for every

15
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successive pass after this first pass, a new control bit is computed for each

data item, and these new bits now control the exchange operation during that

pass. These new bits are computed from the control bits that have been used

during the imediately preceding pass; this is described below:

During any pass other than the first, certain predefined Boolean operations

are performed on every pair of control bits (which are contained in the i-th

and (i+l)-th inputs of E, for all even i). The bits produced by these Boolean

operations then replace the existing control bits (in their respective pairs

of inputs) and these new bits are then used by E as control bits to perform

the exchange operation for that current pass.

In the following, we discuss certain generalized, versions of the simpli-

fied Omega networks; this enables us to derive results with broader implica-

tions.

Let the control function that is used in any pass be a function of certain

tag bits which are transmitted with the data items. Thus, one can select any

arbitrary control function for any pass. (However, it may be noted that we

restrict the control function to be the same for all data items, during a

particular pass). Hence, in order to produce the desired permutation, the use

of any combination of control functions for the n-different passes, is available.

Four tag bits are required in order to specify 1-out-of-16 possible

different two-variable functions. Since there are n-passes, only 4n

tag bits are required, altogether. (For example, given 256 data items, only

32 tag bits are required--a small number, when compared to the 256 control bits

that are used.) As it will be seen later, the use of these additional bits

can produce a much larger number of permutations. This is significant when

compared to the number of permutations that are admitted by the network when

the control functions are prespecified.

This version of the simplified Omega network, which allows for arbitrary

control functions, will be hereafter referred to as Simplified Omega with

Arbitrary Control (SOAC) networks.

Theorem 8: Any permutation that is admitted by the SOAC network can be repre-

sented by functions defined as below:

Yn " Yn * fn (Yn-l'yn-2'''''Yl),

where the function, f., is defined by the control bits used during the first

16



pass. The functions, Yn-lYn-2,.... ' l' are defined by the following recursive

relationship:

If Yk - Yk * fk(Yk-l~yk2 , .. yl) then,

Yk-l - Yk-l * fk-l. - ' Y ), where

fk-1 (Yk-2'Yk-3 ......
y l)

fk= (Y k-l = 0, Yk2-"l * fkiYk2"Y

and * is that Boolean operation which is used during the (n-k+2)-th pass to

compute the control bits.

Proof: Proof is given in the Appendix.

Now, it may be noted that if the control function that is used in the

network is either an exclusive-or function, or an equivalewce function (as

it is proposed in f2j, then the recursive relationship between Yk and Yk-1

reduces to the following:

If Yk - Yk * fk(Yk-l'Yk-2' '' ' y l ), then

(Yk-l * d f- k  , if the control function is ex-or

(7 k- * dfk 01, if the control function is equivance.

Ykk

It is also interesting to note that the above relationship is precisely

the same relationship derived for certain single stage networks, in the last section.

In the following, we characterize the reverse SOAC network.

Theorem 9: Any permutation that is admitted by the reverse SOAC network can

be represented by the functions given below:

Y 1  "Y, f1 (yn'Yn-1p ' ' Py 2 )  where

17



the function, f1, is defined by the control bits used during the first pass.

If Yk - Yk f k (Yn'Yn-l"*"Yk+l), then

Yk+l = Yk+l * fk+l (Yn'Yn-l'"'Yk+2), where

fk+Z (Yn'Yn-Z'""*Yk+2)

fk (Yn'Yn-l'" 'Yk+2'Yk+l = 0) *

fk (Yn'yn-l'""'Yk+2'Yk+l = 1)

and * is that Boolean operation which is used during the k-th pass.

Proof: Proof is similar to that given for Theorem 8. Q.E.D.

If the control function, *, is an ex-or or an equivalence function, then

the above recursive relationship can be expressed in terms of the Boolean

difference, as shown above for SOAC networks.

Theorem 10: The SOAC networks and the reverse SOAC networks are equivalent.

Proof: The proof is similar to that given for the Omega network in Theorem 7.
Q.E.D.

Thus, as it was seen in the case of Omega networks, with the use of fixed

bit-reversal permutations at the inputs and outputs, one can realize reverse

SOAC networks from SOAC network and vice versa.

(c) Flip Network

These networks were used in the STARAN computers 113]. These networks

consist of two basic subnetworks: a flip network and a shift network.

The flip network performs the following permutation;

j - i 0 f where

18



f is a fixed control vector and 0 is a bit-by-bit ex-or function.

The shift network permutation is defined as:

j -i+ 2 m mod 2p , where 0< _<p<n and

m, p represent control variables.

The Flip network has an equivalent multi-stage representation [16] that
N

uses n stages of - switches. Each stage performs basically an exchange

permutation followed by a shuffle-type permutation. The i switches in the
2

network may be controlled by control bits.

The following results can be derived by using the above equivalent

representation, along with Theorem 5 and 6, or independently, by using the

techniques similar to those used for characterizing Omega networks.

Theorem 11: The Yk functions that represent any permutations which are

admitted by the Flip networks can be expressed by:

Y k - Yk * fk (Yn'Yn-1 0-9' Yk-fl' Yk-l'Yk-2"'"Y1)

for all k, 1 < k < n, where the function, fk' is defined by the control

variables.

Theorem 12: The Yk functions that represent any permutation which is admitted

by the reverse Flip networks can be expressed by:

Y k -Yk * f k (Y n'Y n-1 ' " "'Y k+1'Yk-1 "" "'Y1

for all k, 1 < k < n, where the function, fk' is defined by the control

variables.

It is readily seen that the Flip and Omega networks are equivalent. It

can be seen that many multi-stage networks such as Banyan 114], Omega [5],

Flip [13] and Indirect Binary n-cube [9] are indeed equivalent;

Bowever, the iuportant observation that may be made is that two

distinct classes of networks do exist, as defined below:

(.) Class I network:

A network is said to belong to this class if the network is equivalent to

19



some network, G, which has the following form of characterizations:

Y " yl 9 f 1 (Yn'Yn-l""'Y2 and

for all k, 2 < k < N:

Y k fk (Yn ' 'k+l' where

fk is derived from fk-l"

(ii) Class II Networks:

A network belongs to this class if the network is equivalent to some

network, G, which has the following form of characterization:

Y y 1  f (y a
1 n Y 1Yn'Yn-l''''y 2), and

for all k, 2 < k < n:

Yk - Yk * fk (Yn'yn-l"'"Yk+l'Yk-l'""-Yl)

where, fk' can be any arbitrary function.

The chief difference between Class I and Class II networks is found in

the way in which fk is defined. For Class I networks, fk is not a function of

Yk and fk is derived from fk-l" On the other hand, for Class II networks,

fk can be any arbitrary function which can also be a function of Yk (since fk
is a function of Yj, 1 < j < k-l which are inturn functions of yk) .

The simplified Omega, uniform shift, unscrambling/scrambling networks are

all of the Class I type.

The Class II networks consist of Omega networks, Flip networks and the

like.

Let P1 be the set of all permutations that are admissable by the entire

Class I networks.

Let P2 be the set of all permutations that are admissable by the entire

Class II networks.

Let IXI denote the cardinality of set X.

Corollary 1: P CP

12 2

20



Proof: Proof is obvious.

Corollary 2: 1 P11 < (n!)2 j2"'i ow- 8

Proof: First, it may be observed that the number of distinct Y functions is

equal to the number of distinct fl functions. Furthermore, every distinct

multiple output function, Y2 ,Y2 ,...,Y , represents a distinct permutation.

There are altogether 2 2n -  functions of (n-i) variables. Thus, there

are 2 2n-1 a2 N  distinct fn (hence, Y n) functions.
Using Theorem 6 and the fact that there are exactly 16 functions of two

variables, one has, at most, 16 different fk functions, given any

function.

From the above observations, it can be said that there are, at most
V2 16n- 1 distinct multiple output functions, Y n,Y nI...,Y. Hence, the

number of distinct permutations is upper bounded by:

S2N 1 6n-i - 2 N+8 log n-8

Proof is complete using the observation made in Theorem 1 and Corollary 1.

3Q.E.D.

________2 (n) NlgCorollary 3: 1 rri oN< I P2  _ ,:(:2 '2 os

Proof: The lower bound follows from the number of permutations that are

admissable by the Omega network 15).

The upper bound is a direct consequence of Theorem 2 and the following

observation: 2n-l
There are exactly 2 functions of (n-1) variables, and hence, there are

2 2n- distinct Y functions for each J. Q.E.D.

Corollary 4: The fraction of Class I permutations that are admitted by the

Class I networks tends to 0 asymptotically with N.
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Proof: j P1 I upper bound on P1 I

I P2 I lower bound on I P2 I

< 0 as N Q.E.D.

In the following, we provide a different characterization of P
V I

Let p(i) = J, and p(i ) J, for some permutation, p, where
I I

0< i, J, i , J <N-1.

Let: i (i n ' I n l, .., k, ..., 1l)1

Qn t in-l °.... ,.... il,

I I i

i (in, in-1 ,.., ik,..., jl) and,

I I I

S(in' Jn-l'''' Jk'"'' Jl) be the binary representation of i,

I I

J, i, and J, respectively.

Definition: A permutation, p, is said to be symmetric in the k-th bit of it

satisfies the following: Given any i, i , for which i i for all j 0 k,

and ik is the complement of ik (ik = ik), then the k-th bits of the resulting
k I _

pair, j and j , are also the complement of each other; i.e.; Jk Jk"

Definition: A permutation will be said to be symmetric if it is symmetric in

all the n-bits.

Corollary 5: The permutations in P1 are symmetric.

Proof: Let p represent any permutation in P1.

Let p (i) - J, and p (i) -J , for some i, i , j and j

Now consider the following equation for the k-th bit for class I networks:

Jk i k f k (Yn - n-1 "n-l"'Yk+l k+1

22
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and J' fk ( - in, Y'n-l 1n-l'Y'k+1 -kl

Let i j ijikl <i n, and Ikik

Substituting this in the above equation.

for J k and j i, w get:

Q.E.D.

Wdhat is interesting about the above Corollary, is that it is also valid

for multiple passes through the network. Therefore, this provides an explana-

tion as to why such a permutation as bit reversal is not admissable by SOAC

networks without using special techniques such as providing input queues/

buffering [19] to eliminate conflicts.
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V. CONCLUSION

In this paper a switching theoretic formulation of SIMD interconnection

networks is presented. It is shown that the networks can be classified into

two distinct classes which are based on certain characteristics of the sets of

admissable permutations. The first class of networks consists of certain

single-stage networks and the simplified Omega networks. The other class of

networks consists of most of the multi-stage networks, such as Omega, reverse

Omega, Flip, etc. In Table III, we summarize the characteristics Of these

two classes of networks.

It is expected that the results of this paper should provide a new technique

with which to analyze the interconnection networks. Further research in this

area may be carried out by exctending this work to multiple passes through the

network, and hopefully we will be able to resolve some yet unanswered questions

such as: whether two passes through a multi-stage network are sufficient to

realize all permutations.

I ______________OWN_
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APPENDIX
Proof of Theorem 3.

P ro o : !a.: 'U ,c .o....f b* ,. .. .- -c e tiir number

to additiurn of the fi:ed nu~mber d to ea¢ci i. Since tie addition i. pec-

forncd rdulo ": -, an, carry from the !i-th noslcton is discarded.

Thie variables Yn'Yn-I.'.YI reoresenc the sum bits produced by

adding d cc, the number represented by tha "ariabies % '

Thu., the funcLion Y can be expresseJ ,i-

Y = , d " C(V ,.,, . 'Y, Wh'r r C is tLil. function repre-
'n nn1 n

senting ".lie arry bit in to thi n-th position. -"his carrv bic is a

function of the bits to the right of the r.-ch position. However, it

may be noted that since d is a fixed integer for all i, Cn is expressed

as a function of only the variables v10 ..... 9Y"

Let g (y n-2....'Y)= d C (y Thus,

n-2 1 n n n-19''n-2" ... l Tus

Yn n gn(yn-lyn-2'... yl

Similarly, for any k, we can express Yk = Yk ) gk(Yk-l'Yk-2' .... Yl)

where

gk(YklYk_2...-.,Y )  dk E Ck(Yk-lYk_2,...yl (1)

The function Ck(Yk-lyk_2,...,yl) represents the carry into the k-th

position.

Now, one can express

Ck (Ykl'Yk_2'..Yl)

+ 7 y ~ (2)- dklYk I + diCkl(Yk2,Yk3 ,. ..,yl)

@ 4 Yk.ilCk..(Yk2,Yk_3 ,... ,yl) (3)

M d k lYk_1  (D d k -iC k l(Yk.2,Yk.3,. ..,y7)

@Yk- C k-lI (k-2 'Yk-3'-""'Yl) (3)



rL u1: C n 1 onie has

-d Y, d v d . -k k-c- -2

Now

and

C kl(Ykz2 .. Py1 ) '(6)
From (5) and (6), one has

dg k d Dck(yk~k,., 
7dyk-1 k-1 k-)-'k3 .. y 7

But,

y k-1 a Yk-1 9 d k- c Ckl(y k-2yk-3,...,) (

S u b s i u i n g (7 ) i n (8 ), e g e t gl

k-i ~k-i dy ki

Q.E.D.
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IFJ

terms in the multiplication of (tntn_,. .. ,t ) with the variables

Since the multiplication is performed modulo N-2U, we can discard

all the partial product bits to the left of the n-th bit position, as

shown by the dotted line.

First, it may be observed that in each column, there may be one or

more carry bits in addition to the partial product bits. These carry bits

are generated during the summation of the columns to the right of this

column, which are then propagated to this position. Let Ck, 2 < k < a,

represent the ex-or sum or these carry bits in each position. Note that

C1 a C2  0.

Since t is a fixed number,.C k is a function of Yk-lYk.2,..Yl only.

Thus, Yn=tIYn i 2Yn_1  0 ... nyI  0 Cntl(Y nlYn_2t...tyl)

Let g n(ynlyn_2 ,...,yl) w t2 y 1  * ... ( tnYl C Cnel(Yn-lYn_2,.yl).

Since t1 a I, one has Yn - yn G gn(Yn lYn_2, "-Yl)- Similarly, Y k

can be expressed as Y =  .. Yl where

gk(Yk-lYk_2,...,yl -2Yk- 1 G) t 3Yk2 ... 1

( Ck(Yk.Iyjt_2,.-,Y 1 )

Now, -k(Yk-l=OYk_2,..yl)= t3yk_2 S .. tkyl e Ck(Yk 1 O,yk_ 2,...,yl )

and gk(yk-lYk.2,..,y) - t 2 S t 3 Yk 2  t .. 1 ty 1

Ck(yk-l1 ,yk 2, . . y1).



Thus '

tt
dy k_1  = 2  ' k(Yk_1=OYk_2,...Yl) Ck(Yk-l"lYk_2,"., Yl)

dCk
=2 . (9)

We can express Ck(yk l'Yk_2,...,yl),which is the ex-or sum of all the carry

bits into the k-th position, as:
C ~kly .S 1 (Y2

Ck(Yk -lYk_2," ,y1) C(Yk1lYk2,...,yl) e Ck(Yk_2,Yk_3.-,Yl).
1

In this, Ck(YklYk_2,...,y1) represents the function for the carry bit
2

produced in the addition of (k-l)st column only. Where as Ck(Yk_,Yk3,...,yl)

represents the function for ex-or sum of the carry bits produced in the

addition of J-th columns 2SJ:(k-2), and which are propagated into the k-th

column. It may be noted that yk-1 does not appear anywhere in the 1st

through (k-2)nd column. The first time yk-l appears is in the (k-1)-st

column. Therefore, the functionC 2 is independent of ykl

Thus,

dCk C 1 1 I
dYk~ k (k-lOOYk2,*...,y) 1 Ck(Yk-1=lYk2,...yl)

2 2
* Ck(Yk2,yk3,.-.,Y) 0 Ck(yk_2,Yk_3,...,yl)

- dC 1

dyk-(1

Consider the function C , ..,yl). This, by definition, is the

carry bit into k-th column, due to the addition of the terms ykl' t2Yk2l

t3Yk_3 , *.., t kly, Ck-1 which appear in (k-l)-st column. This function

is represented in the following table.

.,V*/ s *



7k-1 Zk-2 3 k-3  C 1 k-l k

0 0 0 0 0 0

0 O 0 0 1 0

B0 0 1.0 0

0 0 0 0 1

1. 0 0 .. 0 0 1

1 0 0 0 1 1

1 0 0 1. 0 1

B1

10 0 1 1 1~-

3.I .1

Table 2. The Truth Table for C1



1

The function Ck i represents all the rows which have 2i,l's for

i - odd integers. This foliows from the observation that if the number

of l's in the (k-l)-st column is equal to 2, 6, 10, 14, etc., then we get

a carry in to the k-th column. 1

Now, consider the function - C1(Yk0-OYk ...,y

C1(Yk l'Yk2,...,yl). The truth table for this function can be com-

puted in the following way. First, note that -d- is independent ofdykl

Yk-l and hence, the truth table will have half as many rows as the above

1
1 dCk

one for Ci The value of the function _ for the i-th row can .
dyk-l

computed as follows: Take the value of the function C1 for the i-th row
k

in the upper half B0, and then compute the ex-or sum of this with the

value of the function for the i-th row in the lower half B1 as shown inI!
Table 1I. The i-th rows in the B0 and B1 are identical in the t2Yk-l ,

t 3yk-l, . Ck 1 positions. Further, it may be seen that if the i-th

rows have an even number of l's in these positions, then the two values

of C1 are identical. On the other hand, if they have an odd number of
k 1

l's, then C has complementary values for these two rows. This, therefore,

C1
implies that - is equal to I for the i-th row only if it has an odd

number of l's in the t2yk_l, t3yk-I.,..,Ck_'l positions, and is equal to

0 otherwise. From this it can now be deduced that

d
d Yt 3Yk. 2  ... ( t Y C Substituting
dyk-l - -2kl1 kl

this first in (lO)and then in (9) one has:



dgk
dyk M 2 t2Ykl e t 3 Yk_ 2  .. t kly 0 C k_ 1

(11)

But

Yk-1" Yk-1 ' t2Yk-1 ' t3Yk 2 G 0 tk 1 7k 1 4 C*k.•

(12)
From (l)and (12)

k-1 Yk-l G t2 ( dy- 1

Case I: (t-1)/2 - even number

In this case, t2 - 0

k~- . Yk-1 0D dg k

Case II: (t-l)/2 - odd number

In this case, t2 - 1

-k- Yk-1 ® d gk  D 1k-l dyk_1

Q.E.D.

Proof of Theorem 5

First, we introduce additional notations which will be useful in deriving

the results. Let$(i, Pk' (i))( 0<i<N-11be any permutation which is admitted by

the network in kstages . Let the permutation, Pk' be represented by n-switching

k k kfunctions, Y , Y;-1 I .... YI, of the variables Y.' Yn-.' y

Next, letl(i, pk(i))J 0 < i < N-11 be that intermediate permutation

which is realized at the output of the shuffle network, during the k-th stage,

which results, at the outputs of the k-th stage in the permutation, Pk' at

the network output. Let this permutation, Pks,' be represented by n-switching

function, k .k of the variables, yn, yn-p .... yl.funs~in' u X n - 'l ... ...



i'inlallv, Ct r..-.p'>sent- rhar ¢-nitcol bi.t u.d in , f.: ' . oncents

Ic folalos from the above notat.!ons .> - ". -

y. for k-0, and

Y., for k-n. (13)

Lemia 1:

for 2 " J < n, and
Xif

. , for j I

Proof: P-'c')[ i a direct consequence ol rieoremr in fl C,. Uct2." ,2tth

the fact that the outputs of the (k-l)-th pass are fed 'ack to Form the inputs

to the k-th pa:ss.

Q.E.D.

The following is the proof of Theorem 5.

Proof: For the ,sake of simplicity, this proof will be dtveloped in two parts:

First, we will show that:

Yn = Y n fn (y n-I' Yn-2' "' Yl) "

Then, we prove, in general that:

Yk Y k0 fk (gn' Yn-l' ".'' Yk+l' Yk-l' Yk-2' 'Y )

Using both Lemma 1 (for k-1) and the relationship (13), one has:

Yj-I 2 < J <n
M Y n - (14 )
ni-

The following table describes the relationship between Xn
. x n 1  ... Ix1 and

Y 1 

n, n-l



n -1 ".

0 0 0 0 0 0 0 C

-=1
0 0 0 1 0 0 0C 1

1
0 0 1 0 0 0 1 C2

-1
- - -- - - - - - - -0 - - " - - - - -C 1

i+l - i Ci+1

1 0 1 1 C -
2n.2

11 11 11 1 2n.
2 -1p

TABLE III: Y and X Variables during the first pass.



The above table is derived by using the following observations regarding

the mapping of input addresses to output addresses, as performed by E:

(a) The output pair is identical to the input pair when the input pair

is not exchanged.

(b) On the other hand, when an input pair is exchanged, the resulting

output pair has the following characteristic:

The binary numbers that represent the output pair are identical to the

binary numbers that represent the input pair, in all the positions except the

least significant position. The bit in the least significant position of the

output pair is exactly the complement of the bit in the least significant position

of the input pair.

(c) The least significant bit of any input pair, i, and (i+l) is 0 and

1, respectively, because i is even.

1 1(d) The input pair, i, and (i+l), is exchanged if C i  C C1+1 1; and the

pair is not exchanged if C = CI W 0.

As a direct consequence of the above observations, it is evident that all

the Y 's are identical to all of the Xi's, except for J-1. The column, Yi, can

be represented as C and El , in the i-th and (i+l)-th rows, respectively

for all i.

From this, it can be derived that:

11 1

(2) YI is a function of X1  X1X1n ' X-l' "' 1X



The function, T1 , can be expressed, as show below:

y 1 @c a' 4x11 1 1*4' n ' " 1

I-o .4 *I.. 4 1 .. 4
"° X1X' A 1 41C 1 .. X.1  4 15 )

2 -2 2 -210 -.. 2 -1 0 X %+ ... 2 nn£..(5

1 1since C - Ci+1 , for all even i

Consider the following well-known identities in Boolean algebra:

(a) P(Q - P Q, if PQ 0. (16)

(b) i- (17)

(c) PfO u- (18)

Using these identities, one can express (15) as:

I' " " "n-1 " " " X3
1 0l an 1  .. 2nn-1 31x2

C 1  X1lX1 1 C
en4 nu-1" 3 2_2 a 4-1 "X

1-1 .. ..n-1 '-2 '"2 Y

T 0o yu-1 Yu-" •'"i2 i C -2

2n_4 - n-2 . . . 22E2s n ( 13) an . . 2 1

using (13) and Lemna 1.



Let f n- l y Yn-2' ' y1 )

. .. " ) C12 g -1 nn- l 'n-2  . . Y22 y 1 1

(D...E l y y .. .*y.y ® l y1  'y * y
2n n-ln-2 -21

Thus,

Y1 . Yn (D fn (On-i' Yn-2' "' Yl ) "  (19)

Using Lema 1, and the above observation regarding the least significant

Y-bit, one can state that, in general:

k . k-, 2<Ji<, and(a) yj , Y;y-l

k-i k-I k-I(b) Y 1 is a function of the variables, yn ' n-i' 1 This,

in turn, implies the following, in general, for any k:

yn-k+1 . yk 1k , < j < n (20)
1 k k

n -k+ . y < J<k (21)

k n-k+j n-k+j

k *Yo Y t(k+ 1<j .n (22)
j J-k J-k

Substituting k-n in (20), one has:

y1

Thus, eq. (19) now becomes:

Yn= Yn (e ) f (Yn-l' Yn-... "'' Yl)'



Now, to prove the theorem, in general, for any Yk' consider the (n-k+l)-th

stage of the network. For the sake of convenience, let n-k+l be denoted as a.

One can derive the following equation for 1 - l by using techniques

similar to those used for deriving Y-"
1*

cm x (23)
2-n2 nU-~ 3 2

Using Lema 1 in conjunction with equations (20). - (22), one can deduce

the following:

x - 1n-1 . Yk (24)

kn-kj- 2 < j m, (25)

je ms -t Y m+l<J n. (26)

Substituting (24) - (26) in (23), one has:

T k k (2 ) 0 k-1 -- 2 n 1 Inn-2 fk+2 Ik+l

2 . k-l k-2 . k- .- 'k+2k+l . . . ...

j ~± 2n 2 k-l yk-2 yl n n-l . T k+2 
Tk+l

" Yk ® tk (T' Tn-l' " " k+l' Yk-l' Yk-2' "'" yl)  9

where f (Y,
k nP Tn-l' " k+l 9 k-l 0 k-2 y



.... ... . ... ..-

Ck. A- "! r*n-l'*",.-* t 2  *

( 2  7k-1 k-2 '" 1 n n-l'''Yk+2 +k I " "

J I YI Y.... -C, *.

-k. " " +2 Q.E.D.

Proof of Theor-., 7.

Lemma 2:

( OPO ® aP t ®...oatPt)*(b0P C0 bPl(+...$bj)

-(ao0 bo0)Po(D (al*bl ) PJ(D ..(D (arCabt ) rPt

where (1) a is and bi's are constants

and are equal to 0 or 1.

(2) Pi's are product terms over some variables.

(3) * is any Boolean operation.

(4) Pi P -o , for all i, j and i£j

(5 P) E) ®ep - 1

Proof: Proof is based on the principle of induction, and also on the observation

that:x*y k0G klx k2y k3xY , where k0, k1, k2 and k3 are binary constants.

Q. E. D.

Lemma 3: The control bits that are used in the SSEAC network satisfy the

following relationship:
341 -l

2+ - Cl * CM 2n-1 where 0< i< 2 n-l, where * is

that Boolean operation used during the (m+l)-th pass, to produce the new control

bits.

Proof: After the completion of the m-th pass and during the (m+l)-th pass,

the contents of the i-th output of the SSEAC network are transuittead through



* i he S network ra chte j-th i.[ ,pt of the E n*t:.ur'.

The following relationship between i and j is derived from the fact !,at

S performs perfect shuffle permutation:

i -2 , 0 < J< 2n - 1 -1 (27)

i - 2j -2n- , 2 -  j _ 2n- 1  (28)

Consider 21-th and (2i+l)-th inputs of the E retwork, For some i, 0 < 2 -1.

These are two adjacent inputs. The Boolean operation, *. is performed during

the (m.+l)-th stage on the two control bits that are contained in these inputs.

This produces the new control bits for these inputs.

Using (27) and (28), one can see that the contents of these 2i-th and

(2i+l)-th inputs to the E network correspond to the contents of the i-th and

(i+n-l)-th outputs of the SOACnetwork, respectively, at the outputs of the

m-thstage. Thus, Cm and Cm 2n-l are the two control bits that are contained in

2i-th and (2i+l)-th inputs, respectively, and these are used for generating

in the (2+l)-th stage. Hence the Leuuua.
C21

Q. E.D.

The following is the proof of Theorem 7.

Proof: During the first stage, the operations of a SOAC network and a'Oega

network are identical. Consequently, the following equation is also true

for SSE networks:

Yn a Y®n( ) fn (yn-2' .'" Yl) "

NoW, in order to prove the relationship between Yk and k-l' the

following known fact 61 regarding the control bits may be observed:



• "? i . - ..... .. . .

z -B .2

a;- 9

": =r- - stage of.- .- :-

s nt: .i'a- =:& in the :r c.f of Thecrem 5. reza :-4.z r;. h ea- -z .i canr

ai u _" as. .tZ equat.ion "2 ...

One can irve the' foilowing sim.lif ed expression. for .1 .: uecin_

-.- of-.ocuc-.s ex:ri.ssion, asing identities of Bcclear. algebra. such

P a s - ?, anzi ? - .

" I .. "' . -

-n- "n m~ " m.r

-M " . "' -n -2... ... Xm M

" " ,- - -X a " " X"X
$Cm .~~m.,m ~~Qm 7

7sing the identit-es of Boolean algebra given earlier (16) -one

:at convert the above expression to the following form:

Y= 0z CMX%. M -M
I "n ....... .-. .m

X X_ i, 0+ ... C ® ¢ ,. X. Xm (30)
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Now, consider the next stage (the (n-k+2)-th stage) through the network.

Using techniques similar to those used for deriving Y.. one can derive the

following:

yk-i a Yk-l ® k-l (yk-2' "' Y2' yl)

where

fk-I (Yk-2' .. ' 2' yl)

-m~m - -D C

0 Yk-2 ... 72 yl 2 m Yk-2 " 2 71

2 Cn-2 Yk-2 "' Y2 Yl' (34)

From (35), one has:

'k(YyIcl = O, Yk-2 .'"" yl
)

C- ik-" ... i2ilO C m 2'"'Y2Yi1 5 " 2Ck'
2 n-2 W k-2'.. 2l

and

f k(yk -l 1 Yk-2"'''ly )  
(35)

=CM M" "k2**ii( Cm  '

2n-] 2 2l(.zn-l+2mYk_2,... 2Yl -+ C 1n 2mYk-2
' '...' 2y

Thus,

Y f k-l = O' Yk-2' ..., yl) * Y1k-l = 1, Yk-2' ...' Yj
)

0 ik- 2 *.. i2 'I (D ... (D e-)
2'-2 k-2

2 (C 3  Yk-2 "' 2 C C 2nam Yk-2 .'" 72 71
(e-0 2n- k-'2 ... i2 "'" (e 6Mn_1) 'k- 2 ... 52 y .

2 2 -2
- (S~ C ) - C t m

1 -Y2 .. 2'1(3)

G~~~ 1+2M 2 +C 2M ~ 3)

us ing Leaa 3.

I -i



Using Lemma 3, one has:

Co - Cl  * C=

C 0 C3
3 0 ~ 1

2"+l 2 2 + 2

2m+l. 62m  6 n1 m

2U_2M+l C2 -2 * C2n 2a

Substituting these in (35), one has the expression given in (34).

Hence, the proof.

Q. S. D.


