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I. INTRODUCTION

The study of permutations aiud permutation networks has been an important
topic of research in parallel processing [4-12]. Permutations of the data as
well as of the intermediate results are required in order to execute the
algorithms that are used in parallel processing. Also, the ability to
simultaneously access multiple data elements from memory is key to successful
parallel processing. This simultaneous access is achieved by the use of
multiple memory modules [1] where those data items that may be simultaneously
needed are stored in different modules. Several permutation techniques [4-~12]
have been proposed for arranging the data items so that conflict-free access
to the memory modules is achieved.

In the literature, certain permutations, such as uniform shift, unscram-
bling of t-ordered vectors, etc., have been identified as important in parallel
processing (especially in SIMD-type machines). These findings have influenced
the design of some of the permutation networks that have been developed for
interconnection between memory modules and processors [4-12].

This paper introduces a'switching theory framework for the study of inter-
connection networks. With this framework, techniques are developed that
characterize both single-stage and multi-stage interconnection networks. In
particular, a variety of interconnection networks - especially useful in single
instruction multiple data stream (SIMD) machines - are able to be completely
characterized by using this switching-theory formulation. The set of networks
studied here includes uniform shift networks [4,7], scrambling/unscrambling
networks [8], Omega networks (5], simplified Omega networks [6], and Flip
networks [13]. Also, we charac:etize those networks obtained by reversing the
original networks; i.e., the outputs are used as inputs and the inputs as
outputs (see Fig. 1). The reverse networks, besides being of theoretical
interest, have practical importance in that a network may be operated in a
bidirectional mode, thus requiring the use of the reverse network.

Based on this characterization, it is shown that the interconnection net-
works satisfy certain equivalence relationships; these relationships result in
two distinct equivalence classes of networks. The first class includes most
of the single stage networks and certain of the multi-stage networks. The
second class constitutes most of the multi-stage networks. Several related
results regarding structure and number of permutations admissable by these

two classes of networks are developed.




Section II develops the basic framework for the study of interconnection
networks. Interconnection networks cam be broadly classified as single-stage
and multi-stage. A single-stage network uses one stage of switching and the
designed permutation is performed by using single or multiple passes through
the network. A useful example of such a network can be found in the Illiac IV
computer [4]. The interconnection network used in Illiac IV can perform four
different types of uniform shift permutations. Multi-stage networks use n
is equal to log2 N and N is the number of inputs. The desired permutation is
usually realized by using a single pass through the network. A block diagram
of a multi-stage network is shown in Fig. 1. Each stage typically performs
some type of shuffle and switch permutations.

Next, in Section III, certain single-stage networks are characterized.
We consider multi-stage networks in Section IV. We characterize many multi-
stage networks that have implemented or proposed in literature. Both the
forward and reverse versions of the networks are studied. Two equivalence
classes of networks are defined and the networks classified accordingly.
Specifically, it is shown that uniform shift, unscrambling/scrambling and
simplified Omega belong to the first class, whereas most of the multi-stage
networks belong to the second class. Also, results regarding the structure

and number of permutations admissable by these classes of networks are presented.




II. BASIC FORMULATION

This section develops the basic framework for the study of permutations
admitted by single and multistage networks.

A permutation p can be defined as a one to one and on to mapping from a
set of integers into itself. The permutation p is usually represented as
{(1,p(1))]0 < 1 < N-1} where p(i) represents the mapping of i, 0 < i < N-1.

In this paper, as in most of the previous work [6-8], we assume N = 2t
for some n. In the following, we introduce F, an alternate representation of p.

Consider the binary numbers 0 to N-1. Let B° represent these binary num-
bers. The set B® consists of 2" distinct binary n-tuples. Let F : B® + B" be
a mapping, as defined below.

For each £, 0 <1 < N-1, let i = (in, n-l""’il) denote the binary number,
i. Letp(i) = § vhere 1 = (jn’jn-l’”"jk”"’JI) denote the binary number j,
where § = p(1). Thus, P is one-to-one and onto mapping of B” into B® and is
the permutation p, expressed in terms of the binary numbers.

Now P in turn can be expressed as a collection of n switching functions
fl’fZ""’fk""’fn' Each of these functions, fk’ 1l <k <n, is an n-variable
functions, as defined below:

For 1 < k < n, let:

Y - fk(yn’yn-l""’yl)’ and let
Jk = fk(yn = in’ Vo1 = in-l""’yl = 11) vhere

is the k-th component of the binary number j, given by F(1) = j].

I




Example 1:

Consider the following permutation:

3 59 1 Y3 Y, N

i J = p(d) 13 12 11 iy 31, 3

0 0 0 0 0 0 0 O

1 5 o 0 1 1 o0 1 i
; 2 6 ¢ 1 o 1 1 o
i 3 7 0 1 1 1 1 1
Y 4 1 1 0 0 0 o0 1 k
: 5 2 1 0 1 0 1 0
i 6 3 1 1.0 o0 1 1
i 7 4, 1 1 1 1 0 o
: - . )
? Yy = Yy¥a¥y * Ya¥y * Yg¥oY; :

Yy = ¥3¥y ¥ ¥5¥yY) * Y5V

T =ty

Thus, we see that every permutation on 2" elements can be represented in
terms of n switching functions.

Let (1,p(i)) 0 < i < N-1 be a permutation admitted by an interconnection
network. Let the permutation, p, be represented by n-switching functionms,
Yn’ n-l""’Yl of the variables, A ARTRIED AT It may be observed that in
the truth table representations of these functions, each Yj column contains
exactly 2n-1 1's; the rows describing Yj's are all distinct. Thus, the YJ
function may possess certain regular structures and may satisfy certain
relationships. This is precisely what we explore in the next two sectioms,

for single and multistage networks, respectively.
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The following develops a definition for an equivalence relationship
between networks; and some related results that will be useful in the next
two sections.

Definition: A bit-rearrangement (Ig_t) permutation is a permutation for which
the Y functions are of the type: Yk = yj; i.e., Yk"s are functions of single
y - variables (that are positive ).

The identity, perfect shuffle and bit reversal permutations are bit-

rearrangement type permutations.

Definition: A network that performs a bit-rearrangement permutation will be
referred to as a bit network.

Theorem 1 : There are n! bifpermutations of N = 2" elements. This set of
permutations forms a group.

Proof: Consider the set of n functions, {Yl,Yz,...,Yn} s, Where Yk is of the
type, Yk = yj. Since the n, Yk's can be assigned n,yj's and Yk's have to be

distinct in each set, there are n! such distinct assignments. Each of these
assignments constitutes a bit-rearrangement permutation.

Clearly there permutations form a group, since (i) the identity permutation
is a bit permutation (Yk = yk) (11) the inverse of abit permutation is also a bit
permutation (ii{i) concatenation of twobit permutations is also a bit permutation

Q.E.D.

Let P and P*denote the sets of admissable permutations for two networks,

G and G*, respectively. Let X-Y-Z denote the concatenation of networks X
followed by Y followed hy Z.

Let x’l represent the reverse network of X.

*
Definition: The networks G and G are said to be equivalent i{f there exist

some bit networks, ¢ and ¥, not necessarily distinct, such that ¢ - G - admits
P* and ¢la = ¥l admits P.

Note that (i) G is equivalent to G, itself, since and both can identify
networks which are also bit networks. (i1) and characterize the equivalence

relationship.
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The above definition implies that two networks are equivalent if one can
be realized by using the other, with the possible addition of fixed bit net-
works at the inputs and/or outputs to perform the required bit permutation.
Thus, the above definition of equivalence is conceptually different from other
equivalence relationships such as topological equivalence.

Corollary 1: Given a network, G, there are at most (n!)z-l other networks that
are equivalent to G.

Proof: From Theorem 1, one has n! distinct bit permutation networks that can
be placed at the inputs and/or outputs of G to obtain its equivalent networks.
Thus, there are, at most, (n!)2 networks that are equivalent to G. This
includes G, itself. Hence, the theorem.

Q.E.D.
Corollary 2: If G and G* are equivalent for each p€P, there exists pz:P*, such
that:

p= o lp*y-l
*
P = $p¥

Proof: Proof is an immediate consequence of the equivalence relationship.
Q.E.D.
Let (P.;;) represent a pair of permutations that satisfy the relationship
in Corollary 2. Let Fp and Fp* represent the two sets of Y functions that
describe P and P s respectively.

Corollary 3: By relabeling y and Y variables according to a fixed mapping

-1
defined by ¢ and ¥( ¢ and ¥ ), one can obtain Fp* from Fp (Fp from Fp*).

Proof: Proof is obvious.

Example: Let &, and ¥, that define the equivalence relationship between G
* - -
and G , both realize the bit reversal permutation. Thus, ® 1 and ¥ 1 also

realize bit reversal permutation.

i ot




Let N = 8 and let !p represent the following three functions for some P:

L=y,

I, =7,07,

s = . ey T

I;=9,¢7,

The relabelling defined by bit reversal permutation is as follows:

3

Yy * 73 Y

3

E‘ Yy > 7, I,+Y

‘ )

. Thus, Fp* represents:
37387,

I,=v,07

] 157307 :

* %
The permutation, p , described by Fp*, is admissable by G .




III. SINGLE-STAGE NETWORKS

In this section, we consider various types of single-stage interconnection
networks. Specifically, the permutations admissable by perfect shuffle networks,
uniform shift networks and networks which perform unscrambling of t-ordered*
vectors are each characterized. We restrict our discussion to permutations
admissable by a gingle pass through the network. (The use of multiple passes
through the network is equivalent to using single passes in a multi-stage
network and is considered in section IV.)

First we introduce the following definition to be used in developing the
results of this paper.

Definition: Let g(xn,xn_l,...,xi,...,xl) be an n-variable function. Then
%5 = g(xn,xn_l,...,xi = 0,...,x1) ® g(xn,xn_l,...,xi = 1,...,x1) where @ is

1

the exclusive-or operator. The function %ﬁ is said to be the Boolean difference

[13,14] of g with respect to X . i

Example 2:
X, X, X g
0 0 O 0
0O 0 1 0
0 1 0 1
0 1 1 1
1 0 o 1
1 0 1 0
1 1 O ]
1 1 1 0

For this function we can compute

8 ..z
ax, X%y .

‘It may be noted that given the ex-or sum of products expression for g, the

* In literature, this has been referred to as p-ordered vectors.




Boolean difference %& can be obtained by simply deleting all terms that do
i
not involve x, and also, all appearances of x

1 i’
(a) Perfect-Shuffle Network
The permutations admitted by perfect-shuffle networks are useful in
parallel algorithms for polynomial evaluation, FFT, sorting, etec. {3]. Also,
these networks are useful for comstructing multistage networks.

Theorem 1: The Yk functions that represent the permutations admitted by
(1) the perfect-shuffle network, is given as:

{ Yo i=1
Yi -
Yi-1 2 <i<n

(ii) the reverse perfect-shuffle network, is given as:

Y.{yi i1=n
T W 1<1<n1

Proof: Proof is obvious from the definition of perfection shuffle, given as:

21 0<1t<2™ly

p(i) = ; -
lagewn 2®l<g<2® Q.E.D.

(b) Uniform Shift Network
- These are simple networks and can perform many useful permutations in
0(\, N) units of time [ 7). These networks have found use in Illiac IV computers
and shift register memories.
The permutations admitted by these networks can be defined as:

p(i) = (1 + d) mod N, where d
represents the amount of shift which may be provided to the network through a

control input.
It may be noted that the reverse of the uniform shift network is also

o , W—— ﬂlﬂﬂlli‘




a uniform shift network.

Theorem 2: The Yk functions that represent any permutation which is admitted

by the uniform shift network can be expressed as:

. -

Yn - Yn ] sn(yn_l.yn_z,---,yl) where

E the function, 8> is defined by d, the amount of shift. The other functions,

Yn-l’Yn-Z""’Yl are related to Yn through the following recursive rule:

d
If Yk =¥ o gk(yk_l,yk_z,...,yl) then Y1 = Vi1 @ d—y'k—_l- .

Proof: Proof provided in the Appendix.

Example 3: Consider the following permutation which corresponds to a uniform
shift of 3 on N = 8,

i p(i) Y3 Y3 N ., v, v, {

0 3 0 0 0 0 1 1 f

1 4 6 01 1 0 0 "
; 2 5 0o 1 0 1 0 1 :
1 3 6 6 1 1 1 1 0 »
/ 4 7 1 0 0 1 1 1

5 0 1 0 1 0 0 0

6 1 1 1.0 o0 o0 1

7 2 1 1 1 0 1 0

10




8 (y3-y2.y1) =1

It may be seen that g,(y,,7,,7,) = .
2
8

8, (y3.y2.y1) - &, .

(c) PM2I Network ([15]

These plus-minus 2i networks form the basis for data manipulator and ADM
multistage networks. These networks can be interpreted as uniform shift
networks for d = 1,21. Thus, Theorem 2 holds for these networks.

(d) Scrambling/Unscrambling

These networks are useful to scramble the data when stored in to parallel
memories and unscramble the data when it is read from the memory. These are
particularly useful in matrix manipulations as the permutations performed by
these networks provide the required alignment of data to

(1) obtain conflict-free access of arrays from multiple memory modules
and (1i) process the accessed data simultaneously using multiprocessors.

The basic permutation admitted by these networks is called unscrambling

of t-ordered vectors defined as:
p(i) = t1{ mod N, where
t and N are relatively prime and the value of t may be provided to the network
by a control input.
It may be also noted here that the basic permutation admitted by the
reverse network is also a permutation of the type:
p(i) = ti mod N.

Thus, we need to only characterize the forward network.

Theorem 3: The Yk functions that represent the permutations admitted by the
scrambling/unscrambling networks can be expressed as:

11
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Yn = yn ) 8n(yn-1’y _2,...,y1) where

the function, 8.’ is defined by t. The other functions, Yn—l’Yn-Z""’Yl’
are related to Yn through the following recurrsive rule:

If Yk * Y ) 8k(yk-1’yk-2""’y1) then

dggt

Y ® where
k-1 7k-1 " dy,
dey

if (t-1)/2 is even
*

deg dyy-1

8
dy, 1

if (t-1)/2 is odd

Proof: Proof is provided in the Appendix.

It may be seen that permutations admissable by networks to scrambling/
unscrambling networks and uniform shift networks have certain similar charac-
teristics. In the next section we will show that these permutations, as well
as those realized by certain multistage networks, belong to the class of
"symmetric permutations" (to be defined later).




Iv. ~ST. NETWORKS

This section studies the multi-stage networks. These networks are more
useful than single stage networks as they can admit a much larger class of
permutations. Several different multi-stage networks are characterized in
this section, and related results are derived.

Specifically, we characterize both forward and reverse versions of: a)
Omega networks [5], b) simplified Omega networks [6], and c¢) Flip networks
-13]. Certain equivalence relationships between these networks are then de-
rived. The networks are shown to belong to the following two distinct classes:
Class I: Networks for which the Yk function has the following general form:

T Ve @G OpgeVigeeeayy)

The simplified Omega networks, reverse simplified Omega networks and
certain single stage interconnection networks belong to this class, as shown.

Class II: Networks for which the Yk functions have the following geceral form:

i O S N WE EXERIL WY T R TR £
The Omega, reverse Omega, Flip and reverse Flip are shown to belong to
this second class. E
Further, it is shown that the fraction of Class II permutations that are
admissable by Class I networks tends to 0 asymptotically. Also, we will see
that Class I permutations are "symmetric" (to be defined later).
The techniques used to characterize the networks is based on the following
two observations:
(1) Any permutation which is realized by an n~stage network can be expressed
as a composition of a sequence of n permutations.
(11) Each of these n permutations can, in turn, be expressed as a composition

of certain easily characterizable elementary permutatiomns.
The networks considered here are N-input, N-output networks where N = 2"
and n is the number of stages

(a) Omegs Networks
This network was introduced by Lawrie [5]. Each stage in this network is

13




composed of two subnetworks, which are denoted as S and E in Fig. 3. The first
subnetwork, S, moves the contents of its input, i, to its output, j, where

§ = p(1), and p is the perfect shuffle map. The second subnetwork, E, moves
the contents of its inputs, i, and (i+l) to its output, (i+l) and i, respec-
tively, for certain selected i's, vhere 1 is an even number. For all other
inputs, i, the contents are moved straight through to the outputs, 1. Thus,

in effect, E performs exchanges on the contents of certain selected pairs of
adjacent inputs.

A set of control bits determines the subset of pairs which are selected
for exchange. One bit per pass per data item is all that is needed for control
ling the exchange operation. The data items carry with them these control bits,
and thus, the control bits form an integral part of the contents of the inputs
or outputs.

Each data item carries with it n-control bits. During the k-th pass,
the k-th control bits are used for controlling the exchange operation. The
contents of a certain pair of inputs are exchanged (not exchanged) during the

k-th pass, if k-th control bits (which are contained in both of these inputs)
are 1 (0). ‘

Theorem 5: The Yk functions that represent any permutation which is admitted
by the Omega network can be expressed as:

LR R A R R D IR AL

for all k, 1 < k < n where the function, Ek, is defined by the control bits,

C: that are used during the k-th pass.

Proof: Proof given in the Appendix Q.E.D.

The above result was derived independently by Pease [9] and the authors
[17) at about the same time. However, we have here provided a rigorous proof
of the Theorem which was not provided in [9). The techniques that are used
for formulating the proof will be shown to be useful in deriving similar
results for other networks.

In the following, we characterize the reverse Omega networks; these
networks consist of n stages of exchange and inverse-shuffle networks. A

14




control algorithm for reverse Omega networks is also availsble [18].

Theorem 6: The Yk functions that represent any permutations, which are
admitted by the reverse Omega networks, can be expressed as:

LS (VR L LAY ATREETS (WEEL ST WO TRERR ST

for all k, 1 < k < n, where the functionm, fk’ is defined by the control bits,

C:, that are used during the k-th pass.

Proof: Proof is similar to that given for Theorem 5 in the Appendix. The two
differences here are that: the inverse shuffle performs one bit end around
the right shift and is preceeded by the exchange permutation. The equations in
the given proof can be modified in a straight-forward manner to obtain the
Theoren. Q.E.D.

Theorem 7: The Omega and reverse Omega networks are equivalent networks.

Proof: 1t may be first seen that one can obtain the expressions given in
Theorem 6 from those given in Theorem 7 and vice versa by relabeling both the
input and output variables as described below:

Vg 28 Ypg4y 4 Y o as ¥ . for all k, 1 <k < n.

This implies that any permutation admissable by Omega (reverse Omega)
networks is also admissable by a cascade of three networks, as shown in Fig.4 .
The first and third networks here perform the bit reversal permutation. The
second .network is the reverse Omega (Omega) network. Hence the equivalence
relationship. Q.E.D.

(b) Simplified Omegs Networks
A simplified version of Omega networks was introduced by Lang-Stome [6].

The simplified Omega networks receive only one control bit per data item.
These bits constitute the control bits that are used during the first pass.
These control bits are used in the same way as in the SE network, where they
control the exchange operation during the first pass. However, for every
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successive pass after this first pass, a new comtrol bit is computed for each
data item, and these new bits now control the exchange operation during that
rass. These new bits are computed from the control bits that have been used
during the immediately preceding pass; this is described below:

During any pass other than the first, certain predefined Boolean operations
are performed on every pair of control bits (which are contained in the i~th
and (i+l)-th inputs of E, for all even i). The bits produced by these Boolean
operations then replace the existing control bits (in their respective pairs
of inputs) and these new bits are then used by E as control bits to perform
the exchange operation for that current pass.

In the following, we discuss certain generalized, versions of the simpli-
fied Omega networks; this enables us to derive results with broader implica-
tions.

Let the control function that is used in any pass be a function of certain
tag bits which are transmitted with the data items. Thus, one can select any
arbitrary control function for any pass. (However, it may be noted that we
restrict the control function to be the same for all data items, during a
particular pass). Hence, in order to produce the desired permutation, tie use
of any combination of control functions for the n-different passes, is available.

Four tag bits are required in order to specify l-out-of-16 possible
different two~variable functions. Since there are n-passes, only 4n
tag bits are required, altogether. (For example, given 256 data items, only
32 tag bits are required--a small number, when compared to the 256 control bits
that are used.) As it will be seen later, the use of these additional bits
can produce a much larger number of permutations. This is significant when
compared to the number of permutations that are admitted by the network whemn
the control functions are prespecified.

This version of the simplified Omega network, which allows for arbitrary

control functions, will be hereafter referred to as Simplified Omega with
Arbitrary Control (SOAC) networks.

Theorem 8: Any permutation that is admitted by the SOAC network can be repre-
sented by functions defined as below:

Yn = yn . fn (yn-l’yﬂ"Z’...,yl),

where the function, fn‘ is defined by the control bits used during the first

16




pass. The functions, Yn—l"n—Z""’Yl’ are defined by the following recursive
relationship:

If Yk =Y o fk(yk-l’yk-z""’yl) then,
Y1 = V-1 ® fioy Opego¥yogseeosyy)s vhere
IR DTS UPYRREES 29
= Oy =0 Npogeero¥)) *FE Gy = L Yygeeees?)

and * 1s that Boolean operation which is used during the (n-k+2)~-th pass to
compute the control bits.

e

Proof: Proof is given in the Appendix.

Now, it may be noted that if the control function that is used in the
network is either an exclusive-or function, or an equivalegce function (as
it is proposed in [2], then the recursive relationship between Y, and Y

k k-1
reduces to the following:
1f Yk =Y o fk(yk_l.yk_z....,yl), then
Vi-1 ° dfk » 1f the control function is ex-or :
dy
k
Te-1 ©

Yi-1 04y o 1, 1f the control function is equivance. 3
dy. ‘
k ]

It is also interesting to nots that the above relationship is precisely 1
the same relationship derived for certain single stage networks, in the last section.
In the following, we characterise the reverse SOAC network. 1

Theorem 9: Any permutation that is admitted by the reverse SOAC network can 1
be represented by the functions given below:

Yl - y]. L fl (yn'yn-l"”’yz)’ vhere
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the function, fl’ is defined by the control bits used during the first pass.

If Y =y ®f (yn’yn-l""’yk+l)’ then
Terl = Yitl @ T OnoYne17e009Y%42),  where

fk+1 (yn’yn-l""’yk+2)

= L Opo¥pgoee Vi Ve = O *

SRS ARTTRRES (WUT S >

R,

and * is that Boolean operation which is used during the k-th pass.

Proof: Proof is similar to that given for Theorem 8. Q.E.D.

If the control function, *, is an ex-or or an equivalence function, then
the above recursive relationship can be expressed in terms of the Boolean

difference, as shown above for SOAC networks.

Theorem 10: The SOAC networks and the reverse SOAC networks are equivalent.

Proof: The proof is similar to that given for the Omega network in Theorem 7.
Q.E.D.

Thus, as it was seen in the case of Omega networks, with the use of fixed
bit-reversal permutations at the inputs and outputs, one can realize reverse

SOAC networks from SOAC network and vice versa.

(c) Flip Network
These networks were used in the STARAN computers [13]. These networks

consist of two basic subnetworks: a flip network and a shift network.
The flip network performs the following permutation;

j=10f where

18




f 1s a fixed control vector and ® is a bit-by-bit ex—or function.

The shift network permutation is defined as:
j-i+2mmodzp,where 0<m<p<n and

m, p represent control variables.

The Flip network has an equivalent multi-stage representation [16] that
uses n stages of %- switches. Each stage performs basically an exchange
permutation followed by a shuffle-type permutation. The %?. switches in the
network may be controlled by control bits.

The following results can be derived by using the above equivalent
representation, along with Theorem 5 and 6, or independently, by using the

techniques similar to those used for characterizing Omega networks.

Theorem 11: The Yk functions that represent any permutations which are

admitted by the Flip networks can be expressed by:

T = T ® f Op¥py ooo o Vi Teero Tz ¥y)

for all k, 1 < k < n, where the function, fk’ is defined by the control

variables.

Theorem 12: The Yk functions that represent any permutation which is admitted
by the reverse Flip networks can be expressed by:

L R LTI TR AT

for all k, 1 < k < n, where the function, fk' is defined by the control
variables.

It is readily seen that the Flip and Omega networks are equivalent. It
can be seen that many multi-stage networks such as Banyan [14], Omega [5],
Flip [13] and Indirect Binary n-cube [9] are indeed equivalent:

However, the important observation that may be made is that two
distinct classes of networks do exist, as defined below:
(1) Class I network:

A network is said to belong to this class if the network is equivalent to

19
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some network, G, which has the following form of characterizations:
Yl -y, 9 f1 (yn’yn-l’°"’y2) and

for all k, 2 < k < N:
Yk =Y o fk (yn’yn-l""’yk+1)’ where

fk is derived from fk—l'

(ii) Class II Networks:

A network belongs to this class if the network is equivalent to some

network, G, which has the following form of characterization:
Yl =y, ® fl (yn, n_1,...,y2), and

for all k, 2 < k < n:

Ye ™ Ve @ i Opo¥ppoe e Vi Yo oo ¥y)

where, fk’ can be any arbitrary functiom.
The chief difference between Class I and Class II networks is found in
the way in which f is defined. For Class I networks, f, 1is not a function of

k k

and fk is derived from f On the other hand, for Class II networks,

Yk k-1°

fk can be any arbitrary function which can also be a function of Yie (since £

is a function of Yj’ 1 < j < k-1 which are inturn functions of yk).

k

The simplified Omega, uniform shift, unscrambling/scrambling networks are
all of the Class I type.

The Class II networks consist of Omega networks, Flip networks and the
like.

Let Pl be the set of all per?utations that are admissable by the entire
Class I networks.

Let Pz be the set of all permutations that are admissable by the entire
Class II networks.

Let |X| denote the cardinality of set X.
: C
Corollary 1: Pl_P2
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Proof: Proof is obvious.

Corollary 2: | Pll.i (n:)z ‘[2N + 8 log N-8

Proof: First, it may be observed that the number of distinct Y., functions is

1

equal to the number of distinct fl functions. Furthermore, every distinct
multiple output function, Yz,Yz,...,Yn, represents a distinct permutation.

n-1
There are altogether 22 functions of (n-1) variables. Thus, there

2n-1 V N
are 2 ay2" distinct fn (hence, Yn) functions.

Using Theorem 6 and the fact that there are exactly 16 functions of two
variables, one has, at most, 16 different fk functions, given any fk-l
function.

From the above observations, it can be said that there are, at most

2 16%1 distinct multiple output functions, Y ,Y ;,...,Y;. Hence, the

1.
number of distinct permutations is upper bounded by:

V 2N 16n—1 - Jzﬂ + 8 log n-8

Proof is complete using the observation made in Theoreml and Corollary 1.

Q.E.D.

N log N

Corollary 3: 2 N log N

:Il’zlz(“!)2

Proof: The lower bound follows from the number of permutations that are
admissable by the Omega network [5].

The upper bound is a direct consequence of Theorem 2 and the following
obgervation: a-1
There are exactly 22 functions of (n-1l) variables, and hence, there are

2n-l

2 distinet Y, functions for each j. Q.E.D.

3

Corollary 4: The fraction of Class II permutations that are admitted by the
Class 1 networks tends to 0 asymptotically with N.

s, Sl NG 0

Al

X




it e 3

upper bound on | P

. |

{A

| P2 | lower bound on I P2 |

<0 as N~ Q.E.D.

In the following, we provide a different characterization of P2
Let p(i) = j, and p(i )= j. for some permutation, p, where

0<1i, j, 1, ] f_N-l'
Let: i - (in, in-l""’ ik,..., il),

h (jn9 jn—l""’ jk:--" jl)’

L}
i= (i s i .oy ik,..., jl) and,

-1’
' ' -

]
= (jn’ jn—l""’ jk,..., jl) be the binary representation of i,

L
j, 1, and j, respectively.

Definition: A permutation, p, is said to be symmetric in the k~th bit of it

satisfies the following: Given any i, i , for which ij - ij for all j # k,

and i, is the complement of i (i
'

k k k
pair, j and j , are also the complement of each other; i.e.; jk

=1 ), then the k-th bits of the resulting
jk

Definition: A permutation will be said to be symmetric if it is symmetric in
all the n-bits.

Corollary 5: The permutations in P, are symmetric.

1

Proof: Let p represent any permutacion in P1

Let p (1) = 3, and p (i ) = 3, for some i, i , J and j
Now consider the following equation for the k-th bit for class 1 networks:

e =l ®f b =41,y ;=1 ).

x @ Uy a=1°"""Yier1 T Ll
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k. - = = Ld
and 3t L O f O T iy ey T lppe o Yien T )
.
3 ' '

{ Let ij-ij,k+1_<_j§n,andik-ik.

Substituting this in the above equation.

!
for jk and Jk’ we get:

jk = Jk Q.E.D.

1 What is interesting about the above Corollary, is that it is also valid
for multiple passes through the network. Therefore, this provides an explana-
tion as to why such a permutation as bit reversal is not admissable by SOAC
networks without using special techniques such as providing input queues/
buffering [19] to eliminate conflicts.




v p————— b=

V. CONCLUSION

In this paper a switching theoretic formulation of SIMD interconmnection
networks is presented. It is shown that the networks can be classified into
two distinct classes which are based on certain characteristics of the sets of
] admissable permutations. The first class of networks consists of certain
single-stage networks and the simplified Omega networks. The other class of

networks consists of most of the multi-stage networks, such as Omega, reverse

Omega, Flip, etc. In Table III, we summarize the characteristics of these
two classes of networks. 1

It is expected that the results of this paper should provide a new technique
with which to analyze the interconnection networks. Further research in this
area may be carried out by extending this work to multiple passes through the
network, and hopefully we will be able to resolve some yet unanswered questions

such as: whether two passes through a multi-stage network are sufficient to
realize all permutations.
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Proof of Theorem 3.

Progfs Let fdr,é‘ Laesendlt De Zhe Linecvepe: rosenciacion of tite number
T —— M a0

Jooghe amoeer o7 shifne b omeracacion 20 s 01wl mod ¥ ocnrresponds
to additiun of the fixed number ¢ to eacin i, Since the uddition is pec-
formed modulo & = Zn, aay carry from the n-th position is discarded.

The wvariables Yn’yn-l""’yl represent the sum bits produced by
adding d co the number represented by the variablies }a:’t'n—l""':‘:l'

Thus, the fuaction '~.’_1 can be expressed as

I

(5

Y =yv &2 d C ( },...,yl), “hore C L

v v tne function repre-
a ‘n Y n n " n=1'"n-2 n - P

/7]

senting tie carry bit in to the n-th position. 7ihis carry bic is a
function of the bits to the right of the n-th positicn. However, it
may be noted that since d is a fixed integer for all i, Cn is expressed

as a function of only the variables AR SUFEERETS A0

Let g (Yo g2¥ppreeee¥) =d O Canay?Pqaas ooy Ve Thus,
L4
5% ® 8y (Tamy7Ypaare v o¥y)

Similarly, for any k, we ca ; :
, vy k, can express Y =y, & gk(yk-l"\k-Z""’yl)

where
gk(yk-l’yk-Z""’yl) = dk @ Ck(}’k_l,}'k_z,...,)’l)- (l)

The function ck(yk-l’yk-z’“"yl) represents the carrv into the k-th

position.

Now, one can express

O pm1 e * oYy

Vi1 F 1o Tim2?Vimgo oo ooyy)

+ yk“lck-].(yk-z’yk-3’ soe le) (2)

" ekl @ GGy Wraar iy s vy

® Yieu1Ca1 Tiem2?Tiagr s o ooy)) (3




TaSrY o funaricn ineg g L=l et

Tnbacitutiang {3) in {1). one has
o v v .
ck(. k"l"k"z,‘. ’yl)

T @ 4V

® i Cpgre o)

@

, . - 1)
k=101 (panee ey G
Now
B B0 geeeny)) 4, @ dk-L('k-l('vk-Z’yk-Y'""vl) (3)
and

gk(yk-l-l’yk-Z"."yl) = d @ d @ d

k k-1 i\-lck—l (yk_z 'yk-B L] ;Yl)

Ck“l (.vk_2’ * s 0. le) (6)
From (5) and (6), one has _

dg
k =
-d-y_k:: dk-l @ Ck_l(yk_zbyk_3’---,.v1) (7)

But,

Tl "Y1 @ 4 @ O Gy ey geeeey) (3

Substituting (7) in (8), we get

dg
Y k

1"V @
k=1 k-1 dy,_,

Q.E.D.
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e
3

. terms in the multiplication of (:n,t

aop?®+E;) with the variables

16200 AUCETRRTY 2P X

Since the multiplication is performed modulo N-Zn, we can discard
all the partial product bits to the left of the an-th bit position, as
shown by the dotted line.

First, it may be observed that in each column, there may be o:;e or
more carry bits in addition to the partial product bits. These carry bits
are generated during the summation of the columns to the right of this

column, which are then propagated to this position. Let C,, 2 Sk X n,

k’
represent the ex-or sum or these carry bits in each position. Note that

Cl'Cz'O.

Since t is a fixed number,. C

K is a function of yk—l’yk-z"”’yl only.
Thus, Y, =€¥y @ %1 @ o0 @ £y O L UpyoVapree Yy
Lec 8, (Yy 1o¥qp2e2¥) = BV @ o0 @ £y @ C (7 g0V p0reneTy)e

Since ¢t, = 1, one has Yn =Y, ® sn(y

a-1’ n-Z""’yl)' Similarly, Y

k

can be expressed as Y =y, ® gk(yk_l,yk_z,...,yl), where

8 1 V2007 = S @ 8 @ o @ 5y
@ ck(yk_lﬁyk_zt"'iyl) .

Now, g, (y, 1%0s¥) gseees¥y) = ¥ o ® ... ® £y, ® C ¥y 120sF g0enesY))

and sk(yk.l’yk.z’ LR ’yl) = tz @ t 3Yk_2 @ e @ thl

@ ck(yk"l-l’yk—z’ oo ’Yl) .
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s AR b Cad

i ¢ o i i it kS SR 5 5. i it

tz @ ck(yk_l-o’yk_z’ ¢ s Iyl) @ ck(yk-l-liyk_.z’ L4 ’yl)

dc

k
"5 ® ¥y @)

We can express ck(ykrl’yk—Z’.."yl)’WhiCh is the ex-or sum of all the carry

bits into the k-th position, as:

1 2
Ck(yk_l:yk_zn s o0 »Yl) ck(Yk_lek_Z L ,Yl) e Ck(yk_z !yk_3 s QYI) .

1
In this, Ck(yk_l,yk_z,...,yl) represents the function for the carry bit

produced in the addition of (k~l)st column only. Where as Ci(yk_z.yk_3,...,yl)

represents the function for ex-or sum of the carry bits produced in the
addition of j-th columns 2535(k~2), and which are propagated into the k~th
column. It may be noted that yk—l does not appear Qnywhere in the 1lst

through (k-2)nd column. The first time Y-y appears is in the (k-1)-st

column. Therefore, the function C2

k=1 is independent of V-1

Thus,

de

d¥p-1

1 1
Ck(}’k_l Osyk_29°’°’yl) 2] Ck(yk_l l’yk_zs°°°9yl)

2 2
e ck(yk_ziyk_3’ LA iyl) e Ck(yk_z)yk_3’ L !Yl)

1
de

T @

(10)

1 .
Consider the function Ck(yk_l,yk_z,...,yl). This, by definition, is the
carry bit into k-th column, due to the addition of the terms V=1’ czyk_z,
c3ykﬁ3, eoey ck’lyl, Ck—l which appear in (k-l)-st column. This function

is represented in the following table.
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Yk-1
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Table 2. The Truth Table for Cl];.




The function Ci = 1 represents all the rows which have 2i,1's for
L = odd integers. This foldows from the observation that if the number
of 1's in the (k-l)~-st column is equal to 2, 6, 10, 14, etc., then we get

a carry in to the k~th column. 1
: dc

1
-d—y-;_—l Ck(yk_l O’Yk_zs--o .Yl)

Now, consider the function

o Cl(y =1,y yeee3¥.). The truth table for this function can be com-
k' k=1 k-2 1 1
dc

is independent of

puted in the following way. First, note that n

V-1

? V-1 and hence, the truth table will have half as many rows as the above

1 dcxlc
one for C;. The value of the function for the i-th row can :zc
k dyk_l

computed as follows: Take the value of the function Ct for the i-th row

in the upper half BO’ and then compute the ex~or sum of this with the

value of the function for the i-th row in the lower half Bl as shown in

Table II. The i-th rows in the BO and Bl are identical in the :Zyk-l’

€3yk-l’ ooy Ck—l positions. Further, it may be seen that if the i-th

rows have an even number of l's in these positions, then the two values
of Ci are identical. On the other hand, if they have an odd number of

1's, then Ct has complementary values for these two rows. This, therefore,

dCl

3y is equal to 1 for the i~th row only if it has an odd

implies that

k-1
number of 1's in the toVr-1° tsyﬁ-l"""ck;l positions, and is equal to .

0 otherwise. From this it can now be deduced that

1
de

E—_—; r.zyk_l 3D ‘t3yk_2 ® ... & tk-lyl (5] ck—l' Substituting

this first in (10)and then in (9) one has:




=5 @ty Oy, © ... © 8y, @ C

(11)
But

Yol " Vel @ T2V @ty @ v @ vy O G -

(12)
From (1l)and (12)
dg
k
Y =y (:) t .
k-1 k-1 2 dyk-l
Case I: (ﬁ-l)/Z' = even number
In this case, t:2 = Q
dg
k
Y 1 =Y. (:)~————-
k-1 k-1 dyk—l
Case II: (t=1)/2 = odd. number.

In this case, t, = 1

2
dg
- —k
Yl ™ Ve @ ar,, ® 1

Q.E'D‘

Proof of Theorem 5

First, we introduce additional notations which will be useful in deriving
the results. Lel:{ (i, P> (i))[ Oii -<_N-1}be any permutation which is admitted by
the network in k stages . Let the permutation, Py be represented by n-switching

k

k
functions, Yﬁ, Yo-ys ce» Yy» Of the variables ¥ ., ¥, ., .-¢, ¥

u 1

Next, let{(i, pks(i))l 0<1 < N—l} be that intermediate permutation
which is realized at the output of the shuffle network, during the k-th stage,
which results, at the outputs of the k-th gtage in the permutation, Py At
the network output. Let this permutation, Pre’ be represented by n-switching

k k k
fmction. xn » xn-l, sy xl Of th. v‘tilblﬂl, yn’ yn-l’ eeay ylo

L

St I A




Finally, la2t { vepresent rhat smteol bir used {n O, 7ov k= concents
» . i

ovodevio lrTas. auTing Uoe i UoBass.
It follows frem the above nototicns coat for all (.1 & a
:v,, for k=0, and
K’ { i
.l-j =$
© Y., for k=n, 1»
1
Lemma 1:

Proof: Preodi iz a direct comsequence of fheorem i. in coviucetr:isa with

the fact that the outputs of the (k-1)-th pass are fad back to form the inputs

to the k-th pass.

Q.L.D.
The following is the proof of Theorem S.

Proof: For the sake of simplicity, this proof will be developed in two parts:
First, we will show that:

Yn = Yn@fn(yn-l’ Yp-2* - y1)'
Then, we prove, in general that:

U = U@ f (s Yoogs oos Yiwps Yieps Yieepr oo00 9p)

Using both Lemma 1 (for k=1) and the relationship (13), one has:

(14)

1

1
The following table describes the relationship between Xi. Xn_l, ....xl and

i, Yi )

a-1’

s
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11 10 11 1 ct
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TABLE III: Y and X Variables during the first pass.




The above table is derived by using the following observations regarding
the mapping of input addresses to output addresses, as performed by E:

(a) The output pair is identical to the input pair when the input pair
is not exchanged.

(b) On the other hand, when an input pair 1is exchanged, the resulting

output pair has the following characteristic:

[ The binary numbers that represent the output pair are identical to the
binary numbers that represent the input pair, in all the positions except the

least significant position. The bit in the least significant position of the

output pair is exactly the complement of the bit in the least significant pogition
of the input pair.
(c) The least significant bit of any input pair, i, and (i+l) is O and

1, respectively, because i is even.

1l
i+l

Gl g

(d) The input pair, i, and (i+l), is exchanged if ci = C

1_.1
pair is not exchanged if Ci ci+1

= 1:; and the

= 0.

As a direct consequence of the above observations, it is evident that all

the Yj's are identical to all of the xj's, except for j=1. The column, Y}, can

be represented as Ci and Ei+1 s in the i-th and (i+l)-th rows, respectively

for all 1.
From this, it can be derived that:

&) Y}-X},Zf_jin,
1 1 1 1
(2) Yl is a function of xn ’ xn_l, ceey xl .




j The function, Yi s can be expressed, as shown below:

1_ 121531 sl =
R o N -3 (LR

a xn 1..0' x2 xi

® - -@®c xlxl...x i}.@cn xt xt X3 %

a8, 8 -1 N

S o oINS - L8 S SRS -

® ...0% g .ni+ca xx ...ox

20_2 n o=l 1 2 <2 n-1

since C1 - ci+1 , for all even { .

Consider the following well-known identities in Boolean algebra:
(a) P@Q=P Q, if PQ = 0.

() PF=1@p
(c) P@P=1

Using these identities, one can express (15) as:
| 1zl 21 =1 1 ol gl 21 .1
nen @i ... FPgRE ... 5
1 1 121 s R R 1
@ .. @czn_‘xf;xn_l. . X3 2®c2n_2xnxn-l" X5 X5
- L®C gy Ty T @G Ya-1 Fa-2t ¢ T2 My

l 5 - 1 -
®. .. 0 oy Yo-1 02 0 T2 ’1®°zgz Vel Vo2 * * T2 7y

using (13) and Lemma 1.

(15)

(16)
(17)
(18)




LGt fn(yn-l ? yn-2' seaoy yl)

] - - - - 1l - - - - .
"o Vg Yaez ¢+ FI® ¥ I V0 TN

1

i, Yn-l¥a-2 t c t Y2y

1 -
®...® czgaxn_lxn_z Y, Y ®

Thus,

1
1 ° Ya ® fa (yn-l’ Yae20 **0 Y1)

Using Lemma 1, and the above observation regarding the least significant

Y-bit, one can state that, in general:

(a) Y? - y‘ly‘:i, 2<j<n, and
(b) Y? is a function of the variables, Y:-l . y&:i s eees Yl{.l . This,

in turn, implies the following, in general, for any k:

—k+

Ytll..kl - Yﬁ-Yk . lijin R
oy - ¥ 1<j<k
k n-k+]j n=k+j ' —J-~ ’
k 0 -

Yj .Yj-‘k Yj“k 9(k+1)_<_jin ’

Substituting ke=n 4in (20), one has:

1

Yl - Yn.

Thus, eq. (19) now becomes:

b 'yn@ fa (Fp-1® Yge2r vor v -

e a7 P ! ot S

(19)

(20)

(21)

(22)




S DL e

Now, to prove the theorem, in general, for any !k’ consider the (n-k+l)-th

stage of the network. For the sake of'convenience, let n-k+l be denoted as m.

One can derive the following equation for YT - Y:'k+1 ,» by using techniques

similar to those used for deriving Yi .

B-2egEL,...8BegRR, .. 81

s 5 X ...X X . (23)

®@... 0"

Using Lemma 1 in conjunction with equatiaons (20) - (22), one can deduce

the following:

n~k+l

x; - xl - T, (24)
~k+1

KX " Ty 253%m, @3
=k+1

x;’-x; = Y, wmjca (26)

Substituting (24) - (26) im (23), one has:

LR MICIE- SRS AP 70 AP WP
CICA S AP A S5 SIIPENS SRS SN
NN CICAE S PRI X 25 SPEEN AP A

2% 2

- yk @ ‘k (Yn’ Yn"l’ e o o 9 YH’I’ yk_lﬁ yk_z’ ¢s ey YI) ]

where fk (Yn. Y

a1’ o Vel * Tien » Tz 0 o0 T

s e b @+ - =




. ”m‘ - - -
0T el T Ra? R Yn-l Yﬁ*: FE 3
® c’;G ¥ v ¥ ¥ ¥
k=1 "k-2""71 Yo Yooyt Yiwp G @
-~
GB C Y.o1 Yo vy Yooy ¥
oo el Vie2 1'n Ta-t k2 kel Q.E.D.

Proof of Theoram 7.

Lemma 2:
(392, @ a3, @ ... B2 a2 1P @ ... @bPe)
= (2P (@D (3;#0)) P D .. D (axb) P,

where (1) ai's and bi's are constants

and are equal to 0 or 1.
(2) Pi's are product terms over some variables.
(3) & is any Boolean operation.

(&) Pi Pj = 0 , for all i, j and i#j

(5) P(@Pl@ .. OP,_ = 1.

Proof: Proof is based on the principle of induction, and also on the observation
that:
xXhy = ko@ klx@kzy®k3xy » where kj, k;, k, and k, are binary constaats.

Q. E. D.

Lemma 3: The control bits that are used in the SSEAC network satisfy the

following relationship:

m+l m+l

- B m n_
C21 = 021+1 Ci * Ci+2n 1 , Where O‘i i.i 2'-1, where » is

that Boolean operation used during the (m+l)~-th pass, to produce the new control

bits.

Proof: After the completion of the m-th pass and during the (m+l)-th pass,

the contents of the i-th output of the SSEAC network are transmittad through




the S network ro che j-th iuput of the E nerwurr.

The following relationshnip between i and } is derived from the fact :zhat

S performs perfect shuffle permutation:

1 =25, 0<i< 2™t g (27)

R T L R P (28)

Consider 2i-th and (2i+l)-ch inputs of the E network, for some i, 05_152“-1 -1.
These are two adjacent inputs. The Boolean operation, %. 1s performed during
the (m+l)~-th stage on the two control bits that are contained in these inputs.

This produces the new control bits for these inputs.

Using (27) and (28), one can see that the contents of these 2i-th and
(2i+1)-th inputs to the E network correspond to the contents of the i-th and
(i+n-1)-th outputs of the SOAC network, respectively, at the outputs of the
m-th stage. Thus, CT and C:'_zn-l are the two control bits that are contained in

2i-th and (2i+l)-th inputs, respectively, and these are used for generating

c‘;‘; 1 in the (m+l)-th stage. Hence the Lemma.

The following is the proof of Theorem 7.

During the first stage, the operations of a SOAC network and a‘Omega

Proof:

network are identical. Consequently, the following equation is also true

for SSE networks:

Yo ® Ta @y Fpoge oo0 7D

Now, in order to prove the relationship between Yk and Yk-l’ the

following known fact [6] regarding the control bits may be observed:
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Yow, consider the next stage (the (n-k+2)~th stage) through the network.
Using techniques similar to those used for deriving Yk, one can derive the

following:

Yt " Y1 @ By Gppr o0 Vo WD)

where

fk’l (yk_.zi evey YZ’ Yl)
= 1= V. ¥ a3 y
G Ty Ty @ Cm¥k-2 7 27y
m
@ LRI @ czn—lzm Yk_z e e Yz YI' (34)
E From (35), ome has:

fk(ykrl =05 Yieog0e00s¥p)

[ 4
3 - - - - - - - m
F c: Yk.2$ o0 OYZYQ c Yk-zj e 0y2y1@ <o e @ gn-l-zﬂyk-z gee oyzyl,

and

fk(yk-l =1, Yg=2°°"* 9}'1)

(35)
a €l Fgree T @®C . 5.3, ot C®
2l k=27 a2 V2T T Sn ntke2r T2
Thus,
B0y = 0 Tpgr woor YD) * Uy = b Tipe o0 TP
= (c? y e Y. ¥, ®... C) Cm_ y cie Vo ¥q)
0 Tk-2 2 71 tm T 2 N1
* (c:n-l Vg ©0 291 @ oo @ Cp g Tiez e T2 TY)
- - - m - -
- (Co * Czu_l) Yeez *0 271 @ (“':u * czu_,_zn-l) Vg2 =0 T2 Ny
@ ... ® «(«" K SR I NPT o 2 o e,

2214 2® +2
using Lemma 3.

T TP L A A

TP
wne

k2 A i) e el WAL L PR NN



Using Lemma 3, one has:

C:+l - c° % c®

0 2n-l
o+l
o - Cm « C
2041 2® n-l, om
™oL - .
2n_zm+l zn-l_zm 2n_ om

Substituting these in (35), one has the expression given in (34).

Hence, the proof.

Q. E. D.




