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Testing Whether flew is Better Than Used

With Randomly Censored Data

by

Yuan-Yan Chen, Ilyles Hollander, and Naftali A. Langberg

Abstract.

A life distribution F is new better than used (NBU) if ?(x + y) _l(x) (y)

for all x, y > 0 (F 1 - F). Using a randomly censored sample of size n

from F, we propose a test of HO: F is exponential, versus H,: F is NBU,

but not exponential. Our test is based on the statistic

= - ff= F(x + y)dFn(x)dFn(y), where Fn is the product limit estimator of F,

of j, suitably normalized, is established. Then using a consistent esti-

mator of the null standard deviation of n J., an asymptotically dtstribu-

tion-free test is obtained. Finally, using tests for the censored and un-

censored models we develop a measure of the efficiency loss due to the presence

of censoring.
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1. Introduction and Sumary. A life distribution F (a distribution function

(d.f.) such that F(x) - 0 for x < 0), with survival functio 1 -

is new better than used (11BU), -1

(1.1) r(x + y) (y) for x, y e 0, -0).

'>The dual notion of a new worse than used (NUlU) life d.f. is defined by revers-

ing the inequalityU%._-. The boundary members of the NBU and MIU classes,

obtained by Insisting an equalityiUn-l4l-)- are the exponential d.f.'s.

The 11BU class of life distributions has proved to be very useful in

performing analyses of lifelengths. These d.f.'s provide readily interpretable

models for describing wearout, play a fundamental role in studies of replace-

ment policies (Marshall, Proschan, 1972), and shock models (Esary, flarshall,

and Proschan, 1973), and have desirable closure properties (c.f. Barlow

and Proschan, 1975). _

Hollander and Proschan (HP) (1972) develop a test of

(1.2) HO: F(x) = 1 - exp{-x/u}, x >0 , p > 0 (u unspecified),

versus

(1.3) HI: F is NBU, but not exponential,

based on a random sample X1, ... , X. from a continuous life distribution

F. The hypothesis H, asserts that a new item has stochastically the same

lifelength as a used item of any age, where the alternative HI states that

a new item has stochastically greater lifelength than a used item of any

age. The HP (1972) test is motivated by considering the parameter

(2

I .



y(F) = Jr(x)F(y) F(x + y)]dF(x)dF(y) =
(1.4) 0 0

• -def
1/4 - f JF(x + y)dF(x)dF(y) = 1/4 -a(F).

00

Viewing y(F) as a measure of the deviation of F from exponentiality towards

NBU [or MIU] alternatives, HP (1972) replace F by G., the empirical d.f.

of X, ... , Xn, and suggest rejecting H0 in favor of H1 If A(Gn) is too

small [H0 is rejected, in favor of HI: F is I4WU, but not exponential, if

(Gn) is too large.] For further details about the test see HP (1972),

Hollander and Wolfe (1973), Cox and Hinkley (1974), and Randles and Wolfe (1979).

In this paper we consider a randomly censored model where we do not

get to observe a complete sample of X's. Let X1, X2, ... be independent identically

distributed (i.i.d.) random variables (r.v.'s) having a common continuous

life d.f. F. The X's represent lifelengths of identical items. Let

Y1, Y2' ... be i.i.d. r.v.'s having a common continuous d.f. H. The Y's

represent the random times to right-censorship. Throughout we assume the

X's and Y's are mutually independent and the pairs (X1, Y1 ), (X2, Y2 ), ...

are defined on a common probability space (a, B, P). Further, let 1(A)

denote the indicator function of the set A, and for i = 1, ... , n,

let Z, - minfXi , Y1), and 61 - I(X1 ._ Y1 ). Based on the incomplete data

set (Z1, 81), ... , (Zn, n we test HO, given by (1.2), against H1,

given by (1.3). The censoring d.f. H is assumed to be unknown and is

treated as a nuisance parameter. Due to the censoring, the empirical

d.f. Gn corresponding to F cannot be computed. Thus, ve propose to

reject H0 in favor of H1 for small values of

def m
(1.5) a(F) "f F F(x + y)dFn(x)dFn(Y).

n 006n
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where Fn is the Product Limit Estimator (PLE) of F, introduced by Kaplan

and lleter (1958):

def
(1.6) T (x) - 1 - Fn(x) a Nn - i)(n- i + 1) 'M0i: Z (t P,

where Z(1) < .. <Z(n ) denote the ordered Z's, Z (0 ) 0 0 ) 1, and

6(1 )P .,* 6(n) are the 6's corresponding to Z(1), .. , Z(n) respectively. In

(1.6), we treat Z(n) as a death (whether or not it actually is) so that 6 = 1.(n) (n)
Furthermore, although our assumptions preclude the possibility of ties, in

practice ties will occur. When censored observations are tied with uncensored

observations, our convention, when forming the list of the ordered Z's, is to

treat uncensored members of the tie as preceding the censored members of the tie.

For computational purposes, it is convenient to write j as:

C = it {(n - k)(n - k + 1)'1 )

[11 ((n - r)(n - r + ) (n - s)(n- s + i

(n - i + 1)il(n - j + 1)-16 1.
(i ),(j

In clinical trials the X's may be times, measured from date of diagnosis

of a disease, to relapse. NBU alternatives may be preferable to increasing

failure rate alternatives because the latter class insists upon a non-decreas-

ing failure rate whereas, in this medical context, we may expect the

failure rate to increase (at least for a short period of time) after

treatment begins. Incomplete observations can arise at the time of data

analysis due to, for example, dropout or patients who have not yet

relapsed. In this situation, it is appropriate to use c to test H0 vs.

flarshall and Proschan (1972) consider age replacement policies and

block replacement policies. Under an age replacement policy, a unit is
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replaced upon failure or upon reaching a specified age T, whichever comes

first. Under a block replacement policy, a replacement is made whenever a

failure occurs, and additionally at specified times T, 2T, 3T, ... ,

Marshall and Proschan show that a necessary and sufficient condition for failure-

free Intervals to be stochastically larger (smaller) under age replacement than

under a policy of replacement at failure only is that the underlying distribution

be NBU (IJU). Marshall and Proschan also show that a necessary and sufficient

condition that the number of failures in a specified (0, t be stochastically

smaller (larger) under age replacement than under a policy of replacement at

failute only is that the underlying distribution be NBU (INU). Similar compari-

sons hold for block replacement. Thus in reaching a decision as to whether to

use an age (block) replacement policy or not, it is important to investigate

whether or not the underlying distribution is NBU. If lifelength times are

censored, the test based on Jc facilitates such an investigation.

Other references describing situations where it is important to know

whether the underly distribution is {6U are Esary, Marshall and Proschan

(1973) in the context of shock models, and El-Neweihi, Proschan, and Sethuraman

(1978) in the context of multiple coherent systems.

In Section 2 we establish the asymptotic normality of the sequence

n1/2{ W - a(F)) under the assuuptions:

(A.1) The supports of F and H are equal to [0, -),

(A.2) sup({(x)Jl"' C(x )]-1 xco,-)) < .

for some nonnegative real number .

and

(A.3) The processes {n 1 12 (tn(t) - (t)), ta(-m,-)) 1:onverge weakly

to a Gaussian process with mean zero and covariance kernel given by (2.1).
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Condition (A.2) restricts the amount of censoring alluwed in the model.

To see this in a simple case, consider the proportional hazards model where

IT jB for some o > 0. Then PXl j Y1
) - (0 + 1) "1 , and condition (A.2)

implies that o < 1. Thus, in the proportional hazards model, the J test

is inappropriate when the expected amount of censoring P(YI < X1 } exceeds

50%.

The null asymptotic mean of Jc is 1/4, independent of the nuisance

parameters p and H. However, the null asymptotic variance of n1/2J does

depend on 1 and H and must be estimated from the data. A consistent esti-

mator, ;2, given by (3.3), is derived in Section 3. The approximate a-level

test rejects H0 is favor of H1 if n1/ 2 (J - (1/4)) n1 < - z, where z5 is

the upper a-percentile of a standard normal distribution. In Section 3

we also show that this asymptotically distribution-free test is, under

suitable regularity, consistent against all continuous NBU alternatives.

Section 4 develops a measure of the loss in efficiency due to the pr.;ence

of censoring. This measure is derived using the HP (1972) NBU test and

Its generalization herein proposed based on JC. In certain instances, thisn
measure assumes values close to P(X1 < Y) the latter also being a (rough)

measure of the loss of information due to censoring.

Section 5 contains an application of the Jf statistic to some survival

data.

2. Asymptotic Normality of the NlBU Test Statistic. In this section we
establish the asymptotic normality of the test statistic J, defined by (1.5).

Let 1(t) - f(t)1T(t), and let (*(t), t,(--,-)) be a

Gaussian process with mean zero and covariance kernel given by:
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I1
St

(t)ir(s)S('z)lr(z)]ldF(z), 0 < s < t< -,

(2.1) EO(t) (s) - 0

O , s < 0 or t < O.

Unless otherwise specified, all limits are evaluated as n + -, and all Inte-

grals range over (-., .).

First we state the main result of this section.

Theorem 2.1. Assume that conditions (A.1), (A.2), and (A.3), given

in Section 1, hold. Then n/2{jC - a(F)) converges in distribution to a

normal r.v. with mean zero 3nd variance a2 , given by:

(2.2) a' - fIJJE([(t + s) - 2#(t - s)][#(u + v) - 2#(u - v)])dF(s)dF(t)dF(u)dF(v).

Note that for n = 1, 2, ... ,

Jc - A(F) = (fjLTn(x + y) )]dF ()dF

:i~~ -[[rx + y ) - x+y)dn(x dF(y)

f {S[iFnlx + y) - (x + y)JdFnl (x)dF(y)

- Jiff'n(x + y) - (x + y)]dF(x)dF(y)}Ln
+ Jt(x + y) - 'F(x + y)dF(x)dF(y)

+ f[rn(x + y) - F(x + y)]dF(x)dF(y)

+ fFr(x + y)dFn(x)dFn(Y) - f,(F(x + y)dF(x)dFn(Y)

+ Jf)(x + y)dF(x)dFn(y) - JJT(x + y)dF(x)dF(y).

Upon Integration by parts and change of variable we obtain that:

SJF(x + y)dFn(X)dFn(Y) - fJJf(x + y)dF(x)dF n(y)

- - [,(x - y) - F(x - y)]dFn(x)dF(y), n - 1, 2, ... ,

*1!



and that

ff'F(x + y)dF(x)dFn(y) - ff'(x + y)dF(x)dF(y)

= -f[Trn(X - y) - 'F(x - y)]dF(x)dF(y), n =, 2,

Thus for n = 1, 2, ... ,

nl/2{Jn - a(F) = Bn,1 + Bn, 2 - Bn, 3 +

where

Bn, I = ffn1/2[-Fn(x + y) - T(x + y)]dFn(x)dFn(y) -

- ffnl/2 r(x + y) - T(x + y)]dFn(x)dF(y),

Sn, 2 - ffn 12 Ln(x + y) - F(x + y)]dFn(x)dF(y) -

- ffn1/2jyn(x + y) - F(x + y)]dF(x)dF(y),

Bn = ffn 1/2CFn(x - y) - F(x - y)]dFn(x)dF(y)-

- ffnll 2 F,(x - y) - F(x - y)]dF(x)dF(y),

and

Bn, 4 = ffn 1/2cn(x + y) - 'F(x +y) - 2{iFn(x - y) - (x y))]dF(x)dF(y).

Consequently to prove the result of Theorem 2.1 it suffices, by Slutsky's

Theorem [Billingsley (1968), p. 49), to show that Bn1 , Bn ,2, and B converge

in probability to zero, and that Bn, 4 converges in distribution to a normal

r.v. with mean zero and variance a2, given by (2.2).

First we prove that Bnl, B, 2 , and Bn, 3 converge in probability to

zero, and that 9,,4 converges in distribution. Then we prove that the limit-

ing d.f. of B,,4 is normal with mean zero and variance o

To establish the convergence of Bn,i through Bn, 4 we introduce a notation

and four lamias. Let D - ( : * is real valued, bounded, and right-continuous

-( ,



function defined on (--, -), with finite left-hand limits at each te(--,-),

and finite limits at t - ± -}. Throughout we view 0 as a metric space with

the Skorohod metric [Billingsley (1968), p. 112).

Lemma 2.2. Let * ( D, and Yg(--,-). Then J*(x + y)dFn(x), and

f*(x - y)dFn(x) converge w.p.1, to f*(x + y)dF(x), and to fi4(x - y)dF(x),

respectively.

Proof. There is a set nj c 8, P{al) = 1, such that Fn(x, w) converges

to F(x) for every xc(-,-), and w e PI, [c.f. Peterson (1977), Th. 3.3,

or Langberg, Proschan, and Quinzi (1980), Th. 4.9]. Note that the sets

of discontinuities of the functions *(- + y), and 4(. - y) are countable

[Billingsley (1968), p. 110]. Since F is continuous these sets have F-measure

zero. Consequently tei. desired results follow by the Helly-Bray Lemma [Breiman

(1968), p. 163, Th. 8.12). 1I

Lemma 2.3. Let * 0 0. Then ff*(x + y)dFn (x)dF(y), and fli(x - y)dFn (x)dF(y),

converge w.p.1 to fJ*(x + y)dF(x)dF(y), and ffi(x - y)dF(x)dF(y), respectively.

Proof. flote that Jij(x + •)dF (x), and f*(x - *)dF (x) are sequences

of bounded functions. By Lema 2.2 these sequences converge w.p.1 to

f*(x + .)dF(x), and f*(x - •)dF(x),respectively. Consequently the desired

results follow by the Dominated Convergence Theorem. II

Lemma 2.4. Let * be a continuous function in D. Then

ff*(x + y)dFn (x)dFn (y) - ff*(x + y)dFn(x)dF(y), and ff,(x - y)dFn(x)dFn(Y) -

f(,< - y)dF (x)dF(y), converge w.p.1 to zero.
n

Proof. To prove the desired results it suffices, by Lemma 2.3, to

show that fjii(x + y)dFn(x)dFn (y), and ff*(x - y)dFn(x)dF (y), converge w.p.l.

to ff*(x + y)dF(x)dF(y), and to ff*(x - y)dF(x)dF(y), respectively.



I _

We not; prove the preceding to statements. There is a set n ea

P{S = 1, such that Fn(x, w) converges to F(x) for all xc(--,m), and

W e 11.0 Consequently the ,rocm-in,. two statements follow by the Helly-Bray

Lemma [Billingsley (1968), p. 11, Th. 2.1 (ii)]. II
Lemma 2.5. Assume (A.1) holds. Then the Gaussian process

{O(t), t(--,-)), with mean zero and covariance kernel given by (2.1),

has continuous paths w.p.1.

t
Proof. Let g(t) = f['K(z)T(z)]' dF(z), to[O,-). By (A.1) and the continuity

0
of Fg is strictly increasing and continuous. Let 01(t) be a stochastic

process given by:

E-[rg1(t))]10(g'(t M). te[O,-),

0 (t)--
o

Clearly (o1(t), ti(--,-)} is a Gaussian process with mean zero, and

covariance kernel given by:

,0O 0 < s < t <

s s < Oor t < 0.

Thus {+(t), t[O,.)) is a standard Wiener process.

Note that g 1 is continuous and strictly increasing to -, gl (0)= 0,

and that {.#(t), te(--,-)} has continuous paths w.p.1 [Breiman (1968),

p. 257). Consequently the desired result follows from the definition of

Breslow and Crowley (1974) and Peterson (1977) prove that the processes

{nl/ 2 {rn(t) - r(t)}, te(--,T)} converge weakly to the process (#(t), tc(--, T))
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for all T(--.-), provided (A.1) holds. To prove that Bn, 1 , Bn, , and Bn, 3

converge in probability to zero, and that Bn, 4 converges in distribution

to a normal r.v. with mean zero and variance a2 , we must asuwne that Breslow

and Crowley's result holds for T = -. Since (A.2) restricts the amount

of censoring allowed in the model we conjecture that under (A.1), (A.2),

/2n(t)- (t), t(-,) converges weakly to (#(t), tW(--,e). te

assume this conjecture to prove Lemmas 2.6, 2.7 and 2.9 that follow.

Iow we proceed to prove that Bn,I , n,2, and Bn,3 converge in probability

to zero, and that Bn,4 converges in distribution. A lema is needed.

112___ (x + YLena 2.6. Assume (A.3) holds. Then the processes (nl/2  n y)+

r(x + y) - 2[r(x - y) - iF(x - y)], x, yg(--,-)), converge weakly to the

process (+(x + y) - 2,v(x - y), x, yE(--,-)}.

Proof. Let )2 = < *1' *2 > ' 1' *2 e 01, be a mertic space with the

metric induced by the one of 0. By a standard argument the bivariate processes

{nl 2  Fn(t) - T(t), Fn (s) >, t, se(-.,.)) converge weakly to the

bivariate process f( ,(t), #(s) >, t, s(--,-)}. Thus, by the Continuous

Mapping Theorem (Billingsley (1968), P. 30, Th. 5.1) the processes
n1/ 2 (r (t) - F(t) - 2tF (s) - F(s)]), t, sc(-,-)) converge weakly to the

n n
process (*(t) - 2#(s), t, se(-,)). Consequently the desired result follows. II

lie :,t, jstalis.i the convergence of B, 1 through B, 4 . Some notation

is useful. Let Q , Q2 , T, Q, be the probability measures on D induced by

the processes {(t), t'(-,.)}, (#(x + y) - 24(x - y), x, ye(-,-)),

-
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{nUlI2 n(t) - T(t)), te(--,-), and (nl/ 2(n(x + y) -(x + y) -

2LTn(x - y) - F(x - y)]), x, yc(--, *)), n * 1, 2, ... ,respectively. Let

51. S. be two sets, let A be a subset of S, and let 9 be a mapping from S1

to S2; then C-1(A) = {s: s c S1 , 6(s) e A).

Lemma 2.7. Assume (A.1), (A.2), and (A.3) hold. Then:

(a) Bnlj Bn2, and B., 3 converge in probability to zero,

and

(b) Bn,4 converges in distribution to the r.v. ff[#(x + y) -

24(x - y)]dF(x)dF(y).

Proof. For * e D, and n = 1, 2, ... let

n,1 (*) = Jff(x + y)dFn(x)dFn (y) - Jfs(x + y)dFn(x)dF(y),

Cn,2 = ff*(x + y)dFn(x)dF(y) - fJ*(x + y)dF(x)dF(y),

an n,3( = ff*(x - y)dFn(x)dF(y) - If*(x - y)dF(x)dF(y),

14(,) = f[t*(x + y) - 2,(x - y)]dF(x)dF(y).
1 2

The probabilities Q converge weakly to Q1. By Lemma 2.6 Qn converges

weakly to Q2 . By Lemma 2,$ the supports of Q1 and Q2 coincide with the

set of all continuous functions in 0. By the definitions of the mappings

and probability measures:

Q¢n, {(--, x} = PBn q < x}, xi(-.,-), q = 1, 2, 3, n, - 1, 2, ...,

n 2~ n( =1 q o

' - P{Bn, 4 < x1, xe(--,-), n = 1, 2,

and

Q1 - 1 {(.., xJ) P(fJEC(u + v) - 24(u - v)]dF(u)dF(v) _ x), xe(-.,-).
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Thus to obtain the desired results it suffices to show, by the Extended

Continuous Mapping Theorem [Billingsley (1968), p. 34, Th. 5.5], that for

every sequence * n D that converges to a continuous function ( D,

lir E n,q(n) = 0, w.p.1 for q = 1, 2, 3, and limr n ) = (00.

We c) ;rov' the preceding statements. Let D, n - 1, 2, ... ,

and let # be a continuous function in D. Assume lir n = *. By a well-known

result (Billingsley (1968), p. 112):

im supfl W(x) - *(x)j, xc(--,-)) = 0.

By Lemna 2.4 lir Cn,l(*) = 0, w.p.1. By Lemma 2.3 lir n,q(*) = 0, q 2, 3.

Consequently by simple Integral evaluations we obtain that lim 4 n,q(*n-) O,

w.p.1. for q = 1, 2, 1, and that lin n = ) J)

Vie are ready to show that the limiting d.f. of 8 n4 is normal with

mean zero and variance 02, given by (2.2). First, we show that under (A.2),

i o2 2

Lemma 2.8. Assume (A.2) holds. Then a2, given by (2.2), Is finite.

Proof. Note that for a, be(--,-), (a - b)2 < 2(a2 + b2). Thus, by

the Cauchy-Schwartz Inequality:

02 f< 'fE[(s + t) - 2f(s - t)]2dF(t)dF(s) <

5 2ff[E((s + t)} 2 + 4E{#(s - t)}2]dF(s)dF(t)

< 10 sup{E(#(t)} 2 , te[O,-)).

Hence to prove the desired result It suffices to show that

sup{[(t)] 2 f -(z) T(z)3 ldF(z), te[O,-)) ( -. By (A.2),LI(z)] 1 _< ctr(z)J4' 1

0
for all z[O,-), some cc(O,-), and some nonnegative real number t. Consequently
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t)1 2ft[7lz)i (zl]-ldlrlz) <c[.F(t)]2f t F(z)lr'3dF(z), te[O,-).

0 0

Since F is continuous

p 2 t~~*- 2- 1{EF(t)) 2 - 1f(t))'} ji 2,

[F(t)2f -z)]i-3dF(z) 2 [-) 2, for t[O,-..
0 jjF(t)]2 - [F(t)]2tJ(t) E * 2,

The desired result follows now by simple limiting arguments. It

Finally, we identify the limiting d.f. of Bn,4.

Lemma 2.9. Assume (A.1),(A.2), ,,W (A.") i,)ld. T n 'In,4 ccnv-!r-;,;s in distr.-

butlon to a normal r.v. with mean 0 and variance a2, given by (2.2).

Proof. By Lemma 2.7 (b) it suffices to show that the r.v. [,,(x + y) -

2#(x - y)]dF(x)dF(y) is normal with mean zero and variance a2. Since the

process ((x + y) -2#(x - y), x, ye(-.,.)} is Gaussian the desired result

follows by the theory of stochastic integration [c.f. Parzen (1962), p. 781. II

3. Consistency. Let f(z) z31 + 4nz + 4(Jnz)2]/16, 0 < z _ 1, and = 0

for z = 0, let u = fxdF(x), and let n = (P{X 1 _ Y1}]IEZ1. Further, let
Sa n In - nn W > t), n = 1, 2, ... , ta(--,-).

EnEI:-=1 tJ TlZt, and 7,(t) = n- i

Finally, let

(3.1) 62(O) = ff(z)I(-gznz)]'dz, Be(O,-),0

(3.2) o(e) - ff(z)LKe(-Btnz)]1(-Anz < O lz n ))dzl Oe(O,-), n 1, 2,

and

(3.3) 052* - i2 (; n ) , n =1, 2,....

For computational purposes o- can be written as

n a b rttna



- 14 -

(128)_1 + n: 'n(n - t + 1)_ (n - i)'C(128) -
n 1=I

(32)'Z()()I + (16)z 1 )( n)-Jexp(-4Z(1 )(;n)')-

-1 .X- -1 + 1 ()Z ~)_2JnC128) -( 3 2 )Z(n) n) + (16) n)n

exp(-4Z(n)(In)
1 }.

In this section we show that, under HO , ;2 is a consistent estimator

of 02 provided 02(e) is finite In a neighborhood of v. We then show, under

(A.1), (A.2) and (A.3), and the assumptions: u < - and 2(e) < - in a neigh-

borhood of n, that the approximate a-level test, which rejects H0 in favor

of H1 if n1 2 -_' - (1/4 ))8nI < - z, is consistent against all continuous

NBU alternatives. lie conclude the section by presenting a sufficient condition

for 02(e) to be finite at Oe(O,-).

Now we show the consistency of a under 40. The proof of consistency

uses several lamas. We first show that j2(e) converges in probability

to 02(9), provided 02(e) < w. Then we show that a n converges in probability

to a2(n), provided 02(e) is finite in an interval containing n. Finally,

using the previous results, we obtain the consistency of a2 under HO

To show that a2(6) converges to a2(e) we need a well-known proposition,

stated for the sake of completeness, and a lema.

Proposition 3.1. [David (1970), p. 18] Let U(1 ) < ... < U(n) be the

order statistics of a sample of size n, n - 2, 3, ... , taken from a continuous

d.f. G. Further let uc(inf(s: G(s) ) 0), -), and Gu (t) - G(t)[G(u)]J1

te(--, ). Then the conditional random vector (lU(), ... , U(nid))lU(n) mU),

is stochastically equal to the order statistics of a sample of size n - 1

taken from the .. 6

SLeim



Leas 3.2. Let Ot(O,.), and 6e[:0,1). Then

Eff(z)[EKn(-Otnz)J 11(-Inz <- O"Z~n))dz
0

<3ff(z)[XK(-enz)]Y dz, n =1, 2, .
0

Proof. Note that for n = 1, 2, *.

Eff(z)[Ei (-etnz)] I(-znz 0- Z(,))dz

f f(Z)(r-OtnZE([(i(Otfz)1'IZ(n) - u~dP(Z () u))dz.

Now let ze(0,1), uc(-Otnz,mu), q(u, z) [ K(u) 1 K(-Otnz), and

p(u, z) I q(u, z). By Proposition 3.1 the conditional r.v.

([r,,(-OzflZ)J"'Z(,) - u) is stochastically equal to nfB(n - 1, p(u, z)) + . -

where B(n - 1, p(u, z)) is a binomial r.v. with parameters n - 1, and

p(u, z). Thus

E{(tr,,(-Oetnz)Jl'IZ (n) - u)

-If * 1*(n-1)[p(u, z)J[q(u, z)Jn-1i

a (~uz)T(1 - [q(u, )J)

Let m(n) -n for n *2, 4, 6, .0., and - n + 1 for n - 1, 3, 5,
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By direct evaluation we obtain that:

E (Ctn(-0Lnz)]' 1 IZ(fl) = u)dP(Z(n) j U)

, m(n)/2(, - [(-eznz)J' I 3(17(-0Iknz)J -1

Consequently the desired result follows. I
Wie are ready to prove that 82(9) converges in probability to d2 (8).n

Lemmua 3.3. Let ee(o,-). Assume o2(o), given in (3.1), is finite. Then

p - Iim i 2~(e) = a2 (e).

Proof. Let ),, 6c(O,-). Then

P{Ja1((z) - ~2() , 6<0Z (n))d > x/31

00

+ P(ff(z)Iti7,(-znz)] 4 I(-Lnz < *-1Z(n)) - [K(-eanz)]F1Idz > x/3).
0

By the Glivenko-Cantelli Lemmna:

lii f(f(z)[(t (-oznz)] I(-Ltnz < 0 Z ,)dz -ff(z)[K(-Otnz)J' dz. w.p.1.

Thus by Lhua 3.2, and the Chebyshev Inequality:

1715 P a 2(O)1 > x) 6.xff(z)[T(-Inz)J dz.

Nlow since 02(e) <

lim+ ff(z)[tK(-oznz)J dz *0.

8+0 0V



- 17-

Consequently the desired result follows.

22We now prove that Qa converges in probability to a (n).

Lemma 3.4. Assume that n < - and that a2(e) is finite in an open

interval that contains n. Then

p - 2n = 02(n).

Proof. Let 0 < 6 < 60 < n, Xc(O,-), and let A. = (W: inn(W) - ni > 8}.

Assume a2(6) (- for ee[n - 60, n + 60] . By the monotonicity of i2(e) in

e for n = 1, 2, ... , we obtain by some simple computations that:

P(I; - 02(n), > < p(1_2(ln + 6) - v2 (n + 6)1 > X/41

+ P(1;2 (n - 6 ) - _2-()- >A/4) + 4x' 1 o(n + 6) - o2(n)jn

+ 4x- 102 (n - 6)- o(n)I i P+ A n, n = 1, 2, *..

By the Weak Law of Large Numbers, lim P{An} = 0.

Thus by Lemma 3.3:

Trm pjj; 2 _ 02(n), > x) _ 4 o2(n + 6) - 02(n), + 4,x-'12(n - 6) - ()

Consequently the desired result follows from the continuity of ,(e)-in

- 60 n + 60 ], by letting 6 0. II

We obtain now the consistency of 2 under .

Theorem 3.5. Assume a2(e) is finite in an interval that contains v.

Then under H0

SP - n 02

Proof. Note that under HO, v a n and that a2 • ( ). Consequmntly

the desired result follows by Lemma 3.4. I

II .... .. l , - - -J -1
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Next vie show that our test is consistent.

Theorem 3.6. Assume (A.1), (A.2), and (A.3) Vrld. Further, assume

that <., and that a2 (e) is finite in an interval that contains n. Then

the test, wh0ch rejects H0 in favor if 1: if n1/2{. - (1/4))a-'1 -z5 , is

consistent against all continuous MU alternatives.

Proof. Note that

Pn ,  A F)). a + nl ( - aF))),L

that under H, (1/4) • (f' > 1,. arA 'Liat by Lemiria 3.4 p- lir 8 - o(n) -

Consequently the desiroxi .e;ul'L follows hy Theorarn 2.1. II

Finally, we present a sufficient conliticn for o2(8) < - at *c(O,-).

Lema 3.1. Lot a.(0,-), I :sume

(3.4) 1iim+z4"oK(-onz)]" W for some Be(O.).

Then o
2 (0) < Z

Pro_f. To ObtaO th de-zired result is sufficies to show that there

Is a 6e(0,1), such th.t:

If~)[,(-".z )]'Idz < .

We show non the preceding inequality. There is a 6e(0,1) and a de(O,-),

such that z ( dK(-etnz), z.[O ,). This:

'¢')! (- z)]Idz< dff(z)z 'dz.

CC 0
~Consequently the de'~lreai result follows by an evaluation of ff(z)zB4 dz. I I

; 0

( - .I l I I I _ i _. .. ,



- 19-

4. Efficiency loss due to censoring. Recall that the Jc test is a generalizationn
of the HP (1972) test for the uncensored model based on the statistic Jn

(see equation (1.5) of HP (1972)). In this section we study the efficiency

loss due to the presence of censoring by comparing the power of the Jn test

based on n observations in the uncensored model with the power of the Jn€

test based on n* observations in the randomly censored model.

Let F be a parametric family within the NBU class with F being exponential

with scale parameter 1 (for example, one such family is the Weibull
F y(x) = 1 - exp{-(x)y}, y > 1 and yo = 1) ind issu. n t c ranol Ay censored idel with

F = F and with censoring distribution H. Consider the sequence of alterna-

tives yn = YO + cn- 1 / 2 , with c > 0. Let n(yn ) be the power of the approximate

a-level J n test based un n observations in the uncensored model and let

On*(Yn) denote the power of the (approximate) a-level test based on J_ for

n* observations in the randomly censored model. Consider n* = h(n) such

that lim o n(Yn) = lim On*(Yn), where the limiting value is strictly between

0, and 1, and let = lim n/n*. The value of k can be viewed as a measure

of the efficiency loss due to censoring. The value of k is adopted from

Pitman's (cf. Noether, 1955) measure of asymptotic relative efficiency but

tests which are both applicable in the randomly censored model. Roughly

speaking, for large n and NBU alternatives close to the null hypothesis

of exponential ity, the Jn test requires n/k observations from the randomly

censored model to do as well as the Jn test applied to n observations from

the uncensored model. It can be shown that since Jn and Jfc have the same

asymptotic means, k reduces to
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def2

(4.1) k e eH(J c , J)= (5/432)1o02(1)

1/2 2where (5/432) is the null asymptotic variance of n and a (1), given

by (3.1), is the null asymptotic variance of nl/23c. Thus note that k dependsn
only on the censoring distribution H, and not on the parametric family Fl

of NBU alternatives. Hence "ie use the notation eH(Jc, J), rather than eFH(Jc, 1):

in (4.1).

Ue consider the cases (i) where the censoring distribution is exponential,

Tri(X) - 1 for x ( 0, i(x) = exp(-Xx), x > 0, and (ii) where the censoring

distribution is piecewise exponential, R2(x) = 1 for x < 0, and for Y = 1, ... , m,

R[2(x) - Cr exp(-.xrx), sr.1 < x < sr, and 12 (x) cm,.1 exp(-,xm*gIx), sm < -h.ere

r-I
Cr = exp ( -£ j(S i - *I-1 " 1) + Ar r-1), and s = 0.

Foy H1, we see that (A.2) is satisfied with c = 0 and thus we impose

the restriction A < 1. Then from (3.1) a.xd (4.1) we find

(4.2) (jc J) = 5(3 - X)3 /{27(,x - 2, + 5)).
e1 ,

Values of eH(JC, J) are give. in Table 4.1. From (4.2) we note that,

as is to be expected, as A t"end. to 0 (corresponding to the case of no censor-

ing), e.(Jc, J) tends to 1.e1

In order to provide a rc.ference point to the amount of censoring, and

thereby facilitate the interpretotion of eH (Jc, J), we also include in

Table 4.1 the value ofpH - P(X I ( Y) - (I + A)-l, the probability of

obtaining an uncensored observation when XI is exponential with scale para-

meter 1 and Y is independent of X and has the censoring distribution H1 .

-(- -*
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When the censoring distribution is H2, straightforward but tedious

calculations yield

(4.3) e 11+1 213(4.3) eH2 (Jc, J) = 1 27(kr - 2%r + 5)(5cr)'1(3 -r)3 [exp{-(3 - Xr)Sr-1)

xp)-( - dr)r] C 108(1 - Ar)(Sr)'(3 - xr)'2[Sr-lexp{-(3 - Xdr)1
r=1

m+ 1 1

- s rexp- (3 - xr)s r] + r 108(5cr)'(3 -r sr.1exp{-(3 - r)s r)
r=1

- Sr2exp(-( 3 - Ar) r)],

where sm+1 - w. Again, with the censoring distribution H2, (A.2)

can include the case e = 0 and thus here we have Xm < 1.

Values of e H(jc, J) are also given in Table 4.1. Again, as a reference

point for the amount of censoring under the censoring distribution H2 , we

include in Table 4.1 values ofPH = (X1 < Y1 ) when X, is exponential with
2

scale parameter 1, and Y is independent of X with distribution H2. Direct

calculations show

M1+1 -1
PH r r r r rx(I + A) exp-( + l)s expr-(x +l)S where Sm+1 =

TABLE 4.1

Efficiency loss under exponential (H1 ) and piecewise exponential (H2 ) censoring.

(H1 )

* , : 1 1/2 1/3 1/4 1/10
S eH (JcJ): .371 .681 .790 .844 .939

PH1 .500 .667 .750 .800 .909

I _ __ __ __ __ ___ __ __ __ __ _ _ __ __ __ __ __ ___ __ __ __ __ ___ __ ___'__ __
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(H2)
m=. st: 1 1 1 2

( X2 ): (1/2, 1) (1, 1/2) (1/2, 1/3) (1/2, 1)
e. (Jc, j): .529 .498 .723 .642

PH2: .630 .523 .685 .675

M=2 (Sl, s2): (1/2, 1) (1/2, 1) (1/2, 1)

(x1 , A2 , X3 ): (1, 1/2, 1/3) (1/3, 1/2, 1) (1/2, 1/3, 1/4)
eN2( d, j): .617 .597 .772

PH2: .576 .667 .718

5. An Example. The data in Table 5.1 are found in Hollander and Proschan

(1979) and are an up-dated version of data given by Koziol and Green (1976).

The data correspond to 211 state IV prostate cancer patients treated with

estrogen in a Veterans Administration Cooperative Urological Research Group

study. At the March, 1977 closng date there were 90 patients who died of

prostate cancer, 105 who died of other diseases, and 16 still alive. Those

observations corresponding to deaths due to other causes and those correspond-

ing to the 16 survivors are treated as censored observations (withdrawals).
€ As reported by Koziol and Green (1976), there is a basis fr suspecting

that had the patients not been treated with estrogen, their survival distri-

bution for deaths from cancer of the prostate wuld be exponential with mean
100 months.

Hollander and Proschan (1979) developed a goodness-of-fit procedure

for testing, in the randomly censored model, that F is a certain (completely

specified) distribution. They applied their test, and competing procedures

of Koziol and Green (1976) and Hyde (1977), to the data of Table 5.1. The

'~~'7Wiwi-
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hypothesized F was taken to be exponential with mean 100. The two-sided

P values obtained were consistent with the hypothesis. However, Gregory

(1979) has proposed some goodness-of-fit tests which (for certain alterna-

tives) may be more powerful than the tests of Hollander and Proschan (1979),

Koziol and Green (1976), ard Hyde (1977). Gregory's tests, applied to the

data of Table 5.1,strongly indicate a deviation from the postulated expo-

nential, with mean 100, distribution.

Possible alternative models include an exponentiai distribution with

a mean different than 100, or a distribution, such as an NBU distribution,

that could represent "wearout." To explore the possiblity of the latter

type of alternative, it is reasonable to apply the test based on f.
Applying our NBU test to the data of Table 5.1, we obtain

c = .193, = .105 and (211) 1/2(JC11 - 1 = -2.56 with a cor-
2 (1/4))a-l =-.6wihacr

responding one-sided P value of .0052. Thus the test indicates strong evi-

dence of wearout and suggests that an tBU model is preferable to an expo-

nential model.

TABLE 5.1

Survival times and withdrawal times in months for 211 patients
(with number of ties given in parentheses)

Survival times: 0(3), 2, 3, 4, 6, 7(2), 8, 9(2), 11(3), 12(3), 15(2), 16(3),
17(2), 18, 19(2), 20, 21, 22(2), 23, 24, 25(2), 26(3), 27(2), 28(2), 29(2),
30, 31, 32(3), 33(2), 34, 35, 36, 37(2), 38, 40, 41(2), 42(2), 43, 45(3),

46, 47(2), 48(2), 51, 53(2), 54(2), 57, 60, 61, 62(2), 67, 69, 87, 97(2),

100, 145, 158.

Withdrawal times: 0(6), 1(5), 2(4), 3(3), 4, 6(5), 7(5), 8, 9(2), 10,
11, 12(3), 13(3), 14(2), 15(2), 16, 17(2), 18(2), 19(3), 21, 23, 25, 27,
28, 31, 32, 34, 35, 37, 38(4), 39(2), 44(3), 46, 47, 48, 49, 50, 53(2),

55, 56, 59, 61, 62, 65, 66(2), 72(2), 74, 78, 79, 81, 89, 93, 99, 102, 104(2),
106, 109, 119(2), 125, 127, 129, 131, 133(2), 135, 136(2), 138, 141, 142,

143, 144, 148, 160, 164(3).
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