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Testing Whether flew is Better Than Used
With Randomly Censored Data

by
Yuan-Yan Chen, ltyles Hollander, and Naftali A. Langberg

Abstract.
A Vife distribution F is new better than used (NBU) if F(x + y) < F(x)F(y)

for all x, y > 0 (Fz1-F). uUsing a randomly censored sample of size n
from F, we propose a test of Ho: F is exponential, versus HI: F is NBU,
but not exponential. Our test is based on the statistic

J: = HFn(x + y)an(x)an(y), where F 1s the product 1imit estimator of F, |
introduced by Kaplan and Meier (1958). ;

Under mild regularity on the amount of censoring, the asymptotic mormality
of S

n!
mator of the null standard deviation of nll ZJ:. an asymptotically distribu-

suitably normalized, i{s established. Then using a consistent esti-

tion-free test is obtained. Finally, using tests for the censored and un-
censored models we develop a measure of the efficiency loss due to the presence

of censoring.

Key words: [lew better than used, exponentiality, hypothesis test,
censored data.
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1. Introduction and Summary. A life distribution F (a distribution function

is new better than used (!BU), \

(1.1) Fix +y) <El

P

(y) for x, y ¢ (0, =).

(>/The dual notion of a new worse than used (NJU) life d.f. is defined by revers-
ing the inequality,ia={l+1)x> The boundary members of the NBU and MIU classes,
obtained by 1nsistipg an equalitybi-u—(-l-rl-); are the exponential d.f.'s.

The BU class of life distributions has proved to be very useful in

performing analyses of lifelengths. These d.f.'s provide readily interpretable
models for describing wearout, play a fundamental role in studies of replace-
ment policies (Marshall, Proschan, 1972), and shock models (Esary, tlarshall,
and Proschan, 1973), and have desirable closure properties (c.f. Barlow
and Proschan, 1975). —

Hollander and Proschan (HP) (1972) develop a test of

(1.2) Ho: F(x) =1 - exp{-x/u}, x > 0, u >0 (u unspecified),
versus

(1.3) Hy: F is NBU, but not exponential,

based on a random sample xl. cesy Xn from a continuous 1ife distribution
F. The hypothesis “0 asserts that a new item has stochastically the same
lifelength as a used item of any age, where the alternative "1 states that
a new item has stochastically greater lifelength than a used item of any
age. The HP (1972) test §s motivated by considering the parameter

3
!

(d.f.) such that F(x) = 0 for x < 0), with survival function&lv;/, %F ‘+I W;dg




Y(F) = z Zcr(x)rm < Fix + y)JOF(x)F(y) =

.- def
=1/4 - (f) (])F(x + y)F(x)F(y) = 1/4 - aA(F).

Viewing v(F) as a measure of the deviation of F from exponentiality towards

NBU [or MHU] alternatives, HP (1972) replace F by Gn’ the empirical d.f.

of X;» eees X,» and suggest rejecting Hy in favor of H if A(Gn) is too

small [Ho is rejected, in favor of Hi: F is MIU, but not exponential, if

A(Gn) is too large.] For further details about the test see HP (1972),

Hollander and Wolfe (1973), Cox and Hinkley (1974), and Randles and Yolfe (1979).
In this paper we consider a randomly censored model where we do not

get to observe a complete sample of X's. Let Xl, Xz. .«+ be independent identically

distributed (i.i.d.) random variables (r.v.'s) having a common continuous

life d.f. F. The X's represent lifelengths of identical items. Let

Yl’ Yos «ee be #.i.d. r.v.'s having a conmon continuous d.f. H. The ¥'s

represent the random times to right-censorship. Throughout we assume the

X's and Y's are mutually independent and the pairs (xl. Yl), (xz. Yz), cee

are defined on a common probability space (2, B, P). Further, let I(A)

denote the indicator function of the set A, and for i = 1, ..., n,
let Z, = min{xi, Y5}, and 61 = I(x1 < Yi)’ Based on the incomplete data

, : set (Zl. 61), cees (Zn’ sn) we test HO’ given by (1.2), against Hl’

, given by (1.3). The censoring d.f. H is assumed to be unknown and is
o ’ treated as a nuisance parameter. Due to the censoring, the empirical
{ | d.f. G, corresponding to F cannot be computed. Thus, we propose to
reject Ho in favor of H1 for small values of

ef

d 2| o
(1.5) a(F,) = U = é (f)?ﬂ(x + y)dF (x)dF (),

.
F@mm‘:;r NP
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where Fn is the Product Limit Estimator (PLE) of F, introduced by Kaplan

and Meier (1958):
def 1 6(1)
(1.6) 'F'n(x) = ] - Fn(x) = n [n-i)n -3 +1)"] .
{i: Z,,¢x)
(i)

where Z(l) € eee € Z(n) denote the ordered Z's, Z(O) =, 6(0) =1, and

6 LR N J y i LN ) L

(1) . G(n) are the &'s corresponding to Z(l)’ » Z(n) respectively. In
(1.6), we treat Z(n) as a death (whether or not it actually is) so that G(n) = 1.
Furthermore, although our assumptions preclude the possibility of ties, in
practice ties will occur. When censored observations are tied with uncensored
observations, our convention, when forming the Vist of the ordered 2's, is to
treat uncensored members of the tie as preceding the censored members of the tie.

For computational purposes, it is convenient to write J: as:

s
J: = z:ﬂzgﬂ{[ It {{n-k)}n-% + l)'ll (k]
1-1 .8 -1 8
[ B r)n - 1) (r)][Jnl{(n - s)n - s+ 1) ()
r= 8=

(n -J+ 1)-1(n -Jj+ 1)-16(i)6(j)}.

In clinical trials the X's may be times, measured from date of diagnosis
of a disease, to relapse. MNBU alternatives may be preferable to increasing
failure rate alternatives because the latter class insists upon a non-decreas-
ing failure rate whereas, in this medical context, we may expect the
failure rate to increase (at least for a short period of time) after
treatment begins. Incomplete observations can arise at the time of data
analysis due to, for example, dropout or patients who have not yet
relapsed. In this situation, it is appropriate to use J: to test Ho VS, "l‘

tlarshall and Proschan (1972) consider age replacement policies and

block replacement policies. Under an age replacement policy, a umit is

AR, . ko W20 W ke g e




replaced upon failure or upon reaching a specified age T, whichever comes
first. Under a block replacement policy, a replacement is made whenever a

failure occurs, and additionally at specified times T, 2T, 3T, ..c0oy &

Harshall and Proschan show that a necessary and sufficient condition for failure-

free intervals to be stochastically larger (smaller) under age replacement than
under a policy of replacement at failure only is that the underlying distribution
be NBU (tMU). Marshall and Proschan also show that a necessary and sufficient
condftion that the number of failures in a specified [0, t] be stochastically
smaller (larger) under age replacement than under a policy of replacement at
failure only is that the underlying distribution be NBU (NWU). Similar compari-
sons hold for block replacement. Thus in reaching a decision as to whether to
use an age (block) replacement policy or not, it is important to investigate
whether or not the unaerlying distribution is NBU., If lifelength times are
censored, the test based on J: facilitates such an investigation.

Other references describing situations where it is important to know
whether the underly distribution fs HBU are Esary, Marshall and Proschan
(1973) in the context of shock models, and El-Neweihi, Proschan, and Sethuraman
(1978) in the context of multiple coherent systems.

In Section 2 we establish the asymptotic nommality of the sequence
nllz{\): - A(F)} under the assumptions:

(A.1) The supports of F and H are equal to {0, =),
(A.2) sup(CF(x)1 " <CA(x )T}, xe0,0)} < =

for some nonnegative real number ¢.
and
(A.3) The processes {nllzﬂ"n(t) - F(t)}, te(-=,=)} "onverge weakly

to a Gaussian process with mean zero and covariance kernel given by (2.1).




Condition (A.2) restricts the amount of censoring alluwed in the nodel.
To see this in a simple case, consider the proportional hazards model where
W= [FI® for some 8 > 0. Then PiX, < ¥;} = (8 + 1)}, and condition (A.2)
implies that 8 < 1. Thus, in the proportional hazards model, the J: test
is inappropriate when the expected amount of censoring P{Y1 < xl} exceeds
50%.

The null asymptotic mean of J: is 1/4, independent of the nuisance
IIZJ:

parameters y and H. However, the null asymptotic variance of n does

depend on y and H and must be estimated from the data. A consistent esti-
mator, Gg,

test rejects Ho is favor of H1 if nllz{Jg - (1/4)}3;1 £ - Z.s vhere z, is

given by (3.3), is derived in Section 3. The approximate a-level

the upper a-percentile of a standard normal distribution. In Section 3
we also show that this asymptotically distribution-free test is, under
suitable regularity, consistent against all continuous NBU alternatives.
Section 4 develops a measure of the loss in efficiency due to the pr- ;ence
of censoring. This measure is derived using the HP (1972) NBU test and
its genefalization herein proposed based on J:. In certain instances, this
measure assumes values close to P(x1 < Yl); the latter also being a (rough)
measure of the loss of information due to censoring.
Section 5 contains an application of the J: statistic to some survival
data.

2. Asymptotic Normmality of the NBU Test Statistic. In this section we

establish the asymptotic nmormality of the test statistic J;. defined by (1.5).
Let K(t) = F(t)H(t), te(~=,=), and let (4(t), te(-=,=)} be a

Gaussian process with mean zero and covariance kernel given by:




F(eIF(s ) IR(2IF(2)T YdF(2), 0 < § € £€ =,
(2.1)  E¢(t)e(s) = 0

i0 ,8<¢0ortc<aQ.

N

Unless otherwise specified, all limits are evaluated as n + «, and all inte-
grals range over (~=, =).

First we state the main result of this section.

Theorem 2.1. Assume that conditfons (A.1), (A.2), and (A.3), given

in Section 1, hold. Then nllZ{J: - a(F))} converges in distribution to a

normal r.v. with mean zero and variance oz, given by:

(2.2) o® = [JfJEMLo(t + 5) - 20(t - s)Ie(u + v) - 26(u - v)IAF(s)F(t)AF(u)dF(v).
Note that forn=1, 2, ...,
& - a(F) = (ffIF (x + y) - Flx + y)IdF (x)dF (y)

- JfF (x + y) - F(x + y)1dF (x)dF(y)}

+ UYJIF(x +y) - F(x + y)]dF, (x)dF(y)

- JJTFp(x + y) - Flx + y))dF(x)dF(y)}

+ JJTF(x + y) - Flx + y)JdF(x)dF(y)

+ [fF(x + y)dF (x)dF (y) - [fF(x + y)dF(x)dF (y)

+ [fF(x + y)dF(x)dF (y) - [fF(x + y)dF(x)dF(y).
Upon integration by parts and change of variable we obtain that:

JIF(x + y)F (x)dF (y) = JfF(x + y)dF(x)dF (y)

= - JfIFy(x - y) - Fx - y)JF (x)}F(y), n = 1, 2, ...,




and that
[[F(x + y)F(x)dF (y) - [[F(x + y)dF(x)dF(y)
= -JJF(x = y) - F(x - y)IdF(x)dF(y), n = 1, 2, ... .

Thus forn=1, 2, ...

1/2, ¢ -
n {Jn - A(F)} = B"’1 + B",2 - Bn’3 + Bn’4.

where
B,y = JInM2LF (x + y) - Flx + y)1dF, (x)oF (y) -
- JInVRF (x + y) - Fx + y)IoF (x)aF(y),
By = JInY/20F (x + y) - Flx + y)1oF (x)dF(y) -
- II"I/ZIT,,(X +y) - Fx + y)IdF(x)dF(y),
By 3 f[n”z[?n(x - y) - F(x - y)IdF (x)dF(y) -
- JIVEE (x - y) - Flx - y)JF(x)aF(y),
and

B,.q = JInV/F(x + y) - Flx 4y) - 2(Fy(x - y) - Flx - y) JdF(x)dF(y).

Consequently to prove the result of Theorem 2.1 it suffices, by Slutsky's
Theorem [Billingsley (1968), p. 49], to show that B_ ., B_ ., and B_ . converge
n,1* "n,2 n,3

in probability to zero, and that Bn 4 converges in distribution to a normal
r.v. with mean zero and variance oz, given by (2.2).

First we prove that Bn,l‘ Bn,Z’ and Bn,3 converge in probability to
zero, and that 8" 4 converges in distribution. Then we prove that the limit-

]

ing d.f. of Bn 4 is normal with mean zero and variance az.

To establish the convergence of B

n,l
and four Temmas. Let D = (y: ¢ {s real valued, bounded, and right-continuous

through Bn 4 ve introduce a notation
L]
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function defined on (-=, =), with finite left-hand Jimits at each te(-=,=),
and finite limits at t = ¢+ «}, Throughout we view D as a metric space with
the Skorohod metric [Billingsley (1968), p. 112].

Lenma 2.2. let y ¢ D, and ye(-=,=). Then [y(x + y)an(x), and
Jo(x - y)an(x) converge w.p.l, to [y(x + y)dF(x), and to [y(x - y)dF(x),
respectively.

Proof. There is a set nl € B, P{nl} = 1, such that Fn(x, w) converges
to F(x) for every xe(=,=), and v ¢ £s [c.f. Peterson (1977), Th. 3.3,
or Langberg, Proschan, and Quinzi (1980), Th. 4.9]. Note that the sets
of discontinuities of the functions ¢(- + y), and y(+ - y) are countable
[Billingsley (1968), p. 110]. Since F is continuous these sets have F-measure
zero. Consequently tk> desired results follow by the Helly-Bray Lemma [Breiman
(1968), p. 163, Th. 8.12]. ||

Lenma 2.3. Let v € D. Then [fy(x + y)an(x)dF(y), ad [[y(x - y)an(x)dF(y),
converge w.p.l to [fy(x + y)dF(x)dF(y), and [fu(x - y)F(x)dF(y), respectively.

Proof. lote that [y(x + -)an(x), and fy(x - -)an(x) are sequences
of bounded functions. By Lemma 2.2 these sequences converge w.p.l to
Jo(x + «)F(x), and fy(x ~ «)dF(x), respectively. Consequently the desired
results follow by the Dominated Convergence Theorem. ||

Lenma 2.4. Let y be a continuous function in D. Then
[I(x + y)dF (x)dF (y) - [fo(x + y)dF (x)dF(y), and [fu(x - y)dF (x)dF (y) -
[fe(x - y)an(x)dF(y), converge w.p.l1 to zero.

Proof. To prove the desired results it suffices, by Lemma 2.3, to
show that [[y(x + y)an(x)an(y), and [[y(x - y)an(x)an(y), converge v.p.l.
to [fy(x + y)dF(x)dF(y), and to [fy(x - y)dF(x)dF(y), respectively. -

v —— - e ate .




We nou prove the preceding two statements. There is a set nl €5,
P{nl} = 1, such that Fn(x, w) converges to F(x) for all xe(-e,»), and
we N Consequently the ,rocedin: two statements follow by the Helly-Bray
Lemma [Billingsley (1968), p. 11, Th. 2.1 (ii)). ||

Lemma 2.5, Assume (A.1) holds. Then the Gaussian process
{¢(t), te(~=,=)}, with mean zero and covariance kernel given by (2.1),

has continuous paths w.p.l.

t
Proof. Let g(t) = I[K(z)F(z)]'ldF(z), tel0,»). By (A.1) and the continuity
0
of F, g is strictly increasing and continuous. Let ¢1(t) be a stochastic

process given by:

VLR eI (a7 (), tel0,e),
¢ (t) =4
LO , te(-=,0).
Clearly {¢1(t), te(-=,»)} is a Gaussian process with mean zero, and

covariance kernel given by:

S, 0{s{t<e=
E¢1(t)¢1(5) =

0, s<0ortc<ao0.
Thus {¢1(t), te[0,»)} is a standard Wiener process.

Note that g'1 is continuous and strictly increasing to =, 9'1(0)= 0,
and that {¢l(t), te(-=,=)} has continuous paths w.p.1 [Breiman (1968),
p. 257]. Consequently the desired result follows from the definition of
{63(t), te(-=y=)}. ||

Breslow and Crowley (1974) and Peterson (1977) prove that the processes
{nllszh(t) - F(t)}, te(-=,T)} converge weakly to the process {¢(t), te(-=, T)}




) o ¥ i
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for all Te(-».=), provided (A.1) holds. To prove that Bn,l' Bn,Z' and B"’3
converge in probability to zero, and that B"’4 converges in distribution

to a normal r.v. with mean zero and variance az, we must assume that Breslow
and Crowley's result holds for T = =, Since (A.2) restricts the amount

of censoring allowed in the model we eonjecture that under (A.1), (A.2),
{nllz{rn(t) - F(t)}, te(-=,=)} converges weakly to {¢(t), te(-=,=)}. We
assume this conjecture to prove Lemmas 2.6, 2.7 and 2.9 that follow.

llow we proceed to prove that Bn,l’ Bn,Z‘ and Bn )3 converge in probability
to zero, and that Bn,4 converdges in distribution. A lemma is needed.

Lemma 2.6. Assume (A.3) holds. Then the processes {nllzfrh(x +y)-

Flx + y) - 2[F (x - y) - F(x - y)J}, x, ye(-=,=)}, converge weakly to the
process {9(x + ¥) - 2¢(x - ¥), X, Ye(-=,2)}.

Proof. Let 02 = K “’1’ ¢2 >, “'1' wz e D}, be a mertic space with the
metric induced by the one of . By a standard argument the bivariate processes
{nl/2 < ?ﬁ(t) - F(t), ?;(s) - F(s) >, t, se(-=,=)} converge veakly to the
bivariate process {< ¢(t), o(s) >, t, s€(-=,=)}. Thus, by the Comtinuous
Mapping Theorem (Billingsiey (1968), P. 30, Th. 5.1) the processes
{nllzfl-’n(t) - F(t) - Z[Fn(s) - F(s)]}, t, se(-=,=)} converge weakly to the
process {¢(t) - 2¢(s), t, se(-=,=»)}. Consequently the desired result follows. ||

e 5. ostaulis.: the convergence of Bn,l through B"". Some notation
is useful, Let 01, Qz, Q’l‘, 02, be the probability measures on D induced by

the processes {d(t), te(-=,=)}, {(6(x + y) -~ 26(x - y), X, Ye(-»,»)},

il DL U -
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V2EF (t) - F(t), te(-=,e)}, and (/26 (x + y) - Flx + y) -
Zan(x -y)- F(x - y)B, x, ye(-=, =)}, n =1, 2, ... respectively. Let
Sl' S2 be two sets, let A be a subset of 52 and let £ be a mapping from S1
to S,; then €71(A) = {s: s ¢ S|, &(s) € AL,

Lemma 2.7. Assume (A.1), (A.2), and (A.3) hold. Then:

(a) Bn,l’ B,ps and Bn,3 converge in probability to zero,
and

(b) B“’4 converges in distribution to the r.v. [[[¢(x + y) -
2¢(x - y)1dF(x)dF(y).

Proof. For ye¢ D,and n=1, 2, ... let

£y ,2(¥) = Jfulx + y)af (x)dF (y) - [fo(x + y)F (x)dF(y),
€n,2(0) = [Jolx + y)dF (x)dF(y) - [fu(x + y)dF(x)dF(y),

€, 36¥) = [fulx - y)dF (x)dF(y) - [fu(x - y)F(x)dF(y),

and
£4(¥) = [fLu(x + y) - 2v(x - y)]dF(x)dF(y).

The probabilities Q}' converge weakly to Ql. By Lemma 2.6 Qf‘ converges
weakly to Qz. By Lemma 2,% the supports of Ql and Qz coincide with the
set of all continuous functions in D. By the definitions of the mappings

and probability measures:

Q}‘z;tq{("s XJ} = P{Bn’q S, x}, x‘("":")a q = 1,2,3,n, =1, 2, ceos

Qe ((-mux] = PB4 < X, Xe(-my0), n = 1, 2, o
and
Qli'l{(--. xJ} = P{[fle(u + v) - 2¢(u - v)IdF(u)dF(v) £ x}, xe(-=,=).
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Thus to obtain the desired results it suffices to show, by the Extended
Continuous Mapping Theorem [Billingsley (1968), p. 34, Th. 5.5], that for
every sequence "’n ¢ D that converges to a continuous function ¢ € D,
Vim g, (¥,) =0, vop.l for q =1, 2, 3, and Tim E(v,) = E(v).
g N n
He o ;rov? the preceding statements. Llet vn ebD,n=1, 2, ...,
and let ¢ be a continuous function in D. Assume 1im "’n = ¢. By a well-known

result [Billingsley (1968), p. 112]:
1im sup{lwbn(x) - 9(x)}{, xe(~=,=)} = 0,

By Lema 2.4 1im £ ,(v) = 0, w.p.1. By Lemma 2.3 lim g (¥} =0, q=2, 3.

n
Consequently by simple integral evaluations we obtain tha;ql im En. q(1v") =0,
w.p.l. for g = 1, 2, *, and that Tim €(v,) = &(v). 1

He are ready to show that the limiting d.f. of Bn.‘l is normal with
mean zero and variance az, given by (2.2). First, we show that under (A.2),
oz { =,

Lemma 2.8. Assume (A.2) holds. Then o, given by (2.2), is finite.

Proof. Note that for a, be(-=,=), (2 - b)z £ z(a2 + bz). Thus, by

the Cauchy-Schwartz Inequality:
o? < [fECo(s + t) - 26(s - t)I2AF(L)F(s) <
< 2ffTELo(s + t)12 + aEfo(s - t2IdF(s)F(t)

< 10 sup(EGa(t)}12, te[0,=)}.
Hence to prove the desired result it suffices to show that

t
sup([r(t)lzé (R(2)F(2)172dF(2), telD,=)} ¢ =. By (A.2),[W(2)17} < c[F(2))}

e e

for all 2¢[0,s), some ce(0,»), and some nonnegative real number e¢. Comsequently
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2.t Loy 2t -3
(F(e) (I) [R(z)F(2)1"*dF(z) < c[F(t)] é [F(z)F""dF(z), te[0,=).

Since F is continuous

t ﬁe - 2y HEF(e)1? - [F(4)1), e £ 2,
mtnzg [F(2)1534F (2) = for te[0,= .

il.""(t)]2 - [F(t)2%enF(t) »€ =2,

The desired result follows now by simple 1imiting arguments. ||

Finally, we identify the limiting d.f. of Bn s |
Lenma 2.9. Assume (A.1),(A.2), n' (A7) imld. T ™ n’n,l& ccnvrans in distri-
2

bution to a normal r.v. with mean 0 and variance ¢“, given by (2.2).

Proof. By Lemma 2.7 (b) it suffices to show that the r.v. [f[.(x +y) -
2¢(x - y))dF(x)dF(y) is normal with mean zero and variance oz. Since the
process {¢(x +y) -2¢(x - ¥y), X, ye(-=,=)} is Gaussian the desired result
follows by the theory of stochastic integration [c.f. Parzen (1962), p. 78]. ||

3. Conmsistency. Let f(z) = 23[1 + 42nz + 4(znz)2]/16, 0<z<l,and =0
for 2 = 0, let u = [xdF(x), and let n = [P{l(1 £ Yl}]'IEZI. Further, let

By = [e0.,8,7 18] 12, and T (6) = n7lE] 1z, > £), m = 1, 2, oo, te(mn).
Finally, let

1 k
(3.1) &(0) = {,f(z)ri(-eznz)r‘dz. 8e(0,=), -
1 '
(3.2) o2(6) = [#(2)IK (-0anz)] " 1(-anz < 0712, )z, Be(0,0), m = 1, 2, ...,
0 ,
and
(3.3) 6: =R )n=1,2, ...
For computational purposes é‘: can be written as
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2= (128)! +xfln(n - 1+ 1) (n - i) l(128)? -

(32)24yG,)t + (16)12F i P dexpteaz g (i) -

o[ (128)F -(32) Y2yt + (163712 G )

exp{--4Z(")(iin )'1} .

2
n

of oz provided oz(e) is finite in a neighborhood of u. We then show, under

In this section we show that, under H,, o5 is a consistent estimator
(A.1), (A.2) and (A.3), and the assumptions: y < » and az(e) < = in a neigh-
borhood of n, that the approximate a-level test, which rejects H0 in favor
of H, if “1/2“: - (1/4 )}6;1 < -z, is consistent against all continuous
MBU altermatives. Ye conclude the section by presenting a sufficient condition
for az(e) to be finite at 0¢(0,=).

tow we s;how the consistency of 6}2‘ under H0 The proof of consistency

uses several lemmas. We first show that Sﬁ(e) converges in probability

2
n

to oz(n), provided oz(e) is finite in an interval containing n. Finally,

to oz(e), provided oz(e) < ». Then we show that o converges in probability

using the previous results, we obtain the consistency of 3: under Ho

To show that 6'2‘(6) converges to oz(e) we need a well-known proposition,
stated for the sake of completeness, and a lemma.

Proposition 3.1. ([David (1970), p. 18] Let U(l) L G 4 U(") be the
order statistics of a sample of size n, n = 2, 3, ..., taken from a continuous
d.f. 6. Further let ue(inf(s: G(s) > 0}, =), and G (t) = G(t)(G(u)]™),
te(-=, ). Then the conditional random vector {(U(l), cees U(n-l))w(n) =y},
is stochastically equal to the order statistics of a sample of size n -1

taken from the 4.¢. Gu.
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Lenma 3.2. Let 0¢(0,=), and 8¢[0,1). Then
Ezf(z)[Eh(-oznz)]'ll(-znz < o‘lz(n))dz <
< 3Zf(z)m-emz)]'1az, n=l,2, .o .

Proof. Note that forn-=1, 2, ...,
E?f(z)fi (-eznz)]'ll(-znz <o~z Mz =
0 n - (n)

]
-1
= ‘[,f(z){j:esz{['Kn(-eznz)] Iz(n) = u}dP{Z(n) < uldz.

Now let z¢(0,1), ue(-62nz,=), q(u, z) = [K(u)]'lK(-oznz), and
p(u, z) = 1 - q(u, z). By Proposition 3.1 the conditional r.v.
{[ih(-eznz)]'lll(n) = u} is stochastically equal to n[B(n - 1, p(u, 2)) + 1]'1.

ki p——

where 8(n - 1, p(u, z)) is a binomial r.v. with parameters n - 1, and

p(u, z). Thus

E{[Kh(-eznz)]'l|z(n) =y} =

= nz3ig(i + 7GR, 2)PCat, 2"
- [pu, 2)171(1 - [q(u, 2)I").
letm(n) =nforn=2,4,6, ccc,and=n+1forn=1,3,5, ... .

Then
Cp(u, 2)3°1(1 - CaCu, 2)I") < Cp(u, 2)37X(1 - Ca(u, 2)™M))

< 2p(u, 2171 - Latu, 200V 2 2ROV 2pqqu, i, m 1,2, el
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By direct evaluation we obtain that:

-1
.ggnzs{ﬁ“(-emz )] |Z(ﬂ) = U)dP(Z(n) _<_ ul

< T8V 2(n - 1) U[R(-0an2)]" ¢ 3[R(-0anz)] 1.

Consequently the desired result follows. ||
lle are ready to prove that aﬁ(e) converges in probability to dz(e ).
Lenma 3.3. Llet 6¢(0,»). Assume oz(a), given in (3.1), is finite, Then

p - Vin 32(s) = (o).
M. Let A, 6¢(0,=). Then
P{IG:(O) - oz(e)l >Ar £ P{Zf(z)[k'n(-eznz)]‘11(-znz < e'lz(n))dz > A/3}
+'P{zf(z )(R(-8enz)1"Ydz > a/3)
+ P{:[,f(z)|[En(-eznz)]'ll(-znz colz ) - [K(-oenz)1"1|dz > a/3).

By the Glivenko-Cantelli Lemma:

1 1
Tim f(f(z)[?n(-eznz)]'ll(-znz < o'lz(n))dz = {f(Z)[K(-emz)J'ldz. w.p.l.
3 A

Thus by Lemma 3.2, and the Chebyshev Inequality:

2 2 18 -1
Tim P{|an(e) - o“(8)| > A} < 6 t{f(z)[‘i((-tn.nz)] dz.
tow since az(e) (=

]
Vim, If(z)[i(-oznz)]'ldz = 0,
+0° 0
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Consequently the desired result follows. ||

Vle nou prove that 3:

Lenma 3.4. Assume that n < = and that 02(0) is finite in an open

converges in probability to oz(n).

interval that contains n. Then
p - lim Eﬁ = oz(n).

Proof. Let 0 <6 < 60 <n, re(0,»), and let An = {w: |"n(‘°) - n} > &},
Assume cz(e) < » for 6¢[n - 60, n + Go]. By the monotonicity of 3’2'(6) in

e forn=1, 2, ..., we obtain by some simple computations that:
PU1&2 - o?(n)] > A} < PLIGE(n + 6) - oP(n + 6)] > a/a)
+ P{l&ﬁ(n -6 ) - o%(n - 3)| >a8) + &~ Y|o?(n + &) - oZ(n)]
sl - 8) - Em) 1P =1, 2, ... .

By the Weak Law of lLarge Numbers,lim P{An} =0,
Thus by Lemma 3.3:

Tim P{Iaﬁ - 2(!\)[ > A} _<_4x'1|oz(n +6) - cz(n)l + 4A'l|cz(n -6)- oz(n)l.

i Consequently the desired result follows from the continuity of dz(o)*in
{ [n - 60, n+ 60], by letting & » 0+. I
He obtain now the consistency of 2 under Hye

- ) n
! Theorem 3.5. Assume oz(o) js finite in an interval that contains u.
| Then under Ho

; ' p - lim Gﬁ = cz.

L Proof. Note that under Hy, u = n and that o = F(n). Consequently
‘ : the desired result follows by Lemma 3.4. ||
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Next ve show that our iest is consistent.
Theorem 3.6. Assume (A.1), (A.2), and (A.3) iwld. Further, assume
that 4 < «, and that 02(6) is finite in an interval that contains n. Then

the test, vhich rejects H0 in favor of h, if nllz{J; - (1/4)}8;1< -z, is

i
consistent against all continuous NBU aliernatives.

Proof. Note that

P2 - (angTt < on - el L aE g -z 6+ nM2((1/0) - a(FYD,

n n

that under H, (1/4) - aA(F, > 3}, ar} thut by Lemna 3.4 p- 1im é_ = o(n) € =,

n
Consequently the desirad resuii follows by Tneorem 2.1. ||

Finally, we present a sufficient conditica for oz(e) { = at 8¢(0,=).

Lemma 3.1. Lot 3¢(0,=). Azsume

: ,4'8 f - -1 7’ £, e
(3.4) Tim 27 ""[K(-62nz2)1"" £ = for some ge(0,s).
220
2 .
Procf. To obtain tha dezired result is sufficies to show that there

is a 8¢(0,1), such thet
P, -1
JH(2)[K{-02n2)1""dz <€ =.
0

We show now the preceding inequality. There is a 5¢(0,1) and a de(0,=),
such that z*°8 < dR(-esnz), 2<70,8). Thos:

- RO
JE2NR(~cen2 )] d2e < ¢jF(2)2° dz.
¢ 0

]
Consequently the desired result follows by an evaluation of gf(z)z°‘4dz. I
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4. Efficiency loss due to censoring. Recall that the J; test is a generalization

of the HP (1972) test for the uncensored model based on the statistic Jn 1

(see equation (1.5) of HP (1972)). In this section we study the efficiency n

loss due to the presence of censoring by comparing the power of the Jn test |

based on n observations in the uncensored model with the power of the J:

test based on n* observations in the randomly censored model. ;
Let FY be a parametric family within the NBU class with FYO being exponential

with scale parameter 1 (for example, one such family is the Weibull

Fy(x) =1 - exp{-(x)"}, v 21 and yq = 1) and assu.e te rando~ly censored 1wiel with

F = FY and with censoring distribution H. Consider the sequence of alterna-

tives Y=Y * cn‘llz, with¢ > 0, Let sn(yn) be the power of the approximate

a-level J, test based un n observations in the uncensored model and let

Bn*(yn) denote the power of the (approximate) a-level test based on J'c' for

n* observations in the randomly censored model. Consider n* = h(n) such

that lim Bn(yn) = lim an*(vn), where the 1imiting value is strictly between

0, and 1, and let ' = 1im n/n*. The value of k can be viewed as a measure

of the efficiency loss due to censoring. The value of k is adopted from .

Pitman's (cf. Noether, 1955) measure of asymptotic relative efficiency but [

the interpretation of k must be modified because "n and J: are not competing
tests which are both applicable in the randomly censored model. Roughly
speaking, for large n and NBU alternatives close to the null hypothesis

of exponentiality, the J: test requires n/k observations from the randomly
censored model to do as well as the ‘Jn test applied to n observations from

the uncensored model. It can be shown that since J" and J: have the same

asymptotic means, k reduces to
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def c ' 2
(4.1) k = eH(J , V) = (5/432)/¢°(1)

llzdn and oz(l), given

vhere (5/432) is the null asymptotic variance of n
by (3.1), is the null asymptotic variance of "1/2‘,:. Thus note that k depends
only on the censoring distribution H, and not on the parametric family FY
of NBU alternatives. Henca2 we use the notation eH(Jc, J), rather than eF’H(JC, J).
in (4.1).

\le consider the cases (i) where the censoring distribution is exponential,
Wl(x) =1 for x <0, 'ﬁl(x) = exp(-ax), x > 0, and (ii) where the censoring
distribution is piecewise exponential, ﬁa(x) =1forx<0,and forvy=1, ..., m,

le(x) = c,. exp(-a.x), Sp_q < X £ 5. and 'ﬁz(x) = cmﬂexp(-xmﬂx), Sy < ¢ “here

r-1
c. = exp ( '.xl)‘i(si - %1 - 1) + Arsr-l)’ and Sp = 0.
1=

For Hl’ we see that (A.2) is satisfied with ¢ = 0 and thus we impose
the restriction A < 1. Then from (3.1) aid (4.1) we find

(4.2) e“1(Jc' J) = 5(3 - A)3/127(32 - 20 + 5)}.

Values of eH_(Jc, J) are givea in Table 4.1. irom (4.2) we note that,
as is to be ;xpe-:ted, as A tend: to 0 (corresponding to the case of no censor-
ing), eHI(Jc, J) tenis to 1.

In order to provide a reoference point to the amount of censoring, and
thereby facilitate the interpretotion of eHI(Jc, J), we also include in
Table 4.1 the value of pH1 = P()(1 < Yl) = (1 + A)'l, the probability of
obtaining an uncensored observation when )(1 is exponential with scale para-

meter 1 and Y1 is independert of x1 and has the censoring distribution "l
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When the censoring distribution is Hys straightforward but tedious

calculations yield

m+l
(4.3) eHZ(Jc’ J)= ¢ 27(x§ -a, ¢+ 5)(5cr)-1(3 - Ar)'3[exp{-(3 - xr)s

"=l r-l}

m+l
- exp{-(3 - Ar)sr}] - r21108(1 - Ar)(5cr)'1(3 - xr)'z[sr_lexp{-(3 - xr)sr_ll

m+l -1 1.2
- s.exp{- (3 - xr)sr}] + r§1108(5cr) (3 - Ar) [sr_lexp{-(3 - xr)sr}

- S$exp{-(3 -2, )s, 1, i

where Sm+1 = = Again, with the censoring distribution HZ’ (A.2)
can include the case € = 0 and thus here we have gy £ 1.

values of eHZ(Jc, J) are also given in Table 4.1. Again, as a reference
point for the amount of censoring under the censoring distribution “2’ we
include in Tabie 4.1 values of pH2 = (Xl < Yl) when X1 is exponential with
scale parameter 1, and Y1 is independent of X with distribution HZ' Direct
calculations show

m+l -
pHz =1 - rilcrxr(l + xr) 1[exp{-(xr + l)sr-l}' exp{-(xr +1)sr}], vhere s ., = =,

TABLE 4.1
Efficiency loss under exponential (Hl) and piecewise exponential (Hz) censoring.

(H,)

A 1 1/2 /3 /4 1/10
eHI(Jc,J): 371 .681 .790 .844 .939
Py, : .500 .667 .750 .800 .909

1
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(Hy)

5y 1 1 1 2
(15 2y): (1/2, 1) (1, 1/2) (172, 13) (12, 1)
eHZ(Jc, 3 .529 .498 723 .642
Py, .630 .523 .685 .675

m=2 (sq, S,): (1/2, 1) (1/2, 1) (1/2, 1)

(Aps 250 A5): (1, 1/2, ¥/3) (13, 1/2, 1) (12, V/3, 1/4)
eHz(.f, 0: 617 .597 772
Py, .576 .667 718

5. An Example. The data in Table 5.1 are found in Hollander and Proschan
(1979) and are an up-dated version of data given by Koziol and Green (1976).
The data correspond to 211 state IV prostate cancer patients treated with
estrogen in a Veterans Administration Cooperative Urological Research Group
study. At the March, 1977 closng date there were 90 patients who died of
prostate cancer, 105 who died of other diseases, and 16 still alive. Those
observations corresponding to deaths due to other causes and those correspond-
ing to the 16 survivors are treated as censored observations (withdrawals).
As reported by Koziol and Green (1976), there is a basis for suspecting
that had the patients not been treated with estrogen, their survival distri-
bution for deaths from cancer of the prostate wuld be exponential with mean
100 months.

Hollander and Proschan (1979) developed a goodness-of-fit procedure
for testing, in the randomly censored model, that F is a certain (completely
specified) distribution. They applied their test, and competing procedures
of Koziol and Green (1976) and Hyde (1977), to the data of Table 5.1. The
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hypothesized F was taken to be exponential with mean 100. The two-sided
P values obtained were consistent with the hypothesis. However, Gregory
(1979) has proposed some goodness-of-fit tests which (for certain alterna-
tives) may be more powerful than the tests of Hollander and Proschan (1979),
Koziol and Green (1976), ard Hyde (1977). Gregory's tests, applied to the
data of Table 5.1,strongly indicate a deviation from the postulated expo-
nentjal, with mean 100, distribution.
Possible alternative models include an exponentiai distribution with
a mean different than 100, or a distribution, such as an NBU distribution,
that could represent "wearout." To explore the possiblity of the latter
type of alternative, it is reasonable to apply the test based on J;.
Applying our NBU “est to the data of Table 5.1, we obtain
1 = 193, 351 = 105 and (200)Y2408) ) - (1/4)153], = -2.56 with a cor-
responding one-sided P value of .0052. Thus the test indicates strong evi-
dence of wearout and suggests that an MNBU model is preferable to an expo-

nential model.

TABLE 5.1

Survival times and withdrawal times in months for 211 patients
(with nunber of ties given in parentheses)

Survival times: 0(3), 2, 3, 4, 6, 7(2), 8, 9(2), 11(3), 12(3), 15(2), 16(3),
17(2), 18, 19(2), 20, 21, 22(2), 23, 24, 25(2), 26(3), 27(2), 28(2), 29(2),
30, 31, 32(3), 33(2), 34, 35, 36, 37(2), 38, 40, 41(2), 42(2), 43, 45(3),

46, 47(2), 48(2), 51, 53(2), 54(2), 57, 60, 61, 62(2), 67, 69, 87, 97(2),
100, 145, 158.

Withdrawal times: 0(6), 1(5), 2(4), 3(3), 4, 6(5), 7(5), 8, 9(2), 10,

11, 12(3), 13(3), 14(2), 15(2), 16, 17(2), 18(2), 19(3), 21, 23, 25, 27,

28, 31, 32, 34, 35, 37, 38(4), 39(2), 44(3), 46, 47, 48, 49, 50, 53(2),

55, 56, 59, 61, 62, 65, 66(2), 72(2), 74, 78, 79, 81, 89, 93, 99, 102, 104(2),
106, 109, 119(2), 125, 127, 129, 131, 133(2), 135, 136(2), 138, 141, 142,

143, 144, 148, 160, 164(3).
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introduced by Kaplan and Meier (1958).

Under mild regularity on the amount of censoring, the asymptotic nommality of J:.

suitably normalized, is established.

Then using a consistent estimator of the null standard
deviation of nll ZJ:, an asymptotically distribution-free test is obtained.

Finally, using

tests for the censored and uncensored models we develop a measure of the efficiency loss

due to the presence of censoring.




