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producing a non-resolvable multipath situation and causing the amplitude
and phase of the signal to become random functions of time. Under these
circumstances, the detection performance of the quadrature receiver is
degraded compared to its performance with a coherent signal.

This study theoretically measures the degradation in the receiver's
output signal-to-noigse ratio (SNR) when the input waveform consists of
a narrowband Gaussian signal embedded in white noise. The output SNR's
dependence on the correlation characteristics of the input signal is
i clearly shown.
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PERFORMANCE DEGRADATION IN A QUADRATURE RECEIVER
FOR CW SIGNALS CORRUPTED BY MULTIPATH

INTRODUCTION

In active sonar applications, a quadrature receiver can be used to
detect the presence of an underwater reflector. This receiver's
performance is optimum when the amplitude and phase of the reflector's
signal are constant but unknown (i.e., coherent signal) and the back-
ground noise is white with 2zero-mean. As shown in Fig. 1, this receiver
correlates the received waveform (either noise-only or signal-plus-noise)
with sine and cosine waves having fixed parameters; the respective
correlator outputs are then squared and summed. A detection is made if
the output, Q(T), exceeds a predetermined threshold. Figure 2 shows an
equivalent form of the quadrature receiver, the familiar matched filter-
envelope detector combination referred to as the incoherent matched
filter [1]. In many sonar applications a bank of matched filter-envelope
detectors, each centered at a different frequency, is used to detect an
underwater reflector and estimate the reflector's Doppler frequency and

range.

One problem in active sonar systems with narrowband transmit signals
is the combination at the receiver of direct path and surface path returns

reflected from a distributed highlight reflector. When these multipath
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random time-varying amplitude and phase over the signal duration. The
mismatch that exists between the random time-varying parameters of the
echo and the fixed parameters of the sine and cosine multipliers in the
quadrature receiver causes a degradation in detection performance. This
degradation has been observed and quantified empirically but is not well

understood theoretically.

The problem of performance degradation in matched filter or replica-
correlator processors has been dealt with previously by several
researchers. Costas [2] examined the detection performance losses of a
matched filter-envelope detector combination in terms of the ambiguity
function for continuous wave (CW) and frequency modulated (FM) input
signals when these signals were characterized by time and frequency
spreading. 1In his studies, ambiguity function calculations were made for
both noise and reverberation backgrounds. The problem of correlation
degradation in passive systems as a result of track and motional

instabilities in a transiting source (assumed to be a narrowband signal

source) was examined by Gerlach [3]. In his work, the integration time to

optimize processor gain is derived for signal detection with an incoherent

noise background. Robertson [4] determined the performance
characteristics of a matched filter-envelope detector for multiple CW
pulses in narrowband noise. He showed the improvement in receiver

operating characteristic (ROC) curves as several independent samples of

returns overlap (i.e., non-resolvable multipath), the composite echo has a
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the envelope of the combined signal and noise are averaged in making one
attempt at detection. Roberts [ 5] considered the detection of a sinusoid
with signal known except for phase which was described by a unimodal
distribution. Kincaid [6,7] determined optimum waveforms for correlation
detection for both noise-limited and reverberation-limited conditions.
Most of the significant research efforts cited here were based on the more
fundamental radar work of Marcum [ 8], Swerling [9], and schwartz [10].
Each considered the multiple pulse performance of matched filter-envelope

detectors using different signal fluctuation models.

In this report, the performance of the quadrature receiver is
theoretically measured in terms of output signal-to-nocise ratio (SNR) when
the input signal is postulated to be narrowband with Rayleigh-distributed
amplitude fluctuations and uniformly distributed phase fluctuations in
time and the background noise is white with zero-mean. As the
correlation characteristics of the input signal are varied, the
degradation in the receiver output SNR is shown relative to the case when
the input signal is coherent. For the problem considered in this report,

the constant signal frequency, f, is assumed to be a known parameter.
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SIGNAL AND NOISE MODELS

In this analysis, the received waveform, r(t), in Fig. 1 consists of
gignal-plus-noise or noise only. The noise, n(t), is assumed to be
white with zero-mean. The two-~sided noise power spectral density is
N /2 with the autocorrelation function equal to (N /2) S(t-t');

hence, the noise is a stationary random process. The signal, s(t),
postulated to be narrowband and Gaussian, has the following mathematical

representation:
s(t)=V(t)cos[wt+b(t)], for 0<t<T, (1)

where V(t), the envelope, is a Rayleigh distributed random process and
0(t), the phase, is a uniformly distributed random process. The radian
frequency, w, is assumed to be known and constant over the signal duration,

T. Written in terms of in-phase and quadrature components, Eq.(l) becomes
s(t)=x(t)coswt-y(t)sinut, for 0<t<T, (2)

where x(t)=V(t)cosO(t), y(t)=v(t)sinf(t). x(t) and y(t) are the

amplitudes of the in-phase and quadrature components, respectively.

In underwater acousticg this model is frequently used to approximate
the signal that is produced when many overlapping direct path and surface
path returns combine after being reflected from a distributed highlight
source. Although each path return has a random but fixed amplitude and

phase, the resultant multipath-iaden signal has an envelope and phase that

~
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are time-varying random processes, If many path returns combine to
proddce a resultant signal like the one expressed in Eq.(l), the Central
Limit Theorem indicates that x(t) and y(t), the resultant in-phase and
quadrature components, are zero-mean, Gaussian, random processes; hence,
the envelope V(t) may be shown to be a Rayleigh random process and the

phase Q(t), a uniform random process [11].

DERIVATION OF RECEIVER OUTPUT SNR

In this section, an expression is derived relating the output SNR of
the quadrature receiver at time T to the input waveform. Beginning with

r(t)=s(t)+n(t) in Fig. 1, it is evident that the correlator outputs are

T T
qq ('I‘)=/ s(t)sin(wt)dt +] n(t)sin(wt)dt, (3)
[+ o

and

T T
q (T)-/ s(t)cos(wt)dt+/ n(t)cos(wt)dt,
¢ o (o}

where E[q(T)] =E[q (T)] =0.(The symbol E[*] indicates expected value.)
It is assumed for simplicity that the signal and noise are statistically
independent stationary random processes. Squaring q and d, and taking the

expected value of their sum, Q(T), yields

T T T
z[Q('r)]-// a'(t-t')cow(t-t')dtdtw// R (t-t')cosw(t-t')dtdt',  (4)
QJo 0Jo
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where Rs(t—t')-E[s(t)s(t')], and Rn(t-t')-E[n(t)n(t')]. For convenience,
Rs(t-t') can be written in terms of the autocorrelation functions of x(t)
and y(t) by using s(t)s=x(t)coswt-y(t)sinwt, and knowing that for

the narrowband representation in Eq. (1) Rx(t-t')any(t-t') and

ny(t-t')- -Ryx(t-t') as shown in [12]. Hence, after making these
substitutions ard applying trigonometric identities the autocorrelation

function of s(t) is written as

Rs(t-t')-Rx(t-t')cosw(t-t')+ny(t-t')sinm(c-c'). (S)

Substituting Eg.(S) into Eq.(4) and again applying trigonometric identities

gives

LT L
efom] == R_(t-t')dtdt'+ 3 R_(t-t')cos2w(t-t*)dtdt’
2 oJo* 2 oJo X : ’

1 ¥ T T T
+ 3 R__(t-t')sin2w(t-t')dtde'+ R_(t-t')cosw(t-t')dtdt’. (6)
2Jofo ¥ oJo®

Following Turin's development of the SNR for a matched filter-envelope
detector matched to a non-coherent signal in noise [13], the double frequency
terms in Eq.(6) are neglected. 1In fact, when the product of T and w is large,
as it often is in sonar applications (in the kilohertz range),.these double

frequency terms vanish (see appendix). Using the noise model postulated in

- {
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the previous section to evaluate the integral in Eg.(6) with Rn(t-t'),

Eg. (6) becomes

;T N_T
efo(m] = 5/ /Rx(t-t')dtdt'+ = (7
Q JO

Since E[Q(T)] represents the average receiver output power at t=T, the

approximate output SNR at t=T is

1 T T
=ﬁf /Rx(t-t')dtdt‘. (8)
o Jo

Papoulis [14] shows how this double integral can be simplified to the

following single integral

=2 -
SNRZ (l T )Rx(T)dT. ' (9)

This result explicitly relates the output SNR to the noise power spectral
density, N°/2; the integration time, T; and the in-phase component of the

1 signal (or, equivalently, the quadrature component).

v
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SNR VS. SIGNAL CORRELATION

The output SNR will now be evaluated for signals with different correla-
tion characteristics. First, consider the case where the amplitude and
phase of the signal, s(t), are constant and unknown over the duration, T
(i.e., V and © are constant). The result for this coherent signal case is
well known and is presented by Whalen [1] in his treatment of signals with
random phase and amplitude. 1In this case, the autocorrelation function

Rx(t) becomes B(Vzcosze) or Az, where Ao is defined as the Rayleigh

parameter describing the Rayleigh variable V. Hence, Eg.(9) reduces to

R
SNRalE—— N (10)
o

This result agrees with Whalen's development.

Next, x(t) is considered to be a Gauss-Markov process where the

autocorrelation function is Rx(‘r)-lkge-ah.l

, where 1l/a is defined
as the correlation time. Substituting into Eq.(9) and performing the

integration yields

2

SNRHFE zge-n‘-lu'r] .
"o | (am?




From Eq.(ll), as a + @, or as the correlation of x(t) with itself
diminishes, the SNR + 0. Also, as a + 0, the SNR + AgT/NO: this result

agrees with the coherent signal case considered earlier.

Finally, the case where x(t) is a Gauss-peaked process with

2_-ajt|

R (T)=A e coswoltl is considered. Here Eq.(9) becomes
A:T 2(9-CT-1+CT)
SNR & N Re 2 ' (12)
o {cT)

where c=a+jw°, a complex variable. When wo-o, ¢ equals the real value

a; x(t) becomes a Gauss-Markov process; and Eq.(12) reduces to Eg.(ll).
Since Eq.(12) is in effect a composite of each of the other cases, it is
presented graphically in Fig. 3. 1In the figure, the SNR is normalized with

respect to AéTVNO, the result obtained for a coherent input signal, and

plottad in decibels as a function of aT with wor a parameter.

St
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RESULTS

Figure 3 describes the performance of the quadrature receiver as
certain signal parameters are varied. It should be remembered that the

integration time, T, remains fixed and equal to the signal duration; hence

the only parameters that are varied are the correlation time, 1/a, and the
radian frequency of oscillation, W of the autocorrelation functions

describing x(t) and y(t).

In figure 3, the on-O curve demonstrates the receiver's

performance when x(t} and y(t) are Gauss-Markov processes; the origin

- aT
§ 5 10 5 20 25 30
-cT_
NORMALIZED SNR (dB)=2Re[°—i—éﬂI]
-2k (cT)
| = wol =0 WHERE c=a+jwg
© -
= _4f Ry(t)=Ry(r)=AZ e *'Tcos wotet
[ <
?‘ 4 WOT'3
; 7]
b Q -gp T=
N[0 2
-l
§ -8- (lJoT=5
) x
S
f - <-10
-
- _I2 L L 1 1 1
i‘ Figure 3. Normalized Output SNR for Quadrature Receiver
: When x(t) and y(t) Are Gauss-peaked Processes
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corresponds to the coherent input signal case. The other curves represent
the case where x(t) and y(t) are Gauss-peaked (i.e., exponential-cosine)
random processes. It is interesting to observe the behavior of the slope

of the curves at aT=0. The wa-O and on-3 curves have a negative

slope at this point and are monotonic decreasing functions of aT. The

w°T=4 and mOT-S curves have a positive slope at the origin and

peak before again becoming monotonic decreasing functions. It can be
shown that the turnover point for the slope at aT=0 occurs moT-n;

here, the slope is zero.

Dl s e aan2

Finally, it is worthwhile to note that there appears to be a value of

1 aT beyond which the SNR is independent of moT.

P 2
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SUMMARY

In active sonar systems, when the transmit signal is a narrowband CwW
pulse, a combination of non-resolvable multipath returns from a reflector
degrade the detection performance of a quadrature receiver. This well-
known receiver is optimum when the input waveform consists of a coherent
signal with a white noise background. This combination of non-resolvable.
multipath returns causes the amplitude and phase of the signal to become
candom functions of time. As a result, the signal diminishes in coherence
and the receiver's performance is degraded. The work presented in this
report has theoretically measured the degradation in a quadrature
receiver's output SNR using a narrowband signal model with ‘
Rayleigh~distributed envelope fluctuations and uniformly distributed phase
fluctuations over the signal duration. Several variations in the
autocorrelation function of the signal were considered., After deriving an
expression for the output SNR of a quadrature receiver
showing its dependence on the autocorrelation function, Rk(r), of the
in-phase (or quadrature) amplitude, the output SNR was determined for
several variations of Rx(r). For comparison purposes, the SNR was

normalized to that obtained when the input signal is coherent.

13
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APPENDIX

DISCUSSION OF DOUBLE FREQUENCY TERMS

This development demonstrates why the double frequency terms in
EQ.(6) can be neglected. To begin, it is known from the Wiener-Kinchine

theorem that

-p?)m 1-
Rx(t t') 27 sx(w)e

W

iw(t-t')dn. (A1)

where sx(m) is the power spectral density of the random process x(t).

Hence,

T
jﬁ R (t-t')cos2u (t-t')dt

2w (t-t')  -~i2u (t-t')

T
-f i iw(e-t*) e +e .
L ZTI’L Sx(m)e 2 dwdt
s w [
. %-f _x_._/ Gt @) Lt @) | g
T Ao 2 Jo
8 (W) | _;.» T i b
- i_{;] x2 }e it (uh2wc)L .lt(uﬂ-zuc)dt*e it (m-zmc)L .u((,,.zmc) dt&d». (A2)
w
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Evaluating the inner integrals yields

T .T . T
iz (w+2wc)-e-x.2 (w+2wc) el (w+2mc) 2

31

]s:zc {w) it ) | e
)]

T
21 (w+2w c) 3

T
_¢T(w=-2w ) -i (w20 )= T
-it' (w~2w )] e 12 ¢ - e 2| i 20)<:)2
+e c — e '}

T . (Ad)
2i (m-mc)i

Recognizing that Eq.(A3) can be written in terms of sinc functions gives

T
it @) 'r] 1w )3

S
T [fxW) z
2 / 3 sinc [(m+2mc)2 e
w

ﬂ-it' (w-zmc) sinc [(w_wc)_';'_ c

T
i(w~2w )=
Jo e

It is evident that Eqg.(A4) is small when mc > 1.
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