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1I. OuPE MENTA*Y NOES

" Sonar Receivers
Signal-to-Noise Ratio
Multipath Signals

1 Hatchedi Filters

In active sonar applications, a quadrature receiver can be employedto detect the presence of an underwater reflector. This well-known
Mreceiver performs optimally when he input waveform is a coherent signal

(i.e., constant but unknown mplitude and phase) embedded in white,
:ero-mean noise. Unfortunately, when an attempt is made to detect adistributed highliht reflector in a multipath environment by using a* narrowband t trsi nal the various multipah returns may overlap,
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20. ABSTRACT (Cont'd)

producing a non-resolvable multipath situation and causing the amplitude
and phase of the signal to become random functions of time. Under these
circumstances, the detection performance of the quadrature receiver is
degraded compared to its performance with a coherent signal.

This study theoretically measures the degradation in the receiver's
output signal-to-noise ratio (SNR) when the input waveform consists of T
a narrowband Gaussian signal embedded in white noise. The output SNR's
dependence on the correlation characteristics of the input signal is
clearly shown.
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PERFORMANCE DEGRADATION IN A QUADRATURE RECEIVER
FOR CW SIGNALS CORRUPTED BY MULTIPATH

i

INTRODUCTION
T

In active sonar applications, a quadrature receiver can be used to

detect the presence of an underwater reflector. This receiver's

performance is optimum when the amplitude and phase of the reflector's

signal are constant but unknown (i.e., coherent signal) and the back-

ground noise is white with zero-mean. As shown in Fig. 1, this receiver

correlates the received waveform (either noise-only or signal-plus-noise)

with sine and cosine waves having fixed parameters; the respective

correlator outputs are then squared and summed. A detection is made if

the output, Q(T), exceeds a predetermined threshold. Figure 2 shows an

equivalent form of the quadrature receiver, the familiar matched filter-

envelope detector combination referred to as the incoherent matched
I filter C13. In many sonar applications a bank of matched filter-envelope

detectors, each centered at a different frequency, is used to detect an

underwater reflector and estimate the reflector's Doppler frequency and

range.

One problem in active sonar systems with narrowband transmit signals

is the combination at the receiver of direct path and surface path returns

reflected from a distributed highlight reflector. When these multipath

IiL
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I
returns overlap (i.e., non-resolvable multipath), the composite echo has a

random time-varying amplitude and phase over the signal duration. The

mismatch that exists between the random time-varying parameters of the

echo and the fixed parameters of the sine and cosine multipliers in the

J quadrature receiver causes a degradation in detection performance. This

degradation has been observed and quantified empirically but is not well

understood theoretically.

The problem of performance degradation in matched filter or replica-

* correlator processors has been dealt with previously by several

researchers. Costas [2] examined the detection performance losses of a

matched filter-envelope detector combination in terms of the ambiguity

function for continuous wave (CW) and frequency modulated (FM) input

signals when these signals were characterized by time and frequency

spreading. In his studies, ambiguity function calculations were made for

both noise and reverberation backgrounds. The problem of correlationI ~ degradation in passive systems as a result of track and motional

instabilities in a transiting source (assumed to be a narrowband signal

I source) was examined by Gerlach [3]. In his work, the integration time to

optimize processor gain is derived for signal detection with an incoherent

noise background. Robertson [4] determined the performance

j characteristics of a matched filter-envelope detector for multiple CW

pulses in narrowband noise. He showed the improvement in receiver

j operating characteristic (ROC) curves as several independent samples of

3
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the envelope of the combined signal and noise are averaged in making one

attempt at detection. Roberts [5] considered the detection of a sinusoid

with signal known except for phase which was described by a unimodal

distribution. Kincaid [6,7] determined optimum waveforms for correlation

detection for both noise-limited and reverberation-limited conditions.

Most of the significant research efforts cited here were based on the more

fundamental radar work of Marcum [8, Swerling 1:9], and Schwartz [10].

Each considered the multiple pulse performance of matched filter-envelope

detectors using different signal fluctuation models.

In this report, the performance of the quadrature receiver is

theoretically measured in terms of output signal-to-noise ratio (SNR) when

the input signal is postulated to be narrowband with Rayleigh-distributed

amplitude fluctuations and uniformly distributed phase fluctuations in

time and the background noise is white with zero-mean. As the

correlation characteristics of the input signal are varied, the

degradation in the receiver output SNR is shown relative to the case when

the input signal is coherent. For the problem considered in this report,

the constant signal frequency, f, is assumed to be a known parameter.

4
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I
SIGNAL AND NOISE MODELSSI

In this analysis, the received waveform, r(t), in Fig. 1 consists of

signal-plus-noise or noise only. The noise, n(t), is assumed to be

j white with zero-mean. The two-sided noise power spectral density is

No/2 with the autocorrelation function equal to (No/2) 6(t-t');

hence, the noise is a stationary random process. The signal, s(t),

postulated to be narrowband and Gaussian, has the following mathematical

I. representation:

s(t)-V(t)cos Jt+e(t)], for O<t<T, (1)

where V(t), the envelope, is a Rayleigh distributed random process and

e(t), the phase, is a uniformly distributed random process. The radian

j. frequency, w, is assumed to be known and constant over the signal duration,

T. Written in terms of in-phase and quadrature components, Eq. (1) becomes

s(t)-x(t)coswt-y(t)sinwt, for O<t<T, (2)

where x(t)-V(t)cose(t), y(t)-V(t)sine(t). x(t) and y(t) are the

amplitudes of the in-phase and quadrature components, respectively.

In underwater acoustics this model is frequently used to approximate

the signal that is produced when many overlapping direct path and surface

path returns combine after being reflected from a distributed highlight

source. Although each path return has a random but fixed amplitude and

I phase, the resultant multipath-jaden signal has an envelope and phase that

1
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are time-varying random processes. If many path returns combine to

produce a resultant signal like the one expressed in Eq. (1), the Central

Limit Theorem indicates that x(t) and y(t), the resultant in-phase and

quadrature components, are zero-mean, Gaussian, random processes; hence,

the envelope V(t) may be shown to be a Rayleigh random process and the

phase 6(t), a uniform random process Ei].

DERIVATION OF RECEIVER OUTPUT SNR

In this section, an expression is derived relating the output SNR of

the quadrature receiver at time T to the input waveform. Beginning with

r(t)=s(t)+n(t) in Fig. I, it is evident that the correlator outputs are

T T

q (T)- n (t)sin(wt)dt+n(t)sin(wt)dt, (3)

and

T T
qc(T) f s(t)cos(wt)dt +Jn(t)cos(wt)dt,

where "[qc(T)) -[q s (T))]-0. (The symbol ZE.] indicates expected value.)

It is assumed for simplicity that the signal and noise are statistically

independent stationary random processes. Squaring qa and qc and taking the

expected value of their sum, Q(T), yields

T T +T T

Z[Q (T)] -f Rtt)owtt)tt+Rof R (t-t)cow(t-t)dtdt', (4)

6 21
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where R (t-t')lE[s(t)s(t')] , and R (t-t')-E[n(t)n(t')] . For convenience,

R s(t-t') can be written in terms of the autocorrelation functions of x(t)

and y(t) by using s(t)-x(t)coswt-y(t)sinwt, and knowing that for

the narrowband representation in Eq.(1) R (t-t')iR (t-t') and

R XY(t-t')- -R yx(t-t') as shown in [12]. Hence, after making these

substitutions and applying trigonometric identities the autocorrelation

function of s(t) is written as

Rs (t-tl } - x (t-tl)co2C(t-tY+Rxy (t-t')sin(t-t'). (5)

Substituting Eq.(5) into Eq.(4) and agiin applying trigonometric identities

gives

T T T T
E C(T)] f fR(t-t)dtdt'+ J Rx(t-t)cos2w(t-tl)dtdt'

+*if fo (t-t')sin2w(tt)dtdt+JJ R n(t-t')cosw(t-t)dtdt'. (6)

Following Turin's development of the SNR for a matched filter-envelope

detector matched to a non-coherent signal in noise E3], the double frequency

terms in Eq.(6) are neglected. In fact, when the product of T and w is large,

as it often is in sonar applications (in the kilohertz range), these double

frequency terms vanish (see appendix). Using the noise model postulated in

7
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the previous section to evaluate the integral in Eq.(6) with R (t-t'),
n

Eq. (6) becomes

iT T NoT

.2.

Since E[Q(T)] represents the average receiver output power at t-T, the

approximate output SNR at t=T is

T

N- T f  -t')dtdt ' . (8)

Papoulis [14] shows how this double integral can be simplified to the

following single integral

This result explicitly relates the output SNR to the noise power spectral

density, No/2; the integration time, T; and the in-phase component of the

signal (or, equivalently, the quadrature component).

8 .1



NONN

I TR 5908

SNR VS. SIGNAL CORRELATION

j The output SNR will now be evaluated for signals with different correla-

tion characteristics. First, consider the case where the amplitude and

1phase of the signal, s(t), are constant and unknown over the duration, T

(i.e., V and 9 are constant). The result for this coherent signal case is

1well known and is presented by Whalen 13 in his treatment of signals with

random phase and amplitude. In this case, the autocorrelation function

R)M becomes EMV cos e) or A0, where A is defined as the Rayleigh

parameter describing the Rayleigh variable V. Hence, Eq. (9) reduces to

A2T
SNR 09- . (10)

0

-, This result agrees with Whalen's development.

Next, x(t) is considered to be a Gauss-Markov process where the

autocorrelation function is Rx(T)-%A2e aITI, where 1/a is defined

as the correlation time. Substituting into Eq.(9) and performing the

integration yields

SsuRO2(e-aTl+aT)SN N o (aT) 2 ( 1

I 9
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From Eq. (11), as a 4 ,or as the correlation of x(t) vith itself

diminishes, the SNR-* 0. Also, as a - 0, the SNE 4- A 2T/N ;this result
0 0

agrees with the coherent signal case considered earlier.

Finally, the case where x(t) is a Gauss-peaked process with

R1 (T- ea'lowOT is considered. Here Eq.(9) becomes

A 2T 2r -CT 11cT
SNRN N Re [2C-l~ 2 , (12)

where c-a+jw 0 , a complex variable. When w0-O, c equals the real value

a; x(t) becomes a Gauss-Markov process; and Eq. (12) reduces to Eq. (11).

Since Eq.(12) is in effect a composite of each of the other cases, it is

presented graphically in Fig. 3. In the figure, the SNR is normalized with

respect to A 0T/N 0,the result obtained for a coherent input signal, and

plotted in decibels as a function of aT with w T a parameter.

L f

10
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RESULTS

Figure 3 describes the performance of the quadrature receiver as

J certain signal parameters are varied. It should be remembered that the

integration time, T, remains fixed and equal to the signal duration; hence

I the only parameters that are varied are the correlation time, 1/a, and the

radian frequency of oscillation, w 0, of the autocorrelation functions

describing x(t) and y(t).

in figure 3, the w T=O curve demonstrates the receiver's

performance when x(t) and y(t) are Gauss-lMarkov processes; the origin

aTo10I 15 20 25 3

NORMALIZED SNR (d)u2R4 e- T+ cr]

-2 w T:0WHERE c--a+jwo

V z w0Tz3 ~Rx(r)aR()A6 M249tr~
Z ,X
(n 0T~

Z-11

-1
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corresponds to the coherent input signal case. The other curves represent

the case where x(t) and y(t) are Gauss-peaked (i.e., exponential-cosine)

random processes. It is interesting to observe the behavior of the slope

of the curves at aT-0. The w0T-0 and w 0 Tw3 curves have a negative

slope at this point and are monotonic decreasing functions of aT. The

wOT-4 and WoT-5 curves have a positive slope at the origin and

peak before again becoming monotonic decreasing functions. It can be

shown that the turnover point for the slope at aT-0 occurs w0T-1r;

here, the slope is zero.

Finally, it is worthwhile to note that there appears to be a value of

aT beyond which the SHR is independent of woT.

0l

12

.. .
12 I
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SUMHARY

In active sonar systems, when the transmit signal is a narrowband CW

pulse, a combination of non-resolvable multipath returns from a reflector

degrade the detection performance of a quadrature receiver. This well-

known receiver is optimum when the input waveform consists of a coherent

j signal with a white noise background. This combination of non-resolvable.

multipath returns causes the amplitude and phase of the signal to become

I ~andom functions of time. As a result, the signal diminishes in coherence

and the receiver's performance is degraded. The work presented in this

report has theoretically measured the degradation in a quadrature

receiver's output SNR using a narrowband signal model with

Rayleigh-distributed envelope fluctuations and uniformly distributed phase

fluctuations over the signal duration. Several variations in the

t autocorrelation function of the signal were considered. After deriving an

expression for the output SNR of a quadrature receiver

showing its dependence on the autocorrelation function, R (T), of the

in-phase (or quadrature) amplitude, the output SNR was determined for

Iseveral variations of Rx(T). For comparison purposes, the SNR was

1 normalized to that obtained when the input signal is coherent.

13
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I
APPENDIX

DISCUSSION OF DOUBLE FREQUENCY TERMS

This development demonstrates why the double frequency terms in

Eq.(6) can be neglected. To begin, it is known from the Wiener-Kinchine

theorem that

Rx(t-t')-- S (W) eiW (t-t') dw. (Al)

W

where Sx(w) is the power spectral density of the random process x(t).

Hence,

T
Rx (t-t')cos2 o (t-t')dt

"T 11 . x()e (' i2wc (t-t') , e'i2w c (t't')

1 iW(t-t') e C 1e 2C

S S.(w)e '  dwdt

8()T

-f S ) i(t-t1)W+2%)ittWw2

S (W) TT
I *-eit' (w+2w~ eLt((a2 wc~dt~e-ilo-% *Lt(u)2wC) dt d) A2)
2 2

'1]
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Evaluating the inner integrals yields

Z(W+2w ) -i1(w+2uc) 1  T~+w

27rxwI 2 tw2w~"e 2i (w42w T i:E2w

WI c 2

j(W-2wc) -i(w-2! (_ )

+- it' (w-2 e2 - e C w M
2wC)[e212(w-2Lay )I3

Recognizing that Eq. (A3) can be written in terms of sinc functions gives

S iw-2+ T

A-2
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